Science.gov

Sample records for extended field radiation

  1. Preliminary outcome and toxicity report of extended-field, intensity-modulated radiation therapy for gynecologic malignancies

    SciTech Connect

    Salama, Joseph K. . E-mail: jsalama@radonc.uchicago.edu; Mundt, Arno J.; Roeske, John; Mehta, Neil

    2006-07-15

    Purpose: The aim of this article is to report a preliminary analysis of our initial clinical experience with extended-field intensity-modulated radiotherapy for gynecologic malignancies. Methods and Materials: Between November 2002 and May 2005, 13 women with gynecologic malignancies were treated with extended-field radiation therapy. Of the women, 7 had endometrial cancer, 4 cervical cancer, 1 recurrent endometrial cancer, and 1 suspected cervical cancer. All women underwent computed tomography planning, with the upper vagina, parametria, and uterus (if present) contoured within the CTV. In addition, the clinical target volume contained the pelvic and presacral lymph nodes as well as the para-aortic lymph nodes. All acute toxicity was scored according to the Common Terminology Criteria for Adverse Events (CTCAE v 3.0). All late toxicity was scored using the Radiation Therapy Oncology Group late toxicity score. Results: The median follow-up was 11 months. Extended-field intensity-modulated radiation therapy (IMRT) for gynecologic malignancies was well tolerated. Two patients experienced Grade 3 or higher toxicity. Both patients were treated with concurrent cisplatin based chemotherapy. Neither patient was planned with bone marrow sparing. Eleven patients had no evidence of late toxicity. One patient with multiple previous surgeries experienced a bowel obstruction. One patient with bilateral grossly involved and unresectable common iliac nodes experienced bilateral lymphedema. Extended-field-IMRT achieved good local control with only 1 patient, who was metastatic at presentation, and 1 patient not able to complete treatment, experiencing in-field failure. Conclusions: Extended-field IMRT is safe and effective with a low incidence of acute toxicity. Longer follow-up is needed to assess chronic toxicity, although early results are promising.

  2. Extended conformal field theories

    NASA Astrophysics Data System (ADS)

    Taormina, Anne

    1990-08-01

    Some extended conformal field theories are briefly reviewed. They illustrate how non minimal models of the Virasoro algebra (c≥1) can become minimal with respect to a larger algebra. The accent is put on N-extended superconformal algebras, which are relevant in superstring compactification.

  3. Split-field vs extended-field intensity-modulated radiation therapy plans for oropharyngeal cancer: Which spares the larynx? Which spares the thyroid?

    PubMed

    Yu, Yao; Chen, Josephine; Leary, Celeste I; Shugard, Erin; Yom, Sue S

    2016-01-01

    Radiation of the low neck can be accomplished using split-field intensity-modulated radiation therapy (sf-IMRT) or extended-field intensity-modulated radiation therapy (ef-IMRT). We evaluated the effect of these treatment choices on target coverage and thyroid and larynx doses. Using data from 14 patients with cancers of the oropharynx, we compared the following 3 strategies for radiating the low neck: (1) extended-field IMRT, (2) traditional split-field IMRT with an initial cord-junction block to 40Gy, followed by a full-cord block to 50Gy, and (3) split-field IMRT with a full-cord block to 50Gy. Patients were planned using each of these 3 techniques. To facilitate comparison, extended-field plans were normalized to deliver 50Gy to 95% of the neck volume. Target coverage was assessed using the dose to 95% of the neck volume (D95). Mean thyroid and larynx doses were computed. Extended-field IMRT was used as the reference arm; the mean larynx dose was 25.7 ± 7.4Gy, and the mean thyroid dose was 28.6 ± 2.4Gy. Split-field IMRT with 2-step blocking reduced laryngeal dose (mean larynx dose 15.2 ± 5.1Gy) at the cost of a moderate reduction in target coverage (D95 41.4 ± 14Gy) and much higher thyroid dose (mean thyroid dose 44.7 ± 3.7Gy). Split-field IMRT with initial full-cord block resulted in greater laryngeal sparing (mean larynx dose 14.2 ± 5.1Gy) and only a moderately higher thyroid dose (mean thyroid dose 31 ± 8Gy) but resulted in a significant reduction in target coverage (D95 34.4 ± 15Gy). Extended-field IMRT comprehensively covers the low neck and achieves acceptable thyroid and laryngeal sparing. Split-field IMRT with a full-cord block reduces laryngeal doses to less than 20Gy and spares the thyroid, at the cost of substantially reduced coverage of the low neck. Traditional 2-step split-field IMRT similarly reduces the laryngeal dose but also reduces low-neck coverage and delivers very high doses to the thyroid. PMID:26947055

  4. Extended Ehrenfest theorem with radiative corrections

    NASA Astrophysics Data System (ADS)

    de la Peña, L.; Cetto, A. M.; Valdés-Hernández, A.

    2015-10-01

    A set of basic evolution equations for the mean values of dynamical variables is obtained from the Fokker-Planck equation applied to the general problem of a particle subject to a random force. The specific case of stochastic electrodynamics is then considered, in which the random force is due to the zero-point radiation field. Elsewhere it has been shown that when this system reaches a state of energy balance, it becomes controlled by an equation identical to Schrödinger’s, if the radiationless approximation is made. The Fokker-Planck equation was shown to lead to the Ehrenfest theorem under such an approximation. Here we show that when the radiative terms are not neglected, an extended form of the Ehrenfest equation is obtained, from which follow, among others, the correct formulas for the atomic lifetimes and the (nonrelativistic) Lamb shift.

  5. Increased risk of secondary acute nonlymphocytic leukemia after extended-field radiation therapy combined with MOPP chemotherapy for Hodgkin's disease

    SciTech Connect

    Andrieu, J.M.; Ifrah, N.; Payen, C.; Fermanian, J.; Coscas, Y.; Flandrin, G. )

    1990-07-01

    The purpose of this study was to evaluate the influence of the number of mechlorethamine, vincristine, procarbazine, and prednisolone (MOPP) cycles and the extent of irradiation on the risk of secondary acute nonlymphocytic leukemia (SANLL) after a single combined treatment for Hodgkin's disease (HD). Between April 1972 and May 1980, 462 patients with HD clinical stage (CS) I, II, and III were prospectively treated with three or six cycles of MOPP and supra- and/or infradiaphragmatic irradiation (40 Gy). Four hundred forty-one patients achieved complete remission (CR). By January 1988, 237 patients had been followed-up in first CR for at least 10 years. Ten patients developed SANLL between the 34th and 123rd month of CR. The 15-year SANLL risk is 3.5% +/- 2.7%. Cox's stepwise regression analysis performed with all initial and treatment covariates (sex, age, histology, splenectomy, MOPP chemotherapy, and irradiation extent) showed that the only significant explanatory variable of SANLL risk was the irradiation extent (P less than .002). Using the log-rank test, SANLL risk ranged from 2.2% for supradiaphragmatic irradiation alone to 9.1% for subtotal (STNI) or total nodal irradiation (TNI) (P less than .001). These results strongly suggest that extended high-dose irradiation and MOPP chemotherapy should not be combined for the treatment of HD.30 references.

  6. Radiation comb generation with extended Josephson junctions

    SciTech Connect

    Solinas, P.; Bosisio, R.; Giazotto, F.

    2015-09-21

    We propose the implementation of a Josephson radiation comb generator based on an extended Josephson junction subject to a time dependent magnetic field. The junction critical current shows known diffraction patterns and determines the position of the critical nodes when it vanishes. When the magnetic flux passes through one of such critical nodes, the superconducting phase must undergo a π-jump to minimize the Josephson energy. Correspondingly, a voltage pulse is generated at the extremes of the junction. Under periodic driving, this allows us to produce a comb-like voltage pulses sequence. In the frequency domain, it is possible to generate up to hundreds of harmonics of the fundamental driving frequency, thus mimicking the frequency comb used in optics and metrology. We discuss several implementations through a rectangular, cylindrical, and annular junction geometries, allowing us to generate different radiation spectra and to produce an output power up to 10 pW at 50 GHz for a driving frequency of 100 MHz.

  7. High-Dose and Extended-Field Intensity Modulated Radiation Therapy for Early-Stage NK/T-Cell Lymphoma of Waldeyer's Ring: Dosimetric Analysis and Clinical Outcome

    SciTech Connect

    Bi, Xi-Wen; Li, Ye-Xiong Fang, Hui; Jin, Jing; Wang, Wei-Hu; Wang, Shu-Lian; Liu, Yue-Ping; Song, Yong-Wen; Ren, Hua; Dai, Jian-Rong

    2013-12-01

    Purpose: To assess the dosimetric benefit, treatment outcome, and toxicity of high-dose and extended-field intensity modulated radiation therapy (IMRT) in patients with early-stage NK/T-cell lymphoma of Waldeyer's ring (WR-NKTCL). Methods and Materials: Thirty patients with early-stage WR-NKTCL who received extended-field IMRT were retrospectively reviewed. The prescribed dose was 50 Gy to the primary involved regions and positive cervical lymph nodes (planning target volume requiring radical irradiation [PTV{sub 50}]) and 40 Gy to the negative cervical nodes (PTV{sub 40}). Dosimetric parameters for the target volume and critical normal structures were evaluated. Locoregional control (LRC), overall survival (OS), and progression-free survival (PFS) were calculated using the Kaplan-Meier method. Results: The median mean doses to the PTV{sub 50} and PTV{sub 40} were 53.2 Gy and 43.0 Gy, respectively. Only 1.4% of the PTV{sub 50} and 0.9% of the PTV{sub 40} received less than 95% of the prescribed dose, indicating excellent target coverage. The average mean doses to the left and right parotid glands were 27.7 and 28.4 Gy, respectively. The 2-year OS, PFS, and LRC rates were 71.2%, 57.4%, and 87.8%. Most acute toxicities were grade 1 to 2, except for grade ≥3 dysphagia and mucositis. The most common late toxicity was grade 1-2 xerostomia, and no patient developed any ≥grade 3 late toxicities. A correlation between the mean dose to the parotid glands and the degree of late xerostomia was observed. Conclusions: IMRT achieves excellent target coverage and dose conformity, as well as favorable survival and locoregional control rates with acceptable toxicities in patients with WR-NKTCL.

  8. Duodenal and Other Gastrointestinal Toxicity in Cervical and Endometrial Cancer Treated With Extended-Field Intensity Modulated Radiation Therapy to Paraaortic Lymph Nodes

    SciTech Connect

    Poorvu, Philip D.; Sadow, Cheryl A.; Townamchai, Kanokpis; Damato, Antonio L.; Viswanathan, Akila N.

    2013-04-01

    Purpose: To characterize the rates of acute and late duodenal and other gastrointestinal (GI) toxicities among patients treated for cervical and endometrial cancers with extended-field intensity modulated radiation therapy (EF-IMRT) to the paraaortic nodes and to analyze dose-volume relationships of GI toxicities. Methods and Materials: Fifty-three patients with endometrial or cervical cancer underwent EF-IMRT to the paraaortic nodes, of whom 46 met the inclusion criteria for GI toxicity and 45 for duodenal toxicity analysis. The median prescribed dose to the paraaortic nodes was 54 Gy (range, 41.4-65 Gy). The 4 duodenal segments, whole duodenum, small bowel loops, peritoneum, and peritoneum plus retroperitoneal segments of colon were contoured retrospectively, and dosimetric analysis was performed to identify dose-volume relationships to grade ≥3 acute (<90 day) and late (≥90 day) GI toxicity. Results: Only 3/46 patients (6.5%) experienced acute grade ≥3 GI toxicity and 3/46 patients (6.5%) experienced late grade ≥3 GI toxicity. The median dose administered to these 6 patients was 50.4 Gy. One of 12 patients who received 63 to 65 Gy at the level of the renal hilum experienced grade 3 GI toxicity. Dosimetric analysis of patients with and without toxicity revealed no differences between the mean absolute or fractional volumes at any 5-Gy interval between 5 Gy and the maximum dose. None of the patients experienced duodenal toxicity. Conclusions: Treatment of paraaortic nodes with IMRT is associated with low rates of GI toxicities and no duodenal-specific toxicity, including patients treated with concurrent chemotherapy. This technique may allow sufficient dose sparing of the bowel to enable safe dose escalation to at least 65 Gy.

  9. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  10. Radiation transport modeling using extended quadrature method of moments

    NASA Astrophysics Data System (ADS)

    Vikas, V.; Hauck, C. D.; Wang, Z. J.; Fox, R. O.

    2013-08-01

    The radiative transfer equation describes the propagation of radiation through a material medium. While it provides a highly accurate description of the radiation field, the large phase space on which the equation is defined makes it numerically challenging. As a consequence, significant effort has gone into the development of accurate approximation methods. Recently, an extended quadrature method of moments (EQMOM) has been developed to solve univariate population balance equations, which also have a large phase space and thus face similar computational challenges. The distinct advantage of the EQMOM approach over other moment methods is that it generates moment equations that are consistent with a positive phase space density and has a moment inversion algorithm that is fast and efficient. The goal of the current paper is to present the EQMOM method in the context of radiation transport, to discuss advantages and disadvantages, and to demonstrate its performance on a set of standard one-dimensional benchmark problems that encompass optically thin, thick, and transition regimes. Special attention is given in the implementation to the issue of realizability—that is, consistency with a positive phase space density. Numerical results in one dimension are promising and lay the foundation for extending the same framework to multiple dimensions.

  11. Dynamic channeling of electromagnetic radiation by extended plasma formations

    NASA Astrophysics Data System (ADS)

    Kolpakov, V. I.; Norinskii, L. V.; Rogov, V. S.

    1991-05-01

    An experimental study was conducted to investigate the feasibility of using axisymmetric extended plasma formations (EPFs) as guide lines for the transmission of electromagnetic radiation. The EPF was formed as a result of optical breakdown in air via radiation from an Nd:glass laser. The results obtained demonstrate the channeling of microwave radiation in an EPF with a blurred boundary.

  12. Radiation Q of dipole-generated fields

    NASA Astrophysics Data System (ADS)

    Grimes, Dale M.; Grimes, Craig A.

    1999-03-01

    The radiation Q of several dipole fields in free space are determined using the time-dependent Poynting theorem. Earlier works on this subject, recently summarized by McLean [1996], are based upon the complex Poynting theorem. It was previously shown [Grimes and Grimes, 1997] that the full complex Poynting theorem is correct only for single-mode radiation fields. The time-dependent theorem shows that three numbers are necessary to completely specify time-varying power, and complex numbers supply but two; the third piece of information, a phase, is discarded when complex notation is formed. Omissions inherent in the complex Poynting theorem affect the calculated value of standing energy about an antenna and hence the calculated value of Q. To avoid such omissions, we develop a method of determining Q based upon the time-dependent Poynting theorem that builds upon and extends our earlier work [Grimes and Grimes, 1997]. The purposes of this paper are to (1) provide a time domain basis for calculating Q in mixed modal radiation fields, (2) determine the Q of electric and magnetic dipoles, alone and in combination, and (3) demonstrate how source structure and relative phasing affect the physics of several combinations of electric and magnetic dipole radiation fields. The primary conclusion of this work is that the minimum possible Q of a radiation source established by Chu [1948] does not extend to properly mixed and phased multimodal radiation fields. A radiation source is presented for which, by our analysis, the radiation Q is zero.

  13. [Nonionizing radiation and electromagnetic fields].

    PubMed

    Bernhardt, J H

    1991-01-01

    Nonionising radiation comprises all kinds of radiation and fields of the electromagnetic spectrum where biological matter is not ionised, as well as mechanical waves such as infrasound and ultrasound. The electromagnetic spectrum is subdivided into individual sections and includes: Static and low-frequency electric and magnetic fields including technical applications of energy with mains frequency, radio frequency fields, microwaves and optic radiation (infrared, visible light, ultraviolet radiation including laser). The following categories of persons can be affected by emissions by non-ionising radiation: Persons in the environment and in the household, workers, patients undergoing medical diagnosis or treatment. If the radiation is sufficiently intense, or if the fields are of appropriate strength, a multitude of effects can occur (depending on the type of radiation), such as heat and stimulating or irritating action, inflammations of the skin or eyes, changes in the blood picture, burns or in some cases cancer as a late sequel. The ability of radiation to penetrate into the human body, as well as the types of interaction with biological tissue, with organs and organisms, differs significantly for the various kinds of nonionising radiation. The following aspects of nonionising radiation are discussed: protection of humans against excessive sunlight rays when sunbathing and when exposed to UV radiation (e.g. in solaria); health risks of radio and microwaves (safety of microwave cookers and mobile radio units); effects on human health by electric and magnetic fields in everyday life. PMID:1837859

  14. Extended Field Intensity Modulated Radiation Therapy With Concomitant Boost for Lymph Node–Positive Cervical Cancer: Analysis of Regional Control and Recurrence Patterns in the Positron Emission Tomography/Computed Tomography Era

    SciTech Connect

    Vargo, John A.; Kim, Hayeon; Choi, Serah; Sukumvanich, Paniti; Olawaiye, Alexander B.; Kelley, Joseph L.; Edwards, Robert P.; Comerci, John T.; Beriwal, Sushil

    2014-12-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is commonly used for nodal staging in locally advanced cervical cancer; however the false negative rate for para-aortic disease are 20% to 25% in PET-positive pelvic nodal disease. Unless surgically staged, pelvis-only treatment may undertreat para-aortic disease. We have treated patients with PET-positive nodes with extended field intensity modulated radiation therapy (IMRT) to address the para-aortic region prophylactically with concomitant boost to involved nodes. The purpose of this study was to assess regional control rates and recurrence patterns. Methods and Materials: Sixty-one patients with cervical cancer (stage IBI-IVA) diagnosed from 2003 to 2012 with PET-avid pelvic nodes treated with extended field IMRT (45 Gy in 25 fractions with concomitant boost to involved nodes to a median of 55 Gy in 25 fractions) with concurrent cisplatin and brachytherapy were retrospectively analyzed. The nodal location was pelvis-only in 41 patients (67%) and pelvis + para-aortic in 20 patients (33%). There were a total of 179 nodes, with a median number of positive nodes of 2 (range, 1-16 nodes) per patient and a median nodal size of 1.8 cm (range, 0.7-4.5 cm). Response was assessed by PET/CT at 12 to 16 weeks. Results: Complete clinical and imaging response at the first follow-up visit was seen in 77% of patients. At a mean follow-up time of 29 months (range, 3-116 months), 8 patients experienced recurrence. The sites of persistent/recurrent disease were as follows: cervix 10 (16.3%), regional nodes 3 (4.9%), and distant 14 (23%). The rate of para-aortic failure in patients with pelvic-only nodes was 2.5%. There were no significant differences in recurrence patterns by the number/location of nodes, largest node size, or maximum node standardized uptake value. The rate of late grade 3+ adverse events was 4%. Conclusions: Extended field IMRT was well tolerated and resulted in low regional recurrence

  15. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  16. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  17. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  18. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  19. Guiding and trapping microparticles in an extended surface field

    NASA Astrophysics Data System (ADS)

    Garces-Chavez, Veneranda; Spalding, Gabriel C.; Dholakia, Kishan

    2004-10-01

    We made use of near-field photonic forces in order to manipulate and trap microparticles in an extended area above a solid surface. Structures in evanescent field were created either by imaging a Ronchi ruler (fringe structure) or by focusing five beams (spot structure) at the top of a prism. The surface field couples to microparticles in close proximity, where the near-field wave can be converted to a propagating wave, via photon tunnelling across the gap from prism to microparticles. Due to transverse optical gradients and radiation pressure, microparticles immersed in water were laterally trapped and longitudinally guided along the direction of the evanescent waves. By splitting the laser beam into two equal counterpropagating beams, another evanescent wave was created exactly with the same structure in the opposite direction to the first one. We use this geometry we demonstrate stably trap of thousand of microparticles over an area of about a millimetre squared. Red blood and yeast cells were also individually trapped in an array of potential wells. We believe this is the first demonstration of guiding and, separately, trapped in unison multiple microparticles on a surface.

  20. Exact solution for the equilibrium problem between radiation and classical nonrelativistic extended charges

    NASA Astrophysics Data System (ADS)

    Blanco, R.; Pesquera, L.

    1986-08-01

    The problem of radiation-matter equilibrium for classical nonrelativistic rigid extended charges is studied by using the dipolar approximation for the fields. An exact solution is obtained for a large class of spherically symmetric distribution charges. It is shown that equilibrium holds with the Rayleigh-Jeans radiation. As concerns the equilibrium distribution for the matter, the Maxwell-Boltzmann law is obtained only when the radius is large enough for the electromagnetic mass to be negligible.

  1. Extended-Field Isocentric Irradiation for Hodgkin's Disease

    PubMed Central

    Kumar, P. Pradeep; Good, Roger R.; Jones, Ernest O.; Somers, James E.; McAnulty, Bruce E.; McCaul, Gayle F.; Rogers, Sally S.; Reeves, Michael A.; Sanders, Cheryl K.

    1987-01-01

    Extended-field therapeutic irradiation is the treatment of choice for the majority of patients diagnosed with pathologic stages I and II Hodgkin's disease, and total nodal irradiation can be effectively used to treat selected stage III Hodgkin's patients. Standard 100-cm source-to-axis distance extended-field isocentric technique and results are presented. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7 PMID:3312619

  2. Compact and extended objects from self-interacting phantom fields

    NASA Astrophysics Data System (ADS)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Makhmudov, Arislan; Urazalina, Ainur; Singleton, Douglas; Scott, John

    2016-07-01

    In this work, we investigate localized and extended objects for gravitating, self-interacting phantom fields. The phantom fields come from two scalar fields with a "wrong-sign" (negative) kinetic energy term in the Lagrangian. This study covers several solutions supported by these phantom fields: phantom balls, traversable wormholes, phantom cosmic strings, and "phantom" domain walls. These four systems are solved numerically, and we try to draw out general, interesting features in each case.

  3. Radiative reactions in halo effective field theory

    NASA Astrophysics Data System (ADS)

    Rupak, Gautam

    2016-03-01

    In this article we review the recent progress in radiative reaction calculations in halo effective field theory. We look at radiative capture and breakup processes that involve a halo nucleus with a single valence neutron or proton. Looking at 7Li(n,γ) 8Li,14C(n,γ)15C and related reactions, the dominant source of theoretical uncertainty in s- and p-wave halo nuclei reaction calculations is quantified in a model-independent framework. The analysis for neutron halos is extended to proton halo systems. The effective field theory results quantify which observable parameters of the strong interaction at low energy need to be determined more precisely for accurate cross-section calculations.

  4. Database of extended radiation maps and its access system

    NASA Astrophysics Data System (ADS)

    Verkhodanov, O. V.; Naiden, Ya. V.; Chernenkov, V. N.; Verkhodanova, N. V.

    2014-01-01

    We describe the architecture of the developed computing web server http://cmb.sao.ru allowing to synthesize the maps of extended radiation on the full sphere from the spherical harmonics in the GLESP pixelization grid, smooth them with the power beam pattern with various angular resolutions in the multipole space, and identify regions of the sky with given coordinates. We describe the server access and administration systems as well as the technique constructing the sky region maps, organized in Python in the Django web-application development framework.

  5. Extended depth of field imaging for high speed object analysis

    NASA Technical Reports Server (NTRS)

    Ortyn, William (Inventor); Basiji, David (Inventor); Frost, Keith (Inventor); Liang, Luchuan (Inventor); Bauer, Richard (Inventor); Hall, Brian (Inventor); Perry, David (Inventor)

    2011-01-01

    A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.

  6. Size variation monitoring of an extended thermal radiation source by chromatic filtering

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Jung; Kim, Min-Suk; Kim, Kwang-Suk

    1998-07-01

    Size variation monitoring of an extended thermal radiation source with single-element detectors is reported. The extended thermal radiation source is imaged on an aperture and the transmitted spectroscopic signals are measured with single-element detectors. The chromatic aberration introduced in the imaging optics causes the detector field of view to vary due to the wavelength. Therefore, the spectroscopic signals obtained from several single-element detectors with dichromatic mirrors and band-pass filters can provide information on size variation as well as intensity of the extended thermal radiation source. This chromatic filtering was applied to size variation monitoring of a molten pool in pulsed Nd:YAG laser welding. The size variation can be monitored during the cooling process with a time interval of up to 50 μs and the moment when the size of the molten pool becomes the same as that of the focused laser spot can be determined with an accuracy of 0.1 ms. Furthermore, the intermediate stable state of a molten pool was detected and its pulse-to-pulse size variation can be applied to weld process monitoring.

  7. An Iterative Phase-Space Explicit Discontinuous Galerkin Method for Stellar Radiative Transfer in Extended Atmospheres

    SciTech Connect

    de Almeida, V.F.

    2004-01-28

    A phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equation and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicularly to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiative intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiative intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.

  8. Extending methods: using Bourdieu's field analysis to further investigate taste

    NASA Astrophysics Data System (ADS)

    Schindel Dimick, Alexandra

    2015-06-01

    In this commentary on Per Anderhag, Per-Olof Wickman and Karim Hamza's article Signs of taste for science, I consider how their study is situated within the concern for the role of science education in the social and cultural production of inequality. Their article provides a finely detailed methodology for analyzing the constitution of taste within science education classrooms. Nevertheless, because the authors' socially situated methodology draws upon Bourdieu's theories, it seems equally important to extend these methods to consider how and why students make particular distinctions within a relational context—a key aspect of Bourdieu's theory of cultural production. By situating the constitution of taste within Bourdieu's field analysis, researchers can explore the ways in which students' tastes and social positionings are established and transformed through time, space, place, and their ability to navigate the field. I describe the process of field analysis in relation to the authors' paper and suggest that combining the authors' methods with a field analysis can provide a strong methodological and analytical framework in which theory and methods combine to create a detailed understanding of students' interest in relation to their context.

  9. Cosmological magnetic fields from inflation in extended electromagnetism

    SciTech Connect

    Beltran Jimenez, Jose; Maroto, Antonio L.

    2011-01-15

    In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Because of the high electric conductivity of the cosmic plasma after inflation, the electric charge density generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields B{sub {lambda}>}10{sup -12} G are typically generated with coherence lengths ranging from subgalactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.

  10. Volumetric retinal fluorescence microscopic imaging with extended depth of field

    NASA Astrophysics Data System (ADS)

    Li, Zengzhuo; Fischer, Andrew; Li, Wei; Li, Guoqiang

    2016-03-01

    Wavefront-engineered microscope with greatly extended depth of field (EDoF) is designed and demonstrated for volumetric imaging with near-diffraction limited optical performance. A bright field infinity-corrected transmissive/reflective light microscope is built with Kohler illumination. A home-made phase mask is placed in between the objective lens and the tube lens for ease of use. General polynomial function is adopted in the design of the phase plate for robustness and custom merit function is used in Zemax for optimization. The resulting EDoF system achieves an engineered point spread function (PSF) that is much less sensitive to object depth variation than conventional systems and therefore 3D volumetric information can be acquired in a single frame with expanded tolerance of defocus. In Zemax simulation for a setup using 32X objective (NA = 0.6), the EDoF is 20μm whereas a conventional one has a DoF of 1.5μm, indicating a 13 times increase. In experiment, a 20X objective lens with NA = 0.4 was used and the corresponding phase plate was designed and fabricated. Retinal fluorescence images of the EDoF microscope using passive adaptive optical phase element illustrate a DoF around 100μm and it is able to recover the volumetric fluorescence images that are almost identical to in-focus images after post processing. The image obtained from the EDoF microscope is also better in resolution and contrast, and the retinal structure is better defined. Hence, due to its high tolerance of defocus and fine restored image quality, EDoF optical systems have promising potential in consumer portable medical imaging devices where user's ability to achieve focus is not optimal, and other medical imaging equipment where achieving best focus is not a necessary.

  11. Extended quintessence with nonminimally coupled phantom scalar field

    SciTech Connect

    Hrycyna, Orest; Szydlowski, Marek

    2007-12-15

    We investigate evolutional paths of an extended quintessence with a nonminimally coupled phantom scalar field {psi} to the Ricci curvature. The dynamical system methods are used to investigate typical regimes of dynamics at the late time. We demonstrate that there are two generic types of evolutional scenarios which approach the attractor (a focus or a node type critical point) in the phase space: the quasioscillatory and monotonic trajectories approach the attractor which represents the Friedmann-Robertson-Walker model with the cosmological constant. We demonstrate that the dynamical system admits an invariant two-dimensional submanifold and discuss that which cosmological scenario is realized depends on the behavior of the system on the phase plane ({psi},{psi}{sup '}). We formulate simple conditions on the value of the coupling constant {xi} for which trajectories tend to the focus in the phase plane and hence damping oscillations around the mysterious value w=-1. We describe this condition in terms of slow-roll parameters calculated at the critical point. We discover that the generic trajectories in the focus-attractor scenario come from the unstable node. We also investigate the exact form of the parametrization of the equation of state parameter w(z) (directly determined from dynamics) which assumes a different form for both scenarios.

  12. Time delay and extended halo for constraints on the intergalactic magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Pei; Dai, Zi-Gao

    2015-12-01

    Primary gamma rays emitted from extragalactic very-high-energy (VHE) sources, such as blazars, will generate cascade radiation in intergalactic space with a scale of ˜ 100 Mpc, for z ˜ 0.1 and Eγ ˜ 1TeV. These cascades proceed through electron-positron pair production and inverse Compton (IC) scattering in the cosmic background radiation fields, mainly cosmic microwave background (CMB) radiation and extragalactic background light in the voids of the universe. The existence of an intergalactic magnetic field (IGMF) would deflect paths of electron-positron pairs that scatter CMB photons, causing some observable effects, such as time delay, an extended halo, and a spectral change. Here we reanalyze the diffusion of an electron jet deflected by IGMF and propose a unified semi-analytical model. By using publicly available data from the Fermi/LAT detector and contemporaneous TeV observations, we find that the cascade photon flux is not significantly affected by the IGMF strength for non-variable blazars when the IGMF is weaker than ˜ 10-16 G. This result is clearly different from previous works that analyzed the extended halo and time delay separately for non-variable blazars and flaring blazars. By applying our model to two extreme blazars (1ES 0229+200 and 1ES 1218+304), we obtain the IGMF lower limit of order ≳ 10-13 ˜ 10-14 G in the non-variable case, which is a stronger constraint on the IGMF strength than previous works (≳ 10-16 ˜ 10-18 G), and ≳ 10-18 ˜ 10-19 G in the case of flaring blazars. Furthermore, we study the light curves and extended halo of the cascade photons by considering the effects of the IGMF.

  13. Chemical Processes in Astrophysical Radiation Fields

    SciTech Connect

    Stancil, P.C.; Dalgarno, A.

    1997-12-31

    The effects of stimulated photon emission on chemical processes in a radiation field are considered and their influence on the chemistry of the early universe and other astrophysical environments is investigated. Spontaneous and stimulated radiative attachment rate coefficients for H(-), Li(-) and C(-) are presented.

  14. High Intensity Radiated Fields (HIRF) project plan

    NASA Astrophysics Data System (ADS)

    Glynn, Michael S.; Blair, Jerry T.; Hintze, M. Marx

    1991-09-01

    Addressed here is the Federal Aviation Administration's approach to High Intensity Radiated Fields (HIRF) affecting the aviation community. Near- and far-term tasks are described. Deliverables, program management, scheduling, and cost issues are discussed.

  15. Hybrid Imaging for Extended Depth of Field Microscopy

    NASA Astrophysics Data System (ADS)

    Zahreddine, Ramzi Nicholas

    An inverse relationship exists in optical systems between the depth of field (DOF) and the minimum resolvable feature size. This trade-off is especially detrimental in high numerical aperture microscopy systems where resolution is pushed to the diffraction limit resulting in a DOF on the order of 500 nm. Many biological structures and processes of interest span over micron scales resulting in significant blurring during imaging. This thesis explores a two-step computational imaging technique known as hybrid imaging to create extended DOF (EDF) microscopy systems with minimal sacrifice in resolution. In the first step a mask is inserted at the pupil plane of the microscope to create a focus invariant system over 10 times the traditional DOF, albeit with reduced contrast. In the second step the contrast is restored via deconvolution. Several EDF pupil masks from the literature are quantitatively compared in the context of biological microscopy. From this analysis a new mask is proposed, the incoherently partitioned pupil with binary phase modulation (IPP-BPM), that combines the most advantageous properties from the literature. Total variation regularized deconvolution models are derived for the various noise conditions and detectors commonly used in biological microscopy. State of the art algorithms for efficiently solving the deconvolution problem are analyzed for speed, accuracy, and ease of use. The IPP-BPM mask is compared with the literature and shown to have the highest signal-to-noise ratio and lowest mean square error post-processing. A prototype of the IPP-BPM mask is fabricated using a combination of 3D femtosecond glass etching and standard lithography techniques. The mask is compared against theory and demonstrated in biological imaging applications.

  16. The effects of emitter-tied field plates on lateral PNP ionizing radiation response

    SciTech Connect

    Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R.; Pease, R.L.; Fleetwood, D.M.; Kosier, S.L.

    1998-03-01

    Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps.

  17. Radiated fields from an electromagnetic pulse simulator

    NASA Astrophysics Data System (ADS)

    Pelletier, M.; Delisle, G. Y.; Kashyap, S.

    Simulators of electromagnetic pulses allow generation within a limited time of very high-intensity fields such as those produced in a nuclear explosion. These fields can be radiated out of the test zone at a lower but nevertheless significant level; if the intensity of these fields is sufficiently high, damage to humans and electronic equipment can result. An evaluation of the potential danger of these simulator emissions requires knowledge of the amplitude, duration, and the energy of the radiated impulses. A technique is presented for calculating the fields radiated by a parallel-plane electromagnetic pulse simulator. The same method can also be applied to a rhombic type simulator. Sample numerical results are presented along with the calculations of the energy and power density and a discussion of the formation of the field in the frequency domain.

  18. Extending radiative transfer models by use of Bayes rule. [in atmospheric science

    NASA Technical Reports Server (NTRS)

    Whitney, C.

    1977-01-01

    This paper presents a procedure that extends some existing radiative transfer modeling techniques to problems in atmospheric science where curvature and layering of the medium and dynamic range and angular resolution of the signal are important. Example problems include twilight and limb scan simulations. Techniques that are extended include successive orders of scattering, matrix operator, doubling, Gauss-Seidel iteration, discrete ordinates and spherical harmonics. The procedure for extending them is based on Bayes' rule from probability theory.

  19. Building Relationships within Extended Field Placements in Elementary Education

    ERIC Educational Resources Information Center

    Hughes, Michelle; McCartney, Holly

    2015-01-01

    Researchers, using qualitative methodology, investigated whether an extended model for organizing fieldwork could potentially elevate the skills, knowledge, and dispositions of Elementary (prek-6) teacher candidates in this study. Questionnaires, focus group interviews, and observations from the pre-service and veteran teachers provided data on…

  20. The NASA High Intensity Radiated Fields Laboratory

    NASA Technical Reports Server (NTRS)

    Williams, Reuben A.

    1997-01-01

    High Intensity Radiated Fields (HIRF) are the result of a multitude of intentional and nonintentional electromagnetic sources that currently exists in the world. Many of today's digital systems are susceptible to electronic upset if subjected to certain electromagnetic environments (EME). Modern aerospace designers and manufacturers increasingly rely on sophisticated digital electronic systems to provide critical flight control in both military, commercial, and general aviation aircraft. In an effort to understand and emulate the undesired environment that high energy RF provides modern electronics, the Electromagnetics Research Branch (ERB) of the Flight Electronics and Technology Division (FETD) conducts research on RF and microwave measurement methods related to the understanding of HIRF. In the High Intensity Radiated Fields Laboratory, the effects of high energy radiating electromagnetic fields on avionics and electronic systems are tested and studied.

  1. Radiation Entropy and Near-Field Thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuomin M.

    2008-08-01

    Radiation entropy was key to the original derivation of Planck's law of blackbody radiation, in 1900. This discovery opened the door to quantum mechanical theory and Planck was awarded the Nobel Prize in Physics in 1918. Thermal radiation plays an important role in incandescent lamps, solar energy utilization, temperature measurements, materials processing, remote sensing for astronomy and space exploration, combustion and furnace design, food processing, cryogenic engineering, as well as numerous agricultural, health, and military applications. While Planck's law has been fruitfully applied to a large number of engineering problems for over 100 years, questions have been raised about its limitation in micro/nano systems, especially at subwavelength distances or in the near field. When two objects are located closer than the characteristic wavelength, wave interference and photon tunneling occurs that can result in significant enhancement of the radiative transfer. Recent studies have shown that the near-field effects can realize emerging technologies, such as superlens, sub-wavelength light source, polariton-assisted nanolithography, thermophotovoltaic (TPV) systems, scanning tunneling thermal microscopy, etc. The concept of entropy has also been applied to explain laser cooling of solids as well as the second law efficiency of devices that utilize thermal radiation to produce electricity. However, little is known as regards the nature of entropy in near-field radiation. Some history and recent advances are reviewed in this presentation with a call for research of radiation entropy in the near field, due to the important applications in the optimization of thermophotovoltaic converters and in the design of practical systems that can harvest photon energies efficiently.

  2. Potential theoretic methods for far field sound radiation calculations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Stenger, Edward J.; Scott, J. R.

    1995-01-01

    In the area of computational acoustics, procedures which accurately predict the far-field sound radiation are much sought after. A systematic development of such procedures are found in a sequence of papers by Atassi. The method presented here is an alternate approach to predicting far field sound based on simple layer potential theoretic methods. The main advantages of this method are: it requires only a simple free space Green's function, it can accommodate arbitrary shapes of Kirchoff surfaces, and is readily extendable to three-dimensional problems. Moreover, the procedure presented here, though tested for unsteady lifting airfoil problems, can easily be adapted to other areas of interest, such as jet noise radiation problems. Results are presented for lifting airfoil problems and comparisons are made with the results reported by Atassi. Direct comparisons are also made for the flat plate case.

  3. Classical extended charge subjected to linear forces and Rayleigh-Jeans radiation

    NASA Astrophysics Data System (ADS)

    Blanco, R.; Pesquera, L.; Jimenez, J. L.

    1986-07-01

    We study a rigid classical extended charge in the nonrelativistic approximation, first subjected to a linear force, and second immersed in an electromagnetic radiation with a Rayleigh-Jeans (RJ) spectrum. A Yukawa distribution is considered for the charge, when necessary, to get explicit results. A comparison with the Abraham-Lorentz (AL) model is made. Our results show that the AL model is a good approximation for the extended charge only if the external forces do not contain high frequencies. However, if we consider RJ radiation big discrepancies appear. We also find that the linear system follows the Maxwell-Boltzmann law only for large enough values of the radius.

  4. Assessment of occupational exposure to radiofrequency fields and radiation.

    PubMed

    Cooper, T G; Allen, S G; Blackwell, R P; Litchfield, I; Mann, S M; Pope, J M; van Tongeren, M J A

    2004-01-01

    The use of personal monitors for the assessment of exposure to radiofrequency fields and radiation in potential future epidemiological studies of occupationally exposed populations has been investigated. Data loggers have been developed for use with a commercially available personal monitor and these allowed personal exposure records consisting of time-tagged measurements of electric and magnetic field strength to be accrued over extended periods of the working day. The instrumentation was worn by workers carrying out tasks representative of some of their typical daily activities at a variety of radio sites. The results indicated significant differences in the exposures of workers in various RF environments. A number of measures of exposure have been examined with a view to assessing possible exposure metrics for epidemiological studies. There was generally a good correlation between a given measure of electric field strength and the same measure of magnetic field strength. PMID:15266067

  5. Extending membrane pore lifetime with AC fields: A modeling study

    NASA Astrophysics Data System (ADS)

    Garner, Allen L.; Bogdan Neculaes, V.

    2012-07-01

    AC (sinusoidal) fields with frequencies from kilohertz to gigahertz have been used for gene delivery. To understand the impact of AC fields on electroporation dynamics, we couple a nondimensionalized Smoluchowski equation to an exact representation of the cell membrane voltage obtained solving the Laplace equation. The slope of the pore energy function, dφ/dr, with respect to pore radius is critical in predicting pore dynamics in AC fields because it can vary from positive, inducing pore shrinkage, to negative, driving pore growth. Specifically, the net sign of the integral of dφ/dr over time determines whether the average pore size grows (negative), shrinks (positive), or oscillates (zero) indefinitely about a steady-state radius, rss. A simple analytic relationship predicting the amplitude of the membrane voltage necessary for this behavior agrees well with simulation for frequencies from 500 kHz to 5 MHz for rss < 10 nm. For larger pore size (rss > 10 nm), dφ/dr oscillates about a negative value, suggesting that a net creation of pores may be necessary to maintain a constant pore size. In both scenarios, the magnitude of rss depends only upon the amplitude of the membrane voltage and not directly upon the applied field frequency other than the relationship between the amplitudes of the applied field and membrane voltage.

  6. Enhanced cosmic ray anisotropies and the extended solar magnetic field

    SciTech Connect

    Swinson, D.B.; Saito, T.; Mori, S.

    1981-10-01

    Saito's two-hemisphere model for the three-dimensional magnetic structure of the inner heliomagnetosphere is used to determine the orientation of the two solar magnetic hemispheres. This orientation, as viewed from the earth, varies throughout the year. The orientations during 1974 are presented and are confirmed by satellite data for the interplanetary magnetic field. These data suggest a role for the field component perpendicular to the ecliptic plane B/sub z/ in giving rise to cosmic ray anisotropies detected at the earth. It is shown that an enhanced solar diurnal variation in cosmic ray intensity at the earth can arise from the constructive interference of three cosmic ray anisotropies, two of which depend on the direction of the interplanetary magnetic field. This is demonstrated by using cosmic ray data from the Nagaya muon telescope and underground muon telescopes in Bolivia, Embudo (New Mexico), and Socorro (New Mexico).

  7. Bessel beam Grueneisen photoacoustic microscopy with extended depth of field

    NASA Astrophysics Data System (ADS)

    Shi, Junhui; Wang, Lidai; Noordam, Cedric; Wang, Lihong V.

    2016-03-01

    The short focal depth of a Gaussian beam limits the volumetric imaging speed of optical resolution photoacoustic microscopy (OR-PAM). A Bessel beam, which is diffraction-free, provides a long focal depth, but its side-lobes may deteriorate image quality when the Bessel beam is directly employed to excite photoacoustic signals in ORPAM. Here, we present a nonlinear approach based on the Grueneisen relaxation effect to suppress the side-lobe artifacts in photoacoustic imaging. This method extends the focal depth of OR-PAM and speeds up volumetric imaging. We experimentally demonstrated a 1-mm focal depth with a 7-μm lateral resolution and volumetrically imaged a carbon fiber and red blood cell samples.

  8. Extended Magnetization of Superconducting Pellets in Highly Inhomogeneous Magnetic Field

    NASA Astrophysics Data System (ADS)

    Maynou, R.; López, J.; Granados, X.; Torres, R.; Bosch, R.

    The magnetization of superconducting pellets is a worth point in the development of trapped flux superconducting motors. Experimental and simulated data have been reported extensively according to the framework of one or several pulses of a homogeneous magnetizing field applied to a pellet or a set of pellets. In case of cylindrical rotors of low power motors with radial excitation, however, the use of the copper coils to produce the starting magnetization of the pellets produces a highly inhomogeneous magnetic field which cannot be reduced to a 2D standard model. In this work we present an analysis of the magnetization of the superconducting cylindrical rotor of a small motor by using a commercial FEM program, being the rotor magnetized by the working copper coils of the motor. The aim of the study is a report of the magnetization obtained and theheat generated in the HTSC pellets.

  9. Bob West field: Extending upper Wilcox production in south Texas

    SciTech Connect

    Montgomery, S.L.

    1997-05-01

    Discovered in 1990 near the southern limit of the upper Wilcox gas-producing trend in south Texas, Bob West field is the largest pool to date in this trend, with probable reserves of up to 1 Tcf. The field produces from seven major sandstone {open_quotes}packages,{close_quotes} comprising 27 individual reservoirs and distributed over 3500 productive acres. The sandstones represent either fluvial/deltaic deposits or delta-margin barrier bar and strand-plain sediments. Porosities range up to 20%, but permeabilities are low, commonly less than 1.5 md. Artificial stimulation is therefore required to establish commercial rates of production. Bob West lies on a faulted anticline between two major growth-fault structures, with several stages of structural development evident. Such development has directly affected sandstone thickness. Rates of production are higher at Bob West than at other upper Wilcox fields due to commingling of zones, large-scale fracture treatments, and directional drilling. Discovery at Bob West has significant implications for renewed exploration in this part of the upper Wilcox gas trend.

  10. Measurement of displacement vector fields of extended objects

    NASA Astrophysics Data System (ADS)

    Osten, Wolfgang; Jüptner, Werner

    The main effort in laser metrology during the last 15 years has been focussed on the development of high precision phase measurement techniques, since the phase is the primary quantity for interferometrical testing. However, the phase distribution gives only a first impression of the deformation of the surface. In practice, the three-dimensional displacement components are required if the mechanical behaviour of the object under load is to be investigated. To calculate displacement components some further quantities are necessary, e.g. the three coordinates of the object points. Although the contour measurement can also be reduced to a phase measurement problem, the measurement of three-dimensional displacements is more complex than a high precision phase evaluation. From the practical point of view, four main tasks have to be performed: planning of the experiment, design of the interferometer, acquisition of data and evaluation of data. This paper deals with a discussion of the theoretical background of the last three procedures concerning the state of the art and describes some general rules as well as some problems remaining to be solved for the investigation of extended specimens.

  11. Extended depth of field system for long distance iris acquisition

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Lin; Hsieh, Sheng-Hsun; Hung, Kuo-En; Yang, Shi-Wen; Li, Yung-Hui; Tien, Chung-Hao

    2012-10-01

    Using biometric signatures for identity recognition has been practiced for centuries. Recently, iris recognition system attracts much attention due to its high accuracy and high stability. The texture feature of iris provides a signature that is unique for each subject. Currently most commercial iris recognition systems acquire images in less than 50 cm, which is a serious constraint that needs to be broken if we want to use it for airport access or entrance that requires high turn-over rate . In order to capture the iris patterns from a distance, in this study, we developed a telephoto imaging system with image processing techniques. By using the cubic phase mask positioned front of the camera, the point spread function was kept constant over a wide range of defocus. With adequate decoding filter, the blurred image was restored, where the working distance between the subject and the camera can be achieved over 3m associated with 500mm focal length and aperture F/6.3. The simulation and experimental results validated the proposed scheme, where the depth of focus of iris camera was triply extended over the traditional optics, while keeping sufficient recognition accuracy.

  12. Extended emission wavelength of random dye lasers by exploiting radiative and non-radiative energy transfer

    NASA Astrophysics Data System (ADS)

    Wan Ismail, Wan Zakiah; Goldys, Ewa M.; Dawes, Judith M.

    2016-02-01

    We demonstrate long-wavelength operation (>700 nm) of random dye lasers (using a methylene blue dye) with the addition of rhodamine 6G and titania, enabled by radiative and non-radiative energy transfer. The pump energy is efficiently absorbed and transferred to the acceptors, to support lasing in random dye lasers in the near infrared. The optimum random laser performance with the highest emission intensity and the lowest lasing threshold was achieved for a concentration of methylene blue as the acceptor equal to 6× the concentration of rhodamine 6G (donor). Excessive levels of methylene blue increased the lasing threshold and broadened the methylene blue emission linewidth due to dye quenching from re-absorption. This is due to competition between the donor emission and energy transfer and between absorption loss and fluorescence quenching. The radiative and non-radiative energy transfer is analyzed as a function of the acceptor concentration and pump energy density, with consideration of the spectral overlap. The dependence of the radiative and non-radiative transfer efficiency on the acceptor concentration is obtained, and the energy transfer parameters, including the radiative and non-radiative energy transfer rate constants ( K R and K NR), are investigated using Stern-Volmer analysis. The analysis indicates that radiative energy transfer is the dominant energy transfer mechanism in this system.

  13. Radiation Effects on Current Field Programmable Technologies

    NASA Technical Reports Server (NTRS)

    Katz, R.; LaBel, K.; Wang, J. J.; Cronquist, B.; Koga, R.; Penzin, S.; Swift, G.

    1997-01-01

    Manufacturers of field programmable gate arrays (FPGAS) take different technological and architectural approaches that directly affect radiation performance. Similar y technological and architectural features are used in related technologies such as programmable substrates and quick-turn application specific integrated circuits (ASICs). After analyzing current technologies and architectures and their radiation-effects implications, this paper includes extensive test data quantifying various devices total dose and single event susceptibilities, including performance degradation effects and temporary or permanent re-configuration faults. Test results will concentrate on recent technologies being used in space flight electronic systems and those being developed for use in the near term. This paper will provide the first extensive study of various configuration memories used in programmable devices. Radiation performance limits and their impacts will be discussed for each design. In addition, the interplay between device scaling, process, bias voltage, design, and architecture will be explored. Lastly, areas of ongoing research will be discussed.

  14. Radiative instabilities in sheared magnetic field

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Sparks, L.; Van Hoven, G.

    1988-01-01

    The structure and growth rate of the radiative instability in a sheared magnetic field B have been calculated analytically using the Braginskii fluid equations. In a shear layer, temperature and density perturbations are linked by the propagation of sound waves parallel to the local magnetic field. As a consequence, density clumping or condensation plays an important role in driving the instability. Parallel thermal conduction localizes the mode to a narrow layer where K(parallel) is small and stabilizes short wavelengths k larger-than(c) where k(c) depends on the local radiation and conduction rates. Thermal coupling to ions also limits the width of the unstable spectrum. It is shown that a broad spectrum of modes is typically unstable in tokamak edge plasmas and it is argued that this instability is sufficiently robust to drive the large-amplitude density fluctuations often measured there.

  15. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  16. Haemopoietic cell renewal in radiation fields.

    PubMed

    Fliedner, T M; Nothdurft, W; Tibken, B; Hofer, E; Weiss, M; Kindler, H

    1994-10-01

    Space flight activities are inevitably associated with a chronic exposure of astronauts to a complex mixture of ionising radiation. Although no acute radiation consequences are to be expected as a rule, the possibility of Solar Particle Events (SPE) associated with relatively high doses of radiation (1 or more Gray) cannot be excluded. It is the responsibility of physicians in charge of the health of astronauts to evaluate before, during and after space flight activities the functional status of haemopoietic cell renewal. Chronic low level exposure of dogs indicate that daily gamma-exposure doses below about 2 cGy are tolerated for several years as far as blood cell concentrations are concerned. However, the stem cell pool may be severely affected. The maintenance of sufficient blood cell counts is possible only through increased cell production to compensate for the radiation inflicted excess cell loss. This behaviour of haemopoietic cell renewal during chronic low level exposure can be simulated by bioengineering models of granulocytopoiesis. It is possible to define a "turbulence region" for cell loss rates, below which an prolonged adaptation to increased radiation fields can be expected to be tolerated. On the basis of these experimental results, it is recommended to develop new biological indicators to monitor haemopoietic cell renewal at the level of the stem cell pool using blood stem cells in addition to the determination of cytokine concentrations in the serum (and other novel approaches). To prepare for unexpected haemopoietic effects during prolonged space missions, research should be increased to modify the radiation sensitivity of haemopoietic stem cells (for instance by the application of certain regulatory molecules). In addition, a "blood stem cell bank" might be established for the autologous storage of stem cells and for use in space activities keeping them in a radiation protected container. PMID:11539991

  17. Haemopoietic cell renewal in radiation fields

    NASA Astrophysics Data System (ADS)

    Fliedner, T. M.; Nothdurft, W.; Tibken, B.; Hofer, E.; Weiss, M.; Kindler, H.

    1994-10-01

    Space flight activities are inevitably associated with a chronic exposure of astronauts to a complex mixture of ionising radiation. Although no acute radiation consequences are to be expected as a rule, the possibility of Solar Particle Events (SPE) associated with relatively high doses of radiation (1 or more Gray) cannot be excluded. It is the responsibility of physicians in charge of the health of astronauts to evaluate before, during and after space flight activities the functional status of haemopoietic cell renewal. Chronic low level exposure of dogs indicate that daily gamma-exposure doses below about 2 cGy are tolerated for several years as far as blood cell concentrations are concerned. However, the stem cell pool may be severely affected. The maintenance of sufficient blood cell counts is possible only through increased cell production to compensate for the radiation inflicted excess cell loss. This behaviour of haemopoietic cell renewal during chronic low level exposure can be simulated by bioengineering models of granulocytopoiesis. It is possible to define a ``turbulence region'' for cell loss rates, below which an prolonged adaptation to increased radiation fields can be expected to be tolerated. On the basis of these experimental results, it is recommended to develop new biological indicators to monitor haemopoietic cell renewal at the level of the stem cell pool using blood stem cells in addition to the determination of cytokine concentrations in the serum (and other novel approaches). To prepare for unexpected haemopoietic effects during prolonged space missions, research should be increased to modify the radiation sensitivity of haemopoietic stem cells (for instance by the application of certain regulatory molecules). In addition, a ``blood stem cell bank'' might be established for the autologous storage of stem cells and for use in space activities keeping them in a radiation protected container.

  18. Extendible-retractable electric field measurement antenna for IMP J

    NASA Technical Reports Server (NTRS)

    Larrick, W.

    1973-01-01

    An antenna dispenser mechanism for the IMP J spacecraft was designed, fabricated, and tested. Upon command the mechanism deploys or retracts a conductor for use as a receiving antenna for an electric field measurement experiment. Five identical units were fabricated and tested to the IMP H & J environmental test specification. Of these, four are designated for flight on the IMP J spacecraft and one as a prototype flight spare. The testing program was successfully completed although certain design modifications were required as problems were uncovered by the testing; particularly thermal vacuum operation. The antenna mechanism functions well under the expected environmental and loading conditions. The wear life and load capability of the dry molybdenum disulphide lubricant originally used on the heavily loaded worm and gear pair were disappointing and a substitute material was applied. The lubricant finally applied performed well; although other problems were generated.

  19. Development of extended field Doppler velocimetry for turbomachinery applications

    NASA Astrophysics Data System (ADS)

    Ford, H. D.; Tatam, R. P.

    1997-08-01

    The development of a portable, single component Doppler global velocimetry (DGV) head, based around a wavelength-stabilised argonion laser and a fast digital image-processing system, is described. The normalised two-dimensional DGV image, in which intensities are linearly related to velocities, can be displayed and updated at the 25 Hz camera frame rate, greatly easing the problem of system alignment. The effect of each individual system component upon the velocity resolution achieved for the system as a whole is discussed, and correction factors are calculated to account for the finite aperture and field of view of real systems and for divergence of the illuminating light sheet. Axial velocities of up to 100 m/s in a straight duct flow have been measured, demonstrating an rms velocity resolution of 2.5 m/s. The potential of the technique for gas turbine applications has been demonstrated by measuring the position of a shock in a transonic flow. At a Mach number of 2.3 and mass flow rate of 0.79 kg/s the velocity change across the shock was measured to be approximately 130 m/s.

  20. Extending generalized Kubelka-Munk to three-dimensional radiative transfer.

    PubMed

    Sandoval, Christopher; Kim, Arnold D

    2015-08-10

    The generalized Kubelka-Munk (gKM) approximation is a linear transformation of the double spherical harmonics of order one (DP1) approximation of the radiative transfer equation. Here, we extend the gKM approximation to study problems in three-dimensional radiative transfer. In particular, we derive the gKM approximation for the problem of collimated beam propagation and scattering in a plane-parallel slab composed of a uniform absorbing and scattering medium. The result is an 8×8 system of partial differential equations that is much easier to solve than the radiative transfer equation. We compare the solutions of the gKM approximation with Monte Carlo simulations of the radiative transfer equation to identify the range of validity for this approximation. We find that the gKM approximation is accurate for isotropic scattering media that are sufficiently thick and much less accurate for anisotropic, forward-peaked scattering media. PMID:26368374

  1. Limited-field radiation for bifocal germinoma

    SciTech Connect

    Lafay-Cousin, Lucie . E-mail: lucie.lafay-cousin@sickkids.ca; Millar, Barbara-Ann; Mabbott, Donald; Spiegler, Brenda; Drake, Jim; Bartels, Ute; Huang, Annie; Bouffet, Eric

    2006-06-01

    Purpose: To report the incidence, characteristics, treatment, and outcomes of bifocal germinomas treated with chemotherapy followed by focal radiation. Methods and Materials: This was a retrospective review. Inclusion criteria included radiologic diagnosis of bifocal germinoma involving the pineal and neurohypophyseal region, no evidence of dissemination on spinal MRI, negative results from cerebrospinal fluid cytologic evaluation, and negative tumor markers. Results: Between 1995 and 2004, 6 patients (5 male, 1 female; median age, 12.8 years) fulfilled the inclusion criteria. All had symptoms of diabetes insipidus at presentation. On MRI, 4 patients had a pineal and suprasellar mass, and 2 had a pineal mass associated with abnormal neurohypophyseal enhancement. All patients received chemotherapy followed by limited-field radiation and achieved complete remission after chemotherapy. The radiation field involved the whole ventricular system (range, 2,400-4,000 cGy) with or without a boost to the primary lesions. All patients remain in complete remission at a median follow-up of 48.1 months (range, 9-73.4 months). Conclusions: This experience suggests that bifocal germinoma can be considered a locoregional rather than a metastatic disease. Chemotherapy and focal radiotherapy might be sufficient to provide excellent outcomes. Staging refinement with new diagnostic tools will likely increase the incidence of the entity.

  2. Radiative processes in external gravitational fields

    SciTech Connect

    Papini, Giorgio

    2010-07-15

    Kinematically forbidden processes may be allowed in the presence of external gravitational fields. These can be taken into account by introducing generalized particle momenta. The corresponding transition probabilities can then be calculated to all orders in the metric deviation from the field-free expressions by simply replacing the particle momenta with their generalized counterparts. The procedure applies to particles of any spin and to any gravitational fields. Transition probabilities, emission power, and spectra are, to leading order, linear in the metric deviation. It is also shown how a small dissipation term in the particle wave equations can trigger a strong backreaction that introduces resonances in the radiative process and deeply affects the resulting gravitational background.

  3. Analysis on Chopper's output mode of the extended blackbody radiation calibration system

    NASA Astrophysics Data System (ADS)

    Yu, Xun; Wei, Yu-han; Hu, Tie-li; Shang, Xiao-yan; Wu, Ji-an

    2009-05-01

    In the extended blackbody radiant system, Chopper plays a very important role.Herein the chopper's working principle is analyzed in the system of black body radical calibration, and the chopper's closed-loop control motor is simulated. With SimPowerSystems toolbox of MATLAB, the model of DC motor driving systems is built and its startup, steady state and speed regulation performance are simulated. Experiment result shows that the output is steady, accurate, reliable and could drive the chopper evenly which can satisfy technological requirement of the extended black body radiation calibration system.

  4. Radial diffusion of radiation belt particles in nondipolar magnetic fields

    NASA Astrophysics Data System (ADS)

    Cunningham, Gregory S.

    2016-06-01

    The fact that charged particles trapped in Earth's magnetic field can be redistributed along their radial distance from Earth due to drift-resonant interactions with small-amplitude waves has been known since early in the space age. Early theoretical efforts assumed that a dipole background magnetic field was modified by a time-varying electromagnetic perturbation that changed the particle's distance from Earth while preserving the first two invariants of motion. The stochastic nature of the perturbation allowed the effect of the waves on the trapped particles to be represented by a Fokker-Planck equation, which updates the phase space density in time via radial diffusion with diffusion coefficients that depend on the wave characteristics. In this paper, we extend those early theoretical efforts to define radial diffusion coefficients in arbitrary static background fields and define a numerical scheme for their evaluation. The background fields we consider are allowed to have significant deviations from a dipole field. Radial diffusion coefficients are computed using the new scheme for one of the empirical magnetic field models (T89) developed by Tsyganenko and coauthors as the background on top of which the perturbations are added. The new diffusion coefficients are shown to be substantially larger than those computed with a dipole background field model, especially at large radial distances and during geomagnetically active times, and it is suggested that outward radial diffusion may be a more substantial loss process for trapped electrons in the outer radiation belt than previously believed.

  5. Virtual radiation fields for ALARA determination

    SciTech Connect

    Knight, T.W.

    1995-12-31

    As computing power has increased, so too has the ability to model and simulate complex systems and processes. In addition, virtual reality technology has made it possible to visualize and understand many complex scientific and engineering problems. For this reason, a virtual dosimetry program called Virtual Radiation Fields (VRF) is developed to model radiation dose rate and cumulative dose to a receptor operating in a virtual radiation environment. With the design and testing of many facilities and products taking place in the virtual world, this program facilitates the concurrent consideration of radiological concerns during the design process. Three-dimensional (3D) graphical presentation of the radiation environment is made possible through the use of IGRIP, a graphical modeling program developed by Deneb Robotics, Inc. The VRF simulation program was designed to model and display a virtual dosimeter. As a demonstration of the program`s capability, the Hanford tank, C-106, was modeled to predict radiation doses to robotic equipment used to remove radioactive waste from the tank. To validate VRF dose predictions, comparison was made with reported values for tank C-106, which showed agreement to within 0.5%. Graphical information is presented regarding the 3D dose rate variation inside the tank. Cumulative dose predictions were made for the cleanup operations of tank C-106. A four-dimensional dose rate map generated by VRF was used to model the dose rate not only in 3D space but also as a function of the amount of waste remaining in the tank. This allowed VRF to predict dose rate at any stage in the waste removal process for an accurate simulation of the radiological conditions throughout the tank cleanup procedure.

  6. An extended field method solution for a pulse loaded thin plate

    NASA Technical Reports Server (NTRS)

    Donaldson, B. K.; Starkey, N. B.

    1980-01-01

    This paper deals with a new extension of a weighted residual method of analysis called the extended field method. The extended field method is applied for the first time to the problem of the transient vibration of a uniformly thin elastic plate. Numerical results have been obtained which validate the analysis procedure and show better solution convergence than is obtainable by standard methods of analysis for the same number of degrees of freedom. Further studies are necessary to obtain still better convergence.

  7. Measurement of radiative capture resonance energies with an extended gas target

    NASA Astrophysics Data System (ADS)

    Hutcheon, D. A.; Ruiz, C.; Fallis, J.; D'Auria, J. M.; Davids, B.; Hager, U.; Martin, L.; Ottewell, D. F.; Reeve, S.; Rojas, A.

    2012-10-01

    The DRAGON facility for the study of radiative capture reactions has an extended gas target, surrounded by an array of BGO detectors. The distribution of detected gamma rays amongst the segmented array permits an estimate of the reaction position and consequently of the resonance energy. We report a study of the technique, using the 24Mg(p, γ)25Al reaction. Energy determination to better than 0.5% has been demonstrated.

  8. PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper

    SciTech Connect

    André, Philippe; Baccigalupi, Carlo; Bielewicz, Pawel; Banday, Anthony; Barbosa, Domingos; Barreiro, Belen; Battistelli, Elia; Battye, Richard; Bonaldi, Anna; Bendo, George; Benoȋt, Alain; Bernard, Jean-Philippe; Bersanelli, Marco; Béthermin, Matthieu; and others

    2014-02-01

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The data obtained will allow us to precisely measure the absolute sky brightness and polarization of all the components of the sky emission in the observed frequency range, separating the primordial and extragalactic components cleanly from the galactic and zodiacal light emissions. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM, which include: (1) the ultimate galaxy cluster survey using the Sunyaev-Zeldovich (SZ) effect, detecting approximately 10{sup 6} clusters extending to large redshift, including a characterization of the gas temperature of the brightest ones (through the relativistic corrections to the classic SZ template) as well as a peculiar velocity survey using the kinetic SZ effect that comprises our entire Hubble volume; (2) a detailed characterization of the properties and evolution of dusty galaxies, where the most of the star formation in the universe took place, the faintest population of which constitute the diffuse CIB (Cosmic Infrared Background); (3) a characterization of the B modes from primordial gravity waves generated during inflation

  9. Quantum theory of extended particle dynamics in the presence of EM radiation-reaction

    NASA Astrophysics Data System (ADS)

    Cremaschini, Claudio; Tessarotto, Massimo

    2015-08-01

    In this paper a trajectory-based relativistic quantum wave equation is established for extended charged spinless particles subject to the action of the electromagnetic (EM) radiation-reaction (RR) interaction. The quantization pertains the particle dynamics, in which both the external and self EM fields are treated classically. The new equation proposed here is referred to as the RR quantum wave equation. This is shown to be an evolution equation for a complex scalar quantum wave function and to be realized by a first-order PDE with respect to a quantum proper time s . The latter is uniquely prescribed by representing the RR quantum wave equation in terms of the corresponding quantum hydrodynamic equations and introducing a parametrization in terms of Lagrangian paths associated with the quantum fluid velocity. Besides the explicit proper time dependence, the theory developed here exhibits a number of additional notable features. First, the wave equation is variational and is consistent with the principle of manifest covariance. Second, it permits the definition of a strictly positive 4-scalar quantum probability density on the Minkowski space-time, in terms of which a flow-invariant probability measure is established. Third, the wave equation is non-local, due to the characteristic EM RR retarded interaction. Fourth, the RR wave equation recovers the Schrödinger equation in the non-relativistic limit and the customary Klein-Gordon wave equation when the EM RR is negligible or null. Finally, the consistency with the classical RR Hamilton-Jacobi equation is established in the semi-classical limit.

  10. Radiative corrections from heavy fast-roll fields during inflation

    SciTech Connect

    Jain, Rajeev Kumar; Sandora, McCullen; Sloth, Martin S.

    2015-06-09

    We investigate radiative corrections to the inflaton potential from heavy fields undergoing a fast-roll phase transition. We find that a logarithmic one-loop correction to the inflaton potential involving this field can induce a temporary running of the spectral index. The induced running can be a short burst of strong running, which may be related to the observed anomalies on large scales in the cosmic microwave spectrum, or extend over many e-folds, sustaining an effectively constant running to be searched for in the future. We implement this in a general class of models, where effects are mediated through a heavy messenger field sitting in its minimum. Interestingly, within the present framework it is a generic outcome that a large running implies a small field model with a vanishing tensor-to-scalar ratio, circumventing the normal expectation that small field models typically lead to an unobservably small running of the spectral index. An observable level of tensor modes can also be accommodated, but, surprisingly, this requires running to be induced by a curvaton. If upcoming observations are consistent with a small tensor-to-scalar ratio as predicted by small field models of inflation, then the present study serves as an explicit example contrary to the general expectation that the running will be unobservable.

  11. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    extended. Additionally, we designed a sound insulator so as to realize a similar distribution of the particle velocity to that obtained using the optimized window function. Sound radiation was suppressed using a sound insulator put above the vibrating surface in the simulation using the three-dimensional finite element method. On the basis of this finding, it was suggested that near-field acoustic communication which suppressed sound radiation can be realized by applying the optimized window function to the particle velocity field.

  12. A method for characterizing photon radiation fields

    SciTech Connect

    Whicker, J.J.; Hsu, H.H.; Hsieh, F.H.; Borak, T.B.

    1999-04-01

    Uncertainty in dosimetric and exposure rate measurements can increase in areas where multi-directional and low-energy photons (< 100 keV) exist because of variations in energy and angular measurement response. Also, accurate measurement of external exposures in spatially non-uniform fields may require multiple dosimetry. Therefore, knowledge of the photon fields in the workplace is required for full understanding of the accuracy of dosimeters and instruments, and for determining the need for multiple dosimeters. This project was designed to develop methods to characterize photon radiation fields in the workplace, and to test the methods in a plutonium facility. The photon field at selected work locations was characterized using TLDs and a collimated NaI(Tl) detector from which spatial variations in photon energy distributions were calculated from measured spectra. Laboratory results showed the accuracy and utility of the method. Field measurement results combined with observed work patterns suggested the following: (1) workers are exposed from all directions, but not isotropically, (2) photon energy distributions were directionally dependent, (3) stuffing nearby gloves into the glovebox reduced exposure rates significantly, (4) dosimeter placement on the front of the chest provided for a reasonable estimate of the average dose equivalent to workers` torsos, (5) justifiable conclusions regarding the need for multiple dosimetry can be made using this quantitative method, and (6) measurements of the exposure rates with ionization chambers pointed with open beta windows toward the glovebox provided the highest measured rates, although absolute accuracy of the field measurements still needs to be assessed.

  13. The extended depth of field microscope imaging system with the phase pupil mask

    NASA Astrophysics Data System (ADS)

    Lyu, Qinghua; Zhai, Zhongsheng; Sharp, Martin; French, Paul

    2015-11-01

    A `0/π' phase pupil mask was developed to extend the depth of field of a circularly symmetric optical microscope imaging system. The modulation transfer function curves, the normalized point spread function figures and the spot diagrams of the imaging system with the optimal mask were analyzed and simulated. The results show that the large depth of field imaging system with the `0/π' phase pupil mask has a high resolution in a long frequency band and can obtain clear images without any post-processing. The experimental results also demonstrate that the depth of field of the imaging system is extended successfully.

  14. INTEGRAL Field Spectroscopy of the Extended Ionized Gas in Arp 220

    NASA Astrophysics Data System (ADS)

    Colina, Luis; Arribas, Santiago; Clements, David

    2004-02-01

    Integral field optical spectroscopy with the INTEGRAL system has been used to investigate for the first time the two-dimensional kinematic and ionization properties of the extended, warm, ionized gas in Arp 220 over an area of 75.0"×40.0" (i.e., 28×15 kpc). The structure of the ionized gas is divided into well-identified regions associated with the X-ray-emitting plumes and extended lobes, previously studied in detail by McDowell and collaborators. The overall ionization state of the warm gas in the plumes and lobes, as traced by the [N II]/Hα line, is consistent with high-velocity shocks expanding in a neutral ambient medium. Changes in the ionization state of the gas along the major axis of the plumes are detected, in particular in the outer regions of the northwestern plume, where the transition between the main stellar body of the galaxy and a broad, low surface brightness tidal tail is located. If the plumes are produced by a starburst-driven galactic wind, the efficiency in the conversion of mechanical to radiation energy is a factor of at least 10 smaller than in galactic winds developed in edge-on spiral galaxies with well-defined rotation and axis of outflow. The kinematic properties of the lobes, with an average velocity of +8 km s-1 (east lobe) and -79 km s-1 (west lobe), are to a first order in agreement with the predictions of the merger scenario, according to which the lobes are tidally induced gas condensations produced during the merging process. The largest velocity gradients of 50 km s-1 kpc-1 and velocity deviations of up to +280 and -320 km s-1 from the systemic velocity are associated not with the plumes but with the outer stellar envelope and broad tidal tails at distances of up to 7.5 kpc, indicating that the large-scale kinematics of the extended ionized gas in Arp 220 is most likely dominated by the tidally induced motions, and not by galactic winds associated with nuclear starbursts. Based on observations with the William Herschel

  15. Supersymmetric extended string field theory in NSn sector and NSn - 1-R sector

    NASA Astrophysics Data System (ADS)

    Asano, Masako; Kato, Mitsuhiro

    2016-09-01

    We construct a class of quadratic gauge invariant actions for extended string fields defined on the tensor product of open superstring state space for multiple open string Neveu-Schwarz (NS) sectors with or without one Ramond (R) sector. The basic idea is the same as for the bosonic extended string field theory developed by the authors [1]. The theory for NSn sector and NS n - 1-R sector contains general n-th rank tensor fields and (n - 1)-th rank spinor-tensor fields in the massless spectrum respectively. In principle, consistent gauge invariant actions for any generic type of 10-dimensional massive or massless tensor or spinor-tensor fields can be extracted from the theory. We discuss some simple examples of bosonic and fermionic massless actions.

  16. Extended-field coverage hyperspectral camera based on a single-pixel technique.

    PubMed

    Jin, Senlin; Hui, Wangwei; Liu, Bo; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2016-06-20

    A spectral single-pixel imaging system facilitates effective image compression, but the imaging region is limited by its single detector. This paper presents a hyperspectral camera that allows extended-field coverage to be collected by one detector. Compressive data of a large field of view is achieved by our highly sensitive detection camera, which can be extended to near-infrared or infrared spectral monitoring. We acquire a hyperspectral datacube of 256×256 spatial pixels and 3 nm spectral resolution at a sampling rate of 25%. Finally, we apply our camera to monitoring fruit freshness nondestructively by differentiating a banana's ripeness over time. PMID:27409103

  17. Activation of extended red emission photoluminescence in carbon solids by exposure to atomic hydrogen and UV radiation

    NASA Technical Reports Server (NTRS)

    Furton, Douglas G.; Witt, Adolf N.

    1993-01-01

    We report on new laboratory results which relate directly to the observation of strongly enhanced extended red emission (ERE) by interstellar dust in H2 photodissociation zones. The ERE has been attributed to photoluminescence by hydrogenated amorphous carbon (HAC). We are demonstrating that exposure to thermally dissociated atomic hydrogen will restore the photoluminescence efficiency of previously annealed HAC. Also, pure amorphous carbon (AC), not previously photoluminescent, can be induced to photoluminesce by exposure to atomic hydrogen. This conversion of AC into HAC is greatly enhanced by the presence of UV irradiation. The presence of dense, warm atomic hydrogen and a strong UV radiation field are characteristic environmental properties of H2 dissociation zones. Our results lend strong support to the HAC photoluminescence explanation for ERE.

  18. Radiation burst from a single γ-photon field

    NASA Astrophysics Data System (ADS)

    Shakhmuratov, R. N.; Vagizov, F.; Kocharovskaya, O.

    2011-10-01

    The radiation burst from a single γ-photon field interacting with a dense resonant absorber is studied theoretically and experimentally. This effect was discovered for the fist time by P. Helisto [Phys. Rev. Lett. PRLTAO0031-900710.1103/PhysRevLett.66.203766, 2037 (1991)] and it was named the “gamma echo.” The echo is generated by a 180∘ phase shift of the incident radiation field, attained by an abrupt change of the position of the absorber with respect to the radiation source during the coherence time of the photon wave packet. Three distinguishing cases of the gamma echo are considered; i.e., the photon is in exact resonance with the absorber, close to resonance (on the slope of the absorption line), and far from resonance (on the far wings of the resonance line). In resonance the amplitude of the radiation burst is two times larger than the amplitude of the input radiation field just before its phase shift. This burst was explained by Helisto as a result of constructive interference of the coherently scattered field with the phase-shifted input field, both having almost the same amplitude. We found that out of resonance the scattered radiation field acquires an additional component with almost the same amplitude as the amplitude of the incident radiation field. The phase of the additional field depends on the optical thickness of the absorber and resonant detuning. Far from resonance this field interferes destructively with the phase-shifted incident radiation field and radiation quenching is observed. Close to resonance the three fields interfere constructively and the amplitude of the radiation burst is three times larger than the amplitude of the input radiation field.

  19. Radiation burst from a single {gamma}-photon field

    SciTech Connect

    Shakhmuratov, R. N.; Vagizov, F.; Kocharovskaya, O.

    2011-10-15

    The radiation burst from a single {gamma}-photon field interacting with a dense resonant absorber is studied theoretically and experimentally. This effect was discovered for the fist time by P. Helisto et al.[Phys. Rev. Lett. 66, 2037 (1991)] and it was named the ''gamma echo''. The echo is generated by a 180 Degree-Sign phase shift of the incident radiation field, attained by an abrupt change of the position of the absorber with respect to the radiation source during the coherence time of the photon wave packet. Three distinguishing cases of the gamma echo are considered; i.e., the photon is in exact resonance with the absorber, close to resonance (on the slope of the absorption line), and far from resonance (on the far wings of the resonance line). In resonance the amplitude of the radiation burst is two times larger than the amplitude of the input radiation field just before its phase shift. This burst was explained by Helisto et al. as a result of constructive interference of the coherently scattered field with the phase-shifted input field, both having almost the same amplitude. We found that out of resonance the scattered radiation field acquires an additional component with almost the same amplitude as the amplitude of the incident radiation field. The phase of the additional field depends on the optical thickness of the absorber and resonant detuning. Far from resonance this field interferes destructively with the phase-shifted incident radiation field and radiation quenching is observed. Close to resonance the three fields interfere constructively and the amplitude of the radiation burst is three times larger than the amplitude of the input radiation field.

  20. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    ERIC Educational Resources Information Center

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  1. Biaxial Flexural Strength of Poled Lead Zirconate Titanate under High Electric Field with Extended Field Range

    SciTech Connect

    Zhang, Kewei; Zeng, Fan W; Wang, Hong; Lin, Hua-Tay

    2013-01-01

    In the present work, as-received poled lead zirconate titanate, or PZT 5A, was examined using ball-on-ring (BoR) mechanical testing coupled with an electric field. Electric fields in the range of 4Ec (Ec, coercive field) with controlled loading paths were applied, and mechanical tests at a substantial number of characteristic electric field levels were conducted. Commercial electronic liquid FC-40 was used to prevent the setup from dielectric breakdown under a high electric field. Weibull strength distribution was used to interpret the mechanical strength data. The data showed that the strength levels of the PZT-5A tested under OC (open circuit) in air and in FC-40 were almost the same. It was further revealed that , for the studied cases, the effect of loading history on the biaxial flexural strength of the PZT was significant in -Ec, but not in OC or zero field as well as 4Ec . An asymmetry V curve was observed for the characteristic strength-electric field graph, and the bottom of V curve was located near the negative coercive field. Microscopy analysis showed that surface-located volume-distributed flaws were the strength limiter and responsible for the failure of the tested PZT under electromechanical loadings.

  2. Extended gyrokinetic field theory for time-dependent magnetic confinement fields

    SciTech Connect

    Sugama, H.; Watanabe, T.-H.; Nunami, M.

    2014-01-15

    A gyrokinetic system of equations for turbulent toroidal plasmas in time-dependent axisymmetric background magnetic fields is derived from the variational principle. Besides governing equations for gyrocenter distribution functions and turbulent electromagnetic fields, the conditions which self-consistently determine the background magnetic fields varying on a transport time scale are obtained by using the Lagrangian, which includes the constraint on the background fields. Conservation laws for energy and toroidal angular momentum of the whole system in the time-dependent background magnetic fields are naturally derived by applying Noether's theorem. It is shown that the ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work agree with the results from the conventional recursive formulation with the WKB representation except that collisional effects are disregarded here.

  3. Kidney-Sparing Methods for Extended-Field Intensity-Modulated Radiotherapy (EF-IMRT) in Cervical Carcinoma Treatment.

    PubMed

    Kunogi, Hiroaki; Yamaguchi, Nanae; Terao, Yasuhisa; Sasai, Keisuke

    2016-01-01

    Coplanar extended-field intensity-modulated radiation therapy (EF-IMRT) targeting the whole-pelvic and para-aortic lymph nodes in patients with advanced cervical cancer results in impaired creatinine clearance. An improvement in renal function cannot be expected unless low-dose (approximately 10 Gy) kidney exposure is reduced. The dosimetric method should be considered during EF-IMRT planning to further reduce low-dose exposure to the kidneys. To assess the usefulness of non-coplanar EF-IMRT with kidney-avoiding beams to spare the kidneys during cervical carcinoma treatment in dosimetric analysis between non-coplanar and coplanar EF-IMRT, we compared the doses of the target organ and organs at risk, including the kidney, in 10 consecutive patients. To estimate the influence of EFRT on renal dysfunction, creatinine clearance values after treatment were also examined in 18 consecutive patients. Of these 18 patients, 10 patients who were included in the dosimetric analysis underwent extended field radiation therapy (EFRT) with concurrent chemotherapy, and eight patients underwent whole-pelvis radiation therapy with concurrent chemotherapy to treat cervical carcinoma between April 2012 and March 2015 at our institution. In the dosimetric analysis, non-coplanar EF-IMRT was effective at reducing low-dose (approximately 10 Gy) exposure to the kidneys, thus maintaining target coverage and sparing other organs at risk, such as the small bowel, rectum, and bladder, compared with coplanar EF-IMRT. Renal function in all 10 patients who underwent EFRT, including coplanar EF-IMRT (with kidney irradiation), was low after treatment, and differed significantly from that of the eight patients who underwent WPRT (no kidney irradiation) 6 months after the first day of treatment (P = 0.005). In conclusion, non-coplanar EF-IMRT should be considered in patients with advanced cervical cancer, particularly in patients with a long life expectancy or with pre-existing renal dysfunction. PMID

  4. Kidney-Sparing Methods for Extended-Field Intensity-Modulated Radiotherapy (EF-IMRT) in Cervical Carcinoma Treatment

    PubMed Central

    Kunogi, Hiroaki; Yamaguchi, Nanae; Terao, Yasuhisa; Sasai, Keisuke

    2016-01-01

    Coplanar extended-field intensity-modulated radiation therapy (EF-IMRT) targeting the whole-pelvic and para-aortic lymph nodes in patients with advanced cervical cancer results in impaired creatinine clearance. An improvement in renal function cannot be expected unless low-dose (approximately 10 Gy) kidney exposure is reduced. The dosimetric method should be considered during EF-IMRT planning to further reduce low-dose exposure to the kidneys. To assess the usefulness of non-coplanar EF-IMRT with kidney-avoiding beams to spare the kidneys during cervical carcinoma treatment in dosimetric analysis between non-coplanar and coplanar EF-IMRT, we compared the doses of the target organ and organs at risk, including the kidney, in 10 consecutive patients. To estimate the influence of EFRT on renal dysfunction, creatinine clearance values after treatment were also examined in 18 consecutive patients. Of these 18 patients, 10 patients who were included in the dosimetric analysis underwent extended field radiation therapy (EFRT) with concurrent chemotherapy, and eight patients underwent whole-pelvis radiation therapy with concurrent chemotherapy to treat cervical carcinoma between April 2012 and March 2015 at our institution. In the dosimetric analysis, non-coplanar EF-IMRT was effective at reducing low-dose (approximately 10 Gy) exposure to the kidneys, thus maintaining target coverage and sparing other organs at risk, such as the small bowel, rectum, and bladder, compared with coplanar EF-IMRT. Renal function in all 10 patients who underwent EFRT, including coplanar EF-IMRT (with kidney irradiation), was low after treatment, and differed significantly from that of the eight patients who underwent WPRT (no kidney irradiation) 6 months after the first day of treatment (P = 0.005). In conclusion, non-coplanar EF-IMRT should be considered in patients with advanced cervical cancer, particularly in patients with a long life expectancy or with pre-existing renal dysfunction. PMID

  5. Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations

    NASA Astrophysics Data System (ADS)

    Ahn, Kyungjin

    2015-02-01

    We present a novel method to implement time-delayed propagation of radiation fields in cosmo-logical radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative trans-fer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.

  6. Extended-gate organic field-effect transistor for the detection of histamine in water

    NASA Astrophysics Data System (ADS)

    Minamiki, Tsukuru; Minami, Tsuyoshi; Yokoyama, Daisuke; Fukuda, Kenjiro; Kumaki, Daisuke; Tokito, Shizuo

    2015-04-01

    As part of our ongoing research program to develop health care sensors based on organic field-effect transistor (OFET) devices, we have attempted to detect histamine using an extended-gate OFET. Histamine is found in spoiled or decayed fish, and causes foodborne illness known as scombroid food poisoning. The new OFET device possesses an extended gate functionalized by carboxyalkanethiol that can interact with histamine. As a result, we have succeeded in detecting histamine in water through a shift in OFET threshold voltage. This result indicates the potential utility of the designed OFET devices in food freshness sensing.

  7. Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging

    PubMed Central

    Sigal, Iliya; Gad, Raanan; Caravaca-Aguirre, Antonio M.; Atchia, Yaaseen; Conkey, Donald B.; Piestun, Rafael; Levi, Ofer

    2013-01-01

    This work presents, to our knowledge, the first demonstration of the Laser Speckle Contrast Imaging (LSCI) technique with extended depth of field (DOF). We employ wavefront coding on the detected beam to gain quantitative information on flow speeds through a DOF extended two-fold compared to the traditional system. We characterize the system in-vitro using controlled microfluidic experiments, and apply it in-vivo to imaging the somatosensory cortex of a rat, showing improved ability to image flow in a larger number of vessels simultaneously. PMID:24466481

  8. Definitive extended field intensity-modulated radiotherapy and concurrent cisplatin chemosensitization in the treatment of IB2-IIIB cervical cancer

    PubMed Central

    Zhang, Guangyu; He, Fangfang; Fu, Chunli; Zhang, Youzhong; Yang, Qiuan; Wang, Jianbo

    2014-01-01

    Objective To assess the toxicity of delivering extended field intensity-modulated radiotherapy (EF-IMRT) and concurrent cisplatin chemotherapy for locally advanced cervical carcinoma. Methods Forty-five patients who underwent EF-IMRT and concurrent cisplatin chemotherapy for the treatment of stage IB2 to IIIB cervical cancer were retrospectively reviewed. The clinical target volume included all areas of gross and potentially microscopic disease and regional lymph node regions. All patients underwent high-dose-rate brachytherapy. The acute and late toxicity were scored using the Common Terminology Criteria for Adverse Events and the Radiation Therapy Oncology Group late radiation morbidity scoring criteria, respectively. Results The median follow-up was 28 months (range, 5 to 62 months). Forty-two patients had a complete response, and three had a persistent disease. Of those 42 patients, 15 patients (35.7%) had recurrence. The regions of recurrence were in-field in 2 patients and out-field in 13 patients. Acute grade ≥3 gastrointestinal, genitourinary and hematologic toxicity occurred in 3, 1, and 9 patients, respectively. Three patients (6.7%) suffered from late grade 3 toxicities. Seven patients experienced ovarian transposition, 5 of those patients (71%) maintained ovarian function. Thirty-eight patients (84.4%) were alive at the last follow-up. Conclusion Concurrent cisplatin chemotherapy with EF-IMRT was safe. The acute and late toxicities are acceptable. EF-IMRT provides an opportunity to preserve endocrine function for patients with ovarian transposition. PMID:24459576

  9. Magnetic fields and nonthermal electromagnetic radiation of stars

    NASA Astrophysics Data System (ADS)

    Kryvdyk, Volodymyr

    2016-07-01

    The results of the astrophysical observations of the magnetic fields and the nonthermal electromagnetic radiation of stars and the mechanisms generation of the nonthermal electromagnetic radiation from the magnetized stars of different spectral classes on the different stages their evolution are present. Results of observations allow to calculate the plasma parameters and the magnetic fields in areas around magnetized stars where is generated given radiation and their change during stellar evolution.

  10. Extended Kalman Filter for attitude estimation of the Earth Radiation Budget Satellite

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, I. Y.

    1990-01-01

    The design and testing of an Extended Kalman Filter (EKF) for ground attitude determination, misalignment estimation and sensor calibration of the Earth Radiation Budget Satellite (ERBS) are described. Attitude is represented by the quaternion of rotation and the attitude estimation error is defined as an additive error. Quaternion normalization is used for increasing the convergence rate and for minimizing the need for filter tuning. The development of the filter dynamic model, the gyro error model and the measurement models of the sun sensors, the IR horizon scanner and the magnetometers which are used to generate vector measurements are also presented. The filter is applied to real data transmitted by ERBS sensors. Results are presented and analyzed and the EKF advantages as well as sensitivities are discussed. On the whole the filter meets the expected synergism, accuracy and robustness.

  11. Hydrogen Absorbing Materials for Use as Radiation Shielding During Extended Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Minimizing radiation exposure from the galactic cosmic ray (GCR) environment during extended space missions is particularly crucial to crew health and safety. Here, an ideal candidate for shielding would be pure solid or liquid hydrogen, a material that effectively fragments heavy ions into ones of lower mass and energy that are more easily attenuated. Unfortunately, utilizing pure hydrogen is not presently feasible. It is, however, known that the hydrogen content of other materials (for example, metal hydrides, palladium alloys, and organic compounds) can exceed that of pure solid hydrogen and thus merit consideration as shielding candidates. This presentation will discuss an ongoing effort to develop novel shielding from such materials in concert with a coordinated testing/evaluation and modeling effort.

  12. Extended Kalman filter for attitude estimation of the earth radiation budget satellite

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack Y.

    1989-01-01

    The design and testing of an Extended Kalman Filter (EKF) for ground attitude determination, misalignment estimation and sensor calibration of the Earth Radiation Budget Satellite (ERBS) are described. Attitude is represented by the quaternion of rotation and the attitude estimation error is defined as an additive error. Quaternion normalization is used for increasing the convergence rate and for minimizing the need for filter tuning. The development of the filter dynamic model, the gyro error model and the measurement models of the Sun sensors, the IR horizon scanner and the magnetometers which are used to generate vector measurements are also presented. The filter is applied to real data transmitted by ERBS sensors. Results are presented and analyzed and the EKF advantages as well as sensitivities are discussed. On the whole the filter meets the expected synergism, accuracy and robustness.

  13. Extended Chiral ({sigma},{pi},{omega}) Mean-Field Model with Vacuum Fluctuation Corrections

    SciTech Connect

    Uechi, Schun T.; Uechi, Hiroshi

    2011-10-21

    Density-dependent relations among saturation properties of symmetric nuclear matter and properties of hadronic stars are discussed by applying the conserving chiral nonlinear ({sigma},{pi},{omega}) mean-field theory. The chiral nonlinear ({sigma},{pi},{omega}) mean-field theory is an extension of the conserving nonlinear (nonchiral){sigma}-{omega} mean-field theory, which is thermodynamically consistent, relativistic and Lorentz-covariant. In the extended chiral ({sigma},{pi},{omega}) mean-field model, all the masses of hadrons are produced by the spontaneous chiral symmetry breaking, which is different from conventional chiral partner models. By comparing both nonchiral and chiral mean-field approximations, the effects of the chiral symmetry breaking mechanism on the mass of {sigma}-meson, coefficients of nonlinear interactions and Fermi-liquid properties are investigated in nuclear matter and neutron stars.

  14. Effects of 60-Hz electric fields on living plants exposed for extended periods. Final report

    SciTech Connect

    Not Available

    1985-07-01

    The effects of intense 60-Hz electric fields were studied by exposing plants of five kinds (crops) for extended periods in a special greenhouse where cultural and environmental factors could be controlled. Plant populations and densities simulated field conditions. While exposed, plants of all crops germinated satisfactorily, and plants of sweet corn and wheat completed their life cycles and produced viable seed. Plants of alfalfa and tall fescue were at the early bloom stage when harvested. Exposure of plants of five kinds to electric fields had no statistically significant effects on seed germination, seedling growth, plant growth, phenology, flowering, seed set, biomass production, plant height, leaf area, plant survival, and nodulation. Exposure to 60-Hz electric fields resulted in very limited damage to terminal leaf tips, awns, and corn tassels, particularly at fields of 30 kV/m or greater. 47 refs., 36 figs., 44 tabs.

  15. Radiative corrections to the Zbb vertex and constraints on extended Higgs sectors

    NASA Astrophysics Data System (ADS)

    Logan, Heather Erin

    1999-10-01

    We explore the radiative corrections to the process Z-->bb in models with extended Higgs sectors. The observables R b and Ab are sensitive to these corrections. Rb is the hadronic branching fraction of Z bosons to bb,Rb =G(Z-->hadrons) . Ab is the b quark asymmetry, Ab=(g2L- g2 R)/(g2 L+g2R) where gL and gR are the left and right handed couplings of Z to b quarks. We find that in models containing only doublets, singlets, or larger multiplets constrained by a custodial SU(2) c symmetry so that MW=MZcosqW at tree level, the corrections involving charged Higgs bosons always worsen agreement with experiment. The Rb measurement can be used to set lower bounds on the charged Higgs masses in such models. Corrections involving light neutral Higgs bosons in models with enhanced H0bb coupling (large tan β) can improve agreement with experiment over the Standard Model. We present general formulas for the corrections to Rb and Ab in an arbitrary extended Higgs sector, and derive explicit results for a number of specific models.

  16. Three-dimensional structure of the extended solar magnetic field and the sunspot cycle variation in cosmic ray intensity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.; Wilcox, J. M.

    1976-01-01

    A principal cause for the eleven-year sunspot cycle variation in the primary cosmic ray intensity observed at earth may be a variation in the solid angle of the heliosphere occupied by the extended solar polar magnetic field. Galactic cosmic rays have relatively easy access to the inner solar system through the regular extended solar polar fields, and relatively difficult access through the irregular extended solar sector structure fields.

  17. Early Clinical Outcome With Concurrent Chemotherapy and Extended-Field, Intensity-Modulated Radiotherapy for Cervical Cancer

    SciTech Connect

    Beriwal, Sushil . E-mail: beriwals@upmc.edu; Gan, Gregory N.; Heron, Dwight E.; Selvaraj, Raj N.; Kim, Hayeon; Lalonde, Ron; Kelley, Joseph L.; Edwards, Robert P.

    2007-05-01

    Purpose: To assess the early clinical outcomes with concurrent cisplatin and extended-field intensity-modulated radiotherapy (EF-IMRT) for carcinoma of the cervix. Methods and Materials: Thirty-six patients with Stage IB2-IVA cervical cancer treated with EF-IMRT were evaluated. The pelvic lymph nodes were involved in 19 patients, and of these 19 patients, 10 also had para-aortic nodal disease. The treatment volume included the cervix, uterus, parametria, presacral space, upper vagina, and pelvic, common iliac, and para-aortic nodes to the superior border of L1. Patients were assessed for acute toxicities according to the National Cancer Institute Common Toxicity Criteria for Adverse Events, version 3.0. All late toxicities were scored with the Radiation Therapy Oncology Group late toxicity score. Results: All patients completed the prescribed course of EF-IMRT. All but 2 patients received brachytherapy. Median length of treatment was 53 days. The median follow-up was 18 months. Acute Grade {>=}3 gastrointestinal, genitourinary, and myelotoxicity were seen in 1, 1, and 10 patients, respectively. Thirty-four patients had complete response to treatment. Of these 34 patients, 11 developed recurrences. The first site of recurrence was in-field in 2 patients (pelvis in 1, pelvis and para-aortic in 1) and distant in 9 patients. The 2-year actuarial locoregional control, disease-free survival, overall survival, and Grade {>=}3 toxicity rates for the entire cohort were 80%, 51%, 65%, and 10%, respectively. Conclusion: Extended-field IMRT with concurrent chemotherapy was tolerated well, with acceptable acute and early late toxicities. The locoregional control rate was good, with distant metastases being the predominant mode of failure. We are continuing to accrue a larger number of patients and longer follow-up data to further extend our initial observations with this approach.

  18. Extended depth-of-field imaging through radially symmetrical conjugate phase masks

    NASA Astrophysics Data System (ADS)

    Chen, Shouqian; Le, Van Nhu; Fan, Zhigang; Tran, Hong Cam

    2015-11-01

    We proposed a radially symmetrical conjugate phase mask (PM) pair to yield an invariant imaging property for extending depth-of-field imaging. This conjugate PM pair is a two-radially symmetrical phase function with opposite orientation of the phase modulation. Compared with a single-radially symmetrical PM, the proposed conjugate PM pair shows a symmetrically imaging property on both sides of the focal plane and high magnitude of modulation transfer function (MTF). The quartic phase mask (QPM) with optimized phase parameters is employed to demonstrate our concept. Several evaluation approaches, including point-spread function, MTF, and image simulation, are used to realize the performance comparison among a traditional imaging system, an original QPM system, and a conjugate QPM. The results are proof that the proposed conjugate PM has a superior performance in extending depth of field imaging.

  19. Radiation field associated with Hiroshima and Nagasaki

    SciTech Connect

    Loewe, W.E.

    1984-08-01

    Accuracy of dosimetric estimates can determine the value of the atomic bomb survivor experience in establishing radiation risks. The status of a major revision of this dosimetry, initiated in 1980, is assessed. 3 references, 6 figures.

  20. Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging

    PubMed Central

    Quirin, Sean; Peterka, Darcy S.; Yuste, Rafael

    2013-01-01

    Imaging three-dimensional structures represents a major challenge for conventional microscopies. Here we describe a Spatial Light Modulator (SLM) microscope that can simultaneously address and image multiple targets in three dimensions. A wavefront coding element and computational image processing enables extended depth-of-field imaging. High-resolution, multi-site three-dimensional targeting and sensing is demonstrated in both transparent and scattering media over a depth range of 300-1,000 microns. PMID:23842387

  1. Microflaring in Low-Lying Core Fields and Extended Coronal Heating in the Quiet Sun

    NASA Technical Reports Server (NTRS)

    Porter, Jason G.; Falconer, D. A.; Moore, Ronald L.

    1999-01-01

    We have previously reported analyses of Yohkoh SXT data examining the relationship between the heating of extended coronal loops (both within and stemming from active regions) and microflaring in core fields lying along neutral lines near their footpoints (J. G. Porter, D. A. Falconer, and R. L. Moore 1998, in Solar Jets and Coronal Plumes, ed. T. Guyenne, ESA SP-421, and references therein). We found a surprisingly poor correlation of intensity variations in the extended loops with individual microflares in the compact heated areas at their feet, despite considerable circumstancial evidence linking the heating processes in these regions. Now, a study of Fe XII image sequences from SOHO EIT show that similar associations of core field structures with the footpoints of very extended coronal features can be found in the quiet Sun. The morphology is consistent with the finding of Wang et al. (1997, ApJ 484, L75) that polar plumes are rooted at sites of mixed polarity in the magnetic network. We find that the upstairs/downstairs intensity variations often follow the trend, identified in the active region observations, of a weak correspondence. Apparently much of the coronal heating in the extended loops is driven by a type of core field magnetic activity that is "cooler" than the events having the coronal signature of microflares, i.e., activity that results in little heating within the core fields themselves. This work was funded by the Solar Physics Branch of NASA's Office of Space Science through the SR&T Program and the SEC Guest Investigator Program.

  2. Interference between magnetic field and cavity modes in an extended Josephson junction

    NASA Astrophysics Data System (ADS)

    Humbert, V.; Aprili, M.; Hammer, J.

    2012-07-01

    An extended Josephson junction consists of two superconducting electrodes separated by an insulator and is therefore also a microwave cavity. The superconducting phase difference across the junction determines the amplitude as well as the spatial distribution of the supercurrent. Both external magnetic fields and resonant intracavity fields produce a spatial modification of the superconducting phase along the junction. The interplay between these two effects leads to interference in the critical current of the junction and allows us to continuously tune the coupling strength between the first cavity mode and the Josephson phase from 1 to -0.68. This enables static and dynamic control of the junction in the ultrastrong-coupling regime.

  3. LCLS Far-Field Spontaneous Radiation

    Energy Science and Technology Software Center (ESTSC)

    2004-04-16

    This application (FarFieldDisplay) is a tool for displaying and analyzing far-field spontaneous spectral flux data for the Linac Coherent Light Source (LCLS) Calculated by Roman Tatchyn (Stanford University). This tool allows the user to view sliced spatial and energy distributions of the fat-field photons selected for specific energies or positions transverse to the beam axis,

  4. Detection of alpha radiation in a beta radiation field

    DOEpatents

    Mohagheghi, Amir H.; Reese, Robert P.

    2001-01-01

    An apparatus and method for detecting alpha particles in the presence of high activities of beta particles utilizing an alpha spectrometer. The apparatus of the present invention utilizes a magnetic field applied around the sample in an alpha spectrometer to deflect the beta particles from the sample prior to reaching the detector, thus permitting detection of low concentrations of alpha particles. In the method of the invention, the strength of magnetic field required to adequately deflect the beta particles and permit alpha particle detection is given by an algorithm that controls the field strength as a function of sample beta energy and the distance of the sample to the detector.

  5. Near-field radiative thermal transport: From theory to experiment

    SciTech Connect

    Song, Bai Fiorino, Anthony; Meyhofer, Edgar; Reddy, Pramod

    2015-05-15

    Radiative thermal transport via the fluctuating electromagnetic near-field has recently attracted increasing attention due to its fundamental importance and its impact on a range of applications from data storage to thermal management and energy conversion. After a brief historical account of radiative thermal transport, we summarize the basics of fluctuational electrodynamics, a theoretical framework for the study of radiative heat transfer in terms of thermally excited propagating and evanescent electromagnetic waves. Various approaches to modeling near-field thermal transport are briefly discussed, together with key results and proposals for manipulation and utilization of radiative heat flow. Subsequently, we review the experimental advances in the characterization of both near-field heat flow and energy density. We conclude with remarks on the opportunities and challenges for future explorations of radiative heat transfer at the nanoscale.

  6. Near field wireless power transfer using curved relay resonators for extended transfer distance

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Clare, L.; Stark, B. H.; Beeby, S. P.

    2015-12-01

    This paper investigates the performance of a near field wireless power transfer system that uses curved relay resonator to extend transfer distance. Near field wireless power transfer operates based on the near-field electromagnetic coupling of coils. Such a system can transfer energy over a relatively short distance which is of the same order of dimensions of the coupled coils. The energy transfer distance can be increased using flat relay resonators. Recent developments in printing electronics and e-textiles have seen increasing demand of embedding electronics into fabrics. Near field wireless power transfer is one of the most promising methods to power electronics on fabrics. The concept can be applied to body-worn textiles by, for example, integrating a transmitter coil into upholstery, and a flexible receiver coil into garments. Flexible textile coils take on the shape of the supporting materials such as garments, and therefore curved resonator and receiver coils are investigated in this work. Experimental results showed that using curved relay resonator can effectively extend the wireless power transfer distance. However, as the curvature of the coil increases, the performance of the wireless power transfer, especially the maximum received power, deteriorates.

  7. Extended depth of field for high-resolution scanning transmission electron microscopy.

    PubMed

    Hovden, Robert; Xin, Huolin L; Muller, David A

    2011-02-01

    Aberration-corrected scanning transmission electron microscopes (STEMs) provide sub-Angstrom lateral resolution; however, the large convergence angle greatly reduces the depth of field. For microscopes with a small depth of field, information outside of the focal plane quickly becomes blurred and less defined. It may not be possible to image some samples entirely in focus. Extended depth-of-field techniques, however, allow a single image, with all areas in focus, to be extracted from a series of images focused at a range of depths. In recent years, a variety of algorithmic approaches have been employed for bright-field optical microscopy. Here, we demonstrate that some established optical microscopy methods can also be applied to extend the ∼ 6 nm depth of focus of a 100 kV 5th-order aberration-corrected STEM (α max = 33 mrad) to image Pt-Co nanoparticles on a thick vulcanized carbon support. These techniques allow us to automatically obtain a single image with all the particles in focus as well as a complimentary topography map. PMID:21122192

  8. Extended Depth of Field for High-Resolution Scanning Transmission Electron Microscopy

    SciTech Connect

    Hovden, Robert; Xin, Huolin L.; Muller, David A.

    2010-12-02

    Aberration-corrected scanning transmission electron microscopes (STEMs) provide sub-Angstrom lateral resolution; however, the large convergence angle greatly reduces the depth of field. For microscopes with a small depth of field, information outside of the focal plane quickly becomes blurred and less defined. It may not be possible to image some samples entirely in focus. Extended depth-of-field techniques, however, allow a single image, with all areas in focus, to be extracted from a series of images focused at a range of depths. In recent years, a variety of algorithmic approaches have been employed for bright-field optical microscopy. Here, we demonstrate that some established optical microscopy methods can also be applied to extend the ~6 nm depth of focus of a 100 kV 5th-order aberration-corrected STEM (α{sub max} = 33 mrad) to image Pt-Co nanoparticles on a thick vulcanized carbon support. These techniques allow us to automatically obtain a single image with all the particles in focus as well as a complimentary topography map.

  9. Scalar field radiation from dilatonic black holes

    NASA Astrophysics Data System (ADS)

    Gohar, H.; Saifullah, K.

    2012-12-01

    We study radiation of scalar particles from charged dilaton black holes. The Hamilton-Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein-Gordon equation. The procedure gives Hawking temperature for these black holes as well.

  10. Variations of melatonin and stress hormones under extended shifts and radiofrequency electromagnetic radiation.

    PubMed

    Vangelova, Katia Koicheva; Israel, Mishel Salvador

    2005-01-01

    We studied the time-of-day variations in urinary levels of 6-sulphatoxy-melatonin and three stress hormones in operators working fast-rotating extended shifts under radiofrequency electromagnetic radiation (EMR). The excretion rate of the hormones was monitored by radioimmunoassay and spectrofluorimetry at 4-hour intervals in a group of 36 male operators comprising 12 broadcasting station operators, 12 TV station operators, and a control group of 12 satellite station operators. Measuring the time-weighted average (TWA) of EMR exposure revealed a high-level of exposure in broadcasting station operators (TWAmean= 3.10 microW/ cm2, TWAmax = 137.00 microW/cm2), a low-level in TV station operators (TWAmean = 1.89 microW/cm2, TWAmax = 5.24 microW/cm2), and a very low level in satellite station operators. The differences among the groups remained the same after confounding factors were taken into account. Radiofrequency EMR had no effect on the typical diurnal pattern of 6-sulphatoxymelatonin. High-level radiofrequency EMR exposure significantly increased the excretion rates of cortisol (p < 0.001), adrenaline (p = 0.028), and noradrenaline (p < 0.000), whereas changes under low-level exposure did not reach significance. The 24-hour excretion of cortisol and noradrenaline correlated with TWAmean and TWAmax. In conclusion, the excretion of 6-sulphatoxymelatonin retained a typical diurnal pattern under fast-rotating extended shifts and radiofrequency EMR, but showed an exposure-effect relation with stress hormones. PMID:16121836

  11. The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach

    ERIC Educational Resources Information Center

    Likar, A.; Razpet, N.

    2009-01-01

    The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…

  12. Radiation tolerant silicon nitride insulated gate field effect transistors

    NASA Technical Reports Server (NTRS)

    Newman, P. A.

    1969-01-01

    Metal-Insulated-Semiconductor Field Effect Transistor /MISFET/ device uses a silicon nitride passivation layer over a thin silicon oxide layer to enhance the radiation tolerance. It is useful in electronic systems exposed to space radiation environment or the effects of nuclear weapons.

  13. Radiative heat transfer in the extreme near field.

    PubMed

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer. PMID:26641312

  14. School Facilities and Electric and Magnetic Field Radiation.

    ERIC Educational Resources Information Center

    Carr, Richard L.

    1990-01-01

    The possibility that electric and magnetic field radiation poses a health hazard should be recognized during the planning and designing of a school. A preconstruction assessment of possible exposure should be evaluated before the start of construction. (MLF)

  15. High resolution digital holographic synthetic aperture applied to deformation measurement and extended depth of field method.

    PubMed

    Claus, Daniel

    2010-06-01

    This paper discusses the potential of the synthetic-aperture method in digital holography to increase the resolution, to perform high accuracy deformation measurement, and to obtain a three-dimensional topology map. The synthetic aperture method is realized by moving the camera with a motorized x-y stage. In this way a greater sensor area can be obtained resulting in a larger numerical aperture (NA). A larger NA enables a more detailed reconstruction combined with a smaller depth of field. The depth of field can be increased by applying the extended depth of field method, which yields an in-focus reconstruction of all longitudinal object regions. Moreover, a topology map of the object can be obtained. PMID:20517390

  16. Reconstruction of radiating sound fields using minimum energy method.

    PubMed

    Bader, Rolf

    2010-01-01

    A method for reconstructing a pressure field at the surface of a radiating body or source is presented using recording data of a microphone array. The radiation is assumed to consist of many spherical radiators, as microphone positions are present in the array. These monopoles are weighted using a parameter alpha, which broadens or narrows the overall radiation directivity as an effective and highly intuitive parameter of the radiation characteristics. A radiation matrix is built out of these weighted monopole radiators, and for different assumed values of alpha, a linear equation solver reconstructs the pressure field at the body's surface. It appears that from these many arbitrary reconstructions, the correct one minimizes the reconstruction energy. The method is tested, localizing the radiation points of a Balinese suling flute, reconstructing complex radiation from a duff frame drum, and determining the radiation directivity for the first seven modes of an Usbek tambourine. Stability in terms of measurement noise is demonstrated for the plain method, and additional highly effective algorithm is added for a noise level up to 0 dB. The stability of alpha in terms of minimal reconstruction energy is shown over the whole range of possible values for alpha. Additionally, the treatment of unwanted room reflections is discussed, still leading to satisfactory results in many cases. PMID:20058977

  17. Comparison and testing of extended Kalman filters for attitude estimation of the Earth radiation budget satellite

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack Y.; Rokni, Mohammad

    1990-01-01

    The testing and comparison of two Extended Kalman Filters (EKFs) developed for the Earth Radiation Budget Satellite (ERBS) is described. One EKF updates the attitude quaternion using a four component additive error quaternion. This technique is compared to that of a second EKF, which uses a multiplicative error quaternion. A brief development of the multiplicative algorithm is included. The mathematical development of the additive EKF was presented in the 1989 Flight Mechanics/Estimation Theory Symposium along with some preliminary testing results using real spacecraft data. A summary of the additive EKF algorithm is included. The convergence properties, singularity problems, and normalization techniques of the two filters are addressed. Both filters are also compared to those from the ERBS operational ground support software, which uses a batch differential correction algorithm to estimate attitude and gyro biases. Sensitivity studies are performed on the estimation of sensor calibration states. The potential application of the EKF for real time and non-real time ground attitude determination and sensor calibration for future missions such as the Gamma Ray Observatory (GRO) and the Small Explorer Mission (SMEX) is also presented.

  18. Extended Lagrangian formalisms for dyons and some applications to solid systems under external fields

    SciTech Connect

    Costa-Quintana, J. Lopez-Aguilar, F.

    2012-08-15

    We analyze the conditions of the electromagnetic potentials for systems with electric and magnetic charges and the Lagrangian theory with these potentials. The constructed Lagrangian function is valid for obtaining the field equations and the extended Lorentz force for dyonic charges for both relativistic particles in vacuum and non-relativistic entities in solids. In a second part, with the one-body Hamiltonian of independent particles in external fields, we explore some dual properties of the dyonic system under external fields. We analyze the possible diamagnetic (and 'diaelectric') response of magnetic monopoles under a weak and constant electromagnetic field and the theory of Landau levels in the case of magnetic charges under strong electromagnetic constant fields. - Highlights: Black-Right-Pointing-Pointer We study the Lagrangian formalism for magnetic charges. Black-Right-Pointing-Pointer We analyze the electromagnetic potentials for dyons. Black-Right-Pointing-Pointer We study two dual properties of solid systems with magnetic charges. Black-Right-Pointing-Pointer A quantum study of solids with monopoles under electromagnetic constant fields.

  19. The Geomagnetic Field and Radiation in Near-Earth Orbits

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.

    1999-01-01

    This report shows, in detail, how the geomagnetic field interacts with the particle flux of the radiation belts to create a hazard to spacecraft and humans in near-Earth orbit. It illustrates the geometry of the geomagnetic field lines, especially around the area where the field strength is anomalously low in the South Atlantic Ocean. It discusses how the field will probably change in the future and the consequences that may have on hazards in near space.

  20. Gravitational radiation from preheating with many fields

    SciTech Connect

    Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier E-mail: larry@gravity.phys.uwm.edu

    2010-08-01

    Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields.

  1. Multimodal far-field acoustic radiation pattern: An approximate equation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1977-01-01

    The far-field sound radiation theory for a circular duct was studied for both single mode and multimodal inputs. The investigation was intended to develop a method to determine the acoustic power produced by turbofans as a function of mode cut-off ratio. With reasonable simplifying assumptions the single mode radiation pattern was shown to be reducible to a function of mode cut-off ratio only. With modal cut-off ratio as the dominant variable, multimodal radiation patterns can be reduced to a simple explicit expression. This approximate expression provides excellent agreement with an exact calculation of the sound radiation pattern using equal acoustic power per mode.

  2. Radiation from Relativistic Shocks with Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishkawa, K.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Mizuno, A.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Oka, M.; Fishman, J.

    2009-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked region. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. New recent calculation of spectra with various different Lorentz factors of jets (two electrons) and initial magnetic fields. New spectra based on small simulations will be presented.

  3. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  4. Electron trajectories in pulsed radiation fields

    SciTech Connect

    Einwohner, T.; Lippmann, B.A.

    1987-05-01

    The work reported here analyzes the dynamical behavior of an electron, initially at rest, when subjected to a radiation pulse of arbitrary, but integrable, shape. This is done by a general integration procedure that has been programmed in VAXIMA. Upon choosing a specific shape for the pulse, VAXIMA finds both the space-time trajectory and the four-momentum of the electron. These are obtained in analytic or numerical form - or both - at the choice of the user. Several examples of analytical and numerical solutions, for different pulse shapes, are given.

  5. Fission Product Transmutation in Mixed Radiation Fields

    SciTech Connect

    Harmon, Frank; Burgett, Erick; Starovoitova, Valeriia; Tsveretkov, Pavel

    2015-01-15

    Work under this grant addressed a part of the challenge facing the closure of the nuclear fuel cycle; reducing the radiotoxicity of lived fission products (LLFP). It was based on the possibility that partitioning of isotopes and accelerator-based transmutation on particular LLFP combined with geological disposal may lead to an acceptable societal solution to the problem of management. The feasibility of using photonuclear processes based on the excitation of the giant dipole resonance (GDR) by bremsstrahlung radiation as a cost effective transmutation method was accessed. The nuclear reactions of interest: (γ,xn), (n,γ), (γ,p) can be induced by bremsstrahlung radiation produced by high power electron accelerators. The driver of these processes would be an accelerator that produces a high energy and high power electron beam of ~ 100 MeV. The major advantages of such accelerators for this purpose are that they are essentially available “off the shelf” and potentially would be of reasonable cost for this application. Methods were examined that used photo produced neutrons or the bremsstrahlung photons only, or use both photons and neutrons in combination for irradiations of selected LLFP. Extrapolating the results to plausible engineering scale transmuters it was found that the energy cost for 129I and 99Tc transmutation by these methods are about 2 and 4%, respectively, of the energy produced from 1000MWe.

  6. Adaptive radiations: From field to genomic studies

    PubMed Central

    Hodges, Scott A.; Derieg, Nathan J.

    2009-01-01

    Adaptive radiations were central to Darwin's formation of his theory of natural selection, and today they are still the centerpiece for many studies of adaptation and speciation. Here, we review the advantages of adaptive radiations, especially recent ones, for detecting evolutionary trends and the genetic dissection of adaptive traits. We focus on Aquilegia as a primary example of these advantages and highlight progress in understanding the genetic basis of flower color. Phylogenetic analysis of Aquilegia indicates that flower color transitions proceed by changes in the types of anthocyanin pigments produced or their complete loss. Biochemical, crossing, and gene expression studies have provided a wealth of information about the genetic basis of these transitions in Aquilegia. To obtain both enzymatic and regulatory candidate genes for the entire flavonoid pathway, which produces anthocyanins, we used a combination of sequence searches of the Aquilegia Gene Index, phylogenetic analyses, and the isolation of novel sequences by using degenerate PCR and RACE. In total we identified 34 genes that are likely involved in the flavonoid pathway. A number of these genes appear to be single copy in Aquilegia and thus variation in their expression may have been key for floral color evolution. Future studies will be able to use these sequences along with next-generation sequencing technologies to follow expression and sequence variation at the population level. The genetic dissection of other adaptive traits in Aquilegia should also be possible soon as genomic resources such as whole-genome sequencing become available. PMID:19528644

  7. Adaptive radiations: from field to genomic studies.

    PubMed

    Hodges, Scott A; Derieg, Nathan J

    2009-06-16

    Adaptive radiations were central to Darwin's formation of his theory of natural selection, and today they are still the centerpiece for many studies of adaptation and speciation. Here, we review the advantages of adaptive radiations, especially recent ones, for detecting evolutionary trends and the genetic dissection of adaptive traits. We focus on Aquilegia as a primary example of these advantages and highlight progress in understanding the genetic basis of flower color. Phylogenetic analysis of Aquilegia indicates that flower color transitions proceed by changes in the types of anthocyanin pigments produced or their complete loss. Biochemical, crossing, and gene expression studies have provided a wealth of information about the genetic basis of these transitions in Aquilegia. To obtain both enzymatic and regulatory candidate genes for the entire flavonoid pathway, which produces anthocyanins, we used a combination of sequence searches of the Aquilegia Gene Index, phylogenetic analyses, and the isolation of novel sequences by using degenerate PCR and RACE. In total we identified 34 genes that are likely involved in the flavonoid pathway. A number of these genes appear to be single copy in Aquilegia and thus variation in their expression may have been key for floral color evolution. Future studies will be able to use these sequences along with next-generation sequencing technologies to follow expression and sequence variation at the population level. The genetic dissection of other adaptive traits in Aquilegia should also be possible soon as genomic resources such as whole-genome sequencing become available. PMID:19528644

  8. Calcium imaging of neural circuits with extended depth-of-field light-sheet microscopy

    PubMed Central

    Quirin, Sean; Vladimirov, Nikita; Yang, Chao-Tsung; Peterka, Darcy S.; Yuste, Rafael; Ahrens, Misha B.

    2016-01-01

    Increasing the volumetric imaging speed of light-sheet microscopy will improve its ability to detect fast changes in neural activity. Here, a system is introduced for brain-wide imaging of neural activity in the larval zebrafish by coupling structured illumination with cubic phase extended depth-of-field (EDoF) pupil encoding. This microscope enables faster light-sheet imaging and facilitates arbitrary plane scanning—removing constraints on acquisition speed, alignment tolerances, and physical motion near the sample. The usefulness of this method is demonstrated by performing multi-plane calcium imaging in the fish brain with a 416 × 832 × 160 µm field of view at 33 Hz. The optomotor response behavior of the zebrafish is monitored at high speeds, and time-locked correlations of neuronal activity are resolved across its brain. PMID:26974063

  9. Superfield approach to the construction of effective action in quantum field theory with extended supersymmetry

    NASA Astrophysics Data System (ADS)

    Buchbinder, I. L.; Ivanov, E. A.; Pletnev, N. G.

    2016-05-01

    We review the current state of research on the construction of effective actions in supersymmetric quantum field theory. Special attention is paid to gauge models with extended supersymmetry in the superfield approach. The advantages of formulation of such models in harmonic superspace for the calculation of effective action are emphasized. Manifestly supersymmetric and manifestly gauge-invariant methods for constructing the low-energy effective actions and deriving the corrections to them are considered and the possibilities to obtain the exact solutions are discussed. The calculations of one-loop effective actions in N = 2 supersymmetric Yang-Mills theory with hypermultiplets and in N = 4 supersymmetric Yang-Mills theory are analyzed in detail. The relationship between the effective action in supersymmetric quantum field theory and the low-energy limit in superstring theory is discussed.

  10. A 200 V silicon-on-sapphire LDMOS structure with a step oxide extended field plate

    NASA Astrophysics Data System (ADS)

    Roig, J.; Flores, D.; Rebollo, J.; Hidalgo, S.; Millan, J.

    2004-02-01

    Fabrication of power integrated circuits on silicon-on-sapphire (SOS) substrates has rarely been considered before. Hence, there is a lack of research in lateral power devices integrated on SOS. Self-heating effects in existing silicon-on-insulator (SOI) lateral power devices degrade the device performance and their reliability. Use of SOS substrates could alleviate these problems though they would require a different approach in lateral power device engineering. This paper purposes a new power SOS LDMOS structure with reduced transient self-heating effects and enhanced current capability compared to the conventional SOI counterpart. The proposed lateral power structure integrated on SOS substrates is analyzed by electro-thermal simulations. The field plate is enlarged (extended field plate (EFP)) along the drift region, reaching the drain region. The EFP includes an oxide step which improves the "on-state resistance-breakdown voltage" trade-off ( RONxS- Vbr).

  11. Ultra-deep catalog of X-ray groups in the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Finoguenov, A.; Tanaka, M.; Cooper, M.; Allevato, V.; Cappelluti, N.; Choi, A.; Heymans, C.; Bauer, F. E.; Ziparo, F.; Ranalli, P.; Silverman, J.; Brandt, W. N.; Xue, Y. Q.; Mulchaey, J.; Howes, L.; Schmid, C.; Wilman, D.; Comastri, A.; Hasinger, G.; Mainieri, V.; Luo, B.; Tozzi, P.; Rosati, P.; Capak, P.; Popesso, P.

    2015-04-01

    Aims: We present the detection, identification and calibration of extended sources in the deepest X-ray dataset to date, the Extended Chandra Deep Field South (ECDF-S). Methods: Ultra-deep observations of ECDF-S with Chandra and XMM-Newton enable a search for extended X-ray emission down to an unprecedented flux of 2 × 10-16 ergs s-1 cm-2. By using simulations and comparing them with the Chandra and XMM data, we show that it is feasible to probe extended sources of this flux level, which is 10 000 times fainter than the first X-ray group catalogs of the ROSAT all sky survey. Extensive spectroscopic surveys at the VLT and Magellan have been completed, providing spectroscopic identification of galaxy groups to high redshifts. Furthermore, available HST imaging enables a weak-lensing calibration of the group masses. Results: We present the search for the extended emission on spatial scales of 32'' in both Chandra and XMM data, covering 0.3 square degrees and model the extended emission on scales of arcminutes. We present a catalog of 46 spectroscopically identified groups, reaching a redshift of 1.6. We show that the statistical properties of ECDF-S, such as log N - log S and X-ray luminosity function are broadly consistent with LCDM, with the exception that dn/dz/dΩ test reveals that a redshift range of 0.2 < z < 0.5 in ECDF-S is sparsely populated. The lack of nearby structure, however, makes studies of high-redshift groups particularly easier both in X-rays and lensing, due to a lower level of clustered foreground. We present one and two point statistics of the galaxy groups as well as weak-lensing analysis to show that the detected low-luminosity systems are indeed low-mass systems. We verify the applicability of the scaling relations between the X-ray luminosity and the total mass of the group, derived for the COSMOS survey to lower masses and higher redshifts probed by ECDF-S by means of stacked weak lensing and clustering analysis, constraining any possible

  12. Optimization of wavefront-coded infinity-corrected microscope systems with extended depth of field

    PubMed Central

    Zhao, Tingyu; Mauger, Thomas; Li, Guoqiang

    2013-01-01

    The depth of field of an infinity-corrected microscope system is greatly extended by simply applying a specially designed phase mask between the objective and the tube lens. In comparison with the method of modifying the structure of objective, it is more cost effective and provides improved flexibility for assembling the system. Instead of using an ideal optical system for simulation which was the focus of the previous research, a practical wavefront-coded infinity-corrected microscope system is designed in this paper by considering the various aberrations. Two new optimization methods, based on the commercial optical design software, are proposed to design a wavefront-coded microscope using a non-symmetric phase mask and a symmetric phase mask, respectively. We use polynomial phase mask and rational phase mask as examples of the non-symmetric and symmetric phase masks respectively. Simulation results show that both optimization methods work well for a 32 × infinity-corrected microscope system with 0.6 numerical aperture. The depth of field is extended to about 13 times of the traditional one. PMID:24010008

  13. An exactly solvable spherical mean-field plus extended monopole pairing model

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Ding, Xiaoxue; Launey, Kristina D.; Li, Hui; Xu, Xinxin; Draayer, Jerry P.

    2016-03-01

    An extended pairing Hamiltonian that describes pairing interactions among monopole nucleon pairs up to an infinite order in a spherical mean field, such as the spherical shell model, is proposed based on the local E˜2 algebraic structure, which includes the extended pairing interaction within a deformed mean-field theory (Pan et al., 2004) [19] as a special case. The advantage of the model lies in the fact that numerical solutions of the model can be obtained more easily and with less computational time than the solutions to the standard pairing model. Thus, open-shell large-scale calculations within the model become feasible. As an example of the application, pairing contribution to the binding energy of 12-28O is estimated in the present model with neutron pairs allowed to occupy a no-core shell model space of 11 j-orbits up to the fifth major harmonic oscillator shell including excitations up to 14 ħω for 12O and up to 40 ħω for 28O. The results for 12O are also compared and found to be in agreement with those of ab initio calculations. It is shown that the pairing energy per particle in 12-28O ranges from 0.4 to 1.8 MeV/A with the strongest one observed for a small number of pairs.

  14. Total variation based image deconvolution for extended depth-of-field microscopy images

    NASA Astrophysics Data System (ADS)

    Hausser, F.; Beckers, I.; Gierlak, M.; Kahraman, O.

    2015-03-01

    One approach for a detailed understanding of dynamical cellular processes during drug delivery is the use of functionalized biocompatible nanoparticles and fluorescent markers. An appropriate imaging system has to detect these moving particles so as whole cell volumes in real time with high lateral resolution in a range of a few 100 nm. In a previous study Extended depth-of-field microscopy (EDF-microscopy) has been applied to fluorescent beads and tradiscantia stamen hair cells and the concept of real-time imaging has been proved in different microscopic modes. In principle a phase retardation system like a programmable space light modulator or a static waveplate is incorporated in the light path and modulates the wavefront of light. Hence the focal ellipsoid is smeared out and images seem to be blurred in a first step. An image restoration by deconvolution using the known point-spread-function (PSF) of the optical system is necessary to achieve sharp microscopic images of an extended depth-of-field. This work is focused on the investigation and optimization of deconvolution algorithms to solve this restoration problem satisfactorily. This inverse problem is challenging due to presence of Poisson distributed noise and Gaussian noise, and since the PSF used for deconvolution exactly fits in just one plane within the object. We use non-linear Total Variation based image restoration techniques, where different types of noise can be treated properly. Various algorithms are evaluated for artificially generated 3D images as well as for fluorescence measurements of BPAE cells.

  15. Extended power-law scaling of heavy-tailed random fields or processes

    NASA Astrophysics Data System (ADS)

    Guadagnini, A.; Riva, M.; Neuman, S. P.

    2012-06-01

    We analyze the scaling behaviors of two log permeability data sets showing heavy-tailed frequency distributions in three and two spatial dimensions, respectively. One set consists of 1-m scale pneumatic packer test data from six vertical and inclined boreholes spanning a decameters scale block of unsaturated fractured tuffs near Superior, Arizona, the other of pneumatic minipermeameter data measured at a spacing of 15 cm along two horizontal transects on a 21 m long outcrop of lower-shoreface bioturbated sandstone near Escalante, Utah. Order q sample structure functions of each data set scale as a power ξ (q) of separation scale or lag, s, over limited ranges of s. A procedure known as Extended Self-Similarity (ESS) extends this range to all lags and yields a nonlinear (concave) functional relationship between ξ (q) and q. Whereas the literature tends to associate extended and nonlinear power-law scaling with multifractals or fractional Laplace motions, we have shown elsewhere that (a) ESS of data having a normal frequency distribution is theoretically consistent with (Gaussian) truncated (additive, self-affine, monofractal) fractional Brownian motion (tfBm), the latter being unique in predicting a breakdown in power-law scaling at small and large lags, and (b) nonlinear power-law scaling of data having either normal or heavy-tailed frequency distributions is consistent with samples from sub-Gaussian random fields or processes subordinated to tfBm, stemming from lack of ergodicity which causes sample moments to scale differently than do their ensemble counterparts. Here we (i) demonstrate that the above two data sets are consistent with sub-Gaussian random fields subordinated to tfBm and (ii) provide maximum likelihood estimates of parameters characterizing the corresponding Lévy stable subordinators and tfBm functions.

  16. Visual verification of linac light and radiation fields coincidence

    SciTech Connect

    Monti, Angelo F.; Frigerio, Milena; Frigerio, Giovanna

    2003-06-30

    X-ray and light field alignment evaluation is carried out during linac quality assurance programs. In this paper, we compare the size of the light field measured by a photodiode and by a more traditional visual observation with the size of the x-ray field. The comparison between actual light field size, measured with the photodiode, and light field size measured by human eye allow us to verify the reliability of human eye in the evaluation of this parameter. The visual field is always larger than real light field; however, it agrees better with the x-ray field. It matches the light field if we take into account the 25% ({+-} 1%) of the decrement line of the maximum central lightening; however, this method simulates better the actual field employed in radiation treatments.

  17. Active thermal extraction of near-field thermal radiation

    NASA Astrophysics Data System (ADS)

    Ding, D.; Kim, T.; Minnich, A. J.

    2016-02-01

    Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at subwavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active scheme to extract these modes to the far field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far field. Our study demonstrates an approach to manipulate thermal radiation that could find applications in thermal management.

  18. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    SciTech Connect

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  19. Field Testing of a Portable Radiation Detector and Mapping System

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1998-03-01

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system.

  20. Extending the radial diffusion model of Falthammar to non-dipole background field

    SciTech Connect

    Cunningham, Gregory Scott

    2015-05-26

    A model for radial diffusion caused by electromagnetic disturbances was published by Falthammar (1965) using a two-parameter model of the disturbance perturbing a background dipole magnetic field. Schulz and Lanzerotti (1974) extended this model by recognizing the two parameter perturbation as the leading (non--dipole) terms of the Mead Williams magnetic field model. They emphasized that the magnetic perturbation in such a model induces an electric ield that can be calculated from the motion of field lines on which the particles are ‘frozen’. Roederer and Zhang (2014) describe how the field lines on which the particles are frozen can be calculated by tracing the unperturbed field lines from the minimum-B location to the ionospheric footpoint, and then tracing the perturbed field (which shares the same ionospheric footpoint due to the frozen -in condition) from the ionospheric footpoint back to a perturbed minimum B location. The instantaneous change n Roederer L*, dL*/dt, can then be computed as the product (dL*/dphi)*(dphi/dt). dL*/Dphi is linearly dependent on the perturbation parameters (to first order) and is obtained by computing the drift across L*-labeled perturbed field lines, while dphi/dt is related to the bounce-averaged gradient-curvature drift velocity. The advantage of assuming a dipole background magnetic field, as in these previous studies, is that the instantaneous dL*/dt can be computed analytically (with some approximations), as can the DLL that results from integrating dL*/dt over time and computing the expected value of (dL*)^2. The approach can also be applied to complex background magnetic field models like T89 or TS04, on top of which the small perturbations are added, but an analytical solution is not possible and so a numerical solution must be implemented. In this talk, I discuss our progress in implementing a numerical solution to the calculation of DL*L* using arbitrary background field models with simple electromagnetic

  1. An evaluation of RAMS radiation schemes by field measurements

    SciTech Connect

    Zhong, S; Doran, J C

    1994-02-01

    At present, two radiation schemes are used in RAMS: the Mahrer and Pielke (M-P) scheme and the Chen and Cotton (C-C) scheme. The M-P scheme requires little computational expense, but does not include the radiative effects of liquid water or ice; the C-C scheme accounts for the radiative effects of liquid water and ice but is fairly expensive computationally. For simulations with clouds, the C-C scheme is obviously a better choice, but for clear sky conditions, RAMS users face a decision regarding which radiation scheme to use. It has been noted that the choice of radiation scheme may result in significantly different results for the same case. To examine the differences in the radiative fluxes and the boundary-layer structure corresponding to the two radiation schemes in RAMS we have carried out a study where Rams was used to simulate the same case with two different radiation schemes. The modeled radiative fluxes by the two schemes were then compared with the field measurements. A description of the observations and the case study, a comparison and discussion of the results, and a summary and conclusions follow.

  2. Coherence-polarization properties of fields radiated from transversely periodic electromagnetic sources

    NASA Astrophysics Data System (ADS)

    Santarsiero, M.; de Sande, J. C. G.; Piquero, G.; Gori, F.

    2013-05-01

    Planar electromagnetic sources characterized by a periodic variation of their beam coherence-polarization matrix are investigated, as far as the polarization features of the radiated fields are concerned, within the framework of the paraxial approximation. A propagation scheme based on plane-wave decomposition leads to a longitudinal periodicity of the polarization properties of the field, thus extending the Talbot effect to the case of partially coherent electromagnetic sources. The polarization features of beams radiated from sources of this type are illustrated by means of simple examples. In particular, it is shown that completely unpolarized sources with uniform intensity profiles can be easily realized, for which the propagated field becomes perfectly polarized across some transverse planes, and vice versa.

  3. Synchrotron radiation in strongly coupled conformal field theories

    SciTech Connect

    Athanasiou, Christiana; Chesler, Paul M.; Liu, Hong; Rajagopal, Krishna; Nickel, Dominik

    2010-06-15

    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled N=4 supersymmetric Yang-Mills theory. We compare the strong coupling results to those at weak coupling, finding them to be very similar. In both regimes, the angular distribution of the radiated power is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle {alpha}{approx}1/{gamma}. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.

  4. FLASH requirements for the high intensity radiated field electromagnetic environment

    NASA Astrophysics Data System (ADS)

    Murdock, John K.

    1995-05-01

    The worldwide proliferation of high intensity emitting sources and the more electric aircraft increase the intensity of the Electromagnetic Environment (EME) in which aircraft must operate. A FLASH program HIRF (High Intensity Radiated Field) EME requirement is derived to cover both commercial and military fixed and rotary wing aircraft. This requirement is derived from the radiated susceptibility requirement documents of both the FAA and U.S. military. Specific test data and analysis will show that we can meet this requirement.

  5. Community fear of nonionizing radiation: a field investigation

    SciTech Connect

    Daley, M.L.; Morton, W.E.; Chartier, V.; Zajac, H.; Benitez, H.

    1985-03-01

    Four children from the same school class developed cancer. Because of concern in the community, a field study designed to document levels of environmental, nonionizing radiation was undertaken. Two school sites were investigated, the one with the cluster of cases and the other without known cases of cancer. The measured values of nonionizing radiation at both sites were not different and were well below existing exposure standards.

  6. IAEA programme in the field of radiation technology

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad

    2005-07-01

    Radiation technologies applying gamma sources and electron accelerators for material modification are well-established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. A new advancement in the field of radiation sources engineering is the development of high power direct e-/X conversion sources based on electron accelerators. Technologies to be developed beside environmental applications could be nanomaterials, structure engineered materials (sorbents, composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation-processed polysaccharides have already been commercialised in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environmental protection-radiation technology, being a clean and environment friendly process, helps to curb pollutants' emission as well. Industrial plants for flue gas treatment have been constructed in Poland and China. The pilot plant in Bulgaria using this technology has just started its operation. The Polish plant is equipped with accelerators of over 1 MW power, a breakthrough in radiation technology application. The industrial plant for wastewater treatment is under development in Korea and a pilot plant for sewage sludge irradiation has been in operation in India for many years. Due to recent developments, the Agency has restructured its programme and organized a Technical Meeting (TM) on "Emerging Applications of Radiation Technology for the 21st Century" at its Headquarters in Vienna, Austria, in April 2003, to review the present situation and possible developments of radiation technology to contribute to a sustainable development. This meeting provided the basic input to launch others in the most important fields of radiation technology applications: "Advances in Radiation Chemistry of Polymers" (Notre Dame, USA

  7. Local Gravity Field Determination On The Moon Using GRAIL Extended Mission Data

    NASA Astrophysics Data System (ADS)

    Goossens, S. J.; Lemoine, F. G.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2013-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were launched on September 10, 2011, and conducted their primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km. GRAIL's extended mission commenced on August 30 and was completed on December 14, 2012. The average altitude during the extended mission was 23 km above lunar surface. Both primary and extended mission data have been processed at NASA/GSFC using the GEODYN software, resulting in high-resolution (degree and order 900 in spherical harmonics) gravity field models of high accuracy. However, especially during low-altitude passes, Ka-band range-rate (KBRR) data residuals are still well above noise level. Here, we focus on methods to determine local gravity adjustments from KBRR data. We represent gravity in the area of interest as gravity anomaly adjustments with respect to the background spherical harmonics model. We use KBRR data only over the area of interest, and we then perform short-arc orbit determination. Our areas of focus are mainly the Mare Orientale area, where GRAIL achieved its lowest altitude above the lunar surface towards the end of the mission, and the south pole area, where naturally there is a confluence of orbit tracks. We investigate different grids and different smoothing constraints used in the estimation of the anomalies, numerical differentiation with respect to time of the KBRR data to localize its sensitivity further, and we evaluate the solutions in terms of Bouguer anomaly signatures, KBRR data fit, and correlations with local topography.

  8. Cosmological fluctuations of a random field and radiation fluid

    SciTech Connect

    Bastero-Gil, Mar; Berera, Arjun; Moss, Ian G.; Ramos, Rudnei O. E-mail: ab@ph.ed.ac.uk E-mail: rudnei@uerj.br

    2014-05-01

    A generalization of the random fluid hydrodynamic fluctuation theory due to Landau and Lifshitz is applied to describe cosmological fluctuations in systems with radiation and scalar fields. The viscous pressures, parametrized in terms of the bulk and shear viscosity coefficients, and the respective random fluctuations in the radiation fluid are combined with the stochastic and dissipative scalar evolution equation. This results in a complete set of equations describing the perturbations in both scalar and radiation fluids. These derived equations are then studied, as an example, in the context of warm inflation. Similar treatments can be done for other cosmological early universe scenarios involving thermal or statistical fluctuations.

  9. Polarization in cyclotron radiation in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Semionova, Luidmila; Leahy, Denis; Paez, Jorge

    2010-10-01

    We revisit the problem of radiative transitions of electrons in the presence of a strong magnetic field. We derive fully relativistic cyclotron transition rates for an arbitrary magnetic field, for any orientation of electron spin and for any polarization of the emitted radiation. Also, we obtain the transition rates for any value of the initial electron's parallel momentum. For very strong magnetic fields, transitions to the ground state predominate. Transition rates summed over the electron's spin orientation and for unpolarized radiation are also obtained, which confirm previous results by Latal. Transition widths are calculated for different electron spin orientations and different polarizations of radiation. We obtain general expressions for transition rates that reduce to the results for the non-relativistic case and for unpolarized radiation. Additionally we get, for the non-relativistic approximation, the transition rates for any polarization of radiation. As an application, the first five emission lines are evaluated and compared to the X-ray emitting neutron star V0332+53, which has multiple observable cyclotron lines, taking into account gravitational redshift. The most probable polarization is in(2).

  10. Dynamics of cell and tissue growth acquired by means of extended field of view lensfree microscopy.

    PubMed

    Momey, F; Coutard, J-G; Bordy, T; Navarro, F; Menneteau, M; Dinten, J-M; Allier, C

    2016-02-01

    In this paper, we discuss a new methodology based on lensfree imaging to perform wound healing assay with unprecedented statistics. Our video lensfree microscopy setup is a simple device featuring only a CMOS sensor and a semi coherent illumination system. Yet it is a powerful mean for the real-time monitoring of cultivated cells. It presents several key advantages, e.g. integration into standard incubator, compatibility with standard cell culture protocol, simplicity and ease of use. It can perform the follow-up in a large field of view (25 mm(2)) of several crucial parameters during the culture of cells i.e. their motility, their proliferation rate or their death. Consequently the setup can gather large statistics both in space and time. Here we uses this facility in the context of wound healing assay to perform label-free measurements of the velocities of the fronts of proliferation of the cell layer as a function of time by means of particle image velocimetry (PIV) processing. However, for such tissue growth experiments, the field of view of 25 mm(2) remains not sufficient and results can be biased depending on the position of the device with respect to the recipient of the cell culture. Hence, to conduct exhaustive wound healing assays, we propose to enlarge the field of view up to 10 cm(2) through a raster scan, by moving the source/sensor with respect to the Petri dish. We have performed acquisitions of wound healing assay (keratinocytes HaCaT) both in real-time (25 mm(2)) and in final point (10 cm(2)) to assess the combination of velocimetry measurements and final point wide field imaging. In the future, we aim at combining directly our extended field of view acquisitions (>10 cm(2)) with real time ability inside the incubator. PMID:26977359

  11. Dynamics of cell and tissue growth acquired by means of extended field of view lensfree microscopy

    PubMed Central

    Momey, F.; Coutard, J.-G.; Bordy, T.; Navarro, F.; Menneteau, M.; Dinten, J.-M.; Allier, C.

    2016-01-01

    In this paper, we discuss a new methodology based on lensfree imaging to perform wound healing assay with unprecedented statistics. Our video lensfree microscopy setup is a simple device featuring only a CMOS sensor and a semi coherent illumination system. Yet it is a powerful mean for the real-time monitoring of cultivated cells. It presents several key advantages, e.g. integration into standard incubator, compatibility with standard cell culture protocol, simplicity and ease of use. It can perform the follow-up in a large field of view (25 mm2) of several crucial parameters during the culture of cells i.e. their motility, their proliferation rate or their death. Consequently the setup can gather large statistics both in space and time. Here we uses this facility in the context of wound healing assay to perform label-free measurements of the velocities of the fronts of proliferation of the cell layer as a function of time by means of particle image velocimetry (PIV) processing. However, for such tissue growth experiments, the field of view of 25 mm2 remains not sufficient and results can be biased depending on the position of the device with respect to the recipient of the cell culture. Hence, to conduct exhaustive wound healing assays, we propose to enlarge the field of view up to 10 cm2 through a raster scan, by moving the source/sensor with respect to the Petri dish. We have performed acquisitions of wound healing assay (keratinocytes HaCaT) both in real-time (25 mm2) and in final point (10 cm2) to assess the combination of velocimetry measurements and final point wide field imaging. In the future, we aim at combining directly our extended field of view acquisitions (>10 cm2) with real time ability inside the incubator. PMID:26977359

  12. Topological magnetoelectric effects in microwave far-field radiation

    NASA Astrophysics Data System (ADS)

    Berezin, M.; Kamenetskii, E. O.; Shavit, R.

    2016-07-01

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of the free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.

  13. Imaging properties of extended depth of field microscopy through single-shot focus scanning

    PubMed Central

    Lu, Sheng-Huei; Hua, Hong

    2015-01-01

    Although the single-shot focus scanning technique (SSFS) has been experimentally demonstrated for extended depth of field (EDOF) imaging, few work has been performed to characterize its imaging properties and limitations. In this paper, based on an analytical model of a SSFS system, we examined the properties of the system response and the restored image quality in relation to the axial position of the object, scan range, and signal-to-noise ratio, and demonstrated the properties via a prototype of 10 × 0.25 NA microscope system. We quantified the full range of the achievable EDOF is equivalent to the focus scan range. We further demonstrated that the restored image quality can be improved by extending the focus scan range by a distance equivalent to twice of the standard DOF. For example, in a focus-scanning microscope with a ± 15 μm standard DOF, a 120 μm focus scan range can obtain a ± 60 μm EDOF, but a 150 μm scan range affords noticeably better EDOF images for the same EDOF range. These results provide guidelines for designing and implementing EDOF systems using SSFS technique. PMID:25969109

  14. Extended MHD Simulations of Tearing Instabilities and the Dynamo Effect in the Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Dearborn, J.; Bhattacharjee, A.

    2009-11-01

    Observations on MST indicate the importance of the Hall current in sawtooth crashes and the dynamo effect in a RFP. We employ our Magnetic Reconnection Code (MRC) to perform fully 3D extended MHD simulations in the RFP, including the Hall current and electron pressure gradient in a generalized Ohm's law. The MRC is an MPI-parallelized finite-volume based simulation code that integrates the extended MHD equations. It supports arbitrary curvilinear coordinate mappings, allowing it to be adapted to cylindrical and toroidal geometries. In order to overcome restrictive time-step limits, it uses implicit time integration. We have benchmarked the code for linear tearing instabilities, and performed fully nonlinear simulations. Due to the presence of the Hall current, novel vortical flows are seen in the vicinity of rational surfaces, akin to those seen in recent sawtooth studies in tokamaks, when the peak of the current density separates from the stagnation point of the flow. We calculate the dynamo field by averaging, and compare simulations with observations.

  15. Extending the GMR current measurement range with a counteracting magnetic field.

    PubMed

    Poon, Tin Yan; Tse, Norman Chung Fai; Lau, Ricky Wing Hong

    2013-01-01

    Traditionally, current transformers are often used for current measurement in low voltage (LV) electrical networks. They have a large physical size and are not designed for use with power electronic circuits. Semiconductor-based current sensing devices such as the Hall sensor and Giant Magnetoresistive (GMR) sensor are advantageous in terms of small size, high sensitivity, wide frequency range, low power consumption, and relatively low cost. Nevertheless, the operational characteristics of these devices limit their current measurement range. In this paper, a design based on using counteracting magnetic field is introduced for extending the GMR current measurement range from 9 A (unipolar) to ±45 A. A prototype has been implemented to verify the design and the linear operation of the circuit is demonstrated by experimental results. A microcontroller unit (MCU) is used to provide an automatic scaling function to optimize the performance of the proposed current sensor. PMID:23793022

  16. Recovery of phase inconsistencies in continuously moving table extended field of view magnetic resonance imaging acquisitions.

    PubMed

    Kruger, David G; Riederer, Stephen J; Rossman, Phillip J; Mostardi, Petrice M; Madhuranthakam, Ananth J; Hu, Houchun H

    2005-09-01

    MR images formed using extended FOV continuously moving table data acquisition can have signal falloff and loss of lateral spatial resolution at localized, periodic positions along the direction of table motion. In this work we identify the origin of these artifacts and provide a means for correction. The artifacts are due to a mismatch of the phase of signals acquired from contiguous sampling fields of view and are most pronounced when the central k-space views are being sampled. Correction can be performed using the phase information from a periodically sampled central view to adjust the phase of all other views of that view cycle, making the net phase uniform across each axial plane. Results from experimental phantom and contrast-enhanced peripheral MRA studies show that the correction technique substantially eliminates the artifact for a variety of phase encode orders. PMID:16086304

  17. Active Extraction of Near-field Thermal Radiation

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Kim, Taeyong; Minnich, Austin

    Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at sub-wavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active radiative cooling (ARC) scheme to extract these modes to the far-field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far-field. We also provide further insights into our ARC scheme by applying the theoretical framework used for laser cooling of solids (LCS) to ARC. We show that LCS and ARC can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ARC. Using this framework, we examine the predictions of the formalism for LCS and ARC using realistic parameters and find that ARC can achieve higher efficiency and extracted power over a wide range of conditions. Our study demonstrates a new approach to manipulate near-field thermal radiation for thermal management.

  18. [A case of radiation-related pneumonia and bilateral tension pneumothorax after extended thymectomy and adjuvant radiation for thymoma with myasthenia gravis].

    PubMed

    Nakasone, Etsuko; Nakayama, Masayuki; Bando, Masashi; Endo, Shunsuke; Hironaka, Mitsugu; Sugiyama, Yukihiko

    2010-08-01

    A 62-year-old man was admitted to our hospital with a 2-month history of progressive cough and dyspnea. He had undergone thymectomy for thymoma with myasthenia gravis. Adjuvant radiation of 50 Gy had been performed until 6 months before the symptoms developed. Chest computed tomography showed infiltrative findings even outside the irradiated area. We diagnosed radiation-related pneumonia, and 30 mg per day prednisolone was initiated. On the final day, he developed bilateral tension pneumothorax. After chest tube drainage, the right S5 bulla was resected with video-assisted thoracoscopic surgery (VATS). The right pneumothorax caused the bilateral tension pneumothorax, because the right and left thoracic cavity communicated in the anterior mediastinum after thymectomy. We should be aware of the risk of bilateral tension pneumothorax following radiation-related pneumonia after extended thymectomy and adjuvant radiation in patients with myasthenia gravis. PMID:20803975

  19. Electrodynamics of Radiating Charges in a Gravitational Field

    NASA Astrophysics Data System (ADS)

    Grøn, Øyvind

    The electrodynamics of a radiating charge and its electromagnetic field based upon the Lorentz-Abraham-Dirac (LAD) equation are discussed both with reference to an inertial reference frame and a uniformly accelerated reference frame. It is demonstrated that energy and momentum are conserved during runaway motion of a radiating charge and during free fall of a charge in a field of gravity. This does not mean that runaway motion is really happening. It may be an unphysical solution of the LAD equation of motion of a radiating charge due to the unrealistic point particle model of the charge upon which it is based. However it demonstrates the consistency of classical electrodynamics, including the LAD equation which is deduced from Maxwell's equations and the principle of energy-momentum conservation applied to a radiating charge and its electromagnetic field. The decisive role of the Schott energy in this connection is made clear and an answer is given to the question: What sort of energy is the Schott energy and where is it found? It is the part of the electromagnetic field energy which is proportional to (minus) the scalar product of the velocity and acceleration of a moving accelerated charged particle. In the case of the electromagnetic field of a point charge it is localized at the particle. This energy is negative if the acceleration is in the same direction as the velocity and positive if it is in the opposite direction. During runaway motion the Schott energy becomes more and more negative and in the case of a charged particle with finite extension, it is localized in a region with increasing extension surrounding the particle. The Schott energy provides the radiated energy of a freely falling charge. Also it is pointed out that a proton and a neutron fall with the same acceleration in a uniform gravitational field, although the proton radiates and the neutron does not. It is made clear that the question as to whether or not a charge radiates has a reference

  20. Study of high speed complex number algorithms. [for determining antenna for field radiation patterns

    NASA Technical Reports Server (NTRS)

    Heisler, R.

    1981-01-01

    A method of evaluating the radiation integral on the curved surface of a reflecting antenna is presented. A three dimensional Fourier transform approach is used to generate a two dimensional radiation cross-section along a planer cut at any angle phi through the far field pattern. Salient to the method is an algorithm for evaluating a subset of the total three dimensional discrete Fourier transform results. The subset elements are selectively evaluated to yield data along a geometric plane of constant. The algorithm is extremely efficient so that computation of the induced surface currents via the physical optics approximation dominates the computer time required to compute a radiation pattern. Application to paraboloid reflectors with off-focus feeds in presented, but the method is easily extended to offset antenna systems and reflectors of arbitrary shapes. Numerical results were computed for both gain and phase and are compared with other published work.

  1. Higgs-Yukawa model with higher dimension operators via extended mean field theory

    NASA Astrophysics Data System (ADS)

    Akerlund, Oscar; de Forcrand, Philippe

    2016-02-01

    Using extended mean field theory (EMFT) on the lattice, we study properties of the Higgs-Yukawa model as an approximation of the standard model Higgs sector, and the effect of higher dimension operators. We remark, as has been noted before, that the discussion of vacuum stability is completely modified in the presence of a ϕ6 term, and that the Higgs mass no longer appears fine tuned. We also study the finite temperature transition. Without higher dimension operators the transition is found to be second order (crossover with gauge fields) for the experimental value of the Higgs mass Mh=125 GeV . By taking a ϕ6 interaction in the Higgs potential as a proxy for a UV completion of the standard model, the transition becomes stronger and turns first order if the scale of new physics, i.e., the mass of the lightest mediator particle, is around 1.5 TeV. This implies that electroweak baryogenesis may be viable in models which introduce new particles around that scale.

  2. Portable low-coherence interferometry for quantitatively imaging fast dynamics with extended field of view

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Girshovitz, Pinhas; Frenklach, Irena

    2014-06-01

    We present our recent advances in the development of compact, highly portable and inexpensive wide-field interferometric modules. By a smart design of the interferometric system, including the usage of low-coherence illumination sources and common-path off-axis geometry of the interferometers, spatial and temporal noise levels of the resulting quantitative thickness profile can be sub-nanometric, while processing the phase profile in real time. In addition, due to novel experimentally-implemented multiplexing methods, we can capture low-coherence off-axis interferograms with significantly extended field of view and in faster acquisition rates. Using these techniques, we quantitatively imaged rapid dynamics of live biological cells including sperm cells and unicellular microorganisms. Then, we demonstrated dynamic profiling during lithography processes of microscopic elements, with thicknesses that may vary from several nanometers to hundreds of microns. Finally, we present new algorithms for fast reconstruction (including digital phase unwrapping) of off-axis interferograms, which allow real-time processing in more than video rate on regular single-core computers.

  3. Cosmic Ray Propagation through the Magnetic Fields of the Galaxy with Extended Halo

    NASA Technical Reports Server (NTRS)

    Zhang, Ming

    2005-01-01

    In this project we perform theoretical studies of 3-dimensional cosmic ray propagation in magnetic field configurations of the Galaxy with an extended halo. We employ our newly developed Markov stochastic process methods to solve the diffusive cosmic ray transport equation. We seek to understand observations of cosmic ray spectra, composition under the constraints of the observations of diffuse gamma ray and radio emission from the Galaxy. The model parameters are directly are related to properties of our Galaxy, such as the size of the Galactic halo, particle transport in Galactic magnetic fields, distribution of interstellar gas, primary cosmic ray source distribution and their confinement in the Galaxy. The core of this investigation is the development of software for cosmic ray propagation models with the Markov stochastic process approach. Values of important model parameters for the halo diffusion model are examined in comparison with observations of cosmic ray spectra, composition and the diffuse gamma-ray background. This report summarizes our achievement in the grant period at the Florida Institute of Technology. Work at the co-investigator's institution, the University of New Hampshire, under a companion grant, will be covered in detail by a separate report.

  4. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG)

    SciTech Connect

    Specht, Lena; Yahalom, Joachim; Illidge, Tim; Berthelsen, Anne Kiil; Constine, Louis S.; Eich, Hans Theodor; Girinsky, Theodore; Hoppe, Richard T.; Mauch, Peter; Mikhaeel, N. George; Ng, Andrea

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the

  5. Radiation-Reaction Trapping of Electrons in Extreme Laser Fields

    NASA Astrophysics Data System (ADS)

    Ji, L. L.; Pukhov, A.; Kostyukov, I. Yu.; Shen, B. F.; Akli, K.

    2014-04-01

    A radiation-reaction trapping (RRT) of electrons is revealed in the near-QED regime of laser-plasma interaction. Electrons quivering in laser pulse experience radiation reaction (RR) recoil force by radiating photons. When the laser field reaches the threshold, the RR force becomes significant enough to compensate for the expelling laser ponderomotive force. Then electrons are trapped inside the laser pulse instead of being scattered off transversely and form a dense plasma bunch. The mechanism is demonstrated both by full three-dimensional particle-in-cell simulations using the QED photonic approach and numerical test-particle modeling based on the classical Landau-Lifshitz formula of RR force. Furthermore, the proposed analysis shows that the threshold of laser field amplitude for RRT is approximately the cubic root of laser wavelength over classical electron radius. Because of the pinching effect of the trapped electron bunch, the required laser intensity for RRT can be further reduced.

  6. Far-field radiation from a cleaved cylindrical dielectric waveguide

    SciTech Connect

    Cerjan, C.

    1996-07-09

    Angular spread in the far-field radiation pattern of a cleaved dielectric waveguide is determined from the modal structure at the surface of the waveguide using the Smythe vector integral formulation. Essential features: First, a mode exists in the fiber that has no wavelength cutoff--the so-called HE{sub 11} mode. This mode arises when non-azimuthal angular dependence of the incoming radiation is present. Second, the energy flow from this hybrid mode fills the fiber face and is not annularly shaped as opposed to the symmetric TE and TM modes. Third, the HE{sub 11} mode is not polarization dependent in contrast to the TE and TM modes. Fourth, for small differences in the refractive indices between the core and cladding regions, only the HE{sub 11} mode will be supported until the next modes appear around 3.33{lambda}. At this point, three new modes can propagate and the model structure of the radiation becomes more complicated. Fifth, the far-field radiation pattern will have negligibly small angular dependence in the phases of the vector fields when only the lowest mode is present; the amplitude has an overall angular dependent form factor. Furthermore, when other modes are present (above 3.33{lambda}), the phase of the vector fields will acquire an angular dependence.

  7. Extending comprehensive models of the Earth's magnetic field with Ørsted and CHAMP data

    NASA Astrophysics Data System (ADS)

    Sabaka, Terence J.; Olsen, Nils; Purucker, Michael E.

    2004-11-01

    A new model of the quiet-time, near-Earth magnetic field has been derived using a comprehensive approach, which includes not only POGO and Magsat satellite data, but also data from the Ørsted and CHAMP satellites. The resulting model shows great improvement over its predecessors in terms of completeness of sources, time span and noise reduction in parameters. With its well separated fields and extended time domain of 1960 to mid-2002, the model is able to detect the known sequence of geomagnetic jerks within this frame and gives evidence for an event of interest around 1997. Because all sources are coestimated in a comprehensive approach, intriguing north-south features typically filtered out with other methods are being discovered in the lithospheric representation of the model, such as the S Atlantic spreading ridge and Andean subduction zone lineations. In addition, this lithospheric field exhibits significantly less noise than previous models as a result of improved data selection. The F-region currents, through which the satellites pass, are now treated as lying within meridional planes, as opposed to being purely radial. Results are consistent with those found previously for Magsat, but an analysis at Ørsted altitude shows exciting evidence that the meridional currents associated with the equatorial electrojet likely close beneath the satellite. Besides the model, a new analysis technique has been developed to infer the portion of a model parameter state resolved by a particular data subset. This has proven very useful in diagnosing the cause of peculiar artefacts in the Magsat vector data, which seem to suggest the presence of a small misalignment bias in the vector magnetometer.

  8. Gravity Fields of the Moon Derived from GRAIL Primary and Extended Mission Data (Invited)

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B.; Chinn, D. S.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2013-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012, for the primary mission and from August 30, 2012 to December 14, 2012 for the extended mission and endgame. During both mission phases, the twin spacecraft acquired highly precise Ka-band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data from altitudes of 2.3 to 98.2 km above the lunar surface. We have processed the GRAIL data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program and used the supercomputers of the NASA Center for Climate Simulation (NCCS) at NASA GSFC to accumulate the SRIF arrays and derive the geopotential solutions. During the extended mission, the spacecraft orbits were maintained at a mean altitude of ~23 km, compared to ~50 km during the primary mission. In addition, from December 7 to December 14, 2012, data were acquired from a mean altitude of 11.5 km. With these data, we have derived solutions in spherical harmonics to degree 900. The new gravity solutions show improved correlations with LOLA-derived topography to very high degree and order and resolve many lunar features in the geopotential with a resolution of less than 15 km. We discuss the methods we used for the processing of the GRAIL data, and evaluate these solutions with respect to the derived power spectra, Bouguer anomalies, and fits with independent data (such as from the low-altitude phase of the Lunar Prospector mission).

  9. 3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System

    SciTech Connect

    Mallan, R; Wilt, M; Kirkendall, B; Kasameyer, P

    2002-05-29

    Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series of three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of

  10. Nanodosimetric Characterization of Mixed Radiation Fields: Status and Perspectives

    NASA Astrophysics Data System (ADS)

    Schulte, Reinhard; Bashkirov, Vladimir; Casiraghi, Margherita

    The nanodosimetric characterization of mixed radiation fields containing variable fluences of charged particles, neutrons, and photons with stochastic quantities related to the number of ionizations in biological targets of nanometric size is an active area of research and development. Applications include measurements in low-dose radiation environments, including outer space, for radiation protection as well as characterization of mixed radiation therapy fields present in particle therapy with protons, light ions, or neutrons. Approaches for the nanodosimetric characterization of mixed radiation fields should consist of balance of theoretical Monte Carlo simulations and experimental studies that can inform each other. The former should be carefully benchmarked with the latter, usually employing detectors filled with low-pressure gas in which nanodosimetric studies are possible. Research in experimental nanodosimetry has exploited the principle of low-pressure-gas scaling of mean interaction distances between energy transfer points up to a million-fold, thus allowing to collect single charges (ions or electrons) generated in cylindrical volumes equivalent to a short segment of DNA. When combined with arrival-time selection, position resolution of down to 5 nm, has been achieved for experimental track structure studies. The results of these experimental studies and Monte Carlo simulations using the Monte Carlo codes will be summarized. More recently, we have studied a new principle of 2D low-energy ion detection by impact ionization in a hole-pattern detector in combination with a low-pressure time projection chamber. First proof-of-principle and performance studies with this track-imaging detector and corresponding Monte Carlo simulations will be presented. The full potential of nanometric quantities in characterizing radiation quality for dosimetry of ionizing radiation is yet to be explored. The most significant signature of radiation quality may be the size and

  11. Optimized non-integer order phase mask to extend the depth of field of an imaging system

    NASA Astrophysics Data System (ADS)

    Liu, Jiang; Miao, Erlong; Sui, Yongxin; Yang, Huaijiang

    2016-09-01

    Wavefront coding is an effective optical technique used to extend the depth of field for an incoherent imaging system. Through introducing an optimized phase mask to the pupil plane, the modulated optical transfer function is defocus-invariant. In this paper, we proposed a new form phase mask using non-integer order and signum function to extend the depth of field. The performance of the phase mask is evaluated by comparing defocused modulation transfer function invariant and Fisher information with other phase masks. Defocused imaging simulation is also carried out. The results demonstrate the advantages of non-integer order phase mask and its effectiveness on the depth of field extension.

  12. Simulation of the radiation fields from ionizing radiation sources inside the containment in an accident

    SciTech Connect

    Kalugin, M. A.

    2010-12-15

    In the present work, a set of codes used for simulations of the radiation fields from ionizing radiation sources inside the containment in an accident is described. A method of evaluating the gamma dose rate from a space and energy distributed source is given. The dose rate is calculated by means of the design point kernel method and using buildup factors. The code MCU-REA with the ORIMCU module is used for the burnup calculations.

  13. Electrical integrity of oxides in a radiation field

    SciTech Connect

    Zinkle, S.J.; Kinoshita, C.

    1996-04-01

    In the absence of an applied electric field, irradiation generally produces a decrease in the permanent (beam-off) electrical conductivity of ceramic insulators. However, in the past 6 years several research groups have reported a phenomenon known as radiation induced electrical degradation (RIED), which produces significant permanent increases in the electrical conductivity of ceramic insulators irradiated with an applied electric field. RIED has been reported to occur at temperatures between 420 and 800 K with applied electric fields as low as 20 V/mm.

  14. From Dinosaurs to Modern Bird Diversity: Extending the Time Scale of Adaptive Radiation

    PubMed Central

    Moen, Daniel; Morlon, Hélène

    2014-01-01

    What explains why some groups of organisms, like birds, are so species rich? And what explains their extraordinary ecological diversity, ranging from large, flightless birds to small migratory species that fly thousand of kilometers every year? These and similar questions have spurred great interest in adaptive radiation, the diversification of ecological traits in a rapidly speciating group of organisms. Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil record, rigorous attempts to identify adaptive radiation in the fossil record are still uncommon. Moreover, most studies of adaptive radiation concern groups that are less than 50 million years old. Thus, it is unclear how important adaptive radiation is over temporal scales that span much larger portions of the history of life. In this issue, Benson et al. test the idea of a “deep-time” adaptive radiation in dinosaurs, compiling and using one of the most comprehensive phylogenetic and body-size datasets for fossils. Using recent phylogenetic statistical methods, they find that in most clades of dinosaurs there is a strong signal of an “early burst” in body-size evolution, a predicted pattern of adaptive radiation in which rapid trait evolution happens early in a group's history and then slows down. They also find that body-size evolution did not slow down in the lineage leading to birds, hinting at why birds survived to the present day and diversified. This paper represents one of the most convincing attempts at understanding deep-time adaptive radiations. PMID:24802950

  15. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (Inventor)

    1974-01-01

    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.

  16. Future Possibilities for Doppler and Magnetic Field Measurements in the Extended Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Gary, Gilmer Allen; Davis, John M.; West, Edward A.; Gary, Gilmer Allen

    For the first time, a vacuum ultraviolet telescope can be built to observe magnetic fields, plasma flows, and heating events in the Sun's atmosphere. These observations can provide key data for space weather models. The vacuum ultraviolet (VUV) region allows remote sensing of the upper levels of the solar atmosphere where the magnetic field dominates the physics. A VUV Fabry- Perot interferometer (FPI) will allow us to observe the magnetic field, flows, and heating events in the mid-transition region (between the chromosphere and corona). Observations of this region are needed to directly probe the magnetic structure and activity at the base of the corona where the magnetic field is approximately force-free, i.e., where gas pressures are very small. This is a key element in developing accurate models of the Sun's dynamics for space weather. The specific region of interest is the 100km-thick transition region, between the chromosphere and the much hotter corona. This region radiates strongly at 155 nm from the triply ionized carbon (CIV) lines formed at 100,000 K. The region is best studied using an imaging interferometer that combines the best attributes of a spectrograph and an imager. The major elements of the NASA Marshall Space Flight Center (MSFC) tunable CIV VUV FP interferometer are the 35mm magnesium fluoride etalon plates with a plate finesse of F greater than 25 at 155 nm, the pi-dielectric coatings, a Hansen mechanical mount in a pressurize canister, and the piezoelectric control system. The control system for the etalon is a capacitance-stabilized Hovemere Ltd. standard system. The special Cascade Optical Corporation reflectance coatings are 25 pimultilayers of high-low refractive layers paired in phase. We recently measured the MSFC VUV FPI using the University of Toronto's fluoride excimer laser as a proxy for the CIV 155nm line. The test demonstrated that the tunable interferometer possessed the passband required for a VUV filter magnetograph. The

  17. A modular, extendible and field-tolerant multichannel vector magnetometer based on current sensor SQUIDs

    NASA Astrophysics Data System (ADS)

    Storm, J.-H.; Drung, D.; Burghoff, M.; Körber, R.

    2016-09-01

    We present the prototype module of our extendible and robust multichannel SQUID magnetometer system. A large multi-module arrangement can be implemented by using up to 7 modules. The system is intended for high-precision measurements of biomagnetism and spin precession. Further demanding applications are magnetorelaxometry and ultra-low-field nuclear magnetic resonance (ULF NMR), where pulsed magnetic fields of up to 100 mT are typically applied. The system is operated inside the Berlin magnetically shielded room (BMSR-2) and equipped with 18 magnetometers consisting of niobium (Nb) wire-wound pick-up coils. A total of 16 small pick-up coils with 17.1 mm diameter form a regular grid with individual channels arranged to ensure system sensitivity covers all three orthogonal spatial directions. Two large hexagonal pick-up coils with an equivalent diameter of 74.5 mm sensitive in z-direction surround the grid at two different heights and are suitable for the detection of deep sources. Each pick-up coil is connected to the input of a thin-film Nb SQUID current sensor via a detachable superconducting contact. The SQUIDs are equipped with integrated input current limiters. Feedback into the pick-up coils is employed to minimise crosstalk between channels. The current sensor chip package includes a superconducting shield of Nb. The field distortion of the prototype and a multi-module arrangement was analysed by numerical simulation. The measured noise of the small magnetometers was between 0.6 and 1.5 fT {{Hz}}-1/2, and well below 1 fT {{Hz}}-1/2 for the large ones. Using a software gradiometer, we achieved a minimum noise level of 0.54 fT {{Hz}}-1/2. We performed ULF NMR experiments, verifying the system’s robustness against pulsed fields, and magnetoencephalographgy (MEG) on somatosensory evoked neuronal activity. The low noise performance of our 18-channel prototype enabled the detection of high-frequency components at around 1 kHz by MEG.

  18. Quantum driven dissipative parametric oscillator in a blackbody radiation field

    SciTech Connect

    Pachón, Leonardo A.; Department of Chemistry and Center for Quantum Information and Quantum Control, Chemical Physics Theory Group, University of Toronto, Toronto, Ontario M5S 3H6 ; Brumer, Paul

    2014-01-15

    We consider the general open system problem of a charged quantum oscillator confined in a harmonic trap, whose frequency can be arbitrarily modulated in time, that interacts with both an incoherent quantized (blackbody) radiation field and with an arbitrary coherent laser field. We assume that the oscillator is initially in thermodynamic equilibrium with its environment, a non-factorized initial density matrix of the system and the environment, and that at t = 0 the modulation of the frequency, the coupling to the incoherent and the coherent radiation are switched on. The subsequent dynamics, induced by the presence of the blackbody radiation, the laser field, and the frequency modulation, is studied in the framework of the influence functional approach. This approach allows incorporating, in analytic closed formulae, the non-Markovian character of the oscillator-environment interaction at any temperature as well the non-Markovian character of the blackbody radiation and its zero-point fluctuations. Expressions for the time evolution of the covariance matrix elements of the quantum fluctuations and the reduced density-operator are obtained.

  19. Genesis of quantization of matter and radiation field

    NASA Astrophysics Data System (ADS)

    de la Peña, Luis; Cetto, Ana María.

    2015-09-01

    Are we to accept quantization as a fundamental property of nature, the origin of which does not require or admit further investigation? To get an insight into this question we consider atomic systems as open systems, since they are by necessity in contact with the electromagnetic radiation field. This includes not only photonic radiation, but, more importantly for our purposes, the random zero-point or nonthermal radiation that pervades the Universe. The Heisenberg inequalities, atomic stability and the existence of discrete solutions are explained as a result of the permanent action of this field upon matter and the balance between mean absorbed and emitted powers in the equilibrium regime. A detailed study carried out along the years has led to the usual quantum-mechanical formalism as a powerful and revealing statistical description of the behavior of matter in the radiationless approximation, as well as to the radiative corrections of nonrelativistic QED. The theory presented gives thus a response to the question posed above, within a local, realist and objective framework: quantization appears as an emergent phenomenon due to the matter-field interaction.

  20. Extended mode in blocked impurity band detectors for terahertz radiation detection

    SciTech Connect

    Liao, K. S.; Li, N.; Wang, C.; Li, L.; Jing, Y. L.; Wen, J.; Li, M. Y.; Wang, H.; Zhou, X. H. Li, Z. F.; Lu, W.

    2014-10-06

    We demonstrate the existence of an interfacial barrier in blocked impurity band (BIB) detectors using temperature-dependent dark current and corresponding theoretical calculations. Considering the effects of the interfacial barrier, the calculated photoresponse is in good agreement with the experimental results. A dual-excitation model, including the direct excitation over the full barrier and excitation to the band minimum with subsequent tunneling into the blocking layer, is proposed to quantitatively explain the observed photoresponse extension. A concept of extended-mode detection is developed to suggest the option for some selective photoresponse in the terahertz region and open the possibility of extending BIB photoresponse to lower frequency.

  1. Extended mode in blocked impurity band detectors for terahertz radiation detection

    NASA Astrophysics Data System (ADS)

    Liao, K. S.; Li, N.; Wang, C.; Li, L.; Jing, Y. L.; Wen, J.; Li, M. Y.; Wang, H.; Zhou, X. H.; Li, Z. F.; Lu, W.

    2014-10-01

    We demonstrate the existence of an interfacial barrier in blocked impurity band (BIB) detectors using temperature-dependent dark current and corresponding theoretical calculations. Considering the effects of the interfacial barrier, the calculated photoresponse is in good agreement with the experimental results. A dual-excitation model, including the direct excitation over the full barrier and excitation to the band minimum with subsequent tunneling into the blocking layer, is proposed to quantitatively explain the observed photoresponse extension. A concept of extended-mode detection is developed to suggest the option for some selective photoresponse in the terahertz region and open the possibility of extending BIB photoresponse to lower frequency.

  2. A characteristic scale in radiation fields of fractal clouds

    SciTech Connect

    Wiscombe, W.; Cahalan, R.; Davis, A.; Marshak, A.

    1996-04-01

    The wavenumber spectrum of Landsat imagery for marine stratocumulus cloud shows a scale break when plotted on a double log plot. We offer an explanation of this scale break in terms of smoothing by horizontal radiative fluxes, which is parameterized and incorporated into an improved pixel approximation. We compute the radiation fields emerging from cloud models with horizontally variable optical depth fractal models. We use comparative spectral and multifractal analysis to qualify the validity of the independent pixel approximation at the largest scales and demonstrate it`s shortcomings on the smallest scales.

  3. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  4. Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field

    NASA Astrophysics Data System (ADS)

    Curatolo, Andrea; Villiger, Martin; Lorenser, Dirk; Wijesinghe, Philip; Fritz, Alexander; Kennedy, Brendan F.; Sampson, David D.

    2016-03-01

    Visualizing stiffness within the local tissue environment at the cellular and sub-cellular level promises to provide insight into the genesis and progression of disease. In this paper, we propose ultrahigh-resolution optical coherence elastography, and demonstrate three-dimensional imaging of local axial strain of tissues undergoing compressive loading. The technique employs a dual-arm extended focus optical coherence microscope to measure tissue displacement under compression. The system uses a broad bandwidth supercontinuum source for ultrahigh axial resolution, Bessel beam illumination and Gaussian beam detection, maintaining sub-2 μm transverse resolution over nearly 100 μm depth of field, and spectral-domain detection allowing high displacement sensitivity. The system produces strain elastograms with a record resolution (x,y,z) of 2×2×15 μm. We benchmark the advances in terms of resolution and strain sensitivity by imaging a suitable inclusion phantom. We also demonstrate this performance on freshly excised mouse aorta and reveal the mechanical heterogeneity of vascular smooth muscle cells and elastin sheets, otherwise unresolved in a typical, lower resolution optical coherence elastography system.

  5. Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing.

    PubMed

    Girshovitz, Pinhas; Frenklach, Irena; Shaked, Natan T

    2015-11-01

    We propose a new portable imaging configuration that can double the field of view (FOV) of existing off-axis interferometric imaging setups, including broadband off-axis interferometers. This configuration is attached at the output port of the off-axis interferometer and optically creates a multiplexed interferogram on the digital camera, which is composed of two off-axis interferograms with straight fringes at orthogonal directions. Each of these interferograms contains a different FOV of the imaged sample. Due to the separation of these two FOVs in the spatial-frequency domain, they can be fully reconstructed separately, while obtaining two complex wavefronts from the sample at once. Since the optically multiplexed off-axis interferogram is recorded by the camera in a single exposure, fast dynamics can be recorded with a doubled imaging area. We used this technique for quantitative phase microscopy of biological samples with extended FOV. We demonstrate attaching the proposed module to a diffractive phase microscopy interferometer, illuminated by a broadband light source. The biological samples used for the experimental demonstrations include microscopic diatom shells, cancer cells, and flowing blood cells. PMID:26440914

  6. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    PubMed Central

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Background Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Methods Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). Results We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. Conclusion The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes. PMID:18627634

  7. High field magnetic resonance imaging-based gel dosimetry for small radiation fields

    NASA Astrophysics Data System (ADS)

    Ding, Xuanfeng

    Small megavoltage photon radiation fields (< 3cm diameter) are used in advanced radiation therapy techniques, such as intensity modulated radiotherapy, and stereotactic radiosurgery, as well as for cellular and preclinical radiobiology studies (very small fields, <1 mm diameter). Radiation dose characteristics for these small fields are difficult to determine in multiple dimensions because of steep dose gradients (30--40% per mm) and conditions of electronic disequilibrium. Conventional radiation dosimetry techniques have limitations for small fields because detector size may be large compared to radiation field size and/or dose acquisition may be restricted to one or two dimensions. Polymer gel dosimetry, is a three-dimensional (3D) dosimeter based on radiation-induced polymerization of tissue equivalent gelatin. Polymer gel dosimeters can be read using magnetic resonance imaging (MRI), which detects changes in relaxivity due to gel polymerization. Spatial resolution for dose readout is limited to 0.25--0.5mm pixel size because of available the magnetic field strengths (1.5T and 3T) and the stability of polymer gelatin at room temperature. A reliable glucose-based MAGIC (methacrylic and ascorbic acid in gelatine initiated by copper) gel dosimeter was formulated and evaluated for small field 3D dosimetry using 3T and 7T high field MRI for dose readout. The melting point of the original recipe MAGIC gel was increased by 4°C by adding 10% glucose to improve gel stability. Excellent spatial resolution of 79um (1.5 hr scan) and 39um (12 hr scan) was achieved using 7T MRI, proving gel stability for long scan times and high resolution 3D dosimetry.

  8. Quantum field propagator for extended-objects in the microcanonical ensemble and the S-matrix formulation

    NASA Astrophysics Data System (ADS)

    Cirilo-Lombardo, Diego J.

    2006-06-01

    Starting with the well-known Nambu-Goto action for an N-extended body system the propagator in the microcanonical ensemble is explicitly computed. This propagator is independent of the temperature and, in contrast with the previous references, takes account on all the non-local effects produced by the extended objects (e.g., strings) in interaction. The relation between relativistic quantum field theories in the microcanonical approach and the pure S-matrix formulation is established and analyzed.

  9. Mesoscopic near-field radiative heat transfer at low temperatures

    NASA Astrophysics Data System (ADS)

    Maasilta, Ilari; Geng, Zhuoran; Chaudhuri, Saumyadip; Koppinen, Panu

    2015-03-01

    Near-field radiative heat transfer has mostly been discussed at room temperatures and/or macroscopic scale geometries. Here, we discuss our recent theoretical and experimental advances in understanding near-field transfer at ultra-low temperatures below 1K. As the thermal wavelengths increase with lowering temperature, we show that with sensitive tunnel junction bolometers it is possible to study near-field transfer up to distances ~ 10 μm currently, even though the power levels are low. In addition, these type of experiments correspond to the extreme near-field limit, as the near-field region starts at ~ mm distances at 0.1 K, and could have theoretical power enhancement factors of the order of 1010. Preliminary results on heat transfer between two parallel metallic wires are presented. We also comment on possible areas were such heat transfer might be relevant, such as densely packed arrays of low-temperature detectors.

  10. Nuclear radiation interference and damage effects in charged particle experiments for extended space missions.

    NASA Technical Reports Server (NTRS)

    Trainor, J. H.; Teegarden, B. J.

    1971-01-01

    Demonstration that meaningful galactic and solar cosmic radiation measurements can be carried out on deep space missions. The radioisotopic thermoelectric generators (RTGs) which must be used as a source of power and perhaps of heat are a problem, but with proper separation from the experiments, with orientation, and with some shielding the damage effects can be reduced to an acceptable level. The Pioneer spacecraft are crucial in that they are targeted at the heart of Jupiter's radiation belts, and should supply the details of those belts. The subsequent Grand Tour opportunities can be selected for those periods which result in larger distances of closest approach to Jupiter if necessary.

  11. First Investigation on the Radiation Field of the Spherical Hohlraum

    NASA Astrophysics Data System (ADS)

    Huo, Wen Yi; Li, Zhichao; Chen, Yao-Hua; Xie, Xuefei; Lan, Ke; Liu, Jie; Ren, Guoli; Li, Yongsheng; Liu, Yonggang; Jiang, Xiaohua; Yang, Dong; Li, Sanwei; Guo, Liang; Zhang, Huan; Hou, Lifei; Du, Huabing; Peng, Xiaoshi; Xu, Tao; Li, Chaoguang; Zhan, Xiayu; Yuan, Guanghui; Zhang, Haijun; Jiang, Baibin; Huang, Lizhen; Du, Kai; Zhao, Runchang; Li, Ping; Wang, Wei; Su, Jingqin; Ding, Yongkun; He, Xian-Tu; Zhang, Weiyan

    2016-07-01

    The first spherical hohlraum energetics experiment is accomplished on the SGIII-prototype laser facility. In the experiment, the radiation temperature is measured by using an array of flat-response x-ray detectors (FXRDs) through a laser entrance hole at four different angles. The radiation temperature and M -band fraction inside the hohlraum are determined by the shock wave technique. The experimental observations indicate that the radiation temperatures measured by the FXRDs depend on the observation angles and are related to the view field. According to the experimental results, the conversion efficiency of the vacuum spherical hohlraum is in the range from 60% to 80%. Although this conversion efficiency is less than the conversion efficiency of the near vacuum hohlraum on the National Ignition Facility, it is consistent with that of the cylindrical hohlraums used on the NOVA and the SGIII-prototype at the same energy scale.

  12. Detection of Extended Polarized Ultraviolet Radiation from the Z = 1.82 Radio Galaxy 3C 256

    NASA Astrophysics Data System (ADS)

    Jannuzi, Buell T.; Elston, Richard; Schmidt, Gary D.; Smith, Paul S.; Stockman, H. S.

    1995-12-01

    We have detected spatially extended linear polarized UV emission from the high-redshift radio galaxy 3C 256 (z = 1.82). A spatially integrated (7."8 diameter aperture) measurement of the degree of polarization of the V-band (rest frame 0.19 mu m) emission yields a value of 16.4% (+/-2.2%) with a position angle of 42.dg4 (+/-3.dg9), orthogonal to the position angle on the sky of the major axis of the extended emission. The peak emission measured with a 3."6 diameter circular aperture is 11.7% (+/-1.5%) polarized with a position angle of 42.dg4 (+/-3.dg6). An image of the polarized flux is presented, clearly displaying that the polarized flux is extended and present over the entire extent of the object. While it has been suggested that the UV continuum of 3C 256 might be due to star formation (see paper by Elston) or a protogalaxy (see paper by Eisenhardt & Dickinson) based on its extremely blue spectral energy distribution and similar morphology at UV and visible wavelengths, we are unable to reconcile the observed high degree of polarization with such a model. While the detection of polarized emission from HZRGs has been shown to be a common phenomena, 3C 256 is only the third object for which a measurement of the extended polarized UV emission has been presented. These data lend additional support to the suggestion first made by di Serego Alighieri and collaborators that the "alignment effect," the tendency for the extended UV continuum radiation and line emission from HZRGs to be aligned with the major axis of the extended radio emission, is in large part due to scattering of anisotropic nuclear emission.

  13. Theoretical studies relating to the interaction of radiation with matter: Atomic collision processes occurring in the presence of radiation fields

    NASA Astrophysics Data System (ADS)

    1980-10-01

    Work is reported in the areas of: (1) collisionally-aided radiative excitation; (2) model potential calculations in atom-field-radiation systems; (3) coherence effects in radiative collisions; (4) two level atom radiation pulse; (5) resonance fluorescence in three level systems; (6) modulation spectroscopy; and (7) effects of collisions on atomic coherences.

  14. A Computational Model of Cellular Response to Modulated Radiation Fields

    SciTech Connect

    McMahon, Stephen J.; Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2012-09-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  15. Analysis of the radiated information in spinning sound fields.

    PubMed

    Carley, Michael

    2010-10-01

    The information content of a spinning sound field is analyzed using a combination of exact and asymptotic results, in order to set limits on how accurately source identification can be carried out. Using a transformation of the circular source to an exactly equivalent set of line source modes, given by Chebyshev polynomials, it is found that the line source modes of order greater than the source wavenumber generate exponentially small fields. Asymptotic analysis shows that the remaining, lower order, modes radiate efficiently only into a region around the source plane, with this region shrinking as the mode order is increased. The results explain the ill-conditioning of source identification methods; the successful use of low order models in active noise control; and the low radiation efficiency of subsonic jets. PMID:20968340

  16. Modelling of radiation field around spent fuel container.

    PubMed

    Kryuchkov, E F; Opalovsky, V A; Tikhomirov, G V

    2005-01-01

    Operation of nuclear reactors leads to the production of spent nuclear fuel (SNF). There are two basic strategies of SNF management: ultimate disposal of SNF in geological formations and recycle or repeated utilisation of reprocessed SNF. In both options, there is an urgent necessity to study radiation properties of SNF. Information about SNF radiation properties is required at all stages of SNF management. In order to reach more effective utilisation of nuclear materials, new fuel cycles are under development based on uranium-plutonium, uranium-thorium and some other types of nuclear fuel. These promising types of nuclear fuel are characterised by quite different radiation properties at all the stages of nuclear fuel cycle (NFC) listed above. So, comparative analysis is required for radiation properties of different nuclear fuel types at different NFC stages. The results presented here were obtained from the numerical analysis of the radiation field around transport containers of different SNF types and in SNF storage. The calculations are carried out with the application of the computer code packages SCALE-4.3 and MCNP-4C. Comparison of the dose parameters obtained for different models of the transport container with experimental data allowed us to make certain conclusions about the errors of numerical results caused by the approximate geometrical description of the transport container. PMID:16604702

  17. Fluctuation-Induced Interactions in external magnetic fields: Casimir force and Radiative Heat Transfer

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, Raul

    Thermally induced electromagnetic fields give rise to the Casimir force and the near field heat transfer between two bodies separated by a gap. These phenomena are described by Rytova's theory of fluctuating electromagnetic fields and both the Casimir force and the near field heat transfer depend on the local dielectric function of the bodies. In this work we present a theoretical calculation on the modulation of fluctuation-induced interactions in the presence of an external magnetic field. The system consists of two parallel plates separated by a gap d. Each plate is isotropic and has a local dielectric function. Applying an external magnetic field parallel to the plates, in the so called Voigt configuration, the plates become anisotropic. In particular, we consider plates of InSb. For the Casimir force the two plates are kept at the same temperature and the external field reduces the magnitude of the force. Similarly if the two plates are kept at different temperature the near field radiative heat transfer is modulated by the magnitude of the external magnetic field. The results are extended to semiconducting quantum wells. In both cases, the excitation of magnetoplasmons provides an explanation for the observed effect.

  18. Cosmological perturbations for an inflaton field coupled to radiation

    SciTech Connect

    Visinelli, Luca

    2015-01-01

    Within the framework of the interacting fluid formalism, we provide the numerical solution to the Boltzmann equation describing the evolution of an inflaton field coupled to radiation. We study the behavior of the system during the slow-roll regime, in the case in which an additional stochastic source term is included in the set of equations, and we recover the expression for the cosmological perturbations previously obtained in the Warm inflation scenarios.

  19. Nonadiabatic behavior of the polarization of electric-field-induced Lyman-. alpha. radiation

    SciTech Connect

    Plotzke, O.; Wille, U.; Hippler, R.; Lutz, H.O. Bereich Schwerionenphysik, Hahn-Meitner-Institut Berlin, Berlin )

    1990-12-10

    The linear polarization of Lyman-{alpha} radiation emitted when hydrogen atoms in the metastable 2{ital s}{sub 1/2} state traverse an external electric field is studied as a function of the effective rise time of the field for field strengths extending from very small values up to 6 keV/cm. With decreasing rise time, the measured polarization exhibits a transition from {ital adiabatic} to {ital sudden} behavior. The transition region is centered at a rise time which is approximately equal to the characteristic time associated with the 2{ital s}{sub 1/2-}2{ital p}{sub 1/2} Lamb splitting in the unperturbed hydrogen system. The experimental data are well described by the results of a time-dependent theory.

  20. THE RADIATIVE TRANSFER OF SYNCHROTRON RADIATION THROUGH A COMPRESSED RANDOM MAGNETIC FIELD

    SciTech Connect

    Cawthorne, T. V.; Hughes, P. A.

    2013-07-01

    This paper examines the radiative transfer of synchrotron radiation in the presence of a magnetic field configuration resulting from the compression of a highly disordered magnetic field. It is shown that, provided Faraday rotation and circular polarization can be neglected, the radiative transfer equations for synchrotron radiation separate for this configuration, and the intensities and polarization values for sources that are uniform on large scales can be found straightforwardly in the case where opacity is significant. Although the emission and absorption coefficients must, in general, be obtained numerically, the process is much simpler than a full numerical solution to the transfer equations. Some illustrative results are given and an interesting effect, whereby the polarization increases while the magnetic field distribution becomes less strongly confined to the plane of compression, is discussed. The results are of importance for the interpretation of polarization near the edges of lobes in radio galaxies and of bright features in the parsec-scale jets of active galactic nuclei, where such magnetic field configurations are believed to exist.

  1. SENSITIVE SEARCH FOR RADIO VARIABLES AND TRANSIENTS IN THE EXTENDED CHANDRA DEEP FIELD SOUTH

    SciTech Connect

    Mooley, K. P.; Kulkarni, S. R.; Horesh, A.; Frail, D. A.; Ofek, E. O.; Miller, N. A.

    2013-05-10

    We report on an analysis of the Extended Chandra Deep Field South (E-CDFS) region using archival data from the Very Large Array, with the goal of studying radio variability and transients at the sub-milliJansky level. The 49 epochs of E-CDFS observations at 1.4 GHz sample timescales from 1 day to 3 months. We find that only a fraction (1%) of unresolved radio sources above 40 {mu}Jy are variable at the 4{sigma} level. There is no evidence that the fractional variability changes along with the known transition of radio-source populations below 1 mJy. Optical identifications of the sources show that the variable radio emission is associated with the central regions of an active galactic nucleus or a star-forming galaxy. After a detailed comparison of the efficacy of various source-finding algorithms, we use the best to carry out a transient search. No transients were found. This implies that the areal density of transients with peak flux density greater than 0.21 mJy is less than 0.37 deg{sup -2} (at a confidence level of 95%). This result is approximately an order of magnitude below the transient rate measured at 5 GHz by Bower et al. but it is consistent with more recent upper limits from Frail et al. Our findings suggest that the radio sky at 1.4 GHz is relatively quiet. For multi-wavelength transient searches, such as the electromagnetic counterparts to gravitational waves, this frequency may be optimal for reducing the high background of false positives.

  2. A sensitive near-field microscope for thermal radiation.

    PubMed

    Kajihara, Yusuke; Kosaka, Keishi; Komiyama, Susumu

    2010-03-01

    A scattering-type scanning near-field optical microscope in long-wavelength infrared (LWIR) region is developed by using an extremely sensitive detector, called the charge-sensitive infrared phototransistor. A tungsten probe attached to a quartz tuning fork is controlled in shear-force mode. Evanescent wave at a sample surface is periodically scattered by slowly (2 Hz) modulating the probe in the direction normal to the sample surface. Near-field microscopy of thermal LWIR radiation from room-temperature Au/GaAs gratings is demonstrated without using any external illumination or excitation. Achieved spatial resolution is better than 300 nm. PMID:20370184

  3. Radiation from electrons in graphene in strong electric field

    SciTech Connect

    Yokomizo, N.

    2014-12-15

    We study the interaction of electrons in graphene with the quantized electromagnetic field in the presence of an applied uniform electric field using the Dirac model of graphene. Electronic states are represented by exact solutions of the Dirac equation in the electric background, and amplitudes of first-order Feynman diagrams describing the interaction with the photon field are calculated for massive Dirac particles in both valleys. Photon emission probabilities from a single electron and from a many-electron system at the charge neutrality point are derived, including the angular and frequency dependence, and several limiting cases are analyzed. The pattern of photon emission at the Dirac point in a strong field is determined by an interplay between the nonperturbative creation of electron–hole pairs and spontaneous emission, allowing for the possibility of observing the Schwinger effect in measurements of the radiation emitted by pristine graphene under DC voltage.

  4. Conservation of ζ with radiative corrections from heavy field

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro; Urakawa, Yuko

    2016-06-01

    In this paper, we address a possible impact of radiative corrections from a heavy scalar field χ on the curvature perturbation ζ. Integrating out χ, we derive the effective action for ζ, which includes the loop corrections of the heavy field χ. When the mass of χ is much larger than the Hubble scale H, the loop corrections of χ only yield a local contribution to the effective action and hence the effective action simply gives an action for ζ in a single field model, where, as is widely known, ζ is conserved in time after the Hubble crossing time. Meanwhile, when the mass of χ is comparable to H, the loop corrections of χ can give a non-local contribution to the effective action. Because of the non-local contribution from χ, in general, ζ may not be conserved, even if the classical background trajectory is determined only by the evolution of the inflaton. In this paper, we derive the condition that ζ is conserved in time in the presence of the radiative corrections from χ. Namely, we show that when the dilatation invariance, which is a part of the diffeomorphism invariance, is preserved at the quantum level, the loop corrections of the massive field χ do not disturb the constant evolution of ζ at super Hubble scales. In this discussion, we show the Ward-Takahashi identity for the dilatation invariance, which yields a consistency relation for the correlation functions of the massive field χ.

  5. Integral Field Spectroscopy of the Extended Emission-Line Region of 4C 37.43

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Stockton, Alan

    2007-09-01

    We present Gemini integral field spectroscopy and Keck II long-slit spectroscopy of the extended emission-line region (EELR) around the quasar 4C 37.43. The velocity structure of the ionized gas is complex and cannot be explained globally by a simple dynamical model. The spectra from the clouds are inconsistent with shock or ``shock + precursor'' ionization models, but they are consistent with photoionization by the quasar nucleus. The best-fit photoionization model requires a low-metallicity [12+log(O/H)<~8.7] two-phase medium, consisting of a matter-bounded diffuse component with a unity filling factor (N~1 cm-3, T~15,000 K), in which are embedded small, dense clouds (N~400 cm-3, T~104 K). The high-density clouds are transient and can be regenerated through compressing the diffuse medium by low-speed shocks (VS<~100 km s-1). Our photoionization model gives a total mass for the ionized gas of about 3×1010 Msolar, and the total kinetic energy implied by this mass and the observed velocity field is ~2×1058 erg. The fact that luminous EELRs are confined to steep-spectrum radio-loud QSOs, yet show no morphological correspondence to the radio jets, suggests that the driving force producing the 4C 37.43 EELR was a roughly spherical blast wave initiated by the production of the jet. That such a mechanism seems capable of ejecting a mass comparable to that of the total interstellar medium of the Milky Way suggests that ``quasar-mode'' feedback may indeed be an efficient means of regulating star formation in the early universe. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq

  6. Cosmic radiation and mortality from cancer among male German airline pilots: extended cohort follow-up.

    PubMed

    Hammer, Gaël Paul; Blettner, Maria; Langner, Ingo; Zeeb, Hajo

    2012-06-01

    Commercial airline pilots are exposed to cosmic radiation and other specific occupational factors, potentially leading to increased cancer mortality. This was analysed in a cohort of 6,000 German cockpit crew members. A mortality follow-up for the years 1960-2004 was performed and occupational and dosimetry data were collected for this period. 405 deaths, including 127 cancer deaths, occurred in the cohort. The mortality from all causes and all cancers was significantly lower than in the German population. Total mortality decreased with increasing radiation doses (rate ratio (RR) per 10 mSv: 0.85, 95 % CI: 0.79, 0.93), contrasting with a non-significant increase of cancer mortality (RR per 10 mSv: 1.05, 95 % CI: 0.91, 1.20), which was restricted to the group of cancers not categorized as radiogenic in categorical analyses. While the total and cancer mortality of cockpit crew is low, a positive trend of all cancer with radiation dose is observed. Incomplete adjustment for age, other exposures correlated with duration of employment and a healthy worker survivor effect may contribute to this finding. More information is expected from a pooled analysis of updated international aircrew studies. PMID:22678613

  7. Radiation damage in NaCl: Calculations with an extended Jain-Lidiard model

    SciTech Connect

    Soppe, W.J.; Prij, J.

    1993-12-31

    The colloid growth due to irradiation in a rock salt formation is calculated with an extended version of the Jain-Lidiard model. The extensions of the model comprise a description of the nucleation stage of the colloids and the role of impurities on the formation of defect centers. Results of model calculations are shown for a representative design for a high-level radioactive waste repository in a rock salt formation. It is concluded that it is unlikely that, near the waste containers, the fraction of NaCl that will be converted to metallic Na and molecular Cl centers will exceed a few mole percent.

  8. Thermal electron acceleration by electric field spikes in the outer radiation belt: Generation of field-aligned pitch angle distributions

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.

    2015-10-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance of electrostatic electron-acoustic double layers (DL). DLs are frequently accompanied by field-aligned (bidirectional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV. We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e., due to reflections from DL potential humps. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism, electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher-energy electrons. It is shown that the Fermi mechanism can result in scattering into the loss cone of up to several tenths of percent of electrons with flux peaking at energies up to several hundred eVs.

  9. Patterns of Failure and Treatment-Related Toxicity in Advanced Cervical Cancer Patients Treated Using Extended Field Radiotherapy With Curative Intent

    SciTech Connect

    Rajasooriyar, Chrishanthi; Van Dyk, Sylvia; Bernshaw, David; Kondalsamy-Chennakesavan, Srinivas; Barkati, Maroie; Narayan, Kailash

    2011-06-01

    Purpose: The purpose of this study was to evaluate the patterns of failure and overall survival (OS) and disease-free survival (DFS) rates in cervical cancer patients who had metastatic disease in common iliac or para-aortic lymph nodes and were treated with curative intent, using extended field radiotherapy (EFRT). Methods and Materials: This was a retrospective study involving 39 patients treated from January 1996 to June 2007, using EFRT with concurrent chemotherapy and intracavitary brachytherapy. EFRT consisted of 45 Gy in 1.8-Gy fractions. Radiation to involved nodes was boosted to a total dose of 50.4 to 54 Gy. Primary tumor radiation was boosted to a dose of 80 Gy using brachytherapy. Results: Overall, 30 patients (77%) have relapsed. The 5-year OS rate was 26% (95% confidence interval [CI], 11-44). The 5-year DFS rate was 19.4% (95% CI, 8-35). Only 3 patients (7.5%) experienced treatment failure exclusively within the treatment field, and 2 patients underwent salvage treatment. Grade 3 to 4 acute bone marrow and gastrointestinal toxicities were observed in 10 (26%) and 7 (18%) patients, respectively. Conclusions: Concurrent chemotherapy and EFRT treatment was well tolerated. Most patients showed failure at multiple sites and outside the treatment field. Only 3/39 patients had failures exclusively within the treatment field, and 2 underwent salvage treatment.

  10. HADRON ACCELERATORS: Study on CYCIAE-100 radiation field and residual radioactivity

    NASA Astrophysics Data System (ADS)

    Bi, Yuan-Jie; Zhang, Tian-Jue; Jia, Xian-Lu; Zhou, Zheng-He; Wang, Feng; Wei, Su-Min; Zhong, Jun-Qing; Tang, Chuan-Xiang

    2009-06-01

    The accelerators should be properly designed to make the radiation field produced by beam loss satisfy the dose limits. The radiation field for high intensity H- cyclotron includes prompt radiation and residual radiation field. The induced radioactivity in accelerator components is the dominant source of occupational radiation exposure if the accelerator is well shielded. The source of radiation is the beam loss when cyclotron is operating. In this paper, the radiation field for CYCIAE-100 is calculated using Monte Carlo method and the radioactive contamination near stripping foil is studied. A method to reduce the dose equivalent rate of maintenance staff is also given.

  11. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Yu, J.; Li, L. Y.; Cao, J. B.; Reeves, G. D.; Baker, D. N.; Spence, H.

    2016-07-01

    Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < -2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00-18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancake distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00-06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. These variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.

  12. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

    DOE PAGESBeta

    Yu, J.; Li, L. Y.; Cao, J. B.; Reeves, Geoffrey D.; Baker, D. N.; Spence, H.

    2016-07-22

    Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < –2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00–18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancakemore » distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00–06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. As a result, these variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.« less

  13. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M.; Trompier, François; Ambrozova, Iva; Kubancak, Jan; Matthiä, Daniel; Ploc, Ondrej; Santen, Nicole; Wirtz, Michael

    2016-05-01

    Space weather can strongly affect the complex radiation field at aviation altitudes. The assessment of the corresponding radiation exposure of aircrew and passengers has been a challenging task as well as a legal obligation in the European Union for many years. The response of several radiation measuring instruments operated by different European research groups during joint measuring flights was investigated in the framework of the CONCORD (COmparisoN of COsmic Radiation Detectors) campaign in the radiation field at aviation altitudes. This cooperation offered the opportunity to measure under the same space weather conditions and contributed to an independent quality control among the participating groups. The CONCORD flight campaign was performed with the twin-jet research aircraft Dassault Falcon 20E operated by the flight facility Oberpfaffenhofen of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR). Dose rates were measured at four positions in the atmosphere in European airspace for about one hour at each position in order to obtain acceptable counting statistics. The analysis of the space weather situation during the measuring flights demonstrates that short-term solar activity did not affect the results which show a very good agreement between the readings of the instruments of the different institutes.

  14. Verification of light & radiation field coincidence quality assurance for radiation therapy by using a-Se based DR system

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Young; Park, Eun-Tae; Choi, Yun-Seon; Cho, Heung-Lae; Ahn, Ki-Jung; Park, Sung-Kwang; Kim, Ji-Na; Suh, Tae-Suk; Kim, Jin-Seon; Hong, Ju-Yeon; Park, Jeong-Eun; Kim, Kyo-Tae; Oh, Kyung-Min; Kim, Hyunjung; Jo, Sun-Mi; Oh, Won-Yong; Jin, Seong-Jin; Cho, Woong

    2015-04-01

    Currently, the American Association of Physicists in Medicine (AAPM) recommends measuring the surface field size once a week by using an analog film in order to verify light and radiation field coincidence in the Quality Assurance (QA) of radiotherapy. However, the use of the film does not allow for a quantitative method of evaluation, and measuring the light field with radiation field detectors in a 2D array is difficult. Therefore, we used an amorphous-Se (a-Se) digital radiation detection system to measure the light and radiation fields simultaneously for a quantitative QA system, and the feasibility of using such a system was confirmed by ensuring the coincidence of the light and the radiation field measurements. The characteristics of the analog film and the a-Se digital radiation detection system were compared by delivering to each doses of 100, 10 monitor units(MU) of radiation at a rate of 400 MU/min to a radiation field 100 × 100 mm2 in size from a 100 cm source-surface distance (SSD). A 0.5 mm to 0.6 mm difference was measured in the X-axis, and a 0.3 mm difference was measured in the Y-axis. The difference in the measurements of the coincidence of light and the radiation field was less than 0.3 mm, which is relatively insignificant. These results indicate that the use of an a-Se digital radiation detection system is adequate for quality assurance of radiotherapy using light and radiation field coincidence. In addition, the experiment is considered to have provided valuable results in that the a-Se based digital radiation detection system enables simple and accurate QA for clinical radiation therapy by assessing the coincidence in the alignment of the light and the radiation fields.

  15. An extended-gate type organic field effect transistor functionalised by phenylboronic acid for saccharide detection in water.

    PubMed

    Minami, Tsuyoshi; Minamiki, Tsukuru; Hashima, Yuki; Yokoyama, Daisuke; Sekine, Tomohito; Fukuda, Kenjiro; Kumaki, Daisuke; Tokito, Shizuo

    2014-12-21

    Saccharides in water are detected electrically using an extended-gate type organic field effect transistor (OFET) functionalised by a phenylboronic acid monolayer. The response patterns of the monosaccharides are significantly different, suggesting that OFET devices can successfully read out the saccharide recognition behaviour of boronic acids and be potentially applied to healthcare devices modified with supramolecular receptors. PMID:25360460

  16. Extending a Hybrid Godunov Method for Radiation Hydrodynamics to Multiple Dimensions

    NASA Astrophysics Data System (ADS)

    Sekora, Michael D.

    This paper presents a hybrid Godunov method for three-dimensional radiation hydrodynamics. The multidimensional technique outlined in this paper is an extension of the one-dimensional method that was developed by Sekora and Stone 2009, 2010. The earlier one-dimensional technique was shown to preserve certain asymptotic limits and be uniformly well behaved from the photon free streaming (hyperbolic) limit through the weak equilibrium diffusion (parabolic) limit and to the strong equilibrium diffusion (hyperbolic) limit. This paper gives the algorithmic details for constructing a multidimensional method. A future paper will present numerical tests that demonstrate the robustness of the computational technique across a wide-range of parameter space.

  17. An absorbed dose to water calorimeter for collimated radiation fields

    NASA Astrophysics Data System (ADS)

    Brede, H. J.; Hecker, O.; Hollnagel, R.

    2000-12-01

    A transportable calorimeter of compact design has been developed as a device for the absolute determination of the absorbed dose to water. The ease of operation of the calorimeter allows the application in clinical therapy beams of various energies, specifically for neutron, proton and heavy ion beams. The calorimeter requires collimated radiation fields with diameters lesser than 40 mm. The temperature rise caused by radiation is measured with a thermistor probe which is located in the centre of the calorimeter core. The calorimeter core consists of a cylindrical water-filled gilded aluminium can suspended by three thin nylon threads in a vacuum block in order to reduce the heat transfer by conduction. In addition, it operates at a temperature of 4°C, preventing heat transfer in water by convection. Heat transfer from the core to the surrounding by radiation is minimised by the use of two concentric temperature-controlled jackets, the inner jacket being operated at core temperature. A description of the mechanical and electrical design, of the construction and operation of the water calorimeter is given. In addition, calculations with a finite-element program code performed to determine correction factors for various radiation conditions are included.

  18. Radiation and near field in resistance-inductor circuit transients

    NASA Astrophysics Data System (ADS)

    Latypov, Damir; Bulmer, John

    2012-06-01

    A full wave solution to the classical problem of a transient response in an RL circuit is analyzed. We show that when radiation effects are rigorously taken into account, the response differs from a familiar exponential decay. The circuit behaves more like an RLC circuit and can exhibit an underdamped response. As a result of a two way energy transfer between the circuit and the near field in the underdamped regime, despite the radiation losses, current decay may be slower than predicted by the standard RL circuit model. During a transient, when retardation effects become important, inductance can no longer be defined as a coefficient of proportionality between the magnetic flux through the circuit and the current in the circuit. If rate of current decay is nearly constant, one can define a time-dependent generalized inductance which turns into conventional inductance after time D/c, where D is the diameter of the current loop. Connection of this generalized inductance with the radiation damping problem is discussed. The theory developed in this paper has been used to analyze ultra wide band radiation observed during a fast laser triggered superconducting to normal transition of a superconducting switch.

  19. An automated system for gamma radiation field mapping

    NASA Astrophysics Data System (ADS)

    Gould, Robert; Tarpinian, James E.; Kenney, Edward S.

    1990-12-01

    Remote radiation survey equipment was sorely needed at Chernobyl but adequate systems did not exist. The current state of the art still consists of a survey meter mounted on a robotic carriage, which scans an area at many points on a grid. This process is both time consuming and somewhat inaccurate. The system we have developed will overcome these limitations, and would provide significant savings in man-hours and man-rem over manual survey techniques. The system we have developed consists of a collimated ionization chamber mounted in a scanning head. The measurement process is similar to that used in medical computed tomography (CT) imaging and consists of a series of collimator rotations and translations. The key to this work is the use of a collimator to provide position information with a position insensitive detector. In addition, an inverse filter image reconstruction technique has been used to reduce the distortion effects due to the scanner and scanning process in the resulting maps. This technique models the distortion as a linear, space invariant degrading function which is removed in a deconvolution process. We have constructed first- and second-generation prototype scanners, and developed software to produce three-dimensional radiation field "iso-dose" maps. The iso-dose maps will be superimposed on three-dimensional computer-aided design and drafting (CADD) drawings of the radiation area, aiding in the characterization of the source of radiation.

  20. Extended field intensity-modulated radiotherapy plus concurrent nedaplatin treatment in cervical cancer

    PubMed Central

    LIU, YUNQIN; YU, JINMING; QIAN, LITING; ZHANG, HONGYAN; MA, JUN

    2016-01-01

    The present study assessed the efficacy and toxicity of definitive extended-field intensity-modulated radiotherapy (EF-IMRT) plus concurrent chemotherapy in cervical cancer. A total of 48 patients with cervical cancer received the planning target volume between 39.6 and 50.4 Gy in 1.8–2.0 Gy daily fractions, while the enlarged pelvic and/or para-aortic nodes were treated with a total dose of 55–60 Gy in 2.0–2.4 Gy daily fractions using simultaneous integrated boost-IMRT. All patients underwent high dose-rate brachytherapy. Concurrent to EF-IMRT, nedaplatin was administered weekly at a median dose of 30 mg/m2 (range, 25–40 mg/m2) for 5 weeks with a total of 150 mg/m2. Of the 48 patients, 46 patients exhibited initial complete responses and 2 patients had partial responses, with a response rate of 100%. After 4–24 months of treatment, 12 patients (27.08%) had local and/or distant failure and 39 patients (81.25%) were alive at the last follow-up. The 12-month overall survival (OS) and disease-free survival (DFS) were 87.5 and 75.8%, respectively, while the 24-month OS and DFS were 69.7 and 49.7%, respectively. Grade ≥3 acute neutropenia and thrombcytopenia occurred in 20 (41.7%) and 4 (8.3%) patients, respectively, while 2 patients (4.2%) developed grade ≥3 diarrhea and 2 (4.2%) had grade ≥3 late toxicities. However, no patients exhibited grade ≥3 vomiting. Thus, concurrent nedaplatin chemotherapy with definitive EF-IMRT was effective and relatively safe for treating patients with cervical cancer. Furthermore, EF-IMRT was able to deliver ≤60 Gy to enlarged para-aortic and/or pelvic nodes using simultaneous integrated boost without increased acute and late gastrointestinal toxicity. PMID:27123128

  1. Measurement of Radiation - Light Field Congruence using a Photodiode Array

    NASA Astrophysics Data System (ADS)

    Balderson, Michael J.

    Improved treatment techniques in radiation therapy provide incentive to reduce treatment margins, thereby increasing the necessity for more accurate geometrical setup of the linear accelerator and accompanying components. In this thesis, we describe the development of a novel device that enables precise and automated measurement of radiation-light field congruence of medical linear accelerators for the purpose of improving setup accuracy, and standardizing repeated quality control activities. The device consists of a silicon photodiode array, an evaluation board, a data acquisition card, and a laptop. Using the device, we show that the radiation-light field congruence for both 6 and 15 MV beams is within 2 mm on a Varian Clinac 21 EX medical linear accelerator. Because measurements are automated, ambiguities resulting from observer variability are removed, greatly improving the reproducibility of measurements over time and across observers. We expect the device to be useful in providing consistent measurements on linear accelerators used for stereotactic radiosurgery, during the commissioning of new linear accelerators, and as an alternative to film or other commercially available devices for performing monthly or annual quality control checks.

  2. A field test of a simple stochastic radiative transfer model

    SciTech Connect

    Byrne, N.

    1995-09-01

    The problem of determining the effect of clouds on the radiative energy balance of the globe is of well-recognized importance. One can in principle solve the problem for any given configuration of clouds using numerical techniques. This knowledge is not useful however, because of the amount of input data and computer resources required. Besides, we need only the average of the resulting solution over the grid scale of a general circulation model (GCM). Therefore, we are interested in estimating the average of the solutions of such fine-grained problems using only coarse grained data, a science or art called stochastic radiation transfer. Results of the described field test indicate that the stochastic description is a somewhat better fit to the data than is a fractional cloud cover model, but more data are needed. 1 ref., 3 figs.

  3. Evaluation of neutron radiation field in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Xu, Jun-Kui; Su, You-Wu; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2016-01-01

    Carbon ions have significant advantages in tumor therapy because of their physical and biological properties. In view of the radiation protection, the safety of patients is the most important issue in therapy processes. Therefore, the effects of the secondary particles produced by the carbon ions in the tumor therapy should be carefully considered, especially for the neutrons. In the present work, the neutron radiation field induced by carbon ions was evaluated by using the FLUKA code. The simulated results of neutron energy spectra and neutron dose was found to be in good agreement with the experiment data. In addition, energy deposition of carbon ions and neutrons in tissue-like media was studied, it is found that the secondary neutron energy deposition is not expected to exceed 1% of the carbon ion energy deposition in a typical treatment.

  4. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    NASA Astrophysics Data System (ADS)

    Caresana, M.; Denker, A.; Esposito, A.; Ferrarini, M.; Golnik, N.; Hohmann, E.; Leuschner, A.; Luszik-Bhadra, M.; Manessi, G.; Mayer, S.; Ott, K.; Röhrich, J.; Silari, M.; Trompier, F.; Volnhals, M.; Wielunski, M.

    2014-02-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  5. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-31

    Recently, the U.S. Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS’s requirements in terms of sensitivity, resolution, response time and reach back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron’s identiFINDER™, which primarily uses sodium iodide crystals (3.18-cm x 2.54-cm cylinders) as gamma detector, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack™ that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity (comparable to that of a 7.62-cm x 7.62-cm sodium iodide crystal at low gamma energy ranging from 30 keV to 3,000 keV), better resolution (< 3.0 percent at 662 keV), faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets

  6. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  7. Graphene-based field effect transistors for radiation-induced field sensing

    NASA Astrophysics Data System (ADS)

    Di Gaspare, Alessandra; Valletta, Antonio; Fortunato, Guglielmo; Larciprete, Rosanna; Mariucci, Luigi; Notargiacomo, Andrea; Cimino, Roberto

    2016-07-01

    We propose the implementation of graphene-based field effect transistor (FET) as radiation sensor. In the proposed detector, graphene obtained via chemical vapor deposition is integrated into a Si-based field effect device as the gate readout electrode, able to sense any change in the field distribution induced by ionization in the underneath absorber, because of the strong variation in the graphene conductivity close to the charge neutrality point. Different 2-dimensional layered materials can be envisaged in this kind of device.

  8. Cosmic Radiation Fields: Sources in the early Universe

    NASA Astrophysics Data System (ADS)

    Raue, Martin; Kneiske, Tanja; Horns, Dieter; Elsaesser, Dominik; Hauschildt, Peter

    The workshop "Cosmic Radiation Fields - Sources in the Early Universe" (CRF 2010) focuses on the connection between the extragalactic infrared background and sources in the early universe, in particular stars powered by dark matter burning (Dark Stars; DS). The workshop covers the following topics: the cosmic infrared background, formation of early stars, dark stars, effect of dark matter in the early universe, dark matter halos, primordial star formation rate, and reionization. Further information can be found on the conference webpage: http://www.desy.de/crf2010/. Organizing committee: Tanja Kneiske, Martin Raue, Dominik Elsaesser, Alexander Gewering-Peine, Peter Hausschildt, Dieter Horns, and Andreas Maurer.

  9. Localisation of atomic populations in the optical radiation field

    SciTech Connect

    Efremova, E A; Gordeev, M Yu; Rozhdestvensky, Yu V

    2014-10-31

    The possibility of two-dimensional spatial localisation of atomic populations under the influence of the travelling wave fields in the tripod-configuration of quantum states is studied for the first time. Three travelling waves propagating in the same plane at an angle of 120° to each other form a system of standing waves under the influence of which atomic populations are localised. The size of the region of spatial localisation of the populations, in principle, can be hundredths of a wavelength of optical radiation. (quantum optics)

  10. Novel properties of the q-analogue quantized radiation field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1993-01-01

    The 'classical limit' of the q-analog quantized radiation field is studied paralleling conventional quantum optics analyses. The q-generalizations of the phase operator of Susskind and Glogower and that of Pegg and Barnett are constructed. Both generalizations and their associated number-phase uncertainty relations are manifestly q-independent in the n greater than g number basis. However, in the q-coherent state z greater than q basis, the variance of the generic electric field, (delta(E))(sup 2) is found to be increased by a factor lambda(z) where lambda(z) greater than 1 if q not equal to 1. At large amplitudes, the amplitude itself would be quantized if the available resolution of unity for the q-analog coherent states is accepted in the formulation. These consequences are remarkable versus the conventional q = 1 limit.

  11. Measurement of neutron and gamma radiation in a mixed field.

    PubMed

    Kronenberg, S; Bechtel, E; Brucker, G J

    1995-10-01

    This paper describes a study of dosimeters with a range of 0 to 0.2 mGy that were developed by the authors and built by the Federal Emergency Management Agency (FEMA). These instruments are a type of air-filled ion chamber that is self-reading by means of an internal carbon fiber electrometer. Two types of these dosimeters were constructed: one with an ion chamber wall made of a conductive hydrogenous material, and the other device made with a conductive wall lining of non-hydrogenous material. Both types of dosimeters have the same sensitivity for gamma radiation, but greatly different sensitivities for fast neutrons, thus making it possible to measure gamma radiation and neutron doses separately in a mixed radiation field. The results indicate that such pairs of dosimeters can be used for the first time to accurately monitor personnel for gamma ray and neutron doses in real time. Since the difference in neutron sensitivities is due to the properties of wall materials, periodic calibrations of the dosimeter system can be accomplished using only gamma rays after the material constants are measured. The absolute number of neutron induced transmutations in sulfur was required for this work. Methods and techniques which were applied to determine this quantity are described in the text. This approach was one of several dosimetric procedures utilized in this investigation. PMID:7558835

  12. Field test of a post-closure radiation monitor

    SciTech Connect

    Reed, S.E.; Christy, C.E.; Heath, R.E.

    1995-10-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. The system designed in Phase I of this development program monitors gamma radiation using a subsurface cesium iodide scintillator coupled to above-ground detection electronics using optical waveguide. The radiation probe can be installed to depths up to 50 meters using cone penetrometer techniques, and requires no downhole electrical power. Multiplexing, data logging and analysis are performed at a central location. A prototype LPRMS probe was built, and B&W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE`s Office of Technology Development (EM-50) through METC. The system was used measure soil and water with known uranium contamination levels, both in drums and in situ depths up to 3 meters. For comparison purposes measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics.

  13. Radiative Transfer Modeling of the Extended Dust Shell of AFGL 618

    NASA Astrophysics Data System (ADS)

    Tartar, J.; Speck, A.; Meixner, M.; Nenkova, M.; Elitzur, M.

    2005-12-01

    AFGL 618 is a carbon-rich post AGB star/protoplanetary nebula (PPN), and is surrounded by extremely large circumstellar dust shells, containing the fossil record of its AGB mass loss. This dust shell ahs been observed at 120μ m and 180μ m by ISOPHT. We present results of radiative-transfer (RT) modeling of these dust shells, using the 1-d RT code DUSTY. While AFGL 618 is clearly axisymmetric close to the central star, this axisymmetry is contained well within the PSF of the ISO FIR observation. Our models are intended to determine several parameters AFGL 618 which are not currently wll constrained; among tehse being distance, gross dust distribution, stellar temperature, inner dust shell radius, dust grain size distribution, and dust grain composition. While there is some degeneracy within the models providing good fits to the data, some general results have emerged. We found that the optical depth of the dust shell in the mid-IR (τ 9.7μ m) is between 3 and 7. Furthermore, we have found that in order for the modeled brightnesses to match the observational data at both wavelengths (for the central region), it is necessary to include a considerable amount of crystalline dust (graphite and SiC) into the circumstellar shell in addition to amorphous carbon. Finally we show that the radial density distributions needed to match the observations are indicative of either constant mass-loss rate throughout the histor of the shell, or increasing mass-loss rates for the last few hundred years of the AGB. This increasing mass loss is interpreted as the superwind phase.

  14. Development of a Characterized Radiation Field for Evaluating Sensor Performance

    SciTech Connect

    Rogers, D.M.; Coggins, T.L.; Marsh, J.; Mann, St.D.; Waggoner, Ch.A.

    2008-07-01

    Numerous efforts are funded by US agencies (DOE, DoD, DHS) for development of novel radiation sensing and measurement systems. An effort has been undertaken to develop a flexible shielding system compatible with a variety of sources (beta, X-ray, gamma, and neutron) that can be highly characterized using conventional radiation detection and measurement systems. Sources available for use in this system include americium-beryllium (AmBe), plutonium-beryllium (PuBe), strontium-90 (Sr-90), californium-252 (Cf-252), krypton-85 (Kr-85), americium-241 (Am-241), and depleted uranium (DU). Shielding can be varied by utilization of materials that include lexan, water, oil, lead, and polyethylene. Arrangements and geometries of source(s) and shielding can produce symmetrical or asymmetrical radiation fields. The system has been developed to facilitate accurately repeatable configurations. Measurement positions are similarly capable of being accurately re-created. Stand-off measurement positions can be accurately re-established using differential global positioning system (GPS) navigation. Instruments used to characterize individual measurement locations include a variety of sodium iodide (NaI(Tl)) (3 x 3 inch, 4 x 4 x 16 inch, Fidler) and lithium iodide (LiI(Eu)) detectors (for use with multichannel analyzer software) and detectors for use with traditional hand held survey meters such as boron trifluoride (BF{sub 3}), helium-3 ({sup 3}He), and Geiger-Mueller (GM) tubes. Also available are Global Dosimetry thermoluminescent dosimeters (TLDs), CR39 neutron chips, and film badges. Data will be presented comparing measurement techniques with shielding/source configurations. The system is demonstrated to provide a highly functional process for comparison/characterization of various detector types relative to controllable radiation types and levels. Particular attention has been paid to use of neutron sources and measurements. (authors)

  15. GLOBAL ELECTROMAGNETIC RADIATION POLLUTION: RISK ASSESSMENT FROM FIELD MEASUREMENTS AND ANIMAL EXPERIMENTS

    NASA Astrophysics Data System (ADS)

    Fragkopoulou, A. F.; Margaritis, L. H.

    2009-12-01

    The extended use of wireless technology throughout the globe in almost all developed and non-developed countries has forced a large number of scientists to get involved in the investigation of the effects. The major issue is that unlike other forms of radiation exposure, this “non-ionizing electromagnetic radiation” was not present throughout the evolution of life in earth and therefore there are no adaptive mechanisms evolved. All organisms are vulnerable to the possible effects of radiation depending on the actual exposure level. “Safety limits” on the power density have been proposed but ongoing research has shown that these limits are not really safe for humans, not mentioning the entire population of living creatures on earth. The so called “Electrosmog Pollution” originating from the numerous radio and TV stations, communication satellite emission, but most importantly from mobile phone mast antennas, are of major concern, because it is gradually increasing at exponential rate. Therefore the key question is, do living organisms react upon their exposure to fields of non ionizing electromagnetic radiation? To have this question answered extensive research is being performed in various laboratories. One approach of our research includes field measurements within houses and classrooms, since a considerable proportion of the population in each country is exposed to the radiation coming from the nearby mast stations, in order to make a risk assessment. The measurements showed that in many cases the actual radiation present was potentially harmful. In other words, although the measured values were below the national safety levels, nevertheless they were above the levels of other countries. Therefore it has been suggested that a new cellular network should be constructed in order to minimize radiation levels in living areas and schools. Our experimental work is focusing on the elucidation of the effects of non-ionizing EMFs on mice exposed to mobile

  16. Radiation Therapy Field Extent for Adjuvant Treatment of Axillary Metastases From Malignant Melanoma

    SciTech Connect

    Beadle, Beth M.; Guadagnolo, B. Ashleigh Ballo, Matthew T.; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Cormier, Janice N.; Mansfield, Paul F.; Ross, Merrick I.; Zagars, Gunar K.

    2009-04-01

    Purpose: To compare treatment-related outcomes and toxicity for patients with axillary lymph node metastases from malignant melanoma treated with postoperative radiation therapy (RT) to either the axilla only or both the axilla and supraclavicular fossa (extended field [EF]). Methods and Materials: The medical records of 200 consecutive patients treated with postoperative RT for axillary lymph node metastases from malignant melanoma were retrospectively reviewed. All patients received postoperative hypofractionated RT for high-risk features; 95 patients (48%) received RT to the axilla only and 105 patients (52%) to the EF. Results: At a median follow-up of 59 months, 111 patients (56%) had sustained relapse, and 99 patients (50%) had died. The 5-year overall survival, disease-free survival, and distant metastasis-free survival rates were 51%, 43%, and 46%, respectively. The 5-year axillary control rate was 88%. There was no difference in axillary control rates on the basis of the treated field (89% for axilla only vs. 86% for EF; p = 0.4). Forty-seven patients (24%) developed treatment-related complications. On both univariate and multivariate analyses, only treatment with EF irradiation was significantly associated with increased treatment-related complications. Conclusions: Adjuvant hypofractionated RT to the axilla only for metastatic malignant melanoma with high-risk features is an effective method to control axillary disease. Limiting the radiation field to the axilla only produced equivalent axillary control rates to EF and resulted in lower treatment-related complication rates.

  17. Further progress in the characterisation of complex radiation fields.

    PubMed

    Spurny, Frantisek; Silari, Marco

    2008-01-01

    One of the topics which forms part of CONRAD project addresses the problems related to the dosimetry of complex-mixed radiation fields at workplaces. This topic was included in work package (WP) 6. WP 6 was established to co-ordinate research activities in two areas:the development of new techniques and the improvement of current techniques for characterisation of complex workplace fields (including high-energy fields and pulsed fields): measurement and calculation of particle energy and direction distributions (Subgroup A); and model improvements for dose assessment of solar particle events (Subgroup B). In both cases in order to aid the research, WP 6 increases the efficiency of resource utilisation, and facilitates the technology transfer to practical application and for the development of standards. This contribution presents a general overview of activities of SG A; specific results related to the benchmark experiment at GSI Darmstadt are presented separately, and will be published in other way. As far as the results acquired in the frame of the SG B activities, these are presented in the meeting held as part of EURADOS AM 2008. PMID:18718960

  18. Implicit Solution of the Four-field Extended-magnetohydroynamic Equations using High-order High-continuity Finite Elements

    SciTech Connect

    S.C. Jardin; J.A. Breslau

    2004-12-17

    Here we describe a technique for solving the four-field extended-magnetohydrodynamic (MHD) equations in two dimensions. The introduction of triangular high-order finite elements with continuous first derivatives (C{sup 1} continuity) leads to a compact representation compatible with direct inversion of the associated sparse matrices. The split semi-implicit method is introduced and used to integrate the equations in time, yielding unconditional stability for arbitrary time step. The method is applied to the cylindrical tilt mode problem with the result that a non-zero value of the collisionless ion skin depth will increase the growth rate of that mode. The effect of this parameter on the reconnection rate and geometry of a Harris equilibrium and on the Taylor reconnection problem is also demonstrated. This method forms the basis for a generalization to a full extended-MHD description of the plasma with six, eight, or more scalar fields.

  19. Complex wavelets for extended depth-of-field: a new method for the fusion of multichannel microscopy images.

    PubMed

    Forster, Brigitte; Van De Ville, Dimitri; Berent, Jesse; Sage, Daniel; Unser, Michael

    2004-09-01

    Microscopy imaging often suffers from limited depth-of-field. However, the specimen can be "optically sectioned" by moving the object along the optical axis. Then different areas appear in focus in different images. Extended depth-of-field is a fusion algorithm that combines those images into one single sharp composite. One promising method is based on the wavelet transform. Here, we show how the wavelet-based image fusion technique can be improved and easily extended to multichannel data. First, we propose the use of complex-valued wavelet bases, which seem to outperform traditional real-valued wavelet transforms. Second, we introduce a way to apply this technique for multichannel images that suppresses artifacts and does not introduce false colors, an important requirement for multichannel optical microscopy imaging. We evaluate our method on simulated image stacks and give results relevant to biological imaging. PMID:15570586

  20. Characterization of a medical X-ray machine for testing the response of electronic dosimeters in pulsed radiation fields

    NASA Astrophysics Data System (ADS)

    Guimarães, Margarete C.; Da Silva, Teógenes A.

    2014-11-01

    Electronic personal dosimeters (EPD) based on solid state detectors have been used for personnel monitoring for radiation protection purpose; their use has been extended to practices with pulsed radiation beams although their performance is not well known. Deficiencies in the EPD response in pulsed radiation fields have been reported; they were not detected before since type tests and calibrations of EPDs were established in terms of continuous X and gamma reference radiations. An ISO working group was formed to elaborate a standard for test conditions and performance requirements of EPDs in pulsed beams; the PTB/Germany implemented a special X-ray facility for generating the reference pulsed radiation beams. In this work, an 800 Plus VMI medical X-ray machine of the Dosimeter Calibration Laboratory of CDTN/CNEN was characterized to verify its feasibility to perform EPD tests. Characterization of the x-ray beam was done in terms of practical peak voltage, half-value layer, mean energy and air kerma rate. Reference dosimeters used for air kerma measurements were verified as far their metrological coherence and a procedure for testing EDPs was established. Electronic personal dosimeters (EPD) have been used for personnel monitoring. EPD use has been extended to pulsed radiation beams. Deficiencies in the EPD response in pulsed beams have been reported. The feasibility of using a medical X-ray machine to perform EPD tests was studied. Reference dosimeters were verified and EPD testing procedure was established.

  1. ETIPS: Using Cases with Virtual Schools to Prepare for, Extend, and Deepen Preservice Teachers' Field Experiences

    ERIC Educational Resources Information Center

    Dexter, Sara L.; Riedel, Eric; Scharber, Cassandra

    2008-01-01

    Field experiences are identified as an important component in the preparation of new teachers. As such, methods to supplement field experiences with pre- and post-activities that ready preservice teachers to effectively learn from them warrant further examination. This paper presents one tool that has been used successfully to improve preservice…

  2. Control of extended high-voltage electric discharges in atmospheric air by UV KrF-laser radiation

    SciTech Connect

    Zvorykin, V D; Levchenko, A O; Ustinovskii, N N

    2011-03-31

    Experiments in the commutation of extended ({approx}1-m long) high-voltage (up to 390 kV) electric discharges were carried out with the aid of 100-ns long UV pulses of the GARPUN KrF laser, in which we demonstrated a one-and-a-half-fold lengthening of the discharge gap broken down in the presence of laser illumination. Total control of discharge trajectory along the direction of the laser beam was observed for a radiation energy of {approx}300 mJ (the corresponding intensity I = 5x10{sup 8} W cm{sup -2} and its attendant initial electron density Ne {approx} 10{sup 11} cm{sup -3}) and partial control for an energy of 40 mJ (I = 7x10{sup 7} W cm{sup -2}, Ne {approx} 8x10{sup 9} cm{sup -3}) with a 100% probability of breakdown. We discuss the advantages of employing a UV laser for active lightning protection in comparison with IR lasers and ultrashort-pulse laser systems. (interaction of laser radiation with matter)

  3. Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor

    SciTech Connect

    Joulain, Karl; Ezzahri, Younès; Drevillon, Jérémie; Ben-Abdallah, Philippe

    2015-03-30

    We show in this article that phase change materials (PCM) exhibiting a phase transition between a dielectric state and a metallic state are good candidates to perform modulation as well as amplification of radiative thermal flux. We propose a simple situation in plane parallel geometry where a so-called radiative thermal transistor could be achieved. In this configuration, we put a PCM between two blackbodies at different temperatures. We show that the transistor effect can be achieved easily when this material has its critical temperature between the two blackbody temperatures. We also see that the more the material is reflective in the metallic state, the more switching effect is realized, whereas the more PCM transition is stiff in temperature, the more thermal amplification is high. We finally take the example of VO{sub 2} that exhibits an insulator-metallic transition at 68 °C. We show that a demonstrator of a radiative transistor could easily be achieved in view of the heat flux levels predicted. Far-field thermal radiation experiments are proposed to back the results presented.

  4. Extended Standard Model in multi-spinor field formalism: Visible and dark sectors

    NASA Astrophysics Data System (ADS)

    Sogami, Ikuo S.

    2013-12-01

    To generalize the Standard Model so as to include dark matter, we formulate a theory of multi-spinor fields on the basis of an algebra that consists of triple-tensor products of elements of the Dirac algebra. Chiral combinations of multi-spinor fields form reducible representations of the Lorentz group possessing component fields with spin 1/2, which we interpret as expressing three ordinary families and an additional fourth family of quarks and leptons. Apart from the gauge and Higgs fields of the Standard Model interacting with the fermions of the three ordinary families, we assume the existence of additional gauge and Higgs fields interacting exclusively with the fermions of the fourth family. While the fields of the Standard Model organize the "visible sector" of our universe, the fields related with the fourth family are presumed to generate a "dark sector" that can contain dark matter. The two sectors possess a channel of communication through the bi-quadratic interaction between visible and dark Higgs fields. After experiencing a common inflationary phase, the two sectors follow a reheating period and weak-coupling paths of thermal histories. We propose scenarios for dark matter that have a tendency to take relatively broad interstellar distributions and examine methods for the detection of the main candidate particles of dark matter. The exchange of superposed fields of the visible and dark Higgs bosons induces weak reaction processes between the fields of the visible and dark sectors, which enables us to have a glimpse of the dark sector.

  5. A simple method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter

    SciTech Connect

    Du Weiliang; Yang, James; Luo Dershan; Martel, Mary

    2010-05-15

    Purpose: The aim of this study was to develop a computerized method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter. Three types of graticules were included in this study: Megavoltage (MV) mechanical graticule, MV electronic portal imaging device digital graticule, and kilovoltage (kV) on-board imaging digital graticule. Methods: A metal ball bearing (BB) was imaged with MV and kV x-ray beams in a procedure similar to a Winston-Lutz test. The radiation fields, graticules, and BB were localized in eight portal images using Hough transform-based computer algorithms. The center of the BB served as a static reference point in the 3D space so that the distances between the graticule centers and the radiation field centers were calculated. The radiation isocenter was determined from the radiation field centers at different gantry angles. Results: Misalignments of MV and kV portal imaging graticules varied with the gantry or x-ray source angle as a result of mechanical imperfections of the linear accelerator and its imaging system. While the three graticules in this study were aligned to the radiation field centers and the radiation isocenter within 2.0 mm, misalignments of 1.5-2.0 mm were found at certain gantry angles. These misalignments were highly reproducible with the gantry rotation. Conclusions: A simple method was developed to quantify the alignments of portal image graticules directly against the radiation field centers or the radiation isocenter. The advantage of this method is that it does not require the BB to be placed exactly at the radiation isocenter through a precalibrated surrogating device such as room lasers or light field crosshairs. The present method is useful for radiation therapy modalities that require high-precision portal imaging such as image-guided stereotactic radiotherapy.

  6. A nonequilibrium statistical field theory of swarms and other spatially extended complex systems

    SciTech Connect

    Millonas, M.M. Santa Fe Inst., NM )

    1993-01-01

    A class of models with applications to swarm behavior as well as many other types of spatially extended complex biological and physical systems is studied. Internal fluctuations can play an active role in the organization of the phase structure of such systems. Consequently, it is not possible to fully understand the behavior of these systems without explicitly incorporating the fluctuations. In particular, for the class of models studied here the effect of internal fluctuations due to finite size is a renormalized decrease in the temperature near the point of spontaneous symmetry breaking. We briefly outline how these models can be applied to the behavior of an ant swarm.

  7. A nonequilibrium statistical field theory of swarms and other spatially extended complex systems

    SciTech Connect

    Millonas, M.M. |

    1993-07-01

    A class of models with applications to swarm behavior as well as many other types of spatially extended complex biological and physical systems is studied. Internal fluctuations can play an active role in the organization of the phase structure of such systems. Consequently, it is not possible to fully understand the behavior of these systems without explicitly incorporating the fluctuations. In particular, for the class of models studied here the effect of internal fluctuations due to finite size is a renormalized decrease in the temperature near the point of spontaneous symmetry breaking. We briefly outline how these models can be applied to the behavior of an ant swarm.

  8. Extended parametric gain range in photonic crystal fibers with strongly frequency-dependent field distributions.

    PubMed

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2014-08-15

    The parametric gain range of a degenerate four-wave mixing process is determined in the undepleted pump regime. The gain range is considered with and without taking the mode field distributions of the four-wave mixing components into account. It is found that the mode field distributions have to be included to evaluate the parametric gain correctly in dispersion-tailored speciality fibers and that mode profile engineering can provide a way to increase the parametric gain range. PMID:25121901

  9. Narrow far fields from extended-window broad-area lasers

    NASA Technical Reports Server (NTRS)

    Lang, Robert J.; Forouhar, Siamak; Cser, Jim; Katz, Joseph; Gavrilovic, Paul

    1988-01-01

    Broad-area lasers are fabricated with a long (80-100 microns), nonabsorbing window at each end. The window is shown to dramatically improve the spatial mode properties, stabilizing and smoothing the near field, and reducing the far field from 5-15 deg to as low as 2 deg. This improvement comes at the expense of an increase in threshold current and a reduction of quantum efficiency.

  10. Measurement of the radiation field surrounding the Collider Detector at Fermilab

    SciTech Connect

    K. Kordas et al.

    2004-01-28

    We present here the first direct and detailed measurements of the spatial distribution of the ionizing radiation surrounding a hadron collider experiment. Using data from two different exposures we measure the effect of additional shielding on the radiation field around the Collider Detector at Fermilab (CDF). Employing a simple model we parameterize the ionizing radiation field surrounding the detector.