Sample records for extant mtdna boundaries

  1. Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans

    PubMed Central

    Metspalu, Mait; Kivisild, Toomas; Metspalu, Ene; Parik, Jüri; Hudjashov, Georgi; Kaldma, Katrin; Serk, Piia; Karmin, Monika; Behar, Doron M; Gilbert, M Thomas P; Endicott, Phillip; Mastana, Sarabjit; Papiha, Surinder S; Skorecki, Karl; Torroni, Antonio; Villems, Richard

    2004-01-01

    Background Recent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized within the phylogeography of the neighboring regional mtDNA variation. Accordingly, we have analyzed mtDNA control and coding region variation in 796 Indian (including both tribal and caste populations from different parts of India) and 436 Iranian mtDNAs. The results were integrated and analyzed together with published data from South, Southeast Asia and West Eurasia. Results Four new Indian-specific haplogroup M sub-clades were defined. These, in combination with two previously described haplogroups, encompass approximately one third of the haplogroup M mtDNAs in India. Their phylogeography and spread among different linguistic phyla and social strata was investigated in detail. Furthermore, the analysis of the Iranian mtDNA pool revealed patterns of limited reciprocal gene flow between Iran and the Indian sub-continent and allowed the identification of different assemblies of shared mtDNA sub-clades. Conclusions Since the initial peopling of South and West Asia by anatomically modern humans, when this region may well have provided the initial settlers who colonized much of the rest of Eurasia, the gene flow in and out of India of the maternally transmitted mtDNA has been surprisingly limited. Specifically, our analysis of the mtDNA haplogroups, which are shared between Indian and Iranian populations and exhibit coalescence ages corresponding to around the early Upper Paleolithic, indicates that they are present in India largely as Indian-specific sub-lineages. In contrast, other ancient Indian-specific variants of M and R are very rare outside the sub-continent. PMID:15339343

  2. Recovering mitochondrial DNA lineages of extinct Amerindian nations in extant homopatric Brazilian populations.

    PubMed

    Gonçalves, Vanessa F; Parra, Flavia C; Gonçalves-Dornelas, Higgor; Rodrigues-Carvalho, Claudia; Silva, Hilton P; Pena, Sergio Dj

    2010-12-01

    Brazilian Amerindians have experienced a drastic population decrease in the past 500 years. Indeed, many native groups from eastern Brazil have vanished. However, their mitochondrial mtDNA haplotypes, still persist in Brazilians, at least 50 million of whom carry Amerindian mitochondrial lineages. Our objective was to test whether, by analyzing extant rural populations from regions anciently occupied by specific Amerindian groups, we could identify potentially authentic mitochondrial lineages, a strategy we have named 'homopatric targeting'. We studied 173 individuals from Queixadinha, a small village located in a territory previously occupied by the now extinct Botocudo Amerindian nation. Pedigree analysis revealed 74 unrelated matrilineages, which were screened for Amerindian mtDNA lineages by restriction fragment length polymorphism. A cosmopolitan control group was composed of 100 individuals from surrounding cities. All Amerindian lineages identified had their hypervariable segment HVSI sequenced, yielding 13 Amerindian haplotypes in Queixadinha, nine of which were not present in available databanks or in the literature. Among these haplotypes, there was a significant excess of haplogroup C (70%) and absence of haplogroup A lineages, which were the most common in the control group. The novelty of the haplotypes and the excess of the C haplogroup suggested that we might indeed have identified Botocudo lineages. To validate our strategy, we studied teeth extracted from 14 ancient skulls of Botocudo Amerindians from the collection of the National Museum of Rio de Janeiro. We recovered mtDNA sequences from all the teeth, identifying only six different haplotypes (a low haplotypic diversity of 0.8352 ± 0.0617), one of which was present among the lineages observed in the extant individuals studied. These findings validate the technique of homopatric targeting as a useful new strategy to study the peopling and colonization of the New World, especially when direct

  3. Recovering mitochondrial DNA lineages of extinct Amerindian nations in extant homopatric Brazilian populations

    PubMed Central

    2010-01-01

    Background Brazilian Amerindians have experienced a drastic population decrease in the past 500 years. Indeed, many native groups from eastern Brazil have vanished. However, their mitochondrial mtDNA haplotypes, still persist in Brazilians, at least 50 million of whom carry Amerindian mitochondrial lineages. Our objective was to test whether, by analyzing extant rural populations from regions anciently occupied by specific Amerindian groups, we could identify potentially authentic mitochondrial lineages, a strategy we have named 'homopatric targeting'. Results We studied 173 individuals from Queixadinha, a small village located in a territory previously occupied by the now extinct Botocudo Amerindian nation. Pedigree analysis revealed 74 unrelated matrilineages, which were screened for Amerindian mtDNA lineages by restriction fragment length polymorphism. A cosmopolitan control group was composed of 100 individuals from surrounding cities. All Amerindian lineages identified had their hypervariable segment HVSI sequenced, yielding 13 Amerindian haplotypes in Queixadinha, nine of which were not present in available databanks or in the literature. Among these haplotypes, there was a significant excess of haplogroup C (70%) and absence of haplogroup A lineages, which were the most common in the control group. The novelty of the haplotypes and the excess of the C haplogroup suggested that we might indeed have identified Botocudo lineages. To validate our strategy, we studied teeth extracted from 14 ancient skulls of Botocudo Amerindians from the collection of the National Museum of Rio de Janeiro. We recovered mtDNA sequences from all the teeth, identifying only six different haplotypes (a low haplotypic diversity of 0.8352 ± 0.0617), one of which was present among the lineages observed in the extant individuals studied. Conclusions These findings validate the technique of homopatric targeting as a useful new strategy to study the peopling and colonization of the New

  4. Pathogenic role of mtDNA duplications in mitochondrial diseases associated with mtDNA deletions.

    PubMed

    Odoardi, Francesca; Rana, Michele; Broccolini, Aldobrando; Mirabella, Massimiliano; Modoni, Anna; D'Amico, Adele; Papacci, Manuela; Tonali, Pietro; Servidei, Serenella; Silvestri, Gabriella

    2003-04-30

    We estimated the frequency of multiple mtDNA rearrangements by Southern blot in 32 patients affected by mitochondrial disorders associated with single deletions in order to assess genotype-phenotype correlations and elucidate the pathogenic significance of mtDNA duplications. Muscle in situ hybridization studies were performed in patients showing mtDNA duplications at Southern blot. We found multiple rearrangements in 12/32 (37.5%) patients; in particular, mtDNA duplications were detected in 4/4 Kearns-Sayre syndrome (KSS), in 1 Pearson's syndrome, in 1/3 encephalomyopathies with progressive external ophthalmoplegia (PEO), and in 2/23 PEO. In situ studies documented an exclusive accumulation of deleted mtDNAs in cytochrome c oxidase negative fibers of patients with mtDNA duplications. The presence of mtDNA duplications significantly correlated with onset of symptoms before age 15 and occurrence of clinical multisystem involvement. Analysis of biochemical data documented a predominant reduction of complex III in patients without duplications compared to patients with mtDNA duplications. Our data indicate that multiple mtDNA rearrangements are detectable in a considerable proportion of patients with single deletions and that mtDNA duplications do not cause any oxidative impairment. They more likely play a pathogenic role in the determination of clinical expression of mitochondrial diseases associated with single mtDNA deletions, possibly generating deleted mtDNAs in embryonic tissues by homologous recombination. Copyright 2003 Wiley-Liss, Inc.

  5. Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease

    PubMed Central

    Nicholls, Thomas J.; Zsurka, Gábor; Peeva, Viktoriya; Schöler, Susanne; Szczesny, Roman J.; Cysewski, Dominik; Reyes, Aurelio; Kornblum, Cornelia; Sciacco, Monica; Moggio, Maurizio; Dziembowski, Andrzej; Kunz, Wolfram S.; Minczuk, Michal

    2014-01-01

    MGME1, also known as Ddk1 or C20orf72, is a mitochondrial exonuclease found to be involved in the processing of mitochondrial DNA (mtDNA) during replication. Here, we present detailed insights on the role of MGME1 in mtDNA maintenance. Upon loss of MGME1, elongated 7S DNA species accumulate owing to incomplete processing of 5′ ends. Moreover, an 11-kb linear mtDNA fragment spanning the entire major arc of the mitochondrial genome is generated. In contrast to control cells, where linear mtDNA molecules are detectable only after nuclease S1 treatment, the 11-kb fragment persists in MGME1-deficient cells. In parallel, we observed characteristic mtDNA duplications in the absence of MGME1. The fact that the breakpoints of these mtDNA rearrangements do not correspond to either classical deletions or the ends of the linear 11-kb fragment points to a role of MGME1 in processing mtDNA ends, possibly enabling their repair by homologous recombination. In agreement with its functional involvement in mtDNA maintenance, we show that MGME1 interacts with the mitochondrial replicase PolgA, suggesting that it is a constituent of the mitochondrial replisome, to which it provides an additional exonuclease activity. Thus, our results support the viewpoint that MGME1-mediated mtDNA processing is essential for faithful mitochondrial genome replication and might be required for intramolecular recombination of mtDNA. PMID:24986917

  6. Reassessing the evolutionary history of ass-like equids: insights from patterns of genetic variation in contemporary extant populations.

    PubMed

    Rosenbom, Sónia; Costa, Vânia; Chen, Shanyuan; Khalatbari, Leili; Yusefi, Gholam Hosein; Abdukadir, Ablimit; Yangzom, Chamba; Kebede, Fanuel; Teclai, Redae; Yohannes, Hagos; Hagos, Futsum; Moehlman, Patricia D; Beja-Pereira, Albano

    2015-04-01

    All extant equid species are grouped in a single genus - Equus. Among those, ass-like equids have remained particularly unstudied and their phylogenetic relations were poorly understood, most probably because they inhabit extreme environments in remote geographic areas. To gain further insights into the evolutionary history of ass-like equids, we have used a non-invasive sampling approach to collect representative fecal samples of extant African and Asiatic ass-like equid populations across their distribution range and mitochondrial DNA (mtDNA) sequencing analyses to examine intraspecific genetic diversity and population structure, and to reconstruct phylogenetic relations among wild ass species/subspecies. Sequence analyses of 410 base pairs of the fast evolving mtDNA control region identified the Asiatic wild ass population of Kalamaili (China) as the one displaying the highest diversity among all wild ass populations. Phylogenetic analyses of complete cytochrome b sequences revealed that African and Asiatic wild asses shared a common ancestor approximately 2.3Mya and that diversification in both groups occurred much latter, probably driven by climatic events during the Pleistocene. Inferred genetic relationships among Asiatic wild ass species do not support E. kiang monophyly, highlighting the need of more extensive studies in order to clarify the taxonomic status of species/subspecies belonging to this branch of the Equus phylogeny. These results highlight the importance of re-assessing the evolutionary history of ass-like equid species, and urge to extend studies at the population level to efficiently design conservation and management actions for these threatened species. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. mtDNA recombination in a natural population.

    PubMed

    Saville, B J; Kohli, Y; Anderson, J B

    1998-02-03

    Variation in mtDNA has been used extensively to draw inferences in phylogenetics and population biology. In the majority of eukaryotes investigated, transmission of mtDNA is uniparental and clonal, with genotypic diversity arising from mutation alone. In other eukaryotes, the transmission of mtDNA is biparental or primarily uniparental with the possibility of "leakage" from the minority parent. In these cases, heteroplasmy carries the potential for recombination between mtDNAs of different descent. In fungi, such mtDNA recombination has long been documented but only in laboratory experiments and only under conditions in which heteroplasmy is ensured. Despite this experimental evidence, mtDNA recombination has not been to our knowledge documented in a natural population. Because evidence from natural populations is prerequisite to understanding the evolutionary impact of mtDNA recombination, we investigated the possibility of mtDNA recombination in an organism with the demonstrated potential for heteroplasmy in laboratory matings. Using nucleotide sequence data, we report here that the genotypic structure of mtDNA in a natural population of the basidiomycete fungus Armillaria gallica is inconsistent with purely clonal mtDNA evolution and is fully consistent with mtDNA recombination.

  8. Killer whale nuclear genome and mtDNA reveal widespread population bottleneck during the last glacial maximum.

    PubMed

    Moura, Andre E; Janse van Rensburg, Charlene; Pilot, Malgorzata; Tehrani, Arman; Best, Peter B; Thornton, Meredith; Plön, Stephanie; de Bruyn, P J Nico; Worley, Kim C; Gibbs, Richard A; Dahlheim, Marilyn E; Hoelzel, Alan Rus

    2014-05-01

    Ecosystem function and resilience is determined by the interactions and independent contributions of individual species. Apex predators play a disproportionately determinant role through their influence and dependence on the dynamics of prey species. Their demographic fluctuations are thus likely to reflect changes in their respective ecological communities and habitat. Here, we investigate the historical population dynamics of the killer whale based on draft nuclear genome data for the Northern Hemisphere and mtDNA data worldwide. We infer a relatively stable population size throughout most of the Pleistocene, followed by an order of magnitude decline and bottleneck during the Weichselian glacial period. Global mtDNA data indicate that while most populations declined, at least one population retained diversity in a stable, productive ecosystem off southern Africa. We conclude that environmental changes during the last glacial period promoted the decline of a top ocean predator, that these events contributed to the pattern of diversity among extant populations, and that the relatively high diversity of a population currently in productive, stable habitat off South Africa suggests a role for ocean productivity in the widespread decline.

  9. Keeping mtDNA in Shape between Generations

    PubMed Central

    Stewart, James B.; Larsson, Nils-Göran

    2014-01-01

    Since the unexpected discovery that mitochondria contain their own distinct DNA molecules, studies of the mitochondrial DNA (mtDNA) have yielded many surprises. In animals, transmission of the mtDNA genome is explicitly non-Mendelian, with a very high number of genome copies being inherited from the mother after a drastic bottleneck. Recent work has begun to uncover the molecular details of this unusual mode of transmission. Many surprising variations in animal mitochondrial biology are known; however, a series of recent studies have identified a core of evolutionarily conserved mechanisms relating to mtDNA inheritance, e.g., mtDNA bottlenecks during germ cell development, selection against specific mtDNA mutation types during maternal transmission, and targeted destruction of sperm mitochondria. In this review, we outline recent literature on the transmission of mtDNA in animals and highlight the implications for human health and ageing. PMID:25299061

  10. Phylogenetic Network for European mtDNA

    PubMed Central

    Finnilä, Saara; Lehtonen, Mervi S.; Majamaa, Kari

    2001-01-01

    The sequence in the first hypervariable segment (HVS-I) of the control region has been used as a source of evolutionary information in most phylogenetic analyses of mtDNA. Population genetic inference would benefit from a better understanding of the variation in the mtDNA coding region, but, thus far, complete mtDNA sequences have been rare. We determined the nucleotide sequence in the coding region of mtDNA from 121 Finns, by conformation-sensitive gel electrophoresis and subsequent sequencing and by direct sequencing of the D loop. Furthermore, 71 sequences from our previous reports were included, so that the samples represented all the mtDNA haplogroups present in the Finnish population. We found a total of 297 variable sites in the coding region, which allowed the compilation of unambiguous phylogenetic networks. The D loop harbored 104 variable sites, and, in most cases, these could be localized within the coding-region networks, without discrepancies. Interestingly, many homoplasies were detected in the coding region. Nucleotide variation in the rRNA and tRNA genes was 6%, and that in the third nucleotide positions of structural genes amounted to 22% of that in the HVS-I. The complete networks enabled the relationships between the mtDNA haplogroups to be analyzed. Phylogenetic networks based on the entire coding-region sequence in mtDNA provide a rich source for further population genetic studies, and complete sequences make it easier to differentiate between disease-causing mutations and rare polymorphisms. PMID:11349229

  11. mtDNA lineage analysis of mouse L-cell lines reveals the accumulation of multiple mtDNA mutants and intermolecular recombination

    PubMed Central

    Fan, Weiwei; Lin, Chun Shi; Potluri, Prasanth; Procaccio, Vincent; Wallace, Douglas C.

    2012-01-01

    The role of mitochondrial DNA (mtDNA) mutations and mtDNA recombination in cancer cell proliferation and developmental biology remains controversial. While analyzing the mtDNAs of several mouse L cell lines, we discovered that every cell line harbored multiple mtDNA mutants. These included four missense mutations, two frameshift mutations, and one tRNA homopolymer expansion. The LA9 cell lines lacked wild-type mtDNAs but harbored a heteroplasmic mixture of mtDNAs, each with a different combination of these variants. We isolated each of the mtDNAs in a separate cybrid cell line. This permitted determination of the linkage phase of each mtDNA and its physiological characteristics. All of the polypeptide mutations inhibited their oxidative phosphorylation (OXPHOS) complexes. However, they also increased mitochondrial reactive oxygen species (ROS) production, and the level of ROS production was proportional to the cellular proliferation rate. By comparing the mtDNA haplotypes of the different cell lines, we were able to reconstruct the mtDNA mutational history of the L–L929 cell line. This revealed that every heteroplasmic L-cell line harbored a mtDNA that had been generated by intracellular mtDNA homologous recombination. Therefore, deleterious mtDNA mutations that increase ROS production can provide a proliferative advantage to cancer or stem cells, and optimal combinations of mutant loci can be generated through recombination. PMID:22345519

  12. Sex-biased dispersal and volcanic activities shaped phylogeographic patterns of extant Orangutans (genus: Pongo).

    PubMed

    Nater, Alexander; Nietlisbach, Pirmin; Arora, Natasha; van Schaik, Carel P; van Noordwijk, Maria A; Willems, Erik P; Singleton, Ian; Wich, Serge A; Goossens, Benoit; Warren, Kristin S; Verschoor, Ernst J; Perwitasari-Farajallah, Dyah; Pamungkas, Joko; Krützen, Michael

    2011-08-01

    The Southeast Asian Sunda archipelago harbors a rich biodiversity with a substantial proportion of endemic species. The evolutionary history of these species has been drastically influenced by environmental forces, such as fluctuating sea levels, climatic changes, and severe volcanic activities. Orangutans (genus: Pongo), the only Asian great apes, are well suited to study the relative impact of these forces due to their well-documented behavioral ecology, strict habitat requirements, and exceptionally slow life history. We investigated the phylogeographic patterns and evolutionary history of orangutans in the light of the complex geological and climatic history of the Sunda archipelago. Our study is based on the most extensive genetic sampling to date, covering the entire range of extant orangutan populations. Using data from three mitochondrial DNA (mtDNA) genes from 112 wild orangutans, we show that Sumatran orangutans, Pongo abelii, are paraphyletic with respect to Bornean orangutans (P. pygmaeus), the only other currently recognized species within this genus. The deepest split in the mtDNA phylogeny of orangutans occurs across the Toba caldera in northern Sumatra and, not as expected, between both islands. Until the recent past, the Toba region has experienced extensive volcanic activity, which has shaped the current phylogeographic patterns. Like their Bornean counterparts, Sumatran orangutans exhibit a strong, yet previously undocumented structuring into four geographical clusters. However, with 3.50 Ma, the Sumatran haplotypes have a much older coalescence than their Bornean counterparts (178 kya). In sharp contrast to the mtDNA data, 18 Y-chromosomal polymorphisms show a much more recent coalescence within Sumatra compared with Borneo. Moreover, the deep geographic structure evident in mtDNA is not reflected in the male population history, strongly suggesting male-biased dispersal. We conclude that volcanic activities have played an important role in the

  13. Killer Whale Nuclear Genome and mtDNA Reveal Widespread Population Bottleneck during the Last Glacial Maximum

    PubMed Central

    Moura, Andre E.; Janse van Rensburg, Charlene; Pilot, Malgorzata; Tehrani, Arman; Best, Peter B.; Thornton, Meredith; Plön, Stephanie; de Bruyn, P.J. Nico; Worley, Kim C.; Gibbs, Richard A.; Dahlheim, Marilyn E.; Hoelzel, Alan Rus

    2014-01-01

    Ecosystem function and resilience is determined by the interactions and independent contributions of individual species. Apex predators play a disproportionately determinant role through their influence and dependence on the dynamics of prey species. Their demographic fluctuations are thus likely to reflect changes in their respective ecological communities and habitat. Here, we investigate the historical population dynamics of the killer whale based on draft nuclear genome data for the Northern Hemisphere and mtDNA data worldwide. We infer a relatively stable population size throughout most of the Pleistocene, followed by an order of magnitude decline and bottleneck during the Weichselian glacial period. Global mtDNA data indicate that while most populations declined, at least one population retained diversity in a stable, productive ecosystem off southern Africa. We conclude that environmental changes during the last glacial period promoted the decline of a top ocean predator, that these events contributed to the pattern of diversity among extant populations, and that the relatively high diversity of a population currently in productive, stable habitat off South Africa suggests a role for ocean productivity in the widespread decline. PMID:24497033

  14. Widespread recombination in published animal mtDNA sequences.

    PubMed

    Tsaousis, A D; Martin, D P; Ladoukakis, E D; Posada, D; Zouros, E

    2005-04-01

    Mitochondrial DNA (mtDNA) recombination has been observed in several animal species, but there are doubts as to whether it is common or only occurs under special circumstances. Animal mtDNA sequences retrieved from public databases were unambiguously aligned and rigorously tested for evidence of recombination. At least 30 recombination events were detected among 186 alignments examined. Recombinant sequences were found in invertebrates and vertebrates, including primates. It appears that mtDNA recombination may occur regularly in the animal cell but rarely produces new haplotypes because of homoplasmy. Common animal mtDNA recombination would necessitate a reexamination of phylogenetic and biohistorical inference based on the assumption of clonal mtDNA transmission. Recombination may also have an important role in producing and purging mtDNA mutations and thus in mtDNA-based diseases and senescence.

  15. Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary.

    PubMed

    Krause, Johannes; Unger, Tina; Noçon, Aline; Malaspinas, Anna-Sapfo; Kolokotronis, Sergios-Orestis; Stiller, Mathias; Soibelzon, Leopoldo; Spriggs, Helen; Dear, Paul H; Briggs, Adrian W; Bray, Sarah C E; O'Brien, Stephen J; Rabeder, Gernot; Matheus, Paul; Cooper, Alan; Slatkin, Montgomery; Pääbo, Svante; Hofreiter, Michael

    2008-07-28

    Despite being one of the most studied families within the Carnivora, the phylogenetic relationships among the members of the bear family (Ursidae) have long remained unclear. Widely divergent topologies have been suggested based on various data sets and methods. We present a fully resolved phylogeny for ursids based on ten complete mitochondrial genome sequences from all eight living and two recently extinct bear species, the European cave bear (Ursus spelaeus) and the American giant short-faced bear (Arctodus simus). The mitogenomic data yield a well-resolved topology for ursids, with the sloth bear at the basal position within the genus Ursus. The sun bear is the sister taxon to both the American and Asian black bears, and this clade is the sister clade of cave bear, brown bear and polar bear confirming a recent study on bear mitochondrial genomes. Sequences from extinct bears represent the third and fourth Pleistocene species for which complete mitochondrial genomes have been sequenced. Moreover, the cave bear specimen demonstrates that mitogenomic studies can be applied to Pleistocene fossils that have not been preserved in permafrost, and therefore have a broad application within ancient DNA research. Molecular dating of the mtDNA divergence times suggests a rapid radiation of bears in both the Old and New Worlds around 5 million years ago, at the Miocene-Pliocene boundary. This coincides with major global changes, such as the Messinian crisis and the first opening of the Bering Strait, and suggests a global influence of such events on species radiations.

  16. Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary

    PubMed Central

    2008-01-01

    Background Despite being one of the most studied families within the Carnivora, the phylogenetic relationships among the members of the bear family (Ursidae) have long remained unclear. Widely divergent topologies have been suggested based on various data sets and methods. Results We present a fully resolved phylogeny for ursids based on ten complete mitochondrial genome sequences from all eight living and two recently extinct bear species, the European cave bear (Ursus spelaeus) and the American giant short-faced bear (Arctodus simus). The mitogenomic data yield a well-resolved topology for ursids, with the sloth bear at the basal position within the genus Ursus. The sun bear is the sister taxon to both the American and Asian black bears, and this clade is the sister clade of cave bear, brown bear and polar bear confirming a recent study on bear mitochondrial genomes. Conclusion Sequences from extinct bears represent the third and fourth Pleistocene species for which complete mitochondrial genomes have been sequenced. Moreover, the cave bear specimen demonstrates that mitogenomic studies can be applied to Pleistocene fossils that have not been preserved in permafrost, and therefore have a broad application within ancient DNA research. Molecular dating of the mtDNA divergence times suggests a rapid radiation of bears in both the Old and New Worlds around 5 million years ago, at the Miocene-Pliocene boundary. This coincides with major global changes, such as the Messinian crisis and the first opening of the Bering Strait, and suggests a global influence of such events on species radiations. PMID:18662376

  17. Extant fold-switching proteins are widespread.

    PubMed

    Porter, Lauren L; Looger, Loren L

    2018-06-05

    A central tenet of biology is that globular proteins have a unique 3D structure under physiological conditions. Recent work has challenged this notion by demonstrating that some proteins switch folds, a process that involves remodeling of secondary structure in response to a few mutations (evolved fold switchers) or cellular stimuli (extant fold switchers). To date, extant fold switchers have been viewed as rare byproducts of evolution, but their frequency has been neither quantified nor estimated. By systematically and exhaustively searching the Protein Data Bank (PDB), we found ∼100 extant fold-switching proteins. Furthermore, we gathered multiple lines of evidence suggesting that these proteins are widespread in nature. Based on these lines of evidence, we hypothesized that the frequency of extant fold-switching proteins may be underrepresented by the structures in the PDB. Thus, we sought to identify other putative extant fold switchers with only one solved conformation. To do this, we identified two characteristic features of our ∼100 extant fold-switching proteins, incorrect secondary structure predictions and likely independent folding cooperativity, and searched the PDB for other proteins with similar features. Reassuringly, this method identified dozens of other proteins in the literature with indication of a structural change but only one solved conformation in the PDB. Thus, we used it to estimate that 0.5-4% of PDB proteins switch folds. These results demonstrate that extant fold-switching proteins are likely more common than the PDB reflects, which has implications for cell biology, genomics, and human health. Copyright © 2018 the Author(s). Published by PNAS.

  18. Decreased Circulating mtDNA Levels in Professional Male Volleyball Players.

    PubMed

    Nasi, Milena; Cristani, Alessandro; Pinti, Marcello; Lamberti, Igor; Gibellini, Lara; De Biasi, Sara; Guazzaloca, Alessandro; Trenti, Tommaso; Cossarizza, Andrea

    2016-01-01

    Exercise exerts various effects on the immune system, and evidence is emerging on its anti-inflammatory effects; the mechanisms on the basis of these modifications are poorly understood. Mitochondrial DNA (mtDNA) released from damaged cells acts as a molecule containing the so-called damage-associated molecular patterns and can trigger sterile inflammation. Indeed, high plasma levels of mtDNA are associated to several inflammatory conditions and physiological aging and longevity. The authors evaluated plasma mtDNA in professional male volleyball players during seasonal training and the possible correlation between mtDNA levels and clinical parameters, body composition, and physical performance. Plasma mtDNA was quantified by real-time PCR every 2 mo in 12 professional volleyball players (PVPs) during 2 consecutive seasons. As comparison, 20 healthy nonathlete male volunteers (NAs) were analyzed. The authors found lower levels of mtDNA in plasma of PVPs than in NAs. However, PVPs showed a decrease of circulating mtDNA only in the first season, while no appreciable variations were observed during the second season. No correlation was observed among mtDNA, hematochemical, and anthropometric parameters. Regular physical activity appeared associated with lower levels of circulating mtDNA, further confirming the protective, anti-inflammatory effect of exercise.

  19. Demography or selection on linked cultural traits or genes? Investigating the driver of low mtDNA diversity in the sperm whale using complementary mitochondrial and nuclear genome analyses.

    PubMed

    Morin, Phillip A; Foote, Andrew D; Baker, Charles Scott; Hancock-Hanser, Brittany L; Kaschner, Kristin; Mate, Bruce R; Mesnick, Sarah L; Pease, Victoria L; Rosel, Patricia E; Alexander, Alana

    2018-06-01

    Mitochondrial DNA has been heavily utilized in phylogeography studies for several decades. However, underlying patterns of demography and phylogeography may be misrepresented due to coalescence stochasticity, selection, variation in mutation rates and cultural hitchhiking (linkage of genetic variation to culturally-transmitted traits affecting fitness). Cultural hitchhiking has been suggested as an explanation for low genetic diversity in species with strong social structures, counteracting even high mobility, abundance and limited barriers to dispersal. One such species is the sperm whale, which shows very limited phylogeographic structure and low mtDNA diversity despite a worldwide distribution and large population. Here, we use analyses of 175 globally distributed mitogenomes and three nuclear genomes to evaluate hypotheses of a population bottleneck/expansion vs. a selective sweep due to cultural hitchhiking or selection on mtDNA as the mechanism contributing to low worldwide mitochondrial diversity in sperm whales. In contrast to mtDNA control region (CR) data, mitogenome haplotypes are largely ocean-specific, with only one of 80 shared between the Atlantic and Pacific. Demographic analyses of nuclear genomes suggest low mtDNA diversity is consistent with a global reduction in population size that ended approximately 125,000 years ago, correlated with the Eemian interglacial. Phylogeographic analysis suggests that extant sperm whales descend from maternal lineages endemic to the Pacific during the period of reduced abundance and have subsequently colonized the Atlantic several times. Results highlight the apparent impact of past climate change, and suggest selection and hitchhiking are not the sole processes responsible for low mtDNA diversity in this highly social species. © 2018 John Wiley & Sons Ltd.

  20. Metabolic rescue in pluripotent cells from patients with mtDNA disease.

    PubMed

    Ma, Hong; Folmes, Clifford D L; Wu, Jun; Morey, Robert; Mora-Castilla, Sergio; Ocampo, Alejandro; Ma, Li; Poulton, Joanna; Wang, Xinjian; Ahmed, Riffat; Kang, Eunju; Lee, Yeonmi; Hayama, Tomonari; Li, Ying; Van Dyken, Crystal; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Koski, Amy; Mitalipov, Nargiz; Amato, Paula; Wolf, Don P; Huang, Taosheng; Terzic, Andre; Laurent, Louise C; Izpisua Belmonte, Juan Carlos; Mitalipov, Shoukhrat

    2015-08-13

    Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.

  1. Leber Hereditary Optic Neuropathy: Exemplar of an mtDNA Disease.

    PubMed

    Wallace, Douglas C; Lott, Marie T

    2017-01-01

    The report in 1988 that Leber Hereditary Optic Neuropathy (LHON) was the product of mitochondrial DNA (mtDNA) mutations provided the first demonstration of the clinical relevance of inherited mtDNA variation. From LHON studies, the medical importance was demonstrated for the mtDNA showing its coding for the most important energy genes, its maternal inheritance, its high mutation rate, its presence in hundreds to thousands of copies per cell, its quantitatively segregation of biallelic genotypes during both mitosis and meiosis, its preferential effect on the most energetic tissues including the eye and brain, its wide range of functional polymorphisms that predispose to common diseases, and its accumulation of mutations within somatic tissues providing the aging clock. These features of mtDNA genetics, in combination with the genetics of the 1-2000 nuclear DNA (nDNA) coded mitochondrial genes, is not only explaining the genetics of LHON but also providing a model for understanding the complexity of many common diseases. With the maturation of LHON biology and genetics, novel animal models for complex disease have been developed and new therapeutic targets and strategies envisioned, both pharmacological and genetic. Multiple somatic gene therapy approaches are being developed for LHON which are applicable to other mtDNA diseases. Moreover, the unique cytoplasmic genetics of the mtDNA has permitted the first successful human germline gene therapy via spindle nDNA transfer from mtDNA mutant oocytes to enucleated normal mtDNA oocytes. Such LHON lessons are actively being applied to common ophthalmological diseases like glaucoma and neurological diseases like Parkinsonism.

  2. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals

    PubMed Central

    Posth, Cosimo; Wißing, Christoph; Kitagawa, Keiko; Pagani, Luca; van Holstein, Laura; Racimo, Fernando; Wehrberger, Kurt; Conard, Nicholas J.; Kind, Claus Joachim; Bocherens, Hervé; Krause, Johannes

    2017-01-01

    Ancient DNA is revealing new insights into the genetic relationship between Pleistocene hominins and modern humans. Nuclear DNA indicated Neanderthals as a sister group of Denisovans after diverging from modern humans. However, the closer affinity of the Neanderthal mitochondrial DNA (mtDNA) to modern humans than Denisovans has recently been suggested as the result of gene flow from an African source into Neanderthals before 100,000 years ago. Here we report the complete mtDNA of an archaic femur from the Hohlenstein–Stadel (HST) cave in southwestern Germany. HST carries the deepest divergent mtDNA lineage that splits from other Neanderthals ∼270,000 years ago, providing a lower boundary for the time of the putative mtDNA introgression event. We demonstrate that a complete Neanderthal mtDNA replacement is feasible over this time interval even with minimal hominin introgression. The highly divergent HST branch is indicative of greater mtDNA diversity during the Middle Pleistocene than in later periods. PMID:28675384

  3. The Expansion of mtDNA Haplogroup L3 within and out of Africa.

    PubMed

    Soares, Pedro; Alshamali, Farida; Pereira, Joana B; Fernandes, Verónica; Silva, Nuno M; Afonso, Carla; Costa, Marta D; Musilová, Eliska; Macaulay, Vincent; Richards, Martin B; Cerny, Viktor; Pereira, Luísa

    2012-03-01

    Although fossil remains show that anatomically modern humans dispersed out of Africa into the Near East ∼100 to 130 ka, genetic evidence from extant populations has suggested that non-Africans descend primarily from a single successful later migration. Within the human mitochondrial DNA (mtDNA) tree, haplogroup L3 encompasses not only many sub-Saharan Africans but also all ancient non-African lineages, and its age therefore provides an upper bound for the dispersal out of Africa. An analysis of 369 complete African L3 sequences places this maximum at ∼70 ka, virtually ruling out a successful exit before 74 ka, the date of the Toba volcanic supereruption in Sumatra. The similarity of the age of L3 to its two non-African daughter haplogroups, M and N, suggests that the same process was likely responsible for both the L3 expansion in Eastern Africa and the dispersal of a small group of modern humans out of Africa to settle the rest of the world. The timing of the expansion of L3 suggests a link to improved climatic conditions after ∼70 ka in Eastern and Central Africa rather than to symbolically mediated behavior, which evidently arose considerably earlier. The L3 mtDNA pool within Africa suggests a migration from Eastern Africa to Central Africa ∼60 to 35 ka and major migrations in the immediate postglacial again linked to climate. The largest population size increase seen in the L3 data is 3-4 ka in Central Africa, corresponding to Bantu expansions, leading diverse L3 lineages to spread into Eastern and Southern Africa in the last 3-2 ka.

  4. High-quality mtDNA control region sequences from 680 individuals sampled across the Netherlands to establish a national forensic mtDNA reference database.

    PubMed

    Chaitanya, Lakshmi; van Oven, Mannis; Brauer, Silke; Zimmermann, Bettina; Huber, Gabriela; Xavier, Catarina; Parson, Walther; de Knijff, Peter; Kayser, Manfred

    2016-03-01

    The use of mitochondrial DNA (mtDNA) for maternal lineage identification often marks the last resort when investigating forensic and missing-person cases involving highly degraded biological materials. As with all comparative DNA testing, a match between evidence and reference sample requires a statistical interpretation, for which high-quality mtDNA population frequency data are crucial. Here, we determined, under high quality standards, the complete mtDNA control-region sequences of 680 individuals from across the Netherlands sampled at 54 sites, covering the entire country with 10 geographic sub-regions. The complete mtDNA control region (nucleotide positions 16,024-16,569 and 1-576) was amplified with two PCR primers and sequenced with ten different sequencing primers using the EMPOP protocol. Haplotype diversity of the entire sample set was very high at 99.63% and, accordingly, the random-match probability was 0.37%. No population substructure within the Netherlands was detected with our dataset. Phylogenetic analyses were performed to determine mtDNA haplogroups. Inclusion of these high-quality data in the EMPOP database (accession number: EMP00666) will improve its overall data content and geographic coverage in the interest of all EMPOP users worldwide. Moreover, this dataset will serve as (the start of) a national reference database for mtDNA applications in forensic and missing person casework in the Netherlands. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. mtDNA, Metastasis, and the Mitochondrial Unfolded Protein Response (UPRmt).

    PubMed

    Kenny, Timothy C; Germain, Doris

    2017-01-01

    While several studies have confirmed a link between mitochondrial DNA (mtDNA) mutations and cancer cell metastasis, much debate remains regarding the nature of the alternations in mtDNA leading to this effect. Meanwhile, the mitochondrial unfolded protein response (UPR mt ) has gained much attention in recent years, with most studies of this pathway focusing on its role in aging. However, the UPR mt has also been studied in the context of cancer. More recent work suggests that rather than a single mutation or alternation, specific combinatorial mtDNA landscapes able to activate the UPR mt may be those that are selected by metastatic cells, while mtDNA landscapes unable to activate the UPR mt do not. This review aims at offering an overview of the confusing literature on mtDNA mutations and metastasis and the more recent work on the UPR mt in this setting.

  6. Optimized mtDNA Control Region Primer Extension Capture Analysis for Forensically Relevant Samples and Highly Compromised mtDNA of Different Age and Origin

    PubMed Central

    Eduardoff, Mayra; Xavier, Catarina; Strobl, Christina; Casas-Vargas, Andrea; Parson, Walther

    2017-01-01

    The analysis of mitochondrial DNA (mtDNA) has proven useful in forensic genetics and ancient DNA (aDNA) studies, where specimens are often highly compromised and DNA quality and quantity are low. In forensic genetics, the mtDNA control region (CR) is commonly sequenced using established Sanger-type Sequencing (STS) protocols involving fragment sizes down to approximately 150 base pairs (bp). Recent developments include Massively Parallel Sequencing (MPS) of (multiplex) PCR-generated libraries using the same amplicon sizes. Molecular genetic studies on archaeological remains that harbor more degraded aDNA have pioneered alternative approaches to target mtDNA, such as capture hybridization and primer extension capture (PEC) methods followed by MPS. These assays target smaller mtDNA fragment sizes (down to 50 bp or less), and have proven to be substantially more successful in obtaining useful mtDNA sequences from these samples compared to electrophoretic methods. Here, we present the modification and optimization of a PEC method, earlier developed for sequencing the Neanderthal mitochondrial genome, with forensic applications in mind. Our approach was designed for a more sensitive enrichment of the mtDNA CR in a single tube assay and short laboratory turnaround times, thus complying with forensic practices. We characterized the method using sheared, high quantity mtDNA (six samples), and tested challenging forensic samples (n = 2) as well as compromised solid tissue samples (n = 15) up to 8 kyrs of age. The PEC MPS method produced reliable and plausible mtDNA haplotypes that were useful in the forensic context. It yielded plausible data in samples that did not provide results with STS and other MPS techniques. We addressed the issue of contamination by including four generations of negative controls, and discuss the results in the forensic context. We finally offer perspectives for future research to enable the validation and accreditation of the PEC MPS method for

  7. Ethidium bromide as a marker of mtDNA replication in living cells

    NASA Astrophysics Data System (ADS)

    Villa, Anna Maria; Fusi, Paola; Pastori, Valentina; Amicarelli, Giulia; Pozzi, Chiara; Adlerstein, Daniel; Doglia, Silvia Maria

    2012-04-01

    Mitochondrial DNA (mtDNA) in tumor cells was found to play an important role in maintaining the malignant phenotype. Using laser scanning confocal fluorescence microscopy (LSCFM) in a recent work, we reported a variable fluorescence intensity of ethidium bromide (EB) in mitochondria nucleoids of living carcinoma cells. Since when EB is bound to nucleic acids its fluorescence is intensified; a higher EB fluorescence intensity could reflect a higher DNA accessibility to EB, suggesting a higher mtDNA replication activity. To prove this hypothesis, in the present work we studied, by LSCFM, the EB fluorescence in mitochondria nucleoids of living neuroblastoma cells, a model system in which differentiation affects the level of mtDNA replication. A drastic decrease of fluorescence was observed after differentiation. To correlate EB fluorescence intensity to the mtDNA replication state, we evaluated the mtDNA nascent strands content by ligation-mediated real-time PCR, and we found a halved amount of replicating mtDNA molecules in differentiating cells. A similar result was obtained by BrdU incorporation. These results indicate that the low EB fluorescence of nucleoids in differentiated cells is correlated to a low content of replicating mtDNA, suggesting that EB may be used as a marker of mtDNA replication in living cells.

  8. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    PubMed

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Rivera, Henry; Hernández-Laín, Aurelio; Coca-Robinot, David; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2017-01-01

    Whole-exome sequencing was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase, deficiency of mitochondrial complex III and depletion of mtDNA. With whole-exome sequencing data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in thymidine kinase 2 gene ( TK2; NM_004614.4:c.323 C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes. This patient presents an atypical TK2-related myopathic form of mtDNA depletion syndromes, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in mtDNA depletion syndromes and expanded the phenotypic spectrum.

  9. Genetic Evidence for Modifying Oceanic Boundaries Relative to Fiji.

    PubMed

    Shipley, Gerhard P; Taylor, Diana A; N'Yeurt, Antoine D R; Tyagi, Anand; Tiwari, Geetanjali; Redd, Alan J

    2016-07-01

    We present the most comprehensive genetic characterization to date of five Fijian island populations: Viti Levu, Vanua Levu, Kadavu, the Lau Islands, and Rotuma, including nonrecombinant Y (NRY) chromosome and mitochondrial DNA (mtDNA) haplotypes and haplogroups. As a whole, Fijians are genetically intermediate between Melanesians and Polynesians, but the individual Fijian island populations exhibit significant genetic structure reflecting different settlement experiences in which the Rotumans and the Lau Islanders were more influenced by Polynesians, and the other Fijian island populations were more influenced by Melanesians. In particular, Rotuman and Lau Islander NRY chromosomal and mtDNA haplogroup frequencies and Rotuman mtDNA hypervariable segment 1 region haplotypes more closely resemble those of Polynesians, while genetic markers of the other populations more closely resemble those of the Near Oceanic Melanesians. Our findings provide genetic evidence supportive of modifying regional boundaries relative to Fiji, as has been suggested by others based on a variety of nongenetic evidence. Specifically, for the traditional Melanesia/Polynesia/Micronesia scheme, our findings support moving the Melanesia-Polynesia boundary to include Rotuma and the Lau Islands in Polynesia. For the newer Near/Remote Oceania scheme, our findings support keeping Rotuma and the Lau Islands in Remote Oceania and locating the other Fijian island populations in an intermediate or "Central Oceania" region to better reflect the great diversity of Oceania.

  10. Mitochondrial DNA copy number threshold in mtDNA depletion myopathy.

    PubMed

    Durham, S E; Bonilla, E; Samuels, D C; DiMauro, S; Chinnery, P F

    2005-08-09

    The authors measured the absolute amount of mitochondrial DNA (mtDNA) within single muscle fibers from two patients with thymidine kinase 2 (TK2) deficiency and two healthy controls. TK2 deficient fibers containing more than 0.01 mtDNA/microm3 had residual cytochrome c oxidase (COX) activity. This defines the minimum amount of wild-type mtDNA molecules required to maintain COX activity in skeletal muscle and provides an explanation for the mosaic histochemical pattern seen in patients with mtDNA depletion syndrome.

  11. Extensive paternal mtDNA leakage in natural populations of Drosophila melanogaster.

    PubMed

    Nunes, Maria D S; Dolezal, Marlies; Schlötterer, Christian

    2013-04-01

    Strict maternal inheritance is considered a hallmark of animal mtDNA. Although recent reports suggest that paternal leakage occurs in a broad range of species, it is still considered an exceptionally rare event. To evaluate the impact of paternal leakage on the evolution of mtDNA, it is essential to reliably estimate the frequency of paternal leakage in natural populations. Using allele-specific real-time quantitative PCR (RT-qPCR), we show that heteroplasmy is common in natural populations with at least 14% of the individuals carrying multiple mitochondrial haplotypes. However, the average frequency of the minor mtDNA haplotype is low (0.8%), which suggests that this pervasive heteroplasmy has not been noticed before due to a lack of power in sequencing surveys. Based on the distribution of mtDNA haplotypes in the offspring of heteroplasmic mothers, we found no evidence for strong selection against one of the haplotypes. We estimated that the rate of paternal leakage is 6% and that at least 100 generations are required for complete sorting of mtDNA haplotypes. Despite the high proportion of heteroplasmic individuals in natural populations, we found no evidence for recombination between mtDNA molecules, suggesting that either recombination is rare or recombinant haplotypes are counter-selected. Our results indicate that evolutionary studies using mtDNA as a marker might be biased by paternal leakage in this species. © 2013 Blackwell Publishing Ltd.

  12. mtDNA Mutations and Their Role in Aging, Diseases and Forensic Sciences

    PubMed Central

    Zapico, Sara C.; Ubelaker, Douglas H.

    2013-01-01

    Mitochondria are independent organelles with their own DNA. As a primary function, mitochondria produce the energy for the cell through Oxidative Phosphorylation (OXPHOS) in the Electron Transport Chain (ETC). One of the toxic products of this process is Reactive Oxygen Species (ROS), which can induce oxidative damage in macromolecules like lipids, proteins and DNA. Mitochondrial DNA (mtDNA) is less protected and has fewer reparation mechanisms than nuclear DNA (nDNA), and as such is more exposed to oxidative, mutation-inducing damage. This review analyzes the causes and consequences of mtDNA mutations and their relationship with the aging process. Neurodegenerative diseases, related with the aging, are consequences of mtDNA mutations resulting in a decrease in mitochondrial function. Also described are “mitochondrial diseases”, pathologies produced by mtDNA mutations and whose symptoms are related with mitochondrial dysfunction. Finally, mtDNA haplogroups are defined in this review; these groups are important for determination of geographical origin of an individual. Additionally, different haplogroups exhibit variably longevity and risk of certain diseases. mtDNA mutations in aging and haplogroups are of special interest to forensic science research. Therefore this review will help to clarify the key role of mtDNA mutations in these processes and support further research in this area. PMID:24307969

  13. Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice.

    PubMed

    Safdar, Adeel; Khrapko, Konstantin; Flynn, James M; Saleem, Ayesha; De Lisio, Michael; Johnston, Adam P W; Kratysberg, Yevgenya; Samjoo, Imtiaz A; Kitaoka, Yu; Ogborn, Daniel I; Little, Jonathan P; Raha, Sandeep; Parise, Gianni; Akhtar, Mahmood; Hettinga, Bart P; Rowe, Glenn C; Arany, Zoltan; Prolla, Tomas A; Tarnopolsky, Mark A

    2016-01-01

    Human genetic disorders and transgenic mouse models have shown that mitochondrial DNA (mtDNA) mutations and telomere dysfunction instigate the aging process. Epidemiologically, exercise is associated with greater life expectancy and reduced risk of chronic diseases. While the beneficial effects of exercise are well established, the molecular mechanisms instigating these observations remain unclear. Endurance exercise reduces mtDNA mutation burden, alleviates multisystem pathology, and increases lifespan of the mutator mice, with proofreading deficient mitochondrial polymerase gamma (POLG1). We report evidence for a POLG1-independent mtDNA repair pathway mediated by exercise, a surprising notion as POLG1 is canonically considered to be the sole mtDNA repair enzyme. Here, we show that the tumor suppressor protein p53 translocates to mitochondria and facilitates mtDNA mutation repair and mitochondrial biogenesis in response to endurance exercise. Indeed, in mutator mice with muscle-specific deletion of p53, exercise failed to prevent mtDNA mutations, induce mitochondrial biogenesis, preserve mitochondrial morphology, reverse sarcopenia, or mitigate premature mortality. Our data establish a new role for p53 in exercise-mediated maintenance of the mtDNA genome and present mitochondrially targeted p53 as a novel therapeutic modality for diseases of mitochondrial etiology.

  14. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.

    PubMed

    Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi

    2016-07-15

    Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria. Copyright © 2016, American Association for the Advancement of Science.

  15. mtDNA sequence diversity of Hazara ethnic group from Pakistan.

    PubMed

    Rakha, Allah; Fatima; Peng, Min-Sheng; Adan, Atif; Bi, Rui; Yasmin, Memona; Yao, Yong-Gang

    2017-09-01

    The present study was undertaken to investigate mitochondrial DNA (mtDNA) control region sequences of Hazaras from Pakistan, so as to generate mtDNA reference database for forensic casework in Pakistan and to analyze phylogenetic relationship of this particular ethnic group with geographically proximal populations. Complete mtDNA control region (nt 16024-576) sequences were generated through Sanger Sequencing for 319 Hazara individuals from Quetta, Baluchistan. The population sample set showed a total of 189 distinct haplotypes, belonging mainly to West Eurasian (51.72%), East & Southeast Asian (29.78%) and South Asian (18.50%) haplogroups. Compared with other populations from Pakistan, the Hazara population had a relatively high haplotype diversity (0.9945) and a lower random match probability (0.0085). The dataset has been incorporated into EMPOP database under accession number EMP00680. The data herein comprises the largest, and likely most thoroughly examined, control region mtDNA dataset from Hazaras of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Human ancient and extant mtDNA from the Gambier Islands (French polynesia): evidence for an early Melanesian maternal contribution and new perspectives into the settlement of easternmost Polynesia.

    PubMed

    Deguilloux, Marie-France; Pemonge, Marie-Hélène; Dubut, Vincent; Hughes, Sandrine; Hänni, Catherine; Chollet, Lionel; Conte, Eric; Murail, Pascal

    2011-02-01

    Molecular anthropology has been widely used to infer the origin and processes of the colonization of Polynesia. However, there are still a lack of representative geographical studies of Eastern Polynesia and unchallenged genetic data about ancient Polynesian people. The absence of both of these elements prevents an accurate description of the demographic processes of internal dispersion within the Polynesian triangle. This study provides a twofold analysis of ancient and modern mtDNA in the eastern part of French Polynesia: the Gambier Islands. The paleogenetic analyses conducted on burials of the Temoe Atoll (14(th) -17(th) centuries) represent the first fully authenticated ancient human sequences from Polynesia. The identification of the "Melanesian" Q1 mtDNA lineage in ancient human remains substantiates the Near Oceanic contribution to the early gene pool of this region. Modern samples originate from Mangareva Island. Genealogical investigations enable us to reliably identify the conservation of the Melanesian component in Easternmost Polynesia, despite recent European colonization. Finally, the identification of rare mutations in sequences belonging to haplogroup B4a1a1a provides new perspectives to the debate on the internal peopling of the Polynesian region. Altogether, the results laid out in our study put the emphasis on the necessity of controlled sampling when discussing the internal settlement of Polynesia. 2010 Wiley-Liss, Inc.

  17. How good are indirect tests at detecting recombination in human mtDNA?

    PubMed

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-07-08

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D' and r(2), Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ(2)) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7-70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed.

  18. How Good Are Indirect Tests at Detecting Recombination in Human mtDNA?

    PubMed Central

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-01-01

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D′ and r2, Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ2) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7−70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed. PMID:23665874

  19. Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA.

    PubMed

    Karavaeva, Iuliia E; Golyshev, Sergey A; Smirnova, Ekaterina A; Sokolov, Svyatoslav S; Severin, Fedor F; Knorre, Dmitry A

    2017-04-01

    Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8 , ATG32 or ATG33 , implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes. © 2017. Published by The Company of Biologists Ltd.

  20. Evidence of animal mtDNA recombination between divergent populations of the potato cyst nematode Globodera pallida.

    PubMed

    Hoolahan, Angelique H; Blok, Vivian C; Gibson, Tracey; Dowton, Mark

    2012-03-01

    Recombination is typically assumed to be absent in animal mitochondrial genomes (mtDNA). However, the maternal mode of inheritance means that recombinant products are indistinguishable from their progenitor molecules. The majority of studies of mtDNA recombination assess past recombination events, where patterns of recombination are inferred by comparing the mtDNA of different individuals. Few studies assess contemporary mtDNA recombination, where recombinant molecules are observed as direct mosaics of known progenitor molecules. Here we use the potato cyst nematode, Globodera pallida, to investigate past and contemporary recombination. Past recombination was assessed within and between populations of G. pallida, and contemporary recombination was assessed in the progeny of experimental crosses of these populations. Breeding of genetically divergent organisms may cause paternal mtDNA leakage, resulting in heteroplasmy and facilitating the detection of recombination. To assess contemporary recombination we looked for evidence of recombination between the mtDNA of the parental populations within the mtDNA of progeny. Past recombination was detected between a South American population and several UK populations of G. pallida, as well as between two South American populations. This suggests that these populations may have interbred, paternal mtDNA leakage occurred, and the mtDNA of these populations subsequently recombined. This evidence challenges two dogmas of animal mtDNA evolution; no recombination and maternal inheritance. No contemporary recombination between the parental populations was detected in the progeny of the experimental crosses. This supports current arguments that mtDNA recombination events are rare. More sensitive detection methods may be required to adequately assess contemporary mtDNA recombination in animals.

  1. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    PubMed

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  2. No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline

    PubMed Central

    Hagström, Erik; Freyer, Christoph; Battersby, Brendan J.; Stewart, James B.; Larsson, Nils-Göran

    2014-01-01

    Variants of mitochondrial DNA (mtDNA) are commonly used as markers to track human evolution because of the high sequence divergence and exclusive maternal inheritance. It is assumed that the inheritance is clonal, i.e. that mtDNA is transmitted between generations without germline recombination. In contrast to this assumption, a number of studies have reported the presence of recombinant mtDNA molecules in cell lines and animal tissues, including humans. If germline recombination of mtDNA is frequent, it would strongly impact phylogenetic and population studies by altering estimates of coalescent time and branch lengths in phylogenetic trees. Unfortunately, this whole area is controversial and the experimental approaches have been widely criticized as they often depend on polymerase chain reaction (PCR) amplification of mtDNA and/or involve studies of transformed cell lines. In this study, we used an in vivo mouse model that has had germline heteroplasmy for a defined set of mtDNA mutations for more than 50 generations. To assess recombination, we adapted and validated a method based on cloning of single mtDNA molecules in the λ phage, without prior PCR amplification, followed by subsequent mutation analysis. We screened 2922 mtDNA molecules and found no germline recombination after transmission of mtDNA under genetically and evolutionary relevant conditions in mammals. PMID:24163253

  3. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kukat, Alexandra; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases; Edgar, Daniel

    2011-06-10

    Highlights: {yields} Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. {yields} This process is independent of endogenous ROS production. {yields} Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of themore » molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O{sub 2}) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.« less

  4. mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling

    PubMed Central

    Hämäläinen, Riikka H.; Ahlqvist, Kati J.; Ellonen, Pekka; Lepistö, Maija; Logan, Angela; Otonkoski, Timo; Murphy, Michael P.; Suomalainen, Anu

    2015-01-01

    Summary mtDNA mutagenesis in somatic stem cells leads to their dysfunction and to progeria in mouse. The mechanism was proposed to involve modification of reactive oxygen species (ROS)/redox signaling. We studied the effect of mtDNA mutagenesis on reprogramming and stemness of pluripotent stem cells (PSCs) and show that PSCs select against specific mtDNA mutations, mimicking germline and promoting mtDNA integrity despite their glycolytic metabolism. Furthermore, mtDNA mutagenesis is associated with an increase in mitochondrial H2O2, reduced PSC reprogramming efficiency, and self-renewal. Mitochondria-targeted ubiquinone, MitoQ, and N-acetyl-L-cysteine efficiently rescued these defects, indicating that both reprogramming efficiency and stemness are modified by mitochondrial ROS. The redox sensitivity, however, rendered PSCs and especially neural stem cells sensitive to MitoQ toxicity. Our results imply that stem cell compartment warrants special attention when the safety of new antioxidants is assessed and point to an essential role for mitochondrial redox signaling in maintaining normal stem cell function. PMID:26027936

  5. The amount and integrity of mtDNA in maize decline with development.

    PubMed

    Oldenburg, Delene J; Kumar, Rachana A; Bendich, Arnold J

    2013-02-01

    In maize and other grasses there is a developmental gradient from the meristematic cells at the base of the stalk to the differentiated cells at the leaf tip. This gradient presents an opportunity to investigate changes in mitochondrial DNA (mtDNA) that accompany growth under light and dark conditions, as done previously for plastid DNA. Maize mtDNA was analyzed by DAPI-DNA staining of individual mitochondria, gel electrophoresis/blot hybridization, and real-time qPCR. Both the amount and integrity of the mtDNA were found to decline with development. There was a 20-fold decline in mtDNA copy number per cell from the embryo to the light-grown leaf blade. The amount of DNA per mitochondrial particle was greater in dark-grown leaf blade (24 copies, on average) than in the light (2 copies), with some mitochondria lacking any detectable DNA. Three factors that influence the demise of mtDNA during development are considered: (1) the decision to either repair or degrade mtDNA molecules that are damaged by the reactive oxygen species produced as byproducts of respiration; (2) the generation of ATP by photophosphorylation in chloroplasts, reducing the need for respiratory-competent mitochondria; and (3) the shift in mitochondrial function from energy-generating respiration to photorespiration during the transition from non-green to green tissue.

  6. Skewed segregation of the mtDNA nt 8993 (T-->G) mutation in human oocytes.

    PubMed Central

    Blok, R B; Gook, D A; Thorburn, D R; Dahl, H H

    1997-01-01

    Rapid changes in mtDNA variants between generations have led to the bottleneck theory, which proposes a dramatic reduction in mtDNA numbers during early oogenesis. We studied oocytes from a woman with heteroplasmic expression of the mtDNA nt 8993 (T-->G) mutation. Of seven oocytes analyzed, one showed no evidence of the mutation, and the remaining six had a mutant load > 95%. This skewed expression of the mutation in oocytes is not compatible with the conventional bottleneck theory. A possible explanation is that, during amplification of mtDNA in the developing oocyte, mtDNA from one mitochondrion is preferentially amplified. Thus, subsequent mature oocytes may contain predominantly wild-type or mutant mitochondrial genomes. Images Figure 2 Figure 3 PMID:9199572

  7. Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion.

    PubMed

    Hakonen, Anna H; Isohanni, Pirjo; Paetau, Anders; Herva, Riitta; Suomalainen, Anu; Lönnqvist, Tuula

    2007-11-01

    Twinkle is a mitochondrial replicative helicase, the mutations of which have been associated with autosomal dominant progressive external ophthalmoplegia (adPEO), and recessively inherited infantile onset spinocerebellar ataxia (IOSCA). We report here a new phenotype in two siblings with compound heterozygous Twinkle mutations (A318T and Y508C), characterized by severe early onset encephalopathy and signs of liver involvement. The clinical manifestations included hypotonia, athetosis, sensory neuropathy, ataxia, hearing deficit, ophthalmoplegia, intractable epilepsy and elevation of serum transaminases. The liver showed mtDNA depletion, whereas the muscle mtDNA was only slightly affected. Alpers-Huttenlocher syndrome has previously been associated with mutations of polymerase gamma, a replicative polymerase of mtDNA. We show here that recessive mutations of the close functional partner of the polymerase, the Twinkle helicase, can also manifest as early encephalopathy with liver involvement, a phenotype reminiscent of Alpers syndrome, and are a new genetic cause underlying tissue-specific mtDNA depletion.

  8. [Whole Genome Sequencing of Human mtDNA Based on Ion Torrent PGM™ Platform].

    PubMed

    Cao, Y; Zou, K N; Huang, J P; Ma, K; Ping, Y

    2017-08-01

    To analyze and detect the whole genome sequence of human mitochondrial DNA (mtDNA) by Ion Torrent PGM™ platform and to study the differences of mtDNA sequence in different tissues. Samples were collected from 6 unrelated individuals by forensic postmortem examination, including chest blood, hair, costicartilage, nail, skeletal muscle and oral epithelium. Amplification of whole genome sequence of mtDNA was performed by 4 pairs of primer. Libraries were constructed with Ion Shear™ Plus Reagents kit and Ion Plus Fragment Library kit. Whole genome sequencing of mtDNA was performed using Ion Torrent PGM™ platform. Sanger sequencing was used to determine the heteroplasmy positions and the mutation positions on HVⅠ region. The whole genome sequence of mtDNA from all samples were amplified successfully. Six unrelated individuals belonged to 6 different haplotypes. Different tissues in one individual had heteroplasmy difference. The heteroplasmy positions and the mutation positions on HVⅠ region were verified by Sanger sequencing. After a consistency check by the Kappa method, it was found that the results of mtDNA sequence had a high consistency in different tissues. The testing method used in present study for sequencing the whole genome sequence of human mtDNA can detect the heteroplasmy difference in different tissues, which have good consistency. The results provide guidance for the further applications of mtDNA in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine

  9. Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism

    PubMed Central

    Johnston, Iain G; Burgstaller, Joerg P; Havlicek, Vitezslav; Kolbe, Thomas; Rülicke, Thomas; Brem, Gottfried; Poulton, Jo; Jones, Nick S

    2015-01-01

    Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using approximate Bayesian computation and mouse data, we find most statistical support for a combination of binomial partitioning of mtDNAs at cell divisions and random mtDNA turnover, meaning that the debated exact magnitude of mtDNA copy number depletion is flexible. New experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical predictions of this model. We analytically solve a mathematical description of this mechanism, computing probabilities of mtDNA disease onset, efficacy of clinical sampling strategies, and effects of potential dynamic interventions, thus developing a quantitative and experimentally-supported stochastic theory of the bottleneck. DOI: http://dx.doi.org/10.7554/eLife.07464.001 PMID:26035426

  10. Estimates of Continental Ancestry Vary Widely among Individuals with the Same mtDNA Haplogroup

    PubMed Central

    Emery, Leslie S.; Magnaye, Kevin M.; Bigham, Abigail W.; Akey, Joshua M.; Bamshad, Michael J.

    2015-01-01

    The association between a geographical region and an mtDNA haplogroup(s) has provided the basis for using mtDNA haplogroups to infer an individual’s place of origin and genetic ancestry. Although it is well known that ancestry inferences using mtDNA haplogroups and those using genome-wide markers are frequently discrepant, little empirical information exists on the magnitude and scope of such discrepancies between multiple mtDNA haplogroups and worldwide populations. We compared genetic-ancestry inferences made by mtDNA-haplogroup membership to those made by autosomal SNPs in ∼940 samples of the Human Genome Diversity Panel and recently admixed populations from the 1000 Genomes Project. Continental-ancestry proportions often varied widely among individuals sharing the same mtDNA haplogroup. For only half of mtDNA haplogroups did the highest average continental-ancestry proportion match the highest continental-ancestry proportion of a majority of individuals with that haplogroup. Prediction of an individual’s mtDNA haplogroup from his or her continental-ancestry proportions was often incorrect. Collectively, these results indicate that for most individuals in the worldwide populations sampled, mtDNA-haplogroup membership provides limited information about either continental ancestry or continental region of origin. PMID:25620206

  11. MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features

    PubMed Central

    Li, Xiaoran; Zhong, Yali; Lu, Jie; Axcrona, Karol; Eide, Lars; Syljuåsen, Randi G.; Peng, Qian; Wang, Junbai; Zhang, Hongquan; Goscinski, Mariusz Adam; Kvalheim, Gunnar; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Reducing mtDNA content was considered as a critical step in the metabolism restructuring for cell stemness restoration and further neoplastic development. However, the connections between mtDNA depletion and metabolism reprograming-based cancer cell stemness in prostate cancers are still lack of studies. Here, we demonstrated that human CRPC cell line PC3 tolerated high concentration of the mtDNA replication inhibitor ethidium bromide (EtBr) and the mtDNA depletion triggered a universal metabolic remodeling process. Failure in completing that process caused lethal consequences. The mtDNA depleted (MtDP) PC3 cells could be steadily maintained in the special medium in slow cycling status. The MtDP PC3 cells contained immature mitochondria and exhibited Warburg effect. Furthermore, the MtDP PC3 cells were resistant to therapeutic treatments and contained greater cancer stem cell-like subpopulations: CD44+, ABCG2+, side-population and ALDHbright. In conclusion, these results highlight the association of mtDNA content, mitochondrial function and cancer cell stemness features. PMID:27248169

  12. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation

    PubMed Central

    Hellberg, Michael E

    2006-01-01

    Background The mitochondrial DNA (mtDNA) of most animals evolves more rapidly than nuclear DNA, and often shows higher levels of intraspecific polymorphism and population subdivision. The mtDNA of anthozoans (corals, sea fans, and their kin), by contrast, appears to evolve slowly. Slow mtDNA evolution has been reported for several anthozoans, however this slow pace has been difficult to put in phylogenetic context without parallel surveys of nuclear variation or calibrated rates of synonymous substitution that could permit quantitative rate comparisons across taxa. Here, I survey variation in the coding region of a mitochondrial gene from a coral species (Balanophyllia elegans) known to possess high levels of nuclear gene variation, and estimate synonymous rates of mtDNA substitution by comparison to another coral (Tubastrea coccinea). Results The mtDNA surveyed (630 bp of cytochrome oxidase subunit I) was invariant among individuals sampled from 18 populations spanning 3000 km of the range of B. elegans, despite high levels of variation and population subdivision for allozymes over these same populations. The synonymous substitution rate between B. elegans and T. coccinea (0.05%/site/106 years) is similar to that in most plants, but 50–100 times lower than rates typical for most animals. In addition, while substitutions to mtDNA in most animals exhibit a strong bias toward transitions, mtDNA from these corals does not. Conclusion Slow rates of mitochondrial nucleotide substitution result in low levels of intraspecific mtDNA variation in corals, even when nuclear loci vary. Slow mtDNA evolution appears to be the basal condition among eukaryotes. mtDNA substitution rates switch from slow to fast abruptly and unidirectionally. This switch may stem from the loss of just one or a few mitochondrion-specific DNA repair or replication genes. PMID:16542456

  13. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions.

    PubMed

    Belmonte, Frances R; Martin, James L; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A; Kaufman, Brett A

    2016-04-28

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error.

  14. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions

    PubMed Central

    Belmonte, Frances R.; Martin, James L.; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A.; Kaufman, Brett A.

    2016-01-01

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error. PMID:27122135

  15. Background sequence characteristics influence the occurrence and severity of disease-causing mtDNA mutations

    PubMed Central

    Wei, Wei; Hudson, Gavin

    2017-01-01

    Inherited mitochondrial DNA (mtDNA) mutations have emerged as a common cause of human disease, with mutations occurring multiple times in the world population. The clinical presentation of three pathogenic mtDNA mutations is strongly associated with a background mtDNA haplogroup, but it is not clear whether this is limited to a handful of examples or is a more general phenomenon. To address this, we determined the characteristics of 30,506 mtDNA sequences sampled globally. After performing several quality control steps, we ascribed an established pathogenicity score to the major alleles for each sequence. The mean pathogenicity score for known disease-causing mutations was significantly different between mtDNA macro-haplogroups. Several mutations were observed across all haplogroup backgrounds, whereas others were only observed on specific clades. In some instances this reflected a founder effect, but in others, the mutation recurred but only within the same phylogenetic cluster. Sequence diversity estimates showed that disease-causing mutations were more frequent on young sequences, and genomes with two or more disease-causing mutations were more common than expected by chance. These findings implicate the mtDNA background more generally in recurrent mutation events that have been purified through natural selection in older populations. This provides an explanation for the low frequency of mtDNA disease reported in specific ethnic groups. PMID:29253894

  16. Phylogenetic analysis of mtDNA lineages in South American mummies.

    PubMed

    Monsalve, M V; Cardenas, F; Guhl, F; Delaney, A D; Devine, D V

    1996-07-01

    Some studies of mtDNA propose that contemporary Amerindians have descended from four haplotype groups, each defined by specific sets of polymorphisms. One recent study also found evidence of other potential founder haplotypes. We wanted to determine whether the four haplotypes in modern populations were also present in ancient South American aboriginals. We subjected mtDNA from Colombian mummies (470 to 1849 AD) to PCR amplification and restriction endonuclease analysis. The mtDNA D-loop region was surveyed for sequence variation by restriction analysis and a segment of this region was sequenced for each mummy to characterize the haplotypes. Our mummies exhibited three of the four major characteristic haplotypes of Amerindian populations defined by four markers. With sequence data obtained in the ancient samples and published data on contemporary Amerindians it was possible to infer the origin of these six mummies.

  17. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    PubMed

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Hernández-Laín, Aurelio; Coca-Robinot, David; Rivera, Henry; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, MiguelÁngel; Martínez-Azorín, Francisco

    2016-02-29

    Whole-exome sequencing (WES) was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase (CK), deficiency of mitochondrial complex III and depletion of mtDNA. With WES data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in Thymidine kinase 2 gene (TK2; NM_004614.4:c.323C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes (MDS). This patient presents an atypical TK2 related-myopathic form of MDS, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in MDS and expanded the phenotypic spectrum.

  18. Can indirect tests detect a known recombination event in human mtDNA?

    PubMed

    White, Daniel James; Gemmell, Neil John

    2009-07-01

    Whether human mitochondrial DNA (mtDNA) recombines sufficiently to influence its evolution, evolutionary analysis, and disease etiology, remains equivocal. Overall, evidence from indirect studies of population genetic data suggests that recombination is not occurring at detectable levels. This may be explained by no, or low, recombination or, alternatively, current indirect tests may be incapable of detecting recombination in human mtDNA. To investigate the latter, we have tested whether six well-established indirect tests of recombination could detect recombination in a human mtDNA data set, in which its occurrence had been empirically confirmed. Three showed statistical evidence for recombination (r(2) vs. distance, the Homoplasy test, Neighborhood Similarity Score), and three did not (D' vs. distance, Max Chi Squared, Pairwise Homoplasy Index). Possible reasons for detection failure are discussed. Further, evidence from earlier studies suggesting a lack of recombination in mtDNA in humans is reconsidered, taking into account the appropriateness of the tests used, based on our new findings.

  19. Big bang in the evolution of extant malaria parasites.

    PubMed

    Hayakawa, Toshiyuki; Culleton, Richard; Otani, Hiroto; Horii, Toshihiro; Tanabe, Kazuyuki

    2008-10-01

    Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.

  20. OXPHOS Defects Due to mtDNA Mutations: Glutamine to the Rescue!

    PubMed

    Chinopoulos, Christos

    2018-06-05

    Mutations in mtDNA associated with OXPHOS defects preclude energy harnessing by OXPHOS. The work of Chen et al. (2018) is previewed, reporting flux pathways of glutamine catabolism in mtDNA mutant cells yielding high-energy phosphates through substrate-level phosphorylation and the influence exerted by the severity of OXPHOS impairment. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs.

    PubMed

    Mei, H; Sun, S; Bai, Y; Chen, Y; Chai, R; Li, H

    2015-04-02

    Many cancer drugs are toxic to cells by activating apoptotic pathways. Previous studies have shown that mitochondria have key roles in apoptosis in mammalian cells, but the role of mitochondrial DNA (mtDNA) copy number variation in the pathogenesis of tumor cell apoptosis remains largely unknown. We used the HEp-2, HNE2, and A549 tumor cell lines to explore the relationship between mtDNA copy number variation and cell apoptosis. We first induced apoptosis in three tumor cell lines and one normal adult human skin fibroblast cell line (HSF) with cisplatin (DDP) or doxorubicin (DOX) treatment and found that the mtDNA copy number significantly increased in apoptotic tumor cells, but not in HSF cells. We then downregulated the mtDNA copy number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide and found that the sensitivity of tumor cells to DDP or DOX was significantly increased. Furthermore, we observed that levels of reactive oxygen species (ROS) increased significantly in tumor cells with lower mtDNA copy numbers, and this might be related to a low level of antioxidant gene expression. Finally, we rescued the increase of ROS in tumor cells with lipoic acid or N-acetyl-L-cysteine and found that the apoptosis rate decreased. Our studies suggest that the increase of mtDNA copy number is a self-protective mechanism of tumor cells to prevent apoptosis and that reduced mtDNA copy number increases ROS levels in tumor cells, increases the tumor cells' sensitivity to chemotherapeutic drugs, and increases the rate of apoptosis. This research provides evidence that mtDNA copy number variation might be a promising new therapeutic target for the clinical treatment of tumors.

  2. On the search for extant life on Mars

    NASA Technical Reports Server (NTRS)

    Klein, H. P.

    1996-01-01

    Proposals for continuing the search for extant life on Mars are primarily predicated on the assumption that specialized environmental niches that could support a biota may exist on the planet. Before attempting any critical tests for extant organisms, either in situ or on returned samples, it is imperative to determine whether any such sites actually exist. If, through remote sensing and landed instrumentation, sites of potential biological interest are discovered and characterized, biological tests can then more effectively be planned to elicit the presence of organisms that are adapted to living in these particular environments.

  3. On the search for extant life on Mars.

    PubMed

    Klein, H P

    1996-01-01

    Proposals for continuing the search for extant life on Mars are primarily predicated on the assumption that specialized environmental niches that could support a biota may exist on the planet. Before attempting any critical tests for extant organisms, either in situ or on returned samples, it is imperative to determine whether any such sites actually exist. If, through remote sensing and landed instrumentation, sites of potential biological interest are discovered and characterized, biological tests can then more effectively be planned to elicit the presence of organisms that are adapted to living in these particular environments.

  4. Recombination or mutational hot spots in human mtDNA?

    PubMed

    Innan, Hideki; Nordborg, Magnus

    2002-07-01

    Awadalla, Eyre-Walker, and Maynard Smith (1999) recently argued that there might be recombination in human mitochondrial DNA (mtDNA). Their claim was based on their observation of decaying linkage disequilibrium (LD) as a function of physical distance. Their study was much criticized, and follow-up studies have failed to find any evidence for recombination. We argue that the criticisms levied, even if correct, could not possibly explain the findings of Awadalla, Eyre-Walker, and Maynard Smith (1999). Nonetheless, the test proposed by Awadalla, Eyre-Walker, and Maynard Smith (1999 ) is not robust because recombination is not the only explanation for decay of LD. We show that such a pattern can be caused by mutational hot spots as well. However, a closer look at the data suggests that the pattern observed was not caused by mutational hot spots but rather by chance. Thus, there appears to be no evidence for recombination in the mtDNA polymorphism data. In conclusion, we discuss the possibility of detecting recombination in mtDNA and the implications of its existence.

  5. Reduced Mtdna Diversity in the Ngobe Amerinds of Panama

    PubMed Central

    Kolman, C. J.; Bermingham, E.; Cooke, R.; Ward, R. H.; Arias, T. D.; Guionneau-Sinclair, F.

    1995-01-01

    Mitochondrial DNA (mtDNA) haplotype diversity was determined for 46 Ngobe Amerinds sampled widely across their geographic range in western Panama. The Ngobe data were compared with mtDNA control region I sequences from two additional Amerind groups located at the northern and southern extremes of Amerind distribution, the Nuu-Chah-Nulth of the Pacific Northwest and the Chilean Mapuche and from one Na-Dene group, the Haida of the Pacific Northwest. The Ngobe exhibit the lowest mtDNA control region sequence diversity yet reported for an Amerind group. Moreover, they carry only two of the four Amerind founding lineages first described by Wallace and coworkers. We posit that the Ngobe passed through a population bottleneck caused by ethnogenesis from a small founding population and/or European conquest and colonization. Dating of the Ngobe population expansion using the HARPENDING et al. approach to the analysis of pairwise genetic differences indicates a Ngobe expansion at roughly 6800 years before present (range: 1850-14,000 years before present), a date more consistent with a bottleneck at Chibcha ethnogenesis than a conquest-based event. PMID:7635293

  6. Leveraging increased cytoplasmic nucleoside kinase activity to target mtDNA and oxidative phosphorylation in AML.

    PubMed

    Liyanage, Sanduni U; Hurren, Rose; Voisin, Veronique; Bridon, Gaëlle; Wang, Xiaoming; Xu, ChangJiang; MacLean, Neil; Siriwardena, Thirushi P; Gronda, Marcela; Yehudai, Dana; Sriskanthadevan, Shrivani; Avizonis, Daina; Shamas-Din, Aisha; Minden, Mark D; Bader, Gary D; Laposa, Rebecca; Schimmer, Aaron D

    2017-05-11

    Mitochondrial DNA (mtDNA) biosynthesis requires replication factors and adequate nucleotide pools from the mitochondria and cytoplasm. We performed gene expression profiling analysis of 542 human acute myeloid leukemia (AML) samples and identified 55% with upregulated mtDNA biosynthesis pathway expression compared with normal hematopoietic cells. Genes that support mitochondrial nucleotide pools, including mitochondrial nucleotide transporters and a subset of cytoplasmic nucleoside kinases, were also increased in AML compared with normal hematopoietic samples. Knockdown of cytoplasmic nucleoside kinases reduced mtDNA levels in AML cells, demonstrating their contribution in maintaining mtDNA. To assess cytoplasmic nucleoside kinase pathway activity, we used a nucleoside analog 2'3'-dideoxycytidine (ddC), which is phosphorylated to the activated antimetabolite, 2'3'-dideoxycytidine triphosphate by cytoplasmic nucleoside kinases. ddC is a selective inhibitor of the mitochondrial DNA polymerase γ. ddC was preferentially activated in AML cells compared with normal hematopoietic progenitor cells. ddC treatment inhibited mtDNA replication, oxidative phosphorylation, and induced cytotoxicity in a panel of AML cell lines. Furthermore, ddC preferentially inhibited mtDNA replication in a subset of primary human leukemia cells and selectively targeted leukemia cells while sparing normal progenitor cells. In animal models of human AML, treatment with ddC decreased mtDNA, electron transport chain proteins, and induced tumor regression without toxicity. ddC also targeted leukemic stem cells in secondary AML xenotransplantation assays. Thus, AML cells have increased cytidine nucleoside kinase activity that regulates mtDNA biogenesis and can be leveraged to selectively target oxidative phosphorylation in AML. © 2017 by The American Society of Hematology.

  7. Leveraging increased cytoplasmic nucleoside kinase activity to target mtDNA and oxidative phosphorylation in AML

    PubMed Central

    Liyanage, Sanduni U.; Hurren, Rose; Voisin, Veronique; Bridon, Gaëlle; Wang, Xiaoming; Xu, ChangJiang; MacLean, Neil; Siriwardena, Thirushi P.; Gronda, Marcela; Yehudai, Dana; Sriskanthadevan, Shrivani; Avizonis, Daina; Shamas-Din, Aisha; Minden, Mark D.; Bader, Gary D.; Laposa, Rebecca

    2017-01-01

    Mitochondrial DNA (mtDNA) biosynthesis requires replication factors and adequate nucleotide pools from the mitochondria and cytoplasm. We performed gene expression profiling analysis of 542 human acute myeloid leukemia (AML) samples and identified 55% with upregulated mtDNA biosynthesis pathway expression compared with normal hematopoietic cells. Genes that support mitochondrial nucleotide pools, including mitochondrial nucleotide transporters and a subset of cytoplasmic nucleoside kinases, were also increased in AML compared with normal hematopoietic samples. Knockdown of cytoplasmic nucleoside kinases reduced mtDNA levels in AML cells, demonstrating their contribution in maintaining mtDNA. To assess cytoplasmic nucleoside kinase pathway activity, we used a nucleoside analog 2′3′-dideoxycytidine (ddC), which is phosphorylated to the activated antimetabolite, 2′3′-dideoxycytidine triphosphate by cytoplasmic nucleoside kinases. ddC is a selective inhibitor of the mitochondrial DNA polymerase γ. ddC was preferentially activated in AML cells compared with normal hematopoietic progenitor cells. ddC treatment inhibited mtDNA replication, oxidative phosphorylation, and induced cytotoxicity in a panel of AML cell lines. Furthermore, ddC preferentially inhibited mtDNA replication in a subset of primary human leukemia cells and selectively targeted leukemia cells while sparing normal progenitor cells. In animal models of human AML, treatment with ddC decreased mtDNA, electron transport chain proteins, and induced tumor regression without toxicity. ddC also targeted leukemic stem cells in secondary AML xenotransplantation assays. Thus, AML cells have increased cytidine nucleoside kinase activity that regulates mtDNA biogenesis and can be leveraged to selectively target oxidative phosphorylation in AML. PMID:28283480

  8. Recombination-dependent mtDNA partitioning: in vivo role of Mhr1p to promote pairing of homologous DNA.

    PubMed

    Ling, Feng; Shibata, Takehiko

    2002-09-02

    Yeast mhr1-1 was isolated as a defective mutation in mitochondrial DNA (mtDNA) recombination. About half of mhr1-1 cells lose mtDNA during growth at a higher temperature. Here, we show that mhr1-1 exhibits a defect in the partitioning of nascent mtDNA into buds and is a base-substitution mutation in MHR1 encoding a mitochondrial matrix protein. We found that the Mhr1 protein (Mhr1p) has activity to pair single-stranded DNA and homologous double-stranded DNA to form heteroduplex joints in vitro, and that mhr1-1 causes the loss of this activity, indicating its role in homologous mtDNA recombination. While the majority of the mtDNA in the mother cells consists of head-to-tail concatemers, more than half of the mtDNA in the buds exists as genome-sized monomers. The mhr1-1 deltacce1 double mutant cells do not maintain any mtDNA, indicating the strict dependence of mtDNA maintenance on recombination functions. These results suggest a mechanism for mtDNA inheritance similar to that operating in the replication and packaging of phage DNA.

  9. Characterization of mtDNA haplogroups in 14 Mexican indigenous populations.

    PubMed

    Peñaloza-Espinosa, Rosenda I; Arenas-Aranda, Diego; Cerda-Flores, Ricardo M; Buentello-Malo, Leonor; González-Valencia, Gerardo; Torres, Javier; Alvarez, Berenice; Mendoza, Irma; Flores, Mario; Sandoval, Lucila; Loeza, Francisco; Ramos, Irma; Muñoz, Leopoldo; Salamanca, Fabio

    2007-06-01

    In this descriptive study we investigated the genetic structure of 513 Mexican indigenous subjects grouped in 14 populations (Mixteca-Alta, Mixteca-Baja, Otomi, Purépecha, Tzeltal, Tarahumara, Huichol, Nahua-Atocpan, Nahua-Xochimilco, Nahua-Zitlala, Nahua-Chilacachapa, Nahua-Ixhuatlancillo, Nahua-Necoxtla, and Nahua-Coyolillo) based on mtDNA haplogroups. These communities are geographically and culturally isolated; parents and grandparents were born in the community. Our data show that 98.6% of the mtDNA was distributed in haplogroups A1, A2, B1, B2, C1, C2, D1, and D2. Haplotype X6 was present in the Tarahumara (1/53) and Huichol (3/15), and haplotype L was present in the Nahua-Coyolillo (3/38). The first two principal components accounted for 95.9% of the total variation in the sample. The mtDNA haplogroup frequencies in the Purépecha and Zitlala were intermediate to cluster 1 (Otomi, Nahua-Ixhuatlancillo, Nahua-Xochimilco, Mixteca-Baja, and Tzeltal) and cluster 2 (Nahua-Necoxtla, Nahua-Atocpan, and Nahua-Chilacachapa). The Huichol, Tarahumara, Mixteca-Alta, and Nahua-Coyolillo were separated from the rest of the populations. According to these findings, the distribution of mtDNA haplogroups found in Mexican indigenous groups is similar to other Amerindian haplogroups, except for the African haplogroup found in one population.

  10. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number

    PubMed Central

    Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F.

    2016-01-01

    Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion. PMID:27031233

  11. Radiation of Extant Cetaceans Driven by Restructuring of the Oceans

    PubMed Central

    Steeman, Mette E.; Hebsgaard, Martin B.; Fordyce, R. Ewan; Ho, Simon Y. W.; Rabosky, Daniel L.; Nielsen, Rasmus; Rahbek, Carsten; Glenner, Henrik; Sørensen, Martin V.; Willerslev, Eske

    2009-01-01

    Abstract The remarkable fossil record of whales and dolphins (Cetacea) has made them an exemplar of macroevolution. Although their overall adaptive transition from terrestrial to fully aquatic organisms is well known, this is not true for the radiation of modern whales. Here, we explore the diversification of extant cetaceans by constructing a robust molecular phylogeny that includes 87 of 89 extant species. The phylogeny and divergence times are derived from nuclear and mitochondrial markers, calibrated with fossils. We find that the toothed whales are monophyletic, suggesting that echolocation evolved only once early in that lineage some 36–34 Ma. The rorqual family (Balaenopteridae) is restored with the exclusion of the gray whale, suggesting that gulp feeding evolved 18–16 Ma. Delphinida, comprising all living dolphins and porpoises other than the Ganges/Indus dolphins, originated about 26 Ma; it contains the taxonomically rich delphinids, which began diversifying less than 11 Ma. We tested 2 hypothesized drivers of the extant cetacean radiation by assessing the tempo of lineage accumulation through time. We find no support for a rapid burst of speciation early in the history of extant whales, contrasting with expectations of an adaptive radiation model. However, we do find support for increased diversification rates during periods of pronounced physical restructuring of the oceans. The results imply that paleogeographic and paleoceanographic changes, such as closure of major seaways, have influenced the dynamics of radiation in extant cetaceans. PMID:20525610

  12. Radiation of extant cetaceans driven by restructuring of the oceans.

    PubMed

    Steeman, Mette E; Hebsgaard, Martin B; Fordyce, R Ewan; Ho, Simon Y W; Rabosky, Daniel L; Nielsen, Rasmus; Rahbek, Carsten; Glenner, Henrik; Sørensen, Martin V; Willerslev, Eske

    2009-12-01

    The remarkable fossil record of whales and dolphins (Cetacea) has made them an exemplar of macroevolution. Although their overall adaptive transition from terrestrial to fully aquatic organisms is well known, this is not true for the radiation of modern whales. Here, we explore the diversification of extant cetaceans by constructing a robust molecular phylogeny that includes 87 of 89 extant species. The phylogeny and divergence times are derived from nuclear and mitochondrial markers, calibrated with fossils. We find that the toothed whales are monophyletic, suggesting that echolocation evolved only once early in that lineage some 36-34 Ma. The rorqual family (Balaenopteridae) is restored with the exclusion of the gray whale, suggesting that gulp feeding evolved 18-16 Ma. Delphinida, comprising all living dolphins and porpoises other than the Ganges/Indus dolphins, originated about 26 Ma; it contains the taxonomically rich delphinids, which began diversifying less than 11 Ma. We tested 2 hypothesized drivers of the extant cetacean radiation by assessing the tempo of lineage accumulation through time. We find no support for a rapid burst of speciation early in the history of extant whales, contrasting with expectations of an adaptive radiation model. However, we do find support for increased diversification rates during periods of pronounced physical restructuring of the oceans. The results imply that paleogeographic and paleoceanographic changes, such as closure of major seaways, have influenced the dynamics of radiation in extant cetaceans.

  13. [Application of mtDNA polymorphism in species identification of sarcosaphagous insects].

    PubMed

    Li, Xiang; Cai, Ji-feng

    2011-04-01

    Species identification of sarcosaphagous insects is one of the important steps in forensic research based on the knowledge of entomology. Recent studies reveal that the application of molecular biology, especially the mtDNA sequences analysis, works well in the species identification of sarcosaphagous insects. The molecular biology characteristics, structures, polymorphism of mtDNA of sarcosaphagous insects, and the recent studies in species identification of sarcosaphagous insects are reviewed in this article.

  14. mtDNA mutation C1494T, haplogroup A, and hearing loss in Chinese

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Chengye; Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091; Graduate University of the Chinese Academy of Sciences, Beijing 100039

    2006-09-22

    Mutation C1494T in mitochondrial 12S rRNA gene was recently reported in two large Chinese families with aminoglycoside-induced and nonsyndromic hearing loss (AINHL) and was claimed to be pathogenic. This mutation, however, was first reported in a sample from central China in our previous study that was aimed to reconstruct East Asian mtDNA phylogeny. All these three mtDNAs formed a subclade defined by mutation C1494T in mtDNA haplogroup A. It thus seems that mutation C1494T is a haplogroup A-associated mutation and this matrilineal background may contribute a high risk for the penetrance of mutation C1494T in Chinese with AINHL. To testmore » this hypothesis, we first genotyped mutation C1494T in 553 unrelated individuals from three regional Chinese populations and performed an extensive search for published complete or near-complete mtDNA data sets (>3000 mtDNAs), we then screened the C1494T mutation in 111 mtDNAs with haplogroup A status that were identified from 1823 subjects across China. The search for published mtDNA data sets revealed no other mtDNA besides the above-mentioned three carrying mutation C1494T. None of the 553 randomly selected individuals and the 111 haplogroup A mtDNAs was found to bear this mutation. Therefore, our results suggest that C1494T is a very rare event. The mtDNA haplogroup A background in general is unlikely to play an active role in the penetrance of mutation C1494T in AINHL.« less

  15. Different degree of paternal mtDNA leakage between male and female progeny in interspecific Drosophila crosses

    PubMed Central

    Dokianakis, Emmanouil; Ladoukakis, Emmanuel D

    2014-01-01

    Maternal transmission of mitochondrial DNA (mtDNA) in animals is thought to prevent the spread of selfish deleterious mtDNA mutations in the population. Various mechanisms have been evolved independently to prevent the entry of sperm mitochondria in the embryo. However, the increasing number of instances of paternal mtDNA leakage suggests that these mechanisms are not very effective. The destruction of sperm mitochondria in mammalian embryos is mediated by nuclear factors. Also, the destruction of paternal mitochondria in intraspecific crosses is more effective than in interspecific ones. These observations have led to the hypothesis that leakage of paternal mtDNA (and consequently mtDNA recombination owing to ensuing heteroplasmy) might be more common in inter- than in intraspecific crosses and that it should increase with phylogenetic distance of hybridizing species. We checked paternal leakage in inter- and intraspecific crosses in Drosophila and found little evidence for this hypothesis. In addition, we have observed a higher level of leakage among male than among female progeny from the same cross. This is the first report of sex-specific leakage of paternal mtDNA. It suggests that paternal mtDNA leakage might not be a stochastic result of an error-prone mechanism, but rather, it may be under complex genetic control. PMID:25077015

  16. Different degree of paternal mtDNA leakage between male and female progeny in interspecific Drosophila crosses.

    PubMed

    Dokianakis, Emmanouil; Ladoukakis, Emmanuel D

    2014-07-01

    Maternal transmission of mitochondrial DNA (mtDNA) in animals is thought to prevent the spread of selfish deleterious mtDNA mutations in the population. Various mechanisms have been evolved independently to prevent the entry of sperm mitochondria in the embryo. However, the increasing number of instances of paternal mtDNA leakage suggests that these mechanisms are not very effective. The destruction of sperm mitochondria in mammalian embryos is mediated by nuclear factors. Also, the destruction of paternal mitochondria in intraspecific crosses is more effective than in interspecific ones. These observations have led to the hypothesis that leakage of paternal mtDNA (and consequently mtDNA recombination owing to ensuing heteroplasmy) might be more common in inter- than in intraspecific crosses and that it should increase with phylogenetic distance of hybridizing species. We checked paternal leakage in inter- and intraspecific crosses in Drosophila and found little evidence for this hypothesis. In addition, we have observed a higher level of leakage among male than among female progeny from the same cross. This is the first report of sex-specific leakage of paternal mtDNA. It suggests that paternal mtDNA leakage might not be a stochastic result of an error-prone mechanism, but rather, it may be under complex genetic control.

  17. Evidence for recombination of mtDNA in the marine mussel Mytilus trossulus from the Baltic.

    PubMed

    Burzyński, Artur; Zbawicka, Małgorzata; Skibinski, David O F; Wenne, Roman

    2003-03-01

    A number of studies have claimed that recombination occurs in animal mtDNA, although this evidence is controversial. Ladoukakis and Zouros (2001) provided strong evidence for mtDNA recombination in the COIII gene in gonadal tissue in the marine mussel Mytilus galloprovincialis from the Black Sea. The recombinant molecules they reported had not however become established in the population from which experimental animals were sampled. In the present study, we provide further evidence of the generality of mtDNA recombination in Mytilus by reporting recombinant mtDNA molecules in a related mussel species, Mytilus trossulus, from the Baltic. The mtDNA region studied begins in the 16S rRNA gene and terminates in the cytochrome b gene and includes a major noncoding region that may be analogous to the D-loop region observed in other animals. Many bivalve species, including some Mytilus species, are unusual in that they have two mtDNA genomes, one of which is inherited maternally (F genome) the other inherited paternally (M genome). Two recombinant variants reported in the present study have population frequencies of 5% and 36% and appear to be mosaic for F-like and M-like sequences. However, both variants have the noncoding region from the M genome, and both are transmitted to sperm like the M genome. We speculate that acquisition of the noncoding region by the recombinant molecules has conferred a paternal role on mtDNA genomes that otherwise resemble the F genome in sequence.

  18. Alterations in mtDNA, gastric carcinogenesis and early diagnosis.

    PubMed

    Rodrigues-Antunes, S; Borges, B N

    2018-05-26

    Gastric cancer remains one of the most prevalent cancers in the world. Due to this, efforts are being made to improve the diagnosis of this neoplasm and the search for molecular markers that may be involved in its genesis. Within this perspective, the mitochondrial DNA is considered as a potential candidate, since it has several well documented changes and is readily accessible. However, numerous alterations have been reported in mtDNA, not facilitating the visualization of which alterations and molecular markers are truly involved with gastric carcinogenesis. This review presents a compilation of the main known changes relating mtDNA to gastric cancer and their clinical significance.

  19. The Making of the African mtDNA Landscape

    PubMed Central

    Salas, Antonio; Richards, Martin; De la Fe, Tomás; Lareu, María-Victoria; Sobrino, Beatriz; Sánchez-Diz, Paula; Macaulay, Vincent; Carracedo, Ángel

    2002-01-01

    Africa presents the most complex genetic picture of any continent, with a time depth for mitochondrial DNA (mtDNA) lineages >100,000 years. The most recent widespread demographic shift within the continent was most probably the Bantu dispersals, which archaeological and linguistic evidence suggest originated in West Africa 3,000–4,000 years ago, spreading both east and south. Here, we have carried out a thorough phylogeographic analysis of mtDNA variation in a total of 2,847 samples from throughout the continent, including 307 new sequences from southeast African Bantu speakers. The results suggest that the southeast Bantu speakers have a composite origin on the maternal line of descent, with ∼44% of lineages deriving from West Africa, ∼21% from either West or Central Africa, ∼30% from East Africa, and ∼5% from southern African Khoisan-speaking groups. The ages of the major founder types of both West and East African origin are consistent with the likely timing of Bantu dispersals, with those from the west somewhat predating those from the east. Despite this composite picture, the southeastern African Bantu groups are indistinguishable from each other with respect to their mtDNA, suggesting that they either had a common origin at the point of entry into southeastern Africa or have undergone very extensive gene flow since. PMID:12395296

  20. Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma

    PubMed Central

    Nickerson, John M.; Gao, Feng-juan; Sun, Zhongmou; Chen, Xin-ya; Zhang, Shu-jie; Gao, Feng; Chen, Jun-yi; Luo, Yi; Wang, Yan; Sun, Xing-huai

    2015-01-01

    Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs. PMID:25478814

  1. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alán, Lukáš, E-mail: lukas.alan@fgu.cas.cz; Špaček

    Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators.more » We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (> 48 h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity. - Highlights: • The mechanism for mitochondrial nucleoid clustering is proposed. • DNA intercalators (Doxorubicin or Ethidium Bromide) prevent

  2. Single-cell analysis of intercellular heteroplasmy of mtDNA in Leber hereditary optic neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Y.; Sharpe, H.; Brown, N.

    1994-07-01

    The authors have investigated the distribution of mutant mtDNA molecules in single cells from a patient with Leber hereditary optic neuropathy (LHON). LHON is a maternally inherited disease that is characterized by a sudden-onset bilateral loss of central vision, which typically occurs in early adulthood. More than 50% of all LHON patients carry an mtDNA mutation at nucleotide position 11778. This nucleotide change converts a highly conserved arginine residue to histidine at codon 340 in the NADH-ubiquinone oxidoreductase subunit 4 (ND4) gene of mtDNA. In the present study, the authors used PCR amplification of mtDNA from lymphocytes to investigate mtDNAmore » heteroplasmy at the single-cell level in a LHON patient. They found that most cells were either homoplasmic normal or homoplasmic mutant at nucleotide position 11778. Some (16%) cells contained both mutant and normal mtDNA.« less

  3. Mitochondrial DNA (mtDNA) haplogroups in 1526 unrelated individuals from 11 Departments of Colombia

    PubMed Central

    Yunis, Juan J.; Yunis, Emilio J.

    2013-01-01

    The frequencies of four mitochondrial Native American DNA haplogroups were determined in 1526 unrelated individuals from 11 Departments of Colombia and compared to the frequencies previously obtained for Amerindian and Afro-Colombian populations. Amerindian mtDNA haplogroups ranged from 74% to 97%. The lowest frequencies were found in Departments on the Caribbean coast and in the Pacific region, where the frequency of Afro-Colombians is higher, while the highest mtDNA Amerindian haplogroup frequencies were found in Departments that historically have a strong Amerindian heritage. Interestingly, all four mtDNA haplogroups were found in all Departments, in contrast to the complete absence of haplogroup D and high frequencies of haplogroup A in Amerindian populations in the Caribbean region of Colombia. Our results indicate that all four Native American mtDNA haplogroups were widely distributed in Colombia at the time of the Spanish conquest. PMID:24130438

  4. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales.

    PubMed

    Palumbi, S R; Baker, C S

    1994-05-01

    Powerful analyses of population structure require information from multiple genetic loci. To help develop a molecular toolbox for obtaining this information, we have designed universal oligonucleotide primers that span conserved intron-exon junctions in a wide variety of animal phyla. We test the utility of exon-primed, intron-crossing amplifications by analyzing the variability of actin intron sequences from humpback, blue, and bowhead whales and comparing the results with mitochondrial DNA (mtDNA) haplotype data. Humpback actin introns fall into two major clades that exist in different frequencies in different oceanic populations. It is surprising that Hawaii and California populations, which are very distinct in mtDNAs, are similar in actin intron alleles. This discrepancy between mtDNA and nuclear DNA results may be due either to differences in genetic drift in mitochondrial and nuclear genes or to preferential movement of males, which do not transmit mtDNA to offspring, between separate breeding grounds. Opposing mtDNA and nuclear DNA results can help clarify otherwise hidden patterns of structure in natural populations.

  5. MtDNA and Y-chromosome variation in Kurdish groups.

    PubMed

    Nasidze, Ivan; Quinque, Dominique; Ozturk, Murat; Bendukidze, Nina; Stoneking, Mark

    2005-07-01

    In order to investigate the origins and relationships of Kurdish-speaking groups, mtDNA HV1 sequences, eleven Y chromosome bi-allelic markers, and 9 Y-STR loci were analyzed among three Kurdish groups: Zazaki and Kurmanji speakers from Turkey, and Kurmanji speakers from Georgia. When compared with published data from other Kurdish groups and from European, Caucasian, and West and Central Asian groups, Kurdish groups are most similar genetically to other West Asian groups, and most distant from Central Asian groups, for both mtDNA and the Y-chromosome. However, Kurdish groups show a closer relationship with European groups than with Caucasian groups based on mtDNA, but the opposite based on the Y-chromosome, indicating some differences in their maternal and paternal histories. The genetic data indicate that the Georgian Kurdish group experienced a bottleneck effect during their migration to the Caucasus, and that they have not had detectable admixture with their geographic neighbours in Georgia. Our results also do not support the hypothesis of the origin of the Zazaki-speaking group being in northern Iran; genetically they are more similar to other Kurdish groups. Genetic analyses of recent events, such as the origins and migrations of Kurdish-speaking groups, can therefore lead to new insights into such migrations.

  6. Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma.

    PubMed

    Wu, Ji-Hong; Zhang, Sheng-Hai; Nickerson, John M; Gao, Feng-Juan; Sun, Zhongmou; Chen, Xin-Ya; Zhang, Shu-Jie; Gao, Feng; Chen, Jun-Yi; Luo, Yi; Wang, Yan; Sun, Xing-Huai

    2015-02-01

    Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A defect in the thymidine kinase 2 gene causing isolated mitochondrial myopathy without mtDNA depletion.

    PubMed

    Leshinsky-Silver, E; Michelson, M; Cohen, S; Ginsberg, M; Sadeh, M; Barash, V; Lerman-Sagie, T; Lev, D

    2008-07-01

    Isolated mitochondrial myopathies (IMM) are either due to primary defects in mtDNA, in nuclear genes that control mtDNA abundance and structure such as thymidine kinase 2 (TK2), or due to CoQ deficiency. Defects in the TK2 gene have been found to be associated with mtDNA depletion attributed to a depleted mitochondrial dNTP pool in non-dividing cells. We report an unusual case of IMM, homozygous for the H90N mutation in the TK2 gene but unlike other cases with the same mutation, does not demonstrate mtDNA depletion. The patient's clinical course is relatively mild and a muscle biopsy showed ragged red muscle fibers with a mild decrease in complexes I and an increase in complexes IV and II activities. This report extends the phenotypic expression of TK2 defects and suggests that all patients who present with an IMM even with normal quantities of mtDNA should be screened for TK2 mutations.

  8. Thymidine kinase and mtDNA depletion in human cardiomyopathy: epigenetic and translational evidence for energy starvation

    PubMed Central

    Koczor, Christopher A.; Torres, Rebecca A.; Fields, Earl J.; Boyd, Amy; He, Stanley; Patel, Nilamkumar; Lee, Eva K.; Samarel, Allen M.

    2013-01-01

    This study addresses how depletion of human cardiac left ventricle (LV) mitochondrial DNA (mtDNA) and epigenetic nuclear DNA methylation promote cardiac dysfunction in human dilated cardiomyopathy (DCM) through regulation of pyrimidine nucleotide kinases. Samples of DCM LV and right ventricle (n = 18) were obtained fresh at heart transplant surgery. Parallel samples from nonfailing (NF) controls (n = 12) were from donor hearts found unsuitable for clinical use. We analyzed abundance of mtDNA and nuclear DNA (nDNA) using qPCR. LV mtDNA was depleted in DCM (50%, P < 0.05 each) compared with NF. No detectable change in RV mtDNA abundance occurred. DNA methylation and gene expression were determined using microarray analysis (GEO accession number: GSE43435). Fifty-seven gene promoters exhibited DNA hypermethylation or hypomethylation in DCM LVs. Among those, cytosolic thymidine kinase 1 (TK1) was hypermethylated. Expression arrays revealed decreased abundance of the TK1 mRNA transcript with no change in transcripts for other relevant thymidine metabolism enzymes. Quantitative immunoblots confirmed decreased TK1 polypeptide steady state abundance. TK1 activity remained unchanged in DCM samples while mitochondrial thymidine kinase (TK2) activity was significantly reduced. Compensatory TK activity was found in cardiac myocytes in the DCM LV. Diminished TK2 activity is mechanistically important to reduced mtDNA abundance and identified in DCM LV samples here. Epigenetic and genetic changes result in changes in mtDNA and in nucleotide substrates for mtDNA replication and underpin energy starvation in DCM. PMID:23695887

  9. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    PubMed

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/-) mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/-) mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/-) mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  10. Thymidine Kinase 2 Deficiency-Induced mtDNA Depletion in Mouse Liver Leads to Defect β-Oxidation

    PubMed Central

    von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2−/−) that progressively loses its mtDNA. The TK2−/− mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2−/− mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2−/− mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2−/− mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2−/− mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies. PMID:23505564

  11. mtDNA variation in caste populations of Andhra Pradesh, India.

    PubMed

    Bamshad, M; Fraley, A E; Crawford, M H; Cann, R L; Busi, B R; Naidu, J M; Jorde, L B

    1996-02-01

    Various anthropological analyses have documented extensive regional variation among populations on the subcontinent of India using morphological, protein, blood group, and nuclear DNA polymorphisms. These patterns are the product of complex population structure (genetic drift, gene flow) and a population history noted for numerous branching events. As a result, the interpretation of relationships among caste populations of South India and between Indians and continental populations remains controversial. The Hindu caste system is a general model of genetic differentiation among endogamous populations stratified by social forces (e.g., religion and occupation). The mitochondrial DNA (mtDNA) molecule has unique properties that facilitate the exploration of population structure. We analyzed 36 Hindu men born in Andhra Pradesh who were unrelated matrilineally through at least 3 generations and who represent 4 caste populations: Brahmin (9), Yadava (10), Kapu (7), and Relli (10). Individuals from Africa (36), Asia (36), and Europe (36) were sampled for comparison. A 200-base-pair segment of hypervariable segment 2 (HVS2) of the mtDNA control region was sequenced in all individuals. In the Indian castes 25 distinct haplotypes are identified. Aside from the Cambridge reference sequence, only two haplotypes are shared between caste populations. Middle castes form a highly supported cluster in a neighbor-joining network. Mean nucleotide diversity within each caste is 0.015, 0.012, 0.011, and 0.012 for the Brahmin, Yadava, Kapu, and Relli, respectively. mtDNA variation is highly structured between castes (GST = 0.17; p < 0.002). The effects of social structure on mtDNA variation are much greater than those on variation measured by traditional markers. Explanations for this discordance include (1) the higher resolving power of mtDNA, (2) sex-dependent gene flow, (3) differences in male and female effective population sizes, and (4) elements of the kinship structure. Thirty

  12. Hybridization and massive mtDNA unidirectional introgression between the closely related Neotropical toads Rhinella marina and R. schneideri inferred from mtDNA and nuclear markers

    PubMed Central

    2011-01-01

    Background The classical perspective that interspecific hybridization in animals is rare has been changing due to a growing list of empirical examples showing the occurrence of gene flow between closely related species. Using sequence data from cyt b mitochondrial gene and three intron nuclear genes (RPL9, c-myc, and RPL3) we investigated patterns of nucleotide polymorphism and divergence between two closely related toad species R. marina and R. schneideri. By comparing levels of differentiation at nuclear and mtDNA levels we were able to describe patterns of introgression and infer the history of hybridization between these species. Results All nuclear loci are essentially concordant in revealing two well differentiated groups of haplotypes, corresponding to the morphologically-defined species R. marina and R. schneideri. Mitochondrial DNA analysis also revealed two well-differentiated groups of haplotypes but, in stark contrast with the nuclear genealogies, all R. schneideri sequences are clustered with sequences of R. marina from the right Amazon bank (RAB), while R. marina sequences from the left Amazon bank (LAB) are monophyletic. An Isolation-with-Migration (IM) analysis using nuclear data showed that R. marina and R. schneideri diverged at ≈ 1.69 Myr (early Pleistocene), while R. marina populations from LAB and RAB diverged at ≈ 0.33 Myr (middle Pleistocene). This time of divergence is not consistent with the split between LAB and RAB populations obtained with mtDNA data (≈ 1.59 Myr), which is notably similar to the estimate obtained with nuclear genes between R. marina and R. schneideri. Coalescent simulations of mtDNA phylogeny under the speciation history inferred from nuclear genes rejected the hypothesis of incomplete lineage sorting to explain the conflicting signal between mtDNA and nuclear-based phylogenies. Conclusions The cytonuclear discordance seems to reflect the occurrence of interspecific hybridization between these two closely related

  13. Bone histology in extant and fossil penguins (Aves: Sphenisciformes).

    PubMed

    Ksepka, Daniel T; Werning, Sarah; Sclafani, Michelle; Boles, Zachary M

    2015-11-01

    Substantial changes in bone histology accompany the secondary adaptation to life in the water. This transition is well documented in several lineages of mammals and non-avian reptiles, but has received relatively little attention in birds. This study presents new observations on the long bone microstructure of penguins, based on histological sections from two extant taxa (Spheniscus and Aptenodytes) and eight fossil specimens belonging to stem lineages (†Palaeospheniscus and several indeterminate Eocene taxa). High bone density in penguins results from compaction of the internal cortical tissues, and thus penguin bones are best considered osteosclerotic rather than pachyostotic. Although the oldest specimens sampled in this study represent stages of penguin evolution that occurred at least 25 million years after the loss of flight, major differences in humeral structure were observed between these Eocene stem taxa and extant taxa. This indicates that the modification of flipper bone microstructure continued long after the initial loss of flight in penguins. It is proposed that two key transitions occurred during the shift from the typical hollow avian humerus to the dense osteosclerotic humerus in penguins. First, a reduction of the medullary cavity occurred due to a decrease in the amount of perimedullary osteoclastic activity. Second, a more solid cortex was achieved by compaction. In extant penguins and †Palaeospheniscus, most of the inner cortex is formed by rapid osteogenesis, resulting an initial latticework of woven-fibered bone. Subsequently, open spaces are filled by slower, centripetal deposition of parallel-fibered bone. Eocene stem penguins formed the initial latticework, but the subsequent round of compaction was less complete, and thus open spaces remained in the adult bone. In contrast to the humerus, hindlimb bones from Eocene stem penguins had smaller medullary cavities and thus higher compactness values compared with extant taxa. Although

  14. Bone histology in extant and fossil penguins (Aves: Sphenisciformes)

    PubMed Central

    Ksepka, Daniel T; Werning, Sarah; Sclafani, Michelle; Boles, Zachary M

    2015-01-01

    Substantial changes in bone histology accompany the secondary adaptation to life in the water. This transition is well documented in several lineages of mammals and non-avian reptiles, but has received relatively little attention in birds. This study presents new observations on the long bone microstructure of penguins, based on histological sections from two extant taxa (Spheniscus and Aptenodytes) and eight fossil specimens belonging to stem lineages (†Palaeospheniscus and several indeterminate Eocene taxa). High bone density in penguins results from compaction of the internal cortical tissues, and thus penguin bones are best considered osteosclerotic rather than pachyostotic. Although the oldest specimens sampled in this study represent stages of penguin evolution that occurred at least 25 million years after the loss of flight, major differences in humeral structure were observed between these Eocene stem taxa and extant taxa. This indicates that the modification of flipper bone microstructure continued long after the initial loss of flight in penguins. It is proposed that two key transitions occurred during the shift from the typical hollow avian humerus to the dense osteosclerotic humerus in penguins. First, a reduction of the medullary cavity occurred due to a decrease in the amount of perimedullary osteoclastic activity. Second, a more solid cortex was achieved by compaction. In extant penguins and †Palaeospheniscus, most of the inner cortex is formed by rapid osteogenesis, resulting an initial latticework of woven-fibered bone. Subsequently, open spaces are filled by slower, centripetal deposition of parallel-fibered bone. Eocene stem penguins formed the initial latticework, but the subsequent round of compaction was less complete, and thus open spaces remained in the adult bone. In contrast to the humerus, hindlimb bones from Eocene stem penguins had smaller medullary cavities and thus higher compactness values compared with extant taxa. Although

  15. Insertion of a self-splicing intron into the mtDNA of atriploblastic animal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valles, Y.; Halanych, K.; Boore, J.L.

    2006-04-14

    Nephtys longosetosa is a carnivorous polychaete worm that lives in the intertidal and subtidal zones with worldwide distribution (pleijel&rouse2001). Its mitochondrial genome has the characteristics typical of most metazoans: 37 genes; circular molecule; almost no intergenic sequence; and no significant gene rearrangements when compared to other annelid mtDNAs (booremoritz19981995). Ubiquitous features as small intergenic regions and lack of introns suggested that metazoan mtDNAs are under strong selective pressures to reduce their genome size allowing for faster replication requirements (booremoritz19981995Lynch2005). Yet, in 1996 two type I introns were found in the mtDNA of the basal metazoan Metridium senile (FigureX). Breaking amore » long-standing rule (absence of introns in metazoan mtDNA), this finding was later supported by the further presence of group I introns in other cnidarians. Interestingly, only the class Anthozoa within cnidarians seems to harbor such introns. Although several hundreds of triploblastic metazoan mtDNAs have been sequenced, this study is the first evidence of mitochondrial introns in triploblastic metazoans. The cox1 gene of N. longosetosa has an intron of almost 2 kbs in length. This finding represents as well the first instance of a group II intron (anthozoans harbor group I introns) in all metazoan lineages. Opposite trends are observed within plants, fungi and protist mtDNAs, where introns (both group I and II) and other non-coding sequences are widespread. Plant, fungal and protist mtDNA structure and organization differ enormously from that of metazoan mtDNA. Both, plant and fungal mtDNA are dynamic molecules that undergo high rates of recombination, contain long intergenic spacer regions and harbor both group I and group II introns. However, as metazoans they have a conserved gene content. Protists, on the other hand have a striking variation of gene content and introns that account for the genome size variation. In

  16. mtDNA and the Origin of the Icelanders: Deciphering Signals of Recent Population History

    PubMed Central

    Helgason, Agnar; Sigurðardóttir, Sigrún; Gulcher, Jeffrey R.; Ward, Ryk; Stefánsson, Kári

    2000-01-01

    Previous attempts to investigate the origin of the Icelanders have provided estimates of ancestry ranging from a 98% British Isles contribution to an 86% Scandinavian contribution. We generated mitochondrial sequence data for 401 Icelandic individuals and compared these data with >2,500 other European sequences from published sources, to determine the probable origins of women who contributed to Iceland’s settlement. Although the mean number of base-pair differences is high in the Icelandic sequences and they are widely distributed in the overall European mtDNA phylogeny, we find a smaller number of distinct mitochondrial lineages, compared with most other European populations. The frequencies of a number of mtDNA lineages in the Icelanders deviate noticeably from those in neighboring populations, suggesting that founder effects and genetic drift may have had a considerable influence on the Icelandic gene pool. This is in accordance with available demographic evidence about Icelandic population history. A comparison with published mtDNA lineages from European populations indicates that, whereas most founding females probably originated from Scandinavia and the British Isles, lesser contributions from other populations may also have taken place. We present a highly resolved phylogenetic network for the Icelandic data, identifying a number of previously unreported mtDNA lineage clusters and providing a detailed depiction of the evolutionary relationships between European mtDNA clusters. Our findings indicate that European populations contain a large number of closely related mitochondrial lineages, many of which have not yet been sampled in the current comparative data set. Consequently, substantial increases in sample sizes that use mtDNA data will be needed to obtain valid estimates of the diverse ancestral mixtures that ultimately gave rise to contemporary populations. PMID:10712214

  17. [Genetic ecological monitoring in human populations: heterozygosity, mtDNA haplotype variation, and genetic load].

    PubMed

    Balanovskiĭ, O P; Koshel', S M; Zaporozhchenko, V V; Pshenichnov, A S; Frolova, S A; Kuznetsova, M A; Baranova, E E; Teuchezh, I E; Kuznetsova, A A; Romashkina, M V; Utevskaia, O M; Churnosov, M I; Villems, R; Balanovskaia, E V

    2011-11-01

    Yu. P. Altukhov suggested that heterozygosity is an indicator of the state of the gene pool. The idea and a linked concept of genetic ecological monitoring were applied to a new dataset on mtDNA variation in East European ethnic groups. Haplotype diversity (an analog of the average heterozygosity) was shown to gradually decrease northwards. Since a similar trend is known for population density, interlinked changes were assumed for a set of parameters, which were ordered to form a causative chain: latitude increases, land productivity decreases, population density decreases, effective population size decreases, isolation of subpopulations increases, genetic drift increases, and mtDNA haplotype diversity decreases. An increase in genetic drift increases the random inbreeding rate and, consequently, the genetic load. This was confirmed by a significant correlation observed between the incidence of autosomal recessive hereditary diseases and mtDNA haplotype diversity. Based on the findings, mtDNA was assumed to provide an informative genetic system for genetic ecological monitoring; e.g., analyzing the ecology-driven changes in the gene pool.

  18. Canis mtDNA HV1 database: a web-based tool for collecting and surveying Canis mtDNA HV1 haplotype in public database.

    PubMed

    Thai, Quan Ke; Chung, Dung Anh; Tran, Hoang-Dung

    2017-06-26

    Canine and wolf mitochondrial DNA haplotypes, which can be used for forensic or phylogenetic analyses, have been defined in various schemes depending on the region analyzed. In recent studies, the 582 bp fragment of the HV1 region is most commonly used. 317 different canine HV1 haplotypes have been reported in the rapidly growing public database GenBank. These reported haplotypes contain several inconsistencies in their haplotype information. To overcome this issue, we have developed a Canis mtDNA HV1 database. This database collects data on the HV1 582 bp region in dog mitochondrial DNA from the GenBank to screen and correct the inconsistencies. It also supports users in detection of new novel mutation profiles and assignment of new haplotypes. The Canis mtDNA HV1 database (CHD) contains 5567 nucleotide entries originating from 15 subspecies in the species Canis lupus. Of these entries, 3646 were haplotypes and grouped into 804 distinct sequences. 319 sequences were recognized as previously assigned haplotypes, while the remaining 485 sequences had new mutation profiles and were marked as new haplotype candidates awaiting further analysis for haplotype assignment. Of the 3646 nucleotide entries, only 414 were annotated with correct haplotype information, while 3232 had insufficient or lacked haplotype information and were corrected or modified before storing in the CHD. The CHD can be accessed at http://chd.vnbiology.com . It provides sequences, haplotype information, and a web-based tool for mtDNA HV1 haplotyping. The CHD is updated monthly and supplies all data for download. The Canis mtDNA HV1 database contains information about canine mitochondrial DNA HV1 sequences with reconciled annotation. It serves as a tool for detection of inconsistencies in GenBank and helps identifying new HV1 haplotypes. Thus, it supports the scientific community in naming new HV1 haplotypes and to reconcile existing annotation of HV1 582 bp sequences.

  19. The origin of Chinese domestic horses revealed with novel mtDNA variants.

    PubMed

    Yang, Yunzhou; Zhu, Qiyun; Liu, Shuqin; Zhao, Chunjiang; Wu, Changxin

    2017-01-01

    The origin of domestic horses in China was a controversial issue and several hypotheses including autochthonous domestication, introduction from other areas, and multiple-origins from both introduction and local wild horse introgression have been proposed, but none of them have been fully supported by DNA data. In the present study, mitochondrial DNA (mtDNA) sequences of 714 Chinese indigenous horses were analyzed. The results showed that Chinese domestic horses harbor some novel mtDNA haplogroups and suggested that local domestication events may have occurred, but they are not the dominant haplogroups and the geographical distributions of the novel mtDNA haplogroups were rather restricted. Conclusively, our results support the hypothesis that the domestic horses in China originated from both the introduced horses from outside of China and the local wild horses' introgression into the domestic populations. Results of genetic diversity analysis suggested a possibility that the introduced horses entered China through northern regions from the Eurasian steppe. © 2016 Japanese Society of Animal Science.

  20. A new extant species of Electribius Crowson from Honduras (Coleoptera: Elateroidea: Artematopodidae).

    PubMed

    Gimmel, Matthew L; Bocakova, Milada

    2015-03-05

    A new extant species of Electribius Crowson, E. llamae sp.n., is described from Cusuco National Park, Cortés Province, Honduras. This new species lacks one of the supposed autapomorphies of the genus; therefore the definition of the genus requires modification. A revised key to the known extant species is presented, and their known distributions are mapped.

  1. Decrease of 3243 A→G mtDNA Mutation from Blood in MELAS Syndrome: A Longitudinal Study

    PubMed Central

    Rahman, S.; Poulton, J.; Marchington, D.; Suomalainen, A.

    2001-01-01

    It is widely held that changes in the distribution of mutant mtDNAs underlie the progressive nature of mtDNA diseases, but there are few data documenting such changes. We compared the levels of 3243 A→G mutant mtDNA in blood at birth from Guthrie cards and at the time of diagnosis in a blood DNA sample from patients with mitochondrial encephalopathy, lactic acidosis, and strokelike episodes (MELAS) syndrome. Paired blood DNA samples separated by 9–19 years were obtained from six patients with MELAS. Quantification of mutant load, by means of a solid-phase minisequencing technique, demonstrated a decline (range 12%–29%) in the proportion of mutant mtDNA in all cases (P=.0015, paired t-test). These results suggest that mutant mtDNA is slowly selected from rapidly dividing blood cells in MELAS. PMID:11085913

  2. Divorcing the Late Upper Palaeolithic demographic histories of mtDNA haplogroups M1 and U6 in Africa

    PubMed Central

    2012-01-01

    Background A Southwest Asian origin and dispersal to North Africa in the Early Upper Palaeolithic era has been inferred in previous studies for mtDNA haplogroups M1 and U6. Both haplogroups have been proposed to show similar geographic patterns and shared demographic histories. Results We report here 24 M1 and 33 U6 new complete mtDNA sequences that allow us to refine the existing phylogeny of these haplogroups. The resulting phylogenetic information was used to genotype a further 131 M1 and 91 U6 samples to determine the geographic spread of their sub-clades. No southwest Asian specific clades for M1 or U6 were discovered. U6 and M1 frequencies in North Africa, the Middle East and Europe do not follow similar patterns, and their sub-clade divisions do not appear to be compatible with their shared history reaching back to the Early Upper Palaeolithic. The Bayesian Skyline Plots testify to non-overlapping phases of expansion, and the haplogroups’ phylogenies suggest that there are U6 sub-clades that expanded earlier than those in M1. Some M1 and U6 sub-clades could be linked with certain events. For example, U6a1 and M1b, with their coalescent ages of ~20,000–22,000 years ago and earliest inferred expansion in northwest Africa, could coincide with the flourishing of the Iberomaurusian industry, whilst U6b and M1b1 appeared at the time of the Capsian culture. Conclusions Our high-resolution phylogenetic dissection of both haplogroups and coalescent time assessments suggest that the extant main branching pattern of both haplogroups arose and diversified in the mid-later Upper Palaeolithic, with some sub-clades concomitantly with the expansion of the Iberomaurusian industry. Carriers of these maternal lineages have been later absorbed into and diversified further during the spread of Afro-Asiatic languages in North and East Africa. PMID:23206491

  3. The GHEP–EMPOP collaboration on mtDNA population data—A new resource for forensic casework

    PubMed Central

    Prieto, L.; Zimmermann, B.; Goios, A.; Rodriguez-Monge, A.; Paneto, G.G.; Alves, C.; Alonso, A.; Fridman, C.; Cardoso, S.; Lima, G.; Anjos, M.J.; Whittle, M.R.; Montesino, M.; Cicarelli, R.M.B.; Rocha, A.M.; Albarrán, C.; de Pancorbo, M.M.; Pinheiro, M.F.; Carvalho, M.; Sumita, D.R.; Parson, W.

    2011-01-01

    Mitochondrial DNA (mtDNA) population data for forensic purposes are still scarce for some populations, which may limit the evaluation of forensic evidence especially when the rarity of a haplotype needs to be determined in a database search. In order to improve the collection of mtDNA lineages from the Iberian and South American subcontinents, we here report the results of a collaborative study involving nine laboratories from the Spanish and Portuguese Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG) and EMPOP. The individual laboratories contributed population data that were generated throughout the past 10 years, but in the majority of cases have not been made available to the scientific community. A total of 1019 haplotypes from Iberia (Basque Country, 2 general Spanish populations, 2 North and 1 Central Portugal populations), and Latin America (3 populations from São Paulo) were collected, reviewed and harmonized according to defined EMPOP criteria. The majority of data ambiguities that were found during the reviewing process (41 in total) were transcription errors confirming that the documentation process is still the most error-prone stage in reporting mtDNA population data, especially when performed manually. This GHEP–EMPOP collaboration has significantly improved the quality of the individual mtDNA datasets and adds mtDNA population data as valuable resource to the EMPOP database (www.empop.org). PMID:21075696

  4. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity

    PubMed Central

    Pokrzywinski, Kaytee L.; Biel, Thomas G.; Kryndushkin, Dmitry; Rao, V. Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis. PMID:28030582

  5. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity.

    PubMed

    Pokrzywinski, Kaytee L; Biel, Thomas G; Kryndushkin, Dmitry; Rao, V Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.

  6. MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases

    PubMed Central

    Hashimoto, Masami; Bacman, Sandra R; Peralta, Susana; Falk, Marni J; Chomyn, Anne; Chan, David C; Williams, Sion L; Moraes, Carlos T

    2015-01-01

    We have designed mitochondrially targeted transcription activator-like effector nucleases or mitoTALENs to cleave specific sequences in the mitochondrial DNA (mtDNA) with the goal of eliminating mtDNA carrying pathogenic point mutations. To test the generality of the approach, we designed mitoTALENs to target two relatively common pathogenic mtDNA point mutations associated with mitochondrial diseases: the m.8344A>G tRNALys gene mutation associated with myoclonic epilepsy with ragged red fibers (MERRF) and the m.13513G>A ND5 mutation associated with MELAS/Leigh syndrome. Transmitochondrial cybrid cells harbouring the respective heteroplasmic mtDNA mutations were transfected with the respective mitoTALEN and analyzed after different time periods. MitoTALENs efficiently reduced the levels of the targeted pathogenic mtDNAs in the respective cell lines. Functional assays showed that cells with heteroplasmic mutant mtDNA were able to recover respiratory capacity and oxidative phosphorylation enzymes activity after transfection with the mitoTALEN. To improve the design in the context of the low complexity of mtDNA, we designed shorter versions of the mitoTALEN specific for the MERRF m.8344A>G mutation. These shorter mitoTALENs also eliminated the mutant mtDNA. These reductions in size will improve our ability to package these large sequences into viral vectors, bringing the use of these genetic tools closer to clinical trials. PMID:26159306

  7. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice

    PubMed Central

    Safdar, Adeel; Bourgeois, Jacqueline M.; Ogborn, Daniel I.; Little, Jonathan P.; Hettinga, Bart P.; Akhtar, Mahmood; Thompson, James E.; Melov, Simon; Mocellin, Nicholas J.; Kujoth, Gregory C.; Prolla, Tomas A.; Tarnopolsky, Mark A.

    2011-01-01

    A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities. PMID:21368114

  8. Homopolymeric tract heteroplasmy in mtDNA from tissues and single oocytes: support for a genetic bottleneck.

    PubMed Central

    Marchington, D R; Hartshorne, G M; Barlow, D; Poulton, J

    1997-01-01

    While mtDNA polymorphisms at single base positions are common, the overwhelming majority of the mitochondrial genomes within a single individual are usually identical. When there is a point-mutation difference between a mother and her offspring, there may be a complete switching of mtDNA type within a single generation. It is generally assumed that there is a genetic bottleneck whereby a single or small number of founder mtDNA(s) populate the organism, but it is not known at which stages the restriction/amplification of mtDNA subtype(s) occur, and this uncertainty impedes antenatal diagnosis for mtDNA disorders. Length polymorphisms in homopolymeric tracts have been demonstrated in the large noncoding region of mtDNA. We have developed a new method, T-PCR (trimmed PCR), to quantitate heteroplasmy for two of these tracts (D310 and D16189). D310 variation is sufficient to indicate clonal origins of tissues and single oocytes. Tissues from normal individuals often possessed more than one length variant (heteroplasmy). However, there was no difference in the pattern of the length variants between somatic tissues in any control individual when bulk samples were taken. Oocytes from normal women undergoing in vitro fertilization were frequently heteroplasmic for length variants, and in two cases the modal length of the D310 tract differed in individual oocytes from the same woman. These data suggest that a restriction/amplification event, which we attribute to clonal expansion of founder mtDNA(s), has occurred by the time oocytes are mature, although further segregation may occur at a later stage. In contrast to controls, the length distribution of the D310 tract varied between tissues in a patient with heteroplasmic mtDNA rearrangements, suggesting that these mutants influence segregation. These findings have important implications for the genetic counselling of patients with pathogenic mtDNA mutations. Images Figure 2 Figure 1 Figure 3 Figure 4 Figure 5 PMID:9012414

  9. Evolutionary Analyses of Entire Genomes Do Not Support the Association of mtDNA Mutations with Ras/MAPK Pathway Syndromes

    PubMed Central

    Cerezo, María; Balboa, Emilia; Heredia, Claudia; Castro-Feijóo, Lidia; Rica, Itxaso; Barreiro, Jesús; Eirís, Jesús; Cabanas, Paloma; Martínez-Soto, Isabel; Fernández-Toral, Joaquín; Castro-Gago, Manuel; Pombo, Manuel; Carracedo, Ángel; Barros, Francisco

    2011-01-01

    Background There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS) and related disorders (such as LEOPARD, neurofibromatosis type 1), although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA) genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM), which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45), most of them classified as NS patients (n = 42). Methods/Principal Findings The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg) patterns of a typical Iberian dataset (including hgs H, T, J, and U). Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5) are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. Conclusions/Significance As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS. PMID:21526175

  10. MMS Exposure Promotes Increased MtDNA Mutagenesis in the Presence of Replication-Defective Disease-Associated DNA Polymerase γ Variants

    PubMed Central

    Stumpf, Jeffrey D.; Copeland, William C.

    2014-01-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but

  11. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    PubMed

    Stumpf, Jeffrey D; Copeland, William C

    2014-10-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but

  12. Species mtDNA genetic diversity explained by infrapopulation size in a host-symbiont system.

    PubMed

    Doña, Jorge; Moreno-García, Marina; Criscione, Charles D; Serrano, David; Jovani, Roger

    2015-12-01

    Understanding what shapes variation in genetic diversity among species remains a major challenge in evolutionary ecology, and it has been seldom studied in parasites and other host-symbiont systems. Here, we studied mtDNA variation in a host-symbiont non-model system: 418 individual feather mites from 17 feather mite species living on 17 different passerine bird species. We explored how a surrogate of census size, the median infrapopulation size (i.e., the median number of individual parasites per infected host individual), explains mtDNA genetic diversity. Feather mite species genetic diversity was positively correlated with mean infrapopulation size, explaining 34% of the variation. As expected from the biology of feather mites, we found bottleneck signatures for most of the species studied but, in particular, three species presented extremely low mtDNA diversity values given their infrapopulation size. Their star-like haplotype networks (in contrast with more reticulated networks for the other species) suggested that their low genetic diversity was the consequence of severe bottlenecks or selective sweeps. Our study shows for the first time that mtDNA diversity can be explained by infrapopulation sizes, and suggests that departures from this relationship could be informative of underlying ecological and evolutionary processes.

  13. 1857 PatentExtant Construction Comparison Powerscourt Bridge, Spanning Chateauguay River, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1857 Patent-Extant Construction Comparison - Powerscourt Bridge, Spanning Chateauguay River, First Concession Road, Elgin/Hichinbrooke, Huntingdon County, Quebec, Canada, Chateaugay, Franklin County, NY

  14. MtDNA mutations are a common cause of severe disease phenotypes in children with Leigh syndrome.

    PubMed

    Naess, Karin; Freyer, Christoph; Bruhn, Helene; Wibom, Rolf; Malm, Gunilla; Nennesmo, Inger; von Döbeln, Ulrika; Larsson, Nils-Göran

    2009-05-01

    Leigh syndrome is a common clinical manifestation in children with mitochondrial disease and other types of inborn errors of metabolism. We characterised clinical symptoms, prognosis, respiratory chain function and performed extensive genetic analysis of 25 Swedish children suffering from Leigh syndrome with the aim to obtain insights into the molecular pathophysiology and to provide a rationale for genetic counselling. We reviewed the clinical history of all patients and used muscle biopsies in order to perform molecular, biochemical and genetic investigations, including sequencing the entire mitochondrial DNA (mtDNA), the mitochondrial DNA polymerase (POLGA) gene and the surfeit locus protein 1 (SURF1) gene. Respiratory chain enzyme activity measurements identified five patients with isolated complex I deficiency and five with combined enzyme deficiencies. No patient presented with isolated complex IV deficiency. Seven patients had a decreased ATP production rate. Extensive sequence analysis identified eight patients with pathogenic mtDNA mutations and one patient with mutations in POLGA. Mutations of mtDNA are a common cause of LS and mtDNA analysis should always be included in the diagnosis of LS patients, whereas SURF1 mutations are not a common cause of LS in Sweden. Unexpectedly, age of onset, clinical symptoms and prognosis did not reveal any clear differences in LS patients with mtDNA or nuclear DNA mutations.

  15. SG-ADVISER mtDNA: a web server for mitochondrial DNA annotation with data from 200 samples of a healthy aging cohort.

    PubMed

    Rueda, Manuel; Torkamani, Ali

    2017-08-18

    Whole genome and exome sequencing usually include reads containing mitochondrial DNA (mtDNA). Yet, state-of-the-art pipelines and services for human nuclear genome variant calling and annotation do not handle mitochondrial genome data appropriately. As a consequence, any researcher desiring to add mtDNA variant analysis to their investigations is forced to explore the literature for mtDNA pipelines, evaluate them, and implement their own instance of the desired tool. This task is far from trivial, and can be prohibitive for non-bioinformaticians. We have developed SG-ADVISER mtDNA, a web server to facilitate the analysis and interpretation of mtDNA genomic data coming from next generation sequencing (NGS) experiments. The server was built in the context of our SG-ADVISER framework and on top of the MtoolBox platform (Calabrese et al., Bioinformatics 30(21):3115-3117, 2014), and includes most of its functionalities (i.e., assembly of mitochondrial genomes, heteroplasmic fractions, haplogroup assignment, functional and prioritization analysis of mitochondrial variants) as well as a back-end and a front-end interface. The server has been tested with unpublished data from 200 individuals of a healthy aging cohort (Erikson et al., Cell 165(4):1002-1011, 2016) and their data is made publicly available here along with a preliminary analysis of the variants. We observed that individuals over ~90 years old carried low levels of heteroplasmic variants in their genomes. SG-ADVISER mtDNA is a fast and functional tool that allows for variant calling and annotation of human mtDNA data coming from NGS experiments. The server was built with simplicity in mind, and builds on our own experience in interpreting mtDNA variants in the context of sudden death and rare diseases. Our objective is to provide an interface for non-bioinformaticians aiming to acquire (or contrast) mtDNA annotations via MToolBox. SG-ADVISER web server is freely available to all users at https://genomics.scripps.edu/mtdna .

  16. The Use of Returned Martian Samples to Evaluate the Possibility of Extant Life on Mars

    NASA Astrophysics Data System (ADS)

    iMOST Team; ten Kate, I. L.; Mackelprang, R.; Rettberg, P.; Smith, C. L.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Carrier, B. L.; Czaja, A. D.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mayhew, L. E.; McCoy, J. T.; McCubbin, F. M.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Ori, G. G.; Raulin, F.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Spry, J. A.; Steele, A.; Swindle, T. D.; Tosca, N. J.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.

    2018-04-01

    The astrobiological community is highly interested in interrogating returned martian samples for evidence of extant life. A single observation with one method will not constitute evidence of extant life — it will require a suite of investigations.

  17. Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders.

    PubMed

    Lorenz, Carmen; Lesimple, Pierre; Bukowiecki, Raul; Zink, Annika; Inak, Gizem; Mlody, Barbara; Singh, Manvendra; Semtner, Marcus; Mah, Nancy; Auré, Karine; Leong, Megan; Zabiegalov, Oleksandr; Lyras, Ekaterini-Maria; Pfiffer, Vanessa; Fauler, Beatrix; Eichhorst, Jenny; Wiesner, Burkhard; Huebner, Norbert; Priller, Josef; Mielke, Thorsten; Meierhofer, David; Izsvák, Zsuzsanna; Meier, Jochen C; Bouillaud, Frédéric; Adjaye, James; Schuelke, Markus; Wanker, Erich E; Lombès, Anne; Prigione, Alessandro

    2017-05-04

    Mitochondrial DNA (mtDNA) mutations frequently cause neurological diseases. Modeling of these defects has been difficult because of the challenges associated with engineering mtDNA. We show here that neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) retain the parental mtDNA profile and exhibit a metabolic switch toward oxidative phosphorylation. NPCs derived in this way from patients carrying a deleterious homoplasmic mutation in the mitochondrial gene MT-ATP6 (m.9185T>C) showed defective ATP production and abnormally high mitochondrial membrane potential (MMP), plus altered calcium homeostasis, which represents a potential cause of neural impairment. High-content screening of FDA-approved drugs using the MMP phenotype highlighted avanafil, which we found was able to partially rescue the calcium defect in patient NPCs and differentiated neurons. Overall, our results show that iPSC-derived NPCs provide an effective model for drug screening to target mtDNA disorders that affect the nervous system. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Mars extant-life campaign using an approach based on Earth-analog habitats

    NASA Technical Reports Server (NTRS)

    Palkovic, Lawrence A.; Wilson, Thomas J.

    2005-01-01

    The Mars Robotic Outpost group at JPL has identified sixteen potential momentous discoveries that if found on Mars would alter planning for the future Mars exploration program. This paper details one possible approach to the discovery of and response to the 'momentous discovery'' of extant life on Mars. The approach detailed in this paper, the Mars Extant-Life (MEL) campaign, is a comprehensive and flexible program to find living organisms on Mars by studying Earth-analog habitats of extremophile communities.

  19. mtDNA and Y-chromosome polymorphisms in four Native American populations from southern Mexico.

    PubMed Central

    Torroni, A.; Chen, Y. S.; Semino, O.; Santachiara-Beneceretti, A. S.; Scott, C. R.; Lott, M. T.; Winter, M.; Wallace, D. C.

    1994-01-01

    mtDNA sequence variation was examined in 60 Native Americans (Mixtecs from the Alta, Mixtecs from the Baja, Valley Zapotecs, and Highland Mixe) from southern Mexico by PCR amplification and high-resolution restriction endonuclease analysis. Four groups of mtDNA haplotypes (haplogroups A, B, C, and D) characterize Amerind populations, but only three (haplogroups A, B, and C) were observed in these Mexican populations. The comparison of their mtDNA variation with that observed in other populations from Mexico and Central America permits a clear distinction among the different Middle American tribes and raises questions about some of their linguistic affiliations. The males of these population samples were also analyzed for Y-chromosome RFLPs with the probes 49a, 49f, and 12f2. This analysis suggests that certain Y-chromosome haplotypes were brought from Asia during the colonization of the Americas, and a differential gene flow was introduced into Native American populations from European males and females. Images Figure 4 PMID:8304347

  20. Internucleotide correlations and nucleotide periodicity in Drosophila mtDNA: new evidence for panselective evolution.

    PubMed

    Valenzuela, Carlos Y

    2010-01-01

    Analysis for the homogeneity of the distribution of the second base of dinucleotides in relation to the first, whose bases are separated by 0, 1, 2,... 21 nucleotide sites, was performed with the VIH-1 genome (cDNA), the Drosophila mtDNA, the Drosophila Torso gene and the human p-globin gene. These four DNA segments showed highly significant heterogeneities of base distributions that cannot be accounted for by neutral or nearly neutral evolution or by the "neighbor influence" of nucleotides on mutation rates. High correlations are found in the bases of dinucleotides separated by 0, 1 and more number of sites. A periodicity of three consecutive significance values (measured by the x²9) was found only in Drosophila mtDNA. This periodicity may be due to an unknown structure or organization of mtDNA. This non-random distribution of the two bases of dinucleotides widespread throughout these DNA segments is rather compatible with panselective evolution and generalized internucleotide co-adaptation.

  1. Morphometric variation of extant platyrrhine molars: taxonomic implications for fossil platyrrhines

    PubMed Central

    Nova Delgado, Mónica; Galbany, Jordi

    2016-01-01

    The phylogenetic position of many fossil platyrrhines with respect to extant ones is not yet clear. Two main hypotheses have been proposed: the layered or successive radiations hypothesis suggests that Patagonian fossils are Middle Miocene stem platyrrhines lacking modern descendants, whereas the long lineage hypothesis argues for an evolutionary continuity of all fossil platyrrhines with the extant ones. Our geometric morphometric analysis of a 15 landmark-based configuration of platyrrhines’ first and second lower molars suggest that morphological stasis may explain the reduced molar shape variation observed. Platyrrhine lower molar shape might be a primitive retention of the ancestral state affected by strong ecological constraints throughout the radiation of the main platyrrhine families. The Patagonian fossil specimens showed two distinct morphological patterns of lower molars, Callicebus—like and Saguinus—like, which might be the precursors of the extant forms, whereas the Middle Miocene specimens, though showing morphological resemblances with the Patagonian fossils, also displayed new, derived molar patterns, Alouatta—like and Pitheciinae—like, thereby suggesting that despite the overall morphological stasis of molars, phenotypic diversification of molar shape was already settled during the Middle Miocene. PMID:27190704

  2. A role for MHR1, a gene required for mitochondrial genetic recombination, in the repair of damage spontaneously introduced in yeast mtDNA.

    PubMed

    Ling, F; Morioka, H; Ohtsuka, E; Shibata, T

    2000-12-15

    A nuclear recessive mutant in Saccharomyces cerevisiae, mhr1-1, is defective in mitochondrial genetic recombination at 30 degrees C and shows extensive vegetative petite induction by UV irradiation at 30 degrees C or when cultivated at a higher temperature (37 degrees C). It has been postulated that mitochondrial DNA (mtDNA) is oxidatively damaged by by-products of oxidative respiration. Since genetic recombination plays a critical role in DNA repair in various organisms, we tested the possibility that MHR1 plays a role in the repair of oxidatively damaged mtDNA using an enzyme assay. mtDNA isolated from cells grown under standard (aerobic) conditions contained a much higher level of DNA lesions compared with mtDNA isolated from anaerobically grown cells. Soon after a temperature shift from 30 to 37 degrees C the number of mtDNA lesions increased 2-fold in mhr1-1 mutant cells but not in MHR1 cells. Malonic acid, which decreased the oxidative stress in mitochondria, partially suppressed both petite induction and the temperature-induced increase in the amount of mtDNA damage in mhr1-1 cells at 37 degrees C. Thus, functional mitochondria require active MHR1, which keeps the extent of spontaneous oxidative damage in mtDNA within a tolerable level. These observations are consistent with MHR1 having a possible role in mtDNA repair.

  3. DNA from extinct giant lemurs links archaeolemurids to extant indriids.

    PubMed

    Orlando, Ludovic; Calvignac, Sébastien; Schnebelen, Céline; Douady, Christophe J; Godfrey, Laurie R; Hänni, Catherine

    2008-04-28

    Although today 15% of living primates are endemic to Madagascar, their diversity was even greater in the recent past since dozens of extinct species have been recovered from Holocene excavation sites. Among them were the so-called "giant lemurs" some of which weighed up to 160 kg. Although extensively studied, the phylogenetic relationships between extinct and extant lemurs are still difficult to decipher, mainly due to morphological specializations that reflect ecology more than phylogeny, resulting in rampant homoplasy. Ancient DNA recovered from subfossils recently supported a sister relationship between giant "sloth" lemurs and extant indriids and helped to revise the phylogenetic position of Megaladapis edwardsi among lemuriformes, but several taxa - such as the Archaeolemuridae - still await analysis. We therefore used ancient DNA technology to address the phylogenetic status of the two archaeolemurid genera (Archaeolemur and Hadropithecus). Despite poor DNA preservation conditions in subtropical environments, we managed to recover 94- to 539-bp sequences for two mitochondrial genes among 5 subfossil samples. This new sequence information provides evidence for the proximity of Archaeolemur and Hadropithecus to extant indriids, in agreement with earlier assessments of their taxonomic status (Primates, Indrioidea) and in contrast to recent suggestions of a closer relationship to the Lemuridae made on the basis of analyses of dental developmental and postcranial characters. These data provide new insights into the evolution of the locomotor apparatus among lemurids and indriids.

  4. Surveyor nuclease detection of mutations and polymorphisms of mtDNA in children.

    PubMed

    Pilch, Jacek; Asman, Marek; Jamroz, Ewa; Kajor, Maciej; Kotrys-Puchalska, Elżbieta; Goss, Małgorzata; Krzak, Maria; Witecka, Joanna; Gmiński, Jan; Sieroń, Aleksander L

    2010-11-01

    Mitochondrial encephalomyopathies are complex disorders with wide range of clinical manifestations. Particularly time-consuming is the identification of mutations in mitochondrial DNA. A group of 20 children with clinical manifestations of mitochondrial encephalomyopathies was selected for molecular studies. The aims were (a) to identify mutations in mtDNA isolated from muscle and (b) to verify detected mutations in DNA isolated from blood, in order to assess the utility of a Surveyor nuclease assay kit for patient screening. The most common changes found were polymorphisms, including a few missense mutations altering the amino acid sequence of mitochondrial proteins. In two boys with MELAS (i.e., mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), a mutation A→G3243 was detected in the tRNALeu gene of mtDNA isolated from muscle and blood. In one boy, the carrier status of his mother was confirmed, based on molecular analysis of DNA isolated from blood. A method using Surveyor nuclease allows systematic screening for small mutations in mtDNA, using as its source blood of the patients and asymptomatic carriers. The method still requires confirmation studying a larger group. In some patients, the use of this method should precede and might limit indications for traumatic muscle and skin biopsy. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Toward a mtDNA locus-specific mutation database using the LOVD platform.

    PubMed

    Elson, Joanna L; Sweeney, Mary G; Procaccio, Vincent; Yarham, John W; Salas, Antonio; Kong, Qing-Peng; van der Westhuizen, Francois H; Pitceathly, Robert D S; Thorburn, David R; Lott, Marie T; Wallace, Douglas C; Taylor, Robert W; McFarland, Robert

    2012-09-01

    The Human Variome Project (HVP) is a global effort to collect and curate all human genetic variation affecting health. Mutations of mitochondrial DNA (mtDNA) are an important cause of neurogenetic disease in humans; however, identification of the pathogenic mutations responsible can be problematic. In this article, we provide explanations as to why and suggest how such difficulties might be overcome. We put forward a case in support of a new Locus Specific Mutation Database (LSDB) implemented using the Leiden Open-source Variation Database (LOVD) system that will not only list primary mutations, but also present the evidence supporting their role in disease. Critically, we feel that this new database should have the capacity to store information on the observed phenotypes alongside the genetic variation, thereby facilitating our understanding of the complex and variable presentation of mtDNA disease. LOVD supports fast queries of both seen and hidden data and allows storage of sequence variants from high-throughput sequence analysis. The LOVD platform will allow construction of a secure mtDNA database; one that can fully utilize currently available data, as well as that being generated by high-throughput sequencing, to link genotype with phenotype enhancing our understanding of mitochondrial disease, with a view to providing better prognostic information. © 2012 Wiley Periodicals, Inc.

  6. Toward a mtDNA Locus-Specific Mutation Database Using the LOVD Platform

    PubMed Central

    Elson, Joanna L.; Sweeney, Mary G.; Procaccio, Vincent; Yarham, John W.; Salas, Antonio; Kong, Qing-Peng; van der Westhuizen, Francois H.; Pitceathly, Robert D.S.; Thorburn, David R.; Lott, Marie T.; Wallace, Douglas C.; Taylor, Robert W.; McFarland, Robert

    2015-01-01

    The Human Variome Project (HVP) is a global effort to collect and curate all human genetic variation affecting health. Mutations of mitochondrial DNA (mtDNA) are an important cause of neurogenetic disease in humans; however, identification of the pathogenic mutations responsible can be problematic. In this article, we provide explanations as to why and suggest how such difficulties might be overcome. We put forward a case in support of a new Locus Specific Mutation Database (LSDB) implemented using the Leiden Open-source Variation Database (LOVD) system that will not only list primary mutations, but also present the evidence supporting their role in disease. Critically, we feel that this new database should have the capacity to store information on the observed phenotypes alongside the genetic variation, thereby facilitating our understanding of the complex and variable presentation of mtDNA disease. LOVD supports fast queries of both seen and hidden data and allows storage of sequence variants from high-throughput sequence analysis. The LOVD platform will allow construction of a secure mtDNA database; one that can fully utilize currently available data, as well as that being generated by high-throughput sequencing, to link genotype with phenotype enhancing our understanding of mitochondrial disease, with a view to providing better prognostic information. PMID:22581690

  7. The mitochondrial DNA makeup of Romanians: A forensic mtDNA control region database and phylogenetic characterization.

    PubMed

    Turchi, Chiara; Stanciu, Florin; Paselli, Giorgia; Buscemi, Loredana; Parson, Walther; Tagliabracci, Adriano

    2016-09-01

    To evaluate the pattern of Romanian population from a mitochondrial perspective and to establish an appropriate mtDNA forensic database, we generated a high-quality mtDNA control region dataset from 407 Romanian subjects belonging to four major historical regions: Moldavia, Transylvania, Wallachia and Dobruja. The entire control region (CR) was analyzed by Sanger-type sequencing assays and the resulting 306 different haplotypes were classified into haplogroups according to the most updated mtDNA phylogeny. The Romanian gene pool is mainly composed of West Eurasian lineages H (31.7%), U (12.8%), J (10.8%), R (10.1%), T (9.1%), N (8.1%), HV (5.4%),K (3.7%), HV0 (4.2%), with exceptions of East Asian haplogroup M (3.4%) and African haplogroup L (0.7%). The pattern of mtDNA variation observed in this study indicates that the mitochondrial DNA pool is geographically homogeneous across Romania and that the haplogroup composition reveals signals of admixture of populations of different origin. The PCA scatterplot supported this scenario, with Romania located in southeastern Europe area, close to Bulgaria and Hungary, and as a borderland with respect to east Mediterranean and other eastern European countries. High haplotype diversity (0.993) and nucleotide diversity indices (0.00838±0.00426), together with low random match probability (0.0087) suggest the usefulness of this control region dataset as a forensic database in routine forensic mtDNA analysis and in the investigation of maternal genetic lineages in the Romanian population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Clustering of Caucasian Leber hereditary optic neuropathy patients containing the 11778 or 14484 mutations on an mtDNA lineage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M.D.; Sun, F.; Wallace, D.C.

    1997-02-01

    Leber hereditary optic neuropathy (LHON) is a type of blindness caused by mtDNA mutations. Three LHON mtDNA mutations at nucleotide positions 3460, 11778, and 14484 are specific for LHON and account for 90% of worldwide cases and are thus designated as {open_quotes}primary{close_quotes} LHON mutations. Fifteen other {open_quotes}secondary{close_quotes} LHON mtDNA mutations have been identified, but their pathogenicity is unclear. mtDNA haplotype and phylogenetic analysis of the primary LHON mutations in North American Caucasian patients and controls has shown that, unlike the 3460 and 11778 mutations, which are distributed throughout the European-derived (Caucasian) mtDNA phylogeny, patients containing the 14484 mutation tended tomore » be associated with European mtDNA haplotype J. To investigate this apparent clustering, we performed {chi}{sup 2}-based statistical analyses to compare the distribution of LHON patients on the Caucasian phylogenetic tree. Our results indicate that, unlike the 3460 and 11778 mutations, the 14484 mutation was not distributed on the phylogeny in proportion to the frequencies of the major Caucasian mtDNA haplogroups found in North America. The 14484 mutation was next shown to occur on the haplogroup J background more frequently that expected, consistent with the observation that {approximately}75% of worldwide 14484-positive LHON patients occur in association with haplogroup J. The 11778 mutation also exhibited a moderate clustering on haplogroup J. These observations were supported by statistical analysis using all available mutation frequencies reported in the literature. This paper thus illustrates the potential importance of genetic background in certain mtDNA-based diseases, speculates on a pathogenic role for a subset of LHON secondary mutations and their interaction with primary mutations, and provides support for a polygenic model for LHON expression in some cases. 18 refs., 3 tabs.« less

  9. Land, language, and loci: mtDNA in Native Americans and the genetic history of Peru.

    PubMed

    Lewis, Cecil M; Tito, Raúl Y; Lizárraga, Beatriz; Stone, Anne C

    2005-07-01

    Despite a long history of complex societies and despite extensive present-day linguistic and ethnic diversity, relatively few populations in Peru have been sampled for population genetic investigations. In order to address questions about the relationships between South American populations and about the extent of correlation between genetic distance, language, and geography in the region, mitochondrial DNA (mtDNA) hypervariable region I sequences and mtDNA haplogroup markers were examined in 33 individuals from the state of Ancash, Peru. These sequences were compared to those from 19 American Indian populations using diversity estimates, AMOVA tests, mismatch distributions, a multidimensional scaling plot, and regressions. The results show correlations between genetics, linguistics, and geographical affinities, with stronger correlations between genetics and language. Additionally, the results suggest a pattern of differential gene flow and drift in western vs. eastern South America, supporting previous mtDNA and Y chromosome investigations. (c) 2004 Wiley-Liss, Inc

  10. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions.

    PubMed

    Taivassalo, Tanja; Gardner, Julie L; Taylor, Robert W; Schaefer, Andrew M; Newman, Jane; Barron, Martin J; Haller, Ronald G; Turnbull, Douglass M

    2006-12-01

    At present there are limited therapeutic interventions for patients with mitochondrial myopathies. Exercise training has been suggested as an approach to improve physical capacity and quality of life but it is uncertain whether it offers a safe and effective treatment for patients with heteroplasmic mitochondrial DNA (mtDNA) mutations. The objectives of this study were to assess the effects of exercise training and detraining in eight patients with single, large-scale mtDNA deletions to determine: (i) the efficacy and safety of endurance training (14 weeks) in this patient population; (ii) to determine the effect of more prolonged (total of 28 weeks) exercise training upon muscle and cardiovascular function and (iii) to evaluate the effect of discontinued training (14 weeks) upon muscle and cardiovascular function. Our results show that: (i) 14 weeks of exercise training significantly improved tolerance of submaximal exercise and peak capacity for work, oxygen utilization and skeletal muscle oxygen extraction with no change in the level of deleted mtDNA; (ii) continued training for an additional 14 weeks maintained these beneficial adaptations; (iii) the cessation of training (detraining) resulted in loss of physiological adaptation to baseline capacity with no overall change in mutation load. Patients' self assessment of quality of life as measured by the SF-36 questionnaire improved with training and declined with detraining. Whilst our findings of beneficial effects of training on physiological outcome and quality of life without increases in the percentage of deleted mtDNA are encouraging, we did not observe changes in mtDNA copy number. Therefore there remains a need for longer term studies to confirm that endurance exercise is a safe and effective treatment for patients with mitochondrial myopathies. The effects of detraining clearly implicate physical inactivity as an important mechanism in reducing exercise capacity and quality of life in patients with

  11. Deep sequencing shows that oocytes are not prone to accumulate mtDNA heteroplasmic mutations during ovarian ageing.

    PubMed

    Boucret, L; Bris, C; Seegers, V; Goudenège, D; Desquiret-Dumas, V; Domin-Bernhard, M; Ferré-L'Hotellier, V; Bouet, P E; Descamps, P; Reynier, P; Procaccio, V; May-Panloup, P

    2017-10-01

    Does ovarian ageing increase the number of heteroplasmic mitochondrial DNA (mtDNA) point mutations in oocytes? Our results suggest that oocytes are not subject to the accumulation of mtDNA point mutations during ovarian ageing. Ageing is associated with the alteration of mtDNA integrity in various tissues. Primary oocytes, present in the ovary since embryonic life, may accumulate mtDNA mutations during the process of ovarian ageing. This was an observational study of 53 immature oocyte-cumulus complexes retrieved from 35 women undergoing IVF at the University Hospital of Angers, France, from March 2013 to March 2014. The women were classified in two groups, one including 19 women showing signs of ovarian ageing objectified by a diminished ovarian reserve (DOR), and the other, including 16 women with a normal ovarian reserve (NOR), which served as a control group. mtDNA was extracted from isolated oocytes, and from their corresponding cumulus cells (CCs) considered as a somatic cell compartment. The average mtDNA content of each sample was assessed by using a quantitative real-time PCR technique. Deep sequencing was performed using the Ion Torrent Proton for Next-Generation Sequencing. Signal processing and base calling were done by the embedded pre-processing pipeline and the variants were analyzed using an in-house workflow. The distribution of the different variants between DOR and NOR patients, on one hand, and oocyte and CCs, on the other, was analyzed with the generalized mixed linear model to take into account the cluster of cells belonging to a given mother. There were no significant differences between the numbers of mtDNA variants between the DOR and the NOR patients, either in the oocytes (P = 0.867) or in the surrounding CCs (P = 0.154). There were also no differences in terms of variants with potential functional consequences. De-novo mtDNA variants were found in 28% of the oocytes and in 66% of the CCs with the mean number of variants being

  12. Extant-only comparative methods fail to recover the disparity preserved in the bird fossil record.

    PubMed

    Mitchell, Jonathan S

    2015-09-01

    Most extant species are in clades with poor fossil records, and recent studies of comparative methods show they have low power to infer even highly simplified models of trait evolution without fossil data. Birds are a well-studied radiation, yet their early evolutionary patterns are still contentious. The fossil record suggests that birds underwent a rapid ecological radiation after the end-Cretaceous mass extinction, and several smaller, subsequent radiations. This hypothesized series of repeated radiations from fossil data is difficult to test using extant data alone. By uniting morphological and phylogenetic data on 604 extant genera of birds with morphological data on 58 species of extinct birds from 50 million years ago, the "halfway point" of avian evolution, I have been able to test how well extant-only methods predict the diversity of fossil forms. All extant-only methods underestimate the disparity, although the ratio of within- to between-clade disparity does suggest high early rates. The failure of standard models to predict high early disparity suggests that recent radiations are obscuring deep time patterns in the evolution of birds. Metrics from different models can be used in conjunction to provide more valuable insights than simply finding the model with the highest relative fit. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  13. Characterization of mtDNA variation in a cohort of South African paediatric patients with mitochondrial disease.

    PubMed

    van der Walt, Elizna M; Smuts, Izelle; Taylor, Robert W; Elson, Joanna L; Turnbull, Douglass M; Louw, Roan; van der Westhuizen, Francois H

    2012-06-01

    Mitochondrial disease can be attributed to both mitochondrial and nuclear gene mutations. It has a heterogeneous clinical and biochemical profile, which is compounded by the diversity of the genetic background. Disease-based epidemiological information has expanded significantly in recent decades, but little information is known that clarifies the aetiology in African patients. The aim of this study was to investigate mitochondrial DNA variation and pathogenic mutations in the muscle of diagnosed paediatric patients from South Africa. A cohort of 71 South African paediatric patients was included and a high-throughput nucleotide sequencing approach was used to sequence full-length muscle mtDNA. The average coverage of the mtDNA genome was 81±26 per position. After assigning haplogroups, it was determined that although the nature of non-haplogroup-defining variants was similar in African and non-African haplogroup patients, the number of substitutions were significantly higher in African patients. We describe previously reported disease-associated and novel variants in this cohort. We observed a general lack of commonly reported syndrome-associated mutations, which supports clinical observations and confirms general observations in African patients when using single mutation screening strategies based on (predominantly non-African) mtDNA disease-based information. It is finally concluded that this first extensive report on muscle mtDNA sequences in African paediatric patients highlights the need for a full-length mtDNA sequencing strategy, which applies to all populations where specific mutations is not present. This, in addition to nuclear DNA gene mutation and pathogenicity evaluations, will be required to better unravel the aetiology of these disorders in African patients.

  14. Transmission of human mtDNA heteroplasmy in the Genome of the Netherlands families: support for a variable-size bottleneck

    PubMed Central

    Li, Mingkun; Rothwell, Rebecca; Vermaat, Martijn; Wachsmuth, Manja; Schröder, Roland; Laros, Jeroen F.J.; van Oven, Mannis; de Bakker, Paul I.W.; Bovenberg, Jasper A.; van Duijn, Cornelia M.; van Ommen, Gert-Jan B.; Slagboom, P. Eline; Swertz, Morris A.; Wijmenga, Cisca; Kayser, Manfred; Boomsma, Dorret I.; Zöllner, Sebastian; de Knijff, Peter; Stoneking, Mark

    2016-01-01

    Although previous studies have documented a bottleneck in the transmission of mtDNA genomes from mothers to offspring, several aspects remain unclear, including the size and nature of the bottleneck. Here, we analyze the dynamics of mtDNA heteroplasmy transmission in the Genomes of the Netherlands (GoNL) data, which consists of complete mtDNA genome sequences from 228 trios, eight dizygotic (DZ) twin quartets, and 10 monozygotic (MZ) twin quartets. Using a minor allele frequency (MAF) threshold of 2%, we identified 189 heteroplasmies in the trio mothers, of which 59% were transmitted to offspring, and 159 heteroplasmies in the trio offspring, of which 70% were inherited from the mothers. MZ twin pairs exhibited greater similarity in MAF at heteroplasmic sites than DZ twin pairs, suggesting that the heteroplasmy MAF in the oocyte is the major determinant of the heteroplasmy MAF in the offspring. We used a likelihood method to estimate the effective number of mtDNA genomes transmitted to offspring under different bottleneck models; a variable bottleneck size model provided the best fit to the data, with an estimated mean of nine individual mtDNA genomes transmitted. We also found evidence for negative selection during transmission against novel heteroplasmies (in which the minor allele has never been observed in polymorphism data). These novel heteroplasmies are enhanced for tRNA and rRNA genes, and mutations associated with mtDNA diseases frequently occur in these genes. Our results thus suggest that the female germ line is able to recognize and select against deleterious heteroplasmies. PMID:26916109

  15. DNA from extinct giant lemurs links archaeolemurids to extant indriids

    PubMed Central

    2008-01-01

    Background Although today 15% of living primates are endemic to Madagascar, their diversity was even greater in the recent past since dozens of extinct species have been recovered from Holocene excavation sites. Among them were the so-called "giant lemurs" some of which weighed up to 160 kg. Although extensively studied, the phylogenetic relationships between extinct and extant lemurs are still difficult to decipher, mainly due to morphological specializations that reflect ecology more than phylogeny, resulting in rampant homoplasy. Results Ancient DNA recovered from subfossils recently supported a sister relationship between giant "sloth" lemurs and extant indriids and helped to revise the phylogenetic position of Megaladapis edwardsi among lemuriformes, but several taxa – such as the Archaeolemuridae – still await analysis. We therefore used ancient DNA technology to address the phylogenetic status of the two archaeolemurid genera (Archaeolemur and Hadropithecus). Despite poor DNA preservation conditions in subtropical environments, we managed to recover 94- to 539-bp sequences for two mitochondrial genes among 5 subfossil samples. Conclusion This new sequence information provides evidence for the proximity of Archaeolemur and Hadropithecus to extant indriids, in agreement with earlier assessments of their taxonomic status (Primates, Indrioidea) and in contrast to recent suggestions of a closer relationship to the Lemuridae made on the basis of analyses of dental developmental and postcranial characters. These data provide new insights into the evolution of the locomotor apparatus among lemurids and indriids. PMID:18442367

  16. mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory.

    PubMed

    Atkinson, Quentin D; Gray, Russell D; Drummond, Alexei J

    2008-02-01

    The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past.

  17. Ancient fossil specimens of extinct species are genetically more distant to an outgroup than extant sister species are

    PubMed Central

    Huang, Shi

    2009-01-01

    There exists a remarkable correlation between genetic distance as measured by protein or DNA dissimilarity and time of species divergence as inferred from fossil records. This observation has provoked the molecular clock hypothesis. However, data inconsistent with the hypothesis have steadily accumulated in recent years from studies of extant organisms. Here the published DNA and protein sequences from ancient fossil specimens were examined to see if they would support the molecular clock hypothesis. The hypothesis predicts that ancient specimens cannot be genetically more distant to an outgroup than extant sister species are. Also, two distinct ancient specimens cannot be genetically more distant than their extant sister species are. The findings here do not conform to these predictions. Neanderthals are more distant to chimpanzees and gorillas than modern humans are. Dinosaurs are more distant to frogs than extant birds are. Mastodons are more distant to opossums than other placental mammals are. The genetic distance between dinosaurs and mastodons is greater than that between extant birds and mammals. Therefore, while the molecular clock hypothesis is consistent with some data from extant organisms, it has yet to find support from ancient fossils. Far more damaging to the hypothesis than data from extant organisms, which merely question the constancy of mutation rate, the study of ancient fossil organisms here challenges for the first time the fundamental premise of modern evolution theory that genetic distances had always increased with time in the past history of life on Earth. PMID:18600632

  18. 6. Photograph of extant ink on linen drawings (original drawings ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photograph of extant ink on linen drawings (original drawings held in the vault of the Office of the State Architect in Sacramento) SECOND FLOOR FRAMING PLAN, AUGUST 1922 - California State Printing Office, 1020 O Street, Sacramento, Sacramento County, CA

  19. 5. Photograph of extant ink on linen drawings (original drawings ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of extant ink on linen drawings (original drawings held in the vault of the Office of the State Architect in Sacramento) FIRST FLOOR FRAMING PLAN, AUGUST 1922 - California State Printing Office, 1020 O Street, Sacramento, Sacramento County, CA

  20. 7. Photograph of extant ink on linen drawings (original drawings ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photograph of extant ink on linen drawings (original drawings held in the vault of the Office of the State Architect in Sacramento) DETAILS OF FLAT SLAB CONSTRUCTION, AUGUST 1922 - California State Printing Office, 1020 O Street, Sacramento, Sacramento County, CA

  1. TWO OF THE FORTYSIX EXTANT BEEHIVE COKE OVENS CONSTRUCTED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TWO OF THE FORTY-SIX EXTANT BEEHIVE COKE OVENS CONSTRUCTED BY JOHN NUTTALL DURING THE EARLY 1870S, LOOKING NORTHWEST - Nuttallburg Mine Complex, Coke Ovens, North side of New River, 2.7 miles upstream from Fayette Landing, Lookout, Fayette County, WV

  2. Segregation and manifestations of the mtDNA tRNA[sup Lys] A[r arrow]G[sup (8344)] mutation of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, N.G.; Tulinius, M.H.; Holme, E.

    1992-12-01

    The authors have studied the segregation and manifestations of the tRNA[sup Lys] A[r arrow]G[sup (8344)] mutation of mtDNA. Three unrelated patients with myoclonus epilepsy and ragged-red fibers (MERRF) syndrome were investigated, along with 30 of their maternal relatives. Mutated mtDNA was not always found in the offspring of women carrying the tRNA[sup Lys] mutation. Four women had 10%-33% of mutated mtDNA in lymphocytes, and no mutated mtDNA was found in 7 of their 14 investigated children. The presence of mutated mtDNA was excluded at a level of 3:1,000. Five women had a proportion of 43%-73% mutated mtDNA in lymphocytes, andmore » mutated mtDNA was found in all their 12 investigated children. This suggests that the risk for transmission of mutated mtDNA to the offspring increases if high levels are present in the mother and that, above a threshold level of 35%-40%, it is very likely that transmission will occur to all children. The three patients with MERRF syndrone had, in muscle, both 94%-96% mutated mtDNA and biochemical and histochemical evidence of a respiratory-chain dysfunction. Four relatives had a proportion of 61%-92% mutated mtDNA in muscle, and biochemical measurements showed a normal respiratory-chain function in muscle in all cases. These findings suggest that >92% of mtDNA with the tRNA[sup Lys] mutation in muscle is required to cause a respiratory-chain dysfunction that can be detected by biochemical methods. There was a positive correlation between the levels of mtDNA with the tRNA[sup Lys] mutation in lymphocytes and the levels in muscle, in all nine investigated cases. The levels of mutated mtDNA were higher in muscle than in lymphocytes in all cases. 30 refs., 3 figs., 5 tabs.« less

  3. Population genetic structure of Santa Ynez rainbow trout – 2001 based on microsatellite and mtDNA analyses

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Zimmerman, Christian E.; Olsen, Jeffrey B.; Wiacek, Talia; Kretschmer, E.J.; Greenwald, Glenn M.; Wenburg, John K.

    2003-01-01

    Microsatellite allelic and mitochondrial DNA (mtDNA) haplotype diversity are analyzed in eight rainbow trout (Oncorhynchus mykiss) collections: two from tributaries flowing into the upper Santa Ynez River watershed at Gibraltar Reservoir (Camuesa and Gidney creeks); three from tributaries between Gibraltar and Jameson reservoirs (Fox, Blue Canyon, and Alder creeks); one from a tributary above Jameson Reservoir (Juncal Creek); Jameson Reservoir; and one from the mainstem Santa Ynez River above the Jameson Reservoir. Both analyses reveal a high degree of population structure. Thirteen microsatellite loci are amplified from 376 fish. Population pairwise comparisons show significant differences in allelic frequency among all populations with the exception of Juncal Creek and Jameson Reservoir (p = 0.4). Pairwise Fst values range from 0.001 (Juncal Creek and Jameson Reservoir) to 0.17 (Camuesa and Juncal creeks) with an overall value of 0.021. Regression analyses (Slatkin 1993) supports an isolation-bydistance model in the five populations below Jameson Reservoir (intercept = 1.187, slope = -0.41, r2 = 0.67). A neighbor-joining bootstrap value of 100% (based on 2000 replicate trees) separates the populations sampled above and below Juncal Dam. Composite haplotypes from 321 fish generated using mtDNA sequence data (Dloop) reveal four previously described haplotypes (MYS1, MYS3, MYS5 and MYS8; Nielsen et al. 1994a), and one (MYS5) was found in all populations. Mean haplotype diversity is 0.48. Pairwise Fst values from mtDNA range from -0.019 to 0.530 (0.177 over all populations) and are larger than those for microsatellites in 26 of 28 pairwise comparisons. In addition, the mtDNA and microsatellites provide contrasting evidence of the relationship of Fox and Alder creeks to the other six populations. Discrepancies between the two markers are likely due to the unique properties of the two marker types and their value in revealing historic (mtDNA) versus contemporary

  4. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    PubMed

    Easton, R D; Merriwether, D A; Crews, D E; Ferrell, R E

    1996-07-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types.

  5. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    PubMed Central

    Easton, R. D.; Merriwether, D. A.; Crews, D. E.; Ferrell, R. E.

    1996-01-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types. PMID:8659527

  6. Polynesian genetic affinities with Southeast Asian populations as identified by mtDNA analysis.

    PubMed Central

    Melton, T; Peterson, R; Redd, A J; Saha, N; Sofro, A S; Martinson, J; Stoneking, M

    1995-01-01

    Polynesian genetic affinities to populations of Asia were studied using mtDNA markers. A total of 1,037 individuals from 12 populations were screened for a 9-bp deletion in the intergenic region between the COII and tRNA(Lys) genes that approaches fixation in Polynesians. Sequence-specific oligonucleotide probes that identify specific mtDNA control region nucleotide substitutions were used to describe variation in individuals with the 9-bp deletion. The 9-bp deletion was not observed in northern Indians, Bangladeshis, or Pakistanis but was seen at low to moderate frequencies in the nine other Southeast Asian populations. Three substitutions in the control region at positions 16217, 16247, and 16261 have previously been observed at high frequency in Polynesian mtDNAs; this "Polynesian motif" was observed in 20% of east Indonesians with the 9-bp deletion but was observed in only one additional individual. mtDNA types related to the Polynesian motif are highest in frequency in the corridor from Taiwan south through the Philippines and east Indonesia, and the highest diversity for these types is in Taiwan. These results are consistent with linguistic evidence of a Taiwanese origin for the proto-Polynesian expansion, which spread throughout Oceania by way of Indonesia. PMID:7668267

  7. Protective effect of KI in mtDNA in porcine thyroid: comparison with KIO₃ and nDNA.

    PubMed

    Karbownik-Lewinska, Malgorzata; Stepniak, Jan; Milczarek, Magdalena; Lewinski, Andrzej

    2015-03-01

    Iodine, bivalent iron (Fe²⁺), and hydrogen peroxide (H₂O₂), all significantly affecting the red-ox balance, are required for thyroid hormone synthesis. Intracellular iodine excess (≥10⁻³ M) transiently blocks thyroid hormonogenesis (an adaptive mechanism called Wolff-Chaikoff effect). The aim of the study was to evaluate the effects of iodine, used as potassium iodide (KI) or potassium iodate (KIO₃), in concentrations corresponding to those typical for Wolff-Chaikoff effect, on the level of oxidative damage to nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) isolated from porcine thyroid under basal conditions and in the presence of Fenton reaction (Fe²⁺+H₂O₂ → Fe³⁺+(·)OH + OH⁻) substrates. Thyroid nDNA and mtDNA were incubated in the presence of either KI or KIO₃ (2.5-50 mM), without/with FeSO₄ (30 µM) + H₂O₂ (0.5 mM). Index of DNA damage, i.e., 8-oxo-7,8-dihydro-2'-deoxyguanosine, was measured by HPLC. Neither KI nor KIO₃ increased the basal level of 8-oxodG in both nDNA and mtDNA. KI-in all used concentrations-completely prevented the damaging effect of Fenton reaction substrates in mtDNA, and it partially prevented this damage in nDNA. KIO₃ partially prevented Fe²⁺+H₂O₂-induced oxidative damage in both DNA only in its highest used concentrations (≥25 mM). Without additional prooxidative abuse, both iodine compounds, i.e., KI and KIO₃, seem to be safe in terms of their potential oxidative damage to DNA in the thyroid. The superiority of KI over KIO₃ relies on its stronger protective effects against oxidative damage to mtDNA, which constitutes an argument for its preferential utility in iodine prophylaxis.

  8. VIEW OF FACILITY NO. S 20 SHOWING THE EXTANT NARROWGAUGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FACILITY NO. S 20 SHOWING THE EXTANT NARROW-GAUGE TRACKS AND ASPHALT-FILLED TRACKWAY. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Floating Dry Dock Quay, Hurt Avenue at northwest side of Magazine Loch, Pearl City, Honolulu County, HI

  9. Differential involvement of the related DNA helicases Pif1p and Rrm3p in mtDNA point mutagenesis and stability.

    PubMed

    O'Rourke, Thomas W; Doudican, Nicole A; Zhang, Hong; Eaton, Jana S; Doetsch, Paul W; Shadel, Gerald S

    2005-07-18

    With the exception of base excision repair, conserved pathways and mechanisms that maintain mitochondrial genome stability have remained largely undelineated. In the budding yeast, Saccharomyces cerevisiae, Pif1p is a unique DNA helicase that is localized both to the nucleus and mitochondria, where it is involved in maintaining DNA integrity. We previously elucidated a role for Pif1p in oxidative mtDNA damage resistance that appears to be distinct from its postulated function in mtDNA recombination. Strains lacking Pif1p (pif1Delta) exhibit an increased rate of formation of petite mutants (an indicator of mtDNA instability) and elevated mtDNA point mutagenesis. Here we show that deletion of the RRM3 gene, which encodes a DNA helicase closely related to Pif1p, significantly rescues the petite-induction phenotype of a pif1Delta strain. However, suppression of this phenotype was not accompanied by a corresponding decrease in mtDNA point mutagenesis. Instead, deletion of RRM3 alone resulted in an increase in mtDNA point mutagenesis that was synergistic with that caused by a pif1Delta mutation. In addition, we found that over-expression of RNR1, encoding a large subunit of ribonucleotide reductase (RNR), rescued the petite-induction phenotype of a pif1Delta mutation to a similar extent as deletion of RRM3. This, coupled to our finding that the Rad53p protein kinase is phosphorylated in the rrm3Delta pif1Delta double-mutant strain, leads us to conclude that one mechanism whereby deletion of RRM3 influences mtDNA stability is by modulating mitochondrial deoxynucleoside triphosphate pools. We propose that this is accomplished by signaling through the conserved Mec1/Rad53, S-phase checkpoint pathway to induce the expression and activity of RNR. Altogether, our results define a novel role for Rrm3p in mitochondrial function and indicate that Pif1p and Rrm3p influence a common process (or processes) involved in mtDNA replication, repair, or stability.

  10. MtDNA diversity among four Portuguese autochthonous dog breeds: a fine-scale characterisation

    PubMed Central

    van Asch, Barbara; Pereira, Luísa; Pereira, Filipe; Santa-Rita, Pedro; Lima, Manuela; Amorim, António

    2005-01-01

    Background The picture of dog mtDNA diversity, as obtained from geographically wide samplings but from a small number of individuals per region or breed, has revealed weak geographic correlation and high degree of haplotype sharing between very distant breeds. We aimed at a more detailed picture through extensive sampling (n = 143) of four Portuguese autochthonous breeds – Castro Laboreiro Dog, Serra da Estrela Mountain Dog, Portuguese Sheepdog and Azores Cattle Dog-and comparatively reanalysing published worldwide data. Results Fifteen haplotypes belonging to four major haplogroups were found in these breeds, of which five are newly reported. The Castro Laboreiro Dog presented a 95% frequency of a new A haplotype, while all other breeds contained a diverse pool of existing lineages. The Serra da Estrela Mountain Dog, the most heterogeneous of the four Portuguese breeds, shared haplotypes with the other mainland breeds, while Azores Cattle Dog shared no haplotypes with the other Portuguese breeds. A review of mtDNA haplotypes in dogs across the world revealed that: (a) breeds tend to display haplotypes belonging to different haplogroups; (b) haplogroup A is present in all breeds, and even uncommon haplogroups are highly dispersed among breeds and continental areas; (c) haplotype sharing between breeds of the same region is lower than between breeds of different regions and (d) genetic distances between breeds do not correlate with geography. Conclusion MtDNA haplotype sharing occurred between Serra da Estrela Mountain dogs (with putative origin in the centre of Portugal) and two breeds in the north and south of the country-with the Castro Laboreiro Dog (which behaves, at the mtDNA level, as a sub-sample of the Serra da Estrela Mountain Dog) and the southern Portuguese Sheepdog. In contrast, the Azores Cattle Dog did not share any haplotypes with the other Portuguese breeds, but with dogs sampled in Northern Europe. This suggested that the Azores Cattle Dog

  11. Trading genes along the silk road: mtDNA sequences and the origin of central Asian populations.

    PubMed Central

    Comas, D; Calafell, F; Mateu, E; Pérez-Lezaun, A; Bosch, E; Martínez-Arias, R; Clarimon, J; Facchini, F; Fiori, G; Luiselli, D; Pettener, D; Bertranpetit, J

    1998-01-01

    Central Asia is a vast region at the crossroads of different habitats, cultures, and trade routes. Little is known about the genetics and the history of the population of this region. We present the analysis of mtDNA control-region sequences in samples of the Kazakh, the Uighurs, the lowland Kirghiz, and the highland Kirghiz, which we have used to address both the population history of the region and the possible selective pressures that high altitude has on mtDNA genes. Central Asian mtDNA sequences present features intermediate between European and eastern Asian sequences, in several parameters-such as the frequencies of certain nucleotides, the levels of nucleotide diversity, mean pairwise differences, and genetic distances. Several hypotheses could explain the intermediate position of central Asia between Europe and eastern Asia, but the most plausible would involve extensive levels of admixture between Europeans and eastern Asians in central Asia, possibly enhanced during the Silk Road trade and clearly after the eastern and western Eurasian human groups had diverged. Lowland and highland Kirghiz mtDNA sequences are very similar, and the analysis of molecular variance has revealed that the fraction of mitochondrial genetic variance due to altitude is not significantly different from zero. Thus, it seems unlikely that altitude has exerted a major selective pressure on mitochondrial genes in central Asian populations. PMID:9837835

  12. Segregation of mtDNA Throughout Human Embryofetal Development: m.3243A > G as a Model System

    PubMed Central

    Monnot, Sophie; Gigarel, Nadine; Samuels, David C; Burlet, Philippe; Hesters, Laetitia; Frydman, Nelly; Frydman, René; Kerbrat, Violaine; Funalot, Benoit; Martinovic, Jelena; Benachi, Alexandra; Feingold, Josué; Munnich, Arnold; Bonnefont, Jean-Paul; Steffann, Julie

    2011-01-01

    Mitochondrial DNA (mtDNA) mutations cause a wide range of serious diseases with high transmission risk and maternal inheritance. Tissue heterogeneity of the heteroplasmy rate (“mutant load”) accounts for the wide phenotypic spectrum observed in carriers. Owing to the absence of therapy, couples at risk to transmit such disorders commonly ask for prenatal (PND) or preimplantation diagnosis (PGD). The lack of data regarding heteroplasmy distribution throughout intrauterine development, however, hampers the implementation of such procedures. We tracked the segregation of the m.3243A > G mutation (MT-TL1 gene) responsible for the MELAS syndrome in the developing embryo/fetus, using tissues and cells from eight carrier females, their 38 embryos and 12 fetuses. Mutant mtDNA segregation was found to be governed by random genetic drift, during oogenesis and somatic tissue development. The size of the bottleneck operating for m.3243A > G during oogenesis was shown to be individual-dependent. Comparison with data we achieved for the m.8993T > G mutation (MT-ATP6 gene), responsible for the NARP/Leigh syndrome, indicates that these mutations differentially influence mtDNA segregation during oogenesis, while their impact is similar in developing somatic tissues. These data have major consequences for PND and PGD procedures in mtDNA inherited disorders. Hum Mutat 32:116–125, 2011. © 2010 Wiley-Liss, Inc. PMID:21120938

  13. The Mitochondrial DNA-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination.

    PubMed

    Blomme, Jonas; Van Aken, Olivier; Van Leene, Jelle; Jégu, Teddy; De Rycke, Riet; De Bruyne, Michiel; Vercruysse, Jasmien; Nolf, Jonah; Van Daele, Twiggy; De Milde, Liesbeth; Vermeersch, Mattias; des Francs-Small, Catherine Colas; De Jaeger, Geert; Benhamed, Moussa; Millar, A Harvey; Inzé, Dirk; Gonzalez, Nathalie

    2017-05-01

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development. © 2017 American Society of Plant Biologists. All rights reserved.

  14. The Mitochondrial DNA-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination[OPEN

    PubMed Central

    Vercruysse, Jasmien; Van Daele, Twiggy; De Milde, Liesbeth; Benhamed, Moussa; Inzé, Dirk

    2017-01-01

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development. PMID:28420746

  15. Y-Chromosome and mtDNA Genetics Reveal Significant Contrasts in Affinities of Modern Middle Eastern Populations with European and African Populations

    PubMed Central

    Badro, Danielle A.; Youhanna, Sonia C.; Salloum, Angélique; Ghassibe-Sabbagh, Michella; Johnsrud, Brian; Khazen, Georges; Matisoo-Smith, Elizabeth; Soria-Hernanz, David F.; Wells, R. Spencer; Tyler-Smith, Chris; Platt, Daniel E.; Zalloua, Pierre A.

    2013-01-01

    The Middle East was a funnel of human expansion out of Africa, a staging area for the Neolithic Agricultural Revolution, and the home to some of the earliest world empires. Post LGM expansions into the region and subsequent population movements created a striking genetic mosaic with distinct sex-based genetic differentiation. While prior studies have examined the mtDNA and Y-chromosome contrast in focal populations in the Middle East, none have undertaken a broad-spectrum survey including North and sub-Saharan Africa, Europe, and Middle Eastern populations. In this study 5,174 mtDNA and 4,658 Y-chromosome samples were investigated using PCA, MDS, mean-linkage clustering, AMOVA, and Fisher exact tests of FST's, RST's, and haplogroup frequencies. Geographic differentiation in affinities of Middle Eastern populations with Africa and Europe showed distinct contrasts between mtDNA and Y-chromosome data. Specifically, Lebanon's mtDNA shows a very strong association to Europe, while Yemen shows very strong affinity with Egypt and North and East Africa. Previous Y-chromosome results showed a Levantine coastal-inland contrast marked by J1 and J2, and a very strong North African component was evident throughout the Middle East. Neither of these patterns were observed in the mtDNA. While J2 has penetrated into Europe, the pattern of Y-chromosome diversity in Lebanon does not show the widespread affinities with Europe indicated by the mtDNA data. Lastly, while each population shows evidence of connections with expansions that now define the Middle East, Africa, and Europe, many of the populations in the Middle East show distinctive mtDNA and Y-haplogroup characteristics that indicate long standing settlement with relatively little impact from and movement into other populations. PMID:23382925

  16. Y-chromosome and mtDNA genetics reveal significant contrasts in affinities of modern Middle Eastern populations with European and African populations.

    PubMed

    Badro, Danielle A; Douaihy, Bouchra; Haber, Marc; Youhanna, Sonia C; Salloum, Angélique; Ghassibe-Sabbagh, Michella; Johnsrud, Brian; Khazen, Georges; Matisoo-Smith, Elizabeth; Soria-Hernanz, David F; Wells, R Spencer; Tyler-Smith, Chris; Platt, Daniel E; Zalloua, Pierre A

    2013-01-01

    The Middle East was a funnel of human expansion out of Africa, a staging area for the Neolithic Agricultural Revolution, and the home to some of the earliest world empires. Post LGM expansions into the region and subsequent population movements created a striking genetic mosaic with distinct sex-based genetic differentiation. While prior studies have examined the mtDNA and Y-chromosome contrast in focal populations in the Middle East, none have undertaken a broad-spectrum survey including North and sub-Saharan Africa, Europe, and Middle Eastern populations. In this study 5,174 mtDNA and 4,658 Y-chromosome samples were investigated using PCA, MDS, mean-linkage clustering, AMOVA, and Fisher exact tests of F(ST)'s, R(ST)'s, and haplogroup frequencies. Geographic differentiation in affinities of Middle Eastern populations with Africa and Europe showed distinct contrasts between mtDNA and Y-chromosome data. Specifically, Lebanon's mtDNA shows a very strong association to Europe, while Yemen shows very strong affinity with Egypt and North and East Africa. Previous Y-chromosome results showed a Levantine coastal-inland contrast marked by J1 and J2, and a very strong North African component was evident throughout the Middle East. Neither of these patterns were observed in the mtDNA. While J2 has penetrated into Europe, the pattern of Y-chromosome diversity in Lebanon does not show the widespread affinities with Europe indicated by the mtDNA data. Lastly, while each population shows evidence of connections with expansions that now define the Middle East, Africa, and Europe, many of the populations in the Middle East show distinctive mtDNA and Y-haplogroup characteristics that indicate long standing settlement with relatively little impact from and movement into other populations.

  17. The mtDNA haplogroup P of modern Asian cattle: A genetic legacy of Asian aurochs?

    PubMed

    Noda, Aoi; Yonesaka, Riku; Sasazaki, Shinji; Mannen, Hideyuki

    2018-01-01

    Aurochs (Bos primigenius) were distributed throughout large parts of Eurasia and Northern Africa during the late Pleistocene and the early Holocene, and all modern cattle are derived from the aurochs. Although the mtDNA haplogroups of most modern cattle belong to haplogroups T and I, several additional haplogroups (P, Q, R, C and E) have been identified in modern cattle and aurochs. Haplogroup P was the most common haplogroup in European aurochs, but so far, it has been identified in only three of >3,000 submitted haplotypes of modern Asian cattle. We sequenced the complete mtDNA D-loop region of 181 Japanese Shorthorn cattle and analyzed these together with representative bovine mtDNA sequences. The haplotype P of Japanese Shorthorn cattle was analyzed along with that of 36 previously published European aurochs and three modern Asian cattle sequences using the hypervariable 410 bp of the D-loop region. We detected the mtDNA haplogroup P in Japanese Shorthorn cattle with an extremely high frequency (83/181). Phylogenetic networks revealed two main clusters, designated as Pa for haplogroup P in European aurochs and Pc in modern Asian cattle. We also report the genetic diversity of haplogroup P compared with the sequences of extinct aurochs. No shared haplotypes are observed between the European aurochs and the modern Asian cattle. This finding suggests the possibility of local and secondary introgression events of haplogroup P in northeast Asian cattle, and will contribute to a better understanding of its origin and genetic diversity.

  18. Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation.

    PubMed

    Willett-Brozick, J E; Savul, S A; Richey, L E; Baysal, B E

    2001-08-01

    Constitutional chromosomal translocations are relatively common causes of human morbidity, yet the DNA double-strand break (DSB) repair mechanisms that generate them are incompletely understood. We cloned, sequenced and analyzed the breakpoint junctions of a familial constitutional reciprocal translocation t(9;11)(p24;q23). Within the 10-kb region flanking the breakpoints, chromosome 11 had 25% repeat elements, whereas chromosome 9 had 98% repeats, 95% of which were L1-type LINE elements. The breakpoints occurred within an L1-type repeat element at 9p24 and at the 3'-end of an Alu sequence at 11q23. At the breakpoint junction of derivative chromosome 9, we discovered an unusually large 41-bp insertion, which showed 100% identity to 12S mitochondrial DNA (mtDNA) between nucleotides 896 and 936 of the mtDNA sequence. Analysis of the human genome failed to show the preexistence of the inserted sequence at normal chromosomes 9 and 11 breakpoint junctions or elsewhere in the genome, strongly suggesting that the insertion was derived from human mtDNA and captured into the junction during the DSB repair process. To our knowledge, these findings represent the first observation of spontaneous germ line insertion of modern human mtDNA sequences and suggest that DSB repair may play a role in inter-organellar gene transfer in vivo. Our findings also provide evidence for a previously unrecognized insertional mechanism in human, by which non-mobile extra-chromosomal fragments can be inserted into the genome at DSB repair junctions.

  19. The mtDNA haplogroup P of modern Asian cattle: A genetic legacy of Asian aurochs?

    PubMed Central

    Noda, Aoi; Yonesaka, Riku; Sasazaki, Shinji

    2018-01-01

    Background Aurochs (Bos primigenius) were distributed throughout large parts of Eurasia and Northern Africa during the late Pleistocene and the early Holocene, and all modern cattle are derived from the aurochs. Although the mtDNA haplogroups of most modern cattle belong to haplogroups T and I, several additional haplogroups (P, Q, R, C and E) have been identified in modern cattle and aurochs. Haplogroup P was the most common haplogroup in European aurochs, but so far, it has been identified in only three of >3,000 submitted haplotypes of modern Asian cattle. Methodology We sequenced the complete mtDNA D-loop region of 181 Japanese Shorthorn cattle and analyzed these together with representative bovine mtDNA sequences. The haplotype P of Japanese Shorthorn cattle was analyzed along with that of 36 previously published European aurochs and three modern Asian cattle sequences using the hypervariable 410 bp of the D-loop region. Conclusions We detected the mtDNA haplogroup P in Japanese Shorthorn cattle with an extremely high frequency (83/181). Phylogenetic networks revealed two main clusters, designated as Pa for haplogroup P in European aurochs and Pc in modern Asian cattle. We also report the genetic diversity of haplogroup P compared with the sequences of extinct aurochs. No shared haplotypes are observed between the European aurochs and the modern Asian cattle. This finding suggests the possibility of local and secondary introgression events of haplogroup P in northeast Asian cattle, and will contribute to a better understanding of its origin and genetic diversity. PMID:29304129

  20. Searching for Extant Life on Mars - The ATP-Firefly LuciferinLuciferase Technique

    NASA Astrophysics Data System (ADS)

    Obousy, R. K.; Tziolas, A. C.; Kaltsas, K.; Sims, M. R.; Grant, W. D.

    We have investigated the use of the ATP-Firefly Luciferin/Luciferase (FFL) enzymic photoluminescent reaction as a possible means of detecting extant life in the Martian environment. Experiments carried out by the authors illustrate the capacity of the method to successfully detect extant forms of life on Mars assuming ATP is an intrinsic part of the biochemistry of such life-forms. A photodiode based apparatus, built to test the assumptions and applicability of the ATP-Firefly Luciferase/Luciferin technique to an exobiologically inclined mission to Mars, revealed the adequate resolution and reproducibility of the methodology plus areas of improvement. Also detailed are extraction, delivery and analysis system concepts, proposed for future Mars missions.

  1. Chemical and microscopic characterization of outer seed coats of fossil and extant water plants

    NASA Astrophysics Data System (ADS)

    van Bergen, P. F.; Goñi, M.; Collinson, M. E.; Barrie, P. J.; Damsté, J. S. Sinninghe; De Leeuw, J. W.

    1994-09-01

    Sclerotic outer seed coat layers (testae) of three fossil and two extant water plant species were analyzed using scanning electron and light microscopy in addition to Curie-point pyrolysis, solid state 13C NMR, and CuO oxidation. Comparison between the chemical results from the fossil and extant samples reveals that the original resistant constituents in the sclerotic testae are native lignin-celluloses which are transformed to polyphenol macromolecules recognized in the fossil samples. The combination of microscopic and chemical data provides new insights regarding the early diagenetic processes by which lignin-cellulose-containing plant remains may have been transformed. In particular, the unaltered morphology in combination with major chemical modifications is used as the basis to postulate the timing and nature of lignin transformations. The combination of pyrolysis, solid state 13C NMR, and CuO oxidation is shown to be a powerful tool to characterize the chemical structure of testae of fossil and extant water plants.

  2. eCOMPAGT integrates mtDNA: import, validation and export of mitochondrial DNA profiles for population genetics, tumour dynamics and genotype-phenotype association studies.

    PubMed

    Weissensteiner, Hansi; Schönherr, Sebastian; Specht, Günther; Kronenberg, Florian; Brandstätter, Anita

    2010-03-09

    Mitochondrial DNA (mtDNA) is widely being used for population genetics, forensic DNA fingerprinting and clinical disease association studies. The recent past has uncovered severe problems with mtDNA genotyping, not only due to the genotyping method itself, but mainly to the post-lab transcription, storage and report of mtDNA genotypes. eCOMPAGT, a system to store, administer and connect phenotype data to all kinds of genotype data is now enhanced by the possibility of storing mtDNA profiles and allowing their validation, linking to phenotypes and export as numerous formats. mtDNA profiles can be imported from different sequence evaluation programs, compared between evaluations and their haplogroup affiliations stored. Furthermore, eCOMPAGT has been improved in its sophisticated transparency (support of MySQL and Oracle), security aspects (by using database technology) and the option to import, manage and store genotypes derived from various genotyping methods (SNPlex, TaqMan, and STRs). It is a software solution designed for project management, laboratory work and the evaluation process all-in-one. The extended mtDNA version of eCOMPAGT was designed to enable error-free post-laboratory data handling of human mtDNA profiles. This software is suited for small to medium-sized human genetic, forensic and clinical genetic laboratories. The direct support of MySQL and the improved database security options render eCOMPAGT a powerful tool to build an automated workflow architecture for several genotyping methods. eCOMPAGT is freely available at http://dbis-informatik.uibk.ac.at/ecompagt.

  3. eCOMPAGT integrates mtDNA: import, validation and export of mitochondrial DNA profiles for population genetics, tumour dynamics and genotype-phenotype association studies

    PubMed Central

    2010-01-01

    Background Mitochondrial DNA (mtDNA) is widely being used for population genetics, forensic DNA fingerprinting and clinical disease association studies. The recent past has uncovered severe problems with mtDNA genotyping, not only due to the genotyping method itself, but mainly to the post-lab transcription, storage and report of mtDNA genotypes. Description eCOMPAGT, a system to store, administer and connect phenotype data to all kinds of genotype data is now enhanced by the possibility of storing mtDNA profiles and allowing their validation, linking to phenotypes and export as numerous formats. mtDNA profiles can be imported from different sequence evaluation programs, compared between evaluations and their haplogroup affiliations stored. Furthermore, eCOMPAGT has been improved in its sophisticated transparency (support of MySQL and Oracle), security aspects (by using database technology) and the option to import, manage and store genotypes derived from various genotyping methods (SNPlex, TaqMan, and STRs). It is a software solution designed for project management, laboratory work and the evaluation process all-in-one. Conclusions The extended mtDNA version of eCOMPAGT was designed to enable error-free post-laboratory data handling of human mtDNA profiles. This software is suited for small to medium-sized human genetic, forensic and clinical genetic laboratories. The direct support of MySQL and the improved database security options render eCOMPAGT a powerful tool to build an automated workflow architecture for several genotyping methods. eCOMPAGT is freely available at http://dbis-informatik.uibk.ac.at/ecompagt. PMID:20214782

  4. Cytoplasmic transfer of heritable elements other than mtDNA from SAMP1 mice into mouse tumor cells suppresses their ability to form tumors in C57BL6 mice.

    PubMed

    Shimizu, Akinori; Tani, Haruna; Takibuchi, Gaku; Ishikawa, Kaori; Sakurazawa, Ryota; Inoue, Takafumi; Hashimoto, Tetsuo; Nakada, Kazuto; Takenaga, Keizo; Hayashi, Jun-Ichi

    2017-11-04

    In a previous study, we generated transmitochondrial P29mtSAMP1 cybrids, which had nuclear DNA from the C57BL6 (referred to as B6) mouse strain-derived P29 tumor cells and mitochondrial DNA (mtDNA) exogenously-transferred from the allogeneic strain SAMP1. Because P29mtSAMP1 cybrids did not form tumors in syngeneic B6 mice, we proposed that allogeneic SAMP1 mtDNA suppressed tumor formation of P29mtSAMP1 cybrids. To test this hypothesis, current study generated P29mt(sp)B6 cybrids carrying all genomes (nuclear DNA and mtDNA) from syngeneic B6 mice by eliminating SAMP1 mtDNA from P29mtSAMP1 cybrids and reintroducing B6 mtDNA. However, the P29mt(sp)B6 cybrids did not form tumors in B6 mice, even though they had no SAMP1 mtDNA, suggesting that SAMP1 mtDNA is not involved in tumor suppression. Then, we examined another possibility of whether SAMP1 mtDNA fragments potentially integrated into the nuclear DNA of P29mtSAMP1 cybrids are responsible for tumor suppression. We generated P29 H (sp)B6 cybrids by eliminating nuclear DNA from P29mt(sp)B6 cybrids and reintroducing nuclear DNA with no integrated SAMP1 mtDNA fragment from mtDNA-less P29 cells resistant to hygromycin in selection medium containing hygromycin. However, the P29 H (sp)B6 cybrids did not form tumors in B6 mice, even though they carried neither SAMP1 mtDNA nor nuclear DNA with integrated SAMP1 mtDNA fragments. Moreover, overproduction of reactive oxygen species (ROS) and bacterial infection were not involved in tumor suppression. These observations suggest that tumor suppression was caused not by mtDNA with polymorphic mutations or infection of cytozoic bacteria but by hypothetical heritable cytoplasmic elements other than mtDNA from SAMP1 mice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Potential pitfalls of reconstructing deep time evolutionary history with only extant data, a case study using the canidae (mammalia, carnivora).

    PubMed

    Finarelli, John A; Goswami, Anjali

    2013-12-01

    Reconstructing evolutionary patterns and their underlying processes is a central goal in biology. Yet many analyses of deep evolutionary histories assume that data from the fossil record is too incomplete to include, and rely solely on databases of extant taxa. Excluding fossil taxa assumes that character state distributions across living taxa are faithful representations of a clade's entire evolutionary history. Many factors can make this assumption problematic. Fossil taxa do not simply lead-up to extant taxa; they represent now-extinct lineages that can substantially impact interpretations of character evolution for extant groups. Here, we analyze body mass data for extant and fossil canids (dogs, foxes, and relatives) for changes in mean and variance through time. AIC-based model selection recovered distinct models for each of eight canid subgroups. We compared model fit of parameter estimates for (1) extant data alone and (2) extant and fossil data, demonstrating that the latter performs significantly better. Moreover, extant-only analyses result in unrealistically low estimates of ancestral mass. Although fossil data are not always available, reconstructions of deep-time organismal evolution in the absence of deep-time data can be highly inaccurate, and we argue that every effort should be made to include fossil data in macroevolutionary studies. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  6. Microevolution in prehistoric Andean populations: chronologic mtDNA variation in the desert valleys of northern Chile.

    PubMed

    Moraga, Mauricio; Santoro, Calogero M; Standen, Vivien G; Carvallo, Pilar; Rothhammer, Francisco

    2005-06-01

    Archeological evidence suggests that the iconographic and technological developments that took place in the highlands around Lake Titicaca in the Central Andean region had an influence on the cultural elaborations of the human groups in the valleys and the Pacific coast of northern Chile. In a previous communication, we were able to show, by means of a distance analysis, that a craniofacial differentiation accompanied the process of cultural evolution in the valleys (Rothhammer and Santoro [2001] Lat. Am. Antiq. 12:59-66). Recently, numerous South Amerindian mtDNA studies were published, and more accurate molecular techniques to study ancient mtDNA are available. In view of these recent developments, we decided 1) to study chronological changes of ancient mtDNA haplogroup frequencies in the nearby Lluta, Azapa, and Camarones Valleys, 2) to identify microevolutionary forces responsible for such changes, and 3) to compare ancient mtDNA haplogroup frequencies with previous data in order to validate craniometrical results and to reconstruct the biological history of the prehistoric valley groups in the context of their interaction with culturally more developed highland populations. From a total of 97 samples from 83 individuals, 68 samples (61 individuals) yielded amplifications for the fragments that harbor classical mtDNA markers. The haplogroup distribution among the total sample was as follows: 26.2%, haplogroup A; 34.4%, haplogroup B; 14.8%, haplogroup C; 3.3%, haplogroup D; and 21.3%, other haplogroups. Haplogroup B tended to increase, and haplogroup A to decrease during a 3,900-year time interval. The sequence data are congruent with the haplogroup analysis. In fact, the sequencing of hypervariable region I of 30 prehistoric individuals revealed 43 polymorphic sites. Sequence alignment and subsequent phylogenetic tree construction showed two major clusters associated with the most common restriction haplogroups. Individuals belonging to haplogroups C and D

  7. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing

    PubMed Central

    Green, Richard E.; Malaspinas, Anna-Sapfo; Krause, Johannes; Briggs, Adrian W.; Johnson, Philip L. F.; Uhler, Caroline; Meyer, Matthias; Good, Jeffrey M.; Maricic, Tomislav; Stenzel, Udo; Prüfer, Kay; Siebauer, Michael; Burbano, Hernán A.; Ronan, Michael; Rothberg, Jonathan M.; Egholm, Michael; Rudan, Pavao; Brajković, Dejana; Kućan, Željko; Gušić, Ivan; Wikström, Mårten; Laakkonen, Liisa; Kelso, Janet; Slatkin, Montgomery; Pääbo, Svante

    2008-01-01

    Summary A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000-year-old Neandertal individual using 8,341 mtDNA sequences identified among 4.8 Gb of DNA generated from ~0.3 grams of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs and allows an estimate of the divergence date between the two mtDNA lineages of 660,000±140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared to other primate lineages suggesting that the effective population size of Neandertals was small. PMID:18692465

  8. Tissue- and cell-type–specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model

    PubMed Central

    Hämäläinen, Riikka H.; Manninen, Tuula; Koivumäki, Hanna; Kislin, Mikhail; Otonkoski, Timo; Suomalainen, Anu

    2013-01-01

    Mitochondrial DNA (mtDNA) mutations manifest with vast clinical heterogeneity. The molecular basis of this variability is mostly unknown because the lack of model systems has hampered mechanistic studies. We generated induced pluripotent stem cells from patients carrying the most common human disease mutation in mtDNA, m.3243A>G, underlying mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. During reprogramming, heteroplasmic mtDNA showed bimodal segregation toward homoplasmy, with concomitant changes in mtDNA organization, mimicking mtDNA bottleneck during epiblast specification. Induced pluripotent stem cell–derived neurons and various tissues derived from teratomas manifested cell-type specific respiratory chain (RC) deficiency patterns. Similar to MELAS patient tissues, complex I defect predominated. Upon neuronal differentiation, complex I specifically was sequestered in perinuclear PTEN-induced putative kinase 1 (PINK1) and Parkin-positive autophagosomes, suggesting active degradation through mitophagy. Other RC enzymes showed normal mitochondrial network distribution. Our data show that cellular context actively modifies RC deficiency manifestation in MELAS and that autophagy is a significant component of neuronal MELAS pathogenesis. PMID:24003133

  9. Complete mtDNA sequencing reveals mutations m.9185T>C and m.13513G>A in three patients with Leigh syndrome.

    PubMed

    Pelnena, Dita; Burnyte, Birute; Jankevics, Eriks; Lace, Baiba; Dagyte, Evelina; Grigalioniene, Kristina; Utkus, Algirdas; Krumina, Zita; Rozentale, Jolanta; Adomaitiene, Irina; Stavusis, Janis; Pliss, Liana; Inashkina, Inna

    2017-12-12

    The most common mitochondrial disorder in children is Leigh syndrome, which is a progressive and genetically heterogeneous neurodegenerative disorder caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the present study, a novel and robust method of complete mtDNA sequencing, which allows amplification of the whole mitochondrial genome, was tested. Complete mtDNA sequencing was performed in a cohort of patients with suspected mitochondrial mutations. Patients from Latvia and Lithuania (n = 92 and n = 57, respectively) referred by clinical geneticists were included. The de novo point mutations m.9185T>C and m.13513G>A, respectively, were detected in two patients with lactic acidosis and neurodegenerative lesions. In one patient with neurodegenerative lesions, the mutation m.9185T>C was identified. These mutations are associated with Leigh syndrome. The present data suggest that full-length mtDNA sequencing is recommended as a supplement to nuclear gene testing and enzymatic assays to enhance mitochondrial disease diagnostics.

  10. Children's Comprehension of Object Relative Sentences: It's Extant Language Knowledge That Matters, Not Domain-General Working Memory.

    PubMed

    Rusli, Yazmin Ahmad; Montgomery, James W

    2017-10-17

    The aim of this study was to determine whether extant language (lexical) knowledge or domain-general working memory is the better predictor of comprehension of object relative sentences for children with typical development. We hypothesized that extant language knowledge, not domain-general working memory, is the better predictor. Fifty-three children (ages 9-11 years) completed a word-level verbal working-memory task, indexing extant language (lexical) knowledge; an analog nonverbal working-memory task, representing domain-general working memory; and a hybrid sentence comprehension task incorporating elements of both agent selection and cross-modal picture-priming paradigms. Images of the agent and patient were displayed at the syntactic gap in the object relative sentences, and the children were asked to select the agent of the sentence. Results of general linear modeling revealed that extant language knowledge accounted for a unique 21.3% of variance in the children's object relative sentence comprehension over and above age (8.3%). Domain-general working memory accounted for a nonsignificant 1.6% of variance. We interpret the results to suggest that extant language knowledge and not domain-general working memory is a critically important contributor to children's object relative sentence comprehension. Results support a connectionist view of the association between working memory and object relative sentence comprehension. https://doi.org/10.23641/asha.5404573.

  11. Long-term outcome of Leigh syndrome caused by the NARP-T8993C mtDNA mutation.

    PubMed

    Debray, François-Guillaume; Lambert, Marie; Lortie, Anne; Vanasse, Michel; Mitchell, Grant A

    2007-09-01

    Mutations at mitochondrial DNA (mtDNA) nucleotide 8993 can cause neurogenic weakness, ataxia and retinitis pigmentosa (NARP syndrome), or maternally inherited Leigh syndrome (LS), with a correlation between the amount of mutant mtDNA and the severity of the neurological disease. The T8993C mutation is generally considered to be clinically milder than the T8993G mutation but when the level of heteroplasmy exceeds 90%, progressive neurodegeneration has been found. We report on a long-term follow-up of a patient who presented at 4 years of age with typical LS but showed an unexpected resolution of his symptoms and a favorable outcome. At 18 years of age, his neurological examination was near normal, with neither peripheral neuropathy nor retinopathy. mtDNA analysis identified the presence of T8993C mutation at high level (>95%) in the patient's blood leukocytes. This case report and literature review emphasizes the variability of the phenotypic expression of the T8993C mutation and the need for caution in predictive counseling in such patients. (c) 2007 Wiley-Liss, Inc. Copyright 2007 Wiley-Liss, Inc.

  12. Imperfect isolation: factors and filters shaping Madagascar's extant vertebrate fauna.

    PubMed

    Samonds, Karen E; Godfrey, Laurie R; Ali, Jason R; Goodman, Steven M; Vences, Miguel; Sutherland, Michael R; Irwin, Mitchell T; Krause, David W

    2013-01-01

    Analyses of phylogenetic topology and estimates of divergence timing have facilitated a reconstruction of Madagascar's colonization events by vertebrate animals, but that information alone does not reveal the major factors shaping the island's biogeographic history. Here, we examine profiles of Malagasy vertebrate clades through time within the context of the island's paleogeographical evolution to determine how particular events influenced the arrival of the island's extant groups. First we compare vertebrate profiles on Madagascar before and after selected events; then we compare tetrapod profiles on Madagascar to contemporary tetrapod compositions globally. We show that changes from the Mesozoic to the Cenozoic in the proportions of Madagascar's tetrapod clades (particularly its increase in the representation of birds and mammals) are tied to changes in their relative proportions elsewhere on the globe. Differences in the representation of vertebrate classes from the Mesozoic to the Cenozoic reflect the effects of extinction (i.e., the non-random susceptibility of the different vertebrate clades to purported catastrophic global events 65 million years ago), and new evolutionary opportunities for a subset of vertebrates with the relatively high potential for transoceanic dispersal potential. In comparison, changes in vertebrate class representation during the Cenozoic are minor. Despite the fact that the island's isolation has resulted in high vertebrate endemism and a unique and taxonomically imbalanced extant vertebrate assemblage (both hailed as testimony to its long isolation), that isolation was never complete. Indeed, Madagascar's extant tetrapod fauna owes more to colonization during the Cenozoic than to earlier arrivals. Madagascar's unusual vertebrate assemblage needs to be understood with reference to the basal character of clades originating prior to the K-T extinction, as well as to the differential transoceanic dispersal advantage of other, more

  13. Hierarchical architecture of the inner layers of selected extant rhynchonelliform brachiopods.

    PubMed

    Gaspard, Danièle; Nouet, Julius

    2016-11-01

    In spite of several attempts for a best knowledge of the phylum, brachiopods remain, compared with molluscs, among those least analysed in terms of biomineralization. The lack of economic impact for extant species is probably liable for that situation. Much attention has been on the microstructure of calcite biomaterials (rhynchonelliforms and craniiforms). Here, we emphasize the sub-micrometric structure of selected examples of rhynchonelliform shells using Atomic Force Microscopy (AFM) to complement Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analyses. The hierarchical organization of the shell layers (secondary and/or tertiary elements) is highlighted for species non-yet observed from this point of view, and is compared to a few already mentioned in the literature. Previous analysis revealed that granules are composed of a complex aggregation of sub-units in intimate relation with an intracrystalline matrix. Their shape, size and probably early orientation depend on the species as well as age and living environments of the specimens studied. The control of the inorganic part of the composite fibrous elements is constrained by the deposition of nearly arched shape or polygonal protein membranes at the inner boundary of the primary layer, prior to the deposition of the first granules, membranes becoming proteinaceous sheathes progressively enshrining fibres. The diverse orientations of the granules in fibrous neighbours thus further increase arguments in favour of the tendency to improve the shell strength. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Mitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia.

    PubMed

    Torrell, Helena; Salas, Antonio; Abasolo, Nerea; Morén, Constanza; Garrabou, Glòria; Valero, Joaquín; Alonso, Yolanda; Vilella, Elisabet; Costas, Javier; Martorell, Lourdes

    2014-10-01

    It has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A > G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T > C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia. © 2014 Wiley Periodicals, Inc.

  15. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner.

    PubMed

    Loutre, Romuald; Heckel, Anne-Marie; Jeandard, Damien; Tarassov, Ivan; Entelis, Nina

    2018-01-01

    Mutations in mitochondrial DNA are an important source of severe and incurable human diseases. The vast majority of these mutations are heteroplasmic, meaning that mutant and wild-type genomes are present simultaneously in the same cell. Only a very high proportion of mutant mitochondrial DNA (heteroplasmy level) leads to pathological consequences. We previously demonstrated that mitochondrial targeting of small RNAs designed to anneal with mutant mtDNA can decrease the heteroplasmy level by specific inhibition of mutant mtDNA replication, thus representing a potential therapy. We have also shown that 5S ribosomal RNA, partially imported into human mitochondria, can be used as a vector to deliver anti-replicative oligoribonucleotides into human mitochondria. So far, the efficiency of cellular expression of recombinant 5S rRNA molecules bearing therapeutic insertions remained very low. In the present study, we designed new versions of anti-replicative recombinant 5S rRNA targeting a large deletion in mitochondrial DNA which causes the KSS syndrome, analyzed their specific annealing to KSS mitochondrial DNA and demonstrated their import into mitochondria of cultured human cells. To obtain an increased level of the recombinant 5S rRNA stable expression, we created transmitochondrial cybrid cell line bearing a site for Flp-recombinase and used this system for the recombinase-mediated integration of genes coding for the anti-replicative recombinant 5S rRNAs into nuclear genome. We demonstrated that stable expression of anti-replicative 5S rRNA versions in human transmitochondrial cybrid cells can induce a shift in heteroplasmy level of KSS mutation in mtDNA. This shift was directly dependent on the level of the recombinant 5S rRNA expression and the sequence of the anti-replicative insertion. Quantification of mtDNA copy number in transfected cells revealed the absence of a non-specific effect on wild type mtDNA replication, indicating that the decreased proportion

  16. Japanese Wolves are Genetically Divided into Two Groups Based on an 8-Nucleotide Insertion/Deletion within the mtDNA Control Region.

    PubMed

    Ishiguro, Naotaka; Inoshima, Yasuo; Yanai, Tokuma; Sasaki, Motoki; Matsui, Akira; Kikuchi, Hiroki; Maruyama, Masashi; Hongo, Hitomi; Vostretsov, Yuri E; Gasilin, Viatcheslav; Kosintsev, Pavel A; Quanjia, Chen; Chunxue, Wang

    2016-02-01

    The mitochondrial DNA (mtDNA) control region (198- to 598-bp) of four ancient Canis specimens (two Canis mandibles, a cranium, and a first phalanx) was examined, and each specimen was genetically identified as Japanese wolf. Two unique nucleotide substitutions, the 78-C insertion and the 482-G deletion, both of which are specific for Japanese wolf, were observed in each sample. Based on the mtDNA sequences analyzed, these four specimens and 10 additional Japanese wolf samples could be classified into two groups- Group A (10 samples) and Group B (4 samples)-which contain or lack an 8-bp insertion/deletion (indel), respectively. Interestingly, three dogs (Akita-b, Kishu 25, and S-husky 102) that each contained Japanese wolf-specific features were also classified into Group A or B based on the 8-bp indel. To determine the origin or ancestor of the Japanese wolf, mtDNA control regions of ancient continental Canis specimens were examined; 84 specimens were from Russia, and 29 were from China. However, none of these 113 specimens contained Japanese wolf-specific sequences. Moreover, none of 426 Japanese modern hunting dogs examined contained these Japanese wolf-specific mtDNA sequences. The mtDNA control region sequences of Groups A and B appeared to be unique to grey wolf and dog populations.

  17. Genetic diversity of mtDNA D-loop sequences in four native Chinese chicken breeds.

    PubMed

    Guo, H W; Li, C; Wang, X N; Li, Z J; Sun, G R; Li, G X; Liu, X J; Kang, X T; Han, R L

    2017-10-01

    1. To explore the genetic diversity of Chinese indigenous chicken breeds, a 585 bp fragment of the mitochondrial DNA (mtDNA) region was sequenced in 102 birds from the Xichuan black-bone chicken, Yunyang black-bone chicken and Lushi chicken. In addition, 30 mtDNA D-loop sequences of Silkie fowls were downloaded from NCBI. The mtDNA D-loop sequence polymorphism and maternal origin of 4 chicken breeds were analysed in this study. 2. The results showed that a total of 33 mutation sites and 28 haplotypes were detected in the 4 chicken breeds. The haplotype diversity and nucleotide diversity of these 4 native breeds were 0.916 ± 0.014 and 0.012 ± 0.002, respectively. Three clusters were formed in 4 Chinese native chickens and 12 reference breeds. Both the Xichuan black-bone chicken and Yunyang black-bone chicken were grouped into one cluster. Four haplogroups (A, B, C and E) emerged in the median-joining network in these breeds. 3. It was concluded that these 4 Chinese chicken breeds had high genetic diversity. The phylogenetic tree and median network profiles showed that Chinese native chickens and its neighbouring countries had at least two maternal origins, one from Yunnan, China and another from Southeast Asia or its surrounding area.

  18. Genetic relationships of extant brown bears (Ursus arctos) and polar bears (Ursus maritimus).

    PubMed

    Cronin, Matthew A; MacNeil, Michael D

    2012-01-01

    Polar bears (Ursus maritimus) and brown bears (Ursus arctos) are closely related species for which extensive mitochondrial and nuclear phylogenetic comparisons have been made. We used previously published genotype data for 8 microsatellite DNA loci from 930 brown bears in 19 populations and 473 polar bears in 16 populations to compare the population genetic relationships of extant populations of the species. Genetic distances (Nei standard distance = 1.157), the proportion of private alleles (52% of alleles are not shared by the species), and Bayesian cluster analysis are consistent with morphological and life-history characteristics that distinguish polar bears and brown bears as different species with little or no gene flow among extant populations.

  19. Genetic affinities among the historical provinces of Romania and Central Europe as revealed by an mtDNA analysis.

    PubMed

    Cocoş, Relu; Schipor, Sorina; Hervella, Montserrat; Cianga, Petru; Popescu, Roxana; Bănescu, Claudia; Constantinescu, Mihai; Martinescu, Alina; Raicu, Florina

    2017-03-07

    As a major crossroads between Asia and Europe, Romania has experienced continuous migration and invasion episodes. The precise routes may have been shaped by the topology of the territory and had diverse impacts on the genetic structure of mitochondrial DNA (mtDNA) in historical Romanian provinces. We studied 714 Romanians from all historical provinces, Wallachia, Dobrudja, Moldavia, and Transylvania, by analyzing the mtDNA control region and coding markers to encompass the complete landscape of mtDNA haplogroups. We observed a homogenous distribution of the majority of haplogroups among the Romanian provinces and a clear association with the European populations. A principal component analysis and multidimensional scaling analysis supported the genetic similarity of the Wallachia, Moldavia, and Dobrudja groups with the Balkans, while the Transylvania population was closely related to Central European groups. These findings could be explained by the topology of the Romanian territory, where the Carpathian Arch played an important role in migration patterns. Signals of Asian maternal lineages were observed in all Romanian historical provinces, indicating gene flow along the migration routes through East Asia and Europe. Our current findings based on the mtDNA analysis of populations in historical provinces of Romania suggest similarity between populations in Transylvania and Central Europe, supported both by the observed clines in haplogroup frequencies for several European and Asian maternal lineages and MDS analyses.

  20. Role of mtDNA haplogroups in the prevalence of osteoarthritis in different geographic populations: a meta-analysis.

    PubMed

    Shen, Jin-Ming; Feng, Lei; Feng, Chun

    2014-01-01

    Osteoarthritis (OA) is the most common form of arthritis and has become an increasingly important public-health problem. However, the pathogenesis of OA is still unclear. In recent years, its correlation with mtDNA haplogroups attracts much attention. We aimed to perform a meta-analysis to investigate the association between mtDNA haplogroups and OA. Published English or Chinese literature from PubMed, Web of Science, SDOS, and CNKI was retrieved up until April 15, 2014. Case-control or cohort studies that detected the frequency of mtDNA haplogroups in OA patients and controls were included. The quality of the included studies was evaluated by the Newcastle-Ottawa Scale (NOS) assessment. A meta-analysis was conducted to calculate pooled odds ratio (OR) with 95% confidence interval (CI) through the random or fixed effect model, which was selected based on the between-study heterogeneity assessed by Q test and I2 test. Subgroup analysis was performed to explore the origin of heterogeneity. A total of 6 case-control studies (10590 cases and 7161 controls) with an average NOS score of 6.9 were involved. For the analysis between mtDNA haplogroup J and OA, random model was selected due to high heterogeneity. No significant association was found initially (OR = 0.73, 95%CI: 0.52-1.03), however, once any study from UK population was removed the association emerged. Further subgroup analysis demonstrated that there was a significant association in Spain population (OR = 0.57, 95%CI: 0.46-0.71), but not in UK population. Also, subgroup analysis revealed that there was a significant correlation between cluster TJ and OA in Spain population (OR = 0.70, 95%CI: 0.58-0.84), although not in UK population. No significant correlation was found between haplogroup T/cluster HV/cluster KU and OA. Our current meta-analysis suggests that mtDNA haplogroup J and cluster TJ correlate with the risk of OA in Spanish population, but the associations in other populations require

  1. Mitochondrial comparative genomics and phylogenetic signal assessment of mtDNA among arbuscular mycorrhizal fungi.

    PubMed

    Nadimi, Maryam; Daubois, Laurence; Hijri, Mohamed

    2016-05-01

    Mitochondrial (mt) genes, such as cytochrome C oxidase genes (cox), have been widely used for barcoding in many groups of organisms, although this approach has been less powerful in the fungal kingdom due to the rapid evolution of their mt genomes. The use of mt genes in phylogenetic studies of Dikarya has been met with success, while early diverging fungal lineages remain less studied, particularly the arbuscular mycorrhizal fungi (AMF). Advances in next-generation sequencing have substantially increased the number of publically available mtDNA sequences for the Glomeromycota. As a result, comparison of mtDNA across key AMF taxa can now be applied to assess the phylogenetic signal of individual mt coding genes, as well as concatenated subsets of coding genes. Here we show comparative analyses of publically available mt genomes of Glomeromycota, augmented with two mtDNA genomes that were newly sequenced for this study (Rhizophagus irregularis DAOM240159 and Glomus aggregatum DAOM240163), resulting in 16 complete mtDNA datasets. R. irregularis isolate DAOM240159 and G. aggregatum isolate DAOM240163 showed mt genomes measuring 72,293bp and 69,505bp with G+C contents of 37.1% and 37.3%, respectively. We assessed the phylogenies inferred from single mt genes and complete sets of coding genes, which are referred to as "supergenes" (16 concatenated coding genes), using Shimodaira-Hasegawa tests, in order to identify genes that best described AMF phylogeny. We found that rnl, nad5, cox1, and nad2 genes, as well as concatenated subset of these genes, provided phylogenies that were similar to the supergene set. This mitochondrial genomic analysis was also combined with principal coordinate and partitioning analyses, which helped to unravel certain evolutionary relationships in the Rhizophagus genus and for G. aggregatum within the Glomeromycota. We showed evidence to support the position of G. aggregatum within the R. irregularis 'species complex'. Copyright © 2016

  2. Comprehensive study of mtDNA among Southwest Asian dogs contradicts independent domestication of wolf, but implies dog–wolf hybridization

    PubMed Central

    Ardalan, Arman; Kluetsch, Cornelya F C; Zhang, Ai-bing; Erdogan, Metin; Uhlén, Mathias; Houshmand, Massoud; Tepeli, Cafer; Ashtiani, Seyed Reza Miraei; Savolainen, Peter

    2011-01-01

    Studies of mitochondrial DNA (mtDNA) diversity indicate explicitly that dogs were domesticated, probably exclusively, in southern East Asia. However, Southwest Asia (SwAsia) has had poor representation and geographical coverage in these studies. Other studies based on archaeological and genome-wide SNP data have suggested an origin of dogs in SwAsia. Hence, it has been suspected that mtDNA evidence for this scenario may have remained undetected. In the first comprehensive investigation of genetic diversity among SwAsian dogs, we analyzed 582 bp of mtDNA for 345 indigenous dogs from across SwAsia, and compared with 1556 dogs across the Old World. We show that 97.4% of SwAsian dogs carry haplotypes belonging to a universal mtDNA gene pool, but that only a subset of this pool, five of the 10 principal haplogroups, is represented in SwAsia. A high frequency of haplogroup B, potentially signifying a local origin, was not paralleled with the high genetic diversity expected for a center of origin. Meanwhile, 2.6% of the SwAsian dogs carried the rare non-universal haplogroup d2. Thus, mtDNA data give no indication that dogs originated in SwAsia through independent domestication of wolf, but dog–wolf hybridization may have formed the local haplogroup d2 within this region. Southern East Asia remains the only region with virtually full extent of genetic variation, strongly indicating it to be the primary and probably sole center of wolf domestication. An origin of dogs in southern East Asia may have been overlooked by other studies due to a substantial lack of samples from this region. PMID:22393507

  3. The SMM Model as a Boundary Value Problem Using the Discrete Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2007-01-01

    A generalized single step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  4. The SMM model as a boundary value problem using the discrete diffusion equation.

    PubMed

    Campbell, Joel

    2007-12-01

    A generalized single-step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  5. MtDNA SNP multiplexes for efficient inference of matrilineal genetic ancestry within Oceania.

    PubMed

    Ballantyne, Kaye N; van Oven, Mannis; Ralf, Arwin; Stoneking, Mark; Mitchell, R John; van Oorschot, Roland A H; Kayser, Manfred

    2012-07-01

    Human mitochondrial DNA (mtDNA) is a convenient marker for tracing matrilineal bio-geographic ancestry and is widely applied in forensic, genealogical and anthropological studies. In forensic applications, DNA-based ancestry inference can be useful for finding unknown suspects by concentrating police investigations in cases where autosomal STR profiling was unable to provide a match, or can help provide clues in missing person identification. Although multiplexed mtDNA single nucleotide polymorphism (SNP) assays to infer matrilineal ancestry at a (near) continental level are already available, such tools are lacking for the Oceania region. Here, we have developed a hierarchical system of three SNaPshot multiplexes for genotyping 26 SNPs defining all major mtDNA haplogroups for Oceania (including Australia, Near Oceania and Remote Oceania). With this system, it was possible to conclusively assign 74% of Oceanian individuals to their Oceanian matrilineal ancestry in an established literature database (after correcting for obvious external admixture). Furthermore, in a set of 161 genotyped individuals collected in Australia, Papua New Guinea and Fiji, 87.6% were conclusively assigned an Oceanian matrilineal origin. For the remaining 12.4% of the genotyped samples either a Eurasian origin was detected indicating likely European admixture (1.9%), the identified haplogroups are shared between Oceania and S/SE-Asia (5%), or the SNPs applied did not allow a geographic inference to be assigned (5.6%). Sub-regional assignment within Oceania was possible for 32.9% of the individuals genotyped: 49.5% of Australians were assigned an Australian origin and 13.7% of the Papua New Guineans were assigned a Near Oceanian origin, although none of the Fijians could be assigned a specific Remote Oceanian origin. The low assignment rates of Near and Remote Oceania are explained by recent migrations from Asia via Near Oceania into Remote Oceania. Combining the mtDNA multiplexes for

  6. Mini-midi-mito: adapting the amplification and sequencing strategy of mtDNA to the degradation state of crime scene samples.

    PubMed

    Berger, Cordula; Parson, Walther

    2009-06-01

    The degradation state of some biological traces recovered from the crime scene requires the amplification of very short fragments to attain a useful mitochondrial (mt)DNA sequence. We have previously introduced two mini-multiplex assays that amplify 10 overlapping control region (CR) fragments in two separate multiplex PCRs, which brought successful CR consensus sequences from even highly degraded DNA extracts. This procedure requires a total of 20 sequencing reactions per sample, which is laborious and cost intensive. For only moderately degraded samples that we encounter more frequently with typical mtDNA casework material, we developed two new multiplex assays that use a subset of the mini-amplicon primers but embrace larger fragments (midis) and require only 10 sequencing reactions to build a double-stranded CR consensus sequence. We used a preceding mtDNA quantitation step by real-time PCR with two different target fragments (143 and 283 bp) that roughly correspond to the average fragment sizes of the different multiplex approaches to estimate size-dependent mtDNA quantities and to aid the choice of the appropriate PCR multiplexes with respect to quality of the results and required costs.

  7. Phylogeography, genetic diversity and demographic history of the Iranian Kurdish groups based on mtDNA sequences.

    PubMed

    Zarei, Fatah; Rajabi-Maham, Hassan

    2016-12-01

    Throughout the history of modern humans, the current Kurdish-inhabited area has served as part of a tricontinental crossroad for major human migrations. Also, a significant body of archaeological evidence points to this area as the site of Neolithic transition. To investigate the phylogeography, origins and demographic history, mtDNA D-loop region of individuals representing four Kurdish groups from Iran were analysed. Our data indicated that most of the Kurds mtDNA lineages belong to branches of the haplogroups with the Western Eurasian origin; with small fractions of the Eastern Eurasian and sub-Saharan African lineages. The low level of mtDNA diversity observed in the Havrami group presented a bias towards isolation or increased drift due to small population size; while in the Kurmanji group it indicated a bias towards drift or mass migration events during the 5-18th century AD. The Mantel test showed strong isolation by distance, and AMOVA results for global and regional scales confirmed that the geography had acted as the main driving force in shaping the current pattern of mtDNA diversity, rather than linguistic similarity. The results of demographic analyses, in agreement with archaeological data, revealed a recent expansion of the Kurds (~9,500 years before present) related to the Neolithic transition from hunting and gathering, to farming and cattle breeding in the Near East. Further, the high frequencies of typical haplogroups for early farmers (H; 37.1%) and hunter-gatherers (U; 13.8%) in the Kurds may testify the earlier hunter-gatherers in the Kurdish-inhabited area that adopted and admixed the Kurds ancestors following the Neolithic transition.

  8. Quantitation of heteroplasmy of mtDNA sequence variants identified in a population of AD patients and controls by array-based resequencing.

    PubMed

    Coon, Keith D; Valla, Jon; Szelinger, Szabolics; Schneider, Lonnie E; Niedzielko, Tracy L; Brown, Kevin M; Pearson, John V; Halperin, Rebecca; Dunckley, Travis; Papassotiropoulos, Andreas; Caselli, Richard J; Reiman, Eric M; Stephan, Dietrich A

    2006-08-01

    The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD) has been well documented. Though evidence for the role of mitochondria in AD seems incontrovertible, the impact of mitochondrial DNA (mtDNA) mutations in AD etiology remains controversial. Though mutations in mitochondrially encoded genes have repeatedly been implicated in the pathogenesis of AD, many of these studies have been plagued by lack of replication as well as potential contamination of nuclear-encoded mitochondrial pseudogenes. To assess the role of mtDNA mutations in the pathogenesis of AD, while avoiding the pitfalls of nuclear-encoded mitochondrial pseudogenes encountered in previous investigations and showcasing the benefits of a novel resequencing technology, we sequenced the entire coding region (15,452 bp) of mtDNA from 19 extremely well-characterized AD patients and 18 age-matched, unaffected controls utilizing a new, reliable, high-throughput array-based resequencing technique, the Human MitoChip. High-throughput, array-based DNA resequencing of the entire mtDNA coding region from platelets of 37 subjects revealed the presence of 208 loci displaying a total of 917 sequence variants. There were no statistically significant differences in overall mutational burden between cases and controls, however, 265 independent sites of statistically significant change between cases and controls were identified. Changed sites were found in genes associated with complexes I (30.2%), III (3.0%), IV (33.2%), and V (9.1%) as well as tRNA (10.6%) and rRNA (14.0%). Despite their statistical significance, the subtle nature of the observed changes makes it difficult to determine whether they represent true functional variants involved in AD etiology or merely naturally occurring dissimilarity. Regardless, this study demonstrates the tremendous value of this novel mtDNA resequencing platform, which avoids the pitfalls of erroneously amplifying nuclear-encoded mtDNA pseudogenes, and

  9. Relationship between seasonal cold acclimatization and mtDNA haplogroup in Japanese

    PubMed Central

    2012-01-01

    Background The purpose of this study was to elucidate the interaction between mtDNA haplogroup and seasonal variation that contributes to cold adaptation. Methods There were 15 subjects (seven haplotype D subjects and eight haplotype non-D subjects). In summer and winter, the subjects were placed in an environment where the ambient temperature dropped from 27 °C to 10 °C in 30 minutes. After that, they were exposed to cold for 60 minutes. Results In summer, the decrease in rectal temperature and increase in oxygen consumption was smaller and cold tolerance was higher in the haplotype non-D group than in the haplotype D group. In winter, no significant differences were seen in rectal temperature or oxygen consumption, but the respiratory exchange ratio decreased in the haplotype D group. Conclusions The results of the present study suggest that haplogroup D subjects are a group that changes energy metabolism more, and there appears to be a relationship between differences in cold adaptability and mtDNA polymorphism within the population. Moreover, group differences in cold adaptability seen in summer may decrease in winter due to supplementation by seasonal cold acclimatization. PMID:22929588

  10. Detailed mtDNA genotypes permit a reassessment of the settlement and population structure of the Andaman Islands.

    PubMed

    Barik, S S; Sahani, R; Prasad, B V R; Endicott, P; Metspalu, M; Sarkar, B N; Bhattacharya, S; Annapoorna, P C H; Sreenath, J; Sun, D; Sanchez, J J; Ho, S Y W; Chandrasekar, A; Rao, V R

    2008-05-01

    The population genetics of the Indian subcontinent is central to understanding early human prehistory due to its strategic location on the proposed corridor of human movement from Africa to Australia during the late Pleistocene. Previous genetic research using mtDNA has emphasized the relative isolation of the late Pleistocene colonizers, and the physically isolated Andaman Island populations of Island South-East Asia remain the source of claims supporting an early split between the populations that formed the patchy settlement pattern along the coast of the Indian Ocean. Using whole-genome sequencing, combined with multiplexed SNP typing, this study investigates the deep structure of mtDNA haplogroups M31 and M32 in India and the Andaman Islands. The identification of a so far unnoticed rare polymorphism shared between these two lineages suggests that they are actually sister groups within a single haplogroup, M31'32. The enhanced resolution of M31 allows for the inference of a more recent colonization of the Andaman Islands than previously suggested, but cannot reject the very early peopling scenario. We further demonstrate a widespread overlap of mtDNA and cultural markers between the two major language groups of the Andaman archipelago. Given the "completeness" of the genealogy based on whole genome sequences, and the multiple scenarios for the peopling of the Andaman Islands sustained by this inferred genealogy, our study hints that further mtDNA based phylogeographic studies are unlikely to unequivocally support any one of these possibilities. (c) 2008 Wiley-Liss, Inc.

  11. Sexual dimorphic features within extant great ape faciodental skeletal anatomy and testing the single species hypothesis.

    PubMed

    Cameron, D W

    1997-01-01

    This paper examines sexually dimorphic skeletal characters within the face and upper dentition of extant hominids (great ape), not including members of the Hominini. Specimens of Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus are used to help identify likely sex specific characters for the Hominidae. The aim of this paper is to identify extant hominid faciodental sexual features which can be used to help sex fossil specimens. A morphometric and skeletal study of sexual variability demonstrates relatively diverse patterns of sexual variability within the extant hominids. In terms of morphometrics, P. paniscus is relatively non-dimorphic, while P. troglodytes, Gorilla and Pongo display a large degree of sexual dimorphism. In their respective skeletal anatomies, however, each has specific characters which tend to differentiate between the sexes. Some faciodental sex features are shown to be common amongst all four taxa and as such are likely to be important criteria for determining the sex of Miocene and Plio-Pleistocene fossil hominid specimens. The construction of extant great ape sexual ranges of variability are also important in helping to test the fossil ape single species hypotheses. The testing of sex and species ranges of variability should employ range based statistics not only because they are sample size independent, (relative to C.V.) but also because they are of low power.

  12. EMPOP-quality mtDNA control region sequences from Kashmiri of Azad Jammu & Kashmir, Pakistan.

    PubMed

    Rakha, Allah; Peng, Min-Sheng; Bi, Rui; Song, Jiao-Jiao; Salahudin, Zeenat; Adan, Atif; Israr, Muhammad; Yao, Yong-Gang

    2016-11-01

    The mitochondrial DNA (mtDNA) control region (nucleotide position 16024-576) sequences were generated through Sanger sequencing method for 317 self-identified Kashmiris from all districts of Azad Jammu & Kashmir Pakistan. The population sample set showed a total of 251 haplotypes, with a relatively high haplotype diversity (0.9977) and a low random match probability (0.54%). The containing matrilineal lineages belonging to three different phylogeographic origins of Western Eurasian (48.9%), South Asian (47.0%) and East Asian (4.1%). The present study was compared to previous data from Pakistan and other worldwide populations (Central Asia, Western Asia, and East & Southeast Asia). The dataset is made available through EMPOP under accession number EMP00679 and will serve as an mtDNA reference database in forensic casework in Pakistan. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. mtDNA sequence diversity in Africa.

    PubMed Central

    Watson, E.; Bauer, K.; Aman, R.; Weiss, G.; von Haeseler, A.; Pääbo, S.

    1996-01-01

    mtDNA sequences were determined from 241 individuals from nine ethnic groups in Africa. When they were compared with published data from other groups, it was found that the !Kung, Mbuti, and Biaka show on the order of 10 times more sequence differences between the three groups, as well as between those and the other groups (the Fulbe, Hausa, Tuareg, Songhai, Kanuri, Yoruba, Mandenka, Somali, Tukana, and Kikuyu), than these other groups do between one other. Furthermore, the pairwise sequence distributions, patterns of coalescence events, and numbers of variable positions relative to the mean sequence difference indicate that the former three groups have been of constant size over time, whereas the latter have expanded in size. We suggest that this reflects subsistence patterns in that the populations that have expanded in size are food producers whereas those that have not are hunters and gatherers. PMID:8755932

  14. A mitochondrial DNA (mtDNA) mutation associated with maternally inherited Parkinson`s disease (PD) and deafness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoffner, J.M.; Brown, M.; Huoponen, K.

    1994-09-01

    A pedigree was characterized in which PD and deafness is expressed along the maternal lineage. The proband is 74 years old and has PD. Her mother and 3 of 7 siblings have PD and a maternal lineage cousin may have early signs of PD. The proband`s mother, a sibling, and all four of her daughters have premature deafness. Since manifestations of PD begin after 50 years of age, the 30-40 year old daughters have not reached an age where extrapyramidal symptoms are likely to appear. Although all 4 daughters have premature deafness, one daughter experienced a rapid reduction of hermore » hearing after receiving a short course during childhood of the aminoglycoside streptomycin. Muscle biopsies from the proband who has PD and 3 daughters with deafness revealed normal histology. Oxidative phosphorylation biochemistry showed Complex I and IV defects in the proband and 2 daughters and a Complex I defect in the other daughter. The proband`s mtDNA was sequenced. Of the nucleotide variants observed, the only significant nucleotide change was a homoplasmic A-to-G point mutation in the 12S rRNA gene at position 1555 of the mtDNA. This site is homologous to the E. coli aminoglycoside binding site and has been found in a large Arab-Israeli pedigree with spontaneously occurring deafness and three Chinese pedigrees with aminoglycoside-induced deafness. Hence, this family shows a direct link between PD, deafness, Complex I and IV defects, and a mutation in a gene that functions in mitochondrial protein synthesis. Furthermore, the interaction between aminoglycosides and the mtDNA in a manner that augments the pathogenic effects of this mutation provides an excellent example of how environmental toxins and mtDNA mutations can interact to give a spectrum of clinical presentations.« less

  15. Resolving the Evolution of Extant and Extinct Ruminants With High-Throughput Phylogenomics

    USDA-ARS?s Scientific Manuscript database

    The Pecorans (higher ruminants) are believed to have rapidly speciated in the Mid-Eocene, resulting in five distinct extant families; Antilocapridae, Giraffidae, Moschidae, Cervidae, and Bovidae. Due to the rapid radiation, the Pecoran phylogeny has proven difficult to resolve and eleven of the fift...

  16. Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers.

    PubMed

    Østbye, K; Bernatchez, L; Naesje, T F; Himberg, K-J M; Hindar, K

    2005-12-01

    We compared mitochondrial DNA and gill-raker number variation in populations of the European whitefish Coregonus lavaretus (L.) species complex to illuminate their evolutionary history, and discuss mechanisms behind diversification. Using single-strand conformation polymorphism (SSCP) and sequencing 528 bp of combined parts of the cytochrome oxidase b (cyt b) and NADH dehydrogenase subunit 3 (ND3) mithochondrial DNA (mtDNA) regions, we documented phylogeographic relationships among populations and phylogeny of mtDNA haplotypes. Demographic events behind geographical distribution of haplotypes were inferred using nested clade analysis (NCA) and mismatch distribution. Concordance between operational taxonomical groups, based on gill-raker numbers, and mtDNA patterns was tested. Three major mtDNA clades were resolved in Europe: a North European clade from northwest Russia to Denmark, a Siberian clade from the Arctic Sea to southwest Norway, and a South European clade from Denmark to the European Alps, reflecting occupation in different glacial refugia. Demographic events inferred from NCA were isolation by distance, range expansion, and fragmentation. Mismatch analysis suggested that clades which colonized Fennoscandia and the Alps expanded in population size 24 500-5800 years before present, with minute female effective population sizes, implying small founder populations during colonization. Gill-raker counts did not commensurate with hierarchical mtDNA clades, and poorly with haplotypes, suggesting recent origin of gill-raker variation. Whitefish designations based on gill-raker numbers were not associated with ancient clades. Lack of congruence in morphology and evolutionary lineages implies that the taxonomy of this species complex should be reconsidered.

  17. Defects of mtDNA Replication Impaired Mitochondrial Biogenesis During Trypanosoma cruzi Infection in Human Cardiomyocytes and Chagasic Patients: The Role of Nrf1/2 and Antioxidant Response

    PubMed Central

    Wan, Xianxiu; Gupta, Shivali; Zago, Maria P.; Davidson, Mercy M.; Dousset, Pierre; Amoroso, Alejandro; Garg, Nisha Jain

    2012-01-01

    Background Mitochondrial dysfunction is a key determinant in chagasic cardiomyopathy development in mice; however, its relevance in human Chagas disease is not known. We determined if defects in mitochondrial biogenesis and dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1)–regulated transcriptional pathways constitute a mechanism or mechanisms underlying mitochondrial oxidative-phosphorylation (OXPHOS) deficiency in human Chagas disease. Methods and Results We utilized human cardiomyocytes and left-ventricular tissue from chagasic and other cardiomyopathy patients and healthy donors (n>6/group). We noted no change in citrate synthase activity, yet mRNA and/or protein levels of subunits of the respiratory complexes were significantly decreased in Trypanosoma cruzi–infected cardiomyocytes (0 to 24 hours) and chagasic hearts. We observed increased mRNA and decreased nuclear localization of PGC-1-coactivated transcription factors, yet the expression of genes for PPARγ-regulated fatty acid oxidation and nuclear respiratory factor (NRF1/2)–regulated mtDNA replication and transcription machinery was enhanced in infected cardiomyocytes and chagasic hearts. The D-loop formation was normal or higher, but mtDNA replication and mtDNA content were decreased by 83% and 40% to 65%, respectively. Subsequently, we noted that reactive oxygen species (ROS), oxidative stress, and mtDNA oxidation were significantly increased, yet NRF1/2-regulated antioxidant gene expression remained compromised in infected cardiomyocytes and chagasic hearts. Conclusions The replication of mtDNA was severely compromised, resulting in a significant loss of mtDNA and expression of OXPHOS genes in T cruzi–infected cardiomyocytes and chagasic hearts. Our data suggest increased ROS generation and selective functional incapacity of NRF2-mediated antioxidant gene expression played a role in the defects in mtDNA replication and unfitness of mtDNA for

  18. Comparative mtDNA analyses of three sympatric macropodids from a conservation area on the Huon Peninsula, Papua New Guinea.

    PubMed

    McGreevy, Thomas J; Dabek, Lisa; Husband, Thomas P

    2016-07-01

    Matschie's tree kangaroo (Dendrolagus matschiei), New Guinea pademelon (Thylogale browni), and small dorcopsis (Dorcopsulus vanheurni) are sympatric macropodid taxa, of conservation concern, that inhabit the Yopno-Urawa-Som (YUS) Conservation Area on the Huon Peninsula, Papua New Guinea. We sequenced three partial mitochondrial DNA (mtDNA) genes from the three taxa to (i) investigate network structure; and (ii) identify conservation units within the YUS Conservation Area. All three taxa displayed a similar pattern in the spatial distribution of their mtDNA haplotypes and the Urawa and Som rivers on the Huon may have acted as a barrier to maternal gene flow. Matschie's tree kangaroo and New Guinea pademelon within the YUS Conservation Area should be managed as single conservation units because mtDNA nucleotides were not fixed for a given geographic area. However, two distinct conservation units were identified for small dorcopsis from the two different mountain ranges within the YUS Conservation Area.

  19. Evidence of Subclinical mtDNA Alterations in HIV-Infected Pregnant Women Receiving Combination Antiretroviral Therapy Compared to HIV-Negative Pregnant Women

    PubMed Central

    Money, Deborah M.; Wagner, Emily C.; Maan, Evelyn J.; Chaworth-Musters, Tessa; Gadawski, Izabelle; van Schalkwyk, Julie E.; Forbes, John C.; Burdge, David R.; Albert, Arianne Y. K.; Lohn, Zoe; Côté, Hélène C. F.

    2015-01-01

    Introduction Combination antiretroviral therapy (cART) can effectively prevent vertical transmission of HIV but there is potential risk of adverse maternal, foetal or infant effects. Specifically, the effect of cART use during pregnancy on mitochondrial DNA (mtDNA) content in HIV-positive (HIV+) women is unclear. We sought to characterize subclinical alterations in peripheral blood mtDNA levels in cART-treated HIV+ women during pregnancy and the postpartum period. Methods This prospective longitudinal observational cohort study enrolled both HIV+ and HIV-negative (HIV-) pregnant women. Clinical data and blood samples were collected at three time points in pregnancy (13-<23 weeks, 23-<30 weeks, 30–40 weeks), and at delivery and six weeks post-partum in HIV+ women. Peripheral blood mtDNA to nuclear DNA (nDNA) ratio was measured by qPCR. Results Over a four year period, 63 HIV+ and 42 HIV- women were enrolled. HIV+ women showed significantly lower mtDNA/nDNA ratios compared to HIV- women during pregnancy (p = 0.003), after controlling for platelet count and repeated measurements using a multivariable mixed-effects model. Ethnicity, gestational age (GA) and substance use were also significantly associated with mtDNA/nDNA ratio (p≤0.02). Among HIV+ women, higher CD4 nadir was associated with higher mtDNA/nDNA ratios (p<0.0001), and these ratio were significantly lower during pregnancy compared to the postpartum period (p<0.0001). Conclusions In the context of this study, it was not possible to distinguish between mtDNA effects related to HIV infection versus cART therapy. Nevertheless, while mtDNA levels were relatively stable over time in both groups during pregnancy, they were significantly lower in HIV+ women compared to HIV- women. Although no immediate clinical impact was observed on maternal or infant health, lower maternal mtDNA levels may exert long-term effects on women and children and remain a concern. Improved knowledge of such subclinical alterations is

  20. Evidence of Subclinical mtDNA Alterations in HIV-Infected Pregnant Women Receiving Combination Antiretroviral Therapy Compared to HIV-Negative Pregnant Women.

    PubMed

    Money, Deborah M; Wagner, Emily C; Maan, Evelyn J; Chaworth-Musters, Tessa; Gadawski, Izabelle; van Schalkwyk, Julie E; Forbes, John C; Burdge, David R; Albert, Arianne Y K; Lohn, Zoe; Côté, Hélène C F

    2015-01-01

    Combination antiretroviral therapy (cART) can effectively prevent vertical transmission of HIV but there is potential risk of adverse maternal, foetal or infant effects. Specifically, the effect of cART use during pregnancy on mitochondrial DNA (mtDNA) content in HIV-positive (HIV+) women is unclear. We sought to characterize subclinical alterations in peripheral blood mtDNA levels in cART-treated HIV+ women during pregnancy and the postpartum period. This prospective longitudinal observational cohort study enrolled both HIV+ and HIV-negative (HIV-) pregnant women. Clinical data and blood samples were collected at three time points in pregnancy (13-<23 weeks, 23-<30 weeks, 30-40 weeks), and at delivery and six weeks post-partum in HIV+ women. Peripheral blood mtDNA to nuclear DNA (nDNA) ratio was measured by qPCR. Over a four year period, 63 HIV+ and 42 HIV- women were enrolled. HIV+ women showed significantly lower mtDNA/nDNA ratios compared to HIV- women during pregnancy (p = 0.003), after controlling for platelet count and repeated measurements using a multivariable mixed-effects model. Ethnicity, gestational age (GA) and substance use were also significantly associated with mtDNA/nDNA ratio (p≤0.02). Among HIV+ women, higher CD4 nadir was associated with higher mtDNA/nDNA ratios (p<0.0001), and these ratio were significantly lower during pregnancy compared to the postpartum period (p<0.0001). In the context of this study, it was not possible to distinguish between mtDNA effects related to HIV infection versus cART therapy. Nevertheless, while mtDNA levels were relatively stable over time in both groups during pregnancy, they were significantly lower in HIV+ women compared to HIV- women. Although no immediate clinical impact was observed on maternal or infant health, lower maternal mtDNA levels may exert long-term effects on women and children and remain a concern. Improved knowledge of such subclinical alterations is another step toward optimizing the safety

  1. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    PubMed

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  2. The extremely divergent maternally- and paternally-transmitted mitochondrial genomes are co-expressed in somatic tissues of two freshwater mussel species with doubly uniparental inheritance of mtDNA

    USGS Publications Warehouse

    Breton, Sophie; Bouvet, Karim; Auclair, Gabrielle; Ghazal, Stephanie; Sietman, Bernard E.; Johnson, Nathan A.; Bettinazzi, Stefano; Dtewart, Donald T.; Guerra, Davide

    2017-01-01

    Freshwater mussel species with doubly uniparental inheritance (DUI) of mtDNA are unique because they are naturally heteroplasmic for two extremely divergent mtDNAs with ~50% amino acid differences for protein-coding genes. The paternally-transmitted mtDNA (or M mtDNA) clearly functions in sperm in these species, but it is still unknown whether it is transcribed when present in male or female soma. In the present study, we used PCR and RT-PCR to detect the presence and expression of the M mtDNA in male and female somatic and gonadal tissues of the freshwater mussel species Venustaconcha ellipsiformis and Utterbackia peninsularis (Unionidae). This is the first study demonstrating that the M mtDNA is transcribed not only in male gonads, but also in male and female soma in freshwater mussels with DUI. Because of the potentially deleterious nature of heteroplasmy, we suggest the existence of different mechanisms in DUI species to deal with this possibly harmful situation, such as silencing mechanisms for the M mtDNA at the transcriptional, post-transcriptional and/or post-translational levels. These hypotheses will necessitate additional studies in distantly-related DUI species that could possess different mechanisms of action to deal with heteroplasmy.

  3. Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family.

    PubMed

    Kullar, Peter J; Gomez-Duran, Aurora; Gammage, Payam A; Garone, Caterina; Minczuk, Michal; Golder, Zoe; Wilson, Janet; Montoya, Julio; Häkli, Sanna; Kärppä, Mikko; Horvath, Rita; Majamaa, Kari; Chinnery, Patrick F

    2018-01-01

    The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  4. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency.

    PubMed

    Saada, Ann; Shaag, Avraham; Elpeleg, Orly

    2003-05-01

    Decreased mitochondrial thymidine kinase (TK2) activity is associated with mitochondrial DNA (mtDNA) depletion and respiratory chain dysfunction and is manifested by isolated, fatal skeletal myopathy. Other tissues such as liver, brain, heart, and skin remain unaffected throughout the patients' life. In order to elucidate the mechanism of tissue specificity in the disease we have investigated the expression of the mitochondrial deoxynucleotide carrier, the mtDNA content and the activity of TK2 in mitochondria of various tissues. Our results suggest that low basal TK2 activity combined with a high requirement for mitochondrial encoded proteins in muscle predispose this tissue to the devastating effect of TK2 deficiency.

  5. A novel quantitative assay of mitophagy: Combining high content fluorescence microscopy and mitochondrial DNA load to quantify mitophagy and identify novel pharmacological tools against pathogenic heteroplasmic mtDNA.

    PubMed

    Diot, Alan; Hinks-Roberts, Alex; Lodge, Tiffany; Liao, Chunyan; Dombi, Eszter; Morten, Karl; Brady, Stefen; Fratter, Carl; Carver, Janet; Muir, Rebecca; Davis, Ryan; Green, Charlotte J; Johnston, Iain; Hilton-Jones, David; Sue, Carolyn; Mortiboys, Heather; Poulton, Joanna

    2015-10-01

    Mitophagy is a cellular mechanism for the recycling of mitochondrial fragments. This process is able to improve mitochondrial DNA (mtDNA) quality in heteroplasmic mtDNA disease, in which mutant mtDNA co-exists with normal mtDNA. In disorders where the load of mutant mtDNA determines disease severity it is likely to be an important determinant of disease progression. Measuring mitophagy is technically demanding. We used pharmacological modulators of autophagy to validate two techniques for quantifying mitophagy. First we used the IN Cell 1000 analyzer to quantify mitochondrial co-localisation with LC3-II positive autophagosomes. Unlike conventional fluorescence and electron microscopy, this high-throughput system is sufficiently sensitive to detect transient low frequency autophagosomes. Secondly, because mitophagy preferentially removes pathogenic heteroplasmic mtDNA mutants, we developed a heteroplasmy assay based on loss of m.3243A>G mtDNA, during culture conditions requiring oxidative metabolism ("energetic stress"). The effects of the pharmacological modulators on these two measures were consistent, confirming that the high throughput imaging output (autophagosomes co-localising with mitochondria) reflects mitochondrial quality control. To further validate these methods, we performed a more detailed study using metformin, the most commonly prescribed antidiabetic drug that is still sometimes used in Maternally Inherited Diabetes and Deafness (MIDD). This confirmed our initial findings and revealed that metformin inhibits mitophagy at clinically relevant concentrations, suggesting that it may have novel therapeutic uses. Copyright © 2015. Published by Elsevier Ltd.

  6. Low-dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome

    PubMed Central

    Siegmund, Stephanie E; Yang, Hua; Sharma, Rohit; Javors, Martin; Skinner, Owen; Mootha, Vamsi; Hirano, Michio; Schon, Eric A

    2017-01-01

    Abstract Mitochondrial disorders affecting oxidative phosphorylation (OxPhos) are caused by mutations in both the nuclear and mitochondrial genomes. One promising candidate for treatment is the drug rapamycin, which has been shown to extend lifespan in multiple animal models, and which was previously shown to ameliorate mitochondrial disease in a knock-out mouse model lacking a nuclear-encoded gene specifying an OxPhos structural subunit (Ndufs4). In that model, relatively high-dose intraperitoneal rapamycin extended lifespan and improved markers of neurological disease, via an unknown mechanism. Here, we administered low-dose oral rapamycin to a knock-in (KI) mouse model of authentic mtDNA disease, specifically, progressive mtDNA depletion syndrome, resulting from a mutation in the mitochondrial nucleotide salvage enzyme thymidine kinase 2 (TK2). Importantly, low-dose oral rapamycin was sufficient to extend Tk2KI/KI mouse lifespan significantly, and did so in the absence of detectable improvements in mitochondrial dysfunction. We found no evidence that rapamycin increased survival by acting through canonical pathways, including mitochondrial autophagy. However, transcriptomics and metabolomics analyses uncovered systemic metabolic changes pointing to a potential ‘rapamycin metabolic signature.’ These changes also implied that rapamycin may have enabled the Tk2KI/KI mice to utilize alternative energy reserves, and possibly triggered indirect signaling events that modified mortality through developmental reprogramming. From a therapeutic standpoint, our results support the possibility that low-dose rapamycin, while not targeting the underlying mtDNA defect, could represent a crucial therapy for the treatment of mtDNA-driven, and some nuclear DNA-driven, mitochondrial diseases. PMID:28973153

  7. Patterns of astragalar fibular facet orientation in extant and fossil primates and their evolutionary implications.

    PubMed

    Boyer, Doug M; Seiffert, Erik R

    2013-07-01

    A laterally sloping fibular facet of the astragalus (=talus) has been proposed as one of few osteological synapomorphies of strepsirrhine primates, but the feature has never been comprehensively quantified. We describe a method for calculating fibular facet orientation on digital models of astragali as the angle between the planes of the fibular facet and the lateral tibial facet. We calculated this value in a sample that includes all major extant primate clades, a diversity of Paleogene primates, and nonprimate euarchontans (n = 304). Results show that previous characterization of a divide between extant haplorhines and strepsirrhines is accurate, with little overlap even when individual data points are considered. Fibular facet orientation is conserved in extant strepsirrhines despite major differences in locomotion and body size, while extant anthropoids are more variable (e.g., low values for catarrhines relative to non-callitrichine platyrrhines). Euprimate outgroups exhibit a mosaic of character states with Cynocephalus having a more obtuse strepsirrhine-like facet and sampled treeshrews and plesiadapiforms having more acute haplorhine-like facets. Surprisingly, the earliest species of the adapiform Cantius have steep haplorhine-like facets as well. We used a Bayesian approach to reconstruct the evolution of fibular facet orientation as a continuous character across a supertree of living and extinct primates. Mean estimates for crown Primatomorpha (97.9°), Primates (99.5°), Haplorhini (98.7°), and Strepsirrhini (108.2°) support the hypothesis that the strepsirrhine condition is derived, while lower values for crown Anthropoidea (92.8°) and Catarrhini (88.9°) are derived in the opposite direction. Copyright © 2013 Wiley Periodicals, Inc.

  8. Taenia solium cysticercosis in Bali, Indonesia: serology and mtDNA analysis.

    PubMed

    Sudewi, A A R; Wandra, T; Artha, A; Nkouawa, A; Ito, A

    2008-01-01

    An active Taenia solium cysticercosis case in Bali, Indonesia, was followed-up by serology and computed tomography. Serology using semi-purified glycoprotein and recombinant antigens showed a drastic drop in titers after calcification of the cysts. Three paraffin-embedded cysts, prepared for histopathological examination, from three other patients were used for mtDNA analysis. The sequences of cox1 gene from T. solium cysticerci from Bali differed from those in Papua and other Asian countries.

  9. mtDNA control-region sequence variation suggests multiple independent origins of an "Asian-specific" 9-bp deletion in sub-Saharan Africans.

    PubMed Central

    Soodyall, H.; Vigilant, L.; Hill, A. V.; Stoneking, M.; Jenkins, T.

    1996-01-01

    The intergenic COII/tRNA(Lys) 9-bp deletion in human mtDNA, which is found at varying frequencies in Asia, Southeast Asia, Polynesia, and the New World, was also found in 81 of 919 sub-Saharan Africans. Using mtDNA control-region sequence data from a subset of 41 individuals with the deletion, we identified 22 unique mtDNA types associated with the deletion in Africa. A comparison of the unique mtDNA types from sub-Saharan Africans and Asians with the 9-bp deletion revealed that sub-Saharan Africans and Asians have sequence profiles that differ in the locations and frequencies of variant sites. Both phylogenetic and mismatch-distribution analysis suggest that 9-bp deletion arose independently in sub-Saharan Africa and Asia and that the deletion has arisen more than once in Africa. Within Africa, the deletion was not found among Khoisan peoples and was rare to absent in western and southwestern African populations, but it did occur in Pygmy and Negroid populations from central Africa and in Malawi and southern African Bantu-speakers. The distribution of the 9-bp deletion in Africa suggests that the deletion could have arisen in central Africa and was then introduced to southern Africa via the recent "Bantu expansion." PMID:8644719

  10. Using Molecular Genetic Markers to Resolve a Subspecies Boundary: The Northern Boundary of the Southwestern Willow Flycatcher in the Four-Corner States

    USGS Publications Warehouse

    Paxton, Eben H.; Sogge, Mark K.; Theimer, Tad C.; Girard, Jessica; Keim, Paul

    2008-01-01

    *Executive Summary* The northern boundary of the endangered Southwestern Willow Flycatcher (Empidonax traillii extimus) is currently approximated as running through southern Colorado and Utah, but the exact placement is uncertain because this subspecies shares a border with the more northern and non-endangered E. t. adastus. To help resolve this issue, we evaluated the geographic distribution of mitochondrial and nuclear DNA by sampling breeding sites across the four-corner states (Arizona, Colorado, New Mexico, and Utah). We found that breeding sites clustered into two major groups generally consistent with the currently designated boundary, with the exception of three sites situated along the current boundary. However, delineating a precise boundary that would separate the two subspecies is made difficult because (1) we found evidence for a region of intergradation along the boundary area, suggesting the boundary is not discreet, and (2) the boundary region is sparsely populated, with too few extant breeding populations to precisely locate a boundary. The boundary region encompasses an area where elevation changes markedly over relatively short distances, with low elevation deserts to the south and more mesic, higher elevation habitats to the north. We hypothesized that latitudinal and elevational differences and their concomitant ecological effects could form an ecological barrier that inhibited gene flow between the subspecies, forming the basis for the subspecies boundary. We modeled changes in geographic patterns of genetic markers as a function of latitude and elevation finding significant support for this relationship. The model was brought into a GIS environment to create multiple subspecies boundaries, with the strength of each predicted boundary evaluated on the basis of how much genetic variation it explained. The candidate boundary that accounted for the most genetic variation was situated generally near the currently recognized subspecies boundary

  11. MtDNA genomes reveal a relaxation of selective constraints in low-BMI individuals in a Uyghur population.

    PubMed

    Zheng, Hong-Xiang; Li, Lei; Jiang, Xiao-Yan; Yan, Shi; Qin, Zhendong; Wang, Xiaofeng; Jin, Li

    2017-10-01

    Considerable attention has been focused on the effect of deleterious mutations caused by the recent relaxation of selective constraints on human health, including the prevalence of obesity, which might represent an adaptive response of energy-conserving metabolism under the conditions of modern society. Mitochondrial DNA (mtDNA) encoding 13 core subunits of oxidative phosphorylation plays an important role in metabolism. Therefore, we hypothesized that a relaxation of selection constraints on mtDNA and an increase in the proportion of deleterious mutations have played a role in obesity prevalence. In this study, we collected and sequenced the mtDNA genomes of 722 Uyghurs, a typical population with a high prevalence of obesity. We identified the variants that occurred in the Uyghur population for each sample and found that the number of nonsynonymous mutations carried by Uyghur individuals declined with elevation of their BMI (P = 0.015). We further calculated the nonsynonymous and synonymous ratio (N/S) of the high-BMI and low-BMI haplogroups, and the results showed that a significantly higher N/S occurred in the whole mtDNA genomes of the low-BMI haplogroups (0.64) than in that of the high-BMI haplogroups (0.35, P = 0.030) and ancestor haplotypes (0.41, P = 0.032); these findings indicated that low-BMI individuals showed a recent relaxation of selective constraints. In addition, we investigated six clinical characteristics and found that fasting plasma glucose might be correlated with the N/S and selective pressures. We hypothesized that a higher proportion of deleterious mutations led to mild mitochondrial dysfunction, which helps to drive glucose consumption and thereby prevents obesity. Our results provide new insights into the relationship between obesity predisposition and mitochondrial genome evolution.

  12. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae

    PubMed Central

    Smith, Geoff M.; Hutson, Jarod M.; Kindler, Lutz; Garcia-Moreno, Alejandro; Villaluenga, Aritza; Turner, Elaine

    2017-01-01

    Background Ancient protein sequences are increasingly used to elucidate the phylogenetic relationships between extinct and extant mammalian taxa. Here, we apply these recent developments to Middle Pleistocene bone specimens of the rhinoceros genus Stephanorhinus. No biomolecular sequence data is currently available for this genus, leaving phylogenetic hypotheses on its evolutionary relationships to extant and extinct rhinoceroses untested. Furthermore, recent phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA sequences differ in the placement of the Sumatran rhinoceros (Dicerorhinus sumatrensis). Therefore, studies utilising ancient protein sequences from Middle Pleistocene contexts have the potential to provide further insights into the phylogenetic relationships between extant and extinct species, including Stephanorhinus and Dicerorhinus. Methods ZooMS screening (zooarchaeology by mass spectrometry) was performed on several Late and Middle Pleistocene specimens from the genus Stephanorhinus, subsequently followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to obtain ancient protein sequences from a Middle Pleistocene Stephanorhinus specimen. We performed parallel analysis on a Late Pleistocene woolly rhinoceros specimen and extant species of rhinoceroses, resulting in the availability of protein sequence data for five extant species and two extinct genera. Phylogenetic analysis additionally included all extant Perissodactyla genera (Equus, Tapirus), and was conducted using Bayesian (MrBayes) and maximum-likelihood (RAxML) methods. Results Various ancient proteins were identified in both the Middle and Late Pleistocene rhinoceros samples. Protein degradation and proteome complexity are consistent with an endogenous origin of the identified proteins. Phylogenetic analysis of informative proteins resolved the Perissodactyla phylogeny in agreement with previous studies in regards to the placement of the families Equidae

  13. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae.

    PubMed

    Welker, Frido; Smith, Geoff M; Hutson, Jarod M; Kindler, Lutz; Garcia-Moreno, Alejandro; Villaluenga, Aritza; Turner, Elaine; Gaudzinski-Windheuser, Sabine

    2017-01-01

    Ancient protein sequences are increasingly used to elucidate the phylogenetic relationships between extinct and extant mammalian taxa. Here, we apply these recent developments to Middle Pleistocene bone specimens of the rhinoceros genus Stephanorhinus . No biomolecular sequence data is currently available for this genus, leaving phylogenetic hypotheses on its evolutionary relationships to extant and extinct rhinoceroses untested. Furthermore, recent phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA sequences differ in the placement of the Sumatran rhinoceros ( Dicerorhinus sumatrensis ). Therefore, studies utilising ancient protein sequences from Middle Pleistocene contexts have the potential to provide further insights into the phylogenetic relationships between extant and extinct species, including Stephanorhinus and Dicerorhinus . ZooMS screening (zooarchaeology by mass spectrometry) was performed on several Late and Middle Pleistocene specimens from the genus Stephanorhinus , subsequently followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to obtain ancient protein sequences from a Middle Pleistocene Stephanorhinus specimen. We performed parallel analysis on a Late Pleistocene woolly rhinoceros specimen and extant species of rhinoceroses, resulting in the availability of protein sequence data for five extant species and two extinct genera. Phylogenetic analysis additionally included all extant Perissodactyla genera ( Equus , Tapirus ), and was conducted using Bayesian (MrBayes) and maximum-likelihood (RAxML) methods. Various ancient proteins were identified in both the Middle and Late Pleistocene rhinoceros samples. Protein degradation and proteome complexity are consistent with an endogenous origin of the identified proteins. Phylogenetic analysis of informative proteins resolved the Perissodactyla phylogeny in agreement with previous studies in regards to the placement of the families Equidae, Tapiridae, and

  14. Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants.

    PubMed Central

    Savard, L; Li, P; Strauss, S H; Chase, M W; Michaud, M; Bousquet, J

    1994-01-01

    We have estimated the time for the last common ancestor of extant seed plants by using molecular clocks constructed from the sequences of the chloroplastic gene coding for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and the nuclear gene coding for the small subunit of rRNA (Rrn18). Phylogenetic analyses of nucleotide sequences indicated that the earliest divergence of extant seed plants is likely represented by a split between conifer-cycad and angiosperm lineages. Relative-rate tests were used to assess homogeneity of substitution rates among lineages, and annual angiosperms were found to evolve at a faster rate than other taxa for rbcL and, thus, these sequences were excluded from construction of molecular clocks. Five distinct molecular clocks were calibrated using substitution rates for the two genes and four divergence times based on fossil and published molecular clock estimates. The five estimated times for the last common ancestor of extant seed plants were in agreement with one another, with an average of 285 million years and a range of 275-290 million years. This implies a substantially more recent ancestor of all extant seed plants than suggested by some theories of plant evolution. PMID:8197201

  15. Data from complete mtDNA sequencing of Tunisian centenarians: testing haplogroup association and the "golden mean" to longevity.

    PubMed

    Costa, Marta D; Cherni, Lotfi; Fernandes, Verónica; Freitas, Fernando; Ammar El Gaaied, Amel Ben; Pereira, Luísa

    2009-04-01

    Since the mitochondrial theory of ageing was proposed, mitochondrial DNA (mtDNA) diversity has been largely studied in old people, however complete genomes are still rare, being limited to Japanese and UK/US samples. In this work, we evaluated possible longevity associated polymorphisms/haplogroups in an African population, from Tunisia, by performing complete mtDNA sequencing. This population has a mixed Eurasian/sub-Saharan mtDNA gene pool, which could potentially facilitate the evaluation of association for sub-Saharan lineages. Sub-Saharan haplogroups were shown to be significantly less represented in centenarians (9.5%) than in controls (54.5%), but it is not possible to rule out an influence of population structure, which is high in these populations. No recurrent polymorphism were more frequent in centenarians than in controls, and although the Tunisian centenarians presented less synonymous and replacement polymorphisms than controls, this difference was not statistically significant. So far, it does not seem that centenarians have significantly less mildly deleterious substitutions, not only in Tunisia but also in Japanese and UK/US samples, as tested here, not favouring a "golden mean" to longevity.

  16. Imperfect Isolation: Factors and Filters Shaping Madagascar’s Extant Vertebrate Fauna

    PubMed Central

    Samonds, Karen E.; Godfrey, Laurie R.; Ali, Jason R.; Goodman, Steven M.; Vences, Miguel; Sutherland, Michael R.; Irwin, Mitchell T.; Krause, David W.

    2013-01-01

    Analyses of phylogenetic topology and estimates of divergence timing have facilitated a reconstruction of Madagascar’s colonization events by vertebrate animals, but that information alone does not reveal the major factors shaping the island’s biogeographic history. Here, we examine profiles of Malagasy vertebrate clades through time within the context of the island’s paleogeographical evolution to determine how particular events influenced the arrival of the island’s extant groups. First we compare vertebrate profiles on Madagascar before and after selected events; then we compare tetrapod profiles on Madagascar to contemporary tetrapod compositions globally. We show that changes from the Mesozoic to the Cenozoic in the proportions of Madagascar’s tetrapod clades (particularly its increase in the representation of birds and mammals) are tied to changes in their relative proportions elsewhere on the globe. Differences in the representation of vertebrate classes from the Mesozoic to the Cenozoic reflect the effects of extinction (i.e., the non-random susceptibility of the different vertebrate clades to purported catastrophic global events 65 million years ago), and new evolutionary opportunities for a subset of vertebrates with the relatively high potential for transoceanic dispersal potential. In comparison, changes in vertebrate class representation during the Cenozoic are minor. Despite the fact that the island’s isolation has resulted in high vertebrate endemism and a unique and taxonomically imbalanced extant vertebrate assemblage (both hailed as testimony to its long isolation), that isolation was never complete. Indeed, Madagascar’s extant tetrapod fauna owes more to colonization during the Cenozoic than to earlier arrivals. Madagascar’s unusual vertebrate assemblage needs to be understood with reference to the basal character of clades originating prior to the K-T extinction, as well as to the differential transoceanic dispersal advantage of

  17. Low-dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome.

    PubMed

    Siegmund, Stephanie E; Yang, Hua; Sharma, Rohit; Javors, Martin; Skinner, Owen; Mootha, Vamsi; Hirano, Michio; Schon, Eric A

    2017-12-01

    Mitochondrial disorders affecting oxidative phosphorylation (OxPhos) are caused by mutations in both the nuclear and mitochondrial genomes. One promising candidate for treatment is the drug rapamycin, which has been shown to extend lifespan in multiple animal models, and which was previously shown to ameliorate mitochondrial disease in a knock-out mouse model lacking a nuclear-encoded gene specifying an OxPhos structural subunit (Ndufs4). In that model, relatively high-dose intraperitoneal rapamycin extended lifespan and improved markers of neurological disease, via an unknown mechanism. Here, we administered low-dose oral rapamycin to a knock-in (KI) mouse model of authentic mtDNA disease, specifically, progressive mtDNA depletion syndrome, resulting from a mutation in the mitochondrial nucleotide salvage enzyme thymidine kinase 2 (TK2). Importantly, low-dose oral rapamycin was sufficient to extend Tk2KI/KI mouse lifespan significantly, and did so in the absence of detectable improvements in mitochondrial dysfunction. We found no evidence that rapamycin increased survival by acting through canonical pathways, including mitochondrial autophagy. However, transcriptomics and metabolomics analyses uncovered systemic metabolic changes pointing to a potential 'rapamycin metabolic signature.' These changes also implied that rapamycin may have enabled the Tk2KI/KI mice to utilize alternative energy reserves, and possibly triggered indirect signaling events that modified mortality through developmental reprogramming. From a therapeutic standpoint, our results support the possibility that low-dose rapamycin, while not targeting the underlying mtDNA defect, could represent a crucial therapy for the treatment of mtDNA-driven, and some nuclear DNA-driven, mitochondrial diseases. © The Author 2017. Published by Oxford University Press.

  18. Development and expansion of high-quality control region databases to improve forensic mtDNA evidence interpretation.

    PubMed

    Irwin, Jodi A; Saunier, Jessica L; Strouss, Katharine M; Sturk, Kimberly A; Diegoli, Toni M; Just, Rebecca S; Coble, Michael D; Parson, Walther; Parsons, Thomas J

    2007-06-01

    In an effort to increase the quantity, breadth and availability of mtDNA databases suitable for forensic comparisons, we have developed a high-throughput process to generate approximately 5000 control region sequences per year from regional US populations, global populations from which the current US population is derived and global populations currently under-represented in available forensic databases. The system utilizes robotic instrumentation for all laboratory steps from pre-extraction through sequence detection, and a rigorous eight-step, multi-laboratory data review process with entirely electronic data transfer. Over the past 3 years, nearly 10,000 control region sequences have been generated using this approach. These data are being made publicly available and should further address the need for consistent, high-quality mtDNA databases for forensic testing.

  19. Multiplexed SNP typing of ancient DNA clarifies the origin of Andaman mtDNA haplogroups amongst South Asian tribal populations.

    PubMed

    Endicott, Phillip; Metspalu, Mait; Stringer, Chris; Macaulay, Vincent; Cooper, Alan; Sanchez, Juan J

    2006-12-20

    The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups approximately 30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity.

  20. Multiplexed SNP Typing of Ancient DNA Clarifies the Origin of Andaman mtDNA Haplogroups amongst South Asian Tribal Populations

    PubMed Central

    Endicott, Phillip; Metspalu, Mait; Stringer, Chris; Macaulay, Vincent; Cooper, Alan; Sanchez, Juan J.

    2006-01-01

    The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups ∼30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity. PMID:17218991

  1. Root growth during molar eruption in extant great apes.

    PubMed

    Kelley, Jay; Dean, Christopher; Ross, Sasha

    2009-01-01

    While there is gradually accumulating knowledge about molar crown formation and the timing of molar eruption in extant great apes, very little is known about root formation during the eruption process. We measured mandibular first and second molar root lengths in extant great ape osteological specimens that died while either the first or second molars were in the process of erupting. For most specimens, teeth were removed so that root lengths could be measured directly. When this was not possible, roots were measured radiographically. We were particularly interested in the variation in the lengths of first molar roots near the point of gingival emergence, so specimens were divided into early, middle and late phases of eruption based on the number of cusps that showed protein staining, with one or two cusps stained equated with immediate post-gingival emergence. For first molars at this stage, Gorilla has the longest roots, followed by Pongo and Pan. Variation in first molar mesial root lengths at this stage in Gorilla and Pan, which comprise the largest samples, is relatively low and represents no more than a few months of growth in both taxa. Knowledge of root length at first molar emergence permits an assessment of the contribution of root growth toward differences between great apes and humans in the age at first molar emergence. Root growth makes up a greater percentage of the time between birth and first molar emergence in humans than it does in any of the great apes. Copyright (c) 2009 S. Karger AG, Basel.

  2. Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling

    PubMed Central

    Baker, Allan J; Pereira, Sergio Luiz; Haddrath, Oliver P; Edge, Kerri-Anne

    2005-01-01

    Classic problems in historical biogeography are where did penguins originate, and why are such mobile birds restricted to the Southern Hemisphere? Competing hypotheses posit they arose in tropical–warm temperate waters, species-diverse cool temperate regions, or in Gondwanaland ∼100 mya when it was further north. To test these hypotheses we constructed a strongly supported phylogeny of extant penguins from 5851 bp of mitochondrial and nuclear DNA. Using Bayesian inference of ancestral areas we show that an Antarctic origin of extant taxa is highly likely, and that more derived taxa occur in lower latitudes. Molecular dating estimated penguins originated about 71 million years ago in Gondwanaland when it was further south and cooler. Moreover, extant taxa are inferred to have originated in the Eocene, coincident with the extinction of the larger-bodied fossil taxa as global climate cooled. We hypothesize that, as Antarctica became ice-encrusted, modern penguins expanded via the circumpolar current to oceanic islands within the Antarctic Convergence, and later to the southern continents. Thus, global cooling has had a major impact on penguin evolution, as it has on vertebrates generally. Penguins only reached cooler tropical waters in the Galapagos about 4 mya, and have not crossed the equatorial thermal barrier. PMID:16519228

  3. Inferring pterosaur diets through quantitative 3D textural analysis of tooth microwear in extant analogues

    NASA Astrophysics Data System (ADS)

    Bestwick, Jordan; Unwin, David; Butler, Richard; Henderson, Don; Purnell, Mark

    2017-04-01

    Pterosaurs (Pterosauria) were a successful group of Mesozoic flying reptiles. For 150 million years they were integral components of terrestrial and coastal ecosystems, yet their feeding ecology remains poorly constrained. Postulated pterosaur diets include insectivory, piscivory and/or carnivory, but many dietary hypotheses are speculative and/or based on little evidence, highlighting the need for alternative approaches to provide robust data. One method involves quantitative analysis of the micron-scale 3D textures of worn pterosaur tooth surfaces - dental microwear texture analysis. Microwear is produced as scratches and chips generated by food items create characteristic tooth surface textures. Microwear analysis has never been applied to pterosaurs, but we might expect microwear textures to differ between pterosaurs with different diets. An important step in investigating pterosaur microwear is to examine microwear from extant organisms with known diets to provide a comparative data set. This has been achieved through analysis of non-occlusal microwear textures in extant bats, crocodilians and monitor lizards, clades within which species exhibit insectivorous, piscivorous and carnivorous diets. The results - the first test of the hypothesis that non-occlusal microwear textures in these extant clades vary with diet - provide the context for the first robust quantitative tests of pterosaur diets.

  4. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment.

    PubMed

    Levin, Gilbert V; Straat, Patricia Ann

    2016-10-01

    The 1976 Viking Labeled Release (LR) experiment was positive for extant microbial life on the surface of Mars. Experiments on both Viking landers, 4000 miles apart, yielded similar, repeatable, positive responses. While the authors eventually concluded that the experiment detected martian life, this was and remains a highly controversial conclusion. Many believe that the martian environment is inimical to life and the LR responses were nonbiological, attributed to an as-yet-unidentified oxidant (or oxidants) in the martian soil. Unfortunately, no further metabolic experiments have been conducted on Mars. Instead, follow-on missions have sought to define the martian environment, mostly searching for signs of water. These missions have collected considerable data regarding Mars as a habitat, both past and present. The purpose of this article is to consider recent findings about martian water, methane, and organics that impact the case for extant life on Mars. Further, the biological explanation of the LR and recent nonbiological hypotheses are evaluated. It is concluded that extant life is a strong possibility, that abiotic interpretations of the LR data are not conclusive, and that, even setting our conclusion aside, biology should still be considered as an explanation for the LR experiment. Because of possible contamination of Mars by terrestrial microbes after Viking, we note that the LR data are the only data we will ever have on biologically pristine martian samples. Key Words: Extant life on Mars-Viking Labeled Release experiment-Astrobiology-Extraterrestrial life-Mars. Astrobiology 16, 798-810.

  5. Neurotoxicity of cytarabine (Ara-C) in dorsal root ganglion neurons originates from impediment of mtDNA synthesis and compromise of mitochondrial function.

    PubMed

    Zhuo, Ming; Gorgun, Murat F; Englander, Ella W

    2018-06-01

    Peripheral Nervous System (PNS) neurotoxicity caused by cancer drugs hinders attainment of chemotherapy goals. Due to leakiness of the blood nerve barrier, circulating chemotherapeutic drugs reach PNS neurons and adversely affect their function. Chemotherapeutic drugs are designed to target dividing cancer cells and mechanisms underlying their toxicity in postmitotic neurons remain to be fully clarified. The objective of this work was to elucidate progression of events triggered by antimitotic drugs in postmitotic neurons. For proof of mechanism study, we chose cytarabine (ara-C), an antimetabolite used in treatment of hematological cancers. Ara-C is a cytosine analog that terminates DNA synthesis. To investigate how ara-C affects postmitotic neurons, which replicate mitochondrial but not genomic DNA, we adapted a model of Dorsal Root Ganglion (DRG) neurons. We showed that DNA polymerase γ, which is responsible for mtDNA synthesis, is inhibited by ara-C and that sublethal ara-C exposure of DRG neurons leads to reduction in mtDNA content, ROS generation, oxidative mtDNA damage formation, compromised mitochondrial respiration and diminution of NADPH and GSH stores, as well as, activation of the DNA damage response. Hence, it is plausible that in ara-C exposed DRG neurons, ROS amplified by the high mitochondrial content shifts from physiologic to pathologic levels signaling stress to the nucleus. Combined, the findings suggest that ara-C neurotoxicity in DRG neurons originates in mitochondria and that continuous mtDNA synthesis and reliance on oxidative phosphorylation for energy needs sensitize the highly metabolic neurons to injury by mtDNA synthesis terminating cancer drugs. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Major Population Expansion of East Asians Began before Neolithic Time: Evidence of mtDNA Genomes

    PubMed Central

    Qin, Zhen-Dong; Wang, Yi; Tan, Jing-Ze; Li, Hui; Jin, Li

    2011-01-01

    It is a major question in archaeology and anthropology whether human populations started to grow primarily after the advent of agriculture, i.e., the Neolithic time, especially in East Asia, which was one of the centers of ancient agricultural civilization. To answer this question requires an accurate estimation of the time of lineage expansion as well as that of population expansion in a population sample without ascertainment bias. In this study, we analyzed all available mtDNA genomes of East Asians ascertained by random sampling, a total of 367 complete mtDNA sequences generated by the 1000 Genome Project, including 249 Chinese (CHB, CHD, and CHS) and 118 Japanese (JPT). We found that major mtDNA lineages underwent expansions, all of which, except for two JPT-specific lineages, including D4, D4b2b, D4a, D4j, D5a2a, A, N9a, F1a1'4, F2, B4, B4a, G2a1 and M7b1'2'4, occurred before 10 kya, i.e., before the Neolithic time (symbolized by Dadiwan Culture at 7.9 kya) in East Asia. Consistent to this observation, the further analysis showed that the population expansion in East Asia started at 13 kya and lasted until 4 kya. The results suggest that the population growth in East Asia constituted a need for the introduction of agriculture and might be one of the driving forces that led to the further development of agriculture. PMID:21998705

  7. Human Retinal Transmitochondrial Cybrids with J or H mtDNA Haplogroups Respond Differently to Ultraviolet Radiation: Implications for Retinal Diseases

    PubMed Central

    Malik, Deepika; Hsu, Tiffany; Falatoonzadeh, Payam; Cáceres-del-Carpio, Javier; Tarek, Mohamed; Chwa, Marilyn; Atilano, Shari R.; Ramirez, Claudio; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin; Kenney, M. Cristina

    2014-01-01

    Background It has been recognized that cells do not respond equally to ultraviolet (UV) radiation but it is not clear whether this is due to genetic, biochemical or structural differences of the cells. We have a novel cybrid (cytoplasmic hybrids) model that allows us to analyze the contribution of mitochondrial DNA (mtDNA) to cellular response after exposure to sub-lethal dose of UV. mtDNA can be classified into haplogroups as defined by accumulations of specific single nucleotide polymorphisms (SNPs). Recent studies have shown that J haplogroup is high risk for age-related macular degeneration while the H haplogroup is protective. This study investigates gene expression responses in J cybrids versus H cybrids after exposure to sub-lethal doses of UV-radiation. Methodology/Principal Findings Cybrids were created by fusing platelets isolated from subjects with either H (n = 3) or J (n = 3) haplogroups with mitochondria-free (Rho0) ARPE-19 cells. The H and J cybrids were cultured for 24 hours, treated with 10 mJ of UV-radiation and cultured for an additional 120 hours. Untreated and treated cybrids were analyzed for growth rates and gene expression profiles. The UV-treated and untreated J cybrids had higher growth rates compared to H cybrids. Before treatment, J cybrids showed lower expression levels for CFH, CD55, IL-33, TGF-A, EFEMP-1, RARA, BCL2L13 and BBC3. At 120 hours after UV-treatment, the J cybrids had decreased CFH, RARA and BBC3 levels but increased CD55, IL-33 and EFEMP-1 compared to UV-treated H cybrids. Conclusion/Significance In cells with identical nuclei, the cellular response to sub-lethal UV-radiation is mediated in part by the mtDNA haplogroup. This supports the hypothesis that differences in growth rates and expression levels of complement, inflammation and apoptosis genes may result from population-specific, hereditary SNP variations in mtDNA. Therefore, when analyzing UV-induced damage in tissues, the mtDNA haplogroup background may be

  8. Mitochondrial ROS Induces Cardiac Inflammation via a Pathway through mtDNA Damage in a Pneumonia-Related Sepsis Model.

    PubMed

    Yao, Xiao; Carlson, Deborah; Sun, Yuxiao; Ma, Lisha; Wolf, Steven E; Minei, Joseph P; Zang, Qun S

    2015-01-01

    We have previously shown that mitochondria-targeted vitamin E (Mito-Vit-E), a mtROS specific antioxidant, improves cardiac performance and attenuates inflammation in a pneumonia-related sepsis model. In this study, we applied the same approaches to decipher the signaling pathway(s) of mtROS-dependent cardiac inflammation after sepsis. Sepsis was induced in Sprague Dawley rats by intratracheal injection of S. pneumoniae. Mito-Vit-E, vitamin E or vehicle was administered 30 minutes later. In myocardium 24 hours post-inoculation, Mito-Vit-E, but not vitamin E, significantly protected mtDNA integrity and decreased mtDNA damage. Mito-Vit-E alleviated sepsis-induced reduction in mitochondria-localized DNA repair enzymes including DNA polymerase γ, AP endonuclease, 8-oxoguanine glycosylase, and uracil-DNA glycosylase. Mito-Vit-E dramatically improved metabolism and membrane integrity in mitochondria, suppressed leakage of mtDNA into the cytoplasm, inhibited up-regulation of Toll-like receptor 9 (TLR9) pathway factors MYD88 and RAGE, and limited RAGE interaction with its ligand TFAM in septic hearts. Mito-Vit-E also deactivated NF-κB and caspase 1, reduced expression of the essential inflammasome component ASC, and decreased inflammatory cytokine IL-1β. In vitro, both Mito-Vit-E and TLR9 inhibitor OND-I suppressed LPS-induced up-regulation in MYD88, RAGE, ASC, active caspase 1, and IL-1β in cardiomyocytes. Since free mtDNA escaped from damaged mitochondria function as a type of DAMPs to stimulate inflammation through TLR9, these data together suggest that sepsis-induced cardiac inflammation is mediated, at least partially, through mtDNA-TLR9-RAGE. At last, Mito-Vit-E reduced the circulation of myocardial injury marker troponin-I, diminished apoptosis and amended morphology in septic hearts, suggesting that mitochondria-targeted antioxidants are a potential cardioprotective approach for sepsis.

  9. Extant primitively segmented spiders have recently diversified from an ancient lineage

    PubMed Central

    Xu, Xin; Liu, Fengxiang; Cheng, Ren-Chung; Chen, Jian; Xu, Xiang; Zhang, Zhisheng; Ono, Hirotsugu; Pham, Dinh Sac; Norma-Rashid, Y.; Arnedo, Miquel A.; Kuntner, Matjaž; Li, Daiqin

    2015-01-01

    Living fossils are lineages that have retained plesiomorphic traits through long time periods. It is expected that such lineages have both originated and diversified long ago. Such expectations have recently been challenged in some textbook examples of living fossils, notably in extant cycads and coelacanths. Using a phylogenetic approach, we tested the patterns of the origin and diversification of liphistiid spiders, a clade of spiders considered to be living fossils due to their retention of arachnid plesiomorphies and their exclusive grouping in Mesothelae, an ancient clade sister to all modern spiders. Facilitated by original sampling throughout their Asian range, we here provide the phylogenetic framework necessary for reconstructing liphistiid biogeographic history. All phylogenetic analyses support the monophyly of Liphistiidae and of eight genera. As the fossil evidence supports a Carboniferous Euramerican origin of Mesothelae, our dating analyses postulate a long eastward over-land dispersal towards the Asian origin of Liphistiidae during the Palaeogene (39–58 Ma). Contrary to expectations, diversification within extant liphistiid genera is relatively recent, in the Neogene and Late Palaeogene (4–24 Ma). While no over-water dispersal events are needed to explain their evolutionary history, the history of liphistiid spiders has the potential to play prominently in vicariant biogeographic studies. PMID:25948684

  10. Children's Comprehension of Object Relative Sentences: It's Extant Language Knowledge That Matters, Not Domain-General Working Memory

    ERIC Educational Resources Information Center

    Rusli, Yazmin Ahmad; Montgomery, James W.

    2017-01-01

    Purpose: The aim of this study was to determine whether extant language (lexical) knowledge or domain-general working memory is the better predictor of comprehension of object relative sentences for children with typical development. We hypothesized that extant language knowledge, not domain-general working memory, is the better predictor. Method:…

  11. Evolutionary Relationships among Extinct and Extant Sloths: The Evidence of Mitogenomes and Retroviruses

    PubMed Central

    Slater, Graham J.; Cui, Pin; Forasiepi, Analía M.; Lenz, Dorina; Tsangaras, Kyriakos; Voirin, Bryson; de Moraes-Barros, Nadia; MacPhee, Ross D. E.; Greenwood, Alex D.

    2016-01-01

    Macroevolutionary trends exhibited by retroviruses are complex and not entirely understood. The sloth endogenized foamy-like retrovirus (SloEFV), which demonstrates incongruence in virus–host evolution among extant sloths (Order Folivora), has not been investigated heretofore in any extinct sloth lineages and its premodern history within folivorans is therefore unknown. Determining retroviral coevolutionary trends requires a robust phylogeny of the viral host, but the highly reduced modern sloth fauna (6 species in 2 genera) does not adequately represent what was once a highly diversified clade (∼100 genera) of placental mammals. At present, the amount of molecular data available for extinct sloth taxa is limited, and analytical results based on these data tend to conflict with phylogenetic inferences made on the basis of morphological studies. To augment the molecular data set, we applied hybridization capture and next-generation Illumina sequencing to two extinct and three extant sloth species to retrieve full mitochondrial genomes (mitogenomes) from the hosts and the polymerase gene of SloEFV. The results produced a fully resolved and well-supported phylogeny that supports dividing crown families into two major clades: 1) The three-toed sloth, Bradypus, and Nothrotheriidae and 2) Megalonychidae, including the two-toed sloth, Choloepus, and Mylodontidae. Our calibrated time tree indicates that the Miocene epoch (23.5 Ma), particularly its earlier part, was an important interval for folivoran diversification. Both extant and extinct sloths demonstrate multiple complex invasions of SloEFV into the ancestral sloth germline followed by subsequent introgressions across different sloth lineages. Thus, sloth mitogenome and SloEFV evolution occurred separately and in parallel among sloths. PMID:26878870

  12. Regional differences in the distribution of the sub-Saharan, West Eurasian, and South Asian mtDNA lineages in Yemen.

    PubMed

    Cerný, Viktor; Mulligan, Connie J; Rídl, Jakub; Zaloudková, Martina; Edens, Christopher M; Hájek, Martin; Pereira, Luísa

    2008-06-01

    Despite its key location for population movements out of and back into Africa, Yemen has not yet been sampled on a regional level for an investigation of sub-Saharan, West Eurasian, and South Asian genetic contributions. In this study, we present mitochondrial DNA (mtDNA) data for regionally distinct Yemeni populations that reveal different distributions of mtDNA lineages. An extensive database of mtDNA sequences from North and East African, Middle Eastern and Indian populations was analyzed to provide a context for the regional Yemeni mtDNA datasets. The groups of western Yemen appear to be most closely related to Middle Eastern and North African populations, while the eastern Yemeni population from Hadramawt is most closely related to East Africa. Furthermore, haplotype matches with Africa are almost exclusively confined to West Eurasian R0a haplogroup in southwestern Yemen, although more sub-Saharan L-type matches appear in more northern Yemeni populations. In fact, Yemeni populations have the highest frequency of R0a haplotypes detected to date, thus Yemen or southern Arabia may be the site of the initial expansion of this haplogroup. Whereas two variants of the sub-Saharan haplogroup M1 were detected only in southwestern Yemen close to the Bab el-Mandeb Strait, different non-African M haplotypes were detected at low frequencies (approximately 2%) in western parts of the country and at a higher frequency (7.5%) in the Hadramawt. We conclude that the Yemeni gene pool is highly stratified both regionally and temporally and that it has received West Eurasian, Northeast African, and South Asian gene flow. Copyright 2008 Wiley-Liss, Inc.

  13. Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage.

    PubMed

    Sardina, M T; Ballester, M; Marmi, J; Finocchiaro, R; van Kaam, J B C H M; Portolano, B; Folch, J M

    2006-08-01

    The mitochondrial hypervariable region 1 (HVR1) sequence of 67 goats belonging to the Girgentana, Maltese and Derivata di Siria breeds was partially sequenced in order to present the first phylogenetic characterization of Sicilian goat breeds. These sequences were compared with published sequences of Indian and Pakistani domestic goats and wild goats. Mitochondrial lineage A was observed in most of the Sicilian goats. However, three Girgentana haplotypes were highly divergent from the Capra hircus clade, indicating that a new mtDNA lineage in domestic goats was found.

  14. A large homozygous deletion in the SAMHD1 gene causes atypical Aicardi–Goutiéres syndrome associated with mtDNA deletions

    PubMed Central

    Leshinsky-Silver, Esther; Malinger, Gustavo; Ben-Sira, Liat; Kidron, Dvora; Cohen, Sarit; Inbar, Shani; Bezaleli, Tali; Levine, Arie; Vinkler, Chana; Lev, Dorit; Lerman-Sagie, Tally

    2011-01-01

    Aicardi–Goutiéres syndrome (AGS) is a genetic neurodegenerative disorder with clinical symptoms mimicking a congenital viral infection. Five causative genes have been described: three prime repair exonuclease1 (TREX1), ribonucleases H2A, B and C, and most recently SAM domain and HD domain 1 (SAMHD1). We performed a detailed clinical and molecular characterization of a family with autosomal recessive neurodegenerative disorder showing white matter destruction and calcifications, presenting in utero and associated with multiple mtDNA deletions. A muscle biopsy was normal and did not show any evidence of respiratory chain dysfunction. Southern blot analysis of tissue from a living child and affected fetuses demonstrated multiple mtDNA deletions. Molecular analysis of genes involved in mtDNA synthesis and maintenance (POLGα, POLGβ, Twinkle, ANT1, TK2, SUCLA1 and DGOUK) revealed normal sequences. Sequencing of TREX1 and ribonucleases H2A, B and C failed to reveal any mutations. Whole-genome homozygosity mapping revealed a candidate region containing the SAMHD1 gene. Sequencing of the gene in the affected child and two affected fetuses revealed a large deletion (9 kb), spanning the promoter, exon1 and intron 1. The parents were found to be heterozygous for this deletion. The identification of a homozygous large deletion in the SAMHD1 gene causing atypical AGS with multiple mtDNA deletions may add information regarding the involvement of mitochondria in self-activation of innate immunity by cell intrinsic components. PMID:21102625

  15. East Asian mtDNA haplogroup determination in Koreans: haplogroup-level coding region SNP analysis and subhaplogroup-level control region sequence analysis.

    PubMed

    Lee, Hwan Young; Yoo, Ji-Eun; Park, Myung Jin; Chung, Ukhee; Kim, Chong-Youl; Shin, Kyoung-Jin

    2006-11-01

    The present study analyzed 21 coding region SNP markers and one deletion motif for the determination of East Asian mitochondrial DNA (mtDNA) haplogroups by designing three multiplex systems which apply single base extension methods. Using two multiplex systems, all 593 Korean mtDNAs were allocated into 15 haplogroups: M, D, D4, D5, G, M7, M8, M9, M10, M11, R, R9, B, A, and N9. As the D4 haplotypes occurred most frequently in Koreans, the third multiplex system was used to further define D4 subhaplogroups: D4a, D4b, D4e, D4g, D4h, and D4j. This method allowed the complementation of coding region information with control region mutation motifs and the resultant findings also suggest reliable control region mutation motifs for the assignment of East Asian mtDNA haplogroups. These three multiplex systems produce good results in degraded samples as they contain small PCR products (101-154 bp) for single base extension reactions. SNP scoring was performed in 101 old skeletal remains using these three systems to prove their utility in degraded samples. The sequence analysis of mtDNA control region with high incidence of haplogroup-specific mutations and the selective scoring of highly informative coding region SNPs using the three multiplex systems are useful tools for most applications involving East Asian mtDNA haplogroup determination and haplogroup-directed stringent quality control.

  16. Complete mtDNA genomes of Filipino ethnolinguistic groups: a melting pot of recent and ancient lineages in the Asia-Pacific region

    PubMed Central

    Delfin, Frederick; Min-Shan Ko, Albert; Li, Mingkun; Gunnarsdóttir, Ellen D; Tabbada, Kristina A; Salvador, Jazelyn M; Calacal, Gayvelline C; Sagum, Minerva S; Datar, Francisco A; Padilla, Sabino G; De Ungria, Maria Corazon A; Stoneking, Mark

    2014-01-01

    The Philippines is a strategic point in the Asia-Pacific region for the study of human diversity, history and origins, as it is a cross-road for human migrations and consequently exhibits enormous ethnolinguistic diversity. Following on a previous in-depth study of Y-chromosome variation, here we provide new insights into the maternal genetic history of Filipino ethnolinguistic groups by surveying complete mitochondrial DNA (mtDNA) genomes from a total of 14 groups (11 groups in this study and 3 groups previously published) including previously published mtDNA hypervariable segment (HVS) data from Filipino regional center groups. Comparison of HVS data indicate genetic differences between ethnolinguistic and regional center groups. The complete mtDNA genomes of 14 ethnolinguistic groups reveal genetic aspects consistent with the Y-chromosome, namely: diversity and heterogeneity of groups, no support for a simple dichotomy between Negrito and non-Negrito groups, and different genetic affinities with Asia-Pacific groups that are both ancient and recent. Although some mtDNA haplogroups can be associated with the Austronesian expansion, there are others that associate with South Asia, Near Oceania and Australia that are consistent with a southern migration route for ethnolinguistic group ancestors into the Asia-Pacific, with a timeline that overlaps with the initial colonization of the Asia-Pacific region, the initial colonization of the Philippines and a possible separate post-colonization migration into the Philippine archipelago. PMID:23756438

  17. Previous Estimates of Mitochondrial DNA Mutation Level Variance Did Not Account for Sampling Error: Comparing the mtDNA Genetic Bottleneck in Mice and Humans

    PubMed Central

    Wonnapinij, Passorn; Chinnery, Patrick F.; Samuels, David C.

    2010-01-01

    In cases of inherited pathogenic mitochondrial DNA (mtDNA) mutations, a mother and her offspring generally have large and seemingly random differences in the amount of mutated mtDNA that they carry. Comparisons of measured mtDNA mutation level variance values have become an important issue in determining the mechanisms that cause these large random shifts in mutation level. These variance measurements have been made with samples of quite modest size, which should be a source of concern because higher-order statistics, such as variance, are poorly estimated from small sample sizes. We have developed an analysis of the standard error of variance from a sample of size n, and we have defined error bars for variance measurements based on this standard error. We calculate variance error bars for several published sets of measurements of mtDNA mutation level variance and show how the addition of the error bars alters the interpretation of these experimental results. We compare variance measurements from human clinical data and from mouse models and show that the mutation level variance is clearly higher in the human data than it is in the mouse models at both the primary oocyte and offspring stages of inheritance. We discuss how the standard error of variance can be used in the design of experiments measuring mtDNA mutation level variance. Our results show that variance measurements based on fewer than 20 measurements are generally unreliable and ideally more than 50 measurements are required to reliably compare variances with less than a 2-fold difference. PMID:20362273

  18. Genealogy of the nuclear beta-fibrinogen locus in a highly structured lizard species: comparison with mtDNA and evidence for intragenic recombination in the hybrid zone.

    PubMed

    Godinho, R; Mendonça, B; Crespo, E G; Ferrand, N

    2006-06-01

    The study of nuclear genealogies in natural populations of nonmodel organisms is expected to provide novel insights into the evolutionary history of populations, especially when developed in the framework of well-established mtDNA phylogeographical scenarios. In the Iberian Peninsula, the endemic Schreiber's green lizard Lacerta schreiberi exhibits two highly divergent and allopatric mtDNA lineages that started to split during the late Pliocene. In this work, we performed a fine-scale analysis of the putative mtDNA contact zone together with a global analysis of the patterns of variation observed at the nuclear beta-fibrinogen intron 7 (beta-fibint7). Using a combination of DNA sequencing with single-strand conformational polymorphism (SSCP) analysis, we show that the observed genealogy at the beta-fibint7 locus reveals extensive admixture between two formerly isolated lizard populations while the two mtDNA lineages remain essentially allopatric. In addition, a private beta-fibint7 haplotype detected in the single population where both mtDNA lineages were found in sympatry is probably the result of intragenic recombination between the two more common and divergent beta-fibint7 haplotypes. Our results suggest that the progressive incorporation of nuclear genealogies in investigating the ancient demography and admixture dynamics of divergent genomes will be necessary to obtain a more comprehensive picture of the evolutionary history of organisms.

  19. Mapping the MMPI-2-RF Specific Problems Scales Onto Extant Psychopathology Structures.

    PubMed

    Sellbom, Martin

    2017-01-01

    A main objective in developing the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008 ) was to link the hierarchical structure of the instrument's scales to contemporary psychopathology and personality models for greater enhancement of construct validity. Initial evidence published with the Restructured Clinical scales has indicated promising results in that the higher order structure of these measures maps onto those reported in the extant psychopathology literature. This study focused on evaluating the internal structure of the Specific Problems and Interest scales, which have not yet been examined in this manner. Two large, mixed-gender outpatient and correctional samples were used. Exploratory factor analyses revealed consistent evidence for a 4-factor structure representing somatization, negative affect, externalizing, and social detachment. Convergent and discriminant validity analyses in the outpatient sample yielded a pattern of results consistent with expectations. These findings add further evidence to indicate that the MMPI-2-RF hierarchy of scales map onto extant psychopathology literature, and also add support to the notion that somatization and detachment should be considered important higher order domains in the psychopathology literature.

  20. A nomenclator of extant and fossil taxa of the Valvatidae (Gastropoda, Ectobranchia)

    PubMed Central

    Haszprunar, Gerhard

    2014-01-01

    Abstract A compilation of all supra- and (infra-) specific taxa of extant and fossil Valvatidae, a group of freshwater operculate snails, is provided, including taxa initially described in this family and subsequently classified in other families, as well as names containing errors or misspellings. The extensive reference list is directly linked to the available electronic source (digital view or pdf-download) of the respective papers. PMID:24578604

  1. The Phylogeny of the Four Pan-American MtDNA Haplogroups: Implications for Evolutionary and Disease Studies

    PubMed Central

    Achilli, Alessandro; Perego, Ugo A.; Bravi, Claudio M.; Coble, Michael D.; Kong, Qing-Peng; Woodward, Scott R.; Salas, Antonio; Torroni, Antonio; Bandelt, Hans-Jürgen

    2008-01-01

    Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least amount of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA) genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s) contributed only six (successful) founder haplotypes to these haplogroups. The derived clades are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception) using the conventional calibration. The average of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds. PMID:18335039

  2. Species phylogeny and diversification process of Northeast Asian Pungitius revealed by AFLP and mtDNA markers.

    PubMed

    Takahashi, Hiroshi; Møller, Peter R; Shedko, Sergei V; Ramatulla, Temirbekov; Joen, Sang-Rin; Zhang, Chun-Guang; Sideleva, Valentina G; Takata, Keisuke; Sakai, Harumi; Goto, Akira; Nishida, Mutsumi

    2016-06-01

    Pungitius is a highly diversified genus of sticklebacks (Gasterosteidae) occurring widely in northern parts of the Northern Hemisphere. Several ecologically and genetically divergent types that are largely isolated reproductively but occasionally hybridize in sympatry have been discovered in Northeast Asia, although the taxonomy and evolutionary relationships among them remain unclear. We used amplified fragment length polymorphism (AFLP) and mitochondrial DNA (mtDNA) markers to infer phylogenies among individuals collected from sympatric and allopatric populations, including the type localities of the described species. Phylogenetic analyses based on 2683 polymorphic AFLP loci confirmed seven species, each of which (except for one entirely allopatric species P. platygaster) was clearly differentiated from one or two other sympatric species and constituted a highly supported monophyletic clade with conspecific allopatric populations. The phylogeny showed that two lineages arose early; one gave rise to two species (circumpolar species P. pungitius and Paratethys species P. platygaster) and the other to five species endemic to Northeast Asia (P. sinensis, P. tymensis, P. polyakovi, P. kaibarae, and P. bussei). The brackish-water, freshwater, and Omono types previously discovered in Japan were reidentified as P. pungitius, P. sinensis, and P. kaibarae, respectively. A marked incongruence was noted between the phylogenies of AFLP and mtDNA markers, suggesting the occasional occurrence of hybridization and mtDNA introgression among distinct species. Our results highlight that the marginal seas of Northeast Asia played a key role as barriers to or facilitators of gene flow in the evolution of species diversity of Pungitius concentrated in this region. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Lung anatomy and histology of the extant coelacanth shed light on the loss of air-breathing during deep-water adaptation in actinistians.

    PubMed

    Cupello, Camila; Meunier, François J; Herbin, Marc; Clément, Gaël; Brito, Paulo M

    2017-03-01

    Lungs are specialized organs originated from the posterior pharyngeal cavity and considered as plesiomorphic for osteichthyans, as they are found in extant basal actinopterygians (i.e. Polypterus ) and in all major groups of extant sarcopterygians. The presence of a vestigial lung in adult stages of the extant coelacanth Latimeria chalumnae is the result of allometric growth during ontogeny, in relation with long-time adaptation to deep water. Here, we present the first detailed histological and anatomical description of the lung of Latimeria chalumnae , providing new insights into its arrested differentiation in an air-breathing complex, mainly represented by the absence of pneumocytes and of compartmentalization in the latest ontogenetic stages.

  4. Testing for Depéret's Rule (Body Size Increase) in Mammals using Combined Extinct and Extant Data

    PubMed Central

    Bokma, Folmer; Godinot, Marc; Maridet, Olivier; Ladevèze, Sandrine; Costeur, Loïc; Solé, Floréal; Gheerbrant, Emmanuel; Peigné, Stéphane; Jacques, Florian; Laurin, Michel

    2016-01-01

    Whether or not evolutionary lineages in general show a tendency to increase in body size has often been discussed. This tendency has been dubbed “Cope's rule” but because Cope never hypothesized it, we suggest renaming it after Depéret, who formulated it clearly in 1907. Depéret's rule has traditionally been studied using fossil data, but more recently a number of studies have used present-day species. While several paleontological studies of Cenozoic placental mammals have found support for increasing body size, most studies of extant placentals have failed to detect such a trend. Here, we present a method to combine information from present-day species with fossil data in a Bayesian phylogenetic framework. We apply the method to body mass estimates of a large number of extant and extinct mammal species, and find strong support for Depéret's rule. The tendency for size increase appears to be driven not by evolution toward larger size in established species, but by processes related to the emergence of new species. Our analysis shows that complementary data from extant and extinct species can greatly improve inference of macroevolutionary processes. PMID:26508768

  5. Bats (Chiroptera: Noctilionoidea) Challenge a Recent Origin of Extant Neotropical Diversity.

    PubMed

    Rojas, Danny; Warsi, Omar M; Dávalos, Liliana M

    2016-05-01

    The mechanisms underlying the high extant biodiversity in the Neotropics have been controversial since the 19th century. Support for the influence of period-specific changes on diversification often rests on detecting more speciation events during a particular period. The timing of speciation events may reflect the influence of incomplete taxon sampling, protracted speciation, and null processes of lineage accumulation. Here we assess the influence of these factors on the timing of speciation with new multilocus data for New World noctilionoid bats (Chiroptera: Noctilionoidea). Biogeographic analyses revealed the importance of the Neotropics in noctilionoid diversification, and the critical role of dispersal. We detected no shift in speciation rate associated with the Quaternary or pre-Quaternary periods, and instead found an increase in speciation linked to the evolution of the subfamily Stenodermatinae (∼18 Ma). Simulations modeling constant speciation and extinction rates for the phylogeny systematically showed more speciation events in the Quaternary. Since recording more divergence events in the Quaternary can result from lineage accumulation, the age of extant sister species cannot be interpreted as supporting higher speciation rates during this period. Instead, analyzing the factors that influence speciation requires modeling lineage-specific traits and environmental, spatial, and ecological drivers of speciation. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Extant primitively segmented spiders have recently diversified from an ancient lineage.

    PubMed

    Xu, Xin; Liu, Fengxiang; Cheng, Ren-Chung; Chen, Jian; Xu, Xiang; Zhang, Zhisheng; Ono, Hirotsugu; Pham, Dinh Sac; Norma-Rashid, Y; Arnedo, Miquel A; Kuntner, Matjaž; Li, Daiqin

    2015-06-07

    Living fossils are lineages that have retained plesiomorphic traits through long time periods. It is expected that such lineages have both originated and diversified long ago. Such expectations have recently been challenged in some textbook examples of living fossils, notably in extant cycads and coelacanths. Using a phylogenetic approach, we tested the patterns of the origin and diversification of liphistiid spiders, a clade of spiders considered to be living fossils due to their retention of arachnid plesiomorphies and their exclusive grouping in Mesothelae, an ancient clade sister to all modern spiders. Facilitated by original sampling throughout their Asian range, we here provide the phylogenetic framework necessary for reconstructing liphistiid biogeographic history. All phylogenetic analyses support the monophyly of Liphistiidae and of eight genera. As the fossil evidence supports a Carboniferous Euramerican origin of Mesothelae, our dating analyses postulate a long eastward over-land dispersal towards the Asian origin of Liphistiidae during the Palaeogene (39-58 Ma). Contrary to expectations, diversification within extant liphistiid genera is relatively recent, in the Neogene and Late Palaeogene (4-24 Ma). While no over-water dispersal events are needed to explain their evolutionary history, the history of liphistiid spiders has the potential to play prominently in vicariant biogeographic studies. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster

    PubMed Central

    Aw, Wen C.; Garvin, Michael R.; Melvin, Richard G.

    2017-01-01

    Here we determine the sex-specific influence of mtDNA type (mitotype) and diet on mitochondrial functions and physiology in two Drosophila melanogaster lines. In many species, males and females differ in aspects of their energy production. These sex-specific influences may be caused by differences in evolutionary history and physiological functions. We predicted the influence of mtDNA mutations should be stronger in males than females as a result of the organelle’s maternal mode of inheritance in the majority of metazoans. In contrast, we predicted the influence of diet would be greater in females due to higher metabolic flexibility. We included four diets that differed in their protein: carbohydrate (P:C) ratios as they are the two-major energy-yielding macronutrients in the fly diet. We assayed four mitochondrial function traits (Complex I oxidative phosphorylation, reactive oxygen species production, superoxide dismutase activity, and mtDNA copy number) and four physiological traits (fecundity, longevity, lipid content, and starvation resistance). Traits were assayed at 11 d and 25 d of age. Consistent with predictions we observe that the mitotype influenced males more than females supporting the hypothesis of a sex-specific selective sieve in the mitochondrial genome caused by the maternal inheritance of mitochondria. Also, consistent with predictions, we found that the diet influenced females more than males. PMID:29166659

  8. The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny.

    PubMed

    Kayal, Ehsan; Lavrov, Dennis V

    2008-02-29

    The 16,314-nuceotide sequence of the linear mitochondrial DNA (mtDNA) molecule of Hydra oligactis (Cnidaria, Hydrozoa)--the first from the class Hydrozoa--has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs, as is typical for cnidarians. All genes have the same transcriptional orientation and their arrangement in the genome is similar to that of the jellyfish Aurelia aurita. In addition, a partial copy of cox1 is present at one end of the molecule in a transcriptional orientation opposite to the rest of the genes, forming a part of inverted terminal repeat characteristic of linear mtDNA and linear mitochondrial plasmids. The sequence close to at least one end of the molecule contains several homonucleotide runs as well as small inverted repeats that are able to form strong secondary structures and may be involved in mtDNA maintenance and expression. Phylogenetic analysis of mitochondrial genes of H. oligactis and other cnidarians supports the Medusozoa hypothesis but also suggests that Anthozoa may be paraphyletic, with octocorallians more closely related to the Medusozoa than to the Hexacorallia. The latter inference implies that Anthozoa is paraphyletic and that the polyp (rather than a medusa) is the ancestral body type in Cnidaria.

  9. Evidence and age-related distribution of mtDNA D-loop point mutations in skeletal muscle from healthy subjects and mitochondrial patients.

    PubMed

    Del Bo, Roberto; Bordoni, Andreina; Martinelli Boneschi, Filippo; Crimi, Marco; Sciacco, Monica; Bresolin, Nereo; Scarlato, Guglielmo; Comi, Giacomo Pietri

    2002-10-15

    The progressive accumulation of mitochondrial DNA (mtDNA) alterations, ranging from single mutations to large-scale deletions, in both the normal ageing process and pathological conditions is a relevant phenomenon in terms of frequency and heteroplasmic degree. Recently, two point mutations (A189G and T408A) within the Displacement loop (D-loop) region, the control region for mtDNA replication, were shown to occur in skeletal muscles from aged individuals. We evaluated the presence and the heteroplasmy levels of these two mutations in muscle biopsies from 91 unrelated individuals of different ages (21 healthy subjects and 70 patients affected by mitochondrial encephalomyopathies). Overall, both mutations significantly accumulate with age. However, a different relationship was discovered among the different subgroups of patients: a higher number of A189G positive subjects younger than 53 years was detected in the subgroup of multiple-deleted patients; furthermore, a trend towards an increased risk for the mutations was evidenced among patients carrying multiple deletions when compared to healthy controls. These findings support the idea that a common biological mechanism determines the accumulation of somatic point mutations in the D-loop region, both in healthy subjects and in mitochondrial myopathy patients. At the same time, it appears that disorders caused by mutations of nuclear genes controlling mtDNA replication (the "mtDNA multiple deletions" syndromes) present a temporal advantage to mutate in the D-loop region. This observation may be relevant to the definition of the molecular pathogenesis of these latter syndromes. Copyright 2002 Elsevier Science B.V.

  10. Din7 and Mhr1 expression levels regulate double-strand-break–induced replication and recombination of mtDNA at ori5 in yeast

    PubMed Central

    Ling, Feng; Hori, Akiko; Yoshitani, Ayako; Niu, Rong; Yoshida, Minoru; Shibata, Takehiko

    2013-01-01

    The Ntg1 and Mhr1 proteins initiate rolling-circle mitochondrial (mt) DNA replication to achieve homoplasmy, and they also induce homologous recombination to maintain mitochondrial genome integrity. Although replication and recombination profoundly influence mitochondrial inheritance, the regulatory mechanisms that determine the choice between these pathways remain unknown. In Saccharomyces cerevisiae, double-strand breaks (DSBs) introduced by Ntg1 at the mitochondrial replication origin ori5 induce homologous DNA pairing by Mhr1, and reactive oxygen species (ROS) enhance production of DSBs. Here, we show that a mitochondrial nuclease encoded by the nuclear gene DIN7 (DNA damage inducible gene) has 5′-exodeoxyribonuclease activity. Using a small ρ− mtDNA bearing ori5 (hypersuppressive; HS) as a model mtDNA, we revealed that DIN7 is required for ROS-enhanced mtDNA replication and recombination that are both induced at ori5. Din7 overproduction enhanced Mhr1-dependent mtDNA replication and increased the number of residual DSBs at ori5 in HS-ρ− cells and increased deletion mutagenesis at the ori5 region in ρ+ cells. However, simultaneous overproduction of Mhr1 suppressed all of these phenotypes and enhanced homologous recombination. Our results suggest that after homologous pairing, the relative activity levels of Din7 and Mhr1 modulate the preference for replication versus homologous recombination to repair DSBs at ori5. PMID:23598996

  11. Din7 and Mhr1 expression levels regulate double-strand-break-induced replication and recombination of mtDNA at ori5 in yeast.

    PubMed

    Ling, Feng; Hori, Akiko; Yoshitani, Ayako; Niu, Rong; Yoshida, Minoru; Shibata, Takehiko

    2013-06-01

    The Ntg1 and Mhr1 proteins initiate rolling-circle mitochondrial (mt) DNA replication to achieve homoplasmy, and they also induce homologous recombination to maintain mitochondrial genome integrity. Although replication and recombination profoundly influence mitochondrial inheritance, the regulatory mechanisms that determine the choice between these pathways remain unknown. In Saccharomyces cerevisiae, double-strand breaks (DSBs) introduced by Ntg1 at the mitochondrial replication origin ori5 induce homologous DNA pairing by Mhr1, and reactive oxygen species (ROS) enhance production of DSBs. Here, we show that a mitochondrial nuclease encoded by the nuclear gene DIN7 (DNA damage inducible gene) has 5'-exodeoxyribonuclease activity. Using a small ρ(-) mtDNA bearing ori5 (hypersuppressive; HS) as a model mtDNA, we revealed that DIN7 is required for ROS-enhanced mtDNA replication and recombination that are both induced at ori5. Din7 overproduction enhanced Mhr1-dependent mtDNA replication and increased the number of residual DSBs at ori5 in HS-ρ(-) cells and increased deletion mutagenesis at the ori5 region in ρ(+) cells. However, simultaneous overproduction of Mhr1 suppressed all of these phenotypes and enhanced homologous recombination. Our results suggest that after homologous pairing, the relative activity levels of Din7 and Mhr1 modulate the preference for replication versus homologous recombination to repair DSBs at ori5.

  12. Forensic analysis of mtDNA haplotypes from two rural communities in Haiti reflects their population history.

    PubMed

    Wilson, Jamie L; Saint-Louis, Vertus; Auguste, Jensen O; Jackson, Bruce A

    2012-11-01

    Very little genetic data exist on Haitians, an estimated 1.2 million of whom, not including illegal immigrants, reside in the United States. The absence of genetic data on a population of this size reduces the discriminatory power of criminal and missing-person DNA databases in the United States and Caribbean. We present a forensic population study that provides the first genetic data set for Haiti. This study uses hypervariable segment one (HVS-1) mitochondrial DNA (mtDNA) nucleotide sequences from 291 subjects primarily from rural areas of northern and southern Haiti, where admixture would be minimal. Our results showed that the African maternal genetic component of Haitians had slightly higher West-Central African admixture than African-Americans and Dominicans, but considerably less than Afro-Brazilians. These results lay the foundation for further forensic genetics studies in the Haitian population and serve as a model for forensic mtDNA identification of individuals in other isolated or rural communities. © 2012 American Academy of Forensic Sciences.

  13. Lung anatomy and histology of the extant coelacanth shed light on the loss of air-breathing during deep-water adaptation in actinistians

    PubMed Central

    Meunier, François J.; Herbin, Marc; Clément, Gaël; Brito, Paulo M.

    2017-01-01

    Lungs are specialized organs originated from the posterior pharyngeal cavity and considered as plesiomorphic for osteichthyans, as they are found in extant basal actinopterygians (i.e. Polypterus) and in all major groups of extant sarcopterygians. The presence of a vestigial lung in adult stages of the extant coelacanth Latimeria chalumnae is the result of allometric growth during ontogeny, in relation with long-time adaptation to deep water. Here, we present the first detailed histological and anatomical description of the lung of Latimeria chalumnae, providing new insights into its arrested differentiation in an air-breathing complex, mainly represented by the absence of pneumocytes and of compartmentalization in the latest ontogenetic stages. PMID:28405393

  14. Phenotypic and mtDNA variation in Philippine Kappaphycus cottonii (Gigartinales, Rhodophyta).

    PubMed

    Dumilag, Richard V; Gallardo, William George M; Garcia, Christian Philip C; You, YeaEun; Chaves, Alyssa Keren G; Agahan, Lance

    2017-11-09

    Members of the carrageenan-producing seaweeds of the genus Kappapphycus have a complicated taxonomic history particularly with regard to species identification. Many taxonomic challenges in this group have been currently addressed with the use of mtDNA sequences. The phylogenetic status and genetic diversity of one of the lesser known species, Kappaphycus cottonii, have repeatedly come into question. This study explored the genetic variation in Philippine K. cottonii using the mtDNA COI-5P gene and cox2-3 spacer sequences. The six phenotypic forms in K. cottonii did not correspond to the observed genetic variability; hinting at the greater involvement of environmental factors in determining changes to the morphology of this alga. Our results revealed that the Philippine K. cottonii has the richest number of haplotypes that have been detected, so far, for any Kappaphycus species. Our inferred phylogenetic trees suggested two lineages: a lineage, which exclusively includes K. cottonii and another lineage comprising the four known Kappaphycus species: K. alvarezii, K. inermis, K. malesianus, and K. striatus. The dichotomy supports the apparent synamorphy for each of these lineages (the strictly terete thalli, lack of protuberances, and the presence of a hyphal central core in the latter group, while the opposite of these morphologies in K. cottonii). These findings shed new light on understanding the evolutionary history of the genus. Assessing the breadth of the phenotypic and genetic variation in K. cottonii has implications for the conservation and management of the overall Kappaphycus genetic resources, especially in the Philippines.

  15. Correlates between calcaneal morphology and locomotion in extant and extinct carnivorous mammals.

    PubMed

    Panciroli, Elsa; Janis, Christine; Stockdale, Maximilian; Martín-Serra, Alberto

    2017-10-01

    Locomotor mode is an important component of an animal's ecology, relating to both habitat and substrate choice (e.g., arboreal versus terrestrial) and in the case of carnivores, to mode of predation (e.g., ambush versus pursuit). Here, we examine how the morphology of the calcaneum, the 'heel bone' in the tarsus, correlates with locomotion in extant carnivores. Other studies have confirmed the correlation of calcaneal morphology with locomotion behaviour and habitat. The robust nature of the calcaneum means that it is frequently preserved in the fossil record. Here, we employ linear measurements and 2D-geometric morphometrics on a sample of calcanea from eighty-seven extant carnivorans and demonstrate a signal of correlation between calcaneal morphology and locomotor mode that overrides phylogeny. We used this correlation to determine the locomotor mode, and hence aspects of the palaeobiology of, 47 extinct carnivorous mammal taxa, including both Carnivora and Creodonta. We found ursids (bears), clustered together, separate from the other carnivorans. Our results support greater locomotor diversity for nimravids (the extinct 'false sabertooths', usually considered to be more arboreal), than previously expected. However, there are limitations to interpretation of extinct taxa because their robust morphology is not fully captured in the range of modern carnivoran morphology. © 2017 Wiley Periodicals, Inc.

  16. 'Mitominis': multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples.

    PubMed

    Eichmann, Cordula; Parson, Walther

    2008-09-01

    The traditional protocol for forensic mitochondrial DNA (mtDNA) analyses involves the amplification and sequencing of the two hypervariable segments HVS-I and HVS-II of the mtDNA control region. The primers usually span fragment sizes of 300-400 bp each region, which may result in weak or failed amplification in highly degraded samples. Here we introduce an improved and more stable approach using shortened amplicons in the fragment range between 144 and 237 bp. Ten such amplicons were required to produce overlapping fragments that cover the entire human mtDNA control region. These were co-amplified in two multiplex polymerase chain reactions and sequenced with the individual amplification primers. The primers were carefully selected to minimize binding on homoplasic and haplogroup-specific sites that would otherwise result in loss of amplification due to mis-priming. The multiplexes have successfully been applied to ancient and forensic samples such as bones and teeth that showed a high degree of degradation.

  17. African human mtDNA phylogeography at-a-glance.

    PubMed

    Rosa, Alexandra; Brehem, António

    2011-01-01

    The mitochondrial DNA (mtDNA) genetic system has long proven to be useful for studying the demographic history of our species, since their proposed Southeast/East African origin 200 kya. Despite the weak archaeological and anthropologic records, which render a difficult understanding of early intra- continental migrations, the phylogenetic L0-L1'6 split at about 140-160 kya is thought to represent also an early sub-structuring of small and isolated communities in South and East Africa. Regional variation accumulated over the following millennia, with L2 and L3 lineages arising in Central and East Africa 100-75 kya. Their sub-Saharan dispersal not later than 60 kya, largely overwhelmed the L0'1 distribution, nowadays limited to South African Khoisan and Central African Pygmies. Cyclic expansions and retractions of the equatorial forest between 40 kya and the "Last Glacial Aridity Maximum" were able to reduce the genetic diversity of modern humans. Surviving regional-specific lineages have emerged from the Sahelian refuge areas, repopulating the region and contributing to the overall West African genetic similarity. Particular L1- L3 lineages mirror the substantial population growth made possible by moister and warmer conditions of the Sahara's Wet Phase and the adoption of agriculture and iron smelting techniques. The diffusion of the farming expertise from a Central African source towards South Africa was mediated by the Bantu people 3 kya. The strong impact of their gene flow almost erased the pre-existent maternal pool. Non-L mtDNAs testify for Eurasian lineages that have enriched the African maternal pool at different timeframes: i) Near and Middle Eastern influences in Upper Palaeolithic, probably link to the spread of Afro-Asiatic languages; ii) particular lineages from West Eurasia around or after the glacial period; iii) post-glacial mtDNA signatures from the Franco-Cantabrian refugia, that have crossed the Strait of Gibraltar and iv) Eurasian lineages

  18. Retrocausation Or Extant Indefinite Reality?

    NASA Astrophysics Data System (ADS)

    Houtkooper, Joop M.

    2006-10-01

    The possibility of retrocausation has been considered to explain the occurrence of anomalous phenomena in which the ostensible effects are preceded by their causes. A scrutiny of both experimental methodology and the experimental data is called for. A review of experimental data reveals the existence of such effects to be a serious possibility. The experimental methodology entails some conceptual difficulties, these depending on the underlying assumptions about the effects. A major point is an ambiguity between anomalous acquisition of information and retrocausation in exerted influences. A unifying theory has been proposed, based upon the fundamental randomness of quantum mechanics. Quantum mechanical randomness may be regarded as a tenacious phenomenon, that apparently is only resolved by the human observer of the random variable in question. This has led to the "observational theory" of anomalous phenomena, which is based upon the assumption that the preference of a motivated observer is able to interact with the extant indefinite random variable that is being observed. This observational theory has led to a novel prediction, which has been corroborated in experiments. Moreover, different classes of anomalous phenomena can be explained by the same basic mechanism. This foregoes retroactive causation, but, instead, requires that macroscopic physical variables remain in a state of indefinite reality and thus remain influenceable by mental efforts until these are observed. More work is needed to discover the relevant psychological and neurophysiological variables involved in effective motivated observation. Besides these practicalities, the fundamentals still have some interesting loose ends.

  19. The evolution of body size in extant groups of North American freshwater fishes: speciation, size distributions, and Cope's rule.

    PubMed

    Knouft, Jason H; Page, Lawrence M

    2003-03-01

    Change in body size within an evolutionary lineage over time has been under investigation since the synthesis of Cope's rule, which suggested that there is a tendency for mammals to evolve larger body size. Data from the fossil record have subsequently been examined for several other taxonomic groups to determine whether they also displayed an evolutionary increase in body size. However, we are not aware of any species-level study that has investigated the evolution of body size within an extant continental group. Data acquired from the fossil record and data derived from the evolutionary relationships of extant species are not similar, with each set exhibiting both strengths and weaknesses related to inferring evolutionary patterns. Consequently, expectation that general trends exhibited in the fossil record will correspond to patterns in extant groups is not necessarily warranted. Using phylogenetic relationships of extant species, we show that five of nine families of North American freshwater fishes exhibit an evolutionary trend of decreasing body size. These trends result from the basal position of large species and the more derived position of small species within families. Such trends may be caused by the invasion of small streams and subsequent isolation and speciation. This pattern, potentially influenced by size-biased dispersal rates and the high percentage of small streams in North America, suggests a scenario that could result in the generation of the size-frequency distribution of North American freshwater fishes.

  20. Significant genetic boundaries and spatial dynamics of giant pandas occupying fragmented habitat across southwest China.

    PubMed

    Zhu, Lifeng; Zhang, Shanning; Gu, Xiaodong; Wei, Fuwen

    2011-03-01

    Understanding population history and genetic structure are key drivers of ecological research. Here, we studied two highly fragmented and isolated populations (Xiaoxiangling and Daxiangling) of giant pandas (Ailuropoda melanoleuca) at the extreme southwestern edge of their distribution. This area also contains the Dadu River, national road 108 and various human infrastructure and development, providing an ideal region in which we can identify the effects of different barriers on animal movements. We used partial mitochondrial control region (mtDNA) and nine microsatellite loci (nuclear DNA) data derived from 192 faecal and one blood sample collected from the wild. We found 136 genotypes corresponding to 53 unique multilocus genotypes and eight unique control region haplotypes (653 bp). Significant genetic boundaries correlated spatially with the Dadu River (K = 2). We estimate that a major divergence took place between these populations 26,000 years bp, at around the similar time the rock surface of valley bottom formed in Dadu River. The national road has resulted in further recent population differentiation (Pairwise F(S) on mtDNA and nuclear DNA) so that in effect, four smaller sub-populations now exist. Promisingly, we identified two possible first-generation migrants and their migration paths, and recommended the immediate construction of a number of corridors. Fortunately, the Chinese government has accepted our advice and is now planning corridor construction. © 2011 Blackwell Publishing Ltd.

  1. Multiple differences in calling songs and other traits between solitary and gregarious Mormon crickets from allopatric mtDNA clades

    PubMed Central

    Bailey, Nathan W; Gwynne, Darryl T; Bailey, William V; Ritchie, Michael G

    2007-01-01

    Background In acoustic species, traits such as male calling song are likely to diverge quickly between allopatric populations due to sexual selection, and divergence in parameters such as carrier frequency, chirp structure, and other important song characters can influence sexual isolation. Here we make use of two forms of Mormon crickets to examine differences in a broad suite of traits that have the potential to influence speciation via sexual isolation. Mormon crickets in "gregarious" populations aggregate into dense migratory bands, and females are the sexually competitive sex (sex-role reversal). There is also a non-outbreak "solitary" form. These two forms are largely but not perfectly correlated with a significant mtDNA subdivision within the species that is thought to have arisen in allopatry. Combined information about multiple, independently evolving traits, such as morphology and structural and behavioural differences in calling song, provides greater resolution of the overall differences between these allopatric populations, and allows us to assess their stage of divergence. We test two predictions, first that the forms differ in song and second that gregarious males are more reluctant to sing than solitary males due to sex role reversal. We also tested for a difference in the relationship between the size of the forewing resonator, the mirror, and carrier frequency, as most models of sound production in crickets indicate that mirror size should predict carrier frequency. Results Multivariate analyses showed that solitary and gregarious individuals from different populations representing the two mtDNA clades had almost non-overlapping distributions based on multiple song and morphological measurements. Carrier frequency differed between the two, and gregarious males were more reluctant to sing overall. Mirror size predicted carrier frequency; however, the relationship between mirror size and surface area varied between solitary and gregarious forms

  2. The genus Mymaromella (Hymenoptera: Mymarommatidae) in North America, with a key to described extant species

    Treesearch

    John T. Huber; Gary A.P. Gibson; Leah S. Bauer; Houping Liu; Michael Gates

    2008-01-01

    A key is given to the five described extant species of Mymaromella. Two new species, Mymaromella pala Huber & Gibson, sp. n. and M. palella Huber & Gibson, sp. n. (Mymarommatoidea: Mymarommatidae), are described as the first species of the family from North America. Psocoptera (Insecta) are proposed as...

  3. Triangulating the provenance of African elephants using mitochondrial DNA

    PubMed Central

    Ishida, Yasuko; Georgiadis, Nicholas J; Hondo, Tomoko; Roca, Alfred L

    2013-01-01

    African elephant mitochondrial (mt) DNA follows a distinctive evolutionary trajectory. As females do not migrate between elephant herds, mtDNA exhibits low geographic dispersal. We therefore examined the effectiveness of mtDNA for assigning the provenance of African elephants (or their ivory). For 653 savanna and forest elephants from 22 localities in 13 countries, 4258 bp of mtDNA was sequenced. We detected eight mtDNA subclades, of which seven had regionally restricted distributions. Among 108 unique haplotypes identified, 72% were found at only one locality and 84% were country specific, while 44% of individuals carried a haplotype detected only at their sampling locality. We combined 316 bp of our control region sequences with those generated by previous trans-national surveys of African elephants. Among 101 unique control region haplotypes detected in African elephants across 81 locations in 22 countries, 62% were present in only a single country. Applying our mtDNA results to a previous microsatellite-based assignment study would improve estimates of the provenance of elephants in 115 of 122 mis-assigned cases. Nuclear partitioning followed species boundaries and not mtDNA subclade boundaries. For taxa such as elephants in which nuclear and mtDNA markers differ in phylogeography, combining the two markers can triangulate the origins of confiscated wildlife products. PMID:23798975

  4. A Signal, from Human mtDNA, of Postglacial Recolonization in Europe

    PubMed Central

    Torroni, Antonio; Bandelt, Hans-Jürgen; Macaulay, Vincent; Richards, Martin; Cruciani, Fulvio; Rengo, Chiara; Martinez-Cabrera, Vicente; Villems, Richard; Kivisild, Toomas; Metspalu, Ene; Parik, Jüri; Tolk, Helle-Viivi; Tambets, Kristiina; Forster, Peter; Karger, Bernd; Francalacci, Paolo; Rudan, Pavao; Janicijevic, Branka; Rickards, Olga; Savontaus, Marja-Liisa; Huoponen, Kirsi; Laitinen, Virpi; Koivumäki, Satu; Sykes, Bryan; Hickey, Eileen; Novelletto, Andrea; Moral, Pedro; Sellitto, Daniele; Coppa, Alfredo; Al-Zaheri, Nadia; Santachiara-Benerecetti, A. Silvana; Semino, Ornella; Scozzari, Rosaria

    2001-01-01

    Mitochondrial HVS-I sequences from 10,365 subjects belonging to 56 populations/geographical regions of western Eurasia and northern Africa were first surveyed for the presence of the T→C transition at nucleotide position 16298, a mutation which has previously been shown to characterize haplogroup V mtDNAs. All mtDNAs with this mutation were then screened for a number of diagnostic RFLP sites, revealing two major subsets of mtDNAs. One is haplogroup V proper, and the other has been termed “pre*V,” since it predates V phylogenetically. The rather uncommon pre*V tends to be scattered throughout Europe (and northwestern Africa), whereas V attains two peaks of frequency: one situated in southwestern Europe and one in the Saami of northern Scandinavia. Geographical distributions and ages support the scenario that pre*V originated in Europe before the Last Glacial Maximum (LGM), whereas the more recently derived haplogroup V arose in a southwestern European refugium soon after the LGM. The arrival of V in eastern/central Europe, however, occurred much later, possibly with (post-)Neolithic contacts. The distribution of haplogroup V mtDNAs in modern European populations would thus, at least in part, reflect the pattern of postglacial human recolonization from that refugium, affecting even the Saami. Overall, the present study shows that the dissection of mtDNA variation into small and well-defined evolutionary units is an essential step in the identification of spatial frequency patterns. Mass screening of a few markers identified using complete mtDNA sequences promises to be an efficient strategy for inferring features of human prehistory. PMID:11517423

  5. Limited Phylogeographic Signal in Sex-Linked and Autosomal Loci Despite Geographically, Ecologically, and Phenotypically Concordant Structure of mtDNA Variation in the Holarctic Avian Genus Eremophila

    PubMed Central

    Drovetski, Sergei V.; Raković, Marko; Semenov, Georgy; Fadeev, Igor V.; Red’kin, Yaroslav A.

    2014-01-01

    Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early - Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris) with respect to the Temminck's lark (E. bilopha). In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species. PMID:24498139

  6. Monophyletic origin of domestic bactrian camel (Camelus bactrianus) and its evolutionary relationship with the extant wild camel (Camelus bactrianus ferus)

    PubMed Central

    Ji, R; Cui, P; Ding, F; Geng, J; Gao, H; Zhang, H; Yu, J; Hu, S; Meng, H

    2009-01-01

    The evolutionary relationship between the domestic bactrian camel and the extant wild two-humped camel and the factual origin of the domestic bactrian camel remain elusive. We determined the sequence of mitochondrial cytb gene from 21 camel samples, including 18 domestic camels (three Camelus bactrianus xinjiang, three Camelus bactrianus sunite, three Camelus bactrianus alashan, three Camelus bactrianus red, three Camelus bactrianus brown and three Camelus bactrianus normal) and three wild camels (Camelus bactrianus ferus). Our phylogenetic analyses revealed that the extant wild two-humped camel may not share a common ancestor with the domestic bactrian camel and they are not the same subspecies at least in their maternal origins. Molecular clock analysis based on complete mitochondrial genome sequences indicated that the sub-speciation of the two lineages had begun in the early Pleistocene, about 0.7 million years ago. According to the archaeological dating of the earliest known two-humped camel domestication (5000–6000 years ago), we could conclude that the extant wild camel is a separate lineage but not the direct progenitor of the domestic bactrian camel. Further phylogenetic analysis suggested that the bactrian camel appeared monophyletic in evolutionary origin and that the domestic bactrian camel could originate from a single wild population. The data presented here show how conservation strategies should be implemented to protect the critically endangered wild camel, as it is the last extant form of the wild tribe Camelina. PMID:19292708

  7. Random Mutagenesis, Clonal Events, and Embryonic or Somatic Origin Determine the mtDNA Variant Type and Load in Human Pluripotent Stem Cells.

    PubMed

    Zambelli, Filippo; Mertens, Joke; Dziedzicka, Dominika; Sterckx, Johan; Markouli, Christina; Keller, Alexander; Tropel, Philippe; Jung, Laura; Viville, Stephane; Van de Velde, Hilde; Geens, Mieke; Seneca, Sara; Sermon, Karen; Spits, Claudia

    2018-06-07

    In this study, we deep-sequenced the mtDNA of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) and their source cells and found that the majority of variants pre-existed in the cells used to establish the lines. Early-passage hESCs carried few and low-load heteroplasmic variants, similar to those identified in oocytes and inner cell masses. The number and heteroplasmic loads of these variants increased with prolonged cell culture. The study of 120 individual cells of early- and late-passage hESCs revealed a significant diversity in mtDNA heteroplasmic variants at the single-cell level and that the variants that increase during time in culture are always passenger to the appearance of chromosomal abnormalities. We found that early-passage hiPSCs carry much higher loads of mtDNA variants than hESCs, which single-fibroblast sequencing proved pre-existed in the source cells. Finally, we show that these variants are stably transmitted during short-term differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. MtDNA profile of West Africa Guineans: towards a better understanding of the Senegambia region.

    PubMed

    Rosa, Alexandra; Brehm, António; Kivisild, Toomas; Metspalu, Ene; Villems, Richard

    2004-07-01

    The matrilineal genetic composition of 372 samples from the Republic of Guiné-Bissau (West African coast) was studied using RFLPs and partial sequencing of the mtDNA control and coding region. The majority of the mtDNA lineages of Guineans (94%) belong to West African specific sub-clusters of L0-L3 haplogroups. A new L3 sub-cluster (L3h) that is found in both eastern and western Africa is present at moderately low frequencies in Guinean populations. A non-random distribution of haplogroups U5 in the Fula group, the U6 among the "Brame" linguistic family and M1 in the Balanta-Djola group, suggests a correlation between the genetic and linguistic affiliation of Guinean populations. The presence of M1 in Balanta populations supports the earlier suggestion of their Sudanese origin. Haplogroups U5 and U6, on the other hand, were found to be restricted to populations that are thought to represent the descendants of a southern expansion of Berbers. Particular haplotypes, found almost exclusively in East-African populations, were found in some ethnic groups with an oral tradition claiming Sudanese origin.

  9. Less Pollen-Mediated Gene Flow for More Signatures of Glacial Lineages: Congruent Evidence from Balsam Fir cpDNA and mtDNA for Multiple Refugia in Eastern and Central North America

    PubMed Central

    Cinget, Benjamin; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean

    2015-01-01

    The phylogeographic structure and postglacial history of balsam fir (Abies balsamea), a transcontinental North American boreal conifer, was inferred using mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) markers. Genetic structure among 107 populations (mtDNA data) and 75 populations (cpDNA data) was analyzed using Bayesian and genetic distance approaches. Population differentiation was high for mtDNA (dispersed by seeds only), but also for cpDNA (dispersed by seeds and pollen), indicating that pollen gene flow is more restricted in balsam fir than in other boreal conifers. Low cpDNA gene flow in balsam fir may relate to low pollen production due to the inherent biology of the species and populations being decimated by recurrent spruce budworm epidemics, and/or to low dispersal of pollen grains due to their peculiar structural properties. Accordingly, a phylogeographic structure was detected using both mtDNA and cpDNA markers and population structure analyses supported the existence of at least five genetically distinct glacial lineages in central and eastern North America. Four of these would originate from glacial refugia located south of the Laurentide ice sheet, while the last one would have persisted in the northern Labrador region. As expected due to reduced pollen-mediated gene flow, congruence between the geographic distribution of mtDNA and cpDNA lineages was higher than in other North American conifers. However, concordance was not complete, reflecting that restricted but nonetheless detectable cpDNA gene flow among glacial lineages occurred during the Holocene. As a result, new cpDNA and mtDNA genome combinations indicative of cytoplasmic genome capture were observed. PMID:25849816

  10. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment

    NASA Astrophysics Data System (ADS)

    Levin, Gilbert V.; Straat, Patricia Ann

    2016-10-01

    The 1976 Viking Labeled Release (LR) experiment was positive for extant microbial life on the surface of Mars. Experiments on both Viking landers, 4000 miles apart, yielded similar, repeatable, positive responses. While the authors eventually concluded that the experiment detected martian life, this was and remains a highly controversial conclusion. Many believe that the martian environment is inimical to life and the LR responses were nonbiological, attributed to an as-yet-unidentified oxidant (or oxidants) in the martian soil. Unfortunately, no further metabolic experiments have been conducted on Mars. Instead, follow-on missions have sought to define the martian environment, mostly searching for signs of water. These missions have collected considerable data regarding Mars as a habitat, both past and present. The purpose of this article is to consider recent findings about martian water, methane, and organics that impact the case for extant life on Mars. Further, the biological explanation of the LR and recent nonbiological hypotheses are evaluated. It is concluded that extant life is a strong possibility, that abiotic interpretations of the LR data are not conclusive, and that, even setting our conclusion aside, biology should still be considered as an explanation for the LR experiment. Because of possible contamination of Mars by terrestrial microbes after Viking, we note that the LR data are the only data we will ever have on biologically pristine martian samples.

  11. Maternal age and ovarian stimulation independently affect oocyte mtDNA copy number and cumulus cell gene expression in bovine clones.

    PubMed

    Cree, Lynsey M; Hammond, Elizabeth R; Shelling, Andrew N; Berg, Martin C; Peek, John C; Green, Mark P

    2015-06-01

    Does maternal ageing and ovarian stimulation alter mitochondrial DNA (mtDNA) copy number and gene expression of oocytes and cumulus cells from a novel bovine model for human IVF? Oocytes collected from females with identical nuclear genetics show decreased mtDNA copy number and increased expression of an endoplasmic reticulum (ER) stress gene with repect to ovarian stimulation, whilst differences in the expression of genes involved in mitochondrial function, antioxidant protection and apoptosis were evident in relation to maternal ageing and the degree of ovarian stimulation in cumulus cells. Oocyte quality declines with advancing maternal age; however, the underlying mechanism, as well as the effects of ovarian stimulation are poorly understood. Human studies investigating these effects are often limited by differences in age and ovarian stimulation regimens within a patient cohort, as well as genetic and environmental variability. A novel bovine cross-sectional maternal age model for human IVF was undertaken. Follicles were aspirated from young (3 years of age; n = 7 females) and old (10 years of age; n = 5 females) Holstein Freisian clones following multiple unstimulated, mild and standard ovarian stimulation cycles. These bovine cloned females were generated by the process of somatic cell nuclear transfer (SCNT) from the same founder and represent a homogeneous population with reduced genetic and environmental variability. Maternal age and ovarian stimulation effects were investigated in relation to mtDNA copy number, and the expression of 19 genes involved in mitochondrial function, antioxidant protection, oocyte-cumulus cell signalling and follicle development in both oocytes and cumulus cells. Young (3 years of age; n = 7 females) and old (10 years of age; n = 5 females) Holstein Freisian bovine clones were maintained as one herd. Stimulation cycles were based on the long GnRH agonist down-regulation regimen used in human fertility clinics. Follicle growth

  12. Mitochondrial DNA haplogroup variation of contemporary mixed South Americans reveals prehistoric displacements linked to archaeologically-derived culture history.

    PubMed

    Rothhammer, Francisco; Fehren-Schmitz, Lars; Puddu, Giannina; Capriles, José

    2017-11-01

    The purpose of this study was to examine South American population structure and prehistoric population displacements prior to the Spanish conquest, utilizing mitochondrial DNA haplogroups of extant mixed populations from Mexico, Costa Rica, Venezuela, Colombia, Ecuador, Peru, Bolivia, Brazil, Argentina, and Chile. Relative frequencies of four pan-American haplogroups, obtained from published databases, were analyzed to evaluate patterns of variations, population structure and possible prehistoric migration pathways. Patterns of mtDNA variation verify biogeographic drift processes and possible migratory pathways. We propose an updated model of South American colonization that is fully compatible with previous studies based on autosomal, mtDNA, and Y chromosome variation and with archaeologically-derived culture history. © 2017 Wiley Periodicals, Inc.

  13. Mitochondrial transcription terminator family members mTTF and mTerf5 have opposing roles in coordination of mtDNA synthesis.

    PubMed

    Jõers, Priit; Lewis, Samantha C; Fukuoh, Atsushi; Parhiala, Mikael; Ellilä, Simo; Holt, Ian J; Jacobs, Howard T

    2013-01-01

    All genomes require a system for avoidance or handling of collisions between the machineries of DNA replication and transcription. We have investigated the roles in this process of the mTERF (mitochondrial transcription termination factor) family members mTTF and mTerf5 in Drosophila melanogaster. The two mTTF binding sites in Drosophila mtDNA, which also bind mTerf5, were found to coincide with major sites of replication pausing. RNAi-mediated knockdown of either factor resulted in mtDNA depletion and developmental arrest. mTTF knockdown decreased site-specific replication pausing, but led to an increase in replication stalling and fork regression in broad zones around each mTTF binding site. Lagging-strand DNA synthesis was impaired, with extended RNA/DNA hybrid segments seen in replication intermediates. This was accompanied by the accumulation of recombination intermediates and nicked/broken mtDNA species. Conversely, mTerf5 knockdown led to enhanced replication pausing at mTTF binding sites, a decrease in fragile replication intermediates containing single-stranded segments, and the disappearance of species containing segments of RNA/DNA hybrid. These findings indicate an essential and previously undescribed role for proteins of the mTERF family in the integration of transcription and DNA replication, preventing unregulated collisions and facilitating productive interactions between the two machineries that are inferred to be essential for completion of lagging-strand DNA synthesis.

  14. Mitochondrial Transcription Terminator Family Members mTTF and mTerf5 Have Opposing Roles in Coordination of mtDNA Synthesis

    PubMed Central

    Jõers, Priit; Lewis, Samantha C.; Fukuoh, Atsushi; Parhiala, Mikael; Ellilä, Simo; Holt, Ian J.; Jacobs, Howard T.

    2013-01-01

    All genomes require a system for avoidance or handling of collisions between the machineries of DNA replication and transcription. We have investigated the roles in this process of the mTERF (mitochondrial transcription termination factor) family members mTTF and mTerf5 in Drosophila melanogaster. The two mTTF binding sites in Drosophila mtDNA, which also bind mTerf5, were found to coincide with major sites of replication pausing. RNAi-mediated knockdown of either factor resulted in mtDNA depletion and developmental arrest. mTTF knockdown decreased site-specific replication pausing, but led to an increase in replication stalling and fork regression in broad zones around each mTTF binding site. Lagging-strand DNA synthesis was impaired, with extended RNA/DNA hybrid segments seen in replication intermediates. This was accompanied by the accumulation of recombination intermediates and nicked/broken mtDNA species. Conversely, mTerf5 knockdown led to enhanced replication pausing at mTTF binding sites, a decrease in fragile replication intermediates containing single-stranded segments, and the disappearance of species containing segments of RNA/DNA hybrid. These findings indicate an essential and previously undescribed role for proteins of the mTERF family in the integration of transcription and DNA replication, preventing unregulated collisions and facilitating productive interactions between the two machineries that are inferred to be essential for completion of lagging-strand DNA synthesis. PMID:24068965

  15. A melting pot of multicontinental mtDNA lineages in admixed Venezuelans.

    PubMed

    Gómez-Carballa, Alberto; Ignacio-Veiga, Ana; Alvarez-Iglesias, Vanesa; Pastoriza-Mourelle, Ana; Ruíz, Yarimar; Pineda, Lennie; Carracedo, Angel; Salas, Antonio

    2012-01-01

    The arrival of Europeans in Colonial and post-Colonial times coupled with the forced introduction of sub-Saharan Africans have dramatically changed the genetic background of Venezuela. The main aim of the present study was to evaluate, through the study of mitochondrial DNA (mtDNA) variation, the extent of admixture and the characterization of the most likely continental ancestral sources of present-day urban Venezuelans. We analyzed two admixed populations that have experienced different demographic histories, namely, Caracas (n = 131) and Pueblo Llano (n = 219). The native American component of admixed Venezuelans accounted for 80% (46% haplogroup [hg] A2, 7% hg B2, 21% hg C1, and 6% hg D1) of all mtDNAs; while the sub-Saharan and European contributions made up ∼10% each, indicating that Trans-Atlantic immigrants have only partially erased the native American nature of Venezuelans. A Bayesian-based model allowed the different contributions of European countries to admixed Venezuelans to be disentangled (Spain: ∼38.4%, Portugal: ∼35.5%, Italy: ∼27.0%), in good agreement with the documented history. Seventeen entire mtDNA genomes were sequenced, which allowed five new native American branches to be discovered. B2j and B2k, are supported by two different haplotypes and control region data, and their coalescence ages are 3.9 k.y. (95% C.I. 0-7.8) and 2.6 k.y. (95% C.I. 0.1-5.2), respectively. The other clades were exclusively observed in Pueblo Llano and they show the fingerprint of strong recent genetic drift coupled with severe historical consanguinity episodes that might explain the high prevalence of certain Mendelian and complex multi-factorial diseases in this region. Copyright © 2011 Wiley Periodicals, Inc.

  16. Saltmarsh boundary modulates dispersal of mangrove propagules: implications for mangrove migration with sea-level rise.

    PubMed

    Peterson, Jennifer M; Bell, Susan S

    2015-01-01

    Few studies have empirically examined the suite of mechanisms that underlie the distributional shifts displayed by organisms in response to changing climatic condition. Mangrove forests are expected to move inland as sea-level rises, encroaching on saltmarsh plants inhabiting higher elevations. Mangrove propagules are transported by tidal waters and propagule dispersal is likely modified upon encountering the mangrove-saltmarsh ecotone, the implications of which are poorly known. Here, using an experimental approach, we record landward and seaward dispersal and subsequent establishment of mangrove propagules that encounter biotic boundaries composed of two types of saltmarsh taxa: succulents and grasses. Our findings revealed that propagules emplaced within saltmarsh vegetation immediately landward of the extant mangrove fringe boundary frequently dispersed in the seaward direction. However, propagules moved seaward less frequently and over shorter distances upon encountering boundaries composed of saltmarsh grasses versus succulents. We uniquely confirmed that the small subset of propagules dispersing landward displayed proportionately higher establishment success than those transported seaward. Although impacts of ecotones on plant dispersal have rarely been investigated in situ, our experimental results indicate that the interplay between tidal transport and physical attributes of saltmarsh vegetation influence boundary permeability to propagules, thereby directing the initial phase of shifting mangrove distributions. The incorporation of tidal inundation information and detailed data on landscape features, such as the structure of saltmarsh vegetation at mangrove boundaries, should improve the accuracy of models that are being developed to forecast mangrove distributional shifts in response to sea-level rise.

  17. Workflows and the Role of Images for Virtual 3d Reconstruction of no Longer Extant Historic Objects

    NASA Astrophysics Data System (ADS)

    Münster, S.

    2013-07-01

    3D reconstruction technologies have gained importance as tools for the research and visualization of no longer extant historic objects during the last decade. Within such reconstruction processes, visual media assumes several important roles: as the most important sources especially for a reconstruction of no longer extant objects, as a tool for communication and cooperation within the production process, as well as for a communication and visualization of results. While there are many discourses about theoretical issues of depiction as sources and as visualization outcomes of such projects, there is no systematic research about the importance of depiction during a 3D reconstruction process and based on empirical findings. Moreover, from a methodological perspective, it would be necessary to understand which role visual media plays during the production process and how it is affected by disciplinary boundaries and challenges specific to historic topics. Research includes an analysis of published work and case studies investigating reconstruction projects. This study uses methods taken from social sciences to gain a grounded view of how production processes would take place in practice and which functions and roles images would play within them. For the investigation of these topics, a content analysis of 452 conference proceedings and journal articles related to 3D reconstruction modeling in the field of humanities has been completed. Most of the projects described in those publications dealt with data acquisition and model building for existing objects. Only a small number of projects focused on structures that no longer or never existed physically. Especially that type of project seems to be interesting for a study of the importance of pictures as sources and as tools for interdisciplinary cooperation during the production process. In the course of the examination the authors of this paper applied a qualitative content analysis for a sample of 26 previously

  18. Human mtDNA hypervariable regions, HVR I and II, hint at deep common maternal founder and subsequent maternal gene flow in Indian population groups.

    PubMed

    Sharma, Swarkar; Saha, Anjana; Rai, Ekta; Bhat, Audesh; Bamezai, Ramesh

    2005-01-01

    We have analysed the hypervariable regions (HVR I and II) of human mitochondrial DNA (mtDNA) in individuals from Uttar Pradesh (UP), Bihar (BI) and Punjab (PUNJ), belonging to the Indo-European linguistic group, and from South India (SI), that have their linguistic roots in Dravidian language. Our analysis revealed the presence of known and novel mutations in both hypervariable regions in the studied population groups. Median joining network analyses based on mtDNA showed extensive overlap in mtDNA lineages despite the extensive cultural and linguistic diversity. MDS plot analysis based on Fst distances suggested increased maternal genetic proximity for the studied population groups compared with other world populations. Mismatch distribution curves, respective neighbour joining trees and other statistical analyses showed that there were significant expansions. The study revealed an ancient common ancestry for the studied population groups, most probably through common founder female lineage(s), and also indicated that human migrations occurred (maybe across and within the Indian subcontinent) even after the initial phase of female migration to India.

  19. Response to immunotherapy in a patient with adult onset Leigh syndrome and T9176C mtDNA mutation.

    PubMed

    Chuquilin, Miguel; Govindarajan, Raghav; Peck, Dawn; Font-Montgomery, Esperanza

    2016-09-01

    Leigh syndrome is a mitochondrial disease caused by mutations in different genes, including ATP6A for which no known therapy is available. We report a case of adult-onset Leigh syndrome with response to immunotherapy. A twenty year-old woman with baseline learning difficulties was admitted with progressive behavioral changes, diplopia, headaches, bladder incontinence, and incoordination. Brain MRI and PET scan showed T2 hyperintensity and increased uptake in bilateral basal ganglia, respectively. Autoimmune encephalitis was suspected and she received plasmapheresis with clinical improvement. She was readmitted 4 weeks later with dysphagia and aspiration pneumonia. Plasmapheresis was repeated with resolution of her symptoms. Given the multisystem involvement and suggestive MRI changes, genetic testing was done, revealing a homoplasmic T9176C ATPase 6 gene mtDNA mutation. Monthly IVIG provided clinical improvement with worsening when infusions were delayed. Leigh syndrome secondary to mtDNA T9176C mutations could have an autoimmune mechanism that responds to immunotherapy.

  20. mtDNA Deletion in an Iranian Infant with Pearson Marrow Syndrome.

    PubMed

    Arzanian, Mohammad Taghi; Eghbali, Aziz; Karimzade, Parvaneh; Ahmadi, Mitra; Houshmand, Massoud; Rezaei, Nima

    2010-03-01

    Pearson syndrome (PS) is a rare multisystem mitochondrial disorder of hematopoietic system, characterized by refractory sideroblastic anemia, pancytopenia, exocrine pancreatic insufficiency, and variable neurologic, hepatic, renal, and endocrine failure. We describe a six-month-old female infant with Pearson marrow syndrome who presented with neurological manifestations. She had several episodes of seizures. Hematopoietic abnormalities were macrocytic anemia and neutropenia. Bone marrow aspiration revealed a cellular marrow with marked vacuolization of erythroid and myeloid precursors. Analysis of mtDNA in peripheral blood showed 8.5 kb deletion that was compatible with the diagnosis of PS. PS should be considered in infants with neurologic diseases, in patients with cytopenias, and also in patients with acidosis or refractory anemia.

  1. The Landscape of mtDNA Modifications in Cancer: A Tale of Two Cities.

    PubMed

    Hertweck, Kate L; Dasgupta, Santanu

    2017-01-01

    Mitochondria from normal and cancerous cells represent a tale of two cities, wherein both execute similar processes but with different cellular and molecular effects. Given the number of reviews currently available which describe the functional implications of mitochondrial mutations in cancer, this article focuses on documenting current knowledge in the abundance and distribution of somatic mitochondrial mutations, followed by elucidation of processes which affect the fate of mutations in cancer cells. The conclusion includes an overview of translational implications for mtDNA mutations, as well as recommendations for future research uniting mitochondrial variants and tumorigenesis.

  2. Simultaneous detection of human mitochondrial DNA and nuclear-inserted mitochondrial-origin sequences (NumtS) using forensic mtDNA amplification strategies and pyrosequencing technology.

    PubMed

    Bintz, Brittania J; Dixon, Groves B; Wilson, Mark R

    2014-07-01

    Next-generation sequencing technologies enable the identification of minor mitochondrial DNA variants with higher sensitivity than Sanger methods, allowing for enhanced identification of minor variants. In this study, mixtures of human mtDNA control region amplicons were subjected to pyrosequencing to determine the detection threshold of the Roche GS Junior(®) instrument (Roche Applied Science, Indianapolis, IN). In addition to expected variants, a set of reproducible variants was consistently found in reads from one particular amplicon. A BLASTn search of the variant sequence revealed identity to a segment of a 611-bp nuclear insertion of the mitochondrial control region (NumtS) spanning the primer-binding sites of this amplicon (Nature 1995;378:489). Primers (Hum Genet 2012;131:757; Hum Biol 1996;68:847) flanking the insertion were used to confirm the presence or absence of the NumtS in buccal DNA extracts from twenty donors. These results further our understanding of human mtDNA variation and are expected to have a positive impact on the interpretation of mtDNA profiles using deep-sequencing methods in casework. © 2014 American Academy of Forensic Sciences.

  3. Nuclear and mtDNA phylogenetic analyses clarify the evolutionary history of two species of native Hawaiian bats and the taxonomy of Lasiurini (Mammalia: Chiroptera).

    PubMed

    Baird, Amy B; Braun, Janet K; Engstrom, Mark D; Holbert, Ashlyn C; Huerta, Maritza G; Lim, Burton K; Mares, Michael A; Patton, John C; Bickham, John W

    2017-01-01

    Previous studies on genetics of hoary bats produced differing conclusions on the timing of their colonization of the Hawaiian Islands and whether or not North American (Aeorestes cinereus) and Hawaiian (A. semotus) hoary bats are distinct species. One study, using mtDNA COI and nuclear Rag2 and CMA1, concluded that hoary bats colonized the Hawaiian Islands no more than 10,000 years ago based on indications of population expansion at that time using Extended Bayesian Skyline Plots. The other study, using 3 mtDNA and 1 Y-chromosome locus, concluded that the Hawaiian Islands were colonized about 1 million years ago. To address the marked inconsistencies between those studies, we examined DNA sequences from 4 mitochondrial and 2 nuclear loci in lasiurine bats to investigate the timing of colonization of the Hawaiian Islands by hoary bats, test the hypothesis that Hawaiian and North American hoary bats belong to different species, and further investigate the generic level taxonomy within the tribe. Phylogenetic analysis and dating of the nodes of mtDNA haplotypes and of nuclear CMA1 alleles show that A. semotus invaded the Hawaiian Islands approximately 1.35 Ma and that multiple arrivals of A. cinereus occurred much more recently. Extended Bayesian Skyline plots show population expansion at about 20,000 years ago in the Hawaiian Islands, which we conclude does not represent the timing of colonization of the Hawaiian Islands given the high degree of genetic differentiation among A. cinereus and A. semotus (4.2% divergence at mtDNA Cytb) and the high degree of genetic diversity within A. semotus. Rather, population expansion 20,000 years ago could have resulted from colonization of additional islands, expansion after a bottleneck, or other factors. New genetic data also support the recognition of A. semotus and A. cinereus as distinct species, a finding consistent with previous morphological and behavioral studies. The phylogenetic analysis of CMA1 alleles shows the

  4. Nuclear and mtDNA phylogenetic analyses clarify the evolutionary history of two species of native Hawaiian bats and the taxonomy of Lasiurini (Mammalia: Chiroptera)

    PubMed Central

    Braun, Janet K.; Engstrom, Mark D.; Holbert, Ashlyn C.; Huerta, Maritza G.; Lim, Burton K.; Mares, Michael A.; Patton, John C.

    2017-01-01

    Previous studies on genetics of hoary bats produced differing conclusions on the timing of their colonization of the Hawaiian Islands and whether or not North American (Aeorestes cinereus) and Hawaiian (A. semotus) hoary bats are distinct species. One study, using mtDNA COI and nuclear Rag2 and CMA1, concluded that hoary bats colonized the Hawaiian Islands no more than 10,000 years ago based on indications of population expansion at that time using Extended Bayesian Skyline Plots. The other study, using 3 mtDNA and 1 Y-chromosome locus, concluded that the Hawaiian Islands were colonized about 1 million years ago. To address the marked inconsistencies between those studies, we examined DNA sequences from 4 mitochondrial and 2 nuclear loci in lasiurine bats to investigate the timing of colonization of the Hawaiian Islands by hoary bats, test the hypothesis that Hawaiian and North American hoary bats belong to different species, and further investigate the generic level taxonomy within the tribe. Phylogenetic analysis and dating of the nodes of mtDNA haplotypes and of nuclear CMA1 alleles show that A. semotus invaded the Hawaiian Islands approximately 1.35 Ma and that multiple arrivals of A. cinereus occurred much more recently. Extended Bayesian Skyline plots show population expansion at about 20,000 years ago in the Hawaiian Islands, which we conclude does not represent the timing of colonization of the Hawaiian Islands given the high degree of genetic differentiation among A. cinereus and A. semotus (4.2% divergence at mtDNA Cytb) and the high degree of genetic diversity within A. semotus. Rather, population expansion 20,000 years ago could have resulted from colonization of additional islands, expansion after a bottleneck, or other factors. New genetic data also support the recognition of A. semotus and A. cinereus as distinct species, a finding consistent with previous morphological and behavioral studies. The phylogenetic analysis of CMA1 alleles shows the

  5. Genetic differences between Chibcha and Non-Chibcha speaking tribes based on mitochondrial DNA (mtDNA) haplogroups from 21 Amerindian tribes from Colombia

    PubMed Central

    Usme-Romero, Solangy; Alonso, Milena; Hernandez-Cuervo, Helena; Yunis, Emilio J.; Yunis, Juan J.

    2013-01-01

    We analyzed the frequency of four mitochondrial DNA haplogroups in 424 individuals from 21 Colombian Amerindian tribes. Our results showed a high degree of mtDNA diversity and genetic heterogeneity. Frequencies of mtDNA haplogroups A and C were high in the majority of populations studied. The distribution of these four mtDNA haplogroups from Amerindian populations was different in the northern region of the country compared to those in the south. Haplogroup A was more frequently found among Amerindian tribes in northern Colombia, while haplogroup D was more frequent among tribes in the south. Haplogroups A, C and D have clinal tendencies in Colombia and South America in general. Populations belonging to the Chibcha linguistic family of Colombia and other countries nearby showed a strong genetic differentiation from the other populations tested, thus corroborating previous findings. Genetically, the Ingano, Paez and Guambiano populations are more closely related to other groups of south eastern Colombia, as also inferred from other genetic markers and from archeological data. Strong evidence for a correspondence between geographical and linguistic classification was found, and this is consistent with evidence that gene flow and the exchange of customs and knowledge and language elements between groups is facilitated by close proximity. PMID:23885195

  6. Genetic differences between Chibcha and Non-Chibcha speaking tribes based on mitochondrial DNA (mtDNA) haplogroups from 21 Amerindian tribes from Colombia.

    PubMed

    Usme-Romero, Solangy; Alonso, Milena; Hernandez-Cuervo, Helena; Yunis, Emilio J; Yunis, Juan J

    2013-07-01

    We analyzed the frequency of four mitochondrial DNA haplogroups in 424 individuals from 21 Colombian Amerindian tribes. Our results showed a high degree of mtDNA diversity and genetic heterogeneity. Frequencies of mtDNA haplogroups A and C were high in the majority of populations studied. The distribution of these four mtDNA haplogroups from Amerindian populations was different in the northern region of the country compared to those in the south. Haplogroup A was more frequently found among Amerindian tribes in northern Colombia, while haplogroup D was more frequent among tribes in the south. Haplogroups A, C and D have clinal tendencies in Colombia and South America in general. Populations belonging to the Chibcha linguistic family of Colombia and other countries nearby showed a strong genetic differentiation from the other populations tested, thus corroborating previous findings. Genetically, the Ingano, Paez and Guambiano populations are more closely related to other groups of south eastern Colombia, as also inferred from other genetic markers and from archeological data. Strong evidence for a correspondence between geographical and linguistic classification was found, and this is consistent with evidence that gene flow and the exchange of customs and knowledge and language elements between groups is facilitated by close proximity.

  7. Evolution of opercle shape in cichlid fishes from Lake Tanganyika - adaptive trait interactions in extant and extinct species flocks.

    PubMed

    Wilson, Laura A B; Colombo, Marco; Sánchez-Villagra, Marcelo R; Salzburger, Walter

    2015-11-20

    Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time.

  8. Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease.

    PubMed

    Pinto, Milena; Nissanka, Nadee; Moraes, Carlos T

    2018-01-24

    PARK2 is the most common gene mutated in monogenic recessive familial cases of Parkinson's disease (PD). Pathogenic mutations cause a loss of function of the encoded protein Parkin. ParkinKO mice, however, poorly represent human PD symptoms as they only exhibit mild motor phenotypes, minor dopamine metabolism abnormalities, and no signs of dopaminergic neurodegeneration. Parkin has been shown to participate in mitochondrial turnover, by targeting damaged mitochondria with low membrane potential to mitophagy. We studied the role of Parkin on mitochondrial quality control in vivo by knocking out Parkin in the PD-mito- Pst I mouse (males), where the mitochondrial DNA (mtDNA) undergoes double-strand breaks only in dopaminergic neurons. The lack of Parkin promoted earlier onset of dopaminergic neurodegeneration and motor defects in the PD-mito- Pst I mice, but it did not worsen the pathology. The lack of Parkin affected mitochondrial morphology in dopaminergic axons and was associated with an increase in mtDNA levels (mutant and wild type). Unexpectedly, it did not cause a parallel increase in mitochondrial mass or mitophagy. Our results suggest that Parkin affects mtDNA levels in a mitophagy-independent manner. SIGNIFICANCE STATEMENT Parkinson's disease is characterized by progressive motor symptoms due to the selective loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations of Parkin cause some monogenic forms of Parkinson's disease, possibly through its role in mitochondrial turnover and quality control. To study whether Parkin has a role in vivo in the context of mitochondrial damage, we knocked out Parkin in a mouse model in which the mitochondrial DNA is damaged in dopaminergic neurons. We found that the loss of Parkin did not exacerbate the parkinsonian pathology already present in the mice, but it was associated with an increase in mtDNA levels (mutant and wild-type) without altering mitochondrial mass. These results shed new light on

  9. The complete mitochondrial genome of the Asian tapirs (Tapirus indicus): the only extant Tapiridae species in the old world.

    PubMed

    Muangkram, Yuttamol; Wajjwalku, Worawidh; Kaolim, Nongnid; Buddhakosai, Waradee; Kamolnorranath, Sumate; Siriaroonrat, Boripat; Tipkantha, Wanlaya; Dongsaard, Khwanruean; Maikaew, Umaporn; Sanannu, Saowaphang

    2016-01-01

    Asian tapir (Tapirus indicus) is categorized as Endangered on the 2008 IUCN red list. The first full-length mitochondrial DNA (mtDNA) sequence of Asian tapir is 16,717 bp in length. Base composition shows 34.6% A, 27.2% T, 25.8% C and 12.3% G. Highest polymorphic site is on the control region as typical for many species.

  10. [Preinvasive vulvar and cervical cancer in a 32-year-old woman, DNA HPV 16 positive with mtDNA mutation--case study].

    PubMed

    Kedzia, Witold; Malkowska-Walczak, Blanka; Józefiak, Agata; Wadowicka, Alicja; Guglas, Bogna; Pruski, Dominik; Kedzia, Helena; Spaczyński, Marek

    2009-07-01

    Coincidence of preinvasive vulvar and cervical cancer in young women is very rare. Lesions like VIN 3/preinvasive vulvar cancer and CIN 3/preinvasive cervical cancer are strictly connected with viral infection and are multilocular. In the presented case the following tests have been performed: HPV DNA test for the presence of 13 oncogenic HPV types, mRNA HPV test for the presence of transcripts for HPV 16, 18, 31, 33, 45 and the analysis of mtDNA D-Loop region. In the examined patient HPV 16 infection, as well as the presence of transcripts for HPV 16 E6/7 were diagnosed. The analysis of mtDNA D-Loop region showed nucleotide lesions like: T>C 16.192, T>C 16.223, T>C 16.292, C>T 16.325, C>T 16.579.

  11. Nest substrate reflects incubation style in extant archosaurs with implications for dinosaur nesting habits.

    PubMed

    Tanaka, Kohei; Zelenitsky, Darla K; Therrien, François; Kobayashi, Yoshitsugu

    2018-03-15

    Dinosaurs thrived and reproduced in various regions worldwide, including the Arctic. In order to understand their nesting in diverse or extreme environments, the relationships between nests, nesting environments, and incubation methods in extant archosaurs were investigated. Statistical analyses reveal that species of extant covered nesters (i.e., crocodylians and megapodes) preferentially select specific sediments/substrates as a function of their nesting style and incubation heat sources. Relationships between dinosaur eggs and the sediments in which they occur reveal that hadrosaurs and some sauropods (i.e., megaloolithid eggs) built organic-rich mound nests that relied on microbial decay for incubation, whereas other sauropods (i.e., faveoloolithid eggs) built sandy in-filled hole nests that relied on solar or potentially geothermal heat for incubation. Paleogeographic distribution of mound nests and sandy in-filled hole nests in dinosaurs reveals these nest types produced sufficient incubation heat to be successful up to mid latitudes (≤47°), 10° higher than covered nesters today. However, only mound nesting and likely brooding could have produced sufficient incubation heat for nesting above the polar circle (>66°). As a result, differences in nesting styles may have placed restrictions on the reproduction of dinosaurs and their dispersal at high latitudes.

  12. Non-reef environments impact the diversification of extant jacks, remoras and allies (Carangoidei, Percomorpha)

    PubMed Central

    Marramà, Giuseppe; Carnevale, Giorgio; Santini, Francesco

    2016-01-01

    Various factors may impact the processes of diversification of a clade. In the marine realm, it has been shown that coral reef environments have promoted diversification in various fish groups. With the exception of requiem sharks, all the groups showing a higher level of diversity in reefs than in non-reef habitats have diets based predominantly on plankton, algae or benthic invertebrates. Here we explore the pattern of diversification of carangoid fishes, a clade that includes numerous piscivorous species (e.g. trevallies, jacks and dolphinfishes), using time-calibrated phylogenies as well as ecological and morphological data from both extant and fossil species. The study of carangoid morphospace suggests that reef environments played a role in their early radiation during the Eocene. However, contrary to the hypothesis of a reef-association-promoting effect, we show that habitat shifts to non-reef environments have increased the rates of morphological diversification (i.e. size and body shape) in extant carangoids. Piscivory did not have a major impact on the tempo of diversification of this group. Through the ecological radiation of carangoid fishes, we demonstrate that non-reef environments may sustain and promote processes of diversification of different marine fish groups, at least those including a large proportion of piscivorous species. PMID:27807262

  13. Non-reef environments impact the diversification of extant jacks, remoras and allies (Carangoidei, Percomorpha).

    PubMed

    Frédérich, Bruno; Marramà, Giuseppe; Carnevale, Giorgio; Santini, Francesco

    2016-11-16

    Various factors may impact the processes of diversification of a clade. In the marine realm, it has been shown that coral reef environments have promoted diversification in various fish groups. With the exception of requiem sharks, all the groups showing a higher level of diversity in reefs than in non-reef habitats have diets based predominantly on plankton, algae or benthic invertebrates. Here we explore the pattern of diversification of carangoid fishes, a clade that includes numerous piscivorous species (e.g. trevallies, jacks and dolphinfishes), using time-calibrated phylogenies as well as ecological and morphological data from both extant and fossil species. The study of carangoid morphospace suggests that reef environments played a role in their early radiation during the Eocene. However, contrary to the hypothesis of a reef-association-promoting effect, we show that habitat shifts to non-reef environments have increased the rates of morphological diversification (i.e. size and body shape) in extant carangoids. Piscivory did not have a major impact on the tempo of diversification of this group. Through the ecological radiation of carangoid fishes, we demonstrate that non-reef environments may sustain and promote processes of diversification of different marine fish groups, at least those including a large proportion of piscivorous species. © 2016 The Author(s).

  14. [Textual research on the medical books of Liao Dynasty with extant titles].

    PubMed

    Yang, X Z

    2018-01-28

    There are only 3 extant medical book titles from 2 authors of the Liao Dynasty, from which almost no medical books were handed down; these include Zhi lu gu mai jue ( Zhilugu's Pulse Study in Verse ), Zhi lu gu zhen jiu shu ( Zhilugu's Book of Acu-moxibustion ) and Medical Book on Pulse and Prescriptions Translated by Yelü Shucheng . The former two books are written by Zhilugu during the reign of Taizong Emperor (927-947) of the Liao Dynasty, and the last one, by Yelü Shucheng during the reign of Xingzong Emperor (1031-1055) of the Liao Dynasty.

  15. Saltmarsh Boundary Modulates Dispersal of Mangrove Propagules: Implications for Mangrove Migration with Sea-Level Rise

    PubMed Central

    Peterson, Jennifer M.; Bell, Susan S.

    2015-01-01

    Few studies have empirically examined the suite of mechanisms that underlie the distributional shifts displayed by organisms in response to changing climatic condition. Mangrove forests are expected to move inland as sea-level rises, encroaching on saltmarsh plants inhabiting higher elevations. Mangrove propagules are transported by tidal waters and propagule dispersal is likely modified upon encountering the mangrove-saltmarsh ecotone, the implications of which are poorly known. Here, using an experimental approach, we record landward and seaward dispersal and subsequent establishment of mangrove propagules that encounter biotic boundaries composed of two types of saltmarsh taxa: succulents and grasses. Our findings revealed that propagules emplaced within saltmarsh vegetation immediately landward of the extant mangrove fringe boundary frequently dispersed in the seaward direction. However, propagules moved seaward less frequently and over shorter distances upon encountering boundaries composed of saltmarsh grasses versus succulents. We uniquely confirmed that the small subset of propagules dispersing landward displayed proportionately higher establishment success than those transported seaward. Although impacts of ecotones on plant dispersal have rarely been investigated in situ, our experimental results indicate that the interplay between tidal transport and physical attributes of saltmarsh vegetation influence boundary permeability to propagules, thereby directing the initial phase of shifting mangrove distributions. The incorporation of tidal inundation information and detailed data on landscape features, such as the structure of saltmarsh vegetation at mangrove boundaries, should improve the accuracy of models that are being developed to forecast mangrove distributional shifts in response to sea-level rise. PMID:25760867

  16. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers.

    PubMed

    Chaw, S M; Parkinson, C L; Cheng, Y; Vincent, T M; Palmer, J D

    2000-04-11

    Phylogenetic relationships among the five groups of extant seed plants are presently quite unclear. For example, morphological studies consistently identify the Gnetales as the extant sister group to angiosperms (the so-called "anthophyte" hypothesis), whereas a number of molecular studies recover gymnosperm monophyly, and few agree with the morphology-based placement of Gnetales. To better resolve these and other unsettled issues, we have generated a new molecular data set of mitochondrial small subunit rRNA sequences, and have analyzed these data together with comparable data sets for the nuclear small subunit rRNA gene and the chloroplast rbcL gene. All nuclear analyses strongly ally Gnetales with a monophyletic conifers, whereas all mitochondrial analyses and those chloroplast analyses that take into account saturation of third-codon position transitions actually place Gnetales within conifers, as the sister group to the Pinaceae. Combined analyses of all three genes strongly support this latter relationship, which to our knowledge has never been suggested before. The combined analyses also strongly support monophyly of extant gymnosperms, with cycads identified as the basal-most group of gymnosperms, Ginkgo as the next basal, and all conifers except for Pinaceae as sister to the Gnetales + Pinaceae clade. According to these findings, the Gnetales may be viewed as extremely divergent conifers, and the many morphological similarities between angiosperms and Gnetales (e.g., double fertilization and flower-like reproductive structures) arose independently.

  17. Divergent mtDNA lineages of goats in an Early Neolithic site, far from the initial domestication areas

    PubMed Central

    Fernández, Helena; Hughes, Sandrine; Vigne, Jean-Denis; Helmer, Daniel; Hodgins, Greg; Miquel, Christian; Hänni, Catherine; Luikart, Gordon; Taberlet, Pierre

    2006-01-01

    Goats were among the first farm animals domesticated, ≈10,500 years ago, contributing to the rise of the “Neolithic revolution.” Previous genetic studies have revealed that contemporary domestic goats (Capra hircus) show far weaker intercontinental population structuring than other livestock species, suggesting that goats have been transported more extensively. However, the timing of these extensive movements in goats remains unknown. To address this question, we analyzed mtDNA sequences from 19 ancient goat bones (7,300–6,900 years old) from one of the earliest Neolithic sites in southwestern Europe. Phylogenetic analysis revealed that two highly divergent goat lineages coexisted in each of the two Early Neolithic layers of this site. This finding indicates that high mtDNA diversity was already present >7,000 years ago in European goats, far from their areas of initial domestication in the Near East. These results argue for substantial gene flow among goat populations dating back to the early neolithisation of Europe and for a dual domestication scenario in the Near East, with two independent but essentially contemporary origins (of both A and C domestic lineages) and several more remote and/or later origins. PMID:17030824

  18. Eurasian otters, Lutra lutra, have a dominant mtDNA haplotype from the Iberian Peninsula to Scandinavia.

    PubMed

    Ferrando, Ainhoa; Ponsà, Montserrat; Marmi, Josep; Domingo-Roura, Xavier

    2004-01-01

    The Eurasian otter, Lutra lutra, has a Palaearctic distribution and has suffered a severe decline throughout Europe during the last century. Previous studies in this and other mustelids have shown reduced levels of variability in mitochondrial DNA, although otter phylogeographic studies were restricted to central-western Europe. In this work we have sequenced 361 bp of the mtDNA control region in 73 individuals from eight countries and added our results to eight sequences available from GenBank and the literature. The range of distribution has been expanded in relation to previous works north towards Scandinavia, east to Russia and Belarus, and south to the Iberian Peninsula. We found a single dominant haplotype in 91.78% of the samples, and six more haplotypes deviating a maximum of two mutations from the dominant haplotype restricted to a single country. Variability was extremely low in western Europe but higher in eastern countries. This, together with the lack of phylogeographical structuring, supports the postglacial recolonization of Europe from a single refugium. The Eurasian otter mtDNA control region has a 220-bp variable minisatellite in Domain III that we sequenced in 29 otters. We found a total of 19 minisatellite haplotypes, but they showed no phylogenetic information.

  19. Development and validation of a D-loop mtDNA SNP assay for the screening of specimens in forensic casework.

    PubMed

    Chemale, Gustavo; Paneto, Greiciane Gaburro; Menezes, Meiga Aurea Mendes; de Freitas, Jorge Marcelo; Jacques, Guilherme Silveira; Cicarelli, Regina Maria Barretto; Fagundes, Paulo Roberto

    2013-05-01

    Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) to be typed using SNaPShot(TM) (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons

  20. Stable Isotope Analysis of Extant Lamnoid Shark Centra: A New Tool in Age Determination?

    NASA Astrophysics Data System (ADS)

    Labs, J.

    2003-12-01

    The oxygen isotopes of fourteen vertebral centra from ten extant lamnoid sharks (including Carcharodon carcharias [great white], Isurus paucus [longfin mako], and Isurus oxyrinchus [shortfin mako]) were sampled and measured along the growth axis to determine the periodicity of incremental growth represented in the centra. As part of the internal (endochondral) skeleton, shark centra are composed initially of hyaline cartilage, which then secondarily ossifies during ontogeny forming calcified hydroxyapatite bone. The incremental growth of shark centra forms definite growth rings, with darker denser portions being deposited during slower growth times (i.e., winter) and lighter portions being deposited during more rapid growth (i.e., summer). Thus, shark centra, whether they are extant or extinct, are characterized by clearly delineated incremental growth couplets. The problem with this general rule is that there are several factors in which the growth of these couplets can vary depending upon physical environment (including temperature and water depth), food availability, and stress. The challenge for paleobiological interpretations is how to interpret the periodicity of this growth. It can generally be assumed that these bands are annual, but it is uncertain the extent to which exceptions to the rule occur. Stable isotopic analysis provides the potential to independently determine the periodicity of the growth increments and ultimately the ontogenetic age of an individual.

  1. Phosphatase activity in Antarctica soil samples as a biosignature of extant life

    NASA Astrophysics Data System (ADS)

    Sato, Shuji; Itoh, Yuki; Takano, Yoshinori; Fukui, Manabu; Kaneko, Takeo; Kobayashi, Kensei

    Microbial activities have been detected in such extreme terrestrial environments as deep lithosphere, a submarine hydrothermal systems, stratosphere, and Antarctica. Microorganisms have adapted to such harsh environments by evolving their biomolecules. Some of these biomolecules such as enzymes might have different characteristics from those of organisms in ordinary environments. Many biosignatures (or biomarkers) have been proposed to detect microbial activities in such extreme environments. A number of techniques are proposed to evaluate biological activities in extreme environments including cultivation methods, assay of metabolism, and analysis of bioorganic compounds like amino acids and DNA. Enzyme activities are useful signature of extant life in extreme environments. Among many enzymes, phosphatase could be a good indicator of biological activities, since phosphate esters are essential for all the living terrestrial organisms. In addition, alkaline phosphatase is known as a typical zinc-containing metalloenzyme and quite stable in environments. We analyzed phosphatase activities in Antarctica soil samples to see whether they can be used as biosignatures for extant life. In addition, we characterized phosphatases extracted from the Antarctica soil samples, and compared with those obtained from other types of environments. Antarctica surface environments are quite severe environments for life since it is extremely cold and dry and exposed to strong UV and cosmic rays. We tried to evaluate biological activities in Antarctica by measuring phosphatase activities. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) are measured spectrophotometrically after mixing the powdered sample and p-nitrophenyl phosphate solution (pH 6.5 for ACP, pH 8.0 for ALP). ALP was characterized after extraction from soils with

  2. Trabecular architecture in the forelimb epiphyses of extant xenarthrans (Mammalia).

    PubMed

    Amson, Eli; Arnold, Patrick; van Heteren, Anneke H; Canoville, Aurore; Nyakatura, John A

    2017-01-01

    Bone structure has a crucial role in the functional adaptations that allow vertebrates to conduct their diverse lifestyles. Much has been documented regarding the diaphyseal structure of long bones of tetrapods. However, the architecture of trabecular bone, which is for instance found within the epiphyses of long bones, and which has been shown experimentally to be extremely plastic, has received little attention in the context of lifestyle adaptations (virtually only in primates). We therefore investigated the forelimb epiphyses of extant xenarthrans, the placental mammals including the sloths, anteaters, and armadillos. They are characterised by several lifestyles and degrees of fossoriality involving distinct uses of their forelimb. We used micro computed tomography data to acquire 3D trabecular parameters at regions of interest (ROIs) for all extant genera of xenarthrans (with replicates). Traditional, spherical, and phylogenetically informed statistics (including the consideration of size effects) were used to characterise the functional signal of these parameters. Several trabecular parameters yielded functional distinctions. The main direction of the trabeculae distinguished lifestyle categories for one ROI (the radial trochlea). Among the other trabecular parameters, it is the degree of anisotropy (i.e., a preferential alignment of the trabeculae) that yielded the clearest functional signal. For all ROIs, the armadillos, which represent the fully terrestrial and fossorial category, were found as characterised by a greater degree of anisotropy (i.e., more aligned trabeculae). Furthermore, the trabeculae of the humeral head of the most fossorial armadillos were also found to be more anisotropic than in the less fossorial species. Most parameters were marked by an important intraspecific variability and by a size effect, which could, at least partly, be masking the functional signal. But for some parameters, the degree of anisotropy in particular, a clear

  3. Seed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers

    PubMed Central

    Chaw, Shu-Miaw; Parkinson, Christopher L.; Cheng, Yuchang; Vincent, Thomas M.; Palmer, Jeffrey D.

    2000-01-01

    Phylogenetic relationships among the five groups of extant seed plants are presently quite unclear. For example, morphological studies consistently identify the Gnetales as the extant sister group to angiosperms (the so-called “anthophyte” hypothesis), whereas a number of molecular studies recover gymnosperm monophyly, and few agree with the morphology-based placement of Gnetales. To better resolve these and other unsettled issues, we have generated a new molecular data set of mitochondrial small subunit rRNA sequences, and have analyzed these data together with comparable data sets for the nuclear small subunit rRNA gene and the chloroplast rbcL gene. All nuclear analyses strongly ally Gnetales with a monophyletic conifers, whereas all mitochondrial analyses and those chloroplast analyses that take into account saturation of third-codon position transitions actually place Gnetales within conifers, as the sister group to the Pinaceae. Combined analyses of all three genes strongly support this latter relationship, which to our knowledge has never been suggested before. The combined analyses also strongly support monophyly of extant gymnosperms, with cycads identified as the basal-most group of gymnosperms, Ginkgo as the next basal, and all conifers except for Pinaceae as sister to the Gnetales + Pinaceae clade. According to these findings, the Gnetales may be viewed as extremely divergent conifers, and the many morphological similarities between angiosperms and Gnetales (e.g., double fertilization and flower-like reproductive structures) arose independently. PMID:10760277

  4. mtDNA variation of the critically endangered hawksbill turtle (Eretmochelys imbricata) nesting on Iranian islands of the Persian Gulf.

    PubMed

    Tabib, M; Zolgharnein, H; Mohammadi, M; Salari-Aliabadi, M A; Qasemi, A; Roshani, S; Rajabi-Maham, H; Frootan, F

    2011-01-01

    Genetic diversity of sea turtles (hawksbill turtle) was studied using sequencing of mitochondrial DNA (mtDNA, D-loop region). Thirty dead embryos were collected from the Kish and Qeshm Islands in the Persian Gulf. Analysis of sequence variation over 890 bp of the mtDNA control region revealed five haplotypes among 30 individuals. This is the first time that Iranian haplotypes have been recorded. Nucleotide and haplotype diversity was 0.77 and 0.001 for Qeshm Island and 0.64 and 0.002 for Kish Island, respectively. Total haplotype diversity was calculated as 0.69, which demonstrates low genetic diversity in this area. The data also indicated very high rates of migration between the populations of these two islands. A comparison of our data with data from previous studies downloaded from a gene bank showed that turtles of the Persian Gulf migrated from the Pacific and the Sea of Oman into this area. On the other hand, evidence of migration from populations to the West was not found.

  5. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    PubMed

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations. © 2014 John Wiley & Sons Ltd.

  6. The extant shore platform stromatolite (SPS) facies association: a glimpse into the Archean?

    NASA Astrophysics Data System (ADS)

    Smith, Alan; Cooper, Andrew; Misra, Saumitra; Bharuth, Vishal; Guastella, Lisa; Botes, Riaan

    2018-04-01

    Shore platform stromatolites (SPS) were first noted at Cape Morgan on the south-east African seaboard. Since then they have been found growing discontinuously in rocky peritidal zones along the entire southern African seaboard. They have also been found on the southwest Australian coast, at Giant's Causeway in Northern Ireland, and more recently at Harris on the Scottish Hebridean Atlantic coast. In this paper SPS occurrence and SPS potential as analogues for Precambrian fossil stromatolites, as well as potential stromatolite occurrences in shore platform regions on Mars, are assessed. Sub-horizontal surfaces promote stromatolite development, while tufa develops on cliffs and steep rocky surfaces. Tufa and stromatolites are end members of a spectrum dictated by coastal topography. Extant SPS occur on well indurated shore platforms in high wave energy settings, often around or near headlands. They can be associated with boulder beaches, boulder ridges, storm swash terraces, coastal dunes, and peat bogs. In contrast to other extant stromatolites, SPS are produced primarily by mineral precipitation, although minor trapping and binding stromatolites do occur. From a geological perspective, SPS develop in mildly transgressive siliciclastic settings in various climatic and tidal regimes. We suggest that SPS could be preserved in the geological record as micritic lenses on palaeo-shore platform surfaces. SPS share many features with Precambrian stromatolites and are a valid modern analogue despite the widely different atmospheric and oceanic conditions of the Archean. We suggest that terraces associated with former oceanic or lacustrine flooding surfaces on Mars are potential targets in the search for palaeo-SPS on Mars.

  7. Regional Variation in mtDNA of the Lesser Prairie-Chicken

    USGS Publications Warehouse

    Hagen, Christian A.; Pitman, James C.; Sandercock, Brett K.; Wolfe, Don H.; Robel, Robel J.; Applegate, Roger D.; Oyler-McCance, Sara J.

    2010-01-01

    Cumulative loss of habitat and long-term decline in the populations of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) have led to concerns for the species' viability throughout its range in the southern Great Plains. For more efficient conservation past and present distributions of genetic variation need to be understood. We examined the distribution of mitochondrial DNA (mtDNA) variation in the Lesser Prairie-Chicken across Kansas, Colorado, Oklahoma, and New Mexico. Throughout the range we found little genetic differentiation except for the population in New Mexico, which was significantly different from most other publications. We did, however, find significant isolation by distance at the rangewide scale (r=0.698). We found no relationship between haplotype phylogeny and geography, and our analyses provide evidence for a post-glacial population expansion within the species that is consistent with the idea that speciation within Tympanuchus is recent. Conservation actions that increase the likelihood of genetically viable populations in the future should be evaluated for implementation.

  8. Soft-tissue anatomy of the extant hominoids: a review and phylogenetic analysis

    PubMed Central

    Gibbs, S; Collard, M; Wood, B

    2002-01-01

    This paper reports the results of a literature search for information about the soft-tissue anatomy of the extant non-human hominoid genera, Pan, Gorilla, Pongo and Hylobates, together with the results of a phylogenetic analysis of these data plus comparable data for Homo. Information on the four extant non-human hominoid genera was located for 240 out of the 1783 soft-tissue structures listed in the Nomina Anatomica. Numerically these data are biased so that information about some systems (e.g. muscles) and some regions (e.g. the forelimb) are over-represented, whereas other systems and regions (e.g. the veins and the lymphatics of the vascular system, the head region) are either under-represented or not represented at all. Screening to ensure that the data were suitable for use in a phylogenetic analysis reduced the number of eligible soft-tissue structures to 171. These data, together with comparable data for modern humans, were converted into discontinuous character states suitable for phylogenetic analysis and then used to construct a taxon-by-character matrix. This matrix was used in two tests of the hypothesis that soft-tissue characters can be relied upon to reconstruct hominoid phylogenetic relationships. In the first, parsimony analysis was used to identify cladograms requiring the smallest number of character state changes. In the second, the phylogenetic bootstrap was used to determine the confidence intervals of the most parsimonious clades. The parsimony analysis yielded a single most parsimonious cladogram that matched the molecular cladogram. Similarly the bootstrap analysis yielded clades that were compatible with the molecular cladogram; a (Homo, Pan) clade was supported by 95% of the replicates, and a (Gorilla, Pan, Homo) clade by 96%. These are the first hominoid morphological data to provide statistically significant support for the clades favoured by the molecular evidence. PMID:11833653

  9. Soft-tissue anatomy of the extant hominoids: a review and phylogenetic analysis.

    PubMed

    Gibbs, S; Collard, M; Wood, B

    2002-01-01

    This paper reports the results of a literature search for information about the soft-tissue anatomy of the extant non-human hominoid genera, Pan, Gorilla, Pongo and Hylobates, together with the results of a phylogenetic analysis of these data plus comparable data for Homo. Information on the four extant non-human hominoid genera was located for 240 out of the 1783 soft-tissue structures listed in the Nomina Anatomica. Numerically these data are biased so that information about some systems (e.g. muscles) and some regions (e.g. the forelimb) are over-represented, whereas other systems and regions (e.g. the veins and the lymphatics of the vascular system, the head region) are either under-represented or not represented at all. Screening to ensure that the data were suitable for use in a phylogenetic analysis reduced the number of eligible soft-tissue structures to 171. These data, together with comparable data for modern humans, were converted into discontinuous character states suitable for phylogenetic analysis and then used to construct a taxon-by-character matrix. This matrix was used in two tests of the hypothesis that soft-tissue characters can be relied upon to reconstruct hominoid phylogenetic relationships. In the first, parsimony analysis was used to identify cladograms requiring the smallest number of character state changes. In the second, the phylogenetic bootstrap was used to determine the confidence intervals of the most parsimonious clades. The parsimony analysis yielded a single most parsimonious cladogram that matched the molecular cladogram. Similarly the bootstrap analysis yielded clades that were compatible with the molecular cladogram; a (Homo, Pan) clade was supported by 95% of the replicates, and a (Gorilla, Pan, Homo) clade by 96%. These are the first hominoid morphological data to provide statistically significant support for the clades favoured by the molecular evidence.

  10. A 28,000 Years Old Cro-Magnon mtDNA Sequence Differs from All Potentially Contaminating Modern Sequences

    PubMed Central

    Caramelli, David; Milani, Lucio; Vai, Stefania; Modi, Alessandra; Pecchioli, Elena; Girardi, Matteo; Pilli, Elena; Lari, Martina; Lippi, Barbara; Ronchitelli, Annamaria; Mallegni, Francesco; Casoli, Antonella; Bertorelle, Giorgio; Barbujani, Guido

    2008-01-01

    Background DNA sequences from ancient speciments may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal) and early modern (Cro-Magnoid) Europeans. Methodology/Principal Findings We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. Conclusions/Significance: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans. PMID:18628960

  11. Coexistence of minicircular and a highly rearranged mtDNA molecule suggests that recombination shapes mitochondrial genome organization.

    PubMed

    Mao, Meng; Austin, Andrew D; Johnson, Norman F; Dowton, Mark

    2014-03-01

    Recombination has been proposed as a possible mechanism to explain mitochondrial (mt) gene rearrangements, although the issue of whether mtDNA recombination occurs in animals has been controversial. In this study, we sequenced the entire mt genome of the megaspilid wasp Conostigmus sp., which possessed a highly rearranged mt genome. The sequence of the A+T-rich region contained a number of different types of repeats, similar to those reported previously in the nematode Meloidogyne javanica, in which recombination was discovered. In Conostigmus, we detected the end products of recombination: a range of minicircles. However, using isolated (cloned) fragments of the A+T-rich region, we established that some of these minicircles were found to be polymerase chain reaction (PCR) artifacts. It appears that regions with repeats are prone to PCR template switching or PCR jumping. Nevertheless, there is strong evidence that one minicircle is real, as amplification primers that straddle the putative breakpoint junction produce a single strong amplicon from genomic DNA but not from the cloned A+T-rich region. The results provide support for the direct link between recombination and mt gene rearrangement. Furthermore, we developed a model of recombination which is important for our understanding of mtDNA evolution.

  12. Phosphatase activities as biosignatures of extant life

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Itoh, Y.; Edazawa, Y.; Moroi, A.; Takano, Y.

    It has been recognized that terrestrial biosphere expands to such extreme environments as deep subsurface lithosphere high temperature hot springs and stratosphere Possible extraterrestrial biospheres in Mars Europa and Titan are being discussed Many biosignatures or biomarkers have been proposed to detect microbial activities in such extreme environments Phosphate esters are essential for the terrestrial life since they are constituents of nucleic acids and cell mebranes Thus all the terrestrial organisms have phosphatases that are enzymes catalyzing hydrolysis of phosphate esters We analyzed phosphatase activities in the samples obtained in extreme environments such as submarine hydrothermal systems and discussed whether they can be used as biosignatures for extant life Core samples and chimney samples were collected at the Suiyo Seamount Izu-Bonin Arc the Pacific Ocean in 2001 and 2002 and in South Mariana hydrothermal systems the Pacific Oceanas in 2003 both in a part of the Archaean Park Project Phosphatase activity in solid rock samples was measured spectrometrically by using 25 mM p-nitrophenyl phosphate pH 8 0 or pH 6 5 as a substrate as follows Pulverized samples were incuvated with substrate solution for an hour and then production rate of p-nitrophenol was calculated with absorbance at 410 nm Phosphatase activity in extracts was measured fluorometrically by using 4-methylumberyferryl phosphate as a substrate Concentration of amino acids and their enantiomeric ratio were determined by HPLC after HF digestion of the

  13. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae.

    PubMed

    Kaniak, Aneta; Dzierzbicki, Piotr; Rogowska, Agata T; Malc, Ewa; Fikus, Marta; Ciesla, Zygmunt

    2009-03-01

    The proximity of the mitochondrial genome to the respiratory chain, a major source of ROS (radical oxygen species), makes mtDNA more vulnerable to oxidative damage than nuclear DNA. Mitochondrial BER (base excision repair) is generally considered to be the main pathway involved in the prevention of oxidative lesion-induced mutations in mtDNA. However, we previously demonstrated that the increased frequency of mitochondrial Oli(r) mutants in an ogg1Delta strain, lacking the activity of a crucial mtBER glycosylase, is reduced in the presence of plasmids encoding Msh1p, the mitochondrial homologue of the bacterial mismatch protein MutS. This finding suggested that Msh1p might be involved in the prevention of mitochondrial mutagenesis induced by oxidative stress. Here we show that a double mutant carrying the msh1-R813W allele, encoding a variant of the protein defective in the ATP hydrolysis activity, combined with deletion of SOD2, encoding the mitochondrial superoxide dismutase, displays a synergistic effect on the frequency of Oli(r) mutants, indicating that Msh1p prevents generation of oxidative lesion-induced mitochondrial mutations. We also show that double mutants carrying the msh1-R813W allele, combined with deletion of either OGG1 or APN1, the latter resulting in deficiency of the Apn1 endonuclease, exhibit a synergistic effect on the frequency of respiration-defective mutants having gross rearrangements of the mitochondrial genome. This suggests that Msh1p, Ogg1p and Apn1p play overlapping functions in maintaining the stability of mtDNA. In addition, we demonstrate, using a novel ARG8(m) recombination assay, that a surplus of Msh1p results in enhanced mitochondrial recombination. Interestingly, the mutant forms of the protein, msh1p-R813W and msh1p-G776D, fail to stimulate recombination. We postulate that the Msh1p-enhanced homologous recombination may play an important role in the prevention of oxidative lesion-induced rearrangements of the mitochondrial

  14. Permian ginkgophyte fossils from the Dolomites resemble extant O-ha-tsuki aberrant leaf-like fructifications of Ginkgo biloba L

    PubMed Central

    2010-01-01

    Background Structural elucidation and analysis of fructifications of plants is fundamental for understanding their evolution. In case of Ginkgo biloba, attention was drawn by Fujii in 1896 to aberrant fructifications of Ginkgo biloba whose seeds are attached to leaves, called O-ha-tsuki in Japan. This well-known phenomenon was now interpreted by Fujii as being homologous to ancestral sporophylls. The common fructification of Ginkgo biloba consists of 1-2 (rarely more) ovules on a dichotomously divided stalk, the ovules on top of short stalklets, with collars supporting the ovules. There is essentially no disagreement that either the whole stalk with its stalklets, collars and ovules is homologous to a sporophyll, or, alternatively, just one stalklet, collar and ovule each correspond to a sporophyll. For the transition of an ancestral sporophyll resembling extant O-ha-tsuki aberrant leaves into the common fructification with stalklet/collar/ovule, evolutionary reduction of the leaf lamina of such ancestral sporophylls has to be assumed. Furthermore, such ancestral sporophylls would be expected in the fossil record of ginkgophytes. Results From the Upper Permian of the Bletterbach gorge (Dolomites, South Tyrol, Italy) ginkgophyte leaves of the genus Sphenobaiera were discovered. Among several specimens, one shows putatively attached seeds, while other specimens, depending on their state of preservation, show seeds in positions strongly suggesting such attachment. Morphology and results of a cuticular analysis are in agreement with an affiliation of the fossil to the ginkgophytes and the cuticle of the seed is comparable to that of Triassic and Jurassic ones and to those of extant Ginkgo biloba. The Sphenobaiera leaves with putatively attached seeds closely resemble seed-bearing O-ha-tsuki leaves of extant Ginkgo biloba. This leads to the hypothesis that, at least for some groups of ginkgophytes represented by extant Ginkgo biloba, such sporophylls represent the

  15. A new mtDNA mutation in the tRNA[sup Lys] gene associated with myoclonic epilepsy and ragged-red fibers (MERRF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvestri, G.; Moraes, C.T.; Shanske, S.

    1992-12-01

    Myoclonic epilepsy with ragged-red fibers (MERRF) has been associated with an A[r arrow]G transition at mtDNA nt 8344, within a conserved region of the tRNA[sup Lys] gene. Although the 8344 mutation is highly prevalent in patients with MERRF, it is not observed in 10%-20% of the cases, suggesting genetic heterogeneity. The authors have sequenced the tRNA[sup Lys] gene of five MERRF patients lacking the common 8344 mutation. One of these showed a novel T[r arrow]C transition at nucleotide position 8356, disrupting a highly conserved base pair in the T[Psi]C stem. The mutant mtDNA population was essentially homoplasmic in muscle butmore » was heteroplasmic in blood (47%). Neither 20 patients with other mitochondrial diseases nor 25 controls carried this mutation. These findings suggest that tRNA[sup Lys] alterations may play a specific role in the pathogenesis of MERRF syndrome. 21 refs., 4 figs.« less

  16. Late Pleistocene human skeleton and mtDNA link Paleoamericans and modern Native Americans.

    PubMed

    Chatters, James C; Kennett, Douglas J; Asmerom, Yemane; Kemp, Brian M; Polyak, Victor; Blank, Alberto Nava; Beddows, Patricia A; Reinhardt, Eduard; Arroyo-Cabrales, Joaquin; Bolnick, Deborah A; Malhi, Ripan S; Culleton, Brendan J; Erreguerena, Pilar Luna; Rissolo, Dominique; Morell-Hart, Shanti; Stafford, Thomas W

    2014-05-16

    Because of differences in craniofacial morphology and dentition between the earliest American skeletons and modern Native Americans, separate origins have been postulated for them, despite genetic evidence to the contrary. We describe a near-complete human skeleton with an intact cranium and preserved DNA found with extinct fauna in a submerged cave on Mexico's Yucatan Peninsula. This skeleton dates to between 13,000 and 12,000 calendar years ago and has Paleoamerican craniofacial characteristics and a Beringian-derived mitochondrial DNA (mtDNA) haplogroup (D1). Thus, the differences between Paleoamericans and Native Americans probably resulted from in situ evolution rather than separate ancestry. Copyright © 2014, American Association for the Advancement of Science.

  17. Molecular phylogeny of extant Holothuroidea (Echinodermata).

    PubMed

    Miller, Allison K; Kerr, Alexander M; Paulay, Gustav; Reich, Mike; Wilson, Nerida G; Carvajal, Jose I; Rouse, Greg W

    2017-06-01

    Sea cucumbers (Holothuroidea) are a morphologically diverse, ecologically important, and economically valued clade of echinoderms; however, the understanding of the overall systematics of the group remains controversial. Here, we present a phylogeny of extant Holothuroidea assessed with maximum parsimony, maximum likelihood, and Bayesian approaches using approximately 4.3kb of mt- (COI, 16S, 12S) and nDNA (H3, 18S, 28S) sequences from 82 holothuroid terminals representing 23 of the 27 widely-accepted family-ranked taxa. Currently five holothuroid taxa of ordinal rank are accepted. We find that three of the five orders are non-monophyletic, and we revise the taxonomy of the groups accordingly. Apodida is sister to the rest of Holothuroidea, here considered Actinopoda. Within Actinopoda, Elasipodida in part is sister to the remaining Actinopoda. This latter clade, comprising holothuroids with respiratory trees, is now called Pneumonophora. The traditional Aspidochirotida is paraphyletic, with representatives from three orders (Molpadida, Dendrochirotida, and Elasipodida in part) nested within. Therefore, we discontinue the use of Aspidochirotida and instead erect Holothuriida as the sister group to the remaining Pneumonophora, here termed Neoholothuriida. We found four well-supported major clades in Neoholothuriida: Dendrochirotida, Molpadida and two new clades, Synallactida and Persiculida. The mapping of traditionally-used morphological characters in holothuroid systematics onto the phylogeny revealed marked homoplasy in most characters demonstrating that further taxonomic revision of Holothuroidea is required. Two time-tree analyses, one based on calibrations for uncontroversial crown group dates for Eleutherozoa, Echinozoa and Holothuroidea and another using these calibrations plus four more from within Holothuroidea, showed major discrepancies, suggesting that fossils of Holothuroidea may need reassessment in terms of placing these forms with existing crown

  18. Detection of the mtDNA 14484 mutation on an African-specific haplotype: Implications about its role in causing Leber hereditary optic neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torroni, A.; Petrozzi, M.; Terracina, M.

    1996-07-01

    Leber hereditary optic neuropathy (LHON) is a maternally transmitted disease whose primary clinical manifestation is acute or subacute bilateral loss of central vision leading to central scotoma and blindness. To date, LHON has been associated with 18 mtDNA missense mutations, even though, for many of these mutations, it remains unclear whether they cause the disease, contribute to the pathology, or are nonpathogenic mtDNA polymorphisms. On the basis of numerous criteria, which include the specificity for LHON, the frequency in the general population, and the penetrance within affected pedigrees, the detection of associated defects in the respiratory chain, mutations at threemore » nucleotide positions (nps), 11778 (G{r_arrow}A), 3460 (G{r_arrow}A), and 14484 (T{r_arrow}C) have been classified as high-risk and primary LHON mutations. Overall, these three mutations encompass {ge}90% of the LHON cases. 29 refs., 1 fig.« less

  19. mtDNA diversity in Azara's owl monkeys (Aotus azarai azarai) of the Argentinean Chaco.

    PubMed

    Babb, Paul L; Fernandez-Duque, Eduardo; Baiduc, Caitlin A; Gagneux, Pascal; Evans, Sian; Schurr, Theodore G

    2011-10-01

    Owl monkeys (Aotus spp.) inhabit much of South America yet represent an enigmatic evolutionary branch among primates. While morphological, cytogenetic, and immunological evidence suggest that owl monkey populations have undergone isolation and diversification since their emergence in the New World, problems with adjacent species ranges, and sample provenance have complicated efforts to characterize genetic variation within the genus. As a result, the phylogeographic history of owl monkey species and subspecies remains unclear, and the extent of genetic diversity at the population level is unknown. To explore these issues, we analyzed mitochondrial DNA (mt DNA) variation in a population of wild Azara's owl monkeys (Aotus azarai azarai) living in the Gran Chaco region of Argentina. We sequenced the complete mitochondrial genome from one individual (16,585 base pairs (bp)) and analyzed 1,099 bp of the hypervariable control region (CR) and 696 bp of the cytochrome oxidase II (COII) gene in 117 others. In addition, we sequenced the mitochondrial genome (16,472 bp) of one Nancy Ma's owl monkey (A. nancymaae). Based on the whole mtDNA and COII data, we observed an ancient phylogeographic discontinuity among Aotus species living north, south, and west of the Amazon River that began more than eight million years ago. Our population analyses identified three major CR lineages and detected a high level of haplotypic diversity within A. a. azarai. These data point to a recent expansion of Azara's owl monkeys into the Argentinean Chaco. Overall, we provide a detailed view of owl monkey mtDNA variation at genus, species, and population levels. Copyright © 2011 Wiley-Liss, Inc.

  20. Skeletal development of hallucal tarsometatarsal joint curvature and angulation in extant apes and modern humans.

    PubMed

    Gill, Corey M; Bredella, Miriam A; DeSilva, Jeremy M

    2015-11-01

    The medial cuneiform, namely the curvature and angulation of its distal facet with metatarsal 1, is crucial as a stabilizer in bipedal locomotion and an axis upon which the great toe medially deviates during arboreal locomotion in extant apes. Previous work has shown that facet curvature and angulation in adult dry-bone specimens can distinguish African apes from Homo, and can even distinguish among species of Gorilla. This study provides the first ontogenetic assessment of medial cuneiform curvature and angulation in juvenile (n = 68) and adult specimens (n = 102) using computed tomography in humans and extant ape specimens, including Pongo. Our data find that modern human juveniles initially have a convex and slightly medially oriented osseous surface of the developing medial cuneiform distal facet that flattens and becomes more distally oriented with age. The same pattern (though of a different magnitude) occurs developmentally in the chimpanzee medial cuneiform, but not in Gorilla or Pongo, whose medial cuneiform facet angulation remains unchanged ontogenetically. These data suggest that the medial cuneiform ossifies in a distinguishable pattern between Pongo, Gorilla, Pan, and Homo, which may in part be due to subtle differences in the loading environment at the hallucal tarsometatarsal joint-a finding that has important implications for interpreting fossil medial cuneiforms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Facial Orientation and Facial Shape in Extant Great Apes: A Geometric Morphometric Analysis of Covariation

    PubMed Central

    Neaux, Dimitri; Guy, Franck; Gilissen, Emmanuel; Coudyzer, Walter; Vignaud, Patrick; Ducrocq, Stéphane

    2013-01-01

    The organization of the bony face is complex, its morphology being influenced in part by the rest of the cranium. Characterizing the facial morphological variation and craniofacial covariation patterns in extant hominids is fundamental to the understanding of their evolutionary history. Numerous studies on hominid facial shape have proposed hypotheses concerning the relationship between the anterior facial shape, facial block orientation and basicranial flexion. In this study we test these hypotheses in a sample of adult specimens belonging to three extant hominid genera (Homo, Pan and Gorilla). Intraspecific variation and covariation patterns are analyzed using geometric morphometric methods and multivariate statistics, such as partial least squared on three-dimensional landmarks coordinates. Our results indicate significant intraspecific covariation between facial shape, facial block orientation and basicranial flexion. Hominids share similar characteristics in the relationship between anterior facial shape and facial block orientation. Modern humans exhibit a specific pattern in the covariation between anterior facial shape and basicranial flexion. This peculiar feature underscores the role of modern humans' highly-flexed basicranium in the overall integration of the cranium. Furthermore, our results are consistent with the hypothesis of a relationship between the reduction of the value of the cranial base angle and a downward rotation of the facial block in modern humans, and to a lesser extent in chimpanzees. PMID:23441232

  2. Siberian population of the New Stone Age: mtDNA haplotype diversity in the ancient population from the Ust'-Ida I burial ground, dated 4020-3210 BC by 14C.

    PubMed

    Naumova O, Y u; Rychkov S, Y u

    1998-03-01

    On the basis of analysis of mtDNA from skeletal remains, dated by 14C 4020-3210 BC, from the Ust'-Ida I Neolithic burial ground in Cis-Baikal area of Siberia, we obtained genetic characteristics of the ancient Mongoloid population. Using the 7 restriction enzymes for the analysis of site's polymorphism in 16,106-16,545 region of mtDNA, we studied the structure of the most frequent DNA haplotypes, and estimated the intrapopulational nucleotide diversity of the Neolithic population. Comparison of the Neolithic and modern indigeneous populations from Siberia, Mongolia and Ural showed, that the ancient Siberian population is one of the ancestors of the modern population of Siberia. From genetic distance, in the assumption of constant nucleotide substitution rate, we estimated the divergence time between the Neolithic and the modern Siberian population. This divergence time (5572 years ago) is conformed to the age of skeletal remains (5542-5652 years). With use of the 14C dates of the skeletal remains, nucleotide substitution rate in mtDNA was estimated as 1% sequence divergence for 8938-9115 years.

  3. Mitochondrial genome rearrangements in glomus species triggered by homologous recombination between distinct mtDNA haplotypes.

    PubMed

    Beaudet, Denis; Terrat, Yves; Halary, Sébastien; de la Providencia, Ivan Enrique; Hijri, Mohamed

    2013-01-01

    Comparative mitochondrial genomics of arbuscular mycorrhizal fungi (AMF) provide new avenues to overcome long-lasting obstacles that have hampered studies aimed at understanding the community structure, diversity, and evolution of these multinucleated and genetically polymorphic organisms.AMF mitochondrial (mt) genomes are homogeneous within isolates, and their intergenic regions harbor numerous mobile elements that have rapidly diverged, including homing endonuclease genes, small inverted repeats, and plasmid-related DNA polymerase genes (dpo), making them suitable targets for the development of reliable strain-specific markers. However, these elements may also lead to genome rearrangements through homologous recombination, although this has never previously been reported in this group of obligate symbiotic fungi. To investigate whether such rearrangements are present and caused by mobile elements in AMF, the mitochondrial genomes from two Glomeraceae members (i.e., Glomus cerebriforme and Glomus sp.) with substantial mtDNA synteny divergence,were sequenced and compared with available glomeromycotan mitochondrial genomes. We used an extensive nucleotide/protein similarity network-based approach to investigated podiversity in AMF as well as in other organisms for which sequences are publicly available. We provide strong evidence of dpo-induced inter-haplotype recombination, leading to a reshuffled mitochondrial genome in Glomus sp. These findings raise questions as to whether AMF single spore cultivations artificially underestimate mtDNA genetic diversity.We assessed potential dpo dispersal mechanisms in AMF and inferred a robust phylogenetic relationship with plant mitochondrial plasmids. Along with other indirect evidence, our analyses indicate that members of the Glomeromycota phylum are potential donors of mitochondrial plasmids to plants.

  4. Mitochondrial Genome Rearrangements in Glomus Species Triggered by Homologous Recombination between Distinct mtDNA Haplotypes

    PubMed Central

    Beaudet, Denis; Terrat, Yves; Halary, Sébastien; de la Providencia, Ivan Enrique; Hijri, Mohamed

    2013-01-01

    Comparative mitochondrial genomics of arbuscular mycorrhizal fungi (AMF) provide new avenues to overcome long-lasting obstacles that have hampered studies aimed at understanding the community structure, diversity, and evolution of these multinucleated and genetically polymorphic organisms. AMF mitochondrial (mt) genomes are homogeneous within isolates, and their intergenic regions harbor numerous mobile elements that have rapidly diverged, including homing endonuclease genes, small inverted repeats, and plasmid-related DNA polymerase genes (dpo), making them suitable targets for the development of reliable strain-specific markers. However, these elements may also lead to genome rearrangements through homologous recombination, although this has never previously been reported in this group of obligate symbiotic fungi. To investigate whether such rearrangements are present and caused by mobile elements in AMF, the mitochondrial genomes from two Glomeraceae members (i.e., Glomus cerebriforme and Glomus sp.) with substantial mtDNA synteny divergence, were sequenced and compared with available glomeromycotan mitochondrial genomes. We used an extensive nucleotide/protein similarity network-based approach to investigate dpo diversity in AMF as well as in other organisms for which sequences are publicly available. We provide strong evidence of dpo-induced inter-haplotype recombination, leading to a reshuffled mitochondrial genome in Glomus sp. These findings raise questions as to whether AMF single spore cultivations artificially underestimate mtDNA genetic diversity. We assessed potential dpo dispersal mechanisms in AMF and inferred a robust phylogenetic relationship with plant mitochondrial plasmids. Along with other indirect evidence, our analyses indicate that members of the Glomeromycota phylum are potential donors of mitochondrial plasmids to plants. PMID:23925788

  5. Localized population divergence of vervet monkeys (Chlorocebus spp.) in South Africa: evidence from mtDNA

    PubMed Central

    Turner, Trudy R.; Coetzer, Willem G.; Schmitt, Christopher A.; Lorenz, Joseph G.; Freimer, Nelson B.; Grobler, J. Paul

    2015-01-01

    Objectives Vervet monkeys are common in most tree-rich areas of South Africa, but their absence from grassland and semi-desert areas of the country suggest potentially restricted and mosaic local population patterns that may have relevance to local phenotype patterns and selection. A portion of the mtDNA control region was sequenced to study patterns of genetic differentiation. Materials and Methods DNA was extracted and mtDNA sequences were obtained from 101 vervet monkeys at 15 localities which represent both an extensive (widely across the distribution range) and intensive (more than one troop at most of the localities) sampling strategy. Analyses utilized Arlequin 3.1, MEGA 6, BEAST v1.5.2 and Network V3.6.1 Results The dataset contained 26 distinct haplotypes, with six populations fixed for single haplotypes. Pairwise P-distance among population pairs showed significant differentiation among most population pairs, but with non-significant differences among populations within some regions. Populations were grouped into three broad clusters in a maximum likelihood phylogenetic tree and a haplotype network. These clusters correspond to (i) north-western, northern and north-eastern parts of the distribution range as well as the northern coastal belt; (ii) central areas of the country; and (iii) southern part of the Indian Ocean coastal belt, and adjacent inland areas. Discussion Apparent patterns of genetic structure correspond to current and past distribution of suitable habitat, geographic barriers to gene flow, geographic distance and female philopatry. However, further work on nuclear markers and other genomic data is necessary to confirm these results. PMID:26265297

  6. The genetics of the pre-Roman Iberian Peninsula: a mtDNA study of ancient Iberians.

    PubMed

    Sampietro, M L; Caramelli, D; Lao, O; Calafell, F; Comas, D; Lari, M; Agustí, B; Bertranpetit, J; Lalueza-Fox, C

    2005-09-01

    The Iberians developed a surprisingly sophisticated culture in the Mediterranean coast of the Iberian Peninsula from the 6th century BC until their conquest by the Romans in the 2nd century BC. They spoke and wrote a non-Indo-European language that still cannot be understood; their origins and relationships with other non-Indo-European peoples, like the Etruscans, are unclear, since their funerary practices were based on the cremation of bodies, and therefore anthropology has been unable to approach the study of this people. We have retrieved mitochondrial DNA (mtDNA) from a few of the scarce skeletal remains that have been preserved, some of them belonging to ritualistically executed individuals. The most stringent authentication criteria proposed for ancient DNA, such as independent replication, amino-acid analysis, quantitation of template molecules, multiple extractions and cloning of PCR products, have been followed to obtain reliable sequences from the mtDNA hypervariable region 1 (HVR1), as well as some haplogroup diagnostic SNPs. Phylogeographic analyses show that the haplogroup composition of the ancient Iberians was very similar to that found in modern Iberian Peninsula populations, suggesting a long-term genetic continuity since pre-Roman times. Nonetheless, there is less genetic diversity in the ancient Iberians than is found among modern populations, a fact that could reflect the small population size at the origin of the population sampled, and the heterogenic tribal structure of the Iberian society. Moreover, the Iberians were not especially closely related to the Etruscans, which points to considerable genetic heterogeneity in Pre-Roman Western Europe.

  7. Genetic Diversity and Phylogenetic Analysis of South-East Asian Duck Populations Based on the mtDNA D-loop Sequences

    PubMed Central

    Sultana, H.; Seo, D. W.; Bhuiyan, M. S. A.; Choi, N. R.; Hoque, M. R.; Heo, K. N.; Lee, J. H.

    2016-01-01

    The maternally inherited mitochondrial DNA (mtDNA) D–loop region is widely used for exploring genetic relationships and for investigating the origin of various animal species. Currently, domestic ducks play an important role in animal protein supply. In this study, partial mtDNA D–loop sequences were obtained from 145 samples belonging to six South-East Asian duck populations and commercial duck population. All these populations were closely related to the mallard duck (Anas platyrhynchos), as indicated by their mean overall genetic distance. Sixteen nucleotide substitutions were identified in sequence analyses allowing the distinction of 28 haplotypes. Around 42.76% of the duck sequences were classified as Hap_02, which completely matched with Anas platyrhynchos duck species. The neighbor-joining phylogenetic tree also revealed that South-East Asian duck populations were closely related to Anas platyrhynchos. Network profiles were also traced using the 28 haplotypes. Overall, results showed that those duck populations D-loop haplotypes were shared between several duck breeds from Korea and Bangladesh sub continental regions. Therefore, these results confirmed that South-East Asian domestic duck populations have been domesticated from Anas platyrhynchos duck as the maternal origins. PMID:27004808

  8. Improved health-span and lifespan in mtDNA mutator mice treated with the mitochondrially targeted antioxidant SkQ1

    PubMed Central

    Shabalina, Irina G.; Vyssokikh, Mikhail Yu.; Gibanova, Natalia; Csikasz, Robert I.; Edgar, Daniel; Hallden-Waldemarson, Anne; Rozhdestvenskaya, Zinaida; Bakeeva, Lora E.; Vays, Valeria B.; Pustovidko, Antonina V.; Skulachev, Maxim V.; Cannon, Barbara; Skulachev, Vladimir P.; Nedergaard, Jan

    2017-01-01

    MtDNA mutator mice exhibit marked features of premature aging. We find that these mice treated from age of ≈100 days with the mitochondria-targeted antioxidant SkQ1 showed a delayed appearance of traits of aging such as kyphosis, alopecia, lowering of body temperature, body weight loss, as well as ameliorated heart, kidney and liver pathologies. These effects of SkQ1 are suggested to be related to an alleviation of the effects of an enhanced reactive oxygen species (ROS) level in mtDNA mutator mice: the increased mitochondrial ROS released due to mitochondrial mutations probably interact with polyunsaturated fatty acids in cardiolipin, releasing malondialdehyde and 4-hydroxynonenal that form protein adducts and thus diminishes mitochondrial functions. SkQ1 counteracts this as it scavenges mitochondrial ROS. As the results, the normal mitochondrial ultrastructure is preserved in liver and heart; the phosphorylation capacity of skeletal muscle mitochondria as well as the thermogenic capacity of brown adipose tissue is also improved. The SkQ1-treated mice live significantly longer (335 versus 290 days). These data may be relevant in relation to treatment of mitochondrial diseases particularly and the process of aging in general. PMID:28209927

  9. Tracing the phylogeography of human populations in Britain based on 4th-11th century mtDNA genotypes.

    PubMed

    Töpf, A L; Gilbert, M T P; Dumbacher, J P; Hoelzel, A R

    2006-01-01

    Some of the transitional periods of Britain during the first millennium A.D. are traditionally associated with the movement of people from continental Europe, composed largely of invading armies (e.g., the Roman, Saxon, and Viking invasions). However, the extent to which these were migrations (as opposed to cultural exchange) remains controversial. We investigated the history of migration by women by amplifying mitochondrial DNA (mtDNA) from ancient Britons who lived between approximately A.D. 300-1,000 and compared these with 3,549 modern mtDNA database genotypes from England, Europe, and the Middle East. The objective was to assess the dynamics of the historical population composition by comparing genotypes in a temporal context. Towards this objective we test and calibrate the use of rho statistics to identify relationships between founder and source populations. We find evidence for shared ancestry between the earliest sites (predating Viking invasions) with modern populations across the north of Europe from Norway to Estonia, possibly reflecting common ancestors dating back to the last glacial epoch. This is in contrast with a late Saxon site in Norwich, where the genetic signature is consistent with more recent immigrations from the south, possibly as part of the Saxon invasions.

  10. More reliable estimates of divergence times in Pan using complete mtDNA sequences and accounting for population structure.

    PubMed

    Stone, Anne C; Battistuzzi, Fabia U; Kubatko, Laura S; Perry, George H; Trudeau, Evan; Lin, Hsiuman; Kumar, Sudhir

    2010-10-27

    Here, we report the sequencing and analysis of eight complete mitochondrial genomes of chimpanzees (Pan troglodytes) from each of the three established subspecies (P. t. troglodytes, P. t. schweinfurthii and P. t. verus) and the proposed fourth subspecies (P. t. ellioti). Our population genetic analyses are consistent with neutral patterns of evolution that have been shaped by demography. The high levels of mtDNA diversity in western chimpanzees are unlike those seen at nuclear loci, which may reflect a demographic history of greater female to male effective population sizes possibly owing to the characteristics of the founding population. By using relaxed-clock methods, we have inferred a timetree of chimpanzee species and subspecies. The absolute divergence times vary based on the methods and calibration used, but relative divergence times show extensive uniformity. Overall, mtDNA produces consistently older times than those known from nuclear markers, a discrepancy that is reduced significantly by explicitly accounting for chimpanzee population structures in time estimation. Assuming the human-chimpanzee split to be between 7 and 5 Ma, chimpanzee time estimates are 2.1-1.5, 1.1-0.76 and 0.25-0.18 Ma for the chimpanzee/bonobo, western/(eastern + central) and eastern/central chimpanzee divergences, respectively.

  11. Boundary streaming with Navier boundary condition.

    PubMed

    Xie, Jin-Han; Vanneste, Jacques

    2014-06-01

    In microfluidic applications involving high-frequency acoustic waves over a solid boundary, the Stokes boundary-layer thickness δ is so small that some non-negligible slip may occur at the fluid-solid interface. This paper assesses the impact of this slip by revisiting the classical problem of steady acoustic streaming over a flat boundary, replacing the no-slip boundary condition with the Navier condition u|_{y=0}=L_{s}∂_{y}u|_{y=0}, where u is the velocity tangent to the boundary y=0, and the parameter L_{s} is the slip length. A general expression is obtained for the streaming velocity across the boundary layer as a function of the dimensionless parameter L_{s}/δ. The limit outside the boundary layer provides an effective slip velocity satisfied by the interior mean flow. Particularizing to traveling and standing waves shows that the boundary slip respectively increases and decreases the streaming velocity.

  12. Use of congeneric assessment to reveal the linked genetic histories of two threatened fishes in the Murray-Darling Basin, Australia.

    PubMed

    Adams, M; Wedderburn, S D; Unmack, P J; Hammer, M P; Johnson, J B

    2011-08-01

    The intensely regulated Murray-Darling Basin in southeastern Australia is the nation's most extensive and economically important river system, and it contains fragmented populations of numerous fish species. Among these is the Murray hardyhead (Craterocephalus fluviatilis), a species listed as endangered (International Union for Conservation of Nature Red List) in the mid-1990 s prior to its acute decline with the progression of a severe drought that began in 1997. We compared the genetic structure of Murray hardyhead with 4 congeneric species (Darling hardyhead[C. amniculus], Finke hardyhead[C. centralis], Lake Eyre hardyhead[C. eyresii], and unspecked hardyhead[C. stercusmuscarum]), selected on the basis of their taxonomic or biological similarity to Murray hardyhead, in order to affirm species boundaries and test for instances of introgressive hybridization, which may influence species ecology and conservation prospects. We used allozyme (52 loci) and mtDNA markers (1999 bp of ATPase and cytochrome b) to provide a comparative genetic assessment of 139 Murray hardyhead, which represented all extant and some recently extirpated populations, and 71 congeneric specimens from 12 populations. We confirmed that Murray hardyhead and Darling hardyhead are taxonomically distinct and identified a number of potential conservation units, defined with genetic criteria, in both species. We also found allozyme and mtDNA evidence of historic genetic exchange between these 2 allopatric species, apparently involving one population of each species at the geographic edge of the species' ranges, not in the most proximate populations sampled. Our results provide information on species boundaries and offer insight into the likely causes of high genetic diversity in certain populations, results which are already being used to guide national recovery planning and local action. Given the prevalence of incorrect taxonomies and introgression in many organismal groups, we believe these data

  13. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway

    USDA-ARS?s Scientific Manuscript database

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the...

  14. Re-examination of population structure and phylogeography of hawksbill turtles in the wider Caribbean using longer mtDNA sequences.

    PubMed

    Leroux, Robin A; Dutton, Peter H; Abreu-Grobois, F Alberto; Lagueux, Cynthia J; Campbell, Cathi L; Delcroix, Eric; Chevalier, Johan; Horrocks, Julia A; Hillis-Starr, Zandy; Troëng, Sebastian; Harrison, Emma; Stapleton, Seth

    2012-01-01

    Management of the critically endangered hawksbill turtle in the Wider Caribbean (WC) has been hampered by knowledge gaps regarding stock structure. We carried out a comprehensive stock structure re-assessment of 11 WC hawksbill rookeries using longer mtDNA sequences, larger sample sizes (N = 647), and additional rookeries compared to previous surveys. Additional variation detected by 740 bp sequences between populations allowed us to differentiate populations such as Barbados-Windward and Guadeloupe (F (st) = 0.683, P < 0.05) that appeared genetically indistinguishable based on shorter 380 bp sequences. POWSIM analysis showed that longer sequences improved power to detect population structure and that when N < 30, increasing the variation detected was as effective in increasing power as increasing sample size. Geographic patterns of genetic variation suggest a model of periodic long-distance colonization coupled with region-wide dispersal and subsequent secondary contact within the WC. Mismatch analysis results for individual clades suggest a general population expansion in the WC following a historic bottleneck about 100 000-300 000 years ago. We estimated an effective female population size (N (ef)) of 6000-9000 for the WC, similar to the current estimated numbers of breeding females, highlighting the importance of these regional rookeries to maintaining genetic diversity in hawksbills. Our results provide a basis for standardizing future work to 740 bp sequence reads and establish a more complete baseline for determining stock boundaries in this migratory marine species. Finally, our findings illustrate the value of maintaining an archive of specimens for re-analysis as new markers become available.

  15. Anthropology. Response to Comment on "Late Pleistocene human skeleton and mtDNA link Paleoamericans and modern Native Americans".

    PubMed

    Kemp, Brian M; Lindo, John; Bolnick, Deborah A; Malhi, Ripan S; Chatters, James C

    2015-02-20

    Prüfer and Meyer raise concerns over the mitochondrial DNA (mtDNA) results we reported for the Hoyo Negro individual, citing failure of a portion of these data to conform to their expectations of ancient DNA (aDNA). Because damage patterns in aDNA vary, outright rejection of our findings on this basis is unwarranted, especially in light of our other observations. Copyright © 2015, American Association for the Advancement of Science.

  16. An Extremely Peramorphic Newt (Urodela: Salamandridae: Pleurodelini) from the Latest Oligocene of Germany, and a New Phylogenetic Analysis of Extant and Extinct Salamandrids

    PubMed Central

    Marjanović, David; Witzmann, Florian

    2015-01-01

    We describe an Oligocene newt specimen from western Germany that has gone practically unnoticed in the literature despite having been housed in the Museum für Naturkunde (Berlin) for a century. It is referable to the coeval Chelotriton, but is unusually peramorphic; for many characters it is more peramorphic than all other caudates or even all other lissamphibians. Most noticeable are the position of the jaw joints far caudal to the occiput, the honeycombed sculpture on the maxilla, and the possible presence of a septomaxilla (which would be unique among salamandrids). Referral to a species would require a revision of the genus, but the specimen likely does not belong to the type species. A phylogenetic analysis of nonmolecular characters of Salamandridae, far larger than all predecessors, confirms the referral to Chelotriton. It further loosely associates the Oligocene Archaeotriton and the Miocene Carpathotriton with the extant Lissotriton, though the former may alternatively lie outside Pleurodelinae altogether. The Miocene? I. randeckensis may not belong to the extant Ichthyosaura. The Miocene “Triturus” roehrsi is found neither with the extant Ommatotriton nor with Lissotriton, but inside an Asian/aquatic clade or, when geographic distribution is included as a character, as the sister-group to all other European molgins. The main cause for discrepancies between the results and the molecular consensus is not heterochrony, but adaptations to a life in mountain streams; this is the most likely reason why the Paleocene Koalliella from western Europe forms the sister-group to some or all of the most aquatic extant newts in different analyses. We would like to urge neontologists working on salamandrids to pay renewed attention to the skeleton, not limited to the skull, as a source of diagnostic and phylogenetically informative characters. PMID:26421432

  17. An Extremely Peramorphic Newt (Urodela: Salamandridae: Pleurodelini) from the Latest Oligocene of Germany, and a New Phylogenetic Analysis of Extant and Extinct Salamandrids.

    PubMed

    Marjanović, David; Witzmann, Florian

    2015-01-01

    We describe an Oligocene newt specimen from western Germany that has gone practically unnoticed in the literature despite having been housed in the Museum für Naturkunde (Berlin) for a century. It is referable to the coeval Chelotriton, but is unusually peramorphic; for many characters it is more peramorphic than all other caudates or even all other lissamphibians. Most noticeable are the position of the jaw joints far caudal to the occiput, the honeycombed sculpture on the maxilla, and the possible presence of a septomaxilla (which would be unique among salamandrids). Referral to a species would require a revision of the genus, but the specimen likely does not belong to the type species. A phylogenetic analysis of nonmolecular characters of Salamandridae, far larger than all predecessors, confirms the referral to Chelotriton. It further loosely associates the Oligocene Archaeotriton and the Miocene Carpathotriton with the extant Lissotriton, though the former may alternatively lie outside Pleurodelinae altogether. The Miocene? I. randeckensis may not belong to the extant Ichthyosaura. The Miocene "Triturus" roehrsi is found neither with the extant Ommatotriton nor with Lissotriton, but inside an Asian/aquatic clade or, when geographic distribution is included as a character, as the sister-group to all other European molgins. The main cause for discrepancies between the results and the molecular consensus is not heterochrony, but adaptations to a life in mountain streams; this is the most likely reason why the Paleocene Koalliella from western Europe forms the sister-group to some or all of the most aquatic extant newts in different analyses. We would like to urge neontologists working on salamandrids to pay renewed attention to the skeleton, not limited to the skull, as a source of diagnostic and phylogenetically informative characters.

  18. Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary

    PubMed Central

    Liu, Liang; Zhang, Jin; Rheindt, Frank E.; Lei, Fumin; Qu, Yanhua; Wang, Yu; Zhang, Yu; Sullivan, Corwin; Nie, Wenhui; Wang, Jinhuan; Yang, Fengtang; Chen, Jinping; Edwards, Scott V.; Meng, Jin; Wu, Shaoyuan

    2017-01-01

    The timing of the diversification of placental mammals relative to the Cretaceous–Paleogene (KPg) boundary mass extinction remains highly controversial. In particular, there have been seemingly irreconcilable differences in the dating of the early placental radiation not only between fossil-based and molecular datasets but also among molecular datasets. To help resolve this discrepancy, we performed genome-scale analyses using 4,388 loci from 90 taxa, including representatives of all extant placental orders and transcriptome data from flying lemurs (Dermoptera) and pangolins (Pholidota). Depending on the gene partitioning scheme, molecular clock model, and genic deviation from molecular clock assumptions, extensive sensitivity analyses recovered widely varying diversification scenarios for placental mammals from a given gene set, ranging from a deep Cretaceous origin and diversification to a scenario spanning the KPg boundary, suggesting that the use of suboptimal molecular clock markers and methodologies is a major cause of controversies regarding placental diversification timing. We demonstrate that reconciliation between molecular and paleontological estimates of placental divergence times can be achieved using the appropriate clock model and gene partitioning scheme while accounting for the degree to which individual genes violate molecular clock assumptions. A birth-death-shift analysis suggests that placental mammals underwent a continuous radiation across the KPg boundary without apparent interruption by the mass extinction, paralleling a genus-level radiation of multituberculates and ecomorphological diversification of both multituberculates and therians. These findings suggest that the KPg catastrophe evidently played a limited role in placental diversification, which, instead, was likely a delayed response to the slightly earlier radiation of angiosperms. PMID:28808022

  19. Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary.

    PubMed

    Liu, Liang; Zhang, Jin; Rheindt, Frank E; Lei, Fumin; Qu, Yanhua; Wang, Yu; Zhang, Yu; Sullivan, Corwin; Nie, Wenhui; Wang, Jinhuan; Yang, Fengtang; Chen, Jinping; Edwards, Scott V; Meng, Jin; Wu, Shaoyuan

    2017-08-29

    The timing of the diversification of placental mammals relative to the Cretaceous-Paleogene (KPg) boundary mass extinction remains highly controversial. In particular, there have been seemingly irreconcilable differences in the dating of the early placental radiation not only between fossil-based and molecular datasets but also among molecular datasets. To help resolve this discrepancy, we performed genome-scale analyses using 4,388 loci from 90 taxa, including representatives of all extant placental orders and transcriptome data from flying lemurs (Dermoptera) and pangolins (Pholidota). Depending on the gene partitioning scheme, molecular clock model, and genic deviation from molecular clock assumptions, extensive sensitivity analyses recovered widely varying diversification scenarios for placental mammals from a given gene set, ranging from a deep Cretaceous origin and diversification to a scenario spanning the KPg boundary, suggesting that the use of suboptimal molecular clock markers and methodologies is a major cause of controversies regarding placental diversification timing. We demonstrate that reconciliation between molecular and paleontological estimates of placental divergence times can be achieved using the appropriate clock model and gene partitioning scheme while accounting for the degree to which individual genes violate molecular clock assumptions. A birth-death-shift analysis suggests that placental mammals underwent a continuous radiation across the KPg boundary without apparent interruption by the mass extinction, paralleling a genus-level radiation of multituberculates and ecomorphological diversification of both multituberculates and therians. These findings suggest that the KPg catastrophe evidently played a limited role in placental diversification, which, instead, was likely a delayed response to the slightly earlier radiation of angiosperms.

  20. Rare mtDNA variants in Leber hereditary optic neuropathy families with recurrence of myoclonus.

    PubMed

    La Morgia, C; Achilli, A; Iommarini, L; Barboni, P; Pala, M; Olivieri, A; Zanna, C; Vidoni, S; Tonon, C; Lodi, R; Vetrugno, R; Mostacci, B; Liguori, R; Carroccia, R; Montagna, P; Rugolo, M; Torroni, A; Carelli, V

    2008-03-04

    To investigate the mechanisms underlying myoclonus in Leber hereditary optic neuropathy (LHON). Five patients and one unaffected carrier from two Italian families bearing the homoplasmic 11778/ND4 and 3460/ND1 mutations underwent a uniform investigation including neurophysiologic studies, muscle biopsy, serum lactic acid after exercise, and muscle ((31)P) and cerebral ((1)H) magnetic resonance spectroscopy (MRS). Biochemical investigations on fibroblasts and complete mitochondrial DNA (mtDNA) sequences of both families were also performed. All six individuals had myoclonus. In spite of a normal EEG background and the absence of giant SEPs and C reflex, EEG-EMG back-averaging showed a preceding jerk-locked EEG potential, consistent with a cortical generator of the myoclonus. Specific comorbidities in the 11778/ND4 family included muscular cramps and psychiatric disorders, whereas features common to both families were migraine and cardiologic abnormalities. Signs of mitochondrial proliferation were seen in muscle biopsies and lactic acid elevation was observed in four of six patients. (31)P-MRS was abnormal in five of six patients and (1)H-MRS showed ventricular accumulation of lactic acid in three of six patients. Fibroblast ATP depletion was evident at 48 hours incubation with galactose in LHON/myoclonus patients. Sequence analysis revealed haplogroup T2 (11778/ND4 family) and U4a (3460/ND1 family) mtDNAs. A functional role for the non-synonymous 4136A>G/ND1, 9139G>A/ATPase6, and 15773G>A/cyt b variants was supported by amino acid conservation analysis. Myoclonus and other comorbidities characterized our Leber hereditary optic neuropathy (LHON) families. Functional investigations disclosed a bioenergetic impairment in all individuals. Our sequence analysis suggests that the LHON plus phenotype in our cases may relate to the synergic role of mtDNA variants.

  1. Testing models of female reproductive migratory behaviour and population structure in the Caribbean hawksbill turtle, Eretmochelys imbricata, with mtDNA sequences.

    PubMed

    Bass, A L; Good, D A; Bjorndal, K A; Richardson, J I; Hillis, Z M; Horrocks, J A; Bowen, B W

    1996-06-01

    Information on the reproductive behaviour and population structure of female hawksbill turtles, Eretmochelys imbricata, is necessary to define conservation priorities for this highly endangered species. Two hypotheses to explain female nest site choice, natal homing and social facilitation, were tested by analyzing mtDNA control region sequences of 103 individuals from seven nesting colonies in the Caribbean and western Atlantic. Under the social facilitation model, newly mature females follow older females to a nesting location, and subsequently use this site for future nesting. This model generates an expectation that female lineages will be homogenized among regional nesting colonies. Contrary to expectations of the social facilitation model, mtDNA lineages were highly structured among western Atlantic nesting colonies. These analyses identified at least 6 female breeding stocks in the Caribbean and western Atlantic and support a natal homing model for recruitment of breeding females. Reproductive populations are effectively isolated over ecological time scales, and recovery plans for this species should include protection at the level of individual nesting colonies.

  2. The congruence between matrilineal genetic (mtDNA) and geographic diversity of Iranians and the territorial populations

    PubMed Central

    Bahmanimehr, Ardeshir; Eskandari, Ghafar; Nikmanesh, Fatemeh

    2015-01-01

    Objective(s): From the ancient era, emergence of Agriculture in the connecting region of Mesopotamia and the Iranian plateau at the foothills of the Zagros Mountains, made Iranian gene pool as an important source of populating the region. It has differentiated the population spread and different language groups. In order to trace the maternal genetic affinity between Iranians and other populations of the area and to establish the place of Iranians in a broad framework of ethnically and linguistically diverse groups of Middle Eastern and South Asian populations, a comparative study of territorial groups was designed and used in the population statistical analysis. Materials and Methods: Mix of 616 samples was sequenced for complete mtDNA or hyper variable regions in this study. A published dataset of neighboring populations was used as a comparison in the Iranian matrilineal lineage study based on mtDNA haplogroups. Results: Statistical analyses data, demonstrate a close genetic structure of all Iranian populations, thus suggesting their origin from a common maternal ancestral gene pool and show that the diverse maternal genetic structure does not reflect population differentiation in the region in their language. Conclusion: In the aggregate of the eastward spreads of proto-Elamo-Dravidian language from the Southwest region of Iran, the Elam province, a reasonable degree of homogeneity has been observed among Iranians in this study. The approach will facilitate our perception of the more detailed relationship of the ethnic groups living in Iran with the other ancient peoples of the area, testing linguistic hypothesis and population movements. PMID:25810873

  3. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target.

    PubMed

    Lee, Ping-Shin; Sing, Kong-Wah; Wilson, John-James

    2015-01-01

    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring.

  4. Virtual cranial endocast of the oldest giant panda (Ailuropoda microta) reveals great similarity to that of its extant relative.

    PubMed

    Dong, Wei

    2008-11-01

    Recent development of computed tomography and three-dimensional visualization techniques has enabled the non-destructive inspection of the endocast morphology of fossil neurocranium, the basic material for paleoneurological study. A virtual cranial endocast was reconstructed based on the first skull of the oldest giant panda, Ailuropoda microta, discovered recently and dated at more than 2 Myr (million years) ago. It was compared with that of the extant giant panda (A. melanoleuca) and that of the polar bear (Ursus maritimus), as well as CT slices of the late Pleistocene A. baconi. The overall endocast morphology of A. microta is more similar to that of A. baconi and A. melanoleuca than to that of U. maritimus. The absolute endocast size is the smallest in A. microta, largest in A. baconi, and intermediate in A. melanoleuca. However, the proportion of cerebral volume to total endocast size is very close to each other between the oldest and extant giant panda, as well as the sulcal length per unit area of cerebral endocast surface.

  5. Virtual cranial endocast of the oldest giant panda ( Ailuropoda microta) reveals great similarity to that of its extant relative

    NASA Astrophysics Data System (ADS)

    Dong, Wei

    2008-11-01

    Recent development of computed tomography and three-dimensional visualization techniques has enabled the non-destructive inspection of the endocast morphology of fossil neurocranium, the basic material for paleoneurological study. A virtual cranial endocast was reconstructed based on the first skull of the oldest giant panda, Ailuropoda microta, discovered recently and dated at more than 2 Myr (million years) ago. It was compared with that of the extant giant panda ( A. melanoleuca) and that of the polar bear ( Ursus maritimus), as well as CT slices of the late Pleistocene A. baconi. The overall endocast morphology of A. microta is more similar to that of A. baconi and A. melanoleuca than to that of U. maritimus. The absolute endocast size is the smallest in A. microta, largest in A. baconi, and intermediate in A. melanoleuca. However, the proportion of cerebral volume to total endocast size is very close to each other between the oldest and extant giant panda, as well as the sulcal length per unit area of cerebral endocast surface.

  6. "Express testing" in STI clinics: extant literature and preliminary implementation data.

    PubMed

    O'Byrne, Patrick; Phillips, J Craig; Campbell, Barbara; Reynolds, Aideen; Metz, Gila

    2016-02-01

    In an era of stagnant resources for sexually transmitted infection (STI) and HIV testing clinics, and at a time of ongoing-and in some cases increasing-STI and HIV transmission, it is important to trial and evaluate novel STI/HIV testing strategies. Based on the extant literature, one such approach is express testing, which includes full STI/HIV testing (as per clinical indication and client request), altered pretest counseling, and no physical examination for both men and women. In this paper, we overview the available research about express testing, including the literature on less-invasive testing, the effects of risk reduction counseling HIV testin/HIV testing, available research on various HIV testing modalities, and the reasons people undergo such testing. Thereafter, we overview our express testing program, which includes a detailed review of our clinical processes (which are unique within the published literature). Lastly, we provide some preliminary pre-implementation data to support the proposed efficacy of express testing. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous-Tertiary boundary.

    PubMed

    Roos, Jonas; Aggarwal, Ramesh K; Janke, Axel

    2007-11-01

    The mitochondrial genomes of the dwarf crocodile, Osteolaemus tetraspis, and two species of dwarf caimans, the smooth-fronted caiman, Paleosuchus trigonatus, and Cuvier's dwarf caiman, Paleosuchus palpebrosus, were sequenced and included in a mitogenomic phylogenetic study. The phylogenetic analyses, which included a total of ten crocodylian species, yielded strong support to a basal split between Crocodylidae and Alligatoridae. Osteolaemus fell within the Crocodylidae as the sister group to Crocodylus. Gavialis and Tomistoma, which joined on a common branch, constituted a sister group to Crocodylus/Osteolaemus. This suggests that extant crocodylians are organized in two families: Alligatoridae and Crocodylidae. Within the Alligatoridae there was a basal split between Alligator and a branch that contained Paleosuchus and Caiman. The analyses also provided molecular estimates of various divergences applying recently established crocodylian and outgroup fossil calibration points. Molecular estimates based on amino acid data placed the divergence between Crocodylidae and Alligatoridae at 97-103 million years ago and that between Alligator and Caiman/Paleosuchus at 65-72 million years ago. Other crocodilian divergences were placed after the Cretaceous-Tertiary boundary. Thus, according to the molecular estimates, three extant crocodylian lineages have their roots in the Cretaceous. Considering the crocodylian diversification in the Cretaceous the molecular datings suggest that the extinction of the dinosaurs was also to some extent paralleled in the crocodylian evolution. However, for whatever reason, some crocodylian lineages survived into the Tertiary.

  8. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    PubMed Central

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  9. Phylogeography of the arid-adapted Malagasy bullfrog, Laliostoma labrosum, influenced by past connectivity and habitat stability.

    PubMed

    Pabijan, Maciej; Brown, Jason L; Chan, Lauren M; Rakotondravony, Hery A; Raselimanana, Achille P; Yoder, Anne D; Glaw, Frank; Vences, Miguel

    2015-11-01

    The rainforest biome of eastern Madagascar is renowned for its extraordinary biodiversity and restricted distribution ranges of many species, whereas the arid western region of the island is relatively species poor. We provide insight into the biogeography of western Madagascar by analyzing a multilocus phylogeographic dataset assembled for an amphibian, the widespread Malagasy bullfrog, Laliostoma labrosum. We find no cryptic species in L. labrosum (maximum 1.1% pairwise genetic distance between individuals in the 16S rRNA gene) attributable to considerable gene flow at the regional level as shown by genetic admixture in both mtDNA and three nuclear loci, especially in central Madagascar. Low breeding site fidelity, viewed as an adaptation to the unreliability of standing pools of freshwater in dry and seasonal environments, and a ubiquitous distribution within its range may underlie overall low genetic differentiation. Moreover, reductions in population size associated with periods of high aridity in western Madagascar may have purged DNA variation in this species. The mtDNA gene tree revealed seven major phylogroups within this species, five of which show mostly non-overlapping distributions. The nested positions of the northern and central mtDNA phylogroups imply a southwestern origin for all extant mtDNA lineages in L. labrosum. The current phylogeography of this species and paleo-distributions of major mtDNA lineages suggest five potential refugia in northern, western and southwestern Madagascar, likely the result of Pleistocene range fragmentation during drier and cooler climates. Lineage sorting in mtDNA and nuclear loci highlighted a main phylogeographic break between populations north and south of the Sambirano region, suggesting a role of the coastal Sambirano rainforest as a barrier to gene flow. Paleo-species distribution models and dispersal networks suggest that the persistence of some refugial populations was mainly determined by high population

  10. The dispersion and detection patterns of mtDNA-assigned red fox Vulpes vulpes scats in Tasmania are anomalous.

    PubMed

    Marks, Clive A; Obendorf, David; Pereira, Filipe; Edwards, Ivo; Hall, Graham P

    2014-08-01

    Models used for resource allocation in eradication programmes must be based on replicated data of known quality and have proven predictive accuracy, or they may provide a false indication of species presence and/or distribution. In the absence of data corroborating the presence of extant foxes Vulpes vulpes in Tasmania, a habitat-specific model based upon mtDNA data (Sarre et al . 2012. Journal Applied Ecology , 50, 459-468) implied that foxes were widespread. Overall, 61 of 9940 (0·6%) surveyed scats were assigned as mtDNA fox positive by the fox eradication programme (FEP). We investigated the spatiotemporal distribution of the 61 mtDNA-assigned fox scats and modelled the probability of replicating scat detection in independent surveys using detection dogs based upon empirically derived probabilities of scat detection success obtained by the FEP using imported fox scats. In a prior mainland study, fox genotypes were recurrently detected in a consecutive four-day pool of scats. In Tasmania, only three contemporaneously collected scat pairs of unknown genotype were detected by the FEP within an area corresponding to a conservatively large mainland fox home range (639 ha) in a decade. Nearest neighbour pairs were widely spaced (mean = 7·0 km; circular area = 153 km 2 ) and generated after a mean of 281 days. The majority of assigned mtDNA positive scats were found in urban and peri-urban environments corresponding to small mainland fox home ranges (30-45 ha) that imply higher scat density and more certain replication. Using the lowest empirically determined scat detection success for dogs, the failure to replicate fox scat detection on 34 of 36 occasions in a large (639 ha) home range is highly improbable ( P  = 0·00001) and suggestive of Type I error. Synthesis and applications . Type I error, which may have various sources, should be considered when scat mtDNA data are few, accumulated over many years, uncorroborated by observations of extant

  11. Intragenic inversion of mtDNA: a new type of pathogenic mutation in a patient with mitochondrial myopathy.

    PubMed Central

    Musumeci, O; Andreu, A L; Shanske, S; Bresolin, N; Comi, G P; Rothstein, R; Schon, E A; DiMauro, S

    2000-01-01

    We report an unusual molecular defect in the mitochondrially encoded ND1 subunit of NADH ubiquinone oxidoreductase (complex I) in a patient with mitochondrial myopathy and isolated complex I deficiency. The mutation is an inversion of seven nucleotides within the ND1 gene, which maintains the reading frame. The inversion, which alters three highly conserved amino acids in the polypeptide, was heteroplasmic in the patient's muscle but was not detectable in blood. This is the first report of a pathogenic inversion mutation in human mtDNA. PMID:10775530

  12. Disentangling Ancient Interactions: A New Extinct Passerine Provides Insights on Character Displacement among Extinct and Extant Island Finches

    PubMed Central

    Rando, Juan Carlos; Alcover, Josep Antoni; Illera, Juan Carlos

    2010-01-01

    Background Evolutionary studies of insular biotas are based mainly on extant taxa, although such biotas represent artificial subsets of original faunas because of human-caused extinctions of indigenous species augmented by introduced exotic taxa. This makes it difficult to obtain a full understanding of the history of ecological interactions between extant sympatric species. Morphological bill variation of Fringilla coelebs and F. teydea (common and blue chaffinches) has been previously studied in the North Atlantic Macaronesian archipelagos. Character displacement between both species has been argued to explain bill sizes in sympatry. However, this explanation is incomplete, as similar patterns of bill size have been recorded in F. coelebs populations from islands with and without F. teydea. Methodology/Principal Findings The discovery of a new extinct species in Tenerife (Canary Islands), here named Carduelis aurelioi n. sp. (slender-billed greenfinch), provides the opportunity to study ancient ecological interactions among Macaronesian finches. To help understand the evolutionary histories of forest granivores in space and time, we have performed a multidisciplinary study combining: (1) morphological analyses and radiocarbon dating (11,460±60 yr BP) of the new taxon and, (2) molecular divergence among the extant finch species and populations in order to infer colonization times (1.99 and 1.09 My for F. teydea and F. coelebs respectively). Conclusion/Significance C. aurelioi, F. coelebs and F. teydea co-habited in Tenerife for at least one million years. The unique anatomical trends of the new species, namely chaffinch-like beak and modified hind and forelimbs, reveal that there was a process of divergence of resource competition traits among the three sympatric finches. The results of our study, combined with the presence of more extinct greenfinches in other Macaronesian islands with significant variation in their beak sizes, suggests that the character

  13. The mummified brain of a pleistocene woolly mammoth (Mammuthus primigenius) compared with the brain of the extant African elephant (Loxodonta africana).

    PubMed

    Kharlamova, Anastasia S; Saveliev, Sergei V; Protopopov, Albert V; Maseko, Busisiwe C; Bhagwandin, Adhil; Manger, Paul R

    2015-11-01

    This study presents the results of an examination of the mummified brain of a pleistocene woolly mammoth (Mammuthus primigenius) recovered from the Yakutian permafrost in Siberia, Russia. This unique specimen (from 39,440-38,850 years BP) provides the rare opportunity to compare the brain morphology of this extinct species with a related extant species, the African elephant (Loxodonta africana). An anatomical description of the preserved brain of the woolly mammoth is provided, along with a series of quantitative analyses of various brain structures. These descriptions are based on visual inspection of the actual specimen as well as qualitative and quantitative comparison of computed tomography imaging data obtained for the woolly mammoth in comparison with magnetic resonance imaging data from three African elephant brains. In general, the brain of the woolly mammoth specimen examined, estimated to weigh between 4,230 and 4,340 g, showed the typical shape, size, and gross structures observed in extant elephants. Quantitative comparative analyses of various features of the brain, such as the amygdala, corpus callosum, cerebellum, and gyrnecephalic index, all indicate that the brain of the woolly mammoth specimen examined has many similarities with that of modern African elephants. The analysis provided here indicates that a specific brain type representative of the Elephantidae is likely to be a feature of this mammalian family. In addition, the extensive similarities between the woolly mammoth brain and the African elephant brain indicate that the specializations observed in the extant elephant brain are likely to have been present in the woolly mammoth. © 2015 Wiley Periodicals, Inc.

  14. Otoliths of Five Extant Species of the Annual Killifish Nothobranchius from the East African Savannah

    PubMed Central

    Reichenbacher, Bettina; Reichard, Martin

    2014-01-01

    This study presents, for the first time, a comprehensive dataset that documents the range of inter- and intraspecific otolith variation in aplocheiloid killifish, based on a total of 86 individuals representing five extant species of Nothobranchius PETERS, 1868, from East Africa: the sympatric pairs N. rubripinnis SEEGERS, 1986 and N. ruudwildekampi COSTA, 2009 (Eastern Tanzania), and N. orthonotus (PETERS, 1844) and N. furzeri JUBB, 1971 (Southern Mozambique), and two isolated populations of N. korthausae MEINKEN, 1973 (Eastern Tanzania). Otolith characters were analysed based on SEM images, and otolith morphometry was conducted using uni- and multivariate statistics. Two ancient clades of probably Early to Middle Miocene age in eastern Tanzania and southern Mozambique can be recognized based on otolith morphologies, which is consistent with previous work based on molecular data. The distinctive sulcus morphologies in the otoliths of sympatric species may be linked to species-specific hearing capabilities, perhaps constituting a case of character displacement in an area of secondary sympatry. The otoliths of the studied species of Nothobranchius are diagnostic at the species level, even in the case of closely related species diagnosable otherwise only by minor differences in coloration. The two populations of N. korthausae also displayed some differences in their otolith characters. The new data may facilitate future recognition of fossil species of Nothobranchius. As no fossil remains of extant aplocheiloid killifishes have yet been described, the discovery of fossil otoliths of Nothobranchius would significantly advance understanding of the evolutionary history of this interesting group of fishes. PMID:25383789

  15. A reevaluation of the anatomy of the jaw-closing system in the extant coelacanth Latimeria chalumnae

    NASA Astrophysics Data System (ADS)

    Dutel, Hugo; Herrel, Anthony; Clément, Gaël; Herbin, Marc

    2013-11-01

    The coelacanth Latimeria is the only extant representative of the Actinistia, a group of sarcopterygian fishes that originated in the Devonian. Moreover, it is the only extant vertebrate in which the neurocranium is divided into an anterior and a posterior portion that articulate by means of an intracranial joint. This joint is thought to be highly mobile, allowing an elevation of the anterior portion of the skull during prey capture. Here we provide a new description of the skull and jaw-closing system in Latimeria chalumnae in order to better understand its skull mechanics during prey capture. Based on a dissection and the CT scanning of an adult coelacanth, we provide a detailed description of the musculature and ligaments of the jaw system. We show that the m. adductor mandibulae is more complex than previously reported. We demonstrate that the basicranial muscle inserts more anteriorly than has been described previously, which has implications for its function. Moreover, the anterior insertion of the basicranial muscle does not correspond to the posterior tip of the tooth plate covering the parasphenoid, questioning previous inferences made on fossil coelacanths and other sarcopterygian fishes. Strong ligaments connect the anterior and the posterior portions of the skull at the level of the intracranial joint, as well as the notochord and the catazygals. These observations suggest that the intracranial joint is likely to be less mobile than previously thought and that its role during feeding merits to be reexamined.

  16. Cartilaginous Epiphyses in Extant Archosaurs and Their Implications for Reconstructing Limb Function in Dinosaurs

    PubMed Central

    Holliday, Casey M.; Ridgely, Ryan C.; Sedlmayr, Jayc C.; Witmer, Lawrence M.

    2010-01-01

    Extinct archosaurs, including many non-avian dinosaurs, exhibit relatively simply shaped condylar regions in their appendicular bones, suggesting potentially large amounts of unpreserved epiphyseal (articular) cartilage. This “lost anatomy” is often underappreciated such that the ends of bones are typically considered to be the joint surfaces, potentially having a major impact on functional interpretation. Extant alligators and birds were used to establish an objective basis for inferences about cartilaginous articular structures in such extinct archosaur clades as non-avian dinosaurs. Limb elements of alligators, ostriches, and other birds were dissected, disarticulated, and defleshed. Lengths and condylar shapes of elements with intact epiphyses were measured. Limbs were subsequently completely skeletonized and the measurements repeated. Removal of cartilaginous condylar regions resulted in statistically significant changes in element length and condylar breadth. Moreover, there was marked loss of those cartilaginous structures responsible for joint architecture and congruence. Compared to alligators, birds showed less dramatic, but still significant changes. Condylar morphologies of dinosaur limb bones suggest that most non-coelurosaurian clades possessed large cartilaginous epiphyses that relied on the maintenance of vascular channels that are otherwise eliminated early in ontogeny in smaller-bodied tetrapods. A sensitivity analysis using cartilage correction factors (CCFs) obtained from extant taxa indicates that whereas the presence of cartilaginous epiphyses only moderately increases estimates of dinosaur height and speed, it has important implications for our ability to infer joint morphology, posture, and the complicated functional movements in the limbs of many extinct archosaurs. Evidence suggests that the sizes of sauropod epiphyseal cartilages surpassed those of alligators, which account for at least 10% of hindlimb length. These data suggest that

  17. Extant ape dental topography and its implications for reconstructing the emergence of early Homo.

    PubMed

    Berthaume, Michael A; Schroer, Kes

    2017-11-01

    Dental topography reflects diet accurately in several extant and extinct mammalian clades. However, dental topographic dietary reconstructions have high success rates only when closely related taxa are compared. Given the dietary breadth that exists among extant apes and likely existed among fossil hominins, dental topographic values from many species and subspecies of great apes are necessary for making dietary inferences about the hominin fossil record. Here, we present the results of one metric of dental topography, Dirichlet normal energy (DNE), for seven groups of great apes (Pongo pygmaeus pygmaeus, Pan paniscus, Pan troglodytes troglodytes and schweinfurthii, Gorilla gorilla gorilla, Gorilla beringei graueri and beringei). Dirichlet normal energy was inadequate at differentiating folivores from frugivores, but was adequate at predicting which groups had more fibrous diets among sympatric African apes. Character displacement analyses confirmed there is substantial dental topographic and relative molar size (M 1 :M 2 ratio; length, width, and area) divergence in sympatric apes when compared to their allopatric counterparts, but character displacement is only present in relative molar size when DNE is also considered. Presence of character displacement is likely due to indirect competition over similar food resources. Assuming similar ecological conditions in the Plio-Pleistocene, the derived masticatory apparatuses of the robust australopiths and early Homo may be due to indirect competition over dietary resources between the taxa, causing dietary niche partitioning. Our results imply that dental topography cannot be used to predict dietary categories in fossil hominins without consideration of ecological factors, such as dietary and geographic overlap. In addition, our results may open new avenues for understanding the community compositions of early hominins and the formation of specific ecological niches among hominin taxa. Copyright © 2017 Elsevier Ltd

  18. Cartilaginous epiphyses in extant archosaurs and their implications for reconstructing limb function in dinosaurs.

    PubMed

    Holliday, Casey M; Ridgely, Ryan C; Sedlmayr, Jayc C; Witmer, Lawrence M

    2010-09-30

    Extinct archosaurs, including many non-avian dinosaurs, exhibit relatively simply shaped condylar regions in their appendicular bones, suggesting potentially large amounts of unpreserved epiphyseal (articular) cartilage. This "lost anatomy" is often underappreciated such that the ends of bones are typically considered to be the joint surfaces, potentially having a major impact on functional interpretation. Extant alligators and birds were used to establish an objective basis for inferences about cartilaginous articular structures in such extinct archosaur clades as non-avian dinosaurs. Limb elements of alligators, ostriches, and other birds were dissected, disarticulated, and defleshed. Lengths and condylar shapes of elements with intact epiphyses were measured. Limbs were subsequently completely skeletonized and the measurements repeated. Removal of cartilaginous condylar regions resulted in statistically significant changes in element length and condylar breadth. Moreover, there was marked loss of those cartilaginous structures responsible for joint architecture and congruence. Compared to alligators, birds showed less dramatic, but still significant changes. Condylar morphologies of dinosaur limb bones suggest that most non-coelurosaurian clades possessed large cartilaginous epiphyses that relied on the maintenance of vascular channels that are otherwise eliminated early in ontogeny in smaller-bodied tetrapods. A sensitivity analysis using cartilage correction factors (CCFs) obtained from extant taxa indicates that whereas the presence of cartilaginous epiphyses only moderately increases estimates of dinosaur height and speed, it has important implications for our ability to infer joint morphology, posture, and the complicated functional movements in the limbs of many extinct archosaurs. Evidence suggests that the sizes of sauropod epiphyseal cartilages surpassed those of alligators, which account for at least 10% of hindlimb length. These data suggest that

  19. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target

    PubMed Central

    Lee, Ping-Shin; Sing, Kong-Wah; Wilson, John-James

    2015-01-01

    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring. PMID:25898278

  20. Molecular and Morphological Evidence Challenges the Records of the Extant Liverwort Ptilidium pulcherrimum in Eocene Baltic Amber.

    PubMed

    Heinrichs, Jochen; Scheben, Armin; Lee, Gaik Ee; Váňa, Jiří; Schäfer-Verwimp, Alfons; Krings, Michael; Schmidt, Alexander R

    2015-01-01

    Preservation of liverworts in amber, a fossilized tree resin, is often exquisite. Twenty-three fossil species of liverworts have been described to date from Eocene (35-50 Ma) Baltic amber. In addition, two inclusions have been assigned to the extant species Ptilidium pulcherrimum (Ptilidiales or Porellales). However, the presence of the boreal P. pulcherrimum in the subtropical or warm-temperate Baltic amber forest challenges the phytogeographical interpretation of the Eocene flora. A re-investigation of one of the fossils believed to be P. pulcherrimum reveals that this specimen in fact represents the first fossil evidence of the genus Tetralophozia, and thus is re-described here as Tetralophozia groehnii sp. nov. A second fossil initially assigned to P. pulcherrimum is apparently lost, and can be reassessed only based on the original description and illustrations. This fossil is morphologically similar to the extant North Pacific endemic Ptilidium californicum, rather than P. pulcherrimum. Divergence time estimates based on chloroplast DNA sequences provide evidence of a Miocene origin of P. pulcherrimum, and thus also argue against the presence of this taxon in the Eocene. Ptilidium californicum originated 25-43 Ma ago. As a result, we cannot rule out that the Eocene fossil belongs to P. californicum. Alternatively, the fossil might represent a stem lineage element of Ptilidium or an early crown group species with morphological similarities to P. californicum.

  1. Fish as a proxy for African paleogeography: results from both extant and fossil taxa and prospects to constrain faunal exchange pathway through time

    NASA Astrophysics Data System (ADS)

    Otero, Olga; Joordens, Josephine; Dettai, Agnès; Christ, Leemans; Pinton, Aurélie

    2016-04-01

    We assume that basin boundaries constitute barriers to dispersal for freshwater fish and as a consequence that basin geomorphology and connectivity, and its changes through time, can be reconstructed thanks to fish evolutionary history. Firstly, this primary intuitive hypothesis is supported by patterns of fish distribution in the different basins and sub-basins of modern Africa, at both a specific and a generic level, and in certain cases at a family level. This is illustrated by the fact that hydrographical basin boundaries are reflected in the ichthyological provinces as defined and used by ichthyologists for a long time. Moreover, we show that at a continental scale, the hierarchical fish distribution patterns fit with main geological and climatic events according to their depth in time and amplitude [1]. Secondly, we further tested this hypothesis in several ways: (1) through the phylogeographical study of the catfish genus Synodontis [2], chosen because of its modern distribution and its rich fossil record, and (2) through the examination of the fossil record and systematics of the African lungfish Protopterus [3], of the catfish Calarius and of an extinct acanthomorph fish called Semlikiichthys [4,5]. We were then able to correlate these fish histories with quaternary climate change and with geological events throughout the Tertiary in Africa. Our conclusions are also corroborated by existing fish phylogenies that overlap with our region of interest, and elsewhere. While in the last years an increasing number of molecular phylogenetical studies support correlation between fish evolution and basin history at shallow time scales, our studies (and a few other studies) also demonstrate the relevance of fish evolution to work at deeper time and larger geological scales, depending on the taxon distribution and age. Moreover, we plead for the inclusion of fossils when available. Indeed, for extant taxa they are useful to calibrate molecular clocks but also to

  2. Neurocranium versus Face: A Morphometric Approach with Classical Anthropometric Variables for Characterizing Patterns of Cranial Integration in Extant Hominoids and Extinct Hominins

    PubMed Central

    Pérez-Claros, Juan Antonio; Jiménez-Arenas, Juan Manuel; Palmqvist, Paul

    2015-01-01

    The relative importance of the two main cranial complexes, the neurocranium and the splanchnocranium, has been examined in the five species of extant hominoids and in a huge sample of extinct hominins using six standard craniometric variables that measure the length, width and height of each cranial module. Factor analysis and two-block partial least squares were used for establishing the major patterns of developmental and evolutionary integration between both cranial modules. The results obtained show that all extant hominoids (including the anatomically modern humans) share a conserved pattern of developmental integration, a result that agrees with previous studies. The pattern of evolutionary integration between both cranial modules in australopiths runs in parallel to developmental integration. In contrast, the pattern of evolutionary and developmental integration of the species of the genus Homo is the opposite, which is probably the consequence of distinctive selective regimes for both hominin groups. PMID:26177535

  3. Neurocranium versus Face: A Morphometric Approach with Classical Anthropometric Variables for Characterizing Patterns of Cranial Integration in Extant Hominoids and Extinct Hominins.

    PubMed

    Pérez-Claros, Juan Antonio; Jiménez-Arenas, Juan Manuel; Palmqvist, Paul

    2015-01-01

    The relative importance of the two main cranial complexes, the neurocranium and the splanchnocranium, has been examined in the five species of extant hominoids and in a huge sample of extinct hominins using six standard craniometric variables that measure the length, width and height of each cranial module. Factor analysis and two-block partial least squares were used for establishing the major patterns of developmental and evolutionary integration between both cranial modules. The results obtained show that all extant hominoids (including the anatomically modern humans) share a conserved pattern of developmental integration, a result that agrees with previous studies. The pattern of evolutionary integration between both cranial modules in australopiths runs in parallel to developmental integration. In contrast, the pattern of evolutionary and developmental integration of the species of the genus Homo is the opposite, which is probably the consequence of distinctive selective regimes for both hominin groups.

  4. Nuclear and mitochondrial DNA reveals isolation of imperilled grey nurse shark populations (Carcharias taurus).

    PubMed

    Ahonen, H; Harcourt, R G; Stow, A J

    2009-11-01

    Loss of sharks and other upper-trophic marine predators has sparked worldwide concern for the stability of ocean ecosystems. The grey nurse (ragged-tooth or sand tiger) shark (Carcharias taurus) is Vulnerable on a global scale, Critically Endangered in Australia and presumed extinct in parts of its historical range. We used 193 muscle and fin samples collected from six extant populations to assess global mtDNA and microsatellite diversity and the degree of global population genetic structure. Control region mtDNA diversity was low in every population, and two populations (eastern Australia and Japan) contained only a single mtDNA haplotype. Genetic signatures of recent losses of genetic variation were not yet apparent at microsatellite loci, indicating that this low mtDNA variation is not a result of anthropogenic population declines. Population differentiation was substantial between each population pair except Brazil and South Africa, F(ST) values ranged from 0.050 to 0.699 and 0.100 to 1.00 for microsatellite and mitochondrial data respectively. Bayesian analysis clearly partitioned individuals into five of the populations from which they were sampled. Our data imply a low frequency of immigrant exchange among each of these regions and we suggest that each be recognized as a distinct evolutionary significant unit. In contrast to pelagic species such as whale shark and white shark that may cross ocean basins and where cooperative international efforts are necessary for conservation, grey nurse shark, like many coastal species, need to be managed regionally.

  5. Inefficient coupling between proton transport and ATP synthesis may be the pathogenic mechanism for NARP and Leigh syndrome resulting from the T8993G mutation in mtDNA.

    PubMed

    Sgarbi, Gianluca; Baracca, Alessandra; Lenaz, Giorgio; Valentino, Lucia M; Carelli, Valerio; Solaini, Giancarlo

    2006-05-01

    Mutations in the ATP6 gene of mtDNA (mitochondrial DNA) have been shown to cause several different neurological disorders. The product of this gene is ATPase 6, an essential component of the F1F0-ATPase. In the present study we show that the function of the F1F0-ATPase is impaired in lymphocytes from ten individuals harbouring the mtDNA T8993G point mutation associated with NARP (neuropathy, ataxia and retinitis pigmentosa) and Leigh syndrome. We show that the impaired function of both the ATP synthase and the proton transport activity of the enzyme correlates with the amount of the mtDNA that is mutated, ranging from 13-94%. The fluorescent dye RH-123 (Rhodamine-123) was used as a probe to determine whether or not passive proton flux (i.e. from the intermembrane space to the matrix) is affected by the mutation. Under state 3 respiratory conditions, a slight difference in RH-123 fluorescence quenching kinetics was observed between mutant and control mitochondria that suggests a marginally lower F0 proton flux capacity in cells from patients. Moreover, independent of the cellular mutant load the specific inhibitor oligomycin induced a marked enhancement of the RH-123 quenching rate, which is associated with a block in proton conductivity through F0 [Linnett and Beechey (1979) Inhibitors of the ATP synthethase system. Methods Enzymol. 55, 472-518]. Overall, the results rule out the previously proposed proton block as the basis of the pathogenicity of the mtDNA T8993G mutation. Since the ATP synthesis rate was decreased by 70% in NARP patients compared with controls, we suggest that the T8993G mutation affects the coupling between proton translocation through F0 and ATP synthesis on F1. We discuss our findings in view of the current knowledge regarding the rotary mechanism of catalysis of the enzyme.

  6. GENETIC STRUCTURE OF CREEK CHUB (SEMOTILUS ATROMACULATUS) POPULATIONS IN COAL MINING-IMPACTED AREAS OF THE EASTERN UNITED STATES, AS DETERMINED BY MTDNA SEQUENCING AND AFLP ANALYSIS

    EPA Science Inventory

    Analysis of intraspecific patterns in genetic diversity of stream fishes provides a potentially powerful method for assessing the status and trends in the condition of aquatic ecosystems. We analyzed mitochondrial DNA (mtDNA) sequences (590 bases of cytochrome B) and nuclear DNA...

  7. "Life history space": a multivariate analysis of life history variation in extant and extinct Malagasy lemurs.

    PubMed

    Catlett, Kierstin K; Schwartz, Gary T; Godfrey, Laurie R; Jungers, William L

    2010-07-01

    Studies of primate life history variation are constrained by the fact that all large-bodied extant primates are haplorhines. However, large-bodied strepsirrhines recently existed. If we can extract life history information from their skeletons, these species can contribute to our understanding of primate life history variation. This is particularly important in light of new critiques of the classic "fast-slow continuum" as a descriptor of variation in life history profiles across mammals in general. We use established dental histological methods to estimate gestation length and age at weaning for five extinct lemur species. On the basis of these estimates, we reconstruct minimum interbirth intervals and maximum reproductive rates. We utilize principal components analysis to create a multivariate "life history space" that captures the relationships among reproductive parameters and brain and body size in extinct and extant lemurs. Our data show that, whereas large-bodied extinct lemurs can be described as "slow" in some fashion, they also varied greatly in their life history profiles. Those with relatively large brains also weaned their offspring late and had long interbirth intervals. These were not the largest of extinct lemurs. Thus, we distinguish size-related life history variation from variation that linked more strongly to ecological factors. Because all lemur species larger than 10 kg, regardless of life history profile, succumbed to extinction after humans arrived in Madagascar, we argue that large body size increased the probability of extinction independently of reproductive rate. We also provide some evidence that, among lemurs, brain size predicts reproductive rate better than body size. (c) 2010 Wiley-Liss, Inc.

  8. Phylogeny of Darwin's finches as revealed by mtDNA sequences.

    PubMed

    Sato, A; O'hUigin, C; Figueroa, F; Grant, P R; Grant, B R; Tichy, H; Klein, J

    1999-04-27

    Darwin's finches comprise a group of passerine birds first collected by Charles Darwin during his visit to the Galápagos Archipelago. The group, a textbook example of adaptive radiation (the diversification of a founding population into an array of species differentially adapted to diverse environmental niches), encompasses 14 currently recognized species, of which 13 live on the Galápagos Islands and one on the Cocos Island in the Pacific Ocean. Although Darwin's finches have been studied extensively by morphologists, ecologists, and ethologists, their phylogenetic relationships remain uncertain. Here, sequences of two mtDNA segments, the cytochrome b and the control region, have been used to infer the evolutionary history of the group. The data reveal the Darwin's finches to be a monophyletic group with the warbler finch being the species closest to the founding stock, followed by the vegetarian finch, and then by two sister groups, the ground and the tree finches. The Cocos finch is related to the tree finches of the Galápagos Islands. The traditional classification of ground finches into six species and tree finches into five species is not reflected in the molecular data. In these two groups, ancestral polymorphisms have not, as yet, been sorted out among the cross-hybridizing species.

  9. Forensic and phylogeographic characterisation of mtDNA lineages from Somalia.

    PubMed

    Mikkelsen, Martin; Fendt, Liane; Röck, Alexander W; Zimmermann, Bettina; Rockenbauer, Eszter; Hansen, Anders J; Parson, Walther; Morling, Niels

    2012-07-01

    The African mitochondrial (mt) phylogeny is coarsely resolved but the majority of population data generated so far is limited to the analysis of the first hypervariable segment (HVS-1) of the control region (CR). Therefore, this study aimed on the investigation of the entire CR of 190 unrelated Somali individuals to enrich the severely underrepresented African mtDNA pool. The majority (60.5 %) of the haplotypes were of sub-Saharan origin with L0a1d, L2a1h and L3f being the most frequently observed haplogroups. This is in sharp contrast to previous data reported from the Y-chromosome, where only about 5 % of the observed haplogroups were of sub-Saharan provenance. We compared the genetic distances based on population pairwise F (st) values between 11 published East, Central and North African as well as western Asian populations and the Somali sequences and displayed them in a multi-dimensional scaling plot. Genetic proximity evidenced by clustering roughly reflected the relative geographic location of the populations. The sequences will be included in the EMPOP database ( www.empop.org ) under accession number EMP00397 upon publication (Parson and Dür Forensic Sci Int Genet 1:88-92, 2007).

  10. Detecting deep divergence in seventeen populations of tea geometrid (Ectropis obliqua Prout) in China by COI mtDNA and cross-breeding.

    PubMed

    Zhang, Gui-Hua; Yuan, Zhi-Jun; Zhang, Chuan-Xi; Yin, Kun-Shan; Tang, Mei-Jun; Guo, Hua-Wei; Fu, Jian-Yu; Xiao, Qiang

    2014-01-01

    The tea geometrid (Ectropis obliqua Prout, Lepidoptera: Geometridae) is a dominant chewing insect endemic in most tea-growing areas in China. Recently some E. obliqua populations have been found to be resistant to the nucleopolyhedrovirus (EoNPV), a host-specific virus that has so far been found only in E. obliqua. Although the resistant populations are morphologically indistinguishable from susceptible populations, we conducted a nationwide collection and examined the genetic divergence in the COI region of the mtDNA in E. obliqua. Phylogenetic analyses of mtDNA in 17 populations revealed two divergent clades with genetic distance greater than 3.7% between clades and less than 0.7% within clades. Therefore, we suggest that E. obliqua falls into two distinct groups. Further inheritance analyses using reciprocal single-pair mating showed an abnormal F₁ generation with an unbalanced sex ratio and the inability to produce fertile eggs (or any eggs) through F1 self-crossing. These data revealed a potential cryptic species complex with deep divergence and reproductive isolation within E. obliqua. Uneven distribution of the groups suggests a possible geographic effect on the divergence. Future investigations will be conducted to examine whether EoNPV selection or other factors prompted the evolution of resistance.

  11. Combining phylogenetic and demographic inferences to assess the origin of the genetic diversity in an isolated wolf population

    PubMed Central

    Fabbri, Elena; Ahmed, Atidje; Bolfíková, Barbora Černá; Czarnomska, Sylwia D.; Galov, Ana; Godinho, Raquel; Hindrikson, Maris; Hulva, Pavel; Jędrzejewska, Bogumiła; Jelenčič, Maja; Kutal, Miroslav; Saarma, Urmas; Skrbinšek, Tomaž; Randi, Ettore

    2017-01-01

    The survival of isolated small populations is threatened by both demographic and genetic factors. Large carnivores declined for centuries in most of Europe due to habitat changes, overhunting of their natural prey and direct persecution. However, the current rewilding trends are driving many carnivore populations to expand again, possibly reverting the erosion of their genetic diversity. In this study we reassessed the extent and origin of the genetic variation of the Italian wolf population, which is expanding after centuries of decline and isolation. We genotyped wolves from Italy and other nine populations at four mtDNA regions (control-region, ATP6, COIII and ND4) and 39 autosomal microsatellites. Results of phylogenetic analyses and assignment procedures confirmed in the Italian wolves a second private mtDNA haplotype, which belongs to a haplogroup distributed mostly in southern Europe. Coalescent analyses showed that the unique mtDNA haplotypes in the Italian wolves likely originated during the late Pleistocene. ABC simulations concordantly showed that the extant wolf populations in Italy and in south-western Europe started to be isolated and declined right after the last glacial maximum. Thus, the standing genetic variation in the Italian wolves principally results from the historical isolation south of the Alps. PMID:28489863

  12. A comprehensive molecular phylogeny for the hornbills (Aves: Bucerotidae).

    PubMed

    Gonzalez, Juan-Carlos T; Sheldon, Ben C; Collar, Nigel J; Tobias, Joseph A

    2013-05-01

    The hornbills comprise a group of morphologically and behaviorally distinct Palaeotropical bird species that feature prominently in studies of ecology and conservation biology. Although the monophyly of hornbills is well established, previous phylogenetic hypotheses were based solely on mtDNA and limited sampling of species diversity. We used parsimony, maximum likelihood and Bayesian methods to reconstruct relationships among all 61 extant hornbill species, based on nuclear and mtDNA gene sequences extracted largely from historical samples. The resulting phylogenetic trees closely match vocal variation across the family but conflict with current taxonomic treatments. In particular, they highlight a new arrangement for the six major clades of hornbills and reveal that three groups traditionally treated as genera (Tockus, Aceros, Penelopides) are non-monophyletic. In addition, two other genera (Anthracoceros, Ocyceros) were non-monophyletic in the mtDNA gene tree. Our findings resolve some longstanding problems in hornbill systematics, including the placement of 'Penelopides exharatus' (embedded in Aceros) and 'Tockus hartlaubi' (sister to Tropicranus albocristatus). We also confirm that an Asiatic lineage (Berenicornis) is sister to a trio of Afrotropical genera (Tropicranus [including 'Tockus hartlaubi'], Ceratogymna, Bycanistes). We present a summary phylogeny as a robust basis for further studies of hornbill ecology, evolution and historical biogeography. Copyright © 2013. Published by Elsevier Inc.

  13. High-throughput sequencing of complete human mtDNA genomes from the Caucasus and West Asia: high diversity and demographic inferences.

    PubMed

    Schönberg, Anna; Theunert, Christoph; Li, Mingkun; Stoneking, Mark; Nasidze, Ivan

    2011-09-01

    To investigate the demographic history of human populations from the Caucasus and surrounding regions, we used high-throughput sequencing to generate 147 complete mtDNA genome sequences from random samples of individuals from three groups from the Caucasus (Armenians, Azeri and Georgians), and one group each from Iran and Turkey. Overall diversity is very high, with 144 different sequences that fall into 97 different haplogroups found among the 147 individuals. Bayesian skyline plots (BSPs) of population size change through time show a population expansion around 40-50 kya, followed by a constant population size, and then another expansion around 15-18 kya for the groups from the Caucasus and Iran. The BSP for Turkey differs the most from the others, with an increase from 35 to 50 kya followed by a prolonged period of constant population size, and no indication of a second period of growth. An approximate Bayesian computation approach was used to estimate divergence times between each pair of populations; the oldest divergence times were between Turkey and the other four groups from the South Caucasus and Iran (~400-600 generations), while the divergence time of the three Caucasus groups from each other was comparable to their divergence time from Iran (average of ~360 generations). These results illustrate the value of random sampling of complete mtDNA genome sequences that can be obtained with high-throughput sequencing platforms.

  14. Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae).

    PubMed

    Near, Thomas J; Bossu, Christen M; Bradburd, Gideon S; Carlson, Rose L; Harrington, Richard C; Hollingsworth, Phillip R; Keck, Benjamin P; Etnier, David A

    2011-10-01

    Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of

  15. The inter-relationship between dietary and environmental properties and tooth wear: comparisons of mesowear, molar wear rate, and hypsodonty index of extant Sika deer populations.

    PubMed

    Kubo, Mugino Ozaki; Yamada, Eisuke

    2014-01-01

    In reference to the evolutionary trend of increasing cheek tooth height in herbivorous ungulates, the causes of dental abrasion have long been debated. Interspecific comparisons of extant ungulates have revealed that both phytoliths in grass and external abrasive matter may play important roles. Using analysis of extant sika deer living in various environments and showing continuous latitudinal variation in food habits from northern grazing to southern browsing, we quantitatively evaluated the influence of dietary and environmental properties on three dental variables: mesowear score (MS), molar wear rate, and M3 hypsodonty index. We used 547 skulls and 740 mandibles from 16 populations of sika deer to obtain the dental measurements. We found that only graminoid proportion in diet correlated with MS and the molar wear rate, implying that phytoliths in grass abrade dental tissues. In contrast, annual precipitation in habitat was not correlated with any of the dental variables. We also found a significant correlation between the molar wear rate (selective pressure for high-crowned molars) and the M3 hypsodonty index of extant sika deer, implying an evolutionary increment in molar height corresponding to the molar wear rate. Our intraspecific comparative analyses provide further support for use of mesowear analysis as a paleodiet estimation method; it not only reveals staple food types (graminoids or dicots) but also implies regional or seasonal variation in the diet of the species.

  16. The Inter-Relationship between Dietary and Environmental Properties and Tooth Wear: Comparisons of Mesowear, Molar Wear Rate, and Hypsodonty Index of Extant Sika Deer Populations

    PubMed Central

    Kubo, Mugino Ozaki; Yamada, Eisuke

    2014-01-01

    In reference to the evolutionary trend of increasing cheek tooth height in herbivorous ungulates, the causes of dental abrasion have long been debated. Interspecific comparisons of extant ungulates have revealed that both phytoliths in grass and external abrasive matter may play important roles. Using analysis of extant sika deer living in various environments and showing continuous latitudinal variation in food habits from northern grazing to southern browsing, we quantitatively evaluated the influence of dietary and environmental properties on three dental variables: mesowear score (MS), molar wear rate, and M3 hypsodonty index. We used 547 skulls and 740 mandibles from 16 populations of sika deer to obtain the dental measurements. We found that only graminoid proportion in diet correlated with MS and the molar wear rate, implying that phytoliths in grass abrade dental tissues. In contrast, annual precipitation in habitat was not correlated with any of the dental variables. We also found a significant correlation between the molar wear rate (selective pressure for high-crowned molars) and the M3 hypsodonty index of extant sika deer, implying an evolutionary increment in molar height corresponding to the molar wear rate. Our intraspecific comparative analyses provide further support for use of mesowear analysis as a paleodiet estimation method; it not only reveals staple food types (graminoids or dicots) but also implies regional or seasonal variation in the diet of the species. PMID:24603896

  17. Genetic divergence and phylogenetic relationships in grey mullets (Teleostei: Mugilidae) based on PCR-RFLP analysis of mtDNA segments.

    PubMed

    Papasotiropoulos, V; Klossa-Kilia, E; Kilias, G; Alahiotis, S

    2002-04-01

    The genetic differentiation and phylogenetic relationships among five species of the Mugilidae family (Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens) were investigated at the mtDNA level, on samples taken from Messolongi lagoon-Greece. RFLP analysis of three PCR-amplified mtDNA gene segments (12s rRNA, 16s rRNA, and CO I) was used. Ten, eight, and nine restriction enzymes were found to have at least one recognition site at 12s rRNA, 16s rRNA, and CO I genes, respectively. Several fragment patterns were revealed to be species-specific, and thus they could be useful in species taxonomy as diagnostic markers, as well as for further evolutionary studies. Seven different haplotypes were detected. The greatest amount of genetic differentiation was observed at the interspecific level, while little variation was revealed at the intraspecific level. The highest values of nucleotide sequence divergence were observed between M. cephalus and all the other species, while the lowest was found between C. labrosus and L. saliens. Dendrograms obtained by the three different methods (UPGMA, Neighbor-Joining, and Dollo parsimony), were found to exhibit in all cases the same topology. According to this, the most distinct species is M. cephalus, while the other species are clustered in two separate groups, thefirst one containing L. aurata and L. ramada, the other L. saliens and C. labrosus. This last clustering makes the monophyletic origin of the genus Liza questionable.

  18. Genetic structure in contemporary south Tyrolean isolated populations revealed by analysis of Y-chromosome, mtDNA, and Alu polymorphisms.

    PubMed

    Pichler, Irene; Mueller, Jakob C; Stefanov, Stefan A; De Grandi, Alessandro; Volpato, Claudia Beu; Pinggera, Gerd K; Mayr, Agnes; Ogriseg, Martin; Ploner, Franz; Meitinger, Thomas; Pramstaller, Peter P

    2006-08-01

    Most of the inhabitants of South Tyrol in the eastern Italian Alps can be considered isolated populations because of their physical separation by mountain barriers and their sociocultural heritage. We analyzed the genetic structure of South Tyrolean populations using three types of genetic markers: Y-chromosome, mitochondrial DNA (mtDNA), and autosomal Alu markers. Using random samples taken from the populations of Val Venosta, Val Pusteria, Val Isarco, Val Badia, and Val Gardena, we calculated genetic diversity within and among the populations. Microsatellite diversity and unique event polymorphism diversity (on the Y chromosome) were substantially lower in the Ladin-speaking population of Val Badia compared to the neighboring German-speaking populations. In contrast, the genetic diversity of mtDNA haplotypes was lowest for the upper Val Venosta and Val Pusteria. These data suggest a low effective population size, or little admixture, for the gene pool of the Ladin-speaking population from Val Badia. Interestingly, this is more pronounced for Ladin males than for Ladin females. For the pattern of genetic Alu variation, both Ladin samples (Val Gardena and Val Badia) are among the samples with the lowest diversity. An admixture analysis of one German-speaking valley (Val Venosta) indicates a relatively high genetic contribution of Ladin origin. The reduced genetic diversity and a high genetic differentiation in the Rhaetoroman- and German-speaking South Tyrolean populations may constitute an important basis for future medical genetic research and gene mapping studies in South Tyrol.

  19. Limitations of climatic data for inferring species boundaries: insights from speckled rattlesnakes.

    PubMed

    Meik, Jesse M; Streicher, Jeffrey W; Lawing, A Michelle; Flores-Villela, Oscar; Fujita, Matthew K

    2015-01-01

    Phenotypes, DNA, and measures of ecological differences are widely used in species delimitation. Although rarely defined in such studies, ecological divergence is almost always approximated using multivariate climatic data associated with sets of specimens (i.e., the "climatic niche"); the justification for this approach is that species-specific climatic envelopes act as surrogates for physiological tolerances. Using identical statistical procedures, we evaluated the usefulness and validity of the climate-as-proxy assumption by comparing performance of genetic (nDNA SNPs and mitochondrial DNA), phenotypic, and climatic data for objective species delimitation in the speckled rattlesnake (Crotalus mitchellii) complex. Ordination and clustering patterns were largely congruent among intrinsic (heritable) traits (nDNA, mtDNA, phenotype), and discordance is explained by biological processes (e.g., ontogeny, hybridization). In contrast, climatic data did not produce biologically meaningful clusters that were congruent with any intrinsic dataset, but rather corresponded to regional differences in atmospheric circulation and climate, indicating an absence of inherent taxonomic signal in these data. Surrogating climate for physiological tolerances adds artificial weight to evidence of species boundaries, as these data are irrelevant for that purpose. Based on the evidence from congruent clustering of intrinsic datasets, we recommend that three subspecies of C. mitchellii be recognized as species: C. angelensis, C. mitchellii, and C. Pyrrhus.

  20. Ecomorphological characterization of murines and non-arvicoline cricetids (Rodentia) from south-western Europe since the latest Middle Miocene to the Mio-Pliocene boundary (MN 7/8–MN13)

    PubMed Central

    Kimura, Yuri; Blanco, Fernando; Menéndez, Iris; Álvarez-Sierra, María A.; Hernández Fernández, Manuel

    2017-01-01

    Rodents are the most speciose group of mammals and display a great ecological diversity. Despite the greater amount of ecomorphological information compiled for extant rodent species, studies usually lack of morphological data on dentition, which has led to difficulty in directly utilizing existing ecomorphological data of extant rodents for paleoecological reconstruction because teeth are the most common or often the only micromammal fossils. Here, we infer the environmental ranges of extinct rodent genera by extracting habitat information from extant relatives and linking it to extinct taxa based on the phenogram of the cluster analysis, in which variables are derived from the principal component analysis on outline shape of the upper first molars. This phenotypic “bracketing” approach is particularly useful in the study of the fossil record of small mammals, which is mostly represented by isolated teeth. As a case study, we utilize extinct genera of murines and non-arvicoline cricetids, ranging from the Iberoccitanian latest middle Miocene to the Mio-Pliocene boundary, and compare our results thoroughly with previous paleoecological reconstructions inferred by different methods. The resultant phenogram shows a predominance of ubiquitous genera among the Miocene taxa, and the presence of a few forest specialists in the two rodent groups (Murinae and Cricetidae), along with the absence of open environment specialists in either group of rodents. This appears to be related to the absence of enduring grassland biomes in the Iberian Peninsula during the late Miocene. High consistency between our result and previous studies suggests that this phenotypic “bracketing” approach is a very useful tool. PMID:28966888

  1. Boundary transfer matrices and boundary quantum KZ equations

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2015-07-01

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin's boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  2. In vitro protective effects of an aqueous extract of Clitoria ternatea L. flower against hydrogen peroxide-induced cytotoxicity and UV-induced mtDNA damage in human keratinocytes.

    PubMed

    Zakaria, N N A; Okello, E J; Howes, M-J; Birch-Machin, M A; Bowman, A

    2018-06-01

    The traditional practice of eating the flowers of Clitoria ternatea L. or drinking their infusion as herbal tea in some of the Asian countries is believed to promote a younger skin complexion and defend against skin aging. This study was conducted to investigate the protective effect of C. ternatea flower water extract (CTW) against hydrogen peroxide-induced cytotoxicity and ultraviolet (UV)-induced mitochondrial DNA (mtDNA) damage in human keratinocytes. The protective effect against hydrogen peroxide-induced cytotoxicity was determined by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, and mtDNA damage induced by UV was determined by polymerase chain reaction. Preincubation of HaCaT with 100, 250, and 500 μg/ml CTW reduced cytotoxicity effects of H 2 O 2 compared with control (H 2 O 2 alone). CTW also significantly reduced mtDNA damage in UV-exposed HaCaT (p < .05). CTW was chemically-characterized using high resolution liquid chromatography-mass spectrometry. The main compounds detected were assigned as anthocyanins derived from delphinidin, including polyacylated ternatins, and flavonol glycosides derived from quercetin and kaempferol. These results demonstrated the protective effects of C. ternatea flower extracts that contain polyacylated anthocyanins and flavonol glycosides as major constituents, against H 2 O 2 and UV-induced oxidative stress on skin cells, and may provide some explanation for the putative traditional and cosmetic uses of C. ternatea flower against skin aging. Copyright © 2018 John Wiley & Sons, Ltd.

  3. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway

    PubMed Central

    Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O’Connor, Jason C.; Xu, Yong; Liu, Meilian; Dong, Lily Q.

    2017-01-01

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction. PMID:29087318

  4. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway.

    PubMed

    Bai, Juli; Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O'Connor, Jason C; Xu, Yong; Liu, Meilian; Dong, Lily Q; Liu, Feng

    2017-11-14

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.

  5. Boundaries and Boundary Marks - Substantive Cultural Heritage of Extensive Importance

    NASA Astrophysics Data System (ADS)

    Waldhaeusl, P.; Koenig, H.; Mansberger, R.

    2015-08-01

    The Austrian Society for surveying and Geoinformation (ASG) has proposed to submit "Boundaries and Boundary Marks" for the UNESCO World Heritage title. It was time that boundaries, borders and limits of all types as well as ownership rights would find the proper attention in the global public. Landmarks symbolize the real property and the associated rights and obligations, in a figurative sense, the property generally and all legal limits. A democratic state of law is impossible at today's population density without a functioning land administration system with surveying and jurisdiction. As monumental World Heritage representatives of the geodetic artwork "Boundaries and Boundary Marks" are specifically proposed: remaining monuments of the original cadastral geodetic network, the first pan-Austrian surveying headquarters in Vienna, and a specific selection of outstanding boundary monuments. Landmarks are monuments to the boundaries which separate rights and obligations, but also connect the neighbors peacefully after written agreement. "And cursed be he who does not respect the boundaries" you wrote already 3000 years ago. Boundaries and Boundary Marks are a real thing; they all belong to the tangible or material heritage of human history. In this context also the intangible heritage is discussed. This refers to oral tradition and expressions, performing arts; social practices, rituals and festive events; as well as to knowledge and practices handling nature and the universe. "Boundaries and Boundary Marks" do not belong to it, but clearly to the material cultural world heritage. "Boundary and Boundary Marks" is proposed to be listed according to the criteria (ii),(iv),(vi).

  6. STATUS OF THE RELICT LEOPARD FROG (RANA ONCA): OUR LIMITED UNDERSTANDING OF THE DISTRIBUTION, SIZE, AND DYNAMICS OF EXTANT AND RECENTLY EXTINCT POPULATIONS

    EPA Science Inventory

    The relict leopard frog (Rana onca) was once thought to be extinct, but has recently been shown to comprise a valid taxon with extant populations. Here, we discuss research from several studies, conducted between 1991 and 200 1, that represent the basis for our understanding of t...

  7. From boundaries to boundary work: middle managers creating inter-organizational change.

    PubMed

    Oldenhof, Lieke; Stoopendaal, Annemiek; Putters, Kim

    2016-11-21

    Purpose In healthcare, organizational boundaries are often viewed as barriers to change. The purpose of this paper is to show how middle managers create inter-organizational change by doing boundary work: the dual act of redrawing boundaries and coordinating work in new ways. Design/methodology/approach Theoretically, the paper draws on the concept of boundary work from Science and Technology Studies. Empirically, the paper is based on an ethnographic investigation of middle managers that participate in a Dutch reform program across health, social care, and housing. Findings The findings show how middle managers create a sense of urgency for inter-organizational change by emphasizing "fragmented" service provision due to professional, sectoral, financial, and geographical boundaries. Rather than eradicating these boundaries, middle managers change the status quo gradually by redrawing composite boundaries. They use boundary objects and a boundary-transcending vocabulary emphasizing the need for societal gains that go beyond production targets of individual organizations. As a result, work is coordinated in new ways in neighborhood teams and professional expertise is being reconfigured. Research limitations/implications Since boundary workers create incremental change, it is necessary to follow their work for a longer period to assess whether boundary work contributes to paradigm change. Practical implications Organizations should pay attention to conditions for boundary work, such as legitimacy of boundary workers and the availability of boundary spaces that function as communities of practice. Originality/value By shifting the focus from boundaries to boundary work, this paper gives valuable insights into "how" boundaries are redrawn and embodied in objects and language.

  8. New insights into non-avian dinosaur reproduction and their evolutionary and ecological implications: linking fossil evidence to allometries of extant close relatives.

    PubMed

    Werner, Jan; Griebeler, Eva Maria

    2013-01-01

    It has been hypothesized that a high reproductive output contributes to the unique gigantism in large dinosaur taxa. In order to infer more information on dinosaur reproduction, we established allometries between body mass and different reproductive traits (egg mass, clutch mass, annual clutch mass) for extant phylogenetic brackets (birds, crocodiles and tortoises) of extinct non-avian dinosaurs. Allometries were applied to nine non-avian dinosaur taxa (theropods, hadrosaurs, and sauropodomorphs) for which fossil estimates on relevant traits are currently available. We found that the reproductive traits of most dinosaurs conformed to similar-sized or scaled-up extant reptiles or birds. The reproductive traits of theropods, which are considered more bird-like, were indeed consistent with birds, while the traits of sauropodomorphs conformed better to reptiles. Reproductive traits of hadrosaurs corresponded to both reptiles and birds. Excluding Massospondyluscarinatus, all dinosaurs studied had an intermediary egg to body mass relationship to reptiles and birds. In contrast, dinosaur clutch masses fitted with either the masses predicted from allometries of birds (theropods) or to the masses of reptiles (all other taxa). Theropods studied had probably one clutch per year. For sauropodomorphs and hadrosaurs, more than one clutch per year was predicted. Contrary to current hypotheses, large dinosaurs did not have exceptionally high annual egg numbers (AEN). Independent of the extant model, the estimated dinosaur AEN did not exceed 850 eggs (75,000 kg sauropod) for any of the taxa studied. This estimated maximum is probably an overestimation due to unrealistic assumptions. According to most AEN estimations, the dinosaurs studied laid less than 200 eggs per year. Only some AEN estimates obtained for medium to large sized sauropods were higher (200-400 eggs). Our results provide new (testable) hypotheses, especially for reproductive traits that are insufficiently documented

  9. New Insights into Non-Avian Dinosaur Reproduction and Their Evolutionary and Ecological Implications: Linking Fossil Evidence to Allometries of Extant Close Relatives

    PubMed Central

    Werner, Jan; Griebeler, Eva Maria

    2013-01-01

    It has been hypothesized that a high reproductive output contributes to the unique gigantism in large dinosaur taxa. In order to infer more information on dinosaur reproduction, we established allometries between body mass and different reproductive traits (egg mass, clutch mass, annual clutch mass) for extant phylogenetic brackets (birds, crocodiles and tortoises) of extinct non-avian dinosaurs. Allometries were applied to nine non-avian dinosaur taxa (theropods, hadrosaurs, and sauropodomorphs) for which fossil estimates on relevant traits are currently available. We found that the reproductive traits of most dinosaurs conformed to similar-sized or scaled-up extant reptiles or birds. The reproductive traits of theropods, which are considered more bird-like, were indeed consistent with birds, while the traits of sauropodomorphs conformed better to reptiles. Reproductive traits of hadrosaurs corresponded to both reptiles and birds. Excluding Massospondylus carinatus , all dinosaurs studied had an intermediary egg to body mass relationship to reptiles and birds. In contrast, dinosaur clutch masses fitted with either the masses predicted from allometries of birds (theropods) or to the masses of reptiles (all other taxa). Theropods studied had probably one clutch per year. For sauropodomorphs and hadrosaurs, more than one clutch per year was predicted. Contrary to current hypotheses, large dinosaurs did not have exceptionally high annual egg numbers (AEN). Independent of the extant model, the estimated dinosaur AEN did not exceed 850 eggs (75,000 kg sauropod) for any of the taxa studied. This estimated maximum is probably an overestimation due to unrealistic assumptions. According to most AEN estimations, the dinosaurs studied laid less than 200 eggs per year. Only some AEN estimates obtained for medium to large sized sauropods were higher (200-400 eggs). Our results provide new (testable) hypotheses, especially for reproductive traits that are insufficiently

  10. Micro- to nanostructure and geochemistry of extant crinoidal echinoderm skeletons.

    PubMed

    Gorzelak, P; Stolarski, J; Mazur, M; Meibom, A

    2013-01-01

    This paper reports the results of micro- to nanostructural and geochemical analyses of calcitic skeletons from extant deep-sea stalked crinoids. Fine-scale (SEM, FESEM, AFM) observations show that the crinoid skeleton is composed of carbonate nanograins, about 20-100 nm in diameter, which are partly separated by what appears to be a few nm thick organic layers. Sub-micrometre-scale geochemical mapping of crinoid ossicles using a NanoSIMS ion microprobe, combined with synchrotron high-spatial-resolution X-ray micro-fluorescence (μ-XRF) maps and X-ray absorption near-edge structure spectroscopy (XANES) show that high Mg concentration in the central region of the stereom bars correlates with the distribution of S-sulphate, which is often associated with sulphated polysaccharides in biocarbonates. These data are consistent with biomineralization models suggesting a close association between organic components (including sulphated polysaccharides) and Mg ions. Additionally, geochemical analyses (NanoSIMS, energy dispersive spectroscopy) reveal that significant variations in Mg occur at many levels: within a single stereom trabecula, within a single ossicle and within a skeleton of a single animal. Together, these data suggest that physiological factors play an important role in controlling Mg content in crinoid skeletons and that great care should be taken when using their skeletons to reconstruct, for example, palaeotemperatures and Mg/Ca palaeo-variations of the ocean. © 2012 Blackwell Publishing Ltd.

  11. Boundary states at reflective moving boundaries

    NASA Astrophysics Data System (ADS)

    Acosta Minoli, Cesar A.; Kopriva, David A.

    2012-06-01

    We derive and evaluate boundary states for Maxwell's equations, the linear, and the nonlinear Euler gas-dynamics equations to compute wave reflection from moving boundaries. In this study we use a Discontinuous Galerkin Spectral Element method (DGSEM) with Arbitrary Lagrangian-Eulerian (ALE) mapping for the spatial approximation, but the boundary states can be used with other methods, like finite volume schemes. We present four studies using Maxwell's equations, one for the linear Euler equations, and one more for the nonlinear Euler equations. These are: reflection of light from a plane mirror moving at constant velocity, reflection of light from a moving cylinder, reflection of light from a vibrating mirror, reflection of sound from a plane wall and dipole sound generation by an oscillating cylinder in an inviscid flow. The studies show that the boundary states preserve spectral convergence in the solution and in derived quantities like divergence and vorticity.

  12. Y-chromosome evidence supports widespread signatures of three-species Canis hybridization in eastern North America.

    PubMed

    Wilson, Paul J; Rutledge, Linda Y; Wheeldon, Tyler J; Patterson, Brent R; White, Bradley N

    2012-09-01

    There has been considerable discussion on the origin of the red wolf and eastern wolf and their evolution independent of the gray wolf. We analyzed mitochondrial DNA (mtDNA) and a Y-chromosome intron sequence in combination with Y-chromosome microsatellites from wolves and coyotes within the range of extensive wolf-coyote hybridization, that is, eastern North America. The detection of divergent Y-chromosome haplotypes in the historic range of the eastern wolf is concordant with earlier mtDNA findings, and the absence of these haplotypes in western coyotes supports the existence of the North American evolved eastern wolf (Canis lycaon). Having haplotypes observed exclusively in eastern North America as a result of insufficient sampling in the historic range of the coyote or that these lineages subsequently went extinct in western geographies is unlikely given that eastern-specific mtDNA and Y-chromosome haplotypes represent lineages divergent from those observed in extant western coyotes. By combining Y-chromosome and mtDNA distributional patterns, we identified hybrid genomes of eastern wolf, coyote, gray wolf, and potentially dog origin in Canis populations of central and eastern North America. The natural contemporary eastern Canis populations represent an important example of widespread introgression resulting in hybrid genomes across the original C. lycaon range that appears to be facilitated by the eastern wolf acting as a conduit for hybridization. Applying conventional taxonomic nomenclature and species-based conservation initiatives, particularly in human-modified landscapes, may be counterproductive to the effective management of these hybrids and fails to consider their evolutionary potential.

  13. The Dawn of Human Matrilineal Diversity

    PubMed Central

    Behar, Doron M.; Villems, Richard; Soodyall, Himla; Blue-Smith, Jason; Pereira, Luisa; Metspalu, Ene; Scozzari, Rosaria; Makkan, Heeran; Tzur, Shay; Comas, David; Bertranpetit, Jaume; Quintana-Murci, Lluis; Tyler-Smith, Chris; Wells, R. Spencer; Rosset, Saharon

    2008-01-01

    The quest to explain demographic history during the early part of human evolution has been limited because of the scarce paleoanthropological record from the Middle Stone Age. To shed light on the structure of the mitochondrial DNA (mtDNA) phylogeny at the dawn of Homo sapiens, we constructed a matrilineal tree composed of 624 complete mtDNA genomes from sub-Saharan Hg L lineages. We paid particular attention to the Khoi and San (Khoisan) people of South Africa because they are considered to be a unique relic of hunter-gatherer lifestyle and to carry paternal and maternal lineages belonging to the deepest clades known among modern humans. Both the tree phylogeny and coalescence calculations suggest that Khoisan matrilineal ancestry diverged from the rest of the human mtDNA pool 90,000–150,000 years before present (ybp) and that at least five additional, currently extant maternal lineages existed during this period in parallel. Furthermore, we estimate that a minimum of 40 other evolutionarily successful lineages flourished in sub-Saharan Africa during the period of modern human dispersal out of Africa approximately 60,000–70,000 ybp. Only much later, at the beginning of the Late Stone Age, about 40,000 ybp, did introgression of additional lineages occur into the Khoisan mtDNA pool. This process was further accelerated during the recent Bantu expansions. Our results suggest that the early settlement of humans in Africa was already matrilineally structured and involved small, separately evolving isolated populations. PMID:18439549

  14. Genetic signs of multiple colonization events in Baltic ciscoes with radiation into sympatric spring- and autumn-spawners confined to early postglacial arrival

    PubMed Central

    Delling, Bo; Palm, Stefan; Palkopoulou, Eleftheria; Prestegaard, Tore

    2014-01-01

    Presence of sympatric populations may reflect local diversification or secondary contact of already distinct forms. The Baltic cisco (Coregonus albula) normally spawns in late autumn, but in a few lakes in Northern Europe sympatric autumn and spring- or winter-spawners have been described. So far, the evolutionary relationships and taxonomic status of these main life history forms have remained largely unclear. With microsatellites and mtDNA sequences, we analyzed extant and extinct spring- and autumn-spawners from a total of 23 Swedish localities, including sympatric populations. Published sequences from Baltic ciscoes in Germany and Finland, and Coregonus sardinella from North America were also included together with novel mtDNA sequences from Siberian C. sardinella. A clear genetic structure within Sweden was found that included two population assemblages markedly differentiated at microsatellites and apparently fixed for mtDNA haplotypes from two distinct clades. All sympatric Swedish populations belonged to the same assemblage, suggesting parallel evolution of spring-spawning rather than secondary contact. The pattern observed further suggests that postglacial immigration to Northern Europe occurred from at least two different refugia. Previous results showing that mtDNA in Baltic cisco is paraphyletic with respect to North American C. sardinella were confirmed. However, the inclusion of Siberian C. sardinella revealed a more complicated pattern, as these novel haplotypes were found within one of the two main C. albula clades and were clearly distinct from those in North American C. sardinella. The evolutionary history of Northern Hemisphere ciscoes thus seems to be more complex than previously recognized. PMID:25540695

  15. Genetic signs of multiple colonization events in Baltic ciscoes with radiation into sympatric spring- and autumn-spawners confined to early postglacial arrival.

    PubMed

    Delling, Bo; Palm, Stefan; Palkopoulou, Eleftheria; Prestegaard, Tore

    2014-11-01

    Presence of sympatric populations may reflect local diversification or secondary contact of already distinct forms. The Baltic cisco (Coregonus albula) normally spawns in late autumn, but in a few lakes in Northern Europe sympatric autumn and spring- or winter-spawners have been described. So far, the evolutionary relationships and taxonomic status of these main life history forms have remained largely unclear. With microsatellites and mtDNA sequences, we analyzed extant and extinct spring- and autumn-spawners from a total of 23 Swedish localities, including sympatric populations. Published sequences from Baltic ciscoes in Germany and Finland, and Coregonus sardinella from North America were also included together with novel mtDNA sequences from Siberian C. sardinella. A clear genetic structure within Sweden was found that included two population assemblages markedly differentiated at microsatellites and apparently fixed for mtDNA haplotypes from two distinct clades. All sympatric Swedish populations belonged to the same assemblage, suggesting parallel evolution of spring-spawning rather than secondary contact. The pattern observed further suggests that postglacial immigration to Northern Europe occurred from at least two different refugia. Previous results showing that mtDNA in Baltic cisco is paraphyletic with respect to North American C. sardinella were confirmed. However, the inclusion of Siberian C. sardinella revealed a more complicated pattern, as these novel haplotypes were found within one of the two main C. albula clades and were clearly distinct from those in North American C. sardinella. The evolutionary history of Northern Hemisphere ciscoes thus seems to be more complex than previously recognized.

  16. Linking the sub-Saharan and West Eurasian gene pools: maternal and paternal heritage of the Tuareg nomads from the African Sahel.

    PubMed

    Pereira, Luísa; Cerný, Viktor; Cerezo, María; Silva, Nuno M; Hájek, Martin; Vasíková, Alzbeta; Kujanová, Martina; Brdicka, Radim; Salas, Antonio

    2010-08-01

    The Tuareg presently live in the Sahara and the Sahel. Their ancestors are commonly believed to be the Garamantes of the Libyan Fezzan, ever since it was suggested by authors of antiquity. Biological evidence, based on classical genetic markers, however, indicates kinship with the Beja of Eastern Sudan. Our study of mitochondrial DNA (mtDNA) sequences and Y chromosome SNPs of three different southern Tuareg groups from Mali, Burkina Faso and the Republic of Niger reveals a West Eurasian-North African composition of their gene pool. The data show that certain genetic lineages could not have been introduced into this population earlier than approximately 9000 years ago whereas local expansions establish a minimal date at around 3000 years ago. Some of the mtDNA haplogroups observed in the Tuareg population were involved in the post-Last Glacial Maximum human expansion from Iberian refugia towards both Europe and North Africa. Interestingly, no Near Eastern mtDNA lineages connected with the Neolithic expansion have been observed in our population sample. On the other hand, the Y chromosome SNPs data show that the paternal lineages can very probably be traced to the Near Eastern Neolithic demic expansion towards North Africa, a period that is otherwise concordant with the above-mentioned mtDNA expansion. The time frame for the migration of the Tuareg towards the African Sahel belt overlaps that of early Holocene climatic changes across the Sahara (from the optimal greening approximately 10 000 YBP to the extant aridity beginning at approximately 6000 YBP) and the migrations of other African nomadic peoples in the area.

  17. Boundaries of dreams, boundaries of dreamers: thin and thick boundaries as a new personality measure.

    PubMed

    Hartmann, E

    1989-11-01

    Previous work by the author and his collaborators on frequent nightmare sufferers demonstrated that these people had striking personality characteristics which could be called "thin boundaries" in a number of different senses. In order to measure thin and thick boundaries, a 145-item questionnaire, the Boundary Questionnaire, has been developed which has now been taken by over 1,000 persons. Preliminary results are presented indicating that, as predicted a priori, several new groups of nightmare sufferers and groups of art students scored usually "thin," whereas a group of naval officers had usually "thick" boundaries. Overall, thinness on the Boundary Questionnaire correlated highly positively (r = .40) with frequency of dream recall and also significantly (r = .16) with length of sleep.

  18. MtDNA and Y-chromosomal diversity in the Chachapoya, a population from the northeast Peruvian Andes-Amazon divide.

    PubMed

    Guevara, Evelyn K; Palo, Jukka U; Guillén, Sonia; Sajantila, Antti

    2016-11-01

    The ancient Chachapoya were an aggregate of several ethnic groups that shared a common language, religion, and material culture. They inhabited a territory at the juncture of the Andes and the Amazon basin. Their position between those ecozones most likely influenced their genetic composition. We attempted to better understand their population history by assessing the contemporary genetic diversity in the Chachapoya and three of their immediate neighbors (Huancas, Jivaro, and Cajamarca). We inferred signatures of demographic history and genetic affinities, and contrasted the findings with data from other populations on local and continental scales. We studied mitochondrial DNA (mtDNA; hypervariable segment [HVSI and HVSII]) and Y chromosome (23 short tandem repeats (STRs)) marker data in 382 modern individuals. We used Sanger sequencing for mtDNA and a commercially available kit for Y-chromosomal STR typing. The Chachapoya had affinities with various populations of Andean and Amazonian origin. When examining the Native American component, the Chachapoya displayed high levels of genetic diversity. Together with other parameters, for example, large Tajima's D and Fu's Fs, the data indicated no drastic reduction of the population size in the past. The high level of diversity in the Chachapoya, the lack of evidence of drift in the past, and genetic affinities with a broad range of populations in the Americas reflects an intricate population history in the region. The new genetic data from the Chachapoya indeed seems to point to a genetic complexity that is not yet resolved but beginning to be elucidated. Am. J. Hum. Biol. 28:857-867, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Structure Discovery in Large Semantic Graphs Using Extant Ontological Scaling and Descriptive Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Saffar, Sinan; Joslyn, Cliff A.; Chappell, Alan R.

    As semantic datasets grow to be very large and divergent, there is a need to identify and exploit their inherent semantic structure for discovery and optimization. Towards that end, we present here a novel methodology to identify the semantic structures inherent in an arbitrary semantic graph dataset. We first present the concept of an extant ontology as a statistical description of the semantic relations present amongst the typed entities modeled in the graph. This serves as a model of the underlying semantic structure to aid in discovery and visualization. We then describe a method of ontological scaling in which themore » ontology is employed as a hierarchical scaling filter to infer different resolution levels at which the graph structures are to be viewed or analyzed. We illustrate these methods on three large and publicly available semantic datasets containing more than one billion edges each. Keywords-Semantic Web; Visualization; Ontology; Multi-resolution Data Mining;« less

  20. A 'crytic' microbial mat: A new model ecosystem for extant life on Mars

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.

    1995-01-01

    If life were present on Mars today, it would face potentially lethal environmental conditions such as a lack of water, frigid temperatures, ultraviolet radiation, and soil oxidants. In addition, the Viking missions did not detect near-surface organic carbon available for assimilation. Autotrophic organisms that lived under a protective layer of sand or gravel would be able to circumvent the ultraviolet radiation and lack of fixed carbon. Two terrestrial photosynthetic near-surface microbial communities have been identified, one in the inter- and supertidal of Laguna Ojo de Liebere (Baja California Sur, Mexico) and one in the acidic gravel near several small geysers in Yellowstone National Park (Wyoming, U.S.A.). Both communities have been studied with respect to their ability to fix carbon under different conditions, including elevated levels of inorganic carbon. Although these sand communities have not been exposed to the entire suite of Martian environmental conditions simultaneously, such communities can provide a useful model ecosystem for a potential extant Martian biota.

  1. Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda

    PubMed Central

    Ou, Qiang; Shu, Degan; Mayer, Georg

    2012-01-01

    Cambrian lobopodians are important for understanding the evolution of arthropods, but despite their soft-bodied preservation, the organization of the cephalic region remains obscure. Here we describe new material of the early Cambrian lobopodian Onychodictyon ferox from southern China, which reveals hitherto unknown head structures. These include a proboscis with a terminal mouth, an anterior arcuate sclerite, a pair of ocellus-like eyes and branched, antenniform appendages associated with this ocular segment. These findings, combined with a comparison with other lobopodians, suggest that the head of the last common ancestor of fossil lobopodians and extant panarthropods comprized a single ocular segment with a proboscis and terminal mouth. The lack of specialized mouthparts in O. ferox and the involvement of non-homologous mouthparts in onychophorans, tardigrades and arthropods argue against a common origin of definitive mouth openings among panarthropods, whereas the embryonic stomodaeum might well be homologous at least in Onychophora and Arthropoda. PMID:23232391

  2. Minding the gap: Frequency of indels in mtDNA control region sequence data and influence on population genetic analyses

    USGS Publications Warehouse

    Pearce, J.M.

    2006-01-01

    Insertions and deletions (indels) result in sequences of various lengths when homologous gene regions are compared among individuals or species. Although indels are typically phylogenetically informative, occurrence and incorporation of these characters as gaps in intraspecific population genetic data sets are rarely discussed. Moreover, the impact of gaps on estimates of fixation indices, such as FST, has not been reviewed. Here, I summarize the occurrence and population genetic signal of indels among 60 published studies that involved alignments of multiple sequences from the mitochondrial DNA (mtDNA) control region of vertebrate taxa. Among 30 studies observing indels, an average of 12% of both variable and parsimony-informative sites were composed of these sites. There was no consistent trend between levels of population differentiation and the number of gap characters in a data block. Across all studies, the average influence on estimates of ??ST was small, explaining only an additional 1.8% of among population variance (range 0.0-8.0%). Studies most likely to observe an increase in ??ST with the inclusion of gap characters were those with < 20 variable sites, but a near equal number of studies with few variable sites did not show an increase. In contrast to studies at interspecific levels, the influence of indels for intraspecific population genetic analyses of control region DNA appears small, dependent upon total number of variable sites in the data block, and related to species-specific characteristics and the spatial distribution of mtDNA lineages that contain indels. ?? 2006 Blackwell Publishing Ltd.

  3. Molecular Zoogeography of Freshwater Fishes in the Southeastern United States

    PubMed Central

    Bermingham, Eldredge; Avise, John C.

    1986-01-01

    Restriction fragment length polymorphisms in mitochondrial DNA (mtDNA) were used to reconstruct evolutionary relationships of conspecific populations in four species of freshwater fish—Amia calva, Lepomis punctatus, L. gulosus, and L. microlophus. A suite of 14-17 endonucleases was employed to assay mtDNAs from 305 specimens collected from 14 river drainages extending from South Carolina to Louisiana. Extensive mtDNA polymorphism was observed within each assayed species. In both phenograms and Wagner parsimony networks, mtDNA clones that were closely related genetically were usually geographically contiguous. Within each species, major mtDNA phylogenetic breaks also distinguished populations from separate geographic regions, demonstrating that dispersal and gene flow have not been sufficient to override geographic influences on population subdivision.—Importantly, there were strong patterns of congruence across species in the geographic placements of the mtDNA phylogenetic breaks. Three major boundary regions were characterized by concentrations of phylogenetic discontinuities, and these zones agree well with previously described zoogeographic boundaries identified by a different kind of data base—distributional limits of species—suggesting that a common set of historical factors may account for both phenomena. Repeated episodes of eustatic sea level change along a relatively static continental morphology are the likely causes of several patterns of drainage isolation and coalescence, and these are discussed in relation to the genetic data.—Overall, results exemplify the positive role that intraspecific genetic analyses may play in historical zoogeographic reconstruction. They also point out the potential inadequacies of any interpretations of population genetic structure that fail to consider the influences of history in shaping that structure. PMID:17246340

  4. The complex variable boundary element method: Applications in determining approximative boundaries

    USGS Publications Warehouse

    Hromadka, T.V.

    1984-01-01

    The complex variable boundary element method (CVBEM) is used to determine approximation functions for boundary value problems of the Laplace equation such as occurs in potential theory. By determining an approximative boundary upon which the CVBEM approximator matches the desired constant (level curves) boundary conditions, the CVBEM is found to provide the exact solution throughout the interior of the transformed problem domain. Thus, the acceptability of the CVBEM approximation is determined by the closeness-of-fit of the approximative boundary to the study problem boundary. ?? 1984.

  5. Watershed boundaries and geographic isolation: patterns of diversification in cutthroat trout from western North America.

    PubMed

    Loxterman, Janet L; Keeley, Ernest R

    2012-03-19

    For wide-ranging species, intraspecific variation can occur as a result of reproductive isolation from local adaptive differences or from physical barriers to movement. Cutthroat trout (Oncorhynchus clarkii), a widely distributed fish species from North America, has been divided into numerous putative subspecies largely based on its isolation in different watersheds. In this study, we examined mtDNA sequence variation of cutthroat trout to determine the major phylogenetic lineages of this polytypic species. We use these data as a means of testing whether geographic isolation by watershed boundaries can be a primary factor organizing intraspecific diversification. We collected cutthroat trout from locations spanning almost the entire geographic range of this species and included samples from all major subspecies of cutthroat trout. Based on our analyses, we reveal eight major lineages of cutthroat trout, six of which correspond to subspecific taxonomy commonly used to describe intraspecific variation in this species. The Bonneville cutthroat trout (O. c. utah) and Yellowstone cutthroat trout (O. c. bouvieri) did not form separate monophyletic lineages, but instead formed an intermixed clade. We also document the geographic distribution of a Great Basin lineage of cutthroat trout; a group typically defined as Bonneville cutthroat trout, but it appears more closely related to the Colorado River lineage of cutthroat trout. Our study indicates that watershed boundaries can be an organizing factor isolating genetic diversity in fishes; however, historical connections between watersheds can also influence the template of isolation. Widely distributed species, like cutthroat trout, offer an opportunity to assess where historic watershed connections may have existed, and help explain the current distribution of biological diversity across a landscape.

  6. Watershed boundaries and geographic isolation: patterns of diversification in cutthroat trout from western North America

    PubMed Central

    2012-01-01

    Background For wide-ranging species, intraspecific variation can occur as a result of reproductive isolation from local adaptive differences or from physical barriers to movement. Cutthroat trout (Oncorhynchus clarkii), a widely distributed fish species from North America, has been divided into numerous putative subspecies largely based on its isolation in different watersheds. In this study, we examined mtDNA sequence variation of cutthroat trout to determine the major phylogenetic lineages of this polytypic species. We use these data as a means of testing whether geographic isolation by watershed boundaries can be a primary factor organizing intraspecific diversification. Results We collected cutthroat trout from locations spanning almost the entire geographic range of this species and included samples from all major subspecies of cutthroat trout. Based on our analyses, we reveal eight major lineages of cutthroat trout, six of which correspond to subspecific taxonomy commonly used to describe intraspecific variation in this species. The Bonneville cutthroat trout (O. c. utah) and Yellowstone cutthroat trout (O. c. bouvieri) did not form separate monophyletic lineages, but instead formed an intermixed clade. We also document the geographic distribution of a Great Basin lineage of cutthroat trout; a group typically defined as Bonneville cutthroat trout, but it appears more closely related to the Colorado River lineage of cutthroat trout. Conclusion Our study indicates that watershed boundaries can be an organizing factor isolating genetic diversity in fishes; however, historical connections between watersheds can also influence the template of isolation. Widely distributed species, like cutthroat trout, offer an opportunity to assess where historic watershed connections may have existed, and help explain the current distribution of biological diversity across a landscape. PMID:22429757

  7. Diet and morphology of extant and recently extinct northern bears

    USGS Publications Warehouse

    Mattson, David J.

    1998-01-01

    I examined the relationship of diets to skull morphology of extant northern bears and used this information to speculate on diets of the recently extinct cave (Ursus spelaeus) and short-faced (Arctodus simus) bears. Analyses relied upon published skull measurements and food habits of Asiatic (U. thibetanus) and American (U. americanus) black bears, polar bears (U. maritimus), various subspecies of brown bears (U. arctos), and the giant panda (Ailuropoda melanoleuca). Principal components analysis showed major trends in skull morphology related to size, crushing force, and snout shape. Giant pandas, short-faced bears, cave bears, and polar bears exhibited extreme features along these gradients. Diets of brown bears in colder, often non-forested environments were distinguished by large volumes of roots, foliage, and vertebrates, while diets of the 2 black bear species and brown bears occupying broadleaf forests contained greater volumes of mast and invertebrates and overlapped considerably. Fractions of fibrous foods in feces (foliage and roots) were strongly related to skull morphology (R2=0.97)">(R2=0.97). Based on this relationship, feces of cave and short-faced bears were predicted to consist almost wholly of foliage, roots, or both. I hypothesized that cave bears specialized in root grubbing. In contrast, based upon body proportions and features of the ursid digestive tract, I hypothesized that skull features associated with crushing force facilitated a carnivorous rather than herbivorous diet for short-faced bears.

  8. Control control control: a reassessment and comparison of GenBank and chromatogram mtDNA sequence variation in Baltic grey seals (Halichoerus grypus).

    PubMed

    Fietz, Katharina; Graves, Jeff A; Olsen, Morten Tange

    2013-01-01

    Genetic data can provide a powerful tool for those interested in the biology, management and conservation of wildlife, but also lead to erroneous conclusions if appropriate controls are not taken at all steps of the analytical process. This particularly applies to data deposited in public repositories such as GenBank, whose utility relies heavily on the assumption of high data quality. Here we report on an in-depth reassessment and comparison of GenBank and chromatogram mtDNA sequence data generated in a previous study of Baltic grey seals. By re-editing the original chromatogram data we found that approximately 40% of the grey seal mtDNA haplotype sequences posted in GenBank contained errors. The re-analysis of the edited chromatogram data yielded overall similar results and conclusions as the original study. However, a significantly different outcome was observed when using the uncorrected dataset based on the GenBank haplotypes. We therefore suggest disregarding the existing GenBank data and instead using the correct haplotypes reported here. Our study serves as an illustrative example reiterating the importance of quality control through every step of a research project, from data generation to interpretation and submission to an online repository. Errors conducted in any step may lead to biased results and conclusions, and could impact management decisions.

  9. Control Control Control: A Reassessment and Comparison of GenBank and Chromatogram mtDNA Sequence Variation in Baltic Grey Seals (Halichoerus grypus)

    PubMed Central

    Fietz, Katharina; Graves, Jeff A.; Olsen, Morten Tange

    2013-01-01

    Genetic data can provide a powerful tool for those interested in the biology, management and conservation of wildlife, but also lead to erroneous conclusions if appropriate controls are not taken at all steps of the analytical process. This particularly applies to data deposited in public repositories such as GenBank, whose utility relies heavily on the assumption of high data quality. Here we report on an in-depth reassessment and comparison of GenBank and chromatogram mtDNA sequence data generated in a previous study of Baltic grey seals. By re-editing the original chromatogram data we found that approximately 40% of the grey seal mtDNA haplotype sequences posted in GenBank contained errors. The re-analysis of the edited chromatogram data yielded overall similar results and conclusions as the original study. However, a significantly different outcome was observed when using the uncorrected dataset based on the GenBank haplotypes. We therefore suggest disregarding the existing GenBank data and instead using the correct haplotypes reported here. Our study serves as an illustrative example reiterating the importance of quality control through every step of a research project, from data generation to interpretation and submission to an online repository. Errors conducted in any step may lead to biased results and conclusions, and could impact management decisions. PMID:23977362

  10. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  11. Mitochondrial DNA sequence variation in human evolution and disease.

    PubMed

    Wallace, D C

    1994-09-13

    Germ-line and somatic mtDNA mutations are hypothesized to act together to shape our history and our health. Germ-line mtDNA mutations, both ancient and recent, have been associated with a variety of degenerative diseases. Mildly to moderately deleterious germ-line mutations, like neutral polymorphisms, have become established in the distant past through genetic drift but now may predispose certain individuals to late-onset degenerative diseases. As an example, a homoplasmic, Caucasian, tRNA(Gln) mutation at nucleotide pair (np) 4336 has been observed in 5% of Alzheimer disease and Parkinson disease patients and may contribute to the multifactorial etiology of these diseases. Moderately to severely deleterious germ-line mutations, on the other hand, appear repeatedly but are eliminated by selection. Hence, all extant mutations of this class are recent and associated with more devastating diseases of young adults and children. Representative of these mutations is a heteroplasmic mutation in MTND6 at np 14459 whose clinical presentations range from adult-onset blindness to pediatric dystonia and basal ganglial degeneration. To the inherited mutations are added somatic mtDNA mutations which accumulate in random arrays within stable tissues. These mutations provide a molecular clock that measures our age and may cause a progressive decline in tissue energy output that could precipitate the onset of degenerative diseases in individuals harboring inherited deleterious mutations.

  12. Limitations of Climatic Data for Inferring Species Boundaries: Insights from Speckled Rattlesnakes

    PubMed Central

    Flores-Villela, Oscar; Fujita, Matthew K.

    2015-01-01

    Phenotypes, DNA, and measures of ecological differences are widely used in species delimitation. Although rarely defined in such studies, ecological divergence is almost always approximated using multivariate climatic data associated with sets of specimens (i.e., the “climatic niche”); the justification for this approach is that species-specific climatic envelopes act as surrogates for physiological tolerances. Using identical statistical procedures, we evaluated the usefulness and validity of the climate-as-proxy assumption by comparing performance of genetic (nDNA SNPs and mitochondrial DNA), phenotypic, and climatic data for objective species delimitation in the speckled rattlesnake (Crotalus mitchellii) complex. Ordination and clustering patterns were largely congruent among intrinsic (heritable) traits (nDNA, mtDNA, phenotype), and discordance is explained by biological processes (e.g., ontogeny, hybridization). In contrast, climatic data did not produce biologically meaningful clusters that were congruent with any intrinsic dataset, but rather corresponded to regional differences in atmospheric circulation and climate, indicating an absence of inherent taxonomic signal in these data. Surrogating climate for physiological tolerances adds artificial weight to evidence of species boundaries, as these data are irrelevant for that purpose. Based on the evidence from congruent clustering of intrinsic datasets, we recommend that three subspecies of C. mitchellii be recognized as species: C. angelensis, C. mitchellii, and C. Pyrrhus. PMID:26107178

  13. Deciphering the link between doubly uniparental inheritance of mtDNA and sex determination in bivalves: Clues from comparative transcriptomics

    USGS Publications Warehouse

    Capt, Charlotte; Renaut, Sébastien; Ghiselli, Fabrizio; Milani, Liliana; Johnson, Nathan A.; Sietman, Bernard E.; Stewart, Donald; Breton, Sophie

    2018-01-01

    Bivalves exhibit an astonishing diversity of sexual systems and sex-determining mechanisms. They can be gonochoric, hermaphroditic or androgenetic, with both genetic and environmental factors known to determine or influence sex. One unique sex-determining system involving the mitochondrial genome has also been hypothesized to exist in bivalves with doubly uniparental inheritance (DUI) of mtDNA. However, the link between DUI and sex determination remains obscure. In this study, we performed a comparative gonad transcriptomics analysis for two DUI-possessing freshwater mussel species to better understand the mechanisms underlying sex determination and DUI in these bivalves. We used a BLAST reciprocal analysis to identify orthologs between Venustaconcha ellipsiformis and Utterbackia peninsularis and compared our results with previously published sex-specific bivalve transcriptomes to identify conserved sex-determining genes. We also compared our data with other DUI species to identify candidate genes possibly involved in the regulation of DUI. A total of ∼12,000 orthologous relationships were found, with 2,583 genes differentially expressed in both species. Among these genes, key sex-determining factors previously reported in vertebrates and in bivalves (e.g., Sry, Dmrt1, Foxl2) were identified, suggesting that some steps of the sex-determination pathway may be deeply conserved in metazoans. Our results also support the hypothesis that a modified ubiquitination mechanism could be responsible for the retention of the paternal mtDNA in male bivalves, and revealed that DNA methylation could also be involved in the regulation of DUI. Globally, our results suggest that sets of genes associated with sex determination and DUI are similar in distantly-related DUI species.

  14. Deciphering the Link between Doubly Uniparental Inheritance of mtDNA and Sex Determination in Bivalves: Clues from Comparative Transcriptomics

    PubMed Central

    Renaut, Sébastien; Milani, Liliana; Johnson, Nathan A; Sietman, Bernard E; Stewart, Donald T

    2018-01-01

    Abstract Bivalves exhibit an astonishing diversity of sexual systems and sex-determining mechanisms. They can be gonochoric, hermaphroditic or androgenetic, with both genetic and environmental factors known to determine or influence sex. One unique sex-determining system involving the mitochondrial genome has also been hypothesized to exist in bivalves with doubly uniparental inheritance (DUI) of mtDNA. However, the link between DUI and sex determination remains obscure. In this study, we performed a comparative gonad transcriptomics analysis for two DUI-possessing freshwater mussel species to better understand the mechanisms underlying sex determination and DUI in these bivalves. We used a BLAST reciprocal analysis to identify orthologs between Venustaconcha ellipsiformis and Utterbackia peninsularis and compared our results with previously published sex-specific bivalve transcriptomes to identify conserved sex-determining genes. We also compared our data with other DUI species to identify candidate genes possibly involved in the regulation of DUI. A total of ∼12,000 orthologous relationships were found, with 2,583 genes differentially expressed in both species. Among these genes, key sex-determining factors previously reported in vertebrates and in bivalves (e.g., Sry, Dmrt1, Foxl2) were identified, suggesting that some steps of the sex-determination pathway may be deeply conserved in metazoans. Our results also support the hypothesis that a modified ubiquitination mechanism could be responsible for the retention of the paternal mtDNA in male bivalves, and revealed that DNA methylation could also be involved in the regulation of DUI. Globally, our results suggest that sets of genes associated with sex determination and DUI are similar in distantly-related DUI species. PMID:29360964

  15. Linking the sub-Saharan and West Eurasian gene pools: maternal and paternal heritage of the Tuareg nomads from the African Sahel

    PubMed Central

    Pereira, Luísa; Černý, Viktor; Cerezo, María; Silva, Nuno M; Hájek, Martin; Vašíková, Alžběta; Kujanová, Martina; Brdička, Radim; Salas, Antonio

    2010-01-01

    The Tuareg presently live in the Sahara and the Sahel. Their ancestors are commonly believed to be the Garamantes of the Libyan Fezzan, ever since it was suggested by authors of antiquity. Biological evidence, based on classical genetic markers, however, indicates kinship with the Beja of Eastern Sudan. Our study of mitochondrial DNA (mtDNA) sequences and Y chromosome SNPs of three different southern Tuareg groups from Mali, Burkina Faso and the Republic of Niger reveals a West Eurasian-North African composition of their gene pool. The data show that certain genetic lineages could not have been introduced into this population earlier than ∼9000 years ago whereas local expansions establish a minimal date at around 3000 years ago. Some of the mtDNA haplogroups observed in the Tuareg population were involved in the post-Last Glacial Maximum human expansion from Iberian refugia towards both Europe and North Africa. Interestingly, no Near Eastern mtDNA lineages connected with the Neolithic expansion have been observed in our population sample. On the other hand, the Y chromosome SNPs data show that the paternal lineages can very probably be traced to the Near Eastern Neolithic demic expansion towards North Africa, a period that is otherwise concordant with the above-mentioned mtDNA expansion. The time frame for the migration of the Tuareg towards the African Sahel belt overlaps that of early Holocene climatic changes across the Sahara (from the optimal greening ∼10 000 YBP to the extant aridity beginning at ∼6000 YBP) and the migrations of other African nomadic peoples in the area. PMID:20234393

  16. Estimating thumb–index finger precision grip and manipulation potential in extant and fossil primates

    PubMed Central

    Feix, Thomas; Kivell, Tracy L.; Pouydebat, Emmanuelle; Dollar, Aaron M.

    2015-01-01

    Primates, and particularly humans, are characterized by superior manual dexterity compared with other mammals. However, drawing the biomechanical link between hand morphology/behaviour and functional capabilities in non-human primates and fossil taxa has been challenging. We present a kinematic model of thumb–index precision grip and manipulative movement based on bony hand morphology in a broad sample of extant primates and fossil hominins. The model reveals that both joint mobility and digit proportions (scaled to hand size) are critical for determining precision grip and manipulation potential, but that having either a long thumb or great joint mobility alone does not necessarily yield high precision manipulation. The results suggest even the oldest available fossil hominins may have shared comparable precision grip manipulation with modern humans. In particular, the predicted human-like precision manipulation of Australopithecus afarensis, approximately one million years before the first stone tools, supports controversial archaeological evidence of tool-use in this taxon. PMID:25878134

  17. The Role of Grain Boundary Energy on Grain Boundary Complexion Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojarski, Stephanie A.; Rohrer, Gregory S.

    Grain boundary complexions are distinct equilibrium structures and compositions of a grain boundary and complexion transformations are transition from a metastable to an equilibrium complexion at a specific thermodynamic and geometric conditions. Previous work indicates that, in the case of doped alumina, a complexion transition that increased the mobility of transformed boundaries and resulted in abnormal grain growth also caused a decrease in the mean relative grain boundary energy as well as an increase in the anisotropy of the grain boundary character distribution (GBCD). The current work will investigate the hypothesis that the rates of complexion transitions that result inmore » abnormal grain growth (AGG) depend on grain boundary character and energy. Furthermore, the current work expands upon this understanding and tests the hypothesis that it is possible to control when and where a complexion transition occurs by controlling the local grain boundary energy distribution.« less

  18. Knowledge mobilization in bridging patient-practitioner-researcher boundaries: A systematic integrative review protocol.

    PubMed

    Cowdell, Fiona; Booth, Andrew; Appleby, Ben

    2017-11-01

    To review published literature to identify when and how patients and healthcare practitioners have been involved in knowledge mobilization activity and the impact this may have had on their care. Improving patient outcomes, satisfaction and quality of care is increasingly reliant on shared decision-making between health professionals and patients. Knowledge mobilization, at its simplest: "moving knowledge to where it can be most useful" is a growing field of academic study. To date, it appears that much effort has focused on moving knowledge from researchers to healthcare practitioners. Knowledge mobilization to patients is currently under-researched. Integrative review. Methods of integrative review will be used to address the review problem. PRISMA guidelines were used as a general framework to guide structuring and reporting the review. Elements of method-specific reporting guidelines for specific streams of evidence will be used as required. This review will aim to provide a broad and deep understanding of patient-practitioner-researcher engagement in knowledge mobilization activity. This synthesis of the extant literature should offer insights into the optimum characteristics of methods for bridging patient-practitioner-researcher boundaries in knowledge mobilization action. © 2017 John Wiley & Sons Ltd.

  19. Commentary: doctors without boundaries: the ethics of teacher-student relationships in academic medicine.

    PubMed

    Larkin, Gregory Luke; Mello, Michael J

    2010-05-01

    Possessed of both instinct and intellect, physician teachers are required to be respectful exemplars of professionalism and interpersonal ethics in all environments, be it the hospital, classroom, or outside the educational setting. Sometimes, even while protecting the sanctity of the teacher-student relationship, they may surreptitiously find themselves in the throes of consensual intimacy, boundary violations, student exploitation, or other negative interpersonal and/or departmental dynamics. One may question how an academic can consistently resolve this tension and summon the temperance, humility, charity, and restraint needed to subdue lust, pride, abuse, and incontinence in the workplace. One important answer may lie in an improved understanding of the moral necessity of social cooperation, fairness, reciprocity, and respect that is constitutive of the physician-teacher role. Although normative expectations and duties have been outlined in extant codes of ethics and conduct within academic medicine, to date, few training programs currently teach faculty and residents about the ethics of appropriate pedagogic and intimate relations between teaching staff and students, interns, residents, researchers, and other trainees. This essay highlights examples from history, literature, and medical ethics as one small step toward filling this void.

  20. Finding the neck-trunk boundary in snakes: anteroposterior dissociation of myological characteristics in snakes and its implications for their neck and trunk body regionalization.

    PubMed

    Tsuihiji, Takanobu; Kearney, Maureen; Rieppel, Olivier

    2012-09-01

    The neck and trunk regionalization of the presacral musculoskeletal system in snakes and other limb-reduced squamates was assessed based on observations on craniovertebral and body wall muscles. It was confirmed that myological features characterizing the neck in quadrupedal squamates (i.e., squamates with well-developed limbs) are retained in all examined snakes, contradicting the complete lack of the neck in snakes hypothesized in previous studies. However, the posterior-most origins of the craniovertebral muscles and the anterior-most bony attachments of the body wall muscles that are located at around the neck-trunk boundary in quadrupedal squamates were found to be dissociated anteroposteriorly in snakes. Together with results of a recent study that the anterior expression boundaries of Hox genes coinciding with the neck-trunk boundary in quadrupedal amniotes were dissociated anteroposteriorly in a colubrid snake, these observations support the hypothesis that structures usually associated with the neck-trunk boundary in quadrupedal squamates are displaced relative to one another in snakes. Whereas certain craniovertebral muscles are elongated in some snakes, results of optimization on an ophidian cladogram show that the most recent common ancestor of extant snakes would have had the longest craniovertebral muscle, M. rectus capitis anterior, that is elongated only by several segments compared with that of quadrupedal squamates. Therefore, even such a posteriorly displaced "cervical" characteristic plesiomorphically lies fairly anteriorly in the greatly elongated precloacal region of snakes, suggesting that the trunk, not the neck, would have contributed most to the elongation of the snake precloacal region. A similar dissociation of structures usually associated with the neck-trunk boundary in quadrupedal squamates is observed in limb-reduced squamates, suggesting that these forms and snakes may share a developmental mechanism producing modifications in the

  1. Model-based estimation with boundary side information or boundary regularization [cardiac emission CT].

    PubMed

    Chiao, P C; Rogers, W L; Fessler, J A; Clinthorne, N H; Hero, A O

    1994-01-01

    The authors have previously developed a model-based strategy for joint estimation of myocardial perfusion and boundaries using ECT (emission computed tomography). They have also reported difficulties with boundary estimation in low contrast and low count rate situations. Here they propose using boundary side information (obtainable from high resolution MRI and CT images) or boundary regularization to improve both perfusion and boundary estimation in these situations. To fuse boundary side information into the emission measurements, the authors formulate a joint log-likelihood function to include auxiliary boundary measurements as well as ECT projection measurements. In addition, they introduce registration parameters to align auxiliary boundary measurements with ECT measurements and jointly estimate these parameters with other parameters of interest from the composite measurements. In simulated PET O-15 water myocardial perfusion studies using a simplified model, the authors show that the joint estimation improves perfusion estimation performance and gives boundary alignment accuracy of <0.5 mm even at 0.2 million counts. They implement boundary regularization through formulating a penalized log-likelihood function. They also demonstrate in simulations that simultaneous regularization of the epicardial boundary and myocardial thickness gives comparable perfusion estimation accuracy with the use of boundary side information.

  2. The role of boundary variability in polycrystalline grain-boundary diffusion

    NASA Astrophysics Data System (ADS)

    Moghadam, M. M.; Rickman, J. M.; Harmer, M. P.; Chan, H. M.

    2015-01-01

    We investigate the impact of grain-boundary variability on mass transport in a polycrystal. More specifically, we perform both numerical and analytical studies of steady-state diffusion in prototypical microstructures in which there is either a discrete spectrum of grain-boundary activation energies or else a complex distribution of grain-boundary character, and hence a continuous spectrum of boundary activation energies. An effective diffusivity is calculated for these structures using simplified multi-state models and, for the case of a continuous spectrum, employing experimentally obtained grain-boundary energy data. We identify different diffusive regimes for these cases and quantify deviations from Arrhenius behavior using effective medium theory. Finally, we examine the diffusion kinetics of a simplified model of an interfacial layering (i.e., complexion) transition.

  3. Fixating picture boundaries does not eliminate boundary extension: Implications for scene representation

    PubMed Central

    Gagnier, Kristin Michod; Dickinson, Christopher A.; Intraub, Helene

    2015-01-01

    Observers frequently remember seeing more of a scene than was shown (boundary extension). Does this reflect a lack of eye fixations to the boundary region? Single-object photographs were presented for 14–15 s each. Main objects were either whole or slightly cropped by one boundary, creating a salient marker of boundary placement. All participants expected a memory test, but only half were informed that boundary memory would be tested. Participants in both conditions made multiple fixations to the boundary region and the cropped region during study. Demonstrating the importance of these regions, test-informed participants fixated them sooner, longer, and more frequently. Boundary ratings (Experiment 1) and border adjustment tasks (Experiments 2–4) revealed boundary extension in both conditions. The error was reduced, but not eliminated, in the test-informed condition. Surprisingly, test knowledge and multiple fixations to the salient cropped region, during study and at test, were insufficient to overcome boundary extension on the cropped side. Results are discussed within a traditional visual-centric framework versus a multisource model of scene perception. PMID:23547787

  4. Fixating picture boundaries does not eliminate boundary extension: implications for scene representation.

    PubMed

    Michod Gagnier, Kristin; Dickinson, Christopher A; Intraub, Helene

    2013-01-01

    Observers frequently remember seeing more of a scene than was shown (boundary extension). Does this reflect a lack of eye fixations to the boundary region? Single-object photographs were presented for 14-15 s each. Main objects were either whole or slightly cropped by one boundary, creating a salient marker of boundary placement. All participants expected a memory test, but only half were informed that boundary memory would be tested. Participants in both conditions made multiple fixations to the boundary region and the cropped region during study. Demonstrating the importance of these regions, test-informed participants fixated them sooner, longer, and more frequently. Boundary ratings (Experiment 1) and border adjustment tasks (Experiments 2-4) revealed boundary extension in both conditions. The error was reduced, but not eliminated, in the test-informed condition. Surprisingly, test knowledge and multiple fixations to the salient cropped region, during study and at test, were insufficient to overcome boundary extension on the cropped side. Results are discussed within a traditional visual-centric framework versus a multisource model of scene perception.

  5. Quantifying mental foramen position in extant hominoids and Australopithecus: implications for its use in studies of human evolution.

    PubMed

    Robinson, Chris A; Williams, Frank L

    2010-08-01

    The location of the mental foramen on the mandibular corpus has figured prominently in debates concerning the taxonomy of fossil hominins and Gorilla gorilla. In this study we quantify the antero/posterior (A/P) position of the mental foramen across great apes, modern humans and Australopithecus. Contrary to most qualitative assessments, we find significant differences between some extant hominoid species in mental foramen A/P position supporting its potential usefulness as a character for taxonomic and phylogenetic analyses of fossil hominoids. Gorilla gorilla, particularly the eastern subspecies, with a comparatively longer dental arcade and fossil and extant hominins with reduced canines and incisors tend to exhibit more anteriorly positioned mental foramina. Conversely, Pan troglodytes exhibits more posteriorly positioned mental foramina. Variation in this character among Gorilla gorilla subspecies supports recent taxonomic assessments that separate eastern and western populations. In all taxa other than Pan troglodytes the A/P position of the mental foramen is positively allometric with respect to dental arcade length. Thus, within each of these species, specimens with longer dental arcades tend to have more posteriorly positioned mental foramina. Those species with greater sexual dimorphism in canine size and dental arcade length (i.e., Gorilla gorilla and Pongo pygmaeus) exhibit more extreme differences between smaller and larger individuals. Moreover, among great apes those individuals with greater anterior convergence of the dental arcade tend to exhibit more posteriorly positioned mental foramina. Dental arcade length, canine crown area and anterior convergence are all significantly associated with mental foramen A/P position, suggesting that these traits may influence taxonomic variation in the A/P position of the mental foramen. (c) 2010 Wiley-Liss, Inc.

  6. Work-family boundary strategies: Stability and alignment between preferred and enacted boundaries.

    PubMed

    Ammons, Samantha K

    2013-02-01

    Are individuals bounding work and family the way they would like? Much of the work-family boundary literature focuses on whether employees are segmenting or integrating work with family, but does not explore the boundaries workers would like to have, nor does it examine the fit between desired and enacted boundaries, or assess boundary stability. In this study, 23 respondents employed at a large Fortune 500 company were interviewed about their work-family boundaries before and after their teams underwent a cultural change initiative that sought to loosen workplace norms and allow employees more autonomy to decide when and where they performed their job tasks. Four distinct boundary strategies emerged from the data, with men and parents of young children having better alignment between preferred and enacted boundaries than women and those without these caregiving duties. Implications for boundary theory and research are discussed.

  7. Work-family boundary strategies: Stability and alignment between preferred and enacted boundaries

    PubMed Central

    Ammons, Samantha K.

    2015-01-01

    Are individuals bounding work and family the way they would like? Much of the work-family boundary literature focuses on whether employees are segmenting or integrating work with family, but does not explore the boundaries workers would like to have, nor does it examine the fit between desired and enacted boundaries, or assess boundary stability. In this study, 23 respondents employed at a large Fortune 500 company were interviewed about their work-family boundaries before and after their teams underwent a cultural change initiative that sought to loosen workplace norms and allow employees more autonomy to decide when and where they performed their job tasks. Four distinct boundary strategies emerged from the data, with men and parents of young children having better alignment between preferred and enacted boundaries than women and those without these caregiving duties. Implications for boundary theory and research are discussed. PMID:25620801

  8. Harnessing mtDNA variation to resolve ambiguity in ‘Redfish’ sold in Europe

    PubMed Central

    Moore, Lauren; Pampoulie, Christophe; Di Muri, Cristina; Vandamme, Sara; Mariani, Stefano

    2017-01-01

    Morphology-based identification of North Atlantic Sebastes has long been controversial and misidentification may produce misleading data, with cascading consequences that negatively affect fisheries management and seafood labelling. North Atlantic Sebastes comprises of four species, commonly known as ‘redfish’, but little is known about the number, identity and labelling accuracy of redfish species sold across Europe. We used a molecular approach to identify redfish species from ‘blind’ specimens to evaluate the performance of the Barcode of Life (BOLD) and Genbank databases, as well as carrying out a market product accuracy survey from retailers across Europe. The conventional BOLD approach proved ambiguous, and phylogenetic analysis based on mtDNA control region sequences provided a higher resolution for species identification. By sampling market products from four countries, we found the presence of two species of redfish (S. norvegicus and S. mentella) and one unidentified Pacific rockfish marketed in Europe. Furthermore, public databases revealed the existence of inaccurate reference sequences, likely stemming from species misidentification from previous studies, which currently hinders the efficacy of DNA methods for the identification of Sebastes market samples. PMID:29018597

  9. Abundant mtDNA diversity and ancestral admixture in Colombian criollo cattle (Bos taurus).

    PubMed

    Carvajal-Carmona, Luis G; Bermudez, Nelson; Olivera-Angel, Martha; Estrada, Luzardo; Ossa, Jorge; Bedoya, Gabriel; Ruiz-Linares, Andrés

    2003-11-01

    Various cattle populations in the Americas (known as criollo breeds) have an origin in some of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). These cattle constitute a potentially important genetic reserve as they are well adapted to local environments and show considerable variation in phenotype. To examine the genetic ancestry and diversity of Colombian criollo we obtained mitochondrial DNA control region sequence information for 110 individuals from seven breeds. Old World haplogroup T3 is the most commonly observed CR lineage in criollo (0.65), in agreement with a mostly European ancestry for these cattle. However, criollo also shows considerable frequencies of haplogroups T2 (0.9) and T1 (0.26), with T1 lineages in criollo being more diverse than those reported for West Africa. The distribution and diversity of Old World lineages suggest some North African ancestry for criollo, probably as a result of the Arab occupation of Iberia prior to the European migration to the New World. The mtDNA diversity of criollo is higher than that reported for European and African cattle and is consistent with a differentiated ancestry for some criollo breeds.

  10. Patterns of Adaptive and Neutral Diversity Identify the Xiaoxiangling Mountains as a Refuge for the Giant Panda

    PubMed Central

    Wan, Qiu-Hong; Lou, Ji-Kang; Li, Wen-Jing; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-01-01

    Genetic variation plays a significant role in maintaining the evolutionary potential of a species. Comparing the patterns of adaptive and neutral diversity in extant populations is useful for understanding the local adaptations of a species. In this study, we determined the fine-scale genetic structure of 6 extant populations of the giant panda (Ailuropoda melanoleuca) using mtDNA and DNA fingerprints, and then overlaid adaptive variations in 6 functional Aime-MHC class II genes (DRA, DRB3, DQA1, DQA2, DQB1, and DQB2) on this framework. We found that: (1) analysis of the mtDNA and DNA fingerprint-based networks of the 6 populations identified the independent evolutionary histories of the 2 panda subspecies; (2) the basal (ancestral) branches of the fingerprint-based Sichuan-derived network all originated from the smallest Xiaoxiangling (XXL) population, suggesting the status of a glacial refuge in XXL; (3) the MHC variations among the tested populations showed that the XXL population exhibited extraordinary high levels of MHC diversity in allelic richness, which is consistent with the diversity characteristics of a glacial refuge; (4) the phylogenetic tree showed that the basal clades of giant panda DQB sequences were all occupied by XXL-specific sequences, providing evidence for the ancestor-resembling traits of XXL. Finally, we found that the giant panda had many more DQ alleles than DR alleles (33∶13), contrary to other mammals, and that the XXL refuge showed special characteristics in the DQB loci, with 7 DQB members of 9 XXL-unique alleles. Thus, this study identified XXL as a glacial refuge, specifically harboring the most number of primitive DQB alleles. PMID:23894623

  11. Patterns of adaptive and neutral diversity identify the Xiaoxiangling mountains as a refuge for the giant panda.

    PubMed

    Chen, Yi-Yan; Zhu, Ying; Wan, Qiu-Hong; Lou, Ji-Kang; Li, Wen-Jing; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-01-01

    Genetic variation plays a significant role in maintaining the evolutionary potential of a species. Comparing the patterns of adaptive and neutral diversity in extant populations is useful for understanding the local adaptations of a species. In this study, we determined the fine-scale genetic structure of 6 extant populations of the giant panda (Ailuropoda melanoleuca) using mtDNA and DNA fingerprints, and then overlaid adaptive variations in 6 functional Aime-MHC class II genes (DRA, DRB3, DQA1, DQA2, DQB1, and DQB2) on this framework. We found that: (1) analysis of the mtDNA and DNA fingerprint-based networks of the 6 populations identified the independent evolutionary histories of the 2 panda subspecies; (2) the basal (ancestral) branches of the fingerprint-based Sichuan-derived network all originated from the smallest Xiaoxiangling (XXL) population, suggesting the status of a glacial refuge in XXL; (3) the MHC variations among the tested populations showed that the XXL population exhibited extraordinary high levels of MHC diversity in allelic richness, which is consistent with the diversity characteristics of a glacial refuge; (4) the phylogenetic tree showed that the basal clades of giant panda DQB sequences were all occupied by XXL-specific sequences, providing evidence for the ancestor-resembling traits of XXL. Finally, we found that the giant panda had many more DQ alleles than DR alleles (33∶13), contrary to other mammals, and that the XXL refuge showed special characteristics in the DQB loci, with 7 DQB members of 9 XXL-unique alleles. Thus, this study identified XXL as a glacial refuge, specifically harboring the most number of primitive DQB alleles.

  12. Deciphering the Link between Doubly Uniparental Inheritance of mtDNA and Sex Determination in Bivalves: Clues from Comparative Transcriptomics.

    PubMed

    Capt, Charlotte; Renaut, Sébastien; Ghiselli, Fabrizio; Milani, Liliana; Johnson, Nathan A; Sietman, Bernard E; Stewart, Donald T; Breton, Sophie

    2018-02-01

    Bivalves exhibit an astonishing diversity of sexual systems and sex-determining mechanisms. They can be gonochoric, hermaphroditic or androgenetic, with both genetic and environmental factors known to determine or influence sex. One unique sex-determining system involving the mitochondrial genome has also been hypothesized to exist in bivalves with doubly uniparental inheritance (DUI) of mtDNA. However, the link between DUI and sex determination remains obscure. In this study, we performed a comparative gonad transcriptomics analysis for two DUI-possessing freshwater mussel species to better understand the mechanisms underlying sex determination and DUI in these bivalves. We used a BLAST reciprocal analysis to identify orthologs between Venustaconcha ellipsiformis and Utterbackia peninsularis and compared our results with previously published sex-specific bivalve transcriptomes to identify conserved sex-determining genes. We also compared our data with other DUI species to identify candidate genes possibly involved in the regulation of DUI. A total of ∼12,000 orthologous relationships were found, with 2,583 genes differentially expressed in both species. Among these genes, key sex-determining factors previously reported in vertebrates and in bivalves (e.g., Sry, Dmrt1, Foxl2) were identified, suggesting that some steps of the sex-determination pathway may be deeply conserved in metazoans. Our results also support the hypothesis that a modified ubiquitination mechanism could be responsible for the retention of the paternal mtDNA in male bivalves, and revealed that DNA methylation could also be involved in the regulation of DUI. Globally, our results suggest that sets of genes associated with sex determination and DUI are similar in distantly-related DUI species. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Simultaneous occurrence of the 11778 (ND4) and the 9438 (COX III) mtDNA mutations in Leber hereditary optic neuropathy: Molecular, biochemical, and clinical findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostra, R.J.; Bleeker-Wagemakers, E.M.; Zwart, R.

    1995-10-01

    Three mtDNA point mutations at nucleotide position (np) 3460, at np 11778 and at np 14484, are thought to be of primary importance in the pathogenesis of Leber hereditary optic neuropathy (LHON), a maternally inherited disease characterized by subacute central vision loss. These mutations are present in genes coding for subunits of complex I (NADH dehydrogenase) of the respiratory chain, occur exclusively in LHON maternal pedigrees, and have never been reported to occur together. Johns and Neufeld postulated that an mtDNA mutation at np 9438, in the gene coding for one of the subunits (COX III) of complex IV (cytochromemore » c oxidase), was also of primary importance. Johns and Neufeld (1993) found this mutation, which changed a conserved glycine to a serine, in 5 unrelated LHON probands who did not carry one of the presently known primary mutations, but they did not find it in 400 controls. However, the role of this sequence variant has been questioned in the Journal when it has been found to occur in apparently healthy African and Cuban individuals. Subsequently, Johns et al. described this mutation in two Cuban individuals presenting with optic and peripheral neuropathy. 22 refs., 1 fig., 1 tab.« less

  14. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex.

    PubMed

    Dzierzbicki, Piotr; Kaniak-Golik, Aneta; Malc, Ewa; Mieczkowski, Piotr; Ciesla, Zygmunt

    2012-12-01

    Oxidative stress is known to enhance the frequency of two major types of alterations in the mitochondrial genome of Saccharomyces cerevisiae: point mutations and large deletions resulting in the generation of respiration-deficient petite rhō mutants. We investigated the effect of antimycin A, a well-known agent inducing oxidative stress, on the stability of mtDNA. We show that antimycin enhances exclusively the generation of respiration-deficient petite mutants and this is accompanied by a significant increase in the level of reactive oxygen species (ROS) and in a marked drop of cellular ATP. Whole mitochondrial genome sequencing revealed that mtDNAs of antimycin-induced petite mutants are deleted for most of the wild-type sequence and usually contain one of the active origins of mtDNA replication: ori1, ori2 ori3 or ori5. We show that the frequency of antimycin-induced rhō mutants is significantly elevated in mutants deleted either for the RAD50 or XRS2 gene, both encoding the components of the MRX complex, which is known to be involved in the repair of double strand breaks (DSBs) in DNA. Furthermore, enhanced frequency of rhō mutants in cultures of antimycin-treated cells lacking Rad50 was further increased by the simultaneous absence of the Ogg1 glycosylase, an important enzyme functioning in mtBER. We demonstrate also that rad50Δ and xrs2Δ deletion mutants display a considerable reduction in the frequency of allelic mitochondrial recombination, suggesting that it is the deficiency in homologous recombination which is responsible for enhanced rearrangements of mtDNA in antimycin-treated cells of these mutants. Finally, we show that the generation of large-scale mtDNA deletions induced by antimycin is markedly decreased in a nuc1Δ mutant lacking the activity of the Nuc1 nuclease, an ortholog of the mammalian mitochondrial nucleases EndoG and ExoG. This result indicates that the nuclease plays an important role in processing of oxidative stress

  15. Fascioliasis transmission by Lymnaea neotropica confirmed by nuclear rDNA and mtDNA sequencing in Argentina.

    PubMed

    Mera y Sierra, Roberto; Artigas, Patricio; Cuervo, Pablo; Deis, Erika; Sidoti, Laura; Mas-Coma, Santiago; Bargues, Maria Dolores

    2009-12-03

    Fascioliasis is widespread in livestock in Argentina. Among activities included in a long-term initiative to ascertain which are the fascioliasis areas of most concern, studies were performed in a recreational farm, including liver fluke infection in different domestic animal species, classification of the lymnaeid vector and verification of natural transmission of fascioliasis by identification of the intramolluscan trematode larval stages found in naturally infected snails. The high prevalences in the domestic animals appeared related to only one lymnaeid species present. Lymnaeid and trematode classification was verified by means of nuclear ribosomal DNA and mitochondrial DNA marker sequencing. Complete sequences of 18S rRNA gene and rDNA ITS-2 and ITS-1, and a fragment of the mtDNA cox1 gene demonstrate that the Argentinian lymnaeid belongs to the species Lymnaea neotropica. Redial larval stages found in a L. neotropica specimen were ascribed to Fasciola hepatica after analysis of the complete ITS-1 sequence. The finding of L. neotropica is the first of this lymnaeid species not only in Argentina but also in Southern Cone countries. The total absence of nucleotide differences between the sequences of specimens from Argentina and the specimens from the Peruvian type locality at the levels of rDNA 18S, ITS-2 and ITS-1, and the only one mutation at the mtDNA cox1 gene suggest a very recent spread. The ecological characteristics of this lymnaeid, living in small, superficial water collections frequented by livestock, suggest that it may be carried from one place to another by remaining in dried mud stuck to the feet of transported animals. The presence of L. neotropica adds pronounced complexity to the transmission and epidemiology of fascioliasis in Argentina, due to the great difficulties in distinguishing, by traditional malacological methods, between the three similar lymnaeid species of the controversial Galba/Fossaria group present in this country: L. viatrix

  16. Integrated Analyses of Cuticular Hydrocarbons, Chromosome and mtDNA in the Neotropical Social Wasp Mischocyttarus consimilis Zikán (Hymenoptera, Vespidae).

    PubMed

    Cunha, D A S; Menezes, R S T; Costa, M A; Lima, S M; Andrade, L H C; Antonialli, W F

    2017-12-01

    In the present work, we explored multiple data from different biological levels such as cuticular hydrocarbons, chromosomal features, and mtDNA sequences in the Neotropical social wasp Mischocyttarus consimilis (J.F. Zikán). Particularly, we explored the genetic and chemical differentiation level within and between populations of this insect. Our dataset revealed shallow intraspecific differentiation in M. consimilis. The similarity among the analyzed samples can probably be due to the geographical proximity where the colonies were sampled, and we argue that Paraná River did not contribute effectively as a historical barrier to this wasp.

  17. An extirpated lineage of a threatened frog species resurfaces in southern California

    USGS Publications Warehouse

    Backlin, Adam R.; Richmond, Jonathan Q.; Gallegos, Elizabeth; Christensen, Clinton K.; Fisher, Robert N.

    2017-01-01

    Southern California has experienced widespread amphibian declines since the 1960s. One species, the Vulnerable California red-legged frog Rana draytonii, is now considered to be extirpated from most of southern California. In February 2017 a population of R. draytonii was discovered in the southern foothills of the San Bernardino Mountains of Riverside County, California, near the edge of the species’ historical distribution. This population belongs to an mtDNA lineage that was presumed to be extirpated within the USA but is still extant in Baja California, Mexico. This discovery increases the potential for future, evolutionarily informed translocations within the southern portion of this species’ range in California.

  18. Work-Family Boundary Strategies: Stability and Alignment between Preferred and Enacted Boundaries

    ERIC Educational Resources Information Center

    Ammons, Samantha K.

    2013-01-01

    Are individuals bounding work and family the way they would like? Much of the work-family boundary literature focuses on whether employees are segmenting or integrating work with family, but does not explore the boundaries workers would like to have, nor does it examine the fit between desired and enacted boundaries, or assess boundary stability.…

  19. Genetic mosaic in a marine species flock.

    PubMed

    McCartney, Michael A; Acevedo, Jenny; Heredia, Christine; Rico, Ciro; Quenoville, Brice; Bermingham, Eldredge; McMillan, W Owen

    2003-11-01

    We used molecular approaches to study the status of speciation in coral reef fishes known as hamlets (Serranidae: Hypoplectrus). Several hamlet morphospecies coexist on Caribbean reefs, and mate assortatively with respect to their strikingly distinct colour patterns. We provide evidence that, genetically, the hamlets display characteristics common in species flocks on land and in freshwaters. Substitutions within two mitochondrial DNA (mtDNA) protein-coding genes place hamlets within a monophyletic group relative to members of two related genera (Serranus and Diplectrum), and establish that the hamlet radiation must have been very recent. mtDNA distances separating hamlet morphospecies were slight (0.6 +/- 0.04%), yielding a coalescent estimate for the age of the hamlet flock of approximately 430 000 years. Morphospecies did not sort into distinct mtDNA haplotype phylogroups, and alleles at five hypervariable microsatellite loci were shared broadly across species boundaries. None the less, molecular variation was not distributed at random. Analyses of mtDNA haplotype frequencies and nested clades in haplotype networks revealed significant genetic differences between geographical regions and among colour morphospecies. We also observed significant microsatellite differentiation between geographical regions and in Puerto Rico, among colour morphospecies; the latter providing evidence for reproductive isolation between colour morphospecies at this locale. In our Panama collection, however, colour morphospecies were mostly genetically indistinguishable. This mosaic pattern of DNA differentiation implies a complex interaction between population history, mating behaviour and geography and suggests that porous boundaries separate species in this flock of brilliantly coloured coral reef fishes.

  20. Transcriptional requirements of the distal heavy-strand promoter of mtDNA

    PubMed Central

    Zollo, Ornella; Tiranti, Valeria; Sondheimer, Neal

    2012-01-01

    The heavy strand of mtDNA contains two promoters with nonoverlapping functions. The role of the minor heavy-strand promoter (HSP2) is controversial, because the promoter has been difficult to activate in an in vitro system. We have isolated HSP2 by excluding its interaction with the more powerful HSP1 promoter, and we find that it is transcribed efficiently by recombinant mtRNA polymerase and mitochondrial transcription factor B2. The mitochondrial transcription factor A is not required for initiation, but it has the ability to alternatively activate and repress the HSP2 transcriptional unit depending on the ratio between mitochondrial transcription factor A and other transcription factors. The positioning of transcriptional initiation agrees with our current understanding of HSP2 activity in vivo. Serial deletion of HSP2 shows that only proximal sequences are required. Several mutations, including the disruption of a polycytosine track upstream of the HSP2 initiation site, influence transcriptional activity. Transcription from HSP2 is also observed when HeLa cell mitochondrial extract is used as the source of mitochondrial polymerase, and this transcription is maintained when HSP2 is provided in proper spacing and context to the HSP1 promoter. Studies of the linked heavy-strand promoters show that they are differentially regulated by ATP dosage. We conclude that HSP2 is transcribed and has features that allow it to regulate mitochondrial mRNA synthesis. PMID:22454497

  1. Novel 5.712 kb mitochondrial DNA deletion in a patient with Pearson syndrome: a case report.

    PubMed

    Park, Joonhong; Ryu, Hyejin; Jang, Woori; Chae, Hyojin; Kim, Myungshin; Kim, Yonggoo; Kim, Jiyeon; Lee, Jae Wook; Chung, Nack-Gyun; Cho, Bin; Suh, Byung Kyu

    2015-05-01

    Pearson marrow‑pancreas syndrome (PS) is a progressive multi‑organ disorder caused by deletions and duplications of mitochondrial DNA (mtDNA). PS is often fatal in infancy, and the majority of patients with PS succumb to the disease before reaching three‑years‑of‑age, due to septicemia, metabolic acidosis or hepatocellular insufficiency. The present report describes the case of a four‑month‑old infant with severe normocytic normochromic anemia, vacuolization of hematopoietic precursors and metabolic acidosis. After extensive clinical investigation, the patient was diagnosed with PS, which was confirmed by molecular analysis of mtDNA. The molecular analysis detected a novel large‑scale (5.712 kb) deletion spanning nucleotides 8,011 to 13,722 of mtDNA, which lacked direct repeats at the deletion boundaries. The present report is, to the best of our knowledge, the first case reported in South Korea.

  2. The turbulent plasmasphere boundary layer and the outer radiation belt boundary

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny; Sotnikov, Vladimir

    2017-12-01

    We report on observations of enhanced plasma turbulence and hot particle distributions in the plasmasphere boundary layer formed by reconnection-injected hot plasma jets entering the plasmasphere. The data confirm that the electron pressure peak is formed just outward of the plasmapause in the premidnight sector. Free energy for plasma wave excitation comes from diamagnetic ion currents near the inner edge of the boundary layer due to the ion pressure gradient, electron diamagnetic currents in the entry layer near the electron plasma sheet boundary, and anisotropic (sometimes ring-like) ion distributions revealed inside, and further inward of, the inner boundary. We also show that nonlinear parametric coupling between lower oblique resonance and fast magnetosonic waves significantly contributes to the VLF whistler wave spectrum in the plasmasphere boundary layer. These emissions represent a distinctive subset of substorm/storm-related VLF activity in the region devoid of substorm injected tens keV electrons and could be responsible for the alteration of the outer radiation belt boundary during (sub)storms.

  3. Investigating the prehistory of Tungusic peoples of Siberia and the Amur-Ussuri region with complete mtDNA genome sequences and Y-chromosomal markers.

    PubMed

    Duggan, Ana T; Whitten, Mark; Wiebe, Victor; Crawford, Michael; Butthof, Anne; Spitsyn, Victor; Makarov, Sergey; Novgorodov, Innokentiy; Osakovsky, Vladimir; Pakendorf, Brigitte

    2013-01-01

    Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north.

  4. Early Holocenic and Historic mtDNA African Signatures in the Iberian Peninsula: The Andalusian Region as a Paradigm

    PubMed Central

    Hernández, Candela L.; Soares, Pedro; Dugoujon, Jean M.; Novelletto, Andrea; Rodríguez, Juan N.; Rito, Teresa; Oliveira, Marisa; Melhaoui, Mohammed; Baali, Abdellatif; Pereira, Luisa; Calderón, Rosario

    2015-01-01

    Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of “migratory routes” in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians—from Huelva and Granada provinces—and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia. PMID:26509580

  5. Estimating thumb-index finger precision grip and manipulation potential in extant and fossil primates.

    PubMed

    Feix, Thomas; Kivell, Tracy L; Pouydebat, Emmanuelle; Dollar, Aaron M

    2015-05-06

    Primates, and particularly humans, are characterized by superior manual dexterity compared with other mammals. However, drawing the biomechanical link between hand morphology/behaviour and functional capabilities in non-human primates and fossil taxa has been challenging. We present a kinematic model of thumb-index precision grip and manipulative movement based on bony hand morphology in a broad sample of extant primates and fossil hominins. The model reveals that both joint mobility and digit proportions (scaled to hand size) are critical for determining precision grip and manipulation potential, but that having either a long thumb or great joint mobility alone does not necessarily yield high precision manipulation. The results suggest even the oldest available fossil hominins may have shared comparable precision grip manipulation with modern humans. In particular, the predicted human-like precision manipulation of Australopithecus afarensis, approximately one million years before the first stone tools, supports controversial archaeological evidence of tool-use in this taxon. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. A tool for determining duration of mortality events in archaeological assemblages using extant ungulate microwear

    PubMed Central

    Rivals, Florent; Prignano, Luce; Semprebon, Gina M.; Lozano, Sergi

    2015-01-01

    The seasonality of human occupations in archaeological sites is highly significant for the study of hominin behavioural ecology, in particular the hunting strategies for their main prey-ungulates. We propose a new tool to quantify such seasonality from tooth microwear patterns in a dataset of ten large samples of extant ungulates resulting from well-known mass mortality events. The tool is based on the combination of two measures of variability of scratch density, namely standard deviation and coefficient of variation. The integration of these two measurements of variability permits the classification of each case into one of the following three categories: (1) short events, (2) long-continued event and (3) two separated short events. The tool is tested on a selection of eleven fossil samples from five Palaeolithic localities in Western Europe which show a consistent classification in the three categories. The tool proposed here opens new doors to investigate seasonal patterns of ungulate accumulations in archaeological sites using non-destructive sampling. PMID:26616864

  7. Comparability of multiple data types from the Bering Strait region: cranial and dental metrics and nonmetrics, mtDNA, and Y-chromosome DNA.

    PubMed

    Herrera, Brianne; Hanihara, Tsunehiko; Godde, Kanya

    2014-07-01

    Different data types have previously been shown to have the same microevolutionary patterns in worldwide data sets. However, peopling of the New World studies have shown a difference in migration paths and timings using multiple types of data, spurring research to understand why this is the case. This study was designed to test the degree of similarity in evolutionary patterns by using cranial and dental metric and nonmetric data, along with Y-chromosome DNA and mtDNA. The populations used included Inuits from Alaska, Canada, Siberia, Greenland, and the Aleutian Islands. For comparability, the populations used for the cranial and molecular data were from similar geographic regions or had a shared population history. Distance, R and kinship matrices were generated for use in running Mantel tests, PROTEST analyses, and Procrustes analyses. A clear patterning was seen, with the craniometric data being most highly correlated to the mtDNA data and the cranial nonmetric data being most highly correlated with the Y-chromosome data, while the phenotypic data were also linked. This patterning is suggestive of a possible male or female inheritance, or the correlated data types are affected by the same or similar evolutionary forces. The results of this study indicate cranial traits have some degree of heritability. Moreover, combining data types leads to a richer knowledge of biological affinity. This understanding is important for bioarchaeological contexts, in particular, peopling of the New World studies where focusing on reconciling the results from comparing multiple data types is necessary to move forward. © 2014 Wiley Periodicals, Inc.

  8. Boundary Avoidance Tracking: Consequences (and Uses) of Imposed Boundaries on Pilot-Aircraft Performance

    DTIC Science & Technology

    2009-03-01

    BOUNDARY AVOIDANCE TRACKING: CONSEQUENCES (AND USES) OF IMPOSED BOUNDARIES ON PILOT-AIRCRAFT...States Government. AFIT/GAE/ENY/09-M03 BOUNDARY AVOIDANCE TRACKING: CONSEQUENCES (AND USES) OF IMPOSED BOUNDARIES ON PILOT-AIRCRAFT PERFORMANCE...Case 2 (Gray, 2005) ....................................... 20 Figure 8. Effect of BAT Parameters on Tracking Success (Gray, 2005

  9. Genetic Divergence of an Avian Endemic on the Californian Channel Islands

    PubMed Central

    Wilson, Amy G.; Chan, Yvonne; Taylor, Sabrina S.; Arcese, Peter

    2015-01-01

    The Californian Channel Islands are near–shore islands with high levels of endemism, but extensive habitat loss has contributed to the decline or extinction of several endemic taxa. A key parameter for understanding patterns of endemism and demography in island populations is the magnitude of inter–island dispersal. This paper estimates the extent of migration and genetic differentiation in three extant and two extinct populations of Channel Island song sparrows (Melospiza melodia graminea). Inter–island differentiation was substantial (G''ST: 0.14–0.37), with San Miguel Island having the highest genetic divergence and lowest migration rates. Santa Rosa and Santa Cruz Island populations were less diverged with higher migration rates. Genetic signals of past population declines were detected in all of the extant populations. The Channel Island populations were significantly diverged from mainland populations of M. m. heermanni (G''ST: 0.30–0.64). Ten mtDNA haplotypes were recovered across the extant and extinct Channel Island population samples. Two of the ten haplotypes were shared between the Northern and Southern Channel Islands, with one of these haplotypes being detected on the Californian mainland. Our results suggest that there is little contemporary migration between islands, consistent with early explanations of avian biogeography in the Channel Islands, and that song sparrow populations on the northern Channel Islands are demographically independent. PMID:26308717

  10. Ancient and recent Middle Eastern maternal genetic contribution to North Africa as viewed by mtDNA diversity in Tunisian Arab populations.

    PubMed

    Elkamel, Sarra; Boussetta, Sami; Khodjet-El-Khil, Houssein; Benammar Elgaaied, Amel; Cherni, Lotfi

    2018-05-01

    Through previous mitochondrial DNA studies, the Middle Eastern maternal genetic contribution to Tunisian populations appears limited. In fact, most of the studied communities were cosmopolitan, or of Berber or Andalusian origin. To provide genetic evidence for the actual contribution of Middle Eastern mtDNA lineages to Tunisia, we focused on two Arab speaking populations from Kairouan and Wesletia known to belong to an Arab genealogical lineage. A total of 114 samples were sequenced for the mtDNA HVS-I and HVS-II regions. Using these data, we evaluated the distribution of Middle Eastern haplogroups in the study populations, constructed interpolation maps, and established phylogenetic networks allowing estimation of the coalescence time for three specific Middle Eastern subclades (R0a, J1b, and T1). Both studied populations displayed North African genetic structure and Middle Eastern lineages with a frequency of 12% and 28.12% in Kairouan and Wesletia, respectively. TMRCA estimates for haplogroups T1a, R0a, and J1b in Tunisian Arabian samples were around 15 000 YBP, 9000 to 5000 YBP, and 960 to 600 YBP, respectively. The Middle Eastern maternal genetic contribution to Tunisian populations, as to other North African populations, occurred mostly in deep prehistory. They were brought in different migration waves during the Upper Paleolithic, probably with the expansion of Iberomaurusian culture, and during Epipaleolithic and Early Neolithic periods, which are concomitant with the Capsian civilization. Middle Eastern lineages also came to Tunisia during the recent Islamic expansion of the 7th CE and the subsequent massive Bedouin migration during the 11th CE. © 2018 Wiley Periodicals, Inc.

  11. Genetic variations of ND5 gene of mtDNA in populations of Anopheles sinensis (Diptera: Culicidae) malaria vector in China

    PubMed Central

    2013-01-01

    Background Anopheles sinensis is a principal vector for Plasmodium vivax malaria in most parts of China. Understanding of genetic structure and genetic differentiation of the mosquito should contribute to the vector control and malaria elimination in China. Methods The present study investigated the genetic structure of An. sinensis populations using a 729 bp fragment of mtDNA ND5 among 10 populations collected from seven provinces in China. Results ND5 was polymorphic by single mutations within three groups of An. sinensis that were collected from 10 different geographic populations in China. Out of 140 specimens collected from 10 representative sites, 84 haplotypes and 71 variable positions were determined. The overall level of genetic differentiation of An. sinensis varied from low to moderate across China and with a FST range of 0.00065 – 0.341. Genealogy analysis clustered the populations of An. sinensis into three main clusters. Each cluster shared one main haplotype. Pairwise variations within populations were higher (68.68%) than among populations (31.32%) and with high fixation index (FST = 0.313). The results of the present study support population growth and expansion in the An. sinensis populations from China. Three clusters of An. sinensis populations were detected in this study with each displaying different proportion patterns over seven Chinese provinces. No correlation between genetic and geographic distance was detected in overall populations of An. sinensis (R2 = 0.058; P = 0.301). Conclusions The results indicate that the ND5 gene of mtDNA is highly polymorphic in An. sinensis and has moderate genetic variability in the populations of this mosquito in China. Demographic and spatial results support evidence of expansion in An. sinensis populations. PMID:24192424

  12. Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus.

    PubMed

    Hoarau, G; Coyer, J A; Veldsink, J H; Stam, W T; Olsen, J L

    2007-09-01

    The last glacial maximum (20,000-18,000 years ago) dramatically affected extant distributions of virtually all northern European biota. Locations of refugia and postglacial recolonization pathways were examined in Fucus serratus (Heterokontophyta; Fucaceae) using a highly variable intergenic spacer developed from the complete mitochondrial genome of Fucus vesiculosus. Over 1,500 samples from the entire range of F. serratus were analysed using fluorescent single strand conformation polymorphism. A total of 28 mtDNA haplotypes was identified and sequenced. Three refugia were recognized based on high haplotype diversities and the presence of endemic haplotypes: southwest Ireland, the northern Brittany-Hurd Deep area of the English Channel, and the northwest Iberian Peninsula. The Irish refugium was the source for a recolonization sweep involving a single haplotype via northern Scotland and throughout Scandinavia, whereas recolonization from the Brittany-Hurd Deep refugium was more limited, probably because of unsuitable soft-bottom habitat in the Bay of Biscay and along the Belgian and Dutch coasts. The Iberian populations reflect a remnant refugium at the present-day southern boundary of the species range. A generalized skyline plot suggested exponential population expansion beginning in the mid-Pleistocene with maximal growth during the Eems interglacial 128,000-67,000 years ago, implying that the last glacial maximum mainly shaped population distributions rather than demography.

  13. Fetal and neo-natal maxillary ontogeny in extant humans and the utility of prenatal maxillary morphology in predicting ancestral affiliation

    PubMed Central

    Nicholas, Christina L.

    2016-01-01

    Objectives The midface of extant H. sapiens is known to undergo shape changes through fetal and neo-natal ontogeny; however, little work has been done to quantify these shape changes. Further, while midfacial traits which vary in frequency between populations of extant humans are presumed to develop prenatally, patterns of population-specific variation maxillary shape across ontogeny are not well documented. Only one study of fetal ontogeny which included specific discussion of the midface has taken a 3D geometric morphometric approach, and that study was limited to one population (Japanese). The present research project seeks to augment our understanding of fetal maxillary growth patterns, most especially in terms of intraspecific variation. Materials and Methods Three-dimensional coordinate landmark data were collected on the right maxillae of 102 fetal and neo-natal individuals from three groups (Euro-American, African-American, “Mixed Ancestry”). Results Shape changes were seen mainly in the lateral wall of the piriform aperture, the anterior nasal spine, and the subnasal alveolar region. The greatest difference across age groups (2nd Trimester, 3rd Trimester, Neonates) was between the second and third trimester. Euro-Americans and African-Americans clustered by population and differences in midfacial morphology related to ancestry could be discerned as early as the second trimester (p=0.002), indicating that population variation in maxillary morphology appears very early in ontogeny. Discussion The midface is a critical region of the skull for assessing ancestry and these results indicate that maxillary morphology may be useful for estimating ancestry for prenatal individuals as young as the second trimester. PMID:27412693

  14. The Distant Siblings-A Phylogenomic Roadmap Illuminates the Origins of Extant Diversity in Fungal Aromatic Polyketide Biosynthesis.

    PubMed

    Koczyk, Grzegorz; Dawidziuk, Adam; Popiel, Delfina

    2015-11-03

    In recent years, the influx of newly sequenced fungal genomes has enabled sampling of secondary metabolite biosynthesis on an unprecedented scale. However, explanations of extant diversity which take into account both large-scale phylogeny reconstructions and knowledge gained from multiple genome projects are still lacking. We analyzed the evolutionary sources of genetic diversity in aromatic polyketide biosynthesis in over 100 model fungal genomes. By reconciling the history of over 400 nonreducing polyketide synthases (NR-PKSs) with corresponding species history, we demonstrate that extant fungal NR-PKSs are clades of distant siblings, originating from a burst of duplications in early Pezizomycotina and thinned by extensive losses. The capability of higher fungi to biosynthesize the simplest precursor molecule (orsellinic acid) is highlighted as an ancestral trait underlying biosynthesis of aromatic compounds. This base activity was modified during early evolution of filamentous fungi, toward divergent reaction schemes associated with biosynthesis of, for example, aflatoxins and fusarubins (C4-C9 cyclization) or various anthraquinone derivatives (C6-C11 cyclization). The functional plasticity is further shown to have been supplemented by modularization of domain architecture into discrete pieces (conserved splice junctions within product template domain), as well as tight linkage of key accessory enzyme families and divergence in employed transcriptional factors. Although the majority of discord between species and gene history is explained by ancient duplications, this landscape has been altered by more recent duplications, as well as multiple horizontal gene transfers. The 25 detected transfers include previously undescribed events leading to emergence of, for example, fusarubin biosynthesis in Fusarium genus. Both the underlying data and the results of present analysis (including alternative scenarios revealed by sampling multiple reconciliation optima) are

  15. The Western and Eastern Roots of the Saami—the Story of Genetic “Outliers” Told by Mitochondrial DNA and Y Chromosomes

    PubMed Central

    Tambets, Kristiina; Rootsi, Siiri; Kivisild, Toomas; Help, Hela; Serk, Piia; Loogväli, Eva-Liis; Tolk, Helle-Viivi; Reidla, Maere; Metspalu, Ene; Pliss, Liana; Balanovsky, Oleg; Pshenichnov, Andrey; Balanovska, Elena; Gubina, Marina; Zhadanov, Sergey; Osipova, Ludmila; Damba, Larisa; Voevoda, Mikhail; Kutuev, Ildus; Bermisheva, Marina; Khusnutdinova, Elza; Gusar, Vladislava; Grechanina, Elena; Parik, Jüri; Pennarun, Erwan; Richard, Christelle; Chaventre, Andre; Moisan, Jean-Paul; Barać, Lovorka; Peričić, Marijana; Rudan, Pavao; Terzić, Rifat; Mikerezi, Ilia; Krumina, Astrida; Baumanis, Viesturs; Koziel, Slawomir; Rickards, Olga; De Stefano, Gian Franco; Anagnou, Nicholas; Pappa, Kalliopi I.; Michalodimitrakis, Emmanuel; Ferák, Vladimir; Füredi, Sandor; Komel, Radovan; Beckman, Lars; Villems, Richard

    2004-01-01

    The Saami are regarded as extreme genetic outliers among European populations. In this study, a high-resolution phylogenetic analysis of Saami genetic heritage was undertaken in a comprehensive context, through use of maternally inherited mitochondrial DNA (mtDNA) and paternally inherited Y-chromosomal variation. DNA variants present in the Saami were compared with those found in Europe and Siberia, through use of both new and previously published data from 445 Saami and 17,096 western Eurasian and Siberian mtDNA samples, as well as 127 Saami and 2,840 western Eurasian and Siberian Y-chromosome samples. It was shown that the “Saami motif” variant of mtDNA haplogroup U5b is present in a large area outside Scandinavia. A detailed phylogeographic analysis of one of the predominant Saami mtDNA haplogroups, U5b1b, which also includes the lineages of the “Saami motif,” was undertaken in 31 populations. The results indicate that the origin of U5b1b, as for the other predominant Saami haplogroup, V, is most likely in western, rather than eastern, Europe. Furthermore, an additional haplogroup (H1) spread among the Saami was virtually absent in 781 Samoyed and Ob-Ugric Siberians but was present in western and central European populations. The Y-chromosomal variety in the Saami is also consistent with their European ancestry. It suggests that the large genetic separation of the Saami from other Europeans is best explained by assuming that the Saami are descendants of a narrow, distinctive subset of Europeans. In particular, no evidence of a significant directional gene flow from extant aboriginal Siberian populations into the haploid gene pools of the Saami was found. PMID:15024688

  16. Boundary holographic Witten diagrams

    DOE PAGES

    Karch, Andreas; Sato, Yoshiki

    2017-09-25

    In this paper we discuss geodesic Witten diagrams in generic holographic conformal field theories with boundary or defect. Boundary CFTs allow two different de-compositions of two-point functions into conformal blocks: boundary channel and ambient channel. Building on earlier work, we derive a holographic dual of the boundary channel decomposition in terms of bulk-to-bulk propagators on lower dimensional AdS slices. In the situation in which we can treat the boundary or defect as a perturbation around pure AdS spacetime, we obtain the leading corrections to the two-point function both in boundary and ambient channel in terms of geodesic Witten diagrams whichmore » exactly reproduce the decomposition into corresponding conformal blocks on the field theory side.« less

  17. Sequence-length variation of mtDNA HVS-I C-stretch in Chinese ethnic groups.

    PubMed

    Chen, Feng; Dang, Yong-hui; Yan, Chun-xia; Liu, Yan-ling; Deng, Ya-jun; Fulton, David J R; Chen, Teng

    2009-10-01

    The purpose of this study was to investigate mitochondrial DNA (mtDNA) hypervariable segment-I (HVS-I) C-stretch variations and explore the significance of these variations in forensic and population genetics studies. The C-stretch sequence variation was studied in 919 unrelated individuals from 8 Chinese ethnic groups using both direct and clone sequencing approaches. Thirty eight C-stretch haplotypes were identified, and some novel and population specific haplotypes were also detected. The C-stretch genetic diversity (GD) values were relatively high, and probability (P) values were low. Additionally, C-stretch length heteroplasmy was observed in approximately 9% of individuals studied. There was a significant correlation (r=-0.961, P<0.01) between the expansion of the cytosine sequence length in the C-stretch of HVS-I and a reduction in the number of upstream adenines. These results indicate that the C-stretch could be a useful genetic maker in forensic identification of Chinese populations. The results from the Fst and dA genetic distance matrix, neighbor-joining tree, and principal component map also suggest that C-stretch could be used as a reliable genetic marker in population genetics.

  18. Species boundaries, phylogeography, and conservation genetics of the red-legged frog (Rana aurora/draytonii) complex

    USGS Publications Warehouse

    Shaffer, H. Bradley; Fellers, Gary M.; Voss, S. Randal; Oliver, J. C.; Pauly, Gregory B.

    2004-01-01

    The red-legged frog, Rana aurora, has been recognized as both a single, polytypic species and as two distinct species since its original description 150 years ago. It is currently recognized as one species with two geographically contiguous subspecies, aurora and draytonii; the latter is protected under the US Endangered Species Act. We present the results of a survey of 50 populations of red-legged frogs from across their range plus four outgroup species for variation in a phylogenetically informative, ∼400 base pairs (bp) fragment of the mitochondrial cytochromeb gene. Our mtDNA analysis points to several major results. (1) In accord with several other lines of independent evidence, aurora and draytonii are each diagnosably distinct, evolutionary lineages; the mtDNA data indicate that they do not constitute a monophyletic group, but rather that aurora and R. cascadae from the Pacific northwest are sister taxa; (2) the range of thedraytonii mtDNA clade extends about 100 km further north in coastal California than was previously suspected, and corresponds closely with the range limits or phylogeographical breaks of several codistributed taxa; (3) a narrow zone of overlap exists in southern Mendocino County between aurora and draytonii haplotypes, rather than a broad intergradation zone; and (4) the critically endangered population of draytonii in Riverside County, CA forms a distinct clade with frogs from Baja California, Mexico. The currently available evidence favours recognition of auroraand draytonii as separate species with a narrow zone of overlap in northern California.

  19. Molecular phylogeny of grey mullets (Teleostei: Mugilidae) in Greece: evidence from sequence analysis of mtDNA segments.

    PubMed

    Papasotiropoulos, Vasilis; Klossa-Kilia, Elena; Alahiotis, Stamatis N; Kilias, George

    2007-08-01

    Mitochondrial DNA sequence analysis has been used to explore genetic differentiation and phylogenetic relationships among five species of the Mugilidae family, Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens. DNA was isolated from samples originating from the Messolongi Lagoon in Greece. Three mtDNA segments (12s rRNA, 16s rRNA, and CO I) were PCR amplified and sequenced. Sequencing analysis revealed that the greatest genetic differentiation was observed between M. cephalus and all the other species studied, while C. labrosus and L. aurata were the closest taxa. Dendrograms obtained by the neighbor-joining method and Bayesian inference analysis exhibited the same topology. According to this topology, M. cephalus is the most distinct species and the remaining taxa are clustered together, with C. labrosus and L. aurata forming a single group. The latter result brings into question the monophyletic origin of the genus Liza.

  20. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries.

    PubMed

    Gong, Yixiao; Lazaris, Charalampos; Sakellaropoulos, Theodore; Lozano, Aurelie; Kambadur, Prabhanjan; Ntziachristos, Panagiotis; Aifantis, Iannis; Tsirigos, Aristotelis

    2018-02-07

    The metazoan genome is compartmentalized in areas of highly interacting chromatin known as topologically associating domains (TADs). TADs are demarcated by boundaries mostly conserved across cell types and even across species. However, a genome-wide characterization of TAD boundary strength in mammals is still lacking. In this study, we first use fused two-dimensional lasso as a machine learning method to improve Hi-C contact matrix reproducibility, and, subsequently, we categorize TAD boundaries based on their insulation score. We demonstrate that higher TAD boundary insulation scores are associated with elevated CTCF levels and that they may differ across cell types. Intriguingly, we observe that super-enhancers are preferentially insulated by strong boundaries. Furthermore, we demonstrate that strong TAD boundaries and super-enhancer elements are frequently co-duplicated in cancer patients. Taken together, our findings suggest that super-enhancers insulated by strong TAD boundaries may be exploited, as a functional unit, by cancer cells to promote oncogenesis.

  1. Investigating the Prehistory of Tungusic Peoples of Siberia and the Amur-Ussuri Region with Complete mtDNA Genome Sequences and Y-chromosomal Markers

    PubMed Central

    Duggan, Ana T.; Whitten, Mark; Wiebe, Victor; Crawford, Michael; Butthof, Anne; Spitsyn, Victor; Makarov, Sergey; Novgorodov, Innokentiy; Osakovsky, Vladimir; Pakendorf, Brigitte

    2013-01-01

    Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north. PMID:24349531

  2. Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant vertebrates

    PubMed Central

    Anné, Jennifer; Edwards, Nicholas P.; Wogelius, Roy A.; Tumarkin-Deratzian, Allison R.; Sellers, William I.; van Veelen, Arjen; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; Egerton, Victoria M.; Manning, Phillip L.

    2014-01-01

    Current understanding of bone healing and remodelling strategies in vertebrates has traditionally relied on morphological observations through the histological analysis of thin sections. However, chemical analysis may also be used in such interpretations, as different elements are known to be absorbed and used by bone for different physiological purposes such as growth and healing. These chemical signatures are beyond the detection limit of most laboratory-based analytical techniques (e.g. scanning electron microscopy). However, synchrotron rapid scanning–X-ray fluorescence (SRS–XRF) is an elemental mapping technique that uniquely combines high sensitivity (ppm), excellent sample resolution (20–100 µm) and the ability to scan large specimens (decimetre scale) approximately 3000 times faster than other mapping techniques. Here, we use SRS–XRF combined with microfocus elemental mapping (2–20 µm) to determine the distribution and concentration of trace elements within pathological and normal bone of both extant and extinct archosaurs (Cathartes aura and Allosaurus fragilis). Results reveal discrete chemical inventories within different bone tissue types and preservation modes. Chemical inventories also revealed detail of histological features not observable in thin section, including fine structures within the interface between pathological and normal bone as well as woven texture within pathological tissue. PMID:24806709

  3. Making Boundaries Great Again: Essentialism and Support for Boundary-Enhancing Initiatives.

    PubMed

    Roberts, Steven O; Ho, Arnold K; Rhodes, Marjorie; Gelman, Susan A

    2017-12-01

    Psychological essentialism entails a focus on category boundaries (e.g., categorizing people as men or women) and an increase in the conceptual distance between those boundaries (e.g., accentuating the differences between men and women). Across eight studies, we demonstrate that essentialism additionally entails an increase in support for boundary-enhancing legislation, policies, and social services, and that it does so under conditions that disadvantage social groups, as well as conditions that benefit them. First, individual differences in essentialism were associated with support for legislation mandating that transgender people use restrooms corresponding with their biological sex, and with support for the boundary-enhancing policies of the 2016 then-presumptive Republican presidential nominee (i.e., Donald Trump). Second, essentialism was associated with support for same-gender classrooms designed to promote student learning, as well as support for services designed to benefit LGBTQ (lesbian, gay, bisexual, transgender, queer) individuals. These findings demonstrate the boundary-enhancing implications of essentialism and their social significance.

  4. Psychodynamic Perspective on Therapeutic Boundaries

    PubMed Central

    Bridges, Nancy A.

    1999-01-01

    Discussion of boundaries in therapeutic work most often focuses on boundary maintenance, risk management factors, and boundary violations. The psychodynamic meaning and clinical management of boundaries in therapeutic relationships remains a neglected area of discourse. Clinical vignettes will illustrate a psychodynamic, developmental-relational perspective using boundary dilemmas to deepen and advance the therapeutic process. This article contributes to the dialogue about the process of making meaning and constructing therapeutically useful and creative boundaries that further the psychotherapeutic process. PMID:10523432

  5. Variation in center of mass estimates for extant sauropsids and its importance for reconstructing inertial properties of extinct archosaurs.

    PubMed

    Allen, Vivian; Paxton, Heather; Hutchinson, John R

    2009-09-01

    Inertial properties of animal bodies and segments are critical input parameters for biomechanical analysis of standing and moving, and thus are important for paleobiological inquiries into the broader behaviors, ecology and evolution of extinct taxa such as dinosaurs. But how accurately can these be estimated? Computational modeling was used to estimate the inertial properties including mass, density, and center of mass (COM) for extant crocodiles (adult and juvenile Crocodylus johnstoni) and birds (Gallus gallus; junglefowl and broiler chickens), to identify the chief sources of variation and methodological errors, and their significance. High-resolution computed tomography scans were segmented into 3D objects and imported into inertial property estimation software that allowed for the examination of variable body segment densities (e.g., air spaces such as lungs, and deformable body outlines). Considerable biological variation of inertial properties was found within groups due to ontogenetic changes as well as evolutionary changes between chicken groups. COM positions shift in variable directions during ontogeny in different groups. Our method was repeatable and the resolution was sufficient for accurate estimations of mass and density in particular. However, we also found considerable potential methodological errors for COM related to (1) assumed body segment orientation, (2) what frames of reference are used to normalize COM for size-independent comparisons among animals, and (3) assumptions about tail shape. Methods and assumptions are suggested to minimize these errors in the future and thereby improve estimation of inertial properties for extant and extinct animals. In the best cases, 10%-15% errors in these estimates are unavoidable, but particularly for extinct taxa errors closer to 50% should be expected, and therefore, cautiously investigated. Nonetheless in the best cases these methods allow rigorous estimation of inertial properties. (c) 2009 Wiley

  6. The Boundary Function Method. Fundamentals

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2017-03-01

    The boundary function method is proposed for solving applied problems of mathematical physics in the region defined by a partial differential equation of the general form involving constant or variable coefficients with a Dirichlet, Neumann, or Robin boundary condition. In this method, the desired function is defined by a power polynomial, and a boundary function represented in the form of the desired function or its derivative at one of the boundary points is introduced. Different sequences of boundary equations have been set up with the use of differential operators. Systems of linear algebraic equations constructed on the basis of these sequences allow one to determine the coefficients of a power polynomial. Constitutive equations have been derived for initial boundary-value problems of all the main types. With these equations, an initial boundary-value problem is transformed into the Cauchy problem for the boundary function. The determination of the boundary function by its derivative with respect to the time coordinate completes the solution of the problem.

  7. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  8. The limits of boundaries: unpacking localization and cognitive mapping relative to a boundary.

    PubMed

    Zhou, Ruojing; Mou, Weimin

    2018-05-01

    Previous research (Zhou, Mou, Journal of Experimental Psychology: Learning, Memory and Cognition 42(8):1316-1323, 2016) showed that learning individual locations relative to a single landmark, compared to learning relative to a boundary, led to more accurate inferences of inter-object spatial relations (cognitive mapping of multiple locations). Following our past findings, the current study investigated whether the larger number of reference points provided by a homogeneous circular boundary, as well as less accessible knowledge of direct spatial relations among the multiple reference points, would lead to less effective cognitive mapping relative to the boundary. Accordingly, we manipulated (a) the number of primary reference points (one segment drawn from a circular boundary, four such segments, vs. the complete boundary) available when participants were localizing four objects sequentially (Experiment 1) and (b) the extendedness of each of the four segments (Experiment 2). The results showed that cognitive mapping was the least accurate in the whole boundary condition. However, expanding each of the four segments did not affect the accuracy of cognitive mapping until the four were connected to form a continuous boundary. These findings indicate that when encoding locations relative to a homogeneous boundary, participants segmented the boundary into differentiated pieces and subsequently chose the most informative local part (i.e., the segment closest in distance to one location) as the primary reference point for a particular location. During this process, direct spatial relations among the reference points were likely not attended to. These findings suggest that people might encode and represent bounded space in a fragmented fashion when localizing within a homogeneous boundary.

  9. Smoothed Particle Hydrodynamics Continuous Boundary Force method for Navier-Stokes equations subject to Robin boundary condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenxiao; Bao, Jie; Tartakovsky, Alexandre M.

    2014-02-15

    Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel Continuous Boundary Force (CBF) method is proposed for solving the Navier-Stokes equations subject to Robin boundary condition. In the CBF method, the Robin boundary condition at boundary is replaced by the homogeneous Neumann boundary condition at the boundary and a volumetric force term added to the momentum conservation equation. Smoothed Particle Hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two-dimensional and three-dimensional flows in domains bounded by flat and curved boundaries subject to variousmore » forms of the Robin boundary condition. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite element method. Taken the no-slip boundary condition as a special case of slip boundary condition, we demonstrate that the SPH-CBF method describes accurately both no-slip and slip conditions.« less

  10. Impact of internal crystalline boundaries on lattice thermal conductivity: Importance of boundary structure and spacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghababaei, Ramin, E-mail: ramin.aghababaei@epfl.ch; Anciaux, Guillaume; Molinari, Jean-François

    2014-11-10

    The low thermal conductivity of nano-crystalline materials is commonly explained via diffusive scattering of phonons by internal boundaries. In this study, we have quantitatively studied phonon-crystalline boundaries scattering and its effect on the overall lattice thermal conductivity of crystalline bodies. Various types of crystalline boundaries such as stacking faults, twins, and grain boundaries have been considered in FCC crystalline structures. Accordingly, the specularity coefficient has been determined for different boundaries as the probability of the specular scattering across boundaries. Our results show that in the presence of internal boundaries, the lattice thermal conductivity can be characterized by two parameters: (1)more » boundary spacing and (2) boundary excess free volume. We show that the inverse of the lattice thermal conductivity depends linearly on a non-dimensional quantity which is the ratio of boundary excess free volume over boundary spacing. This shows that phonon scattering across crystalline boundaries is mainly a geometrically favorable process rather than an energetic one. Using the kinetic theory of phonon transport, we present a simple analytical model which can be used to evaluate the lattice thermal conductivity of nano-crystalline materials where the ratio can be considered as an average density of excess free volume. While this study is focused on FCC crystalline materials, where inter-atomic potentials and corresponding defect structures have been well studied in the past, the results would be quantitatively applicable for semiconductors in which heat transport is mainly due to phonon transport.« less

  11. Capillary electrophoresis of Big-Dye terminator sequencing reactions for human mtDNA Control Region haplotyping in the identification of human remains.

    PubMed

    Montesino, Marta; Prieto, Lourdes

    2012-01-01

    Cycle sequencing reaction with Big-Dye terminators provides the methodology to analyze mtDNA Control Region amplicons by means of capillary electrophoresis. DNA sequencing with ddNTPs or terminators was developed by (1). The progressive automation of the method by combining the use of fluorescent-dye terminators with cycle sequencing has made it possible to increase the sensibility and efficiency of the method and hence has allowed its introduction into the forensic field. PCR-generated mitochondrial DNA products are the templates for sequencing reactions. Different set of primers can be used to generate amplicons with different sizes according to the quality and quantity of the DNA extract providing sequence data for different ranges inside the Control Region.

  12. Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils.

    PubMed

    Feild, Taylor S; Arens, Nan Crystal

    2005-05-01

    The flowering plants--angiosperms--appeared during the Early Cretaceous period and within 10-30 Myr dominated the species composition of many floras worldwide. Emerging insights into the phylogenetics of development and discoveries of early angiosperm fossils are shedding increased light on the patterns and processes of early angiosperm evolution. However, we also need to integrate ecology, in particular how early angiosperms established a roothold in pre-existing Mesozoic plant communities. These events were critical in guiding subsequent waves of angiosperm diversification during the Aptian-Albian. Previous pictures of the early flowering plant ecology have been diverse, ranging from large tropical rainforest trees, weedy drought-adapted and colonizing shrubs, disturbance- and sun-loving rhizomatous herbs, and, more recently, aquatic herbs; however, none of these images were tethered to a robust hypothesis of angiosperm phylogeny. Here, we synthesize our current understanding of early angiosperm ecology, focusing on patterns of functional ecology, by merging recent molecular phylogenetic studies and functional studies on extant 'basal angiosperms' with the picture of early angiosperm evolution drawn by the fossil record.

  13. Using extant literature in a grounded theory study: a personal account.

    PubMed

    Yarwood-Ross, Lee; Jack, Kirsten

    2015-03-01

    To provide a personal account of the factors in a doctoral study that led to the adoption of classic grounded theory principles relating to the use of literature. Novice researchers considering grounded theory methodology will become aware of the contentious issue of how and when extant literature should be incorporated into a study. The three main grounded theory approaches are classic, Straussian and constructivist, and the seminal texts provide conflicting beliefs surrounding the use of literature. A classic approach avoids a pre-study literature review to minimise preconceptions and emphasises the constant comparison method, while the Straussian and constructivist approaches focus more on the beneficial aspects of an initial literature review and researcher reflexivity. The debate also extends into the wider academic community, where no consensus exists. This is a methodological paper detailing the authors' engagement in the debate surrounding the role of the literature in a grounded theory study. In the authors' experience, researchers can best understand the use of literature in grounded theory through immersion in the seminal texts, engaging with wider academic literature, and examining their preconceptions of the substantive area. The authors concluded that classic grounded theory principles were appropriate in the context of their doctoral study. Novice researchers will have their own sets of circumstances when preparing their studies and should become aware of the different perspectives to make decisions that they can ultimately justify. This paper can be used by other novice researchers as an example of the decision-making process that led to delaying a pre-study literature review and identifies the resources used to write a research proposal when using a classic grounded theory approach.

  14. A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES

    PubMed Central

    Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.M.; Vargas, A.; von Loebbecke, A.

    2010-01-01

    A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed surfaces are represented by grids consisting of unstructured triangular elements; while the flow is computed on non-uniform Cartesian grids. The paper describes the salient features of the methodology with special emphasis on the immersed boundary treatment for stationary and moving boundaries. Simulations of a number of canonical two- and three-dimensional flows are used to verify the accuracy and fidelity of the solver over a range of Reynolds numbers. Flow past suddenly accelerated bodies are used to validate the solver for moving boundary problems. Finally two cases inspired from biology with highly complex three-dimensional bodies are simulated in order to demonstrate the versatility of the method. PMID:20216919

  15. The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency

    PubMed Central

    Uberuaga, Blas Pedro; Vernon, Louis J.; Martinez, Enrique; Voter, Arthur F.

    2015-01-01

    Nanocrystalline materials have received great attention due to their potential for improved functionality and have been proposed for extreme environments where the interfaces are expected to promote radiation tolerance. However, the precise role of the interfaces in modifying defect behavior is unclear. Using long-time simulations methods, we determine the mobility of defects and defect clusters at grain boundaries in Cu. We find that mobilities vary significantly with boundary structure and cluster size, with larger clusters exhibiting reduced mobility, and that interface sink efficiency depends on the kinetics of defects within the interface via the in-boundary annihilation rate of defects. Thus, sink efficiency is a strong function of defect mobility, which depends on boundary structure, a property that evolves with time. Further, defect mobility at boundaries can be slower than in the bulk, which has general implications for the properties of polycrystalline materials. Finally, we correlate defect energetics with the volumes of atomic sites at the boundary. PMID:25766999

  16. The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency

    DOE PAGES

    Uberuaga, Blas Pedro; Vernon, Louis J.; Martinez, Enrique; ...

    2015-03-13

    Nanocrystalline materials have received great attention due to their potential for improved functionality and have been proposed for extreme environments where the interfaces are expected to promote radiation tolerance. However, the precise role of the interfaces in modifying defect behavior is unclear. Using long-time simulations methods, we determine the mobility of defects and defect clusters at grain boundaries in Cu. We find that mobilities vary significantly with boundary structure and cluster size, with larger clusters exhibiting reduced mobility, and that interface sink efficiency depends on the kinetics of defects within the interface via the in-boundary annihilation rate of defects. Thus,more » sink efficiency is a strong function of defect mobility, which depends on boundary structure, a property that evolves with time. Further, defect mobility at boundaries can be slower than in the bulk, which has general implications for the properties of polycrystalline materials. Finally, we correlate defect energetics with the volumes of atomic sites at the boundary.« less

  17. Stationary States of Boundary Driven Exclusion Processes with Nonreversible Boundary Dynamics

    NASA Astrophysics Data System (ADS)

    Erignoux, C.; Landim, C.; Xu, T.

    2018-05-01

    We prove a law of large numbers for the empirical density of one-dimensional, boundary driven, symmetric exclusion processes with different types of non-reversible dynamics at the boundary. The proofs rely on duality techniques.

  18. The Molecular Dissection of mtDNA Haplogroup H Confirms That the Franco-Cantabrian Glacial Refuge Was a Major Source for the European Gene Pool

    PubMed Central

    Achilli, Alessandro; Rengo, Chiara; Magri, Chiara; Battaglia, Vincenza; Olivieri, Anna; Scozzari, Rosaria; Cruciani, Fulvio; Zeviani, Massimo; Briem, Egill; Carelli, Valerio; Moral, Pedro; Dugoujon, Jean-Michel; Roostalu, Urmas; Loogväli, Eva-Liis; Kivisild, Toomas; Bandelt, Hans-Jürgen; Richards, Martin; Villems, Richard; Santachiara-Benerecetti, A. Silvana; Semino, Ornella; Torroni, Antonio

    2004-01-01

    Complete sequencing of 62 mitochondrial DNAs (mtDNAs) belonging (or very closely related) to haplogroup H revealed that this mtDNA haplogroup—by far the most common in Europe—is subdivided into numerous subhaplogroups, with at least 15 of them (H1–H15) identifiable by characteristic mutations. All the haplogroup H mtDNAs found in 5,743 subjects from 43 populations were then screened for diagnostic markers of subhaplogroups H1 and H3. This survey showed that both subhaplogroups display frequency peaks, centered in Iberia and surrounding areas, with distributions declining toward the northeast and southeast—a pattern extremely similar to that previously reported for mtDNA haplogroup V. Furthermore, the coalescence ages of H1 and H3 (∼11,000 years) are close to that previously reported for V. These findings have major implications for the origin of Europeans, since they attest that the Franco-Cantabrian refuge area was indeed the source of late-glacial expansions of hunter-gatherers that repopulated much of Central and Northern Europe from ∼15,000 years ago. This has also some implications for disease studies. For instance, the high occurrence of H1 and H3 in Iberia led us to re-evaluate the haplogroup distribution in 50 Spanish families affected by nonsyndromic sensorineural deafness due to the A1555G mutation. The survey revealed that the previously reported excess of H among these families is caused entirely by H3 and is due to a major, probably nonrecent, founder event. PMID:15382008

  19. Boundary-integral methods in elasticity and plasticity. [solutions of boundary value problems

    NASA Technical Reports Server (NTRS)

    Mendelson, A.

    1973-01-01

    Recently developed methods that use boundary-integral equations applied to elastic and elastoplastic boundary value problems are reviewed. Direct, indirect, and semidirect methods using potential functions, stress functions, and displacement functions are described. Examples of the use of these methods for torsion problems, plane problems, and three-dimensional problems are given. It is concluded that the boundary-integral methods represent a powerful tool for the solution of elastic and elastoplastic problems.

  20. Exclusion Process with Slow Boundary

    NASA Astrophysics Data System (ADS)

    Baldasso, Rangel; Menezes, Otávio; Neumann, Adriana; Souza, Rafael R.

    2017-06-01

    We study the hydrodynamic and the hydrostatic behavior of the simple symmetric exclusion process with slow boundary. The term slow boundary means that particles can be born or die at the boundary sites, at a rate proportional to N^{-θ }, where θ > 0 and N is the scaling parameter. In the bulk, the particles exchange rate is equal to 1. In the hydrostatic scenario, we obtain three different linear profiles, depending on the value of the parameter θ ; in the hydrodynamic scenario, we obtain that the time evolution of the spatial density of particles, in the diffusive scaling, is given by the weak solution of the heat equation, with boundary conditions that depend on θ . If θ \\in (0,1), we get Dirichlet boundary conditions, (which is the same behavior if θ =0, see Farfán in Hydrostatics, statical and dynamical large deviations of boundary driven gradient symmetric exclusion processes, 2008); if θ =1, we get Robin boundary conditions; and, if θ \\in (1,∞), we get Neumann boundary conditions.

  1. Female and Male Perspectives on the Neolithic Transition in Europe: Clues from Ancient and Modern Genetic Data

    PubMed Central

    Rasteiro, Rita; Chikhi, Lounès

    2013-01-01

    The arrival of agriculture into Europe during the Neolithic transition brought a significant shift in human lifestyle and subsistence. However, the conditions under which the spread of the new culture and technologies occurred are still debated. Similarly, the roles played by women and men during the Neolithic transition are not well understood, probably due to the fact that mitochondrial DNA (mtDNA) and Y chromosome (NRY) data are usually studied independently rather than within the same statistical framework. Here, we applied an integrative approach, using different model-based inferential techniques, to analyse published datasets from contemporary and ancient European populations. By integrating mtDNA and NRY data into the same admixture approach, we show that both males and females underwent the same admixture history and both support the demic diffusion model of Ammerman and Cavalli-Sforza. Similarly, the patterns of genetic diversity found in extant and ancient populations demonstrate that both modern and ancient mtDNA support the demic diffusion model. They also show that population structure and differential growth between farmers and hunter-gatherers are necessary to explain both types of data. However, we also found some differences between male and female markers, suggesting that the female effective population size was larger than that of the males, probably due to different demographic histories. We argue that these differences are most probably related to the various shifts in cultural practices and lifestyles that followed the Neolithic Transition, such as sedentism, the shift from polygyny to monogamy or the increase of patrilocality. PMID:23613761

  2. Female and male perspectives on the neolithic transition in Europe: clues from ancient and modern genetic data.

    PubMed

    Rasteiro, Rita; Chikhi, Lounès

    2013-01-01

    The arrival of agriculture into Europe during the Neolithic transition brought a significant shift in human lifestyle and subsistence. However, the conditions under which the spread of the new culture and technologies occurred are still debated. Similarly, the roles played by women and men during the Neolithic transition are not well understood, probably due to the fact that mitochondrial DNA (mtDNA) and Y chromosome (NRY) data are usually studied independently rather than within the same statistical framework. Here, we applied an integrative approach, using different model-based inferential techniques, to analyse published datasets from contemporary and ancient European populations. By integrating mtDNA and NRY data into the same admixture approach, we show that both males and females underwent the same admixture history and both support the demic diffusion model of Ammerman and Cavalli-Sforza. Similarly, the patterns of genetic diversity found in extant and ancient populations demonstrate that both modern and ancient mtDNA support the demic diffusion model. They also show that population structure and differential growth between farmers and hunter-gatherers are necessary to explain both types of data. However, we also found some differences between male and female markers, suggesting that the female effective population size was larger than that of the males, probably due to different demographic histories. We argue that these differences are most probably related to the various shifts in cultural practices and lifestyles that followed the Neolithic Transition, such as sedentism, the shift from polygyny to monogamy or the increase of patrilocality.

  3. Symbolic Boundary Work in Schools: Demarcating and Denying Ethnic Boundaries

    ERIC Educational Resources Information Center

    Tabib-Calif, Yosepha; Lomsky-Feder, Edna

    2014-01-01

    This article examines the symbolic boundary work that is carried out at a school whose student population is heterogeneous in terms of ethnicity and class. Based on ethnography, the article demonstrates how the school's staff seeks to neutralize ethnic boundaries and their accompanying discourse, while the pupils try to bring ethnic…

  4. Boundary layers in centrifugal compressors. [application of boundary layer theory to compressor design

    NASA Technical Reports Server (NTRS)

    Dean, R. C., Jr.

    1974-01-01

    The utility of boundary-layer theory in the design of centrifugal compressors is demonstrated. Boundary-layer development in the diffuser entry region is shown to be important to stage efficiency. The result of an earnest attempt to analyze this boundary layer with the best tools available is displayed. Acceptable prediction accuracy was not achieved. The inaccuracy of boundary-layer analysis in this case would result in stage efficiency prediction as much as four points low. Fluid dynamic reasons for analysis failure are discussed with support from flow data. Empirical correlations used today to circumnavigate the weakness of the theory are illustrated.

  5. MtDNA genetic diversity and structure of Eurasian Collared Dove (Streptopelia decaocto).

    PubMed

    Bagi, Zoltán; Dimopoulos, Evangelos Antonis; Loukovitis, Dimitrios; Eraud, Cyril; Kusza, Szilvia

    2018-01-01

    The Eurasian Collared Dove (Streptopelia decaocto) is one of the most successful biological invaders among terrestrial vertebrates. However, little information is available on the genetic diversity of the species. A total of 134 Eurasian Collared Doves from Europe, Asia and the Caribbean (n = 20) were studied by sequencing a 658-bp length of mitochondrial DNA (mtDNA) cytochrome oxidase I (COI). Fifty-two different haplotypes and relatively high haplotype and nucleotide diversities (Hd±SD = 0.843±0.037 and π±SD = 0.026±0.013) were detected. Haplotype Ht1 was particularly dominant: it included 44.03% of the studied individuals, and contained sequences from 75% of the studied countries. Various analyses (FST, AMOVA, STRUCTURE) distinguished 2 groups on the genetic level, designated 'A' and 'B'. Two groups were also separated in the median-joining network and the maximum likelihood tree. The results of the neutrality tests were negative (Fu FS = -25.914; Tajima D = -2.606) and significantly different from zero (P≤0.001) for group A, whereas both values for group B were positive (Fu FS = 1.811; Tajima D = 0.674) and not significant (P>0.05). Statistically significant positive autocorrelation was revealed among individuals located up to 2000 km apart (r = 0.124; P = 0.001). The present results provide the first information on the genetic diversity and structure of the Eurasian Collared Dove, and can thereby serve as a factual and comparative basis for similar studies in the future.

  6. Reconciling Apparent Conflicts between Mitochondrial and Nuclear Phylogenies in African Elephants

    PubMed Central

    Georgiadis, Nicholas J.; David, Victor A.; Zhao, Kai; Stephens, Robert M.; Kolokotronis, Sergios-Orestis; Roca, Alfred L.

    2011-01-01

    Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and conducting novel analyses of continent-wide datasets of mitochondrial DNA. Results showed that nuclear genetic diversity was partitioned into two clusters, corresponding to African forest elephants (99.5% Cluster-1) and African savanna elephants (99.4% Cluster-2). Hybrid individuals were rare. In a comparison of basal forest “F” and savanna “S” mtDNA clade distributions to nuclear DNA partitions, forest elephant nuclear genotypes occurred only in populations in which S clade mtDNA was absent, suggesting that nuclear partitioning corresponds to the presence or absence of S clade mtDNA. We reanalyzed African elephant mtDNA sequences from 81 locales spanning the continent and discovered that S clade mtDNA was completely absent among elephants at all 30 sampled tropical forest locales. The distribution of savanna nuclear DNA and S clade mtDNA corresponded closely to range boundaries traditionally ascribed to the savanna elephant species based on habitat and morphology. Further, a reanalysis of nuclear genetic assignment results suggested that West African elephants do not comprise a distinct third species. Finally, we show that some DNA markers will be more useful than others for determining the geographic origins of illegal ivory. These findings resolve the apparent incongruence between mtDNA and nuclear genetic patterns that has confounded the taxonomy of African elephants, affirm the limitations of using mtDNA patterns to infer elephant systematics or population structure

  7. Grain boundary engineering: fatigue fracture

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2017-04-01

    Grain boundary engineering has revealed significant enhancement of material properties by modifying the populations and connectivity of different types of grain boundaries within the polycrystals. The character and connectivity of grain boundaries in polycrystalline microstructures control the corrosion and mechanical behaviour of materials. A comprehensive review of the previous researches has been carried out to understand this philosophy. Present research thoroughly explores the effect of total strain amplitude on phase transformation, fatigue fracture features, grain size, annealing twinning, different grain connectivity and grain boundary network after strain controlled low cycle fatigue deformation of austenitic stainless steel under ambient temperature. Electron backscatter diffraction technique has been used extensively to investigate the grain boundary characteristics and morphologies. The nominal variation of strain amplitude through cyclic plastic deformation is quantitatively demonstrated completely in connection with the grain boundary microstructure and fractographic features to reveal the mechanism of fatigue fracture of polycrystalline austenite. The extent of boundary modifications has been found to be a function of the number of applied loading cycles and strain amplitudes. It is also investigated that cyclic plasticity induced martensitic transformation strongly influences grain boundary characteristics and modifications of the material's microstructure/microtexture as a function of strain amplitudes. The experimental results presented here suggest a path to grain boundary engineering during fatigue fracture of austenite polycrystals.

  8. A classification of ecological boundaries

    USGS Publications Warehouse

    Strayer, D.L.; Power, M.E.; Fagan, W.F.; Pickett, S.T.A.; Belnap, J.

    2003-01-01

    Ecologists use the term boundary to refer to a wide range of real and conceptual structures. Because imprecise terminology may impede the search for general patterns and theories about ecological boundaries, we present a classification of the attributes of ecological boundaries to aid in communication and theory development. Ecological boundaries may differ in their origin and maintenance, their spatial structure, their function, and their temporal dynamics. A classification system based on these attributes should help ecologists determine whether boundaries are truly comparable. This system can be applied when comparing empirical studies, comparing theories, and testing theoretical predictions against empirical results.

  9. Effects of light on the largest extant benthic foraminifer, Cycloclypeus carpenteri

    NASA Astrophysics Data System (ADS)

    Fujita, Kazuhiko; Kanda, Yoji

    2015-04-01

    Cycloclypeus carpenteri is the largest extant benthic foraminifer. This species dwells in deep euphotic depths of warm oligotrophic waters, and is a host to diatom endosymbionts. Fossil Cycloclypeus has been found in tropical shelf carbonates since the Oligocene. Light is supposed to be the primary environmental factor controlling the depth distribution of this species. However, physiological responses of this foraminifer to light are not yet well understood. We investigated short-term and long-term effects of light on Cycloclypeus carpenteri collected from about 70 m depth, west of Okinawa Island (Japan). To determine short-term responses to light, net oxygen production was measured at different light levels and wavelengths using an oxygen microelectrode. Photosynthesis-irradiance curve of this species indicated that net oxygen production increased up to 50 µE m-2 s-1, was saturated until 100 µE m-2 s-1, then was photoinhibited over 100 µE m-2 s-1. Net production was higher when incubated on blue wavelength than on either red or green wavelengths. To determine long-term light effects, asexually reproduced clone individuals were incubated for about 4 months at different light levels ranging from 0 to 100 µE m-2 s-1. The long-term incubations indicated that growth rates measured by the surface area were optimal at light levels from 5 to 50 µE m-2 s-1, but were lowered at 0 and 100 µE m-2 s-1. These results suggest that Cycloclypeus carpenteri can be acclimatized at less than 100 µE m-2 s-1 of light by changing photopigment (chrolophyll) concentrations of algal symbionts, but this species cannot survive in dark and over 100 µE m-2 s-1 of light due to the breakdown of algal symbiosis.

  10. Deconstructing a Species-Complex: Geometric Morphometric and Molecular Analyses Define Species in the Western Rattlesnake (Crotalus viridis)

    PubMed Central

    Davis, Mark A.; Douglas, Marlis R.; Collyer, Michael L.; Douglas, Michael E.

    2016-01-01

    Morphological data are a conduit for the recognition and description of species, and their acquisition has recently been broadened by geometric morphometric (GM) approaches that co-join the collection of digital data with exploratory ‘big data’ analytics. We employed this approach to dissect the Western Rattlesnake (Crotalus viridis) species-complex in North America, currently partitioned by mitochondrial (mt)DNA analyses into eastern and western lineages (two and seven subspecies, respectively). The GM data (i.e., 33 dorsal and 50 lateral head landmarks) were gleaned from 2,824 individuals located in 10 museum collections. We also downloaded and concatenated sequences for six mtDNA genes from the NCBI GenBank database. GM analyses revealed significant head shape differences attributable to size and subspecies-designation (but not their interactions). Pairwise shape distances among subspecies were significantly greater than those derived from ancestral character states via squared-change parsimony, with the greatest differences separating those most closely related. This, in turn, suggests the potential for historic character displacement as a diversifying force in the complex. All subspecies, save one, were significantly differentiated in a Bayesian discriminant function analysis (DFA), regardless of whether our priors were uniform or informative (i.e., mtDNA data). Finally, shape differences among sister-clades were significantly greater than expected by chance alone under a Brownian model of evolution, promoting the hypothesis that selection rather than drift was the driving force in the evolution of the complex. Lastly, we combine head shape and mtDNA data so as to derived an integrative taxonomy that produced robust boundaries for six OTUs (operational taxonomic units) of the C. viridis complex. We suggest these boundaries are concomitant with species-status and subsequently provide a relevant nomenclature for its recognition and representation. PMID

  11. Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers.

    PubMed

    Lerner, Heather R L; Meyer, Matthias; James, Helen F; Hofreiter, Michael; Fleischer, Robert C

    2011-11-08

    Evolutionary theory has gained tremendous insight from studies of adaptive radiations. High rates of speciation, morphological divergence, and hybridization, combined with low sequence variability, however, have prevented phylogenetic reconstruction for many radiations. The Hawaiian honeycreepers are an exceptional adaptive radiation, with high phenotypic diversity and speciation that occurred within the geologically constrained setting of the Hawaiian Islands. Here we analyze a new data set of 13 nuclear loci and pyrosequencing of mitochondrial genomes that resolves the Hawaiian honeycreeper phylogeny. We show that they are a sister taxon to Eurasian rosefinches (Carpodacus) and probably came to Hawaii from Asia. We use island ages to calibrate DNA substitution rates, which vary substantially among gene regions, and calculate divergence times, showing that the radiation began roughly when the oldest of the current large Hawaiian Islands (Kauai and Niihau) formed, ~5.7 million years ago (mya). We show that most of the lineages that gave rise to distinctive morphologies diverged after Oahu emerged (4.0-3.7 mya) but before the formation of Maui and adjacent islands (2.4-1.9 mya). Thus, the formation of Oahu, and subsequent cycles of colonization and speciation between Kauai and Oahu, played key roles in generating the morphological diversity of the extant honeycreepers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Globally optimal grouping for symmetric closed boundaries by combining boundary and region information.

    PubMed

    Stahl, Joachim S; Wang, Song

    2008-03-01

    Many natural and man-made structures have a boundary that shows a certain level of bilateral symmetry, a property that plays an important role in both human and computer vision. In this paper, we present a new grouping method for detecting closed boundaries with symmetry. We first construct a new type of grouping token in the form of symmetric trapezoids by pairing line segments detected from the image. A closed boundary can then be achieved by connecting some trapezoids with a sequence of gap-filling quadrilaterals. For such a closed boundary, we define a unified grouping cost function in a ratio form: the numerator reflects the boundary information of proximity and symmetry and the denominator reflects the region information of the enclosed area. The introduction of the region-area information in the denominator is able to avoid a bias toward shorter boundaries. We then develop a new graph model to represent the grouping tokens. In this new graph model, the grouping cost function can be encoded by carefully designed edge weights and the desired optimal boundary corresponds to a special cycle with a minimum ratio-form cost. We finally show that such a cycle can be found in polynomial time using a previous graph algorithm. We implement this symmetry-grouping method and test it on a set of synthetic data and real images. The performance is compared to two previous grouping methods that do not consider symmetry in their grouping cost functions.

  13. Differential resource utilization by extant great apes and australopithecines: towards solving the C4 conundrum.

    PubMed

    Sponheimer, Matt; Lee-Thorp, Julia A

    2003-09-01

    Morphological and biogeochemical evidence suggest that australopithecines had diets markedly different from those of extant great apes. Stable carbon isotope analysis, for example, has shown that significant amounts of the carbon consumed by australopithecines were derived from C(4) photosynthesis in plants. This means that australopithecines were eating large quantities of C(4) plants such as tropical grasses and sedges, or were eating animals that were themselves eating C(4) plants. In contrast, there is no evidence that modern apes consume appreciable amounts of any of these foods, even in the most arid extents of their ranges where these foods are most prevalent. Environmental reconstructions of early australopithecine environments overlap with modern chimpanzee habitats. This, in conjunction with the stable isotope evidence, suggests that australopithecines and great apes, even in similar environments, would utilize available resources differently. Thus, the desire or capacity to use C(4) foods may be a basal character of our lineage. We do not know, however, which of the nutritionally disparate C(4) foods were utilized by hominids. Here we discuss which C(4) resources were most likely consumed by australopithecines, as well as the potential nutritional, physiological, and social consequences of eating these foods.

  14. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    USGS Publications Warehouse

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  15. Planetary boundaries for a blue planet.

    PubMed

    Nash, Kirsty L; Cvitanovic, Christopher; Fulton, Elizabeth A; Halpern, Benjamin S; Milner-Gulland, E J; Watson, Reg A; Blanchard, Julia L

    2017-11-01

    Concepts underpinning the planetary boundaries framework are being incorporated into multilateral discussions on sustainability, influencing international environmental policy development. Research underlying the boundaries has primarily focused on terrestrial systems, despite the fundamental role of marine biomes for Earth system function and societal wellbeing, seriously hindering the efficacy of the boundary approach. We explore boundaries from a marine perspective. For each boundary, we show how improved integration of marine systems influences our understanding of the risk of crossing these limits. Better integration of marine systems is essential if planetary boundaries are to inform Earth system governance.

  16. 15 CFR 922.110 - Boundary.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARINE SANCTUARY PROGRAM REGULATIONS Cordell Bank National Marine Sanctuary § 922.110 Boundary. The Cordell Bank National Marine Sanctuary (Sanctuary) boundary encompasses a total area of approximately 399... California approximately 50 miles west-northwest of San Francisco, California. The Sanctuary boundary extends...

  17. A Neumann boundary term for gravity

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Raju, Avinash

    2017-05-01

    The Gibbons-Hawking-York (GHY) boundary term makes the Dirichlet problem for gravity well-defined, but no such general term seems to be known for Neumann boundary conditions. In this paper, we view Neumann not as fixing the normal derivative of the metric (“velocity”) at the boundary, but as fixing the functional derivative of the action with respect to the boundary metric (“momentum”). This leads directly to a new boundary term for gravity: the trace of the extrinsic curvature with a specific dimension-dependent coefficient. In three dimensions, this boundary term reduces to a “one-half” GHY term noted in the literature previously, and we observe that our action translates precisely to the Chern-Simons action with no extra boundary terms. In four dimensions, the boundary term vanishes, giving a natural Neumann interpretation to the standard Einstein-Hilbert action without boundary terms. We argue that in light of AdS/CFT, ours is a natural approach for defining a “microcanonical” path integral for gravity in the spirit of the (pre-AdS/CFT) work of Brown and York.

  18. Road boundary detection

    NASA Technical Reports Server (NTRS)

    Sowers, J.; Mehrotra, R.; Sethi, I. K.

    1989-01-01

    A method for extracting road boundaries using the monochrome image of a visual road scene is presented. The statistical information regarding the intensity levels present in the image along with some geometrical constraints concerning the road are the basics of this approach. Results and advantages of this technique compared to others are discussed. The major advantages of this technique, when compared to others, are its ability to process the image in only one pass, to limit the area searched in the image using only knowledge concerning the road geometry and previous boundary information, and dynamically adjust for inconsistencies in the located boundary information, all of which helps to increase the efficacy of this technique.

  19. Unexpected sequences and structures of mtDNA required for efficient transcription from the first heavy-strand promoter

    PubMed Central

    Uchida, Akira; Murugesapillai, Divakaran; Kastner, Markus; Wang, Yao; Lodeiro, Maria F; Prabhakar, Shaan; Oliver, Guinevere V; Arnold, Jamie J; Maher, L James; Williams, Mark C; Cameron, Craig E

    2017-01-01

    Human mtDNA contains three promoters, suggesting a need for differential expression of the mitochondrial genome. Studies of mitochondrial transcription have used a reductionist approach, perhaps masking differential regulation. Here we evaluate transcription from light-strand (LSP) and heavy-strand (HSP1) promoters using templates that mimic their natural context. These studies reveal sequences upstream, hypervariable in the human population (HVR3), and downstream of the HSP1 transcription start site required for maximal yield. The carboxy-terminal tail of TFAM is essential for activation of HSP1 but not LSP. Images of the template obtained by atomic force microscopy show that TFAM creates loops in a discrete region, the formation of which correlates with activation of HSP1; looping is lost in tail-deleted TFAM. Identification of HVR3 as a transcriptional regulatory element may contribute to between-individual variability in mitochondrial gene expression. The unique requirement of HSP1 for the TFAM tail may enable its regulation by post-translational modifications. DOI: http://dx.doi.org/10.7554/eLife.27283.001 PMID:28745586

  20. Work and personal life boundary management: boundary strength, work/personal life balance, and the segmentation-integration continuum.

    PubMed

    Bulger, Carrie A; Matthews, Russell A; Hoffman, Mark E

    2007-10-01

    While researchers are increasingly interested in understanding the boundaries surrounding the work and personal life domains, few have tested the propositions set forth by theory. Boundary theory proposes that individuals manage the boundaries between work and personal life through processes of segmenting and/or integrating the domains. The authors investigated boundary management profiles of 332 workers in an investigation of the segmentation-integration continuum. Cluster analysis indicated consistent clusters of boundary management practices related to varying segmentation and integration of the work and personal life domains. But, the authors suggest that the segmentation-integration continuum may be more complicated. Results also indicated relationships between boundary management practices and work-personal life interference and work-personal life enhancement. Less flexible and more permeable boundaries were related to more interference, while more flexible and more permeable boundaries were related to more enhancement.