Science.gov

Sample records for extracellular contrast media-enhanced

  1. Extracellular gadolinium-based contrast media: an overview.

    PubMed

    Bellin, Marie-France; Van Der Molen, Aart J

    2008-05-01

    Increasing use is made of extracellular MRI contrast agents that alter the image contrast following intravenous administration; they predominantly shorten the T1 relaxation time of tissues. The degree and location of these changes provide substantial diagnostic information. However gadolinium-based contrast agents (Gd-CA) are not inert drugs. They may cause acute non-renal adverse reactions (e.g. anaphylactoid reactions), acute renal adverse reactions (e.g. contrast induced nephropathy), delayed adverse reactions (nephrogenic systemic fibrosis) and problems at the site of injection (e.g. local necrosis). This review describes the current status of Gd-CA, their mechanism of action, chemical structure, pharmacokinetics, dosage, elimination, nephrotoxicity and adverse events. PMID:18358659

  2. Assessment of the Early Effects of 5,6-Dimethylxanthenone-4-Acetic Acid Using Macromolecular Contrast Media-Enhanced Magnetic Resonance Imaging: Ectopic Versus Orthotopic Tumors

    SciTech Connect

    Seshadri, Mukund Bellnier, David A.; Cheney, Richard T.

    2008-11-15

    Purpose: To investigate the early effects of a vascular disrupting agent (VDA) in ectopic and orthotopic tumors by using macromolecular contrast media (MMCM)-enhanced magnetic resonance imaging (MMCM-MRI). Methods and Materials: The MMCM-MRI of ectopic and orthotopic MCA205 murine fibrosarcomas was performed using the intravascular contrast agent albumin-(gadopentetate dimeglumine){sub 35}. Change in longitudinal relaxation rate ({delta}R1) was measured 24 hours after treatment with 5,6-dimethylxanthenone-4-acetic acid (DMXAA; 30 mg/kg) and used to compute tumor vascular volume and permeability. Correlative histologic and immunohistochemical evaluation was carried out, along with measurement of tumor necrosis factor {alpha} and vascular endothelial growth factor levels in whole tumor extracts using the enzyme-linked immunosorbent assay. Results: Orthotopic tumors showed higher vascular volume (p < 0.05) than ectopic tumors before treatment. Twenty-four hours after DMXAA treatment, a significant (p < 0.0001), but differential, decrease in {delta}R1 (70% in ectopic and 50% in orthotopic tumors) was observed compared with baseline estimates. Consistent with this observation, greater levels of tumor necrosis factor {alpha}, an important mediator of the antivascular activity of DMXAA, were measured in ectopic tumors 3 hours posttreatment compared with orthotopic tumors (p < 0.05). Immunohistochemical (CD31) and histologic (hematoxylin and eosin) sections of ectopic and orthotopic tumors showed highly tumor-selective vascular damage after treatment with the presence of viable surrounding normal tissue. Conclusions: The MMCM-MRI provided early quantitative estimates of change in tumor perfusion after VDA treatment that showed good correlation with cytokine induction. Differences in the response of ectopic and orthotopic tumors highlight the influence of the host microenvironment in modulating the activity of VDAs.

  3. Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability

    PubMed Central

    Redmile-Gordon, M.A.; Evershed, R.P.; Hirsch, P.R.; White, R.P.; Goulding, K.W.T.

    2015-01-01

    An emerging paradigm in soil science suggests microbes can perform ‘N mining’ from recalcitrant soil organic matter (SOM) in conditions of low N availability. However, this requires the production of extracellular structures rich in N (including enzymes and structural components) and thus defies stoichiometric expectation. We set out to extract newly synthesised peptides from the extracellular matrix in soil and compare the amino acid (AA) profiles, N incorporation and AA dynamics in response to labile inputs of contrasting C/N ratio. Glycerol was added both with and without an inorganic source of N (10% 15N labelled NH4NO3) to a soil already containing a large pool of refractory SOM and incubated for 10 days. The resulting total soil peptide (TSP) and extracellular pools were compared using colorimetric methods, gas chromatography, and isotope ratio mass spectrometry. N isotope compositions showed that the extracellular polymeric substance (EPS) contained a greater proportion of products formed de novo than did TSP, with hydrophobic EPS-AAs (leucine, isoleucine, phenylalanine, hydroxyproline and tyrosine) deriving substantially more N from the inorganic source provided. Quantitative comparison between extracts showed that the EPS contained greater relative proportions of alanine, glycine, proline, phenylalanine and tyrosine. The greatest increases in EPS-peptide and EPS-polysaccharide concentrations occurred at the highest C/N ratios. All EPS-AAs responded similarly to treatment whereas the responses of TSP were more complex. The results suggest that extracellular investment of N (as EPS peptides) is a microbial survival mechanism in conditions of low N/high C which, from an evolutionary perspective, must ultimately lead to the tendency for increased N returns to the microbial biomass. A conceptual model is proposed that describes the dynamics of the extracellular matrix in response to the C/N ratio of labile inputs. PMID:26339106

  4. Biochemical Safety Profiles of Gadolinium-Based Extracellular Contrast Agents and Nephrogenic Systemic Fibrosis

    PubMed Central

    Ersoy, Hale; Rybicki, Frank J.

    2009-01-01

    Gadolinium (Gd)-based paramagnetic contrast agents are relatively safe when used in clinically recommended doses. However, with the rapidly expanding body of literature linking Gd-based paramagnetic contrast agents and nephrogenic systemic fibrosis (NSF), awareness of the potential side effects and adverse reactions from Gd is now an important requirement for practicing radiologists. In addition to the ongoing accumulation and analyses of clinical NSF data, it is also essential for the practicing radiologist to understand the biochemical characteristics of the extracellular Gd-chelates. The purpose of this review is to consolidate and update the available information on known side effects, adverse reactions, and toxicity of the Gd chelates, with particular emphasis on the potential mechanisms of NSF. PMID:17969161

  5. Imaging In Vivo Extracellular pH with a Single Paramagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent

    PubMed Central

    Liu, Guanshu; Li, Yuguo; Sheth, Vipul R.; Pagel, Mark D.

    2016-01-01

    The measurement of extracellular pH (pHe) has potential utility for cancer diagnoses and for assessing the therapeutic effects of pH-dependent therapies. A single magnetic resonance imaging (MRI) contrast agent that is detected through paramagnetic chemical exchange saturation transfer (PARACEST) was designed to measure tumor pHe throughout the range of physiologic pH and with magnetic resonance saturation powers that are not harmful to a mouse model of cancer. The chemical characterization and modeling of the contrast agent Yb3+-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid,10-o-aminoanilide (Yb-DO3A-oAA) suggested that the aryl amine of the agent forms an intramolecular hydrogen bond with a proximal carboxylate ligand, which was essential for generating a practical chemical exchange saturation transfer (CEST) effect from an amine. A ratio of CEST effects from the aryl amine and amide was linearly correlated with pH throughout the physiologic pH range. The pH calibration was used to produce a parametric pH map of a subcutaneous flank tumor on a mouse model of MCF-7 mammary carcinoma. Although refinements in the in vivo CEST MRI methodology may improve the accuracy of pHe measurements, this study demonstrated that the PARACEST contrast agent can be used to generate parametric pH maps of in vivo tumors with saturation power levels that are not harmful to a mouse model of cancer. PMID:22418027

  6. Different Resistance to UV-B Radiation of Extracellular Polymeric Substances of Two Cyanobacteria from Contrasting Habitats.

    PubMed

    Song, Wenjuan; Zhao, Chenxi; Zhang, Daoyong; Mu, Shuyong; Pan, Xiangliang

    2016-01-01

    The effects of UV-B radiation (UVBR) on photosynthetic activity (Fv/Fm) of aquatic Synechocystis sp. and desert Chroococcus minutus and effects on composition and fluorescence property of extracellular polymeric substances (EPSs) from Synechocystis sp. and C. minutus were comparatively investigated. The desert cyanobacterium species C. minutus showed higher tolerance of PSII activity (Fv/Fm) to UVBR than the aquatic Synechocystis sp., and the inhibited PSII activity of C. minutus could be fully recovered while that of Synechocystis sp. could be partly recovered. UVBR had significant effect on the yield and biochemical composition of EPS of both species. Protein-like and humic acid-like substances were detected in EPS from Synechocystis sp., and protein-like and phenol-like fluorescent compounds were detected in EPS from C. minutus. Proteins in EPS of desert and aquatic species were significantly decomposed under UVBR, and the latter was more easily decomposed. The polysaccharides were much more resistant to UVBR than the proteins for both species. Polysaccharides of Synechocystis sp. was degraded slightly but those of C. minutus was little decomposed. The higher tolerance to UVBR of the desert cyanobacterium can be attributed to the higher resistance of its EPS to photodegradation induced by UVBR in comparison with the aquatic species. PMID:27597841

  7. Different Resistance to UV-B Radiation of Extracellular Polymeric Substances of Two Cyanobacteria from Contrasting Habitats

    PubMed Central

    Song, Wenjuan; Zhao, Chenxi; Zhang, Daoyong; Mu, Shuyong; Pan, Xiangliang

    2016-01-01

    The effects of UV-B radiation (UVBR) on photosynthetic activity (Fv/Fm) of aquatic Synechocystis sp. and desert Chroococcus minutus and effects on composition and fluorescence property of extracellular polymeric substances (EPSs) from Synechocystis sp. and C. minutus were comparatively investigated. The desert cyanobacterium species C. minutus showed higher tolerance of PSII activity (Fv/Fm) to UVBR than the aquatic Synechocystis sp., and the inhibited PSII activity of C. minutus could be fully recovered while that of Synechocystis sp. could be partly recovered. UVBR had significant effect on the yield and biochemical composition of EPS of both species. Protein-like and humic acid-like substances were detected in EPS from Synechocystis sp., and protein-like and phenol-like fluorescent compounds were detected in EPS from C. minutus. Proteins in EPS of desert and aquatic species were significantly decomposed under UVBR, and the latter was more easily decomposed. The polysaccharides were much more resistant to UVBR than the proteins for both species. Polysaccharides of Synechocystis sp. was degraded slightly but those of C. minutus was little decomposed. The higher tolerance to UVBR of the desert cyanobacterium can be attributed to the higher resistance of its EPS to photodegradation induced by UVBR in comparison with the aquatic species. PMID:27597841

  8. Contrasting extracellular enzyme activities of particle-associated bacteria from distinct provinces of the North Atlantic Ocean

    PubMed Central

    Arnosti, Carol; Fuchs, Bernhard M.; Amann, Rudolf; Passow, Uta

    2012-01-01

    Microbial communities play a key role in the marine carbon cycle, processing much of phytoplankton-derived organic matter. The composition of these communities varies by depth, season, and location in the ocean; the functional consequences of these compositional variations for the carbon cycle are only beginning to be explored. We measured the abilities of microbial communities in the large-particle fraction (retained by a 10-μm pore-size cartridge filter) to enzymatically hydrolyze high molecular weight substrates, and therefore initiate carbon remineralization in four distinct oceanic provinces: the boreal polar (BPLR), the Arctic oceanic (ARCT), the North Atlantic drift (NADR), and the North Atlantic subtropical (NAST) provinces. Since we expected the large-particle fraction to include phytoplankton cells, we measured the hydrolysis of polysaccharide substrates (laminarin, fucoidan, xylan, and chondroitin sulfate) expected to be associated with phytoplankton. Hydrolysis rates and patterns clustered into two groups, the BPLR/ARCT and the NADR/NAST. All four substrates were hydrolyzed by the BPLR/ARCT communities; hydrolysis rates of individual substrate varied by factors of ca. 1–4. In contrast, chondroitin was not hydrolyzed in the NADR/NAST, and hydrolytic activity was dominated by laminarinase. Fluorescence in situ hybridization of the large-particle fraction post-incubation showed a substantial contribution (15–26%) of CF319a-positive cells (Bacteroidetes) to total DAPI-stainable cells. Concurrent studies of microbial community composition and of fosmids from these same stations also demonstrated similarities between BPLR and ARCT stations, which were distinct from the NADR/NAST stations. Together, these data support a picture of compositionally as well as functionally distinct communities across these oceanic provinces. PMID:23248623

  9. Myocardial Extracellular Volume Fraction with Dual-Energy Equilibrium Contrast-enhanced Cardiac CT in Nonischemic Cardiomyopathy: A Prospective Comparison with Cardiac MR Imaging.

    PubMed

    Lee, Hye-Jeong; Im, Dong Jin; Youn, Jong-Chan; Chang, Suyon; Suh, Young Joo; Hong, Yoo Jin; Kim, Young Jin; Hur, Jin; Choi, Byoung Wook

    2016-07-01

    Purpose To evaluate the feasibility of equilibrium contrast material-enhanced dual-energy cardiac computed tomography (CT) to determine extracellular volume fraction (ECV) in nonischemic cardiomyopathy (CMP) compared with magnetic resonance (MR) imaging. Materials and Methods This study was approved by the institutional review board; informed consent was obtained. Seven healthy subjects and 23 patients (six with hypertrophic CMP, nine with dilated CMP, four with amyloidosis, and four with sarcoidosis) (mean age ± standard deviation, 57.33 years ± 14.82; 19 male participants [63.3%]) were prospectively enrolled. Twelve minutes after contrast material injection (1.8 mL/kg at 3 mL/sec), dual-energy cardiac CT was performed. ECV was measured by two observers independently. Hematocrit levels were compared between healthy subjects and patients with the Mann-Whitney U test. In per-subject analysis, interobserver agreement for CT was assessed with the intraclass correlation coefficient (ICC), and intertest agreement between MR imaging and CT was assessed with Bland-Altman analysis. In per-segment analysis, Student t tests in the linear mixed model were used to compare ECV on CT images between healthy subjects and patients. Results Hematocrit level was 43.44% ± 1.80 for healthy subjects and 41.23% ± 5.61 for patients with MR imaging (P = .16) and 43.50% ± 1.92 for healthy subjects and 41.35% ± 5.92 for patients with CT (P = .15). For observer 1 in per-subject analysis, ECV was 34.18% ± 8.98 for MR imaging and 34.48% ± 8.97 for CT. For observer 2, myocardial ECV was 34.42% ± 9.03 for MR imaging and 33.98% ± 9.05 for CT. Interobserver agreement for ECV at CT was excellent (ICC = 0.987). Bland-Altman analysis between MR imaging and CT showed a small bias (-0.06%), with 95% limits of agreement of -1.19 and 1.79. Compared with healthy subjects, patients with hypertrophic CMP, dilated CMP, amyloidosis, and sarcoidosis had significantly higher myocardial ECV at dual

  10. Assessing Student Scientific Expression Using Media: The Media-Enhanced Science Presentation Rubric (MESPR)

    ERIC Educational Resources Information Center

    Mott, Michael S.; Chessin, Debby A.; Sumrall, William J.; Rutherford, Angela S.; Moore, Virginia J.

    2011-01-01

    The current study evaluated an assessment designed to dually promote student understanding of the experimental method and student ability to include digital and visual qualities in their presentations of scientific experiment results. The rubric, the Media-Enhanced Science Presentation Rubric (MESPR) focuses teacher-student dialogue along the…

  11. Contrasting changes in extracellular dopamine and glutamate along the rostrocaudal axis of the anterior cingulate cortex of the rat following an acute d-amphetamine or dopamine challenge

    PubMed Central

    Ash, Elizabeth S.; Heal, David J.; Clare Stanford, S.

    2014-01-01

    There is evidence for functional specificity of subregions along the rostrocaudal axis of the anterior cingulate cortex (ACC). The subregion-specific distribution of dopaminergic afferents and glutamatergic efferents along the ACC make these obvious candidates for coding such regional responses. We investigated this possibility using microdialysis in freely-moving rats to compare changes in extracellular dopamine and glutamate in the rostral (‘rACC': Cg1 and Cg3 (prelimbic area)) and caudal (‘cACC’: Cg1 and Cg2) ACC induced by systemic or local administration of d-amphetamine. Systemic administration of d-amphetamine (3 mg/kg, i.p.) caused a transient increase in extracellular dopamine in the rACC, but an apparent increase in the cACC of the same animals was less clearly defined. Local infusion of d-amphetamine increased dopamine efflux in the rACC, only. Glutamate efflux in the rACC was increased by local infusion of dopamine (5–50 μM), which had negligible effect in the cACC, but only systemic administration of d-amphetamine increased glutamate efflux and only in the cACC. The asymmetry in the neurochemical responses within the rACC and cACC, to the same experimental challenges, could help explain why different subregions are recruited in the response to specific environmental and somatosensory stimuli and should be taken into account when studying the regulation of neurotransmission in the ACC. This article is part of the Special Issue entitled ‘CNS Stimulants’. PMID:24747182

  12. Extracellular respiration

    PubMed Central

    Gralnick, Jeffrey A.; Newman, Dianne K.

    2009-01-01

    Summary Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term ‘extracellular respiration’ is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as ‘soluble’ are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists. PMID:17581115

  13. Release of extracellular ATP by bacteria during growth

    PubMed Central

    2013-01-01

    Background Adenosine triphosphate (ATP) is used as an intracellular energy source by all living organisms. It plays a central role in the respiration and metabolism, and is the most important energy supplier in many enzymatic reactions. Its critical role as the energy storage molecule makes it extremely valuable to all cells. Results We report here the detection of extracellular ATP in the cultures of a variety of bacterial species. The levels of the extracellular ATP in bacterial cultures peaked around the end of the log phase and decreased in the stationary phase of growth. Extracellular ATP levels were dependent on the cellular respiration as bacterial mutants lacking cytochrome bo oxidase displayed lower extracellular ATP levels. We have also shown that Escherichia coli (E. coli) and Salmonella actively depleted extracellular ATP and an ATP supplement in culture media enhanced the stationary survival of E. coli and Salmonella. In addition to E. coli and Salmonella the presence of the extracellular ATP was observed in a variety of bacterial species that contain human pathogens such as Acinetobacter, Pseudomonas, Klebsiella and Staphylococcus. Conclusion Our results indicate that extracellular ATP is produced by many bacterial species during growth and extracellular ATP may serve a role in the bacterial physiology. PMID:24364860

  14. Extracellular guanosine regulates extracellular adenosine levels

    PubMed Central

    Cheng, Dongmei; Jackson, Travis C.; Verrier, Jonathan D.; Gillespie, Delbert G.

    2013-01-01

    The aim of this investigation was to test the hypothesis that extracellular guanosine regulates extracellular adenosine levels. Rat preglomerular vascular smooth muscle cells were incubated with adenosine, guanosine, or both. Guanosine (30 μmol/l) per se had little effect on extracellular adenosine levels. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) were 0.125 ± 0.020 μmol/l, indicating rapid disposition of extracellular adenosine. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) plus guanosine (30 μmol/l) were 1.173 ± 0.061 μmol/l, indicating slow disposition of extracellular adenosine. Cell injury increased extracellular levels of endogenous adenosine and guanosine, and the effects of cell injury on endogenous extracellular adenosine were modulated by altering the levels of endogenous extracellular guanosine with exogenous purine nucleoside phosphorylase (converts guanosine to guanine) or 8-aminoguanosine (inhibits purine nucleoside phosphorylase). Extracellular guanosine also slowed the disposition of extracellular adenosine in rat preglomerular vascular endothelial cells, mesangial cells, cardiac fibroblasts, and kidney epithelial cells and in human aortic and coronary artery vascular smooth muscle cells and coronary artery endothelial cells. The effects of guanosine on adenosine levels were not mimicked or attenuated by 5-iodotubericidin (adenosine kinase inhibitor), erythro-9-(2-hydroxy-3-nonyl)-adenine (adenosine deaminase inhibitor), 5-aminoimidazole-4-carboxamide (guanine deaminase inhibitor), aristeromycin (S-adenosylhomocysteine hydrolase inhibitor), low sodium (inhibits concentrative nucleoside transporters), S-(4-nitrobenzyl)−6-thioinosine [inhibits equilibrative nucleoside transporter (ENT) type 1], zidovudine (inhibits ENT type 2), or acadesine (known modulator of adenosine levels). Guanosine also increases extracellular inosine, uridine, thymidine, and cytidine, yet decreases

  15. Contrast studies.

    PubMed

    Anderson, Susan M

    2006-01-01

    Contrast media plays an important role in imaging soft tissues and organs. Though contrast imaging is considered safe, radiologic technologists can improve the safety of contrast examinations by reviewing institutional safety procedures, safe practices for different methods of contrast administration and possible complications. The need for efficient communication and attention to detail during contrast procedures is essential for patient safety. PMID:16998193

  16. Patterns of extracellular enzyme activities and microbial metabolism in an Arctic fjord of Svalbard and in the northern Gulf of Mexico: contrasts in carbon processing by pelagic microbial communities.

    PubMed

    Arnosti, Carol; Steen, Andrew D

    2013-01-01

    The microbial community composition of polar and temperate ocean waters differs substantially, but the potential functional consequences of these differences are largely unexplored. We measured bacterial production, glucose metabolism, and the abilities of microbial communities to hydrolyze a range of polysaccharides in an Arctic fjord of Svalbard (Smeerenburg Fjord), and thus to initiate remineralization of high-molecular weight organic matter. We compared these data with similar measurements previously carried out in the northern Gulf of Mexico in order to investigate whether differences in the spectrum of enzyme activities measurable in Arctic and temperate environments are reflected in "downstream" aspects of microbial metabolism (metabolism of monomers and biomass production). Only four of six polysaccharide substrates were hydrolyzed in Smeerenburg Fjord; all were hydrolyzed in the upper water column of the Gulf. These patterns are consistent on an interannual basis. Bacterial protein production was comparable at both locations, but the pathways of glucose utilization differed. Glucose incorporation rate constants were comparatively higher in Svalbard, but glucose respiration rate constants were higher in surface waters of the Gulf. As a result, at the time of sampling ca. 75% of the glucose was incorporated into biomass in Svalbard, but in the northern Gulf of Mexico most of the glucose was respired to CO2. A limited range of enzyme activities is therefore not a sign of a dormant community or one unable to further process substrates resulting from extracellular enzymatic hydrolysis. The ultimate fate of carbohydrates in marine waters, however, is strongly dependent upon the specific capabilities of heterotrophic microbial communities in these disparate environments. PMID:24198812

  17. Patterns of extracellular enzyme activities and microbial metabolism in an Arctic fjord of Svalbard and in the northern Gulf of Mexico: contrasts in carbon processing by pelagic microbial communities

    PubMed Central

    Arnosti, Carol; Steen, Andrew D.

    2013-01-01

    The microbial community composition of polar and temperate ocean waters differs substantially, but the potential functional consequences of these differences are largely unexplored. We measured bacterial production, glucose metabolism, and the abilities of microbial communities to hydrolyze a range of polysaccharides in an Arctic fjord of Svalbard (Smeerenburg Fjord), and thus to initiate remineralization of high-molecular weight organic matter. We compared these data with similar measurements previously carried out in the northern Gulf of Mexico in order to investigate whether differences in the spectrum of enzyme activities measurable in Arctic and temperate environments are reflected in “downstream” aspects of microbial metabolism (metabolism of monomers and biomass production). Only four of six polysaccharide substrates were hydrolyzed in Smeerenburg Fjord; all were hydrolyzed in the upper water column of the Gulf. These patterns are consistent on an interannual basis. Bacterial protein production was comparable at both locations, but the pathways of glucose utilization differed. Glucose incorporation rate constants were comparatively higher in Svalbard, but glucose respiration rate constants were higher in surface waters of the Gulf. As a result, at the time of sampling ca. 75% of the glucose was incorporated into biomass in Svalbard, but in the northern Gulf of Mexico most of the glucose was respired to CO2. A limited range of enzyme activities is therefore not a sign of a dormant community or one unable to further process substrates resulting from extracellular enzymatic hydrolysis. The ultimate fate of carbohydrates in marine waters, however, is strongly dependent upon the specific capabilities of heterotrophic microbial communities in these disparate environments. PMID:24198812

  18. Extracellular calcium sensing and extracellular calcium signaling

    NASA Technical Reports Server (NTRS)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  19. Contrastive Lexicology.

    ERIC Educational Resources Information Center

    Hartmann, R. R. K.

    This paper deals with the relation between etymologically related words in different languages. A survey is made of seven stages in the development of contrastive lexicology. These are: prelinguistic word studies, semantics, lexicography, translation, foreign language learning, bilingualism, and finally contrastive analysis. Concerning contrastive…

  20. Bacterial extracellular lignin peroxidase

    DOEpatents

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  1. Contrast Materials

    MedlinePlus

    ... or other reactions to contrast materials are rare, radiology departments are well-equipped to deal with them. ... is given. However, both the American College of Radiology (ACR) and the European Society of Urogenital Radiology ...

  2. Tendon Functional Extracellular Matrix

    PubMed Central

    Screen, H.R.C.; Birk, D.E.; Kadler, K.E.; Ramirez, F; Young, M.F.

    2015-01-01

    This article is one of a series, summarising views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the “Functional Extracellular Matrix” stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely-varying extrinsic and intrinsic factors such as age, nutrition, exercise levels and biomechanics. Consequently, tendon adapts dynamically during development, ageing and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. PMID:25640030

  3. Contrast lipocryolysis

    PubMed Central

    Pinto, Hernán; Melamed, Graciela

    2014-01-01

    Alternative crystal structures are possible for all lipids and each different crystal structure is called a polymorphic form. Inter-conversion between polymorphisms would imply the possibility of leaning crystal formation toward the most effective polymorphism for adipocyte destruction. Food industry has been tempering lipids for decades. Tempering technology applied to lipocryolysis gave birth to “contrast lipocryolysis”, which involves pre- and post-lipocryolysis fat layer heating as part of a specific tempering protocol. In this study, we evaluated the skinfold thickness of 10 subjects after a single contrast lipocryolysis session and witnessed important and fast reductions. PMID:25068088

  4. Functional Specificity of Extracellular Nucleases of Shewanella oneidensis MR-1

    PubMed Central

    Heun, Magnus; Binnenkade, Lucas; Kreienbaum, Maximilian

    2012-01-01

    Bacterial species such as Shewanella oneidensis MR-1 require extracellular nucleolytic activity for the utilization of extracellular DNA (eDNA) as a source of nutrients and for the turnover of eDNA as a structural matrix component during biofilm formation. We have previously characterized two extracellular nucleases of S. oneidensis MR-1, ExeM and ExeS. Although both are involved in biofilm formation, they are not specifically required for the utilization of eDNA as a nutrient. Here we identified and characterized EndA, a third extracellular nuclease of Shewanella. The heterologously overproduced and purified protein was highly active and rapidly degraded linear and supercoiled DNAs of various origins. Divalent metal ions (Mg2+ or Mn2+) were required for function. endA is cotranscribed with phoA, an extracellular phosphatase, and is not upregulated upon phosphostarvation. Deletion of endA abolished both extracellular degradation of DNA by S. oneidensis MR-1 and the ability to use eDNA as a sole source of phosphorus. PhoA is not strictly required for the exploitation of eDNA as a nutrient. The activity of EndA prevents the formation of large cell aggregates during planktonic growth. However, in contrast to the findings for ExeM, endA deletion had only minor effects on biofilm formation. The findings strongly suggest that the extracellular nucleases of S. oneidensis exert specific functions required under different conditions. PMID:22492434

  5. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    PubMed

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  6. Preeclampsia and Extracellular Vesicles.

    PubMed

    Gilani, Sarwat I; Weissgerber, Tracey L; Garovic, Vesna D; Jayachandran, Muthuvel

    2016-09-01

    Preeclampsia is a hypertensive pregnancy disorder characterized by development of hypertension and proteinuria after 20 weeks of gestation that remains a leading cause of maternal and neonatal morbidity and mortality. While preeclampsia is believed to result from complex interactions between maternal and placental factors, the proximate pathophysiology of this syndrome remains elusive. Cell-to-cell communication is a critical signaling mechanism for feto-placental development in normal pregnancies. One mechanism of cellular communication relates to activated cell-derived sealed membrane vesicles called extracellular vesicles (EVs). The concentrations and contents of EVs in biological fluids depend upon their cells of origin and the stimuli which trigger their production. Research on EVs in preeclampsia has focused on EVs derived from the maternal vasculature (endothelium, vascular smooth muscle) and blood (erythrocytes, leukocytes, and platelets), as well as placental syncytiotrophoblasts. Changes in the concentrations and contents of these EVs may contribute to the pathophysiology of preeclampsia by accentuating the pro-inflammatory and pro-coagulatory states of pregnancy. This review focuses on possible interactions among placental- and maternal-derived EVs and their contents in the initiation and progression of the pathogenesis of preeclampsia. Understanding the contributions of EVs in the pathogenesis of preeclampsia may facilitate their use as diagnostic and prognostic biomarkers. PMID:27590522

  7. Extracellular matrix and wound healing.

    PubMed

    Maquart, F X; Monboisse, J C

    2014-04-01

    Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects. PMID:24650524

  8. Acidic extracellular microenvironment and cancer

    PubMed Central

    2013-01-01

    Acidic extracellular pH is a major feature of tumor tissue, extracellular acidification being primarily considered to be due to lactate secretion from anaerobic glycolysis. Clinicopathological evidence shows that transporters and pumps contribute to H+ secretion, such as the Na+/H+ exchanger, the H+-lactate co-transporter, monocarboxylate transporters, and the proton pump (H+-ATPase); these may also be associated with tumor metastasis. An acidic extracellular pH not only activates secreted lysosomal enzymes that have an optimal pH in the acidic range, but induces the expression of certain genes of pro-metastatic factors through an intracellular signaling cascade that is different from hypoxia. In addition to lactate, CO2 from the pentose phosphate pathway is an alternative source of acidity, showing that hypoxia and extracellular acidity are, while being independent from each other, deeply associated with the cellular microenvironment. In this article, the importance of an acidic extracellular pH as a microenvironmental factor participating in tumor progression is reviewed. PMID:24004445

  9. Extracellular vesicles in lung microenvironment and pathogenesis.

    PubMed

    Fujita, Yu; Kosaka, Nobuyoshi; Araya, Jun; Kuwano, Kazuyoshi; Ochiya, Takahiro

    2015-09-01

    Increasing attention is being paid to the role of extracellular vesicles (EVs) in various lung diseases. EVs are released by a variety of cells, including respiratory cells and immune cells, and they encapsulate various molecules, such as proteins and microRNAs, as modulators of intercellular communication. Cancer cell-derived EVs play crucial roles in promoting tumor progression and modifying their microenvironment. By contrast, noncancerous cell-derived EVs demonstrate protective functions against injury, such as tissue recovery and repair, to maintain physiological homeostasis. Airway cells in contact with harmful substances may alter their EV composition and modify the balanced reciprocal interactions with surrounding mesenchymal cells. We summarize the novel findings of EV function in various lung diseases, primarily chronic obstructive pulmonary disease (COPD) and lung cancer. PMID:26231094

  10. Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum

    SciTech Connect

    O'Day, Danton H.; Huber, Robert J.; Suarez, Andres

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Extracellular calmodulin is present throughout growth and development in Dictyostelium. Black-Right-Pointing-Pointer Extracellular calmodulin localizes within the ECM during development. Black-Right-Pointing-Pointer Extracellular calmodulin inhibits cell proliferation and increases chemotaxis. Black-Right-Pointing-Pointer Extracellular calmodulin exists in eukaryotic microbes. Black-Right-Pointing-Pointer Extracellular calmodulin may be functionally as important as intracellular calmodulin. -- Abstract: The existence of extracellular calmodulin (CaM) has had a long and controversial history. CaM is a ubiquitous calcium-binding protein that has been found in every eukaryotic cell system. Calcium-free apo-CaM and Ca{sup 2+}/CaM exert their effects by binding to and regulating the activity of CaM-binding proteins (CaMBPs). Most of the research done to date on CaM and its CaMBPs has focused on their intracellular functions. The presence of extracellular CaM is well established in a number of plants where it functions in proliferation, cell wall regeneration, gene regulation and germination. While CaM has been detected extracellularly in several animal species, including frog, rat, rabbit and human, its extracellular localization and functions are less well established. In contrast the study of extracellular CaM in eukaryotic microbes remains to be done. Here we show that CaM is constitutively expressed and secreted throughout asexual development in Dictyostelium where the presence of extracellular CaM dose-dependently inhibits cell proliferation but increases cAMP mediated chemotaxis. During development, extracellular CaM localizes within the slime sheath where it coexists with at least one CaMBP, the matricellular CaM-binding protein CyrA. Coupled with previous research, this work provides direct evidence for the existence of extracellular CaM in the Dictyostelium and provides insight into its functions in this model amoebozoan.

  11. Salt stress represses production of extracellular proteases in Bacillus pumilus.

    PubMed

    Liu, R F; Huang, C L; Feng, H

    2015-01-01

    Bacillus pumilus is able to secrete subtilisin-like prote-ases, one of which has been purified and characterized biochemically, demonstrating great potential for use in industrial applications. In the current study, the biosynthesis and transcription of extracellular pro-teases in B. pumilus (BA06) under salt stress were investigated using various methods, including a proteolytic assay, zymogram analysis, and real-time PCR. Our results showed that total extracellular proteolytic activity, both in fermentation broth and on milk-containing agar plates, was considerably repressed by salt in a dosage-dependent manner. As Bacillus species usually secret multiple extracellular proteases, a vari-ety of individual extracellular protease encoding genes were selected for real-time PCR analysis. It was shown that proteases encoded by the aprE and aprX genes were the major proteases in the fermentation broth in terms of their transcripts in B. pumilus. Further, transcription of aprE, aprX, and epr genes was indeed repressed by salt stress. In con-trast, transcription of other genes (e.g., vpr and wprA) was not repressed or significantly affected by the salt. Conclusively, salt stress represses total extracellular proteolytic activity in B. pumilus, which can largely be ascribed to suppression of the major protease-encoding genes (aprE, aprX) at the transcriptional level. In contrast, transcription of other pro-tease-encoding genes (e.g., vpr, wprA) was not repressed by salt stress. PMID:25966269

  12. Extracellular enzyme kinetics scale with resource availability

    EPA Science Inventory

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  13. Extracellular metalloproteinases in Phytomonas serpens.

    PubMed

    Vermelho, Alane B; Almeida, Flávia V S; Bronzato, Leandro S; Branquinha, Marta H

    2003-03-01

    The detection of extracellular proteinases in Phytomonas serpens, a trypanosomatid isolated from tomato fruits, is demonstrated in this paper. Maximal production occurred at the end of the logarithmic phase of growth. These enzymes exhibited selective substrate utilization in SDS-PAGE, being more active with gelatin; hemoglobin and bovine serum albumin were not degraded. Three proteinases were detected in SDS-PAGE-gelatin, with apparent molecular masses between 94 and 70 kDa. The proteolytic activity was completely blocked by 1,10-phenanthroline and strongly inhibited by EDTA, whereas a partial inhibition was observed with trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E-64) and soybean trypsin inhibitor; phenylmethylsulfonyl fluoride weakly inhibited the enzymes. This inhibition profile indicated that these extracellular proteinases belong to the metalloproteinase class. PMID:12795409

  14. Extracellular matrix in ovarian follicles.

    PubMed

    Rodgers, R J; Irving-Rodgers, H F; van Wezel, I L

    2000-05-25

    A lot is known about the control of the development of ovarian follicles by growth factors and hormones, but less is known about the roles of extracellular matrix in the control of follicular growth and development. In this review we focus on the specialized extracellular matrix of the basal laminas that are present in ovarian follicles. These include the follicular basal lamina itself, the Call-Exner bodies of the membrana granulosa, the subendothelial and arteriole smooth muscle basal laminas in the theca, and the basal lamina-like material of the thecal matrix. We discuss the evidence that during follicle development the follicular basal lamina changes in composition, that many of its components are produced by the granulosa cells, and that the follicular basal laminas of different follicles have different ultrastructural appearances, linked to the shape of the aligning granulosa cells. All these studies suggest that the follicular basal lamina is extremely dynamic during follicular development. PMID:10963877

  15. Diffusion in Brain Extracellular Space

    PubMed Central

    Syková, Eva; Nicholson, Charles

    2009-01-01

    Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is about 20% and the tortuosity about 1.6 (i.e. free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties are valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain. PMID:18923183

  16. Extracellular secretion of recombinant proteins

    SciTech Connect

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  17. Brain Extracellular Matrix in Neurodegeneration

    PubMed Central

    Bonneh-Barkay, Dafna; Wiley, Clayton A.

    2009-01-01

    The role of extracellular matrix (ECM) in neurological development, function and degeneration has evolved from a simplistic physical adhesion to a system of intricate cellular signaling. While most cells require ECM adhesion to survive, it is now clear that differentiated function is intimately dependent upon cellular interaction with the ECM. Therefore, it is not surprising that the ECM is increasingly found to be involved in the enigmatic process of neurodegeneration. Descriptive studies of human neurodegenerative disorders and experimental studies of animal models of neurodegeneration have begun to define potential mechanisms of ECM disruption that can lead to synaptic and neuronal loss. PMID:18662234

  18. Mechanotransduction and extracellular matrix homeostasis

    PubMed Central

    Humphrey, Jay D.; Dufresne, Eric R.; Schwartz, Martin A.

    2015-01-01

    Preface Soft connective tissues at steady state are yet dynamic; resident cells continually read environmental cues and respond to promote homeostasis, including maintenance of the mechanical properties of the extracellular matrix that are fundamental to cellular and tissue health. The mechanosensing process involves assessment of the mechanics of the matrix by the cells through integrins and the actomyosin cytoskeleton, and is followed by a mechano-regulation process that includes the deposition, rearrangement, or removal of matrix to maintain overall form and function. Progress toward understanding the molecular, cellular, and tissue scale effects that promote mechanical homeostasis has helped identify key questions for future research. PMID:25355505

  19. Extracellular Mutant SOD1 Induces Microglial-Mediated Motoneuron Injury

    PubMed Central

    Zhao, Weihua; Beers, David R.; Henkel, Jenny S.; Zhang, Wei; Urushitani, Makoto; Julien, Jean-Pierre; Appel, Stanley H.

    2009-01-01

    Through undefined mechanisms, dominant mutations in (Cu/Zn) superoxide dismutase-1 (mSOD1) cause the non-cell-autonomous death of motoneurons in inherited amyotrophic lateral sclerosis (ALS). Microgliosis at sites of motoneuron injury is a neuropathological hallmark of ALS. Extracellular mSOD1 causes motoneuron injury and triggers microgliosis in spinal cord cultures, but it is unclear whether the injury results from extracellular mSOD1 directly interacting with motoneurons or is mediated through mSOD1-activated microglia. To dissociate these potential mSOD1-mediated neurotoxic mechanisms, the effects of extracellular human mSOD1G93A or mSOD1G85R were assayed using primary cultures of motoneurons and microglia. The data demonstrate that exogenous mSOD1G93A did not cause detectable direct killing of motoneurons. In contrast, mSOD1G93A or mSOD1G85R did induce the morphological and functional activation of microglia, increasing their release of pro-inflammatory cytokines and free radicals. Furthermore, only when microglia were co-cultured with motoneurons did extracellular mSOD1G93A injure motoneurons. The microglial activation mediated by mSOD1G93A was attenuated using toll-like receptors (TLR) 2, TLR4 and CD14 blocking antibodies, or when microglia lacked CD14 expression. These data suggest that extracellular mSOD1G93A is not directly toxic to motoneurons but requires microglial activation for toxicity, utilizing CD14 and TLR pathways. This link between mSOD1 and innate immunity may offer novel therapeutic targets in ALS. PMID:19672969

  20. The Evolution of Extracellular Matrix

    PubMed Central

    Özbek, Suat; Balasubramanian, Prakash G.; Chiquet-Ehrismann, Ruth; Tucker, Richard P.

    2010-01-01

    We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or “adhesome” also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology. PMID:21160071

  1. Tumorigenic potential of extracellular matrix metalloproteinase inducer.

    PubMed

    Zucker, S; Hymowitz, M; Rollo, E E; Mann, R; Conner, C E; Cao, J; Foda, H D; Tompkins, D C; Toole, B P

    2001-06-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  2. Extracellular enzymes produced by marine eukaryotes, thraustochytrids.

    PubMed

    Taoka, Yousuke; Nagano, Naoki; Okita, Yuji; Izumida, Hitoshi; Sugimoto, Shinichi; Hayashi, Masahiro

    2009-01-01

    Extracellular enzymes produced by six strains of thraustochytrids, Thraustochytrium, Schizochytrium, and Aurantiochytrium, were investigated. These strains produced 5 to 8 kinds of the extracellular enzymes, depending on the species. Only the genus Thraustochytrium produced amylase. When insoluble cellulose was used as substrate, cellulase was not detected in the six strains of thraustochytrids. This study indicates that marine eukaryotes, thraustochytrids, produced a wide variety of extracellular enzymes. PMID:19129663

  3. [Contrast sensitivity in glaucoma].

    PubMed

    Bartos, D

    1989-05-01

    Author reports on results of the contrast sensitivity examinations using the Cambridge low-contrast lattice test supplied by Clement Clarke International LTD, in patients with open-angle glaucoma and ocular hypertension. In glaucoma patients there was observed statistically significant decrease of the contrast sensitivity. In patients with ocular hypertension decrease of the contrast sensitivity was in patients affected by corresponding changes of the visual field and of the optical disc. The main advantages of the Cambridge low-contrast lattice test were simplicity, rapidity and precision of its performance. PMID:2743444

  4. Extracellular modulators of Wnt signalling.

    PubMed

    Malinauskas, Tomas; Jones, E Yvonne

    2014-12-01

    Wnt morphogens are secreted signalling proteins that play leading roles in embryogenesis and tissue homeostasis throughout life. Wnt signalling is controlled by multiple mechanisms, including posttranslational modification of Wnts, antagonist binding (to Wnts or their receptors), and regulation of the availability of Wnt receptors. Recent crystallographic, structure-guided biophysical and cell-based studies have advanced our understanding of how Wnt signalling is regulated at the cell surface. Structures include Wnt in complex with the cysteine-rich domain (CRD) of Frizzled, extracellular fragments of Wnt co-receptor LRP6, LRP6-binding antagonists Dickkopf and Sclerostin, antagonists 5T4/WAIF1 and Wnt inhibitory factor 1 (WIF-1), as well as Frizzled-ubiquitin ligases ZNRF3/RNF43 (in isolation and in complexes with Wnt signalling promoters R-spondins and LGR5). We review recent discoveries and remaining questions. PMID:25460271

  5. Oxidation and modification of extracellular matrix and its role in disease.

    PubMed

    Chuang, C Y; Degendorfer, G; Davies, M J

    2014-09-01

    There is accumulating evidence that damage to extracellular materials and particularly the extracellular matrix, can play a major role in multiple human pathologies. In contrast to cells, the extracellular compartment of most biological tissues is relatively poorly equipped to prevent or repair damage caused by oxidation due to lower levels of antioxidant defenses (low molecular mass and enzymatic) and repair systems (both catabolic and enzymatic). The extracellular compartment is therefore likely to be subject to both an increased extent of damage and an overall accumulation of damage due to slow turnover and/or poor repair. The nature and consequences of damage to the extracellular matrix is poorly understood, despite evidence that changes in matrix structure influences not only structural integrity, but also cell adhesion, proliferation, migration and signaling, and cytokine and growth factor binding. In this article the nature of the extracellular matrix is briefly reviewed, together with evidence for the presence of matrix modifications in cardiovascular disease. The oxidants and mechanisms that are known to damage extracellular matrix are reviewed, together with the limited data available to date on how such changes affect structural properties and cellular behavior. PMID:24796988

  6. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Das, Theerthankar; Kutty, Samuel K.; Tavallaie, Roya; Ibugo, Amaye I.; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W. S.; Thomas, Shane R.; Kumar, Naresh; Gooding, J. Justin; Manefield, Mike

    2015-01-01

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation. PMID:25669133

  7. Heat treatment of peach fruit: modifications in the extracellular compartment and identification of novel extracellular proteins.

    PubMed

    Bustamante, Claudia A; Budde, Claudio O; Borsani, Julia; Lombardo, Verónica A; Lauxmann, Martin A; Andreo, Carlos S; Lara, María V; Drincovich, María F

    2012-11-01

    Ripening of peach (Prunus persica L. Batsch) fruit is accompanied by dramatic cell wall changes that lead to softening. Post-harvest heat treatment is effective in delaying softening and preventing some chilling injury symptoms that this fruit exhibits after storage at low temperatures. In the present work, the levels of twelve transcripts encoding proteins involved in cell wall metabolism, as well as the differential extracellular proteome, were examined after a post-harvest heat treatment (HT; 39 °C for 3 days) of "Dixiland" peach fruit. A typical softening behaviour, in correlation with an increase in 1-aminocyclopropane-1-carboxylic acid oxidase-1 (PpACO1), was observed for peach maintained at 20 °C for 3 days (R3). Six transcripts encoding proteins involved in cell wall metabolism significantly increased in R3 with respect to peach at harvest, while six showed no modification or even decreased. In contrast, after HT, fruit maintained their firmness, exhibiting low PpACO1 level and significant lower levels of the twelve cell wall-modifying genes than in R3. Differential proteomic analysis of apoplastic proteins during softening and after HT revealed a significant decrease of DUF642 proteins after HT; as well as an increase of glyceraldehyde-3-phosphate dehydrogenase (GAPC) after softening. The presence of GAPC in the peach extracellular matrix was further confirmed by in situ immunolocalization and transient expression in tomato fruit. Though further studies are required to establish the function of DUF642 and GAPC in the apoplast, this study contributes to a deeper understanding of the events during peach softening and after HT with a focus on this key compartment. PMID:22902552

  8. Extracellularly activatable nanocarriers for drug delivery to tumors

    PubMed Central

    Yeo, Yoon

    2014-01-01

    Introduction Nanoparticles for drug delivery to tumors need to satisfy two seemingly conflicting requirements: they should maintain physical and chemical stability during circulation and be able to interact with target cells and release drug at desired locations with no substantial delay. Unique microenvironment of tumors and externally-applied stimuli provide a useful means to maintain a balance between the two requirements. Areas covered We discuss nanoparticulate drug carriers that maintain stable structures in normal conditions but respond to stimuli for spatiotemporal control of drug delivery. We first define the desired effects of extracellular activation of nanoparticles and frequently used stimuli and review examples of extracellularly activated nanoparticles. Expert opinion Several challenges remain in developing extracellularly activatable nanoparticles. First, some of the stimuli-responsive NPs undergo incremental changes in response to stimuli, losing circulation stability. Second, the applicability of stimuli in clinical settings is limited due to the occasional occurrence of the activating conditions in normal tissues. Third, the construction of stimuli-responsive nanoparticles involves increasing complexity in nanoparticle structure and production methods. Future efforts are needed to identify new targeting conditions and increase the contrast between activated and non-activated NPs, while keeping the production methods simple and scalable. PMID:24950343

  9. Microbial communities, extracellular proteomics and polysaccharides: A comparative investigation on biofilm and suspended sludge.

    PubMed

    Zhang, Peng; Guo, Jin-Song; Shen, Yu; Yan, Peng; Chen, You-Peng; Wang, Han; Yang, Ji-Xiang; Fang, Fang; Li, Chun

    2015-08-01

    Biofilm and suspended sludge (S-sludge) floc exhibit distinct physicochemical properties and process performances in an integrated fixed-film and suspended growth sequencing batch reactor. However, the mechanisms of governing these differences between the two aggregates were unknown. Current work evaluated the diversity of morphologies, microbial communities, extracellular proteins and polysaccharides between the biofilm and S-sludge. Contrast to biofilm, the denitrification was much more extensive performed in S-sludge. Furthermore, many microbial cells in the biofilm acted as the backbone of aggregates and maintained the structure stability. An extracellular protein observed only in the biofilm can promote the cell adhesion. In contrast, more extracellular proteins related to catalytic activity in the S-sludge could decrease the compactness of floc. In addition, the monosaccharide compositions from the two aggregates were various. These results could elucidate how the diversities of architecture and biochemical process between the two aggregates occurred. PMID:25919933

  10. Extracellular HSPs: The Complicated Roles of Extracellular HSPs in Immunity

    PubMed Central

    Calderwood, Stuart K.; Gong, Jianlin; Murshid, Ayesha

    2016-01-01

    Extracellular heat-shock proteins (HSPs) interact with the immune system in a very complex manner. Many such HSPs exert powerful effects on the immune response, playing both stimulatory and regulatory roles. However, the influence of the HSPs on immunity appears to be positive or negative in nature – rarely neutral. Thus, the HSPs can act as dominant antigens and can comprise key components of antitumor vaccines. They can also function as powerful immunoregulatory agents and, as such, are employed to treat inflammatory diseases or to extend the lifespan of tissue transplants. Small modifications in the cellular milieu have been shown to flip the allegiances of HSPs from immunoregulatory agents toward a potent inflammatory alignment. These mutable properties of HSPs may be related to the ability of these proteins to interact with multiple receptors often with mutually confounding properties in immune cells. Therefore, understanding the complex immune properties of HSPs may help us to harness their potential in treatment of a range of conditions. PMID:27199984

  11. Contrast Intravasation During Hysterosalpingography

    PubMed Central

    Bhoil, Rohit; Sood, Dinesh; Sharma, Tanupriya; Sood, Shilpa; Sharma, Jiten; Kumar, Nitesh; Ahluwalia, Ajay; Parekh, Dipen; Mistry, Kewal A.; Sood, Saurav

    2016-01-01

    Summary Hysterosalpingography is an imaging method to evaluate the endometrial and uterine morphology and fallopian tube patency. Contrast intravasation implies backflow of injected contrast into the adjoining vessels mostly the veins and may be related to factors altering endometrial vascularity and permeability. Radiologists and gynaecologists should be well acquainted with the technique of hysterosalpingography, its interpretation, and intravasation of contrast agents for safer procedure and to minimize the associated complications. PMID:27279925

  12. Extracellular Matrix Abnormalities in Schizophrenia

    PubMed Central

    Berretta, Sabina

    2011-01-01

    Emerging evidence points to the involvement of the brain extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Abnormalities affecting several ECM components, including Reelin and chondroitin sulfate proteoglycans (CSPGs), have been described in subjects with this disease. Solid evidence supports the involvement of Reelin, an ECM glycoprotein involved in corticogenesis, synaptic functions and glutamate NMDA receptor regulation, expressed prevalently in distinct populations of GABAergic neurons, which secrete it into the ECM. Marked changes of Reelin expression in SZ have typically been reported in association with GABA-related abnormalities in subjects with SZ and bipolar disorder. Recent findings from our group point to substantial abnormalities affecting CSPGs, a main ECM component, in the amygdala and entorhinal cortex of subjects with schizophrenia, but not bipolar disorder. Striking increases of glial cells expressing CSPGs were accompanied by reductions of perineuronal nets, CSPG- and Reelin-enriched ECM aggregates enveloping distinct neuronal populations. CSPGs developmental and adult functions, including neuronal migration, axon guidance, synaptic and neurotransmission regulation are highly relevant to the pathophysiology of SZ. Together with reports of anomalies affecting several other ECM components, these findings point to the ECM as a key component of the pathology of SZ. We propose that ECM abnormalities may contribute to several aspects of the pathophysiology of this disease, including disrupted connectivity and neuronal migration, synaptic anomalies and altered GABAergic, glutamatergic and dopaminergic neurotransmission. PMID:21856318

  13. Extracellular vesicles in parasitic diseases

    PubMed Central

    Marcilla, Antonio; Martin-Jaular, Lorena; Trelis, Maria; de Menezes-Neto, Armando; Osuna, Antonio; Bernal, Dolores; Fernandez-Becerra, Carmen; Almeida, Igor C.; del Portillo, Hernando A.

    2014-01-01

    Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens. PMID:25536932

  14. Extracellular Control of Limb Regeneration

    NASA Astrophysics Data System (ADS)

    Calve, S.; Simon, H.-G.

    Adult newts possess the ability to completely regenerate organs and appendages. Immediately after limb loss, the extracellular matrix (ECM) undergoes dramatic changes that may provide mechanical and biochemical cues to guide the formation of the blastema, which is comprised of uncommitted stem-like cells that proliferate to replace the lost structure. Skeletal muscle is a known reservoir for blastema cells but the mechanism by which it contributes progenitor cells is still unclear. To create physiologically relevant culture conditions for the testing of primary newt muscle cells in vitro, the spatio-temporal distribution of ECM components and the mechanical properties of newt muscle were analyzed. Tenascin-C and hyaluronic acid (HA) were found to be dramatically upregulated in the amputated limb and were co-expressed around regenerating skeletal muscle. The transverse stiffness of muscle measured in situ was used as a guide to generate silicone-based substrates of physiological stiffness. Culturing newt muscle cells under different conditions revealed that the cells are sensitive to both matrix coating and substrate stiffness: Myoblasts on HA-coated soft substrates display a rounded morphology and become more elongated as the stiffness of the substrate increases. Coating of soft substrates with matrigel or fibronectin enhanced cell spreading and eventual cell fusion.

  15. The extracellular matrix in hepatic regeneration.

    PubMed

    Martinez-Hernandez, A; Amenta, P S

    1995-11-01

    After partial hepatectomy, as a consequence of hepatocyte proliferation, cell clusters containing 10-14 hepatocytes are formed. These clusters are devoid of sinusoids and extracellular matrix; therefore, many hepatocytes are two to three cells removed from the vascular spaces. Four days after hepatectomy, Ito cells send delicate cell processes between the hepatocytes in the clusters. This "invasion" of the clusters coincides with the activation in Ito cells of genes encoding for several laminin chains. The penetration of Ito cells into the clusters is followed by fenestrated endothelial cells, and in this manner the normal hepatocyte vascular relationship is restored. As soon as the normal vascular structure is reestablished, the laminin genes are turned off. This chain of events is similar to the one taking place during hepatogenesis when continuous capillaries are converted into sinusoids. This similarity in hepatogenesis and regeneration suggests that the secreted laminin chains may be signals for the vascularization of the clusters by fenestrated sinusoids. During this process neither entactin nor laminin alpha chains are secreted. The vascularization of the regenerating clusters contrasts sharply to the vascularization of cirrhotic nodules. In the latter case, entactin and perhaps laminin alpha 1 chains are secreted, and the final result is the formation of basement membranes and continuous capillaries rather than fenestrated sinusoids. We suggest that entactin and specific laminin chains play a crucial role in determining the outcome of hepatic injury. Definition of the roles of entactin and laminin chains in vascularization and modulation of the endothelial phenotype will not only elucidate important aspects of regeneration, but may provide a better understanding of cirrhosis and even suggest therapeutic approaches. PMID:7589981

  16. Extracellular acid proteases from Neurospora crassa.

    PubMed Central

    Lindberg, R A; Rhodes, W G; Eirich, L D; Drucker, H

    1982-01-01

    Three electrophoretically distinct acid proteases appear in culture filtrates of Neurospora crassa. Like the previously investigated alkaline and neutral proteases, these enzymes require induction by an exogenous protein. But in contrast to alkaline and neutral proteases, which are synthesized and secreted in response to limitation of any one of three nutrilites (carbon, nitrogen or sulfur), extracellular elaboration of the acidic proteases is more specifically a function of the missing nutrilite. AcP, a pepstatin-inhibitable enzyme similar to other fungal carboxyl proteases, was secreted in large amounts when protein was the sole source of sulfur. Only trace amounts were secreted when nitrogen was the limiting nutrilite, and it was undetectable under carbon limitation. M-1, a chelator-sensitive protease, was secreted when nitrogen or carbon was limiting. M-2, also chelator sensitive, was present only when nitrogen or sulfur was limiting. The evidence presented suggests that the differential regulation of the acidic proteases with respect to nutrilite deprivation may not occur at the level of transcription. AcP and M-2 were partially purified from nitrogen-derepressed cultures by ultrafiltration, cation-exchange chromatography, and gel filtration. AcP has a molecular weight of 66,000, is stable from pH 3.0 to 6.0, and is optimally active toward bovine serum albumin at pH 4.0. M-2 has a molecular weight of 18,000, is stable from pH 1.6 to 5.5, and has optimal activity at pH 4.5. Images PMID:6210687

  17. Extracellular acid proteases from Neurospora crassa.

    PubMed

    Lindberg, R A; Rhodes, W G; Eirich, L D; Drucker, H

    1982-06-01

    Three electrophoretically distinct acid proteases appear in culture filtrates of Neurospora crassa. Like the previously investigated alkaline and neutral proteases, these enzymes require induction by an exogenous protein. But in contrast to alkaline and neutral proteases, which are synthesized and secreted in response to limitation of any one of three nutrilites (carbon, nitrogen or sulfur), extracellular elaboration of the acidic proteases is more specifically a function of the missing nutrilite. AcP, a pepstatin-inhibitable enzyme similar to other fungal carboxyl proteases, was secreted in large amounts when protein was the sole source of sulfur. Only trace amounts were secreted when nitrogen was the limiting nutrilite, and it was undetectable under carbon limitation. M-1, a chelator-sensitive protease, was secreted when nitrogen or carbon was limiting. M-2, also chelator sensitive, was present only when nitrogen or sulfur was limiting. The evidence presented suggests that the differential regulation of the acidic proteases with respect to nutrilite deprivation may not occur at the level of transcription. AcP and M-2 were partially purified from nitrogen-derepressed cultures by ultrafiltration, cation-exchange chromatography, and gel filtration. AcP has a molecular weight of 66,000, is stable from pH 3.0 to 6.0, and is optimally active toward bovine serum albumin at pH 4.0. M-2 has a molecular weight of 18,000, is stable from pH 1.6 to 5.5, and has optimal activity at pH 4.5. PMID:6210687

  18. Extracellular acid proteases from Neurospora crassa

    SciTech Connect

    Lindberg, R.A.; Rhodes, W.G.; Eirich, L.D.; Drucker, H.

    1982-06-01

    Three electrophoretically distinct acid proteases appear in culture filtrates of Neurospora crassa. Like the previously investigated alkaline and neutral proteases, these enzymes require induction by an exogenous protein. But in contrast to alkaline and neutral proteases, which are synthesized and secreted in response to limitation of any one of three nutrilites (carbon, nitrogen or sulfur), extracellular elaboration of the acidic proteases is more specifically a function of the missing nutrilite. AcP, a pepstatin-inhibitable enzyme similar to other fungal carboxyl proteases, was secreted in large amounts when protein was the sole source of sulfur. Only trace amounts were secreted when nitrogen was the limiting nutrilite, and it was undetectable under carbon limitation. M-1, a chelator-sensitive protease, was secreted when nitrogen or carbon was limiting. M-2, also chelator sensitive, was present only when nitrogen or sulfur was limiting. The evidence presented suggests that the differential regulation of the acidic proteases with respect to nutrilite deprivation may not occur at the level of transcription. AcP and M-2 were partially purified from nitrogen-derepressed cultures by ultrafiltration, cation-exchange chromatography, and gel filtration. AcP has a molecular weight of 66,000, is stable from pH 3.0 to 6.0, and is optimally active toward bovine serum albumin at pH 4.0. M-2 has a molecular weight of 18,000, is stable from pH 1.6 to 5.5, and has optimal activity at pH 4.5.

  19. Toward Critical Contrastive Rhetoric

    ERIC Educational Resources Information Center

    Kubota, Ryuko; Lehner, Al

    2004-01-01

    A traditional approach to contrastive rhetoric has emphasized cultural difference in rhetorical patterns among various languages. Despite its laudable pedagogical intentions to raise teachers' and students' cultural and rhetorical awareness in second language writing, traditional contrastive rhetoric has perpetuated static binaries between English…

  20. Protective Effects of Repetitive Injections of Radiographic Contrast Media on the Subsequent Tolerance to Ischemia in the Isolated Rat Heart

    SciTech Connect

    Falck, Geir; Bruvold, Morten; Schjott, Jan; Jynge, Per

    2000-11-15

    Purpose: Despite detailed knowledge of the effects of X-ray contrast media on cardiac function, no studies have examined the effect of contrast media injections on the subsequent tolerance to ischemia in the heart.Methods: Isolated perfused rat hearts were exposed to repetitive injections of iohexol, iodixanol, or ioxaglate before 30 min of global ischemia and 120 min of reperfusion. These groups were compared with control (no pretreatment) and ischemic preconditioning known to reduce infarct size. Physiologic variables and infarct size were measured. Results: Pretreatment with iodixanol reduced infarct size significantly compared with control and thus afforded protection against ischemia. Injections with iohexol and ioxaglate reduced infarct size, although not significantly, compared with control.Conclusion: Pretreatment of the isolated rat heart with commonly used contrast media enhances the cardiac tolerance to subsequent ischemia. The mechanism behind this protective effect could not be determined, but could involve stretching of the heart and/or generation of nitric oxide.

  1. Extracellular vesicles as emerging intercellular communicasomes

    PubMed Central

    Yoon, Yae Jin; Kim, Oh Youn; Gho, Yong Song

    2014-01-01

    All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions. [BMB Reports 2014; 47(10): 531-539] PMID:25104400

  2. Proteomics of extracellular vesicles: Exosomes and ectosomes.

    PubMed

    Choi, Dong-Sic; Kim, Dae-Kyum; Kim, Yoon-Keun; Gho, Yong Song

    2015-01-01

    Almost all bacteria, archaea, and eukaryotic cells shed extracellular vesicles either constitutively or in a regulated manner. These nanosized membrane vesicles are spherical, bilayered proteolipids that harbor specific subsets of proteins, DNAs, RNAs, and lipids. Recent research has facilitated conceptual advancements in this emerging field that indicate that extracellular vesicles act as intercellular communicasomes by transferring signals to their target cell via surface ligands and delivering receptors and functional molecules. Recent progress in mass spectrometry-based proteomic analyses of mammalian extracellular vesicles derived from diverse cell types and body fluids has resulted in the identification of several thousand vesicular proteins that provide us with essential clues to the molecular mechanisms involved in vesicle cargo sorting and biogenesis. Furthermore, cell-type- or disease-specific vesicular proteins help us to understand the pathophysiological functions of extracellular vesicles and contribute to the discovery of diagnostic and therapeutic target proteins. This review focuses on the high-throughput mass spectrometry-based proteomic analyses of mammalian extracellular vesicles (i.e., exosomes and ectosomes), EVpedia (a free web-based integrated database of high-throughput data for systematic analyses of extracellular vesicles; http://evpedia.info), and the intravesicular protein-protein interaction network analyses of mammalian extracellular vesicles. The goal of this article is to encourage further studies to construct a comprehensive proteome database for extracellular vesicles that will help us to not only decode the biogenesis and cargo-sorting mechanisms during vesicle formation but also elucidate the pathophysiological roles of these complex extracellular organelles. PMID:24421117

  3. Illuminating the physiology of extracellular vesicles.

    PubMed

    Choi, Hongyoon; Lee, Dong Soo

    2016-01-01

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for tracking and imaging extracellular vesicles in vivo and critically discuss their systemic distribution, targeting, and kinetics based on up-to-date evidence in the literature. PMID:27084088

  4. Heterologous production of death ligands' and death receptors' extracellular domains: structural features and efficient systems.

    PubMed

    Muraki, Michiro

    2012-08-01

    The extracellular domains of death ligands and those of death receptors are closely related to many serious human diseases through the initiation of apoptosis. Recombinant production of the extracellular domains has been investigated due to demand for a large amount of purified samples, which are a prerequisite for their biochemical characterization and constitute the fundamentals of medical applications. This review focuses on the recombinant production of extracellular domains of the major members of death ligand and death receptor families using non-mammalian expression systems with an emphasis on Fas ligand and Fas receptor. In contrast to the efficient production of the functional extracellular domains of TRAIL, TNFα and LTα by intracellular expression systems using Escherichia coli or Pichia pastoris, that of Fas ligand requires the secretory expression systems using P. pastoris or Dictyostelium discoideum, and the productivity in P. pastoris was largely dependent on tag sequence, potential N-glycosylation site and expressed protein region. On the other hand, the exploitation of insect cell systems is generally useful for the preparation of functional extracellular domains of death receptors containing many disulfide bridges in the absence of extended secondary structure, and a Bombyx mori larvae secretion system presented a superior productivity for human Fas receptor extracellular domain. Based on the results obtained so far, further efforts should be devoted to the artificial control of death ligand - death receptor interactions in order to make a contribution to medicine, represented by the development of novel biopharmaceuticals. PMID:22762186

  5. Extracellular melanogenesis inhibitory activity and the structure-activity relationships of ugonins from Helminthostachys zeylanica roots.

    PubMed

    Yamauchi, Kosei; Mitsunaga, Tohru; Itakura, Yuki; Batubara, Irmanida

    2015-07-01

    Ugonin J, K, and L, which are luteolin derivatives, were isolated from Helminthostachys zeylanica roots by a series of chromatographic separations of a 50% ethanol/water extract. They were identified using nuclear magnetic resonance (NMR), ultraviolet (UV) spectra, and ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC-TOF-MS). In this study, the intra and extracellular melanogenic activity of the ugonins were determined using B16 melanoma cells. The results showed that ugonin J at 12.5, 25, and 50μM reduced extracellular melanin contents to 75, 16, and 14%, respectively, compared to the control. This indicates that ugonin J showed a stronger activity than arbutin, used as the positive control. Moreover, ugonin K showed a more potent inhibition with 19, 8, and 9% extracellular melanin reduction at the same concentrations, than that shown by ugonin J. In contrast, ugonin L did not inhibit intra- or extracellular melanogenic activity. Furthermore, in order to investigate the structure-activity relationships of the ugonins, the intra- and extracellular melanogenic activity of luteolin, methylluteolin, quercetin, eriodictyol, apigenin, and chrysin were determined. Consequently, it was suggested that the catechol and flavone skeleton of ugonin K is essential for the extracellular melanogenic inhibitory activity, and the low polarity substituent groups on the A ring of ugonin K may increase the activity. PMID:25979512

  6. Pre-LTP requires extracellular signal-regulated kinase in the ACC.

    PubMed

    Yamanaka, Manabu; Tian, Zhen; Darvish-Ghane, Soroush; Zhuo, Min

    2016-02-01

    The extracellular signal-regulated kinase is an important protein kinase for cortical plasticity. Long-term potentiation in the anterior cingulate cortex is believed to play important roles in chronic pain, fear, and anxiety. Previous studies of extracellular signal-regulated kinase are mainly focused on postsynaptic form of long-term potentiation (post-long-term potentiation). Little is known about the relationship between extracellular signal-regulated kinase and presynaptic long-term potentiation (pre-long-term potentiation) in cortical synapses. In this study, we examined whether pre-long-term potentiation in the anterior cingulate cortex requires the activation of presynaptic extracellular signal-regulated kinase. We found that p42/p44 mitogen-activated protein kinase inhibitors, PD98059 and U0126, suppressed the induction of pre-long-term potentiation. By contrast, these inhibitors did not affect the maintenance of pre-long-term potentiation. Using pharmacological inhibitors, we found that pre-long-term potentiation recorded for 1 h did not require transcriptional or translational processes. Our results strongly indicate that the activation of presynaptic extracellular signal-regulated kinase is required for the induction of pre-long-term potentiation, and this involvement may explain the contribution of extracellular signal-regulated kinase to mood disorders. PMID:27178245

  7. Pre-LTP requires extracellular signal-regulated kinase in the ACC

    PubMed Central

    Yamanaka, Manabu; Tian, Zhen; Darvish-Ghane, Soroush

    2016-01-01

    The extracellular signal-regulated kinase is an important protein kinase for cortical plasticity. Long-term potentiation in the anterior cingulate cortex is believed to play important roles in chronic pain, fear, and anxiety. Previous studies of extracellular signal-regulated kinase are mainly focused on postsynaptic form of long-term potentiation (post-long-term potentiation). Little is known about the relationship between extracellular signal-regulated kinase and presynaptic long-term potentiation (pre-long-term potentiation) in cortical synapses. In this study, we examined whether pre-long-term potentiation in the anterior cingulate cortex requires the activation of presynaptic extracellular signal-regulated kinase. We found that p42/p44 mitogen-activated protein kinase inhibitors, PD98059 and U0126, suppressed the induction of pre-long-term potentiation. By contrast, these inhibitors did not affect the maintenance of pre-long-term potentiation. Using pharmacological inhibitors, we found that pre-long-term potentiation recorded for 1 h did not require transcriptional or translational processes. Our results strongly indicate that the activation of presynaptic extracellular signal-regulated kinase is required for the induction of pre-long-term potentiation, and this involvement may explain the contribution of extracellular signal-regulated kinase to mood disorders. PMID:27178245

  8. Compressive phase contrast tomography

    NASA Astrophysics Data System (ADS)

    Maia, F.; MacDowell, A.; Marchesini, S.; Padmore, H. A.; Parkinson, D. Y.; Pien, J.; Schirotzek, A.; Yang, C.

    2010-08-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  9. Compressive Phase Contrast Tomography

    SciTech Connect

    Maia, Filipe; MacDowell, Alastair; Marchesini, Stefano; Padmore, Howard A.; Parkinson, Dula Y.; Pien, Jack; Schirotzek, Andre; Yang, Chao

    2010-09-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  10. Characterization of Extracellular Chitinolytic Activity in Biofilms

    SciTech Connect

    Baty, Ace M.; Diwu, Zhenjun; Dunham, Glen C.; Eastburn, Callie; Geesey, Gill G.; Goodman, Amanda; Suci, Peter; Techkarnjanaruk, Somkiet

    2001-05-01

    It is common for bacteria to produce extracellular enzymes having some form of degradative activity. In some cases these enzymes serve to protect cells from antagonistic substances, or to convert a large and/or insoluble biopolymer to an assimilable nutrient source. In some cases the physiological benefit to the bacterium is not entirely evident. Extracellular enzymes may be membrane bound, but in many cases they are released into the surrounding medium. It has been shown that these relatively large molecules become immobilized in the extracellular polymeric matrix in which cells in flocs and biofilms are embedded. Most proteins adsorb irreversibly to substrata having a variety of surface chemistries, and transport by convection is reduced near any solid surface, regardless of the flow regimen in the bulk liquid. Thus, extracellular enzymes have a tendency to become an integral and significant component of the biofilm/substratum microenvironment, influencing cell physiology and biofilm ecology.

  11. The extracellular RNA complement of Escherichia coli

    PubMed Central

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-01

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. PMID:25611733

  12. Modeling Extracellular Field Potentials and the Frequency-Filtering Properties of Extracellular Space

    PubMed Central

    Bédard, Claude; Kröger, Helmut; Destexhe, Alain

    2004-01-01

    Extracellular local field potentials are usually modeled as arising from a set of current sources embedded in a homogeneous extracellular medium. Although this formalism can successfully model several properties of extracellular local field potentials, it does not account for their frequency-dependent attenuation with distance, a property essential to correctly model extracellular spikes. Here we derive expressions for the extracellular potential that include this frequency-dependent attenuation. We first show that, if the extracellular conductivity is nonhomogeneous, there is induction of nonhomogeneous charge densities that may result in a low-pass filter. We next derive a simplified model consisting of a punctual (or spherical) current source with spherically symmetric conductivity/permittivity gradients around the source. We analyze the effect of different radial profiles of conductivity and permittivity on the frequency-filtering behavior of this model. We show that this simple model generally displays low-pass filtering behavior, in which fast electrical events (such as Na+-mediated action potentials) attenuate very steeply with distance, whereas slower (K+-mediated) events propagate over larger distances in extracellular space, in qualitative agreement with experimental observations. This simple model can be used to obtain frequency-dependent extracellular field potentials without taking into account explicitly the complex folding of extracellular space. PMID:14990509

  13. All-trans retinoic acid and extracellular Ca2+ differentially influence extracellular matrix production by human skin in organ culture.

    PubMed Central

    Varani, J.; Larson, B. K.; Perone, P.; Inman, D. R.; Fligiel, S. E.; Voorhees, J. J.

    1993-01-01

    Two-mm full-thickness punch biopsies of human skin were placed in organ culture in a serum-free, growth factor-free basal medium. Under conditions of low extracellular Ca2+ (0.15 mmol/L), the tissue quickly degenerated. However, degeneration was prevented when the extracellular Ca2+ concentration was increased to 1.4 mmol/L. The tissue remained histologically normal in appearance and biochemically active for up to 12 days. The addition of 3 mumol/L all-trans retinoic acid (RA) to the low-Ca2+ culture medium also prevented tissue degeneration. However, in contrast to what was seen in the presence of 1.4 mmol/L Ca2+, epidermal differentiation did not occur normally in the presence of RA. Rather, the upper layers of the epidermis routinely separated from the underlying basal cells. Fibronectin production by the organ cultured skin was examined. Biosynthetic labeling/immunoprecipitation studies demonstrated that incubation of the tissue in basal medium containing 1.4 mmol/L Ca2+ resulted in a high level of fibronectin production relative to the amount produced in basal medium containing 0.15 mmol/L Ca2+. In contrast, the addition of 3 mumol/L RA to the low Ca2+ basal medium did not stimulate fibronectin production. Similar results were observed in enzyme-linked immunosorbent assays where the addition of Ca2+ to a final concentration of 1.4 mmol/L stimulated fibronectin and thrombospondin production whereas RA (3 mumol/L) did not. Although RA by itself failed to stimulate extracellular matrix production, the addition of 3 mumol/L RA to basal medium containing 1.4 mmol/L Ca2+ led to a further increase in fibronectin production over that seen in the presence of 1.4 mmol/L Ca2+ alone. Taken together, these data indicate that although either 1.4 mmol/L Ca2+ or 3 mumol/L RA facilitates survival of organ-cultured skin in basal medium, they have very different effects on extracellular matrix production. This supports the view, based on histological appearance, that the two

  14. Psychophysical contrast calibration

    PubMed Central

    To, Long; Woods, Russell L; Goldstein, Robert B; Peli, Eli

    2013-01-01

    Electronic displays and computer systems offer numerous advantages for clinical vision testing. Laboratory and clinical measurements of various functions and in particular of (letter) contrast sensitivity require accurately calibrated display contrast. In the laboratory this is achieved using expensive light meters. We developed and evaluated a novel method that uses only psychophysical responses of a person with normal vision to calibrate the luminance contrast of displays for experimental and clinical applications. Our method combines psychophysical techniques (1) for detection (and thus elimination or reduction) of display saturating nonlinearities; (2) for luminance (gamma function) estimation and linearization without use of a photometer; and (3) to measure without a photometer the luminance ratios of the display’s three color channels that are used in a bit-stealing procedure to expand the luminance resolution of the display. Using a photometer we verified that the calibration achieved with this procedure is accurate for both LCD and CRT displays enabling testing of letter contrast sensitivity to 0.5%. Our visual calibration procedure enables clinical, internet and home implementation and calibration verification of electronic contrast testing. PMID:23643843

  15. Aspiration of Barium Contrast

    PubMed Central

    Fuentes Santos, Cristina; Steen, Bárbara

    2014-01-01

    The aspiration of barium contrast is a rare complication that may occur during studies of the digestive tract. Barium is an inert material that can cause anywhere from an asymptomatic mechanical obstruction to serious symptoms of respiratory distress that can result in patient death. We present the case of a 79-year-old male patient in whom we observed the presence of contrast medium residue in the lung parenchyma as an incidental finding during hospitalization. When the patient's medical file was reviewed, images were found of a barium swallow study that the patient had undergone months earlier, and we were able to observe the exact moment of the aspiration of the contrast material. The patient had been asymptomatic since the test. PMID:25309769

  16. Gadofullerene MRI contrast agents.

    PubMed

    Bolskar, Robert D

    2008-04-01

    A promising new class of MRI contrast-enhancing agents with high relaxivities is based on gadolinium-containing metallofullerenes, which are also termed gadofullerenes. Detailed study of the water-proton relaxivity properties and intermolecular nanoclustering behavior of gadofullerene derivatives has revealed valuable information about their relaxivity mechanisms and given a deeper understanding of this new class of paramagnetic contrast agent. Here, the latest findings on water-solubilized gadofullerene materials and how these findings relate to their future applications in MRI are reviewed and discussed. PMID:18373426

  17. Contrasting intra- and extracellular distribution of catalytic ferrous iron in ovalbumin-induced peritonitis.

    PubMed

    Ito, Fumiya; Nishiyama, Takahiro; Shi, Lei; Mori, Masahiko; Hirayama, Tasuku; Nagasawa, Hideko; Yasui, Hiroyuki; Toyokuni, Shinya

    2016-08-01

    Iron is an essential nutrient for every type of life on earth. However, excess iron is cytotoxic and can lead to an increased cancer risk in humans. Catalytic ferrous iron [Fe(II)] is an initiator of the Fenton reaction, which causes oxidative stress by generating hydroxyl radicals. Recently, it became possible to localize catalytic Fe(II) in situ with a turn-on fluorescent probe, RhoNox-1. Here, we screened each organ/cell of rats to globally evaluate the distribution of catalytic Fe(II) and found that eosinophils showed the highest abundance. In various cells, lysosomes were the major organelle, sharing ∼40-80% of RhoNox-1 fluorescence. We then used an ovalbumin-induced allergic peritonitis model to study the dynamics of catalytic Fe(II). Peritoneal lavage revealed that the total iron contents per cell were significantly decreased, whereas an increase in the number of inflammatory cells (macrophages, neutrophils, eosinophils and lymphocytes) resulted in an increased total iron content of the peritoneal inflammatory cells. Notably, macrophages, eosinophils and neutrophils exhibited significantly increased catalytic Fe(II) with increased DMT1 expression and decreased ferritin expression, though catalytic Fe(II) was significantly decreased in the peritoneal lavage fluid. In conclusion, catalytic Fe(II) in situ more directly reflects cellular activity and the accompanying pathology than total iron does. PMID:27262439

  18. Proteases decode the extracellular matrix cryptome.

    PubMed

    Ricard-Blum, Sylvie; Vallet, Sylvain D

    2016-03-01

    The extracellular matrix is comprised of 1100 core-matrisome and matrisome-associated proteins and of glycosaminoglycans. This structural scaffold contributes to the organization and mechanical properties of tissues and modulates cell behavior. The extracellular matrix is dynamic and undergoes constant remodeling, which leads to diseases if uncontrolled. Bioactive fragments, called matricryptins, are released from the extracellular proteins by limited proteolysis and have biological activities on their own. They regulate numerous physiological and pathological processes such as angiogenesis, cancer, diabetes, wound healing, fibrosis and infectious diseases and either improve or worsen the course of diseases depending on the matricryptins and on the molecular and biological contexts. Several protease families release matricryptins from core-matrisome and matrisome-associated proteins both in vitro and in vivo. The major proteases, which decrypt the extracellular matrix, are zinc metalloproteinases of the metzincin superfamily (matrixins, adamalysins and astacins), cysteine proteinases and serine proteases. Some matricryptins act as enzyme inhibitors, further connecting protease and matricryptin fates and providing intricate regulation of major physiopathological processes such as angiogenesis and tumorigenesis. They strengthen the role of the extracellular matrix as a key player in tissue failure and core-matrisome and matrisome-associated proteins as important therapeutic targets. PMID:26382969

  19. Phonation in Tonal Contrasts

    ERIC Educational Resources Information Center

    Kuang, Jianjing

    2013-01-01

    Phonation is used in many tonal languages, but how it should be incorporated into tonal systems is not well understood. The purpose of this dissertation thus is to examine the role of phonation in tonal contrasts, and to investigate how phonation and pitch interact in the tonal space. This dissertation presents close studies of tonal contrasts…

  20. Flashing anomalous color contrast.

    PubMed

    Pinna, Baingio; Spillmann, Lothar; Werner, John S

    2004-01-01

    A new visual phenomenon that we call flashing anomalous color contrast is described. This phenomenon arises from the interaction between a gray central disk and a chromatic annulus surrounded by black radial lines. In an array of such figures, the central gray disk no longer appears gray, but assumes a color complementary to that of the surrounding annulus. The induced color appears: (1) vivid and saturated; (2) self-luminous, not a surface property; (3) flashing with eye or stimulus movement; (4) floating out of its confines; and (5) stronger in extrafoveal than in foveal vision. The strength of the effect depends on the number, length, width, and luminance contrast of the radial lines. The results suggest that the chromatic ring bounding the inner tips of the black radial lines induces simultaneous color contrast, whereas the radial lines elicit, in conjunction with the gray disk and the ring, the flashing, vividness, and high saturation of the effect. The stimulus properties inducing the illusion suggest that flashing anomalous color contrast may be based on asynchronous interactions among multiple visual pathways. PMID:15518215

  1. Hadamard speckle contrast reduction

    NASA Astrophysics Data System (ADS)

    Trisnadi, Jahja I.

    2004-01-01

    The condition for a diffuser to produce the maximum speckle contrast reduction with the minimum number of distinct phase patterns is derived. A binary realization of this optimum diffuser is obtained by mapping the rows or columns of a Hadamard matrix to the phase patterns. The method is experimentally verified in the Grating Light Valve laser projection display.

  2. Ionic contrast terahertz near field imaging

    NASA Astrophysics Data System (ADS)

    Gallot, Guilhem

    2013-09-01

    We demonstrated the direct and noninvasive imaging of functional neurons by Ionic Contrast Terahertz (ICT) near-field microscopy. This technique provides quantitative measurements of ionic concentrations in both the intracellular and extracellular compartments and opens the way to direct noninvasive imaging of neurons during electrical, toxin, or thermal stresses. Furthermore, neuronal activity results from both a precise control of transient variations in ionic conductance and a much less studied water exchange between the extracellular matrix and the intraaxonal compartment. The developed ICT technique associated with a full three-dimensional simulation of the axon-aperture near-field system allows a precise measurement of the axon geometry and therefore the direct visualization of neuron swelling induced by temperature change or neurotoxin poisoning. We also developed Terahertz Attenuated Total Reflection (ATR) devices perfectly suited for studying cell layers. Inserted in a terahertz time-domain system, and using a high resistivity low loss silicon prism to couple the terahertz wave into the sample, the detection scheme is based on the relative differential spectral phase of two orthogonal polarizations. Biological sample imaging as well as subwavelength (λ/16) longitudinal resolution are demonstrated.

  3. Extracellular enzyme kinetics scale with resource availability

    USGS Publications Warehouse

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  4. Screening Actinomycetes for Extracellular Peroxidase Activity

    PubMed Central

    Mercer, D. K.; Iqbal, M.; Miller, P.; McCarthy, A. J.

    1996-01-01

    A diverse collection of actinomycete strains were screened for production of extracellular peroxidase activity by adapting a chemiluminescence analysis system developed for horseradish peroxidase-based enzyme-linked immunosorbent assay. Extracellular peroxidase activity was found to be common but quantitatively variable, and this rapid and sensitive screening system permitted identification of a small group of high-producing strains. A range of spectrophotometric assays were compared for the measurement of peroxidase activity in concentrated culture supernatants of two selected thermophilic streptomycetes. Of these, the peroxide-dependent oxidation of 2,4-dichlorophenol was identified as the most robust and reproducible assay for quantitative studies. PMID:16535344

  5. Contrast Enhanced MRI in the Diagnosis of HCC

    PubMed Central

    Niendorf, Eric; Spilseth, Benjamin; Wang, Xiao; Taylor, Andrew

    2015-01-01

    Hepatocellular carcinoma (HCC) is the 6th most common cancer worldwide. Imaging plays a critical role in HCC screening and diagnosis. Initial screening of patients at risk for HCC is performed with ultrasound. Confirmation of HCC can then be obtained by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), due to the relatively high specificity of both techniques. This article will focus on reviewing MRI techniques for imaging HCC, felt by many to be the exam of choice for HCC diagnosis. MRI relies heavily upon the use of gadolinium-based contrast agents and while primarily extracellular gadolinium-based contrast agents are used, there is an emerging role of hepatobiliary contrast agents in HCC imaging. The use of other non-contrast enhanced MRI techniques for assessing HCC will also be discussed and these MRI strategies will be reviewed in the context of the pathophysiology of HCC to help understand the MR imaging appearance of HCC. PMID:26854161

  6. Contrast agents in diagnostic imaging: Present and future.

    PubMed

    Caschera, Luca; Lazzara, Angelo; Piergallini, Lorenzo; Ricci, Domenico; Tuscano, Bruno; Vanzulli, Angelo

    2016-08-01

    Specific contrast agents have been developed for x ray examinations (mainly CT), sonography and Magnetic Resonance Imaging. Most of them are extracellular agents which create different enhancement on basis of different vascularization or on basis of different interstitial network in tissues, but some can be targeted to a particular cell line (e.g. hepatocyte). Microbubbles can be used as carrier for therapeutic drugs which can be released in specific targets under sonographic guidance, decreasing systemic toxicity and increasing therapeutic effect. Radiologists have to choose a particular contrast agent knowing its physical and chemical properties and the possibility of adverse reactions and balancing them with the clinical benefits of a more accurate diagnosis. As for any drug, contrast agents can cause adverse events, which are more frequent with Iodine based CA, but also with Gd based CA and even with sonographic contrast agents hypersensitivity reaction can occur. PMID:27168225

  7. Measuring contrast sensitivity

    PubMed Central

    Pelli, Denis G.; Bex, Peter

    2013-01-01

    Contrast sensitivity defines the threshold between the visible and invisible, which has obvious significance for basic and clinical vision science. Fechner's 1860 review reported that threshold contrast is 1% for a remarkably wide range of targets and conditions. While printed charts are still in use, computer testing is becoming more popular because it offers efficient adaptive measurement of threshold for a wide range of stimuli. Both basic and clinical studies usually want to know fundamental visual capability, regardless of the observer's subjective criterion. Criterion effects are minimized by the use of an objective task: multiple-alternative forced-choice detection or identification. Having many alternatives reduces the guessing rate, which makes each trial more informative, so fewer trials are needed. Finally, populations who may experience crowding or target confusion should be tested with one target at a time. PMID:23643905

  8. Chromatography: concepts and contrasts

    SciTech Connect

    Miller, J.M.

    1988-01-01

    As the author states in the Preface, this text attempts to provide a unified approach to chromatography (hence the title) by way of contrasting similarities and differences between gas chromatography (GC), column liquid chromatography (LC), and thin-layer chromatography (TLC). This book is also said to be pitched at an elementary level, suitable for most newcomers to the field (e.g., advanced undergraduates and beginning graduate students in the academic world, as well as bench-level chemists in industry).

  9. Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation.

    PubMed

    Schaffer, Jessica N; Norsworthy, Allison N; Sun, Tung-Tien; Pearson, Melanie M

    2016-04-19

    The catheter-associated uropathogenProteus mirabilisfrequently causes urinary stones, but little has been known about the initial stages of bladder colonization and stone formation. We found thatP. mirabilisrapidly invades the bladder urothelium, but generally fails to establish an intracellular niche. Instead, it forms extracellular clusters in the bladder lumen, which form foci of mineral deposition consistent with development of urinary stones. These clusters elicit a robust neutrophil response, and we present evidence of neutrophil extracellular trap generation during experimental urinary tract infection. We identified two virulence factors required for cluster development: urease, which is required for urolithiasis, and mannose-resistantProteus-like fimbriae. The extracellular cluster formation byP. mirabilisstands in direct contrast to uropathogenicEscherichia coli, which readily formed intracellular bacterial communities but not luminal clusters or urinary stones. We propose that extracellular clusters are a key mechanism ofP. mirabilissurvival and virulence in the bladder. PMID:27044107

  10. Stereopsis from contrast envelopes.

    PubMed

    Langley, K; Fleet, D J; Hibbard, P B

    1999-07-01

    We report two experiments concerning the site of the principal nonlinearity in second-order stereopsis. The first exploits the asymmetry in perceiving transparency with second-order stimuli found by Langley et al. (1998) (Proceedings of the Royal Society of London B, 265, 1837-1845) i.e. the product of a positive-valued contrast envelope and a mean-zero carrier grating can be seen transparently only when the disparities are consistent with the envelope appearing in front of the carrier. We measured the energy at the envelope frequencies that must be added in order to negate this asymmetry. We report that this amplitude can be predicted from the envelope sidebands and not from the magnitude of compressive pre-cortical nonlinearities measured by other researchers. In the second experiment, contrast threshold elevations were measured for the discrimination of envelope disparities following adaptation to sinusoidal gratings. It is reported that perception of the envelope's depth was affected most when the adapting grating was similar (in orientation and frequency) to the carrier, rather than to the contrast envelope. These results suggest that the principal nonlinearity in second-order stereopsis is cortical, occurring after orientation- and frequency-selective linear filtering. PMID:10367053

  11. Polychromatic diffraction contrast tomography

    SciTech Connect

    King, A.; Reischig, P.; Adrien, J.; Peetermans, S.; Ludwig, W.

    2014-11-15

    This tutorial review introduces the use of polychromatic radiation for 3D grain mapping using X-ray diffraction contrast tomography. The objective is to produce a 3D map of the grain shapes and orientations within a bulk, millimeter-sized polycrystalline sample. The use of polychromatic radiation enables the standard synchrotron X-ray technique to be applied in a wider range of contexts: 1) Using laboratory X-ray sources allows a much wider application of the diffraction contrast tomography technique. 2) Neutron sources allow large samples, or samples containing high Z elements to be studied. 3) Applied to synchrotron sources, smaller samples may be treated, or faster measurements may be possible. Challenges and particularities in the data acquisition and processing, and the limitations of the different variants, are discussed. - Highlights: • We present a tutorial review of polychromatic diffraction contrast tomography techniques. • The use of polychromatic radiation allows the standard synchrotron DCT technique to be extended to a range of other sources. • The characteristics and limitations of all variants of the techniques are derived, discussed and compared. • Examples using laboratory X-ray and cold neutron radiation are presented. • Suggestions for the future development of these techniques are presented.

  12. Successful management of contrast medium extravasation injury through stellate ganglion block and intra-arterial nitroglycerin.

    PubMed

    Lee, Chien-Ching; Chuang, Chia-Chun; Liou, Jing-Yang; Hsieh, Ying-Chou; Tsou, Mei-Yung; Chen, Kwok-Hon

    2011-09-01

    We describe the successful management of extravasation injury to the left hand by contrast medium with stellate ganglion block and intra-arterial nitroglycerin in a patient which befell during contrast-enhanced imaging. The incidence of contrast-medium extravasation injury is increasing because of the convenience and availability of contrast-enhanced imaging and ease of injection access. Extravasation of contrast medium may results in severe pain, erythema, cyanosis, and edema or even skin necrosis, which is largely related to the ionization, osmolarity, and volume of the contrast medium. The conservative treatment is often adequate in small amount extravasation, but if the extravasation is overwhelming further energetic management is mandatory. A 29-year-old man was brought to our emergency because of diffuse abdominal pain and he was arranged to receive intravenous contrast media enhanced abdominal computed tomography for diagnosis. Ruptured appendicitis with abscess formation was suspected; then the patient underwent emergent appendectomy and drainage of the abscess. However, severe swelling and cyanotic change that radiated from the intravenous catheter insertion site in every direction over the entire dorsum of the left hand were noted after the surgery. Contrast-medium extravasation injury was highly contemplated and a left stellate ganglion block was performed immediately for relief of symptoms. The consulting surgeon ruled out compartment syndrome, but advised emergent left upper limb arteriography, which revealed signs of vasospasm with high intravascular pressure of the left distal ulnar and radial arteries; thus nitroglycerin was injected into left distal ulnar and radial arteries for relief of vasospasm. The clinical symptoms were improved after the above managements and the patient was discharged 7 days later without any sequela. PMID:21982175

  13. Contact guidance induced organization of extracellular matrix.

    PubMed

    Manwaring, Michael E; Walsh, Jennifer F; Tresco, Patrick A

    2004-08-01

    The scarring response following injury to the central nervous system disrupts the anatomical organization of nervous tissue posing a barrier to the regeneration of axons. In the present study, using materials with nanometer level surface features we examined whether matrix organization could be controlled by engineering meningeal cell asymmetry. Following 5 days in culture, the organization of meningeal cells along with their cytoskeletal elements and extracellular matrix proteins was evaluated. Meningeal cell morphology was markedly affected by nanometer level substrate topography. Cell alignment increased with increasing surface roughness. In addition, linear arrays of extracellular matrix were expressed that appeared related to cellular orientation. When cultured on substrates with topographical features of less than 10 nm neither cells nor their extracellular matrix showed organizational asymmetry. However, as oriented surface roughness increased, cellular and matrix asymmetrical organization became more pronounced reaching a threshold at 345 nm. These results suggest that biomaterial surface topography or other methods of altering the orientation of cells may be used to engineer orientation into the secreted extracellular matrix and as such may be a potential strategy for developing organized cell-derived matrix as a bridging material for nerve repair or other regenerative applications. PMID:15020137

  14. Further characterization of Renibacterium salmoninarum extracellular products.

    PubMed

    Barton, T A; Bannister, L A; Griffiths, S G; Lynch, W H

    1997-10-01

    Renibacterium salmoninarum, the agent of bacterial kidney disease in salmonids, releases high concentrations of extracellular protein in tissues of infected fish. The extracellular protein consists almost entirely of a 57-kDa protein and derivatives of degradation and aggregation of the same molecule. The 57-kDa protein and its derivatives were fractionated into defined ranges of molecular mass. Separated fractions continued to produce degradation and aggregation products. One-dimensional electrophoretic separation of extracellular protein revealed a number of proteolytically active bands from > 100 to approximately 18 kDa associated with various 57-kDa protein derivatives in the different molecular mass fractions. Two-dimensional separation of extracellular protein showed that continued degradation and aggregation, similar both in location and behavior to some of the 57-kDa protein derivatives, was also displayed by the proteolytically active bands after their separation. Effects of reducing agents and sulfhydryl group proteinase inhibitors indicated a common mechanism for the proteolytically active polypeptides characteristic of a thiol proteinase. The results suggested that the 57-kDa protein and some of its derivatives undergo autolytic cleavage, releasing a proteolytically active polypeptide(s) of at least 18 kDa. Soluble polysaccharide-like material also was detected in extracellular products and tissue from infected fish. Antiserum to the polysaccharide-like material cross-reacted with O-polysaccharide of the fish pathogen Aeromonas salmonicida, suggesting some structural similarity between these polysaccharides. The polysaccharide and the proteolytic activity associated with the 57-kDa protein derivatives should be investigated with respect to the pathogenesis of R. salmoninarum infections. PMID:9480644

  15. Further characterization of Renibacterium salmoninarum extracellular products.

    PubMed Central

    Barton, T A; Bannister, L A; Griffiths, S G; Lynch, W H

    1997-01-01

    Renibacterium salmoninarum, the agent of bacterial kidney disease in salmonids, releases high concentrations of extracellular protein in tissues of infected fish. The extracellular protein consists almost entirely of a 57-kDa protein and derivatives of degradation and aggregation of the same molecule. The 57-kDa protein and its derivatives were fractionated into defined ranges of molecular mass. Separated fractions continued to produce degradation and aggregation products. One-dimensional electrophoretic separation of extracellular protein revealed a number of proteolytically active bands from > 100 to approximately 18 kDa associated with various 57-kDa protein derivatives in the different molecular mass fractions. Two-dimensional separation of extracellular protein showed that continued degradation and aggregation, similar both in location and behavior to some of the 57-kDa protein derivatives, was also displayed by the proteolytically active bands after their separation. Effects of reducing agents and sulfhydryl group proteinase inhibitors indicated a common mechanism for the proteolytically active polypeptides characteristic of a thiol proteinase. The results suggested that the 57-kDa protein and some of its derivatives undergo autolytic cleavage, releasing a proteolytically active polypeptide(s) of at least 18 kDa. Soluble polysaccharide-like material also was detected in extracellular products and tissue from infected fish. Antiserum to the polysaccharide-like material cross-reacted with O-polysaccharide of the fish pathogen Aeromonas salmonicida, suggesting some structural similarity between these polysaccharides. The polysaccharide and the proteolytic activity associated with the 57-kDa protein derivatives should be investigated with respect to the pathogenesis of R. salmoninarum infections. PMID:9480644

  16. Morphological Characterization of Organized Extracellular Matrix Deposition by Ascorbic Acid-Stimulated Human Corneal Fibroblasts

    PubMed Central

    Guo, Xiaoqing; Hutcheon, Audrey E. K.; Melotti, Suzanna A.; Zieske, James D.; Trinkaus-Randall, Vickery; Ruberti, Jeffrey W.

    2016-01-01

    Purpose To characterize the structure and morphology of extracellular matrix (ECM) synthesized by untransformed, cultured human corneal fibroblasts in long-term cultures. Methods Human corneal stromal keratocytes were expanded in transwell culture in the presence of fetal bovine serum and a stable derivative of Vitamin C. The cells were allowed to synthesize a fibrillar ECM for up to five weeks. Constructs were assessed via light (phase contrast and differential interference contrast) and transmission (standard and quick freeze/deep etch) microscopy. Results Electron micrographs revealed stratified constructs with multiple parallel layers of cells and an extracellular matrix comprising parallel arrays of small, polydisperse fibrils (27–51 nm) which often alternate in direction. Differential interference contrast images demonstrated oriented ECM fibril arrays parallel to the plane of the construct while quick-freeze deep etch micrographs showed the details of the matrix interaction with fibroblasts via arrays of membrane surface structures. Conclusions Human keratocytes, cultured in a stable Vitamin C derivative, are capable of assembling extracellular matrix which comprise parallel arrays of ECM fibrils. The resulting constructs, which are highly cellular, exhibit morphology similar to the developing mammalian stroma where organized matrix is derived. The appearance of arrays of structures on the cell membranes suggest a role in the local organization of synthesized ECM. This model could provide critical insight into the fundamental processes which govern the genesis of organized connective tissues such as the cornea and may provide a scaffolding suitable for tissue-engineering a biomimetic stroma. PMID:17724187

  17. CT and MR Imaging Diagnosis and Staging of Hepatocellular Carcinoma: Part II. Extracellular Agents, Hepatobiliary Agents, and Ancillary Imaging Features

    PubMed Central

    Choi, Jin-Young; Lee, Jeong-Min

    2014-01-01

    Computed tomography (CT) and magnetic resonance (MR) imaging play critical roles in the diagnosis and staging of hepatocellular carcinoma (HCC). The second article of this two-part review discusses basic concepts of diagnosis and staging, reviews the diagnostic performance of CT and MR imaging with extracellular contrast agents and of MR imaging with hepatobiliary contrast agents, and examines in depth the major and ancillary imaging features used in the diagnosis and characterization of HCC. © RSNA, 2014 PMID:25247563

  18. On Establishing Underlying Tonal Contrast

    ERIC Educational Resources Information Center

    Snider, Keith

    2014-01-01

    Phonological field work is largely about establishing contrast in comparable environments. The notion of phonological contrast, however, can be confusing, particularly in its application to tone analysis. Does it mean phonemic contrast in the structuralist sense, or does it mean underlying contrast in the generative sense? Many linguists, in…

  19. Extracellularly Identifying Motor Neurons for a Muscle Motor Pool in Aplysia californica

    PubMed Central

    Lu, Hui; McManus, Jeffrey M.; Chiel, Hillel J.

    2013-01-01

    In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath5, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation4,6,7. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction

  20. Tissue Extracellular Matrix Nanoparticle Presentation in Electrospun Nanofibers

    PubMed Central

    Gibson, Matt; Mao, Hai-Quan; Elisseeff, Jennifer

    2014-01-01

    Biomaterials derived from the decellularization of mature tissues retain biological and architectural features that profoundly influence cellular activity. However, the clinical utility of such materials remains limited as the shape and physical properties are difficult to control. In contrast, scaffolds based on synthetic polymers can be engineered to exhibit specific physical properties, yet often suffer from limited biological functionality. This study characterizes composite materials that present decellularized extracellular matrix (DECM) particles in combination with synthetic nanofibers and examines the ability of these materials to influence stem cell differentiation. Mechanical processing of decellularized tissues yielded particles with diameters ranging from 71 to 334 nm. Nanofiber scaffolds containing up to 10% DECM particles (wt/wt) derived from six different tissues were engineered and evaluated to confirm DECM particle incorporation and to measure bioactivity. Scaffolds containing bone, cartilage, and fat promoted osteogenesis at 1 and 3 weeks compared to controls. In contrast, spleen and lung DECM significantly reduced osteogenic outcomes compared to controls. These findings highlight the potential to incorporate appropriate source DECM nanoparticles within nanofiber composites to design a scaffold with bioactivity targeted to specific applications. PMID:24971329

  1. High Presence of Extracellular Hemoglobin in the Periventricular White Matter Following Preterm Intraventricular Hemorrhage

    PubMed Central

    Ley, David; Romantsik, Olga; Vallius, Suvi; Sveinsdóttir, Kristbjörg; Sveinsdóttir, Snjolaug; Agyemang, Alex A.; Baumgarten, Maria; Mörgelin, Matthias; Lutay, Nataliya; Bruschettini, Matteo; Holmqvist, Bo; Gram, Magnus

    2016-01-01

    Severe cerebral intraventricular hemorrhage (IVH) in preterm infants continues to be a major clinical problem, occurring in about 15–20% of very preterm infants. In contrast to other brain lesions the incidence of IVH has not been reduced over the last decade, but actually slightly increased. Currently over 50% of surviving infants develop post-hemorrhagic ventricular dilatation and about 35% develop severe neurological impairment, mainly cerebral palsy and intellectual disability. To date there is no therapy available to prevent infants from developing either hydrocephalus or serious neurological disability. It is known that blood rapidly accumulates within the ventricles following IVH and this leads to disruption of normal anatomy and increased local pressure. However, the molecular mechanisms causing brain injury following IVH are incompletely understood. We propose that extracellular hemoglobin is central in the pathophysiology of periventricular white matter damage following IVH. Using a preterm rabbit pup model of IVH the distribution of extracellular hemoglobin was characterized at 72 h following hemorrhage. Evaluation of histology, histochemistry, hemoglobin immunolabeling and scanning electron microscopy revealed presence of extensive amounts of extracellular hemoglobin, i.e., not retained within erythrocytes, in the periventricular white matter, widely distributed throughout the brain. Furthermore, double immunolabeling together with the migration and differentiation markers polysialic acid neural cell adhesion molecule (PSA-NCAM) demonstrates that a significant proportion of the extracellular hemoglobin is distributed in areas of the periventricular white matter with high extracellular plasticity. In conclusion, these findings support that extracellular hemoglobin may contribute to the pathophysiological processes that cause irreversible damage to the immature brain following IVH. PMID:27536248

  2. High Presence of Extracellular Hemoglobin in the Periventricular White Matter Following Preterm Intraventricular Hemorrhage.

    PubMed

    Ley, David; Romantsik, Olga; Vallius, Suvi; Sveinsdóttir, Kristbjörg; Sveinsdóttir, Snjolaug; Agyemang, Alex A; Baumgarten, Maria; Mörgelin, Matthias; Lutay, Nataliya; Bruschettini, Matteo; Holmqvist, Bo; Gram, Magnus

    2016-01-01

    Severe cerebral intraventricular hemorrhage (IVH) in preterm infants continues to be a major clinical problem, occurring in about 15-20% of very preterm infants. In contrast to other brain lesions the incidence of IVH has not been reduced over the last decade, but actually slightly increased. Currently over 50% of surviving infants develop post-hemorrhagic ventricular dilatation and about 35% develop severe neurological impairment, mainly cerebral palsy and intellectual disability. To date there is no therapy available to prevent infants from developing either hydrocephalus or serious neurological disability. It is known that blood rapidly accumulates within the ventricles following IVH and this leads to disruption of normal anatomy and increased local pressure. However, the molecular mechanisms causing brain injury following IVH are incompletely understood. We propose that extracellular hemoglobin is central in the pathophysiology of periventricular white matter damage following IVH. Using a preterm rabbit pup model of IVH the distribution of extracellular hemoglobin was characterized at 72 h following hemorrhage. Evaluation of histology, histochemistry, hemoglobin immunolabeling and scanning electron microscopy revealed presence of extensive amounts of extracellular hemoglobin, i.e., not retained within erythrocytes, in the periventricular white matter, widely distributed throughout the brain. Furthermore, double immunolabeling together with the migration and differentiation markers polysialic acid neural cell adhesion molecule (PSA-NCAM) demonstrates that a significant proportion of the extracellular hemoglobin is distributed in areas of the periventricular white matter with high extracellular plasticity. In conclusion, these findings support that extracellular hemoglobin may contribute to the pathophysiological processes that cause irreversible damage to the immature brain following IVH. PMID:27536248

  3. Involvement of extracellular matrix constituents in breast cancer

    SciTech Connect

    Lochter, Andre; Bissell, Mina J

    1995-06-01

    It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.

  4. Differential interference contrast tomography.

    PubMed

    Vishnyakov, Gennady; Levin, Gennady; Minaev, Vladimir; Latushko, Mikhail; Nekrasov, Nikolay; Pickalov, Valery

    2016-07-01

    We present a new approach to optical tomography of phase objects that is referred to as differential interference contrast tomography (DICT). The main feature of DICT is that the result of tomographic reconstruction is a 3D DIC image. This image is described by partial derivative of 3D refractive index distribution in one direction. The DICT setup consists of a lateral shearing phase-shifting interference microscope with low-coherent LED illumination. To create projections of the sample at various illumination angles, an angular scanning beam was used. 3D DIC tomograms of a white blood cell are presented. The comparison between the reconstructed DIC tomogram slices and the conventional DIC images of the same sample at the same depths are also represented. PMID:27367095

  5. Polarization contrast vision

    NASA Astrophysics Data System (ADS)

    Pugh, Edward N.

    1990-05-01

    An attempt is made to establish the possibility that the geometry of certain classes of vertebrate photoreceptors results in a birefringence that allows the animals to utilize the state of polarization of light striking their retinas as a meaningful stimulus parameter. Simulate the photoreceptors as dielectric waveguides using a simple physical model, and augment this theoretical work with empirical measurements of the light guiding properties of photoreceptors in isolated pieces of retina from a green sunfish (Lepomis cyanellus). With a classical conditioning paradigm, this fish's sensitivity to light is modulated by the orientation of the plane of polarization of linearly polarized light. This functional dependence was predicted by a hypothetical antagonistic mechanism between twin cones of two orientations in the animal's retinal mosaic. Further study is planned for the nature of the stimulus to which the fish is sensitive by creating a camera that will generate images based purely upon the contrast between orthogonal polarizations at each point in space.

  6. Extracellular signaling and multicellularity in Bacillus subtilis.

    PubMed

    Shank, Elizabeth Anne; Kolter, Roberto

    2011-12-01

    Bacillus subtilis regulates its ability to differentiate into distinct, co-existing cell types in response to extracellular signaling molecules produced either by itself, or present in its environment. The production of molecules by B. subtilis cells, as well as their response to these signals, is not uniform across the population. There is specificity and heterogeneity both within genetically identical populations as well as at the strain-level and species-level. This review will discuss how extracellular signaling compounds influence B. subtilis multicellularity with regard to matrix-producing cannibal differentiation, germination, and swarming behavior, as well as the specificity of the quorum-sensing peptides ComX and CSF. It will also highlight how imaging mass spectrometry can aid in identifying signaling compounds and contribute to our understanding of the functional relationship between such compounds and multicellular behavior. PMID:22024380

  7. Extracellular signaling and multicellularity in Bacillus subtilis

    PubMed Central

    Anne Shank, Elizabeth; Kolter, Roberto

    2012-01-01

    Summary Bacillus subtilis regulates its ability to differentiate into distinct, co-existing cell types in response to extracellular signaling molecules produced either by itself, or present in its environment. The production of molecules by B. subtilis cells, as well as their response to these signals, is not uniform across the population. There is specificity and heterogeneity both within genetically identical populations as well as at the strain- and species-levels. This review will discuss how extracellular signaling compounds influence B. subtilis multicellularity with regard to matrix-producing cannibal differentiation, germination, and swarming behavior, as well as the specificity of the quorum-sensing peptides ComX and CSF. It will also highlight how imaging mass spectrometry can aid in identifying signaling compounds and contribute to our understanding of the functional relationship between such compounds and multicellular behavior. PMID:22024380

  8. Micromanaging of tumor metastasis by extracellular vesicles.

    PubMed

    Tominaga, Naoomi; Katsuda, Takeshi; Ochiya, Takahiro

    2015-04-01

    Extracellular vesicles (EVs) are nanometer-sized membranous vesicles that are released by a variety of cell types into the extracellular space. In the past two decades, EVs have emerged as novel mediators of cancer biology. Many reports have demonstrated the contribution of EVs to cancer metastasis. Metastasis is a multistep process that is responsible for the majority of deaths in cancer patients. This process includes proliferation, angiogenesis, immune modulation, extravasation, intravasation, and colonization. EVs from cancer cells impact these steps through modulation of the host immune system, angiogenesis, and pre-/pro-metastatic niche formation. In this review, we summarize the function of EVs in cancer metastasis. In addition, we also discuss the hurdles to be overcome for further developing this research field. PMID:25746922

  9. Nanomechanics of the Cartilage Extracellular Matrix

    NASA Astrophysics Data System (ADS)

    Han, Lin; Grodzinsky, Alan J.; Ortiz, Christine

    2011-08-01

    Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology.

  10. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    PubMed Central

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  11. Circulating Extracellular RNA Markers of Liver Regeneration

    PubMed Central

    Yan, Irene K.; Wang, Xue; Asmann, Yan W.; Haga, Hiroaki; Patel, Tushar

    2016-01-01

    Background and Aims Although a key determinant of hepatic recovery after injury is active liver regeneration, the ability to detect ongoing regeneration is lacking. The restoration of liver mass after hepatectomy involves systemic changes with coordinated changes in gene expression guiding regenerative responses, activation of progenitor cells, and proliferation of quiescent hepatocytes. We postulated that these responses involve intercellular communication involving extracellular RNA and that these could represent biomarkers of active regenerative responses. Methods RNA sequencing was performed to identify temporal changes in serum extracellular non-coding RNA after partial hepatectomy in C57BL/6 male mice. Tissue expression of selected RNA was performed by microarray analysis and validated using qRT-PCR. Digital PCR was used to detect and quantify serum expression of selected RNA. Results A peak increase in extracellular RNA content occurred six hours after hepatectomy. RNA sequencing identified alterations in several small non-coding RNA including known and novel microRNAs, snoRNAs, tRNA, antisense and repeat elements after partial hepatectomy. Combinatorial effects and network analyses identified signal regulation, protein complex assembly, and signal transduction as the most common biological processes targeted by miRNA that altered. miR-1A and miR-181 were most significantly altered microRNA in both serum and in hepatic tissues, and their presence in serum was quantitated using digital PCR. Conclusions Extracellular RNA selectively enriched during acute regeneration can be detected within serum and represent biomarkers of ongoing liver regeneration in mice. The ability to detect ongoing active regeneration would improve the assessment of hepatic recovery from liver injury. PMID:27415797

  12. Extracellular glycation crosslinks: prospects for removal.

    PubMed

    Furber, John D

    2006-01-01

    Extracellular aging--accumulating molecular damage by glycation, oxidation, and crosslinking of long-lived extracellular proteins, mainly collagen and elastin--is a major cause of several important human aging pathologies. Crosslinking increases mechanical stiffness of blood vessels and urinary bladder. Crosslinking impairs the functioning of the kidney, heart, retina, and other tissues and organs. Glycation adducts trigger inflammatory signaling, provoking tissue damage and cancers. Crosslinking tightens up the extracellular matrix (ECM), hardening it against natural turnover processes. Known crosslink breakers (e.g., alagebrium, of the thiazolium halide family) are only partly effective because they break only a subset of AGE crosslink structures (sugar-derived alpha-diketone bridges). So far, no agent has been found that breaks the prevalent glucosepane and K2P crosslink structures. Enzymes that would be able to recognize and disassemble glycation products may be too big to migrate into the ECM and repair collagen or elastin in vivo. Two approaches to therapy development are presented here. ECM turnover enhancement would enhance natural processes to digest old ECM and replace it with new. It will be important to tune the collagen degradation to a rate slow enough to prevent dire side-effects, such as hemorrhage from leaky blood vessels as collagen molecules are removed and replaced. Glycation breaker discovery would use high-throughput screening and rational drug design to find molecules that are able to break glucosepane crosslinks and K2P crosslinks of extracellular proteins. Candidates would be further screened for selectivity and toxicity in order to avoid damage to other molecules. PMID:16706655

  13. Extracellular proteases of Trichoderma species. A review.

    PubMed

    Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet

    2005-01-01

    Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed. PMID:16003937

  14. Extracellular Metabolic Energetics Can Promote Cancer Progression

    PubMed Central

    Loo, Jia Min; Scherl, Alexis; Nguyen, Alexander; Man, Fung Ying; Weinberg, Ethan; Zeng, Zhaoshi; Saltz, Leonard; Paty, Philip B.; Tavazoie, Sohail F.

    2014-01-01

    Summary Colorectal cancer primarily metastasizes to the liver and kills over 600,000 people annually. By functionally screening 661 miRNAs in parallel during liver colonization, we have identified miR-551a and miR-483 as robust endogenous suppressors of liver colonization and metastasis. These miRNAs convergently target creatine kinase, brain-type (CKB), which phosphorylates the metabolite creatine, to generate phosphocreatine. CKB is released into the extracellular space by metastatic cells encountering hepatic hypoxia and catalyzes production of extracellular phosphocreatine, which is imported through the SLC6A8 transporter and used to generate ATP—fueling metastatic survival. Combinatorial therapeutic viral delivery of miR-551a and miR-483-5p through single-dose adeno-associated viral (AAV) delivery significantly suppressed colon cancer metastatic colonization, as did CKB inhibition with a small-molecule inhibitor. Importantly, human liver metastases express higher CKB and SLC6A8 levels and reduced miR-551a/miR-483 levels relative to primary tumors. We identify the extracellular space as an important compartment for malignant energetic catalysis and therapeutic targeting. PMID:25601461

  15. Extracellular signaling cues for nuclear actin polymerization.

    PubMed

    Plessner, Matthias; Grosse, Robert

    2015-01-01

    Contrary to cytoplasmic actin structures, the biological functions of nuclear actin filaments remain largely enigmatic. Recent progress in the field, however, has determined nuclear actin structures in somatic cells either under steady state conditions or in response to extracellular signaling cues. These actin structures differ in size and shape as well as in their temporal appearance and dynamics. Thus, a picture emerges that suggests that mammalian cells may have different pathways and mechanisms to assemble nuclear actin filaments. Apart from serum- or LPA-triggered nuclear actin polymerization, integrin activation by extracellular matrix interaction was recently implicated in nuclear actin polymerization through the linker of nucleoskeleton and cytoskeleton (LINC) complex. Some of these extracellular cues known so far appear to converge at the level of nuclear formin activity and subsequent regulation of myocardin-related transcription factors. Nevertheless, as the precise signaling events are as yet unknown, the regulation of nuclear actin polymerization may be of significant importance for different cellular functions as well as disease conditions caused by altered nuclear dynamics and architecture. PMID:26059398

  16. Identification of extracellularly phosphorylated membrane proteins.

    PubMed

    Burghoff, Sandra; Willberg, Wibke; Schrader, Jürgen

    2015-10-01

    Ecto-protein kinases phosphorylate extracellular membrane proteins and exhibit similarities to casein kinases and protein kinases A and C. However, the identification of their protein substrates still remains a challenge because a clear separation from intracellular phosphoproteins is difficult. Here, we describe a straightforward method for the identification of extracellularly phosphorylated membrane proteins in human umbilical vein endothelial cells (HUVECs) and K562 cells which used the protease bromelain to selectively remove ectoproteins from intact cells and combined this with the subsequent analysis using IMAC and LC-MS/MS. A "false-positive" strategy in which cells without protease treatment served as controls was applied. Using this approach we identified novel phosphorylation sites on five ectophosphoproteins (NOTCH1, otopetrin 1, regulator of G-protein signalling 13 (RGS13), protein tyrosine phosphatase receptor type D isoform 3 (PTPRD), usherin isoform B (USH2A)). Use of bromelain appears to be a reliable technique for the further identification of phosphorylated surface-exposed peptides when extracellular adenosine-5'-triphosphate is elevated during purinergic signalling. PMID:26152529

  17. Airway and Extracellular Matrix Mechanics in COPD

    PubMed Central

    Bidan, Cécile M.; Veldsink, Annemiek C.; Meurs, Herman; Gosens, Reinoud

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD. PMID:26696894

  18. Autocrine signal transmission with extracellular ligand degradation

    NASA Astrophysics Data System (ADS)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-03-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand-receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers.

  19. A constant current source for extracellular microiontophoresis.

    PubMed

    Walker, T; Dillman, N; Weiss, M L

    1995-12-01

    A sophisticated constant-current source suitable for extracellular microiontophoresis of tract-tracing substances, such as Phaseolus vulgaris leucoagglutinin, Biocytin or Fluoro-Gold, is described. This design uses a flyback switched-mode power supply to generate controllable high-voltage and operational amplifier circuitry to regulate current and provide instrumentation. Design features include a fast rise time, +/- 2000 V supply (stable output in < 250 ms), simultaneous load current and voltage monitoring, and separate pumping and holding current settings. Three features of this constant-current source make it especially useful for extracellular microiontophoresis. First, the output voltage monitor permits one to follow changes in the microelectrode resistance during current injection. Second, the voltage-limit (or out-of-compliance) indicator circuitry will sound an alarm when the iontophoretic pump is unable to generate the desired current, such as when the micropipette is blocked. Third, the high-compliance voltage power supply insures up to +/- 20 microA of current through 100 M omega resistance. This device has proven itself to be a reliable constant-current source for extracellular microiontophoresis in the laboratory. PMID:8788057

  20. Nematicidal Bacteria Associated to Pinewood Nematode Produce Extracellular Proteases

    PubMed Central

    Francisco, Romeu; Verissimo, Paula; Santos, Susana S.; Fonseca, Luís; Abrantes, Isabel M. O.; Morais, Paula V.

    2013-01-01

    Bacteria associated with the nematode Bursaphelenchus xylophilus, a pathogen of trees and the causal agent of pine wilt disease (PWD) may play a role in the disease. In order to evaluate their role (positive or negative to the tree), strains isolated from the track of nematodes from infected Pinus pinaster trees were screened, in vitro, for their nematicidal potential. The bacterial products, from strains more active in killing nematodes, were screened in order to identify and characterize the nematicidal agent. Forty-seven strains were tested and, of these, 21 strains showed capacity to produce extracellular products with nematicidal activity. All Burkholderia strains were non-toxic. In contrast, all Serratia strains except one exhibited high toxicity. Nematodes incubated with Serratia strains showed, by SEM observation, deposits of bacteria on the nematode cuticle. The most nematicidal strain, Serratia sp. A88copa13, produced proteases in the supernatant. The use of selective inhibitors revealed that a serine protease with 70 kDa was majorly responsible for the toxicity of the supernatant. This extracellular serine protease is different phylogenetically, in size and biochemically from previously described proteases. Nematicidal assays revealed differences in nematicidal activity of the proteases to different species of Bursaphelenchus, suggesting its usefulness in a primary screen of the nematodes. This study offers the basis for further investigation of PWD and brings new insights on the role bacteria play in the defense of pine trees against B. xylophilus. Understanding all the factors involved is important in order to develop strategies to control B. xylophilus dispersion. PMID:24244546

  1. Nematicidal bacteria associated to pinewood nematode produce extracellular proteases.

    PubMed

    Paiva, Gabriel; Proença, Diogo Neves; Francisco, Romeu; Verissimo, Paula; Santos, Susana S; Fonseca, Luís; Abrantes, Isabel M O; Morais, Paula V

    2013-01-01

    Bacteria associated with the nematode Bursaphelenchus xylophilus, a pathogen of trees and the causal agent of pine wilt disease (PWD) may play a role in the disease. In order to evaluate their role (positive or negative to the tree), strains isolated from the track of nematodes from infected Pinus pinaster trees were screened, in vitro, for their nematicidal potential. The bacterial products, from strains more active in killing nematodes, were screened in order to identify and characterize the nematicidal agent. Forty-seven strains were tested and, of these, 21 strains showed capacity to produce extracellular products with nematicidal activity. All Burkholderia strains were non-toxic. In contrast, all Serratia strains except one exhibited high toxicity. Nematodes incubated with Serratia strains showed, by SEM observation, deposits of bacteria on the nematode cuticle. The most nematicidal strain, Serratia sp. A88copa13, produced proteases in the supernatant. The use of selective inhibitors revealed that a serine protease with 70 kDa was majorly responsible for the toxicity of the supernatant. This extracellular serine protease is different phylogenetically, in size and biochemically from previously described proteases. Nematicidal assays revealed differences in nematicidal activity of the proteases to different species of Bursaphelenchus, suggesting its usefulness in a primary screen of the nematodes. This study offers the basis for further investigation of PWD and brings new insights on the role bacteria play in the defense of pine trees against B. xylophilus. Understanding all the factors involved is important in order to develop strategies to control B. xylophilus dispersion. PMID:24244546

  2. Dipole characterization of single neurons from their extracellular action potentials

    PubMed Central

    Victor, Jonathan D.

    2011-01-01

    The spatial variation of the extracellular action potentials (EAP) of a single neuron contains information about the size and location of the dominant current source of its action potential generator, which is typically in the vicinity of the soma. Using this dependence in reverse in a three-component realistic probe + brain + source model, we solved the inverse problem of characterizing the equivalent current source of an isolated neuron from the EAP data sampled by an extracellular probe at multiple independent recording locations. We used a dipole for the model source because there is extensive evidence it accurately captures the spatial roll-off of the EAP amplitude, and because, as we show, dipole localization, beyond a minimum cell-probe distance, is a more accurate alternative to approaches based on monopole source models. Dipole characterization is separable into a linear dipole moment optimization where the dipole location is fixed, and a second, nonlinear, global optimization of the source location. We solved the linear optimization on a discrete grid via the lead fields of the probe, which can be calculated for any realistic probe + brain model by the finite element method. The global source location was optimized by means of Tikhonov regularization that jointly minimizes model error and dipole size. The particular strategy chosen reflects the fact that the dipole model is used in the near field, in contrast to the typical prior applications of dipole models to EKG and EEG source analysis. We applied dipole localization to data collected with stepped tetrodes whose detailed geometry was measured via scanning electron microscopy. The optimal dipole could account for 96% of the power in the spatial variation of the EAP amplitude. Among various model error contributions to the residual, we address especially the error in probe geometry, and the extent to which it biases estimates of dipole parameters. This dipole characterization method can be applied to

  3. Contrast echocardiography 1996. A review.

    PubMed Central

    Villarraga, H R; Foley, D A; Mulvagh, S L

    1996-01-01

    Remarkable advances in the field of contrast echocardiography have been made during the last decade. Interest in ultrasound contrast agents that strengthen the backscattered ultrasound signal and improve image display has stimulated further research. Echocardiographic contrast agents providing left ventricular cavity image enhancement after intravenous injection are now available. A role for contrast echocardiography in the assessment of myocardial perfusion has been established within the invasive clinical setting. With the development of newer contrast agents and new ultrasound technology, myocardial perfusion imaging using contrast echocardiography after venous injection is no longer the unattainable "holy grail," but is fast approaching clinical applicability. Images PMID:8792539

  4. Biodegradation and extracellular enzymatic activities of Pseudomonas aeruginosa strain GF31 on β-cypermethrin.

    PubMed

    Tang, Aixing; Wang, Bowen; Liu, Youyan; Li, Qingyun; Tong, Zhangfa; Wei, Yingjun

    2015-09-01

    Pseudomonas aeruginosa strain GF31, isolated from a contaminated soil, can effectively degrade β-cypermethrin (β-CP), as well as fenpropathrin, fenvalerate, and cyhalothrin. The highest level of degradation (81.2 %) was achieved with the addition of peptone. Surprisingly, the enzyme responsible for degradation was mainly localized to the extracellular areas of the bacteria, in contrast to the other known pyrethroid-degrading enzymes, which are intracellular. Although intact bacterial cells function at about 30 °C for biodegradation, similar to other degrading strains, the crude extracellular extract of strain GF31 remained biologically active at 60 °C. Moreover, the extract fraction showed good storage stability, maintaining >50 % of its initial activity following storage at 25 °C for at least 20 days. Significant differences in the characteristics of the crude GF31 extracellular extract compared with the known pyrethroid-degrading enzymes indicate the presence of a novel pyrethroid-degrading enzyme. Furthermore, the identification of 3-phenoxybenzoic acid and 2,2-dimethylcyclopropanecarboxylate from the degradation products suggests the possibility that β-CP degradation by both the strain and the crude extracellular fraction is achieved through a hydrolysis pathway. Further degradation of these two metabolites may lead to the development of an efficient method for the mineralization of these types of pollutants. PMID:25921758

  5. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes.

    PubMed

    Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Andrews, Norma W

    2016-01-01

    Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca(2+)-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D. PMID:27028538

  6. Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo

    NASA Technical Reports Server (NTRS)

    Olszak, I. T.; Poznansky, M. C.; Evans, R. H.; Olson, D.; Kos, C.; Pollak, M. R.; Brown, E. M.; Scadden, D. T.; O'Malley, B. W. (Principal Investigator)

    2000-01-01

    Recruitment of macrophages to sites of cell death is critical for induction of an immunologic response. Calcium concentrations in extracellular fluids vary markedly, and are particularly high at sites of injury or infection. We hypothesized that extracellular calcium participates in modulating the immune response, perhaps acting via the seven-transmembrane calcium-sensing receptor (CaR) on mature monocytes/macrophages. We observed a dose-dependent increase in monocyte chemotaxis in response to extracellular calcium or the selective allosteric CaR activator NPS R-467. In contrast, monocytes derived from mice deficient in CaR lacked the normal chemotactic response to a calcium gradient. Notably, CaR activation of monocytes bearing the receptor synergistically augmented the transmigration response of monocytes to the chemokine MCP-1 in association with increased cell-surface expression of its cognate receptor, CCR2. Conversely, stimulation of monocytes with MCP-1 or SDF-1alpha reciprocally increased CaR expression, suggesting a dual-enhancing interaction of Ca(2+) with chemokines in recruiting inflammatory cells. Subcutaneous administration in mice of Ca(2+), MCP-1, or (more potently) the combination of Ca(2+) and MCP-1, elicited an inflammatory infiltrate consisting of monocytes/macrophages. Thus extracellular calcium functions as an ionic chemokinetic agent capable of modulating the innate immune response in vivo and in vitro by direct and indirect actions on monocytic cells. Calcium deposition may be both consequence and cause of chronic inflammatory changes at sites of injury, infection, and atherosclerosis.

  7. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes

    PubMed Central

    Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Andrews, Norma W.

    2016-01-01

    Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca2+-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D. PMID:27028538

  8. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation

    PubMed Central

    Seper, Andrea; Fengler, Vera H I; Roier, Sandro; Wolinski, Heimo; Kohlwein, Sepp D; Bishop, Anne L; Camilli, Andrew; Reidl, Joachim; Schild, Stefan

    2011-01-01

    Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae. PMID:22032623

  9. Pedagogical Implications of Contrastive Studies

    ERIC Educational Resources Information Center

    Marton, Waldemar

    1972-01-01

    Pessimism regarding pedagogical applications of contrastive studies, and reasons therefore, are described. Several misunderstandings believed to contribute to this pessimism, and several areas of controversy concerning uses of contrastive studies, are discussed. See FL 508 197 for availability. (RM)

  10. Recognition memory reveals just how CONTRASTIVE contrastive accenting really is

    PubMed Central

    Fraundorf, Scott H.; Watson, Duane G.; Benjamin, Aaron S.

    2010-01-01

    The effects of pitch accenting on memory were investigated in three experiments. Participants listened to short recorded discourses that contained contrast sets with two items (e.g. British scientists and French scientists); a continuation specified one item from the set. Pitch accenting on the critical word in the continuation was manipulated between non-contrastive (H* in the ToBI system) and contrastive (L+H*). On subsequent recognition memory tests, the L+H* accent increased hits to correct statements and correct rejections of the contrast item (Experiments 1–3), but did not impair memory for other parts of the discourse (Experiment 2). L+H* also did not facilitate correct rejections of lures not in the contrast set (Experiment 3), indicating that contrastive accents do not simply strengthen the representation of the target item. These results suggest comprehenders use pitch accenting to encode and update information about multiple elements in a contrast set. PMID:20835405

  11. Phase Contrast Imaging

    SciTech Connect

    Menk, Ralf Hendrik

    2008-11-13

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift {phi} directly (using interference phenomena), the gradient {nabla}{sub {phi}}, or the Laplacian {nabla}{sup 2}{phi}. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1

  12. Perceived contrast in complex images

    PubMed Central

    Haun, Andrew M.; Peli, Eli

    2013-01-01

    To understand how different spatial frequencies contribute to the overall perceived contrast of complex, broadband photographic images, we adapted the classification image paradigm. Using natural images as stimuli, we randomly varied relative contrast amplitude at different spatial frequencies and had human subjects determine which images had higher contrast. Then, we determined how the random variations corresponded with the human judgments. We found that the overall contrast of an image is disproportionately determined by how much contrast is between 1 and 6 c/°, around the peak of the contrast sensitivity function (CSF). We then employed the basic components of contrast psychophysics modeling to show that the CSF alone is not enough to account for our results and that an increase in gain control strength toward low spatial frequencies is necessary. One important consequence of this is that contrast constancy, the apparent independence of suprathreshold perceived contrast and spatial frequency, will not hold during viewing of natural images. We also found that images with darker low-luminance regions tended to be judged as having higher overall contrast, which we interpret as the consequence of darker local backgrounds resulting in higher band-limited contrast response in the visual system. PMID:24190908

  13. Anomalous extracellular diffusion in rat cerebellum.

    PubMed

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-05-01

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable

  14. Extracellular Signatures as Indicators of Processing Methods

    SciTech Connect

    Wahl, Karen L.

    2012-01-09

    As described in other chapters within this volume, many aspects of microbial cells vary with culture conditions and therefore can potentially be analyzed as forensic signatures of growth conditions. In addition to changes or variations in components of the microbes themselves, extracellular materials indicative of production processes may remain associated with the final bacterial product. It is well recognized that even with considerable effort to make pure products such as fine chemicals or pharmaceuticals, trace impurities from components or synthesis steps associated with production processes can be detected in the final product. These impurities can be used as indicators of production source or methods, such as to help connect drugs of abuse to supply chains. Extracellular residue associated with microbial cells could similarly help to characterize production processes. For successful growth of microorganisms on culture media there must be an available source of carbon, nitrogen, inorganic phosphate and sulfur, trace metals, water and vitamins. The pH, temperature, and a supply of oxygen or other gases must also be appropriate for a given organism for successful culture. The sources of these components and the range in temperature, pH and other variables has adapted over the years with currently a wide range of possible combinations of media components, recipes and parameters to choose from for a given organism. Because of this wide variability in components, mixtures of components, and other parameters, there is the potential for differentiation of cultured organisms based on changes in culture conditions. The challenge remains how to narrow the field of potential combinations and be able to attribute variations in the final bacterial product and extracellular signatures associated with the final product to information about the culture conditions or recipe used in the production of that product.

  15. Extracellular killing of inhaled pneumococci in rats

    SciTech Connect

    Coonrod, J.D.; Marple, S.; Holmes, G.P.; Rehm, S.R.

    1987-12-01

    Early clearance of inhaled Staphylococcus aureus is believed to be caused by phagocytosis by alveolar macrophages. In murine models inhaled pneumococci are cleared even more rapidly than S. aureus. Conventional opsonins appear to play no role in this clearance, and recently it has been shown that murine alveolar lining material contains free fatty acids and other soluble factors that are directly bactericidal for pneumococci. To determine whether non-phagocytic factors are involved in pneumococcal clearance, we compared the site of killing of inhaled pneumococci and S. aureus in rats using histologic methods and bronchoalveolar lavage. Spontaneous lysis of pneumococci was prevented by use of autolysin-defective pneumococci or by substitution of ethanolamine for choline in the cell wall. Histologic studies showed that the percent of inhaled staphylococci associated with alveolar macrophages always exceeded the percent of staphylococci cleared, whereas there was little association of pneumococci with macrophages during clearance. Analysis of the intracellular or extracellular location of iron 59 in bronchoalveolar lavage fluid of rats that had inhaled aerosols of /sup 59/Fe-labeled bacteria suggested that staphylococci were killed predominantly in macrophages and pneumococci in the extracellular space. When /sup 59/Fe-labeled pneumococci or staphylococci were ingested and killed by macrophages in vitro, the /sup 59/Fe remained with the macrophages, suggesting that the extracellular location of /sup 59/Fe during pneumococcal killing in vivo was not caused by rapid turnover of /sup 59/Fe in macrophages. Studies of the site of killing of inhaled type 25 pneumococci labeled exclusively in the cell wall with carbon 14-ethanolamine confirmed the results obtained with /sup 59/Fe-labeled pneumococci. Thus, early killing of inhaled pneumococci, unlike staphylococci, appears to take place outside of macrophages.

  16. Neutrophil extracellular traps in sheep mastitis.

    PubMed

    Pisanu, Salvatore; Cubeddu, Tiziana; Pagnozzi, Daniela; Rocca, Stefano; Cacciotto, Carla; Alberti, Alberto; Marogna, Gavino; Uzzau, Sergio; Addis, Maria Filippa

    2015-01-01

    Neutrophil extracellular traps (NETs) are structures composed of DNA, histones, and antimicrobial proteins that are released extracellularly by neutrophils and other immune cells as a means for trapping and killing invading pathogens. Here, we describe NET formation in milk and in mammary alveoli of mastitic sheep, and provide a dataset of proteins found in association to these structures. Nucleic acid staining, immunomicroscopy and fluorescent in-situ hybridization of mastitic mammary tissue from sheep infected with Streptococcus uberis demonstrated the presence of extranuclear DNA colocalizing with antimicrobial proteins, histones, and bacteria. Then, proteomic analysis by LTQ-Orbitrap Velos mass spectrometry provided detailed information on protein abundance changes occurring in milk upon infection. As a result, 1095 unique proteins were identified, of which 287 being significantly more abundant in mastitic milk. Upon protein ontology classification, the most represented localization classes for upregulated proteins were the cytoplasmic granule, the nucleus, and the mitochondrion, while function classes were mostly related to immune defence and inflammation pathways. All known NET markers were massively increased, including histones, granule proteases, and antimicrobial proteins. Of note was the detection of protein arginine deiminases (PAD3 and PAD4). These enzymes are responsible for citrullination, the post-translational modification that is known to trigger NET formation by inducing chromatin decondensation and extracellular release of NETs. As a further observation, citrullinated residues were detected by tandem mass spectrometry in histones of samples from mastitic animals. In conclusion, this work provides novel microscopic and proteomic information on NETs formed in vivo in the mammary gland, and reports the most complete database of proteins increased in milk upon bacterial mastitis. PMID:26088507

  17. Microbial extracellular polysaccharides and plagioclase dissolution

    SciTech Connect

    Welch, S.A.; Barker, W.W.; Banfield, J.F.

    1999-05-01

    Bytownite feldspar was dissolved in batch reactors in solutions of starch (glucose polymer), gum xanthan (glucose, mannose, glucuronic acid), pectin (poly-galacturonic acid), and four alginates (mannuronic and guluronic acid) with a range of molecular weights (low, medium, high and uncharacterized) to evaluate the effect of extracellular microbial polymers on mineral dissolution rates. Solutions were analyzed for dissolved Si and Al as an indicator of feldspar dissolution. At neutral pH, feldspar dissolution was inhibited by five of the acid polysaccharides, gum xanthan, pectin, alginate low, alginate medium, alginate high, compared to an organic-free control. An uncharacterized alginate substantially enhanced both Si and Al release from the feldspar. Starch, a neutral polysaccharide, had no apparent effect. Under mildly acidic conditions, initial pH {approx} 4, all of the polymers enhanced feldspar dissolution compared to the inorganic controls. Si release from feldspar in starch solution exceeded the control by a factor of three. Pectin and gum xanthan increased feldspar dissolution by a factor of 10, and the alginates enhanced feldspar dissolution by a factor of 50 to 100. Si and Al concentrations increased with time, even though solutions were supersaturated with respect to several possible secondary phases. Under acidic conditions, initial pH {approx} 3, below the pK{sub a} of the carboxylic acid groups, dissolution rates increased, but the relative increase due to the polysaccharides is lower, approximately a factor of two to ten. Microbial extracellular polymers play a complex role in mineral weathering. Polymers appear to inhibit dissolution under some conditions, possibly by irreversibly binding to the mineral surfaces. The extracellular polysaccharides can also enhance dissolution by providing protons and complexing with ions in solution.

  18. Regulation of Corneal Stroma Extracellular Matrix Assembly

    PubMed Central

    Chen, Shoujun; Mienaltowski, Michael J.; Birk, David E.

    2014-01-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. PMID:25819456

  19. Role of extracellular vesicles in autoimmune diseases.

    PubMed

    Turpin, Delphine; Truchetet, Marie-Elise; Faustin, Benjamin; Augusto, Jean-François; Contin-Bordes, Cécile; Brisson, Alain; Blanco, Patrick; Duffau, Pierre

    2016-02-01

    Extracellular vesicles (EVs) consist of exosomes released upon fusion of multivesicular bodies with the cell plasma membrane and microparticles shed directly from the cell membrane of many cell types. EVs can mediate cell-cell communication and are involved in many processes including inflammation, immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. Accumulating evidence reveals that EVs act in the establishment, maintenance and modulation of autoimmune processes among several others involved in cancer and cardiovascular complications. EVs could also present biomedical applications, as disease biomarkers and therapeutic targets or agents for drug delivery. PMID:26554931

  20. Extracellular vesicles: Emerging targets for cancer therapy

    PubMed Central

    Vader, Pieter; Breakefield, Xandra O.; Wood, Matthew J.A.

    2014-01-01

    Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, are released by almost all cell types, including tumour cells. Through transfer of their molecular contents, EVs are capable of altering the function of recipient cells. Increasing evidence suggests a key role for EV-mediated intercellular communication in a variety of cellular processes involved in tumour development and progression, including immune suppression, angiogenesis and metastasis. Aspects of EV biogenesis or function are therefore increasingly being considered as targets for anti-cancer therapy. Here, we summarize the current knowledge on the contributions of EVs to cancer pathogenesis and discuss novel therapeutic strategies to target EVs to prevent tumour growth and spread. PMID:24703619

  1. Bidirectional extracellular matrix signaling during tissue morphogenesis

    PubMed Central

    Gjorevski, Nikolce; Nelson, Celeste M.

    2009-01-01

    Normal tissue development and function are regulated by the interplay between cells and their surrounding extracellular matrix (ECM). The ECM provides biochemical and mechanical contextual information that is conveyed from the cell membrane through the cytoskeleton to the nucleus to direct cell phenotype. Cells, in turn, remodel the ECM and thereby sculpt their local microenvironment. Here we review the mechanisms by which cells interact with, respond to, and influence the ECM, with particular emphasis placed on the role of this bidirectional communication during tissue morphogenesis. We also discuss the implications for successful engineering of functional tissues ex vivo. PMID:19896886

  2. Aquaporins in Urinary Extracellular Vesicles (Exosomes).

    PubMed

    Oshikawa, Sayaka; Sonoda, Hiroko; Ikeda, Masahiro

    2016-01-01

    Since the successful characterization of urinary extracellular vesicles (uEVs) by Knepper's group in 2004, these vesicles have been a focus of intense basic and translational research worldwide, with the aim of developing novel biomarkers and therapeutics for renal disease. Along with these studies, there is growing evidence that aquaporins (AQPs), water channel proteins, in uEVs have the potential to be diagnostically useful. In this review, we highlight current knowledge of AQPs in uEVs from their discovery to clinical application. PMID:27322253

  3. Aquaporins in Urinary Extracellular Vesicles (Exosomes)

    PubMed Central

    Oshikawa, Sayaka; Sonoda, Hiroko; Ikeda, Masahiro

    2016-01-01

    Since the successful characterization of urinary extracellular vesicles (uEVs) by Knepper’s group in 2004, these vesicles have been a focus of intense basic and translational research worldwide, with the aim of developing novel biomarkers and therapeutics for renal disease. Along with these studies, there is growing evidence that aquaporins (AQPs), water channel proteins, in uEVs have the potential to be diagnostically useful. In this review, we highlight current knowledge of AQPs in uEVs from their discovery to clinical application. PMID:27322253

  4. Biogenesis, delivery, and function of extracellular RNA.

    PubMed

    Patton, James G; Franklin, Jeffrey L; Weaver, Alissa M; Vickers, Kasey; Zhang, Bing; Coffey, Robert J; Ansel, K Mark; Blelloch, Robert; Goga, Andrei; Huang, Bo; L'Etoille, Noelle; Raffai, Robert L; Lai, Charles P; Krichevsky, Anna M; Mateescu, Bogdan; Greiner, Vanille J; Hunter, Craig; Voinnet, Olivier; McManus, Michael T

    2015-01-01

    The Extracellular RNA (exRNA) Communication Consortium was launched by the National Institutes of Health to focus on the extent to which RNA might function in a non-cell-autonomous manner. With the availability of increasingly sensitive tools, small amounts of RNA can be detected in serum, plasma, and other bodily fluids. The exact mechanism(s) by which RNA can be secreted from cells and the mechanisms for the delivery and uptake by recipient cells remain to be determined. This review will summarize current knowledge about the biogenesis and delivery of exRNA and outline projects seeking to understand the functional impact of exRNA. PMID:26320939

  5. Extracellular matrix of the developing ovarian follicle.

    PubMed

    Irving-Rodgers, Helen F; Rodgers, Raymond J

    2006-09-01

    There are many different types of extracellular matrices in the different follicle compartments. These have different roles in follicle development and atresia, and they change in composition during these processes. This review focuses on basal lamina matrix in particular, and considers follicular fluid, the newly identified focimatrix, and thecal matrices. When follicles commence growing, the follicular basal lamina changes in its composition from containing all six alpha chains of type IV collagen to only alpha1 and alpha2. Perlecan and nidogen-1 and -2 subsequently become components of the follicular basal lamina, and there is an increase in the amount of laminin chains alpha1, beta2, and gamma1, in the bovine at least. Late in follicular development and on atresia some follicles contain laminin alpha2. On atresia the follicular basal lamina is not degraded, as occurs in ovulation, but can be breached by cells from the thecal layer when it is not aligned by granulosa cells. A novel type of basal lamina-like matrix, called focimatrix (abbreviated from focal intraepithelial matrix), develops between the cells of the membrana granulosa as aggregates of basal lamina material. It does not envelop cells and so cannot perform functions of basal lamina as currently understood. It is hypothesized that focimatrix assists or initiates depolarization of the membrana granulosa necessary for the transformation into luteal cells. The largest osmotically active molecules in follicular fluid are hyaluronan and chondroitin sulfate proteoglycans, including versican and inter-alpha trypsin inhibitor. It has been suggested that these might be responsible for the formation of follicular fluid by creating an osmotic gradient across the follicular wall. The formation, development, and then either ovulation or regression of follicles requires considerable tissue remodeling, cellular replication, and specialization. The expectation of researchers is that extracellular matrix will be

  6. Neural correlates of stimulus spatial frequency-dependent contrast detection

    PubMed Central

    Meng, Jianjun; Liu, Ruilong; Wang, Ke; Hua, Tianmiao; Lu, Zhong-Lin; Xi, Minmin

    2016-01-01

    Psychophysical studies on human and non-human vertebrate species have shown that visual contrast sensitivity function (CSF) peaks at a certain stimulus spatial frequency and declines in both lower and higher spatial frequencies. The underlying neural substrate and mechanisms remain in debate. Here, we investigated the role of primary visual cortex (V1: area 17) in spatial frequency-dependent contrast detection in cats. Perceptual CSFs of three cats were measured using a two-alternative forced choice task. The responses of V1 neurons to their optimal visual stimuli in a range of luminance contrast levels (from 0 to 1.0) were recorded subsequently using in vivo extracellular single-unit recording techniques. The contrast sensitivity of each neuron was determined. The neuronal CSF for each cat was constructed from the mean contrast sensitivity of neurons with different preferred stimulus spatial frequencies. Results (1) The perceptual and neuronal CSFs of each of the three cats exhibited a similar shape with peak amplitude near 0.4 c/deg. (2) The neuronal CSF of each cat was highly correlated with its perceptual CSF. (3) V1 neurons with different preferred stimulus spatial frequencies had different contrast gains. Conclusion (1) Contrast detection of visual stimuli with different spatial frequencies may likely involve population coding of V1 neurons with different preferred stimulus spatial frequencies. (2) Difference in contrast-gain may underlie the observed contrast sensitivity variation of V1 neurons with different preferred stimulus spatial frequencies, possibly from either evolution or postnatal visual experiences. PMID:23314692

  7. Light Regimes Shape Utilization of Extracellular Organic C and N in a Cyanobacterial Biofilm

    PubMed Central

    Stuart, Rhona K.; Mayali, Xavier; Boaro, Amy A.; Zemla, Adam; Everroad, R. Craig; Nilson, Daniel; Weber, Peter K.; Lipton, Mary; Bebout, Brad M.; Pett-Ridge, Jennifer

    2016-01-01

    ABSTRACT Although it is becoming clear that many microbial primary producers can also play a role as organic consumers, we know very little about the metabolic regulation of photoautotroph organic matter consumption. Cyanobacteria in phototrophic biofilms can reuse extracellular organic carbon, but the metabolic drivers of extracellular processes are surprisingly complex. We investigated the metabolic foundations of organic matter reuse by comparing exoproteome composition and incorporation of 13C-labeled and 15N-labeled cyanobacterial extracellular organic matter (EOM) in a unicyanobacterial biofilm incubated using different light regimes. In the light and the dark, cyanobacterial direct organic C assimilation accounted for 32% and 43%, respectively, of all organic C assimilation in the community. Under photosynthesis conditions, we measured increased excretion of extracellular polymeric substances (EPS) and proteins involved in micronutrient transport, suggesting that requirements for micronutrients may drive EOM assimilation during daylight hours. This interpretation was supported by photosynthesis inhibition experiments, in which cyanobacteria incorporated N-rich EOM-derived material. In contrast, under dark, C-starved conditions, cyanobacteria incorporated C-rich EOM-derived organic matter, decreased excretion of EPS, and showed an increased abundance of degradative exoproteins, demonstrating the use of the extracellular domain for C storage. Sequence-structure modeling of one of these exoproteins predicted a specific hydrolytic activity that was subsequently detected, confirming increased EOM degradation in the dark. Associated heterotrophic bacteria increased in abundance and upregulated transport proteins under dark relative to light conditions. Taken together, our results indicate that biofilm cyanobacteria are successful competitors for organic C and N and that cyanobacterial nutrient and energy requirements control the use of EOM. PMID:27353754

  8. Antimicrobial activities of clarithromycin, gatifloxacin and sitafloxacin, in combination with various antimycobacterial drugs against extracellular and intramacrophage Mycobacterium avium complex.

    PubMed

    Tomioka, Haruaki; Sano, Chiaki; Sato, Katsumasa; Shimizu, Toshiaki

    2002-02-01

    We studied the activities of clarithromycin and fluoroquinolones (gatifloxacin, sitafloxacin, levofloxacin) in combination with other antimycobacterial drugs against extracellular and intramacrophage Mycobacterium avium complex (MAC). Clarithromycin potentiated the activities of rifampicin and rifalazil against both extracellular and intramacrophage MAC. In contrast, all the test quinolones exhibited antagonistic effects against extracellular MAC when combined with either clarithromycin or rifamycins. Such an antagonism was not observed for the activity of these combinations against intramacrophage MAC. Combined effects were observed with combinations of these fluoroquinolones with either ethambutol or streptomycin. Similar profiles were seen for the activities of two-drug combinations of clarithromycin or fluoroquinolones with other drugs against intramacrophage MAC isolated from pulmonary and disseminated MAC infections. PMID:11850167

  9. How Neutrophil Extracellular Traps Become Visible

    PubMed Central

    2016-01-01

    Neutrophil extracellular traps (NETs) have been identified as a fundamental innate immune defense mechanism against different pathogens. NETs are characterized as released nuclear DNA associated with histones and granule proteins, which form an extracellular web-like structure that is able to entrap and occasionally kill certain microbes. Furthermore, NETs have been shown to contribute to several noninfectious disease conditions when released by activated neutrophils during inflammation. The identification of NETs has mainly been succeeded by various microscopy techniques, for example, immunofluorescence microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Since the last years the development and improvement of new immunofluorescence-based techniques enabled optimized visualization and quantification of NETs. On the one hand in vitro live-cell imaging led to profound new ideas about the mechanisms involved in the formation and functionality of NETs. On the other hand different intravital, in vivo, and in situ microscopy techniques led to deeper insights into the role of NET formation during health and disease. This paper presents an overview of the main used microscopy techniques to visualize NETs and describes their advantages as well as disadvantages. PMID:27294157

  10. Brain Extracellular Space as a Diffusion Barrier

    PubMed Central

    Nicholson, Charles; Kamali-Zare, Padideh; Tao, Lian

    2012-01-01

    The extracellular space (ECS) consists of the narrow channels between brain cells together with their geometrical configuration and contents. Despite being only 20–60 nm in width, the ECS typically occupies 20% of the brain volume. Numerous experiments over the last 50 years have established that molecules moving through the ECS obey the laws of diffusion but with an effective diffusion coefficient reduced by a factor of about 2.6 compared to free diffusion. This review considers the origins of the diffusion barrier arising from the ECS and its properties. The paper presents a brief overview of software for implementing two point-source paradigms for measurements of localized diffusion properties: the real-time iontophoresis or pressure method for small ions and the integrative optical imaging method for macromolecules. Selected results are presented. This is followed by a discussion of the application of the MCell Monte Carlo simulation program to determining the importance of geometrical constraints, especially dead-space microdomains, and the possible role of interaction with the extracellular matrix. It is concluded that we can predict the impediment to diffusion of many molecules of practical importance and also use studies of the diffusion of selected molecular probes to reveal the barrier properties of the ECS. PMID:23172993

  11. Instructive Roles of Extracellular Matrix on Autophagy

    PubMed Central

    Neill, Thomas; Schaefer, Liliana; Iozzo, Renato V.

    2015-01-01

    Autophagy plays an essential role in maintaining an intricate balance between nutrient demands and energetic requirements during normal homeostasis. Autophagy recycles metabolic substrates from nonspecific bulk degradation of proteins and excess or damaged organelles. Recent work posits an active and dynamic signaling role for extracellular matrix-evoked autophagic regulation, that is, allosteric and independent of prevailing nutrient conditions. Several candidates, representing a diverse repertoire of matrix constituents (decorin, collagen VI, laminin α2, endostatin, endorepellin, and kringle V), can modulate autophagic signaling pathways. Importantly, a novel principle indicates that matrix constituents can differentially modulate autophagic induction and repression via interaction with specific receptors. Most of the matrix-derived factors described here appear to control autophagy in a canonical manner but independent of nutrient deprivation. Because the molecular composition and structure of the extracellular matrix are dynamically remodeled during various physiological and pathological conditions, we propose that matrix-regulated autophagy is key for maintaining proper tissue homeostasis and disease prevention, such as cancer progression and muscular dystrophies. PMID:24976620

  12. Quantification of extracellular UDP-galactose

    PubMed Central

    Lazarowski, Eduardo R.

    2009-01-01

    The human P2Y14 receptor is potently activated by UDP-glucose (UDP-Glc), UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine (UDP-GlcNAc), and UDP-glucuronic acid. Recently, cellular release of UDP-Glc and UDP-GlcNAc has been reported, but whether additional UDP-sugars are endogenous agonists for the P2Y14 receptor remains poorly defined. In the present study, we describe an assay for the quantification of UDP-Gal with sub-nanomolar sensitivity. This assay is based on the enzymatic conversion of UDP-Gal to UDP, using 1–4-β-galactosyltransferase. UDP is subsequently phosphorylated by nucleoside diphosphokinase in the presence of [γ32P]ATP and the formation of [γ32P]UTP is monitored by high performance liquid chromatography. The overall conversion of UDP-Gal to [γ32P]UTP was linear between 0.5 and 30 nM UDP-Gal. Extracellular UDP-Gal was detected on resting cultures of various cell types, and increased release of UDP-Gal was observed in 1321N1 human astrocytoma cells stimulated with the protease-activated receptor agonist thrombin. Occurrence of regulated release of UDP-Gal suggests that, in addition to its role in glycosylation reactions, UDP-Gal is an important extracellular signaling molecule. PMID:19699703

  13. Probing extracellular Sonic hedgehog in neurons

    PubMed Central

    Eitan, Erez; Petralia, Ronald S.; Wang, Ya-Xian; Indig, Fred E.; Mattson, Mark P.

    2016-01-01

    ABSTRACT The bioactivity of Sonic hedgehog (Shh) depends on specific lipid modifications; a palmitate at its N-terminus and a cholesterol at its C-terminus. This dual-lipid modification makes Shh molecules lipophilic, which prevents them from diffusing freely in extracellular space. Multiple lines of evidence indicate that Shh proteins are carried by various forms of extracellular vesicles (EVs). It also has been shown, for instance, that in some tissues Shh proteins are transported to neighboring cells directly via filopodia. We have previously reported that Shh proteins are expressed in hippocampal neurons. In this study we show that, in the hippocampus and cerebellum of postnatal day (P)2 rats, Shh is mostly found near or on the membrane surface of small neurites or filopodia. We also examined cultured hippocampal neurons where we observed noticeable and widespread Shh-immunolabeled vesicles located outside neurons. Through immunoelectron microscopy and biochemical analysis, we find Shh-containing EVs with a wide range of sizes. Unlike robust Shh activity in EVs isolated from cells overexpressing an N-terminal Shh fragment construct, we did not detect measurable Shh activity in EVs purified from the medium of cultured hippocampal neurons. These results suggest the complexity of the transcellular Shh signaling mechanisms in neurons. PMID:27387534

  14. Extracellular metabolic energetics can promote cancer progression.

    PubMed

    Loo, Jia Min; Scherl, Alexis; Nguyen, Alexander; Man, Fung Ying; Weinberg, Ethan; Zeng, Zhaoshi; Saltz, Leonard; Paty, Philip B; Tavazoie, Sohail F

    2015-01-29

    Colorectal cancer primarily metastasizes to the liver and globally kills over 600,000 people annually. By functionally screening 661 microRNAs (miRNAs) in parallel during liver colonization, we have identified miR-551a and miR-483 as robust endogenous suppressors of liver colonization and metastasis. These miRNAs convergently target creatine kinase, brain-type (CKB), which phosphorylates the metabolite creatine, to generate phosphocreatine. CKB is released into the extracellular space by metastatic cells encountering hepatic hypoxia and catalyzes production of phosphocreatine, which is imported through the SLC6A8 transporter and used to generate ATP—fueling metastatic survival. Combinatorial therapeutic viral delivery of miR-551a and miR-483-5p through single-dose adeno-associated viral (AAV) delivery significantly suppressed colon cancer metastasis, as did CKB inhibition with a small-molecule inhibitor. Importantly, human liver metastases express higher CKB and SLC6A8 levels and reduced miR-551a/miR-483 levels relative to primary tumors. We identify the extracellular space as an important compartment for malignant energetic catalysis and therapeutic targeting. PMID:25601461

  15. Defining the extracellular matrix using proteomics

    PubMed Central

    Byron, Adam; Humphries, Jonathan D; Humphries, Martin J

    2013-01-01

    The cell microenvironment has a profound influence on the behaviour, growth and survival of cells. The extracellular matrix (ECM) provides not only mechanical and structural support to cells and tissues but also binds soluble ligands and transmembrane receptors to provide spatial coordination of signalling processes. The ability of cells to sense the chemical, mechanical and topographical features of the ECM enables them to integrate complex, multiparametric information into a coherent response to the surrounding microenvironment. Consequently, dysregulation or mutation of ECM components results in a broad range of pathological conditions. Characterization of the composition of ECM derived from various cells has begun to reveal insights into ECM structure and function, and mechanisms of disease. Proteomic methodologies permit the global analysis of subcellular systems, but extracellular and transmembrane proteins present analytical difficulties to proteomic strategies owing to the particular biochemical properties of these molecules. Here, we review advances in proteomic approaches that have been applied to furthering our understanding of the ECM microenvironment. We survey recent studies that have addressed challenges in the analysis of ECM and discuss major outcomes in the context of health and disease. In addition, we summarize efforts to progress towards a systems-level understanding of ECM biology. PMID:23419153

  16. Cardiac Physiology of Aging: Extracellular Considerations.

    PubMed

    Horn, Margaux A

    2015-07-01

    Aging is a major risk factor for the development of cardiovascular disease, with the majority of affected patients being elderly. Progressive changes to myocardial structure and function occur with aging, often in concert with underlying pathologies. However, whether chronological aging results in a remodeled "aged substrate" has yet to be established. In addition to myocyte contractility, myocardial performance relies heavily on the cardiac extracellular matrix (ECM), the roles of which are as dynamic as they are significant; including providing structural integrity, assisting in force transmission throughout the cardiac cycle and acting as a signaling medium for communication between cells and the extracellular environment. In the healthy heart, ECM homeostasis must be maintained, and matrix deposition is in balance with degradation. Consequently, alterations to, or misregulation of the cardiac ECM has been shown to occur in both aging and in pathological remodeling with disease. Mounting evidence suggests that age-induced matrix remodeling may occur at the level of ECM control; including collagen synthesis, deposition, maturation, and degradation. Furthermore, experimental studies using aged animal models not only suggest that the aged heart may respond differently to insult than the young, but the identification of key players specific to remodeling with age may hold future therapeutic potential for the treatment of cardiac dysfunction in the elderly. This review will focus on the role of the cardiac interstitium in the physiology of the aging myocardium, with particular emphasis on the implications to age-related remodeling in disease. PMID:26140710

  17. Nanomechanics of the Cartilage Extracellular Matrix

    PubMed Central

    Han, Lin; Grodzinsky, Alan J.; Ortiz, Christine

    2012-01-01

    Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology. PMID:22792042

  18. Probing extracellular Sonic hedgehog in neurons.

    PubMed

    Eitan, Erez; Petralia, Ronald S; Wang, Ya-Xian; Indig, Fred E; Mattson, Mark P; Yao, Pamela J

    2016-01-01

    The bioactivity of Sonic hedgehog (Shh) depends on specific lipid modifications; a palmitate at its N-terminus and a cholesterol at its C-terminus. This dual-lipid modification makes Shh molecules lipophilic, which prevents them from diffusing freely in extracellular space. Multiple lines of evidence indicate that Shh proteins are carried by various forms of extracellular vesicles (EVs). It also has been shown, for instance, that in some tissues Shh proteins are transported to neighboring cells directly via filopodia. We have previously reported that Shh proteins are expressed in hippocampal neurons. In this study we show that, in the hippocampus and cerebellum of postnatal day (P)2 rats, Shh is mostly found near or on the membrane surface of small neurites or filopodia. We also examined cultured hippocampal neurons where we observed noticeable and widespread Shh-immunolabeled vesicles located outside neurons. Through immunoelectron microscopy and biochemical analysis, we find Shh-containing EVs with a wide range of sizes. Unlike robust Shh activity in EVs isolated from cells overexpressing an N-terminal Shh fragment construct, we did not detect measurable Shh activity in EVs purified from the medium of cultured hippocampal neurons. These results suggest the complexity of the transcellular Shh signaling mechanisms in neurons. PMID:27387534

  19. Extracellular domain dependence of PTPα transforming activity

    PubMed Central

    Zheng, Xinmin; Holsinger, Leslie J.; Shalloway, David

    2016-01-01

    Two isoforms of the transmembrane protein tyrosine phosphatase PTPα, which differ by nine amino acids in their extracellular regions, are expressed in a tissue-specific manner. Over-expression of the shorter isoform transforms rodent cells, and it has previously been reasonable to assume that this was a direct consequence of its dephosphorylation and activation of Src. Transformation by the longer wild-type isoform has not previously been studied. We tested the activities of both isoforms in NIH3T3 cells and found that, while both dephosphorylated and activated Src similarly, only the shorter isoform induced focus formation or anchorage-independent growth. Differences in phosphorylation of PTPα at its known regulatory sites, Grb2 binding to PTPα, phosphorylation level of focal adhesion kinase by PTPα, or overall localization were excluded as possible explanations for the differences in transforming activities. The results suggest that transformation by PTPα involves at least one function other than, or in addition to, its activation of Src and that this depends on PTPα’s extracellular domain. Previous studies have suggested that PTPα might be a useful target in breast and colon cancer therapy, and the results presented here suggest that it may be advantageous to develop isoform-specific therapeutic reagents. PMID:20545765

  20. Extracellular Spermine Exacerbates Ischemic Neuronal Injury through Sensitization of ASIC1a Channels to Extracellular Acidosis

    PubMed Central

    Duan, Bo; Wang, Yi-Zhi; Yang, Tao; Chu, Xiang-Ping; Yu, Ye; Huang, Yu; Cao, Hui; Hansen, Jillian; Simon, Roger P.; Zhu, Michael X.; Xiong, Zhi-Gang; Xu, Tian-Le

    2011-01-01

    Ischemic brain injury is a major problem associated with stroke. It has been increasingly recognized that acid-sensing ion channels (ASICs) contribute significantly to ischemic neuronal damage, but the underlying mechanism has remained elusive. Here, we show that extracellular spermine, one of the endogenous polyamines, exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. Pharmacological blockade of ASIC1a or deletion of the ASIC1 gene greatly reduces the enhancing effect of spermine in ischemic neuronal damage both in cultures of dissociated neurons and in a mouse model of focal ischemia. Mechanistically, spermine profoundly reduces desensitization of ASIC1a by slowing down desensitization in the open state, shifting steady-state desensitization to more acidic pH, and accelerating recovery between repeated periods of acid stimulation. Spermine-mediated potentiation of ASIC1a activity is occluded by PcTX1 (psalmotoxin 1), a specific ASIC1a inhibitor binding to its extracellular domain. Functionally, the enhanced channel activity is accompanied by increased acid-induced neuronal membrane depolarization and cytoplasmic Ca2+ overload, which may partially explain the exacerbated neuronal damage caused by spermine. More importantly, blocking endogenous spermine synthesis significantly attenuates ischemic brain injury mediated by ASIC1a but not that by NMDA receptors. Thus, extracellular spermine contributes significantly to ischemic neuronal injury through enhancing ASIC1a activity. Our data suggest new neuroprotective strategies for stroke patients via inhibition of polyamine synthesis and subsequent spermine–ASIC interaction. PMID:21307247

  1. The extracellular compartments of frog skeletal muscle.

    PubMed Central

    Neville, M C; Mathias, R T

    1979-01-01

    1. Detailed studies of solute efflux from frog sartorius muscle and single muscle fibres were carried out in order to characterize a 'special region' (Harris, 1963) in the extracellular space of muscle and determine whether this 'special region' is the sarcoplasmic reticulum. 2. The efflux of radioactive Na, Cl, glusose, 3-O-methylglucose, xylose, glycine, leucine, cycloleucine, Rb, K, inulin (mol. wt. 5000) and dextran (mol. wt. 17,000) from previously loaded muscles was studied. In all cases except dextran the curve had three components, a rapid (A) component which could be equated with efflux from the extracellular space proper, a slow (C) component representing cellular solute and an intermediate (B) component. The distribution space for the B component was 8% of muscle volume in summer frogs and 12% in winter frogs and appeared to be equal for all compounds studied. We tested the hypothesis that the B component originated from the sarcoplasmic reticulum. 3. The C component was missing from the dextran curves. Both dextran and inulin entered the compartment of origin of the B component (compartment B) to the same extent as small molecules. 4. For all compounds studies, the efflux rate constant for the A component could be predicted from the diffusion coefficient. For the B component the efflux rate constant was 6--10 times slower than that for the A component but was still proportional to the diffusion coefficient for the solute in question. 5. When Na and sucrose efflux from single fibres was followed, a B component was usually observed. The average distribution space for this component was small, averaging 1.5% of fibre volume. There was no difference between the average efflux rate constants for Na and sucrose. 6. In an appendix, the constraints placed on the properties of a hypothetical channel between the sarcoplasmic reticulum and the T-system by the linear electrical parameters of frog skeletal muscle are derived. It is shown that the conductance of such

  2. Electrokinesis is a microbial behavior that requires extracellular electron transport

    PubMed Central

    Harris, H. W.; El-Naggar, M. Y.; Bretschger, O.; Ward, M. J.; Romine, M. F.; Obraztsova, A. Y.; Nealson, K. H.

    2009-01-01

    We report a previously undescribed bacterial behavior termed electrokinesis. This behavior was initially observed as a dramatic increase in cell swimming speed during reduction of solid MnO2 particles by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The same behavioral response was observed when cells were exposed to small positive applied potentials at the working electrode of a microelectrochemical cell and could be tuned by adjusting the potential on the working electrode. Electrokinesis was found to be different from both chemotaxis and galvanotaxis but was absent in mutants defective in electron transport to solid metal oxides. Using in situ video microscopy and cell tracking algorithms, we have quantified the response for different strains of Shewanella and shown that the response correlates with current-generating capacity in microbial fuel cells. The electrokinetic response was only exhibited by a subpopulation of cells closest to the MnO2 particles or electrodes. In contrast, the addition of 1 mM 9,10-anthraquinone-2,6-disulfonic acid, a soluble electron shuttle, led to increases in motility in the entire population. Electrokinesis is defined as a behavioral response that requires functional extracellular electron transport and that is observed as an increase in cell swimming speeds and lengthened paths of motion that occur in the proximity of a redox active mineral surface or the working electrode of an electrochemical cell. PMID:20018675

  3. Electrokinesis is a microbial behavior that requires extracellular electron transport.

    PubMed

    Harris, H W; El-Naggar, M Y; Bretschger, O; Ward, M J; Romine, M F; Obraztsova, A Y; Nealson, K H

    2010-01-01

    We report a previously undescribed bacterial behavior termed electrokinesis. This behavior was initially observed as a dramatic increase in cell swimming speed during reduction of solid MnO(2) particles by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The same behavioral response was observed when cells were exposed to small positive applied potentials at the working electrode of a microelectrochemical cell and could be tuned by adjusting the potential on the working electrode. Electrokinesis was found to be different from both chemotaxis and galvanotaxis but was absent in mutants defective in electron transport to solid metal oxides. Using in situ video microscopy and cell tracking algorithms, we have quantified the response for different strains of Shewanella and shown that the response correlates with current-generating capacity in microbial fuel cells. The electrokinetic response was only exhibited by a subpopulation of cells closest to the MnO(2) particles or electrodes. In contrast, the addition of 1 mM 9,10-anthraquinone-2,6-disulfonic acid, a soluble electron shuttle, led to increases in motility in the entire population. Electrokinesis is defined as a behavioral response that requires functional extracellular electron transport and that is observed as an increase in cell swimming speeds and lengthened paths of motion that occur in the proximity of a redox active mineral surface or the working electrode of an electrochemical cell. PMID:20018675

  4. Extracellular Protease Digestion to Evaluate Membrane Protein Cell Surface Localization

    PubMed Central

    Besingi, Richard N.; Clark, Patricia L.

    2016-01-01

    Membrane proteins play crucial roles in signaling and as anchors for cell surface display. Proper secretion of a membrane protein can be evaluated by its susceptibility to digestion by an extracellular protease, but this requires a crucial control to confirm membrane integrity during digestion. This protocol describes how to use this approach to determine how efficiently a protein is secreted to the outer surface of Gram-negative bacteria. Its success relies upon careful selection of an appropriate intracellular reporter protein that will remain undigested if the membrane barrier remains intact, but is rapidly digested when cells are lysed prior to evaluation. Reporter proteins that are resistant to proteases (e.g. maltose-binding protein) do not return accurate results; in contrast, proteins that are more readily digested (e.g. SurA) serve as more sensitive reporters of membrane integrity, yielding more accurate measurements of membrane protein localization. Similar considerations apply when evaluating membrane protein localization in other contexts, including eukaryotic cells and organelle membranes. Evaluating membrane protein localization using this approach requires only standard biochemistry laboratory equipment for cell lysis, gel electrophoresis and western blotting. After expression of the protein of interest, this procedure can be completed in 4 h. PMID:26584447

  5. Sulfhydryl Binding Sites within Bacterial Extracellular Polymeric Substances.

    PubMed

    Yu, Qiang; Fein, Jeremy B

    2016-06-01

    In this study, the concentration of sulfhydryl sites on bacterial biomass samples with and without extracellular polymeric substances (EPS) was measured in order to determine the distribution of sulfhydryl sites on bacteria. Three different approaches were employed for EPS removal from Pseudomonas putida, and the measured sulfhydryl concentrations on bacterial EPS molecules are independent of the EPS removal protocols used. Prior to EPS removal, the measured sulfhydryl sites within P. putida samples was 34.9 ± 9.5 μmol/g, and no sulfhydryl sites were detected after EPS removal, indicating that virtually all of the sulfhydryl sites are located on the EPS molecules produced by P. putida. In contrast, the sulfhydryl sites within the S. oneidensis samples increased from 32.6 ± 3.6 μmol/g to 51.9 ± 7.2 μmol/g after EPS removal, indicating that the EPS produced by S. oneidensis contained fewer sulfhydryl sites than those present on the untreated cells. This study suggests that the sulfhydryl concentrations on EPS molecules may vary significantly from one bacterial species to another, thus it is crucial to quantify the concentration of sulfhydryl sites on EPS molecules of other bacterial species in order to determine the effect of bacterial EPS on metal cycling in the environment. PMID:27177017

  6. Phenotyping of Leukocytes and Leukocyte-Derived Extracellular Vesicles

    PubMed Central

    Pugholm, Lotte Hatting; Bæk, Rikke; Søndergaard, Evo Kristina Lindersson; Revenfeld, Anne Louise Schacht; Jørgensen, Malene Møller; Varming, Kim

    2016-01-01

    Extracellular vesicles (EVs) have a demonstrated involvement in modulating the immune system. It has been proposed that EVs could be used as biomarkers for detection of inflammatory and immunological disorders. Consequently, it is of great interest to investigate EVs in more detail with focus on immunological markers. In this study, five major leukocyte subpopulations and the corresponding leukocyte-derived EVs were phenotyped with focus on selected immunological lineage-specific markers and selected vesicle-related markers. The leukocyte-derived EVs displayed phenotypic differences in the 34 markers investigated. The majority of the lineage-specific markers used for identification of the parent cell types could not be detected on EVs released from monocultures of the associated cell types. In contrast, the vesicular presentation of CD9, CD63, and CD81 correlated to the cell surface expression of these markers, however, with few exceptions. Furthermore, the cellular expression of CD9, CD63, and CD81 varied between leukocytes present in whole blood and cultured leukocytes. In summary, these data demonstrate that the cellular and vesicular presentation of selected lineage-specific and vesicle-related markers may differ, supporting the accumulating observations that sorting of molecular cargo into EVs is tightly controlled. PMID:27195303

  7. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    PubMed Central

    Eisenberg, Jessica L; Safi, Asmahan; Wei, Xiaoding; Espinosa, Horacio D; Budinger, GR Scott; Takawira, Desire; Hopkinson, Susan B; Jones, Jonathan CR

    2012-01-01

    Aim The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC) in the lung, including their deposition and organization of extracellular matrix (ECM) proteins. Methods Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy. Results We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM. Conclusions An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung. PMID:23204878

  8. Mechanocompatible Polymer-Extracellular-Matrix Composites for Vascular Tissue Engineering.

    PubMed

    Jiang, Bin; Suen, Rachel; Wang, Jiao-Jing; Zhang, Zheng J; Wertheim, Jason A; Ameer, Guillermo A

    2016-07-01

    Small-diameter vascular grafts developed from vascular extracellular matrix (ECM) can potentially be used for bypass surgeries and other vascular reconstruction and repair procedures. The addition of heparin to the ECM improves graft hemocompatibility but often involves chemical cross-linking, which increases ECM mechanical stiffness compared to native arteries. Herein, the importance of maintaining ECM mechanocompatibility is demonstrated, and a mechanocompatible strategy to immobilize heparin onto the ECM via a biodegradable elastomer is described. Specifically, poly(1,8-octamethylene citrate)-co-cysteine is hybridized to the ECM, forming a polymer-ECM composite that allows for heparin immobilization via maleimide-thiol "click" chemistry. Heparinized composites reduce platelet adhesion by >60% in vitro, without altering the elastic modulus of the ECM. In a rat abdominal aortic interposition model, intimal hyperplasia in heparinized mechanocompatible grafts is 65% lower when compared to ECM-only control grafts at four weeks. In contrast, grafts that are heparinized with carbodiimide chemistry exhibit increased intimal hyperplasia (4.2-fold) and increased macrophage infiltration (3.5-fold) compared to ECM-only control grafts. All grafts show similar, partial endothelial cell coverage and little to no ECM remodeling. Overall, a mechanocompatible strategy to improve ECM thromboresistance is described and the importance of ECM mechanical properties for proper in vivo graft performance is highlighted. PMID:27109033

  9. Pattern specificity of contrast adaptation

    PubMed Central

    Anstis, Stuart

    2014-01-01

    Contrast adaptation is specific to precisely localised edges, so that adapting to a flickering photograph makes one less sensitive to that same photograph, but not to similar photographs. When two low-contrast photos, A and B, are transparently superimposed, then adapting to a flickering high-contrast B leaves no net afterimage, but it makes B disappear from the A+B picture, which now simply looks like A. PMID:25165518

  10. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  11. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  12. Extracellular RNAs: development as biomarkers of human disease.

    PubMed

    Quinn, Joseph F; Patel, Tushar; Wong, David; Das, Saumya; Freedman, Jane E; Laurent, Louise C; Carter, Bob S; Hochberg, Fred; Van Keuren-Jensen, Kendall; Huentelman, Matt; Spetzler, Robert; Kalani, M Yashar S; Arango, Jorge; Adelson, P David; Weiner, Howard L; Gandhi, Roopali; Goilav, Beatrice; Putterman, Chaim; Saugstad, Julie A

    2015-01-01

    Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined. PMID:26320940

  13. Extracellular RNAs: development as biomarkers of human disease

    PubMed Central

    Quinn, Joseph F.; Patel, Tushar; Wong, David; Das, Saumya; Freedman, Jane E.; Laurent, Louise C.; Carter, Bob S.; Hochberg, Fred; Keuren-Jensen, Kendall Van; Huentelman, Matt; Spetzler, Robert; Kalani, M. Yashar S.; Arango, Jorge; Adelson, P. David; Weiner, Howard L.; Gandhi, Roopali; Goilav, Beatrice; Putterman, Chaim; Saugstad, Julie A.

    2015-01-01

    Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined. PMID:26320940

  14. The Pseudomonas aeruginosa extracellular secondary metabolite, Paerucumarin, chelates iron and is not localized to extracellular membrane vesicles.

    PubMed

    Qaisar, Uzma; Kruczek, Cassandra J; Azeem, Muhammed; Javaid, Nasir; Colmer-Hamood, Jane A; Hamood, Abdul N

    2016-08-01

    Proteins encoded by the Pseudomonas aeruginosa pvcA-D operon synthesize a novel isonitrile functionalized cumarin termed paerucumarin. The pvcA-D operon enhances the expression of the P. aeruginosa fimbrial chaperone/usher pathway (cup) genes and this effect is mediated through paerucumarin. Whether pvcA-D and/or paerucumarin affect the expression of other P. aeruginosa genes is not known. In this study, we examined the effect of a mutation in pvcA-D operon the global transcriptome of the P. aeruginosa strain PAO1-UW. The mutation reduced the expression of several ironcontrolled genes including pvdS, which is essential for the expression of the pyoverdine genes. Additional transcriptional studies showed that the pvcA-D operon is not regulated by iron. Exogenously added paerucumarin enhanced pyoverdine production and pvdS expression in PAO1-UW. Iron-chelation experiments revealed that purified paerucumarin chelates iron. However, exogenously added paerucumarin significantly reduced the growth of a P. aeruginosa mutant defective in pyoverdine and pyochelin production. In contrast to other secondary metabolite, Pseudomonas quinolone signal (PQS), paerucumarin is not localized to the P. aeruginosa membrane vesicles. These results suggest that paerucumarin enhances the expression of iron-controlled genes by chelating iron within the P. aeruginosa extracellular environment. Although paerucumarin chelates iron, it does not function as a siderophore. Unlike PQS, paerucumarin is not associated with the P. aeruginosa cell envelope. PMID:27480638

  15. Active endocannabinoids are secreted on extracellular membrane vesicles.

    PubMed

    Gabrielli, Martina; Battista, Natalia; Riganti, Loredana; Prada, Ilaria; Antonucci, Flavia; Cantone, Laura; Matteoli, Michela; Maccarrone, Mauro; Verderio, Claudia

    2015-02-01

    Endocannabinoids primarily influence neuronal synaptic communication within the nervous system. To exert their function, endocannabinoids need to travel across the intercellular space. However, how hydrophobic endocannabinoids cross cell membranes and move extracellularly remains an unresolved problem. Here, we show that endocannabinoids are secreted through extracellular membrane vesicles produced by microglial cells. We demonstrate that microglial extracellular vesicles carry on their surface N-arachidonoylethanolamine (AEA), which is able to stimulate type-1 cannabinoid receptors (CB1), and inhibit presynaptic transmission, in target GABAergic neurons. This is the first demonstration of a functional role of extracellular vesicular transport of endocannabinoids. PMID:25568329

  16. Multi-contrast photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Hu, S.; Sohn, R.; Lu, Z.-H.; Soetikno, B.; Zhong, Q.; Yao, J.; Maslov, K.; Arbeit, J. M.; Wang, L. V.

    2012-02-01

    We developed multi-contrast photoacoustic microscopy (PAM) for in vivo anatomical, functional, metabolic, and molecular imaging. This technical innovation enables comprehensive understanding of the tumor microenvironment. With multi-contrast PAM, we longitudinally determined tumor vascular anatomy, blood flow, oxygen saturation of hemoglobin, and oxygen extraction fraction.

  17. Image Contrast in Holographic Reconstructions

    ERIC Educational Resources Information Center

    Russell, B. R.

    1969-01-01

    The fundamental concepts of holography are explained using elementary wave ideas. Discusses wavefront reconstruction and contrast in hemigraphic images. The consequence of recording only the intensity at a given surface and using an oblique reference wave is shown to be an incomplete reconstruction resulting in image of low contrast. (LC)

  18. Faithful Contrastive Features in Learning

    ERIC Educational Resources Information Center

    Tesar, Bruce

    2006-01-01

    This article pursues the idea of inferring aspects of phonological underlying forms directly from surface contrasts by looking at optimality theoretic linguistic systems (Prince & Smolensky, 1993/2004). The main result proves that linguistic systems satisfying certain conditions have the faithful contrastive feature property: Whenever 2 distinct…

  19. Extracellular matrix and pathogenic mechanisms in osteoarthritis.

    PubMed

    Hardingham, Tim

    2008-01-01

    Osteoarthritis (OA) is a heterogeneous condition of joint degeneration characterized by structural changes in extracellular matrices such as subchondral bone and cartilage. Research has identified many diverse ways of initiating OA, varying from mechanical disruption to gene mutations in structural proteins. A frequent end point is cartilage loss, which can occur irrespective of the initiating mechanism. Of the mechanisms responsible for cartilage matrix damage, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 was identified as of key importance in knockout mice, but work with human cartilage has suggested that ADAMTS-4 was also involved. A transgenic mouse expressing aggrecan lacking a key aggrecanase site clearly showed that loss of aggrecan from cartilage was an important step in both inflammatory and trauma-induced joint degeneration. In OA, cartilage chondrocytes show changes in gene expression, and it remains to be resolved if this reflects adaptive responses to changes in biological, physical, and mechanical signaling rather than any form of differentiation. PMID:18457609

  20. The (dys)functional extracellular matrix☆

    PubMed Central

    Freedman, Benjamin R.; Bade, Nathan D.; Riggin, Corinne N.; Zhang, Sijia; Haines, Philip G.; Ong, Katy L.; Janmey, Paul A.

    2016-01-01

    The extracellular matrix (ECM) is a major component of the biomechanical environment with which cells interact, and it plays important roles in both normal development and disease progression. Mechanical and biochemical factors alter the biomechanical properties of tissues by driving cellular remodeling of the ECM. This review provides an overview of the structural, compositional, and mechanical properties of the ECM that instruct cell behaviors. Case studies are reviewed that highlight mechanotransduction in the context of two distinct tissues: tendons and the heart. Although these two tissues demonstrate differences in relative cell–ECM composition and mechanical environment, they share similar mechanisms underlying ECM dysfunction and cell mechanotransduction. Together, these topics provide a framework for a fundamental understanding of the ECM and how it may vary across normal and diseased tissues in response to mechanical and biochemical cues. This article is part of a Special Issue entitled: Mechanobiology. PMID:25930943

  1. Extracellular Matrix Roles During Cardiac Repair

    PubMed Central

    Jourdan-LeSaux, Claude; Zhang, Jianhua; Lindsey, Merry L.

    2010-01-01

    The cardiac extracellular matrix (ECM) provides a platform for cells to maintain structure and function, which in turn maintains tissue function. In response to injury, the ECM undergoes remodeling that involves synthesis, incorporation, and degradation of matrix proteins, with the net outcome determined by the balance of these processes. The major goals of this review are a) to serve as an initial resource for students and investigators new to the cardiac ECM remodeling field, and b) to highlight a few of the key exciting avenues and methodologies that have recently been explored. While we focus on cardiac injury and responses of the left ventricle (LV), the mechanisms reviewed here have pathways in common with other wound healing models. PMID:20670633

  2. Extracellular matrix motion and early morphogenesis.

    PubMed

    Loganathan, Rajprasad; Rongish, Brenda J; Smith, Christopher M; Filla, Michael B; Czirok, Andras; Bénazéraf, Bertrand; Little, Charles D

    2016-06-15

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. PMID:27302396

  3. Alternative methods for characterization of extracellular vesicles.

    PubMed

    Momen-Heravi, Fatemeh; Balaj, Leonora; Alian, Sara; Tigges, John; Toxavidis, Vasilis; Ericsson, Maria; Distel, Robert J; Ivanov, Alexander R; Skog, Johan; Kuo, Winston Patrick

    2012-01-01

    Extracellular vesicles (ECVs) are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins, and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize ECVs. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some ECVs-specific evidence. Characterization of ECVs has also recently seen many advances with the use of Nanoparticle Tracking Analysis, flow cytometry, cryo-electron microscopy instruments, and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face. PMID:22973237

  4. Functions and importance of mycobacterial extracellular vesicles.

    PubMed

    Rodriguez, G Marcela; Prados-Rosales, Rafael

    2016-05-01

    The release of cellular factors by means of extracellular vesicles (EVs) is conserved in archaea, bacteria, and eukaryotes. EVs are released by growing bacteria as part of their interaction with their environment and, for pathogenic bacteria, constitute an important component of their interactions with the host. While EVs released by gram-negative bacteria have been extensively studied, the vesicles released by thick cell wall microorganisms like mycobacteria were recognized only recently and are less well understood. Nonetheless, studies of mycobacterial EVs have already suggested roles in pathogenesis, opening exciting new avenues of research aimed at understanding their biogenesis and potential use in antitubercular strategies. In this minireview, we discuss the discovery of mycobacterial vesicles, the current understanding of their nature, content, regulation, and possible functions, as well as their potential therapeutic applications. PMID:27020292

  5. The Extracellular Matrix and Insulin Resistance

    PubMed Central

    Williams, Ashley S.; Kang, Li; Wasserman, David H.

    2015-01-01

    The extracellular matrix (ECM) is a highly dynamic compartment that undergoes remodeling as a result of injury and repair. Over the past decade, mounting evidence in humans and rodents suggest that ECM remodeling is associated with diet-induced insulin resistance in several metabolic tissues. Additionally, integrin receptors for the ECM have also been implicated in the regulation of insulin action. This review will address what is currently known about the ECM, integrins and insulin action in the muscle, liver and adipose tissue. Understanding how ECM remodeling and integrin signaling regulates insulin action may aid in the development of new therapeutic targets for the treatment of insulin resistance and type 2 diabetes. PMID:26059707

  6. Stretching the boundaries of extracellular matrix research.

    PubMed

    Hynes, Richard O

    2014-12-01

    Extracellular matrix (ECM) proteins constitute >1% of the proteome and interact with many modifiers and growth factors to affect most aspects of cellular behaviour during development and normal physiology, as well as in diseases such as fibroses, cancer and many genetic disorders. In addition to biochemical signals provided to cells by ECM proteins, important cell–ECM interactions involve bidirectional mechanotransduction influences, which are dependent on the physical structure and organization of the ECM. These are beginning to be understood using twenty-first-century approaches, including biophysics, nanotechnology, biological engineering and modern microscopy. Articles in this issue of Nature Reviews Molecular Cell Biology review progress in our understanding of the ECM. PMID:25574535

  7. Extracellular Matrix Revisited: Roles in Tissue Engineering

    PubMed Central

    2016-01-01

    The extracellular matrix (ECM) is a heterogeneous, connective network composed of fibrous glycoproteins that coordinate in vivo to provide the physical scaffolding, mechanical stability, and biochemical cues necessary for tissue morphogenesis and homeostasis. This review highlights some of the recently raised aspects of the roles of the ECM as related to the fields of biophysics and biomedical engineering. Fundamental aspects of focus include the role of the ECM as a basic cellular structure, for novel spontaneous network formation, as an ideal scaffold in tissue engineering, and its essential contribution to cell sheet technology. As these technologies move from the laboratory to clinical practice, they are bound to shape the vast field of tissue engineering for medical transplantations. PMID:27230457

  8. Regulation of Immune Responses by Extracellular Vesicles

    PubMed Central

    Robbins, Paul D.; Morelli, Adrian E.

    2015-01-01

    Extracellular vesicles (EVs) including exosomes, are small membrane vesicles derived from multivesicular bodies or from the plasma membrane. Most, if not all, cell types release EVs that then enter the bodily fluids. These vesicles contain a subset of proteins, lipids and nucleic acids that are derived from the parent cell. It is postulated that EVs have important roles in intercellular communication, both locally and systemically, by transferring their contents, including protein, lipids and RNAs, between cells. EVs are involved in numerous physiological processes, and vesicles from both non-immune and immune cells have important roles in immune regulation. Moreover, EV-based therapeutics are being developed and tested clinically for treatment of inflammatory and autoimmune diseases and cancer. Given the tremendous therapeutic potential of EVs this review focuses on the role of EVs in modulating immune responses and the therapeutic applications. PMID:24566916

  9. Extracellular proteases as targets for drug development.

    PubMed

    Cudic, Mare; Fields, Gregg B

    2009-08-01

    Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV) and cysteine proteases (cathepsin B) are discussed herein. PMID:19689354

  10. Neutrophil extracellular traps in physiology and pathology

    PubMed Central

    Manda, Aneta; Araźna, Magdalena; Demkow, Urszula A.

    2014-01-01

    Neutrophil extracellular traps (NETs) are developed by nature to protect the body from furious invaders. On the other hand NET s can play an important role in human pathology. Recent studies have shown that neutrophils are able to perform beneficial suicide to create an unique microbicidal net composed from cellular content attached to chromatic frame. It is a powerful tool that primary serve as protector from severe infections, but this weapon is also a double ended sword of the immunity. If overproduced NET s provoke certain autoimmune diseases, coagulation disorders and even cancer metastases. Moreover, due to the competition between host and pathogens, the microorganism have developed a width repertoire of sophisticated evading mechanisms, like creation of polysaccharide capsule or changes in cell wall charge. Therefore it is important to increase the knowledge about paths underlying NET s formation and degradation processes if we want to efficiently fight with bacterial infections and certain diseases. PMID:26155111

  11. Achondrogenesis type II, abnormalities of extracellular matrix.

    PubMed

    Horton, W A; Machado, M A; Chou, J W; Campbell, D

    1987-09-01

    Immune and lectin histochemical and microchemical methods were employed to study growth cartilage from seven cases of achondrogenesis type II (Langer-Saldino). The normal architecture of the epiphyseal and growth plate cartilage was replaced by a morphologically heterogeneous tissue. Some areas were comprised of vascular canals surrounded by extensive fibrous tissue and enlarged cells that had the appearance and histochemical characteristics of hypertrophic chondrocytes. Other areas contained a mixture of cells ranging from small to the enlarged chondrocytes. The extracellular matrix in the latter areas was more abundant and had characteristics of both precartilage mesenchymal matrix and typical cartilage matrix; it contained types I and II collagen, cartilage proteoglycan, fibronectin, and peanut agglutinin binding glycoconjugate(s). Peptide mapping of cyanogen bromide cartilage collagen peptides revealed the presence of types I and II collagen. These observations could be explained by a defect in the biosynthesis of type II collagen or in chondrocyte differentiation. PMID:3309860

  12. Extracellular matrix component signaling in cancer.

    PubMed

    Multhaupt, Hinke A B; Leitinger, Birgit; Gullberg, Donald; Couchman, John R

    2016-02-01

    Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromolecules are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin, or basement membrane glycoproteins, but also in terms of matrix rigidity. This can regulate the release and subsequent biological activity of matrix-bound growth factors, for example, transforming growth factor-β. In the environment of tumors, there may be changes in cell populations and their receptor profiles as well as matrix constitution and protein cross-linking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression. PMID:26519775

  13. [Hematopoietic microenvironment: cellular and extracellular matrix elements].

    PubMed

    Minguell, J J; Fernández, M; Tetas, M; Martínez, J; Bruzzone, M; Rodríguez, J P

    1988-06-01

    In bone marrow, cellular stroma together with extracellular matrix (EM) provide an adequate microenvironment for the proliferation and differentiation of hemopoietic progenitor cells. In this article we describe studies on the cell characteristics of a main stromal phenotype, a fibroblast-like cell and its ability to produce in vitro EM components. Comparative studies were performed in fibroblast cultures derived from normal and acute lymphoblastic leukemic (ALL) bone marrow. The grow characteristics of fibroblasts from ALL marrow as well as its capacity to synthetize collagen, fibronectin and GAGs are impaired when compared to fibroblast from normal marrow. Thus, in ALL the impaired production of EM biomolecules by a transient damaged population of stromal cells, may contribute to the development of a defective microenvironment for hemopoiesis. PMID:3154858

  14. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine.

    PubMed

    Grolla, Ambra A; Travelli, Cristina; Genazzani, Armando A; Sethi, Jaswinder K

    2016-07-01

    In this review, we focus on the secreted form of nicotinamide phosphoribosyltransferase (NAMPT); extracellular NAMPT (eNAMPT), also known as pre-B cell colony-enhancing factor or visfatin. Although intracellular NAMPT is a key enzyme in controlling NAD metabolism, eNAMPT has been reported to function as a cytokine, with many roles in physiology and pathology. Circulating eNAMPT has been associated with several metabolic and inflammatory disorders, including cancer. Because cytokines produced in the tumour micro-environment play an important role in cancer pathogenesis, in part by reprogramming cellular metabolism, future improvements in cancer immunotherapy will require a better understanding of the crosstalk between cytokine action and tumour biology. In this review, the knowledge of eNAMPT in cancer will be discussed, focusing on its immunometabolic function as a metabokine, its secretion, its mechanism of action and possible roles in the cancer micro-environment. PMID:27128025

  15. Extracellular matrix as target for antitumor therapy

    PubMed Central

    Harisi, Revekka; Jeney, Andras

    2015-01-01

    The aim of the present review is to survey the accumulated knowledge on the extracellular matrix (ECM) of tumors referring to its putative utility as therapeutic target. Following the traditional observation on the extensive morphological alteration in the tumor-affected tissue, the well-documented aberrant cellular regulation indicated that ECM components have an active role in tumor progression. However, due to the diverse functions and variable expression of proteoglycans, matrix proteins, and integrins, it is rather difficult to identify a comprehensive therapeutic target among ECM components. At present, the elevated level of heparanase and the prominent expression of αvβ5 integrin are considered as promising therapeutic targets. The inhibition of glycosaminoglycan offers another promising approach in the treatment of those tumors which are stimulated by proteoglycans. It can be ascertained that a selective ECM inhibitor would be a great asset to control metastasis driven by ECM-mediated signaling. PMID:26089687

  16. Extracellular matrix fluctuations during early embryogenesis

    PubMed Central

    Szabó, A; Rupp, P A; Rongish, B J; Little, C D; Czirók, A

    2011-01-01

    Extracellular matrix (ECM) movements and rearrangements were studied in avian embryos during early stages of development. We show that the ECM moves as a composite material, whereby distinct molecular components as well as spatially separated layers exhibit similar displacements. Using scanning wide field and confocal microscopy we show that the velocity field of ECM displacement is smooth in space and that ECM movements are correlated even at locations separated by several hundred micrometers. Velocity vectors, however, strongly fluctuate in time. The autocorrelation time of the velocity fluctuations is less than a minute. Suppression of the fluctuations yields a persistent movement pattern that is shared among embryos at equivalent stages of development. The high resolution of the velocity fields allows a detailed spatio-temporal characterization of important morphogenetic processes, especially tissue dynamics surrounding the embryonic organizer (Hensen’s node). PMID:21750366

  17. Alternative Methods for Characterization of Extracellular Vesicles

    PubMed Central

    Momen-Heravi, Fatemeh; Balaj, Leonora; Alian, Sara; Tigges, John; Toxavidis, Vasilis; Ericsson, Maria; Distel, Robert J.; Ivanov, Alexander R.; Skog, Johan; Kuo, Winston Patrick

    2012-01-01

    Extracellular vesicles (ECVs) are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell–cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins, and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize ECVs. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some ECVs-specific evidence. Characterization of ECVs has also recently seen many advances with the use of Nanoparticle Tracking Analysis, flow cytometry, cryo-electron microscopy instruments, and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face. PMID:22973237

  18. Distinctive expression of extracellular matrix molecules at mRNA and protein levels during formation of cellular and acellular cementum in the rat.

    PubMed

    Sasano, Y; Maruya, Y; Sato, H; Zhu, J X; Takahashi, I; Mizoguchi, I; Kagayama, M

    2001-02-01

    Little is known about differential expression of extracellular matrices secreted by cementoblasts between cellular and acellular cementum. We hypothesize that cementoblasts lining acellular cementum express extracellular matrix genes differently from those lining cellular cementum, thereby forming two distinct types of extracellular matrices. To test this hypothesis, we investigated spatial and temporal gene expression of selected extracellular matrix molecules, that is type I collagen, bone sialoprotein, osteocalcin and osteopontin, during formation of both cellular and acellular cementum using in situ hybridization. In addition, their extracellularly deposited and accumulated proteins were examined immunohistochemically. The mRNA transcripts of pro-alpha1 (I) collagen were primarily localized in cementoblasts of cellular cementum and cementocytes, while those of bone sialoprotein were predominantly seen in cementoblasts lining acellular cementum. In contrast, osteocalcin was expressed by both types of cementoblasts and cementocytes and so was osteopontin but only transiently. Our immunohistochemical examination revealed that translated proteins were localized extracellularly where the genes had been expressed intracellularly. The present study demonstrated the distinctive expression of genes and proteins of the extracellular matrix molecules between cellular and acellular cementum. PMID:11432645

  19. Ciliary Extracellular Vesicles: Txt Msg Organelles.

    PubMed

    Wang, Juan; Barr, Maureen M

    2016-04-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and Caenorhabditis elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. Caenorhabditis elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport-dependent manner. Caenorhabditis elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions. Until the 21st century, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies. PMID:26983828

  20. Pneumolysin activates neutrophil extracellular trap formation.

    PubMed

    G Nel, J; Theron, A J; Durandt, C; Tintinger, G R; Pool, R; Mitchell, T J; Feldman, C; Anderson, R

    2016-06-01

    The primary objective of the current study was to investigate the potential of the pneumococcal toxin, pneumolysin (Ply), to activate neutrophil extracellular trap (NET) formation in vitro. Isolated human blood neutrophils were exposed to recombinant Ply (5-20 ng ml(-1) ) for 30-90 min at 37°C and NET formation measured using the following procedures to detect extracellular DNA: (i) flow cytometry using Vybrant® DyeCycle™ Ruby; (ii) spectrofluorimetry using the fluorophore, Sytox(®) Orange (5 μM); and (iii) NanoDrop(®) technology. These procedures were complemented by fluorescence microscopy using 4', 6-diamino-2-phenylindole (DAPI) (nuclear stain) in combination with anti-citrullinated histone monoclonal antibodies to visualize nets. Exposure of neutrophils to Ply resulted in relatively rapid (detected within 30-60 min), statistically significant (P < 0·05) dose- and time-related increases in the release of cellular DNA impregnated with both citrullinated histone and myeloperoxidase. Microscopy revealed that NETosis appeared to be restricted to a subpopulation of neutrophils, the numbers of NET-forming cells in the control and Ply-treated systems (10 and 20 ng ml(-1) ) were 4·3 (4·2), 14.3 (9·9) and 16·5 (7·5), respectively (n = 4, P < 0·0001 for comparison of the control with both Ply-treated systems). Ply-induced NETosis occurred in the setting of retention of cell viability, and apparent lack of involvement of reactive oxygen species and Toll-like receptor 4. In conclusion, Ply induces vital NETosis in human neutrophils, a process which may either contribute to host defence or worsen disease severity, depending on the intensity of the inflammatory response during pneumococcal infection. PMID:26749379

  1. Identification of a Receptor for Extracellular Renalase

    PubMed Central

    Wang, Ling; Velazquez, Heino; Chang, John; Safirstein, Robert; Desir, Gary V.

    2015-01-01

    Background An increased risk for developing essential hypertension, stroke and diabetes is associated with single nucleotide gene polymorphisms in renalase, a newly described secreted flavoprotein with oxidoreductase activity. Gene deletion causes hypertension, and aggravates acute ischemic kidney (AKI) and cardiac injury. Independent of its intrinsic enzymatic activities, extracellular renalase activates MAPK signaling and prevents acute kidney injury (AKI) in wild type (WT) mice. Therefore, we sought to identity the receptor for extracellular renalase. Methods and Results RP-220 is a previously identified, 20 amino acids long renalase peptide that is devoid of any intrinsic enzymatic activity, but it is equally effective as full-length recombinant renalase at protecting against toxic and ischemic injury. Using biotin transfer studies with RP-220 in the human proximal tubular cell line HK-2 and protein identification by mass spectrometry, we identified PMCA4b as a renalase binding protein. This previously characterized plasma membrane ATPase is involved in cell signaling and cardiac hypertrophy. Co-immunoprecipitation and co-immunolocalization confirmed protein-protein interaction between endogenous renalase and PMCA4b. Down-regulation of endogenous PMCA4b expression by siRNA transfection, or inhibition of its enzymatic activity by the specific peptide inhibitor caloxin1b each abrogated RP-220 dependent MAPK signaling and cytoprotection. In control studies, these maneuvers had no effect on epidermal growth factor mediated signaling, confirming specificity of the interaction between PMCA4b and renalase. Conclusions PMCA4b functions as a renalase receptor, and a key mediator of renalase dependent MAPK signaling. PMID:25906147

  2. Ciliary extracellular vesicles: Txt msg orgnlls

    PubMed Central

    Wang, Juan; Barr, Maureen M.

    2016-01-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and C. elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. C. elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport (IFT)-dependent manner. C. elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions, suggest the cilium may be an important organelle as an EV donor or as an EV target. Until the past few decades, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies. PMID:26983828

  3. Measurement of visual contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Vongierke, H. E.; Marko, A. R.

    1985-04-01

    This invention involves measurement of the visual contrast sensitivity (modulation transfer) function of a human subject by means of linear or circular spatial frequency pattern on a cathode ray tube whose contrast is automatically decreasing or increasing depending on the subject pressing or releasing a hand-switch button. The threshold of detection of the pattern modulation is found by the subject by adjusting the contrast to values which vary about the subject's threshold thereby determining the threshold and also providing by the magnitude of the contrast fluctuations between reversals some estimate of the variability of the subject's absolute threshold. The invention also involves the slow automatic sweeping of the spatial frequency of the pattern over the spatial frequencies after preset time intervals or after threshold has been defined at each frequency by a selected number of subject-determined threshold crossings; i.e., contrast reversals.

  4. pH-induced contrast in viscoelasticity imaging of biopolymers

    NASA Astrophysics Data System (ADS)

    Yapp, R. D.; Insana, M. F.

    2009-03-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  5. Adaptation of cat motoneurons to sustained and intermittent extracellular activation.

    PubMed Central

    Spielmann, J M; Laouris, Y; Nordstrom, M A; Robinson, G A; Reinking, R M; Stuart, D G

    1993-01-01

    1. The main purpose of this study was to quantify the adaptation of spinal motoneurons to sustained and intermittent activation, using an extracellular route of stimulating current application to single test cells, in contrast to an intracellular route, as has been used previously. In addition, associations were tested between firing rate properties of the tested cells and other type (size)-related properties of these cells and their motor units. 2. Motoneurons supplying the medial gastrocnemius muscle of the deeply anaesthetized cat were stimulated for 240 s with microelectrodes which passed sustained extracellular current at 1.25 times the threshold for repetitive firing. Many cells were also tested following a rest period with intermittent 1 s current pulses (duration 600 ms) at the same relative stimulus strength. Cell discharge was assessed from the EMG of the motor unit innervated by the test neuron. The motoneurons and their motor units were assigned to four categories (i.e. types FF, FR, S and F; where F = FF + FR) based on conventional criteria. In all, twenty F (16 FF, 4 FR) and fourteen S cells were studied with sustained stimulation. Thirty of these cells (17 F, 13 S) and an additional two cells (1 F, 1 S) were studied with intermittent stimulation. 3. The mean threshold current required for sustained firing for a period of > or = 2 s was not significantly different for F and S cells. However, most of the other measured parameters of motoneuron firing differed significantly for these two cell groups. For example, at 1.25 times the threshold current for repetitive firing, the mean firing duration in response to 240 s of sustained activation was 123 +/- 88 s (+/- S.D.) for F cells vs. 233 +/- 19 s for S cells. These values were significantly longer than those from a comparable, previously reported study that employed intracellular stimulation. With intermittent stimulation, the firing durations of F and S cells were not significantly different from each

  6. The role of gadoxetic acid as a paramagnetic contrast medium in the characterization and detection of focal liver lesions: a review

    PubMed Central

    Bormann, Renata Lilian; da Rocha, Eduardo Lima; Kierzenbaum, Marcelo Longo; Pedrassa, Bruno Cheregati; Torres, Lucas Rios; D'Ippolito, Giuseppe

    2015-01-01

    Recent studies have demonstrated that the use of paramagnetic hepatobiliary contrast agents in the acquisition of magnetic resonance images remarkably improves the detection and differentiation of focal liver lesions, as compared with extracellular contrast agents. Paramagnetic hepatobiliary contrast agents initially show the perfusion of the lesions, as do extracellular agents, but delayed contrast-enhanced images can demonstrate contrast uptake by functional hepatocytes, providing further information for a better characterization of the lesions. Additionally, this intrinsic characteristic increases the accuracy in the detection of hepatocellular carcinomas and metastases, particularly the small-sized ones. Recently, a hepatobiliary contrast agent called gadolinium ethoxybenzyl dimeglumine, that is simply known as gadoxetic acid, was approved by the National Health Surveillance Agency for use in humans. The authors present a literature review and a practical approach of magnetic resonance imaging utilizing gadoxetic acid as contrast agent, based on patients' images acquired during their initial experiment. PMID:25798007

  7. Contrasting Rhetorics/Contrasting Cultures: Why Contrastive Rhetoric Needs a Better Conceptualization of Culture

    ERIC Educational Resources Information Center

    Atkinson, Dwight

    2004-01-01

    This paper deals with an underdeveloped notion in the EAP sub-discipline of contrastive rhetoric: culture. It argues that a better conceptualization of contrastive rhetoric needs to include a better conceptualization of culture. After engaging with the complex question "What is culture?" the paper moves on to consider four sets of current issues…

  8. Effect of spaceflight on the extracellular matrix of skeletal muscle after a crush injury

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Fritz, V. K.; Burkovskaia, T. E.; Il'ina-Kakueva, E. I.

    1992-01-01

    The organization and composition of the extracellular matrix were studied in the crush-injured gastrocnemius muscle of rats subjected to 0 G. After 14 days of flight on Cosmos 2044, the gastrocnemius muscle was removed and evaluated by histochemical and immunohistochemical techniques from the five injured flight rodents and various earth-based treatment groups. In general, the repair process was similar in all injured muscle samples with regard to the organization of the extracellular matrix and myofibers. Small and large myofibers were present within an expanded extracellular matrix, indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with nonenlarged area of nonmuscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well organized and contained more macrophages and blood vessels in the repair region, indicative of a delayed repair process, but did not demonstrate any chronic inflammation. Myofiber repair did vary in muscles from the different groups, being slowest in the flight animals and most complete in the tail-suspended ones.

  9. Ultrasound Despeckling for Contrast Enhancement

    PubMed Central

    Tay, Peter C.; Garson, Christopher D.; Acton, Scott T.; Hossack, John A.

    2010-01-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known despeckling filters. The evaluations of despeckling performance are based upon improvements to contrast enhancement, structural similarity, and segmentation results on a Field II simulated image and actual B-mode cardiac ultrasound images captured in vivo. PMID:20227984

  10. Ultrasound despeckling for contrast enhancement.

    PubMed

    Tay, Peter C; Garson, Christopher D; Acton, Scott T; Hossack, John A

    2010-07-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known despeckling filters. The evaluations of despeckling performance are based upon improvements to contrast enhancement, structural similarity, and segmentation results on a Field II simulated image and actual B-mode cardiac ultrasound images captured in vivo. PMID:20227984

  11. Genetics of Extracellular Protease Production in SACCHAROMYCOPSIS LIPOLYTICA

    PubMed Central

    Ogrydziak, David M.; Mortimer, Robert K.

    1977-01-01

    Mutants of Saccharomycopsis lipolytica with reduced ability to produce zones of clearing on skim-milk agar plates were isolated and their properties studied. For 18 mutants it was possible to score unambiguously segregants of crosses between these mutants and wild type for extracellular protease production. These mutants all produce reduced levels of extracellular protease in liquid culture. The mutations are recessive and are in nuclear genes. The 18 mutations define 10 or 11 complementation groups, no two of which are closely linked. Mutants in four of the complementation groups also produced reduced levels of extracellular RNAse, and the reduced levels of extracellular protease and RNAse production segregate together. Five of the mutants exhibited reduced mating frequency, and one mutant was osmotic remedial for extracellular protease production. These results demonstrate that many genes can affect extracellular protease production. Besides mutations in the structural gene and in regulatory genes, mutations are likely to be in genes involved in steps common to the production of several extracellular enzymes or in genes coding for cell wall or membrane components necessary for extracellular enzyme production. PMID:17248782

  12. Extracellular vesicles as new pharmacological targets to treat atherosclerosis.

    PubMed

    Yin, Min; Loyer, Xavier; Boulanger, Chantal M

    2015-09-15

    Extracellular vesicles released by most cell types, include apoptotic bodies (ABs), microvesicles (MVs) and exosomes. They play a crucial role in physiology and pathology, contributing to "cell-to-cell" communication by modifying the phenotype and the function of target cells. Thus, extracellular vesicles participate in the key processes of atherosclerosis from endothelial dysfunction, vascular wall inflammation to vascular remodeling. The purpose of this review is to summarize recent findings on extracellular vesicle formation, structure, release and clearance. We focus on the deleterious and beneficial effects of extracellular vesicles in the development of atherosclerosis. The potential role of extracellular vesicles as biomarkers and pharmacological targets, their innate therapeutic capacity, or their use for novel drug delivery devices in atherosclerotic cardiovascular diseases will also be discussed. PMID:26142082

  13. [Allergy to radiographic contrast media].

    PubMed

    Vionnet, Julien; Petitpierre, Stéphanie; Fumeaux, Alexandre; Meuli, Reto; Spertini, Francois; Comte, Denis

    2013-04-17

    Allergy to radiographic contrast media Hypersensitivity reactions to radio-contrast media are common in the daily practice. These products are responsible for immediate (< or = 1 hour after administration) and non immediate (> 1 hour after administration) hypersensitivity reactions. A diagnostic work-up by an allergologist with skin tests and in some cases provocation tests is of value in reducing the risk of recurrent hypersensitivity reactions to iodinated contrast media. A careful selection of the patients is required because the incidence of breakthrough reactions is still concerning, even with proper premedication. Practical recommendations are presented in this article. For gadolinium-based contrast agents, data in the literature is not sufficient for suggesting guidelines. PMID:23667970

  14. Environmentally responsive MRI contrast agents

    PubMed Central

    Davies, Gemma-Louise; Kramberger, Iris; Davis, Jason J.

    2015-01-01

    Biomedical imaging techniques can provide a vast amount of anatomical information, enabling diagnosis and the monitoring of disease and treatment profile. MRI uniquely offers convenient, non-invasive, high resolution tomographic imaging. A considerable amount of effort has been invested, across several decades, in the design of non toxic paramagnetic contrast agents capable of enhancing positive MRI signal contrast. Recently, focus has shifted towards the development of agents capable of specifically reporting on their local biochemical environment, where a switch in image contrast is triggered by a specific stimulus/biochemical variable. Such an ability would not only strengthen diagnosis but also provide unique disease-specific biochemical insight. This feature article focuses on recent progress in the development of MRI contrast switching with molecular, macromolecular and nanoparticle-based agents. PMID:24040650

  15. Small intestine contrast injection (image)

    MedlinePlus

    ... and throat, through the stomach into the small intestine. When in place, contrast dye is introduced and ... means of demonstrating whether or not the small intestine is normal when abnormality is suspected.

  16. Contrast-controlled retinal response

    NASA Astrophysics Data System (ADS)

    Sharma, Nachieketa K.

    2015-06-01

    A beam of light stimulates the retina weakly when its entry to the pupil is gradually shifted from the centre toward the edge. For single pupil entrance point the light, irrespective of its coherence would still show the Stiles-Crawford effect with diminished visibility toward the edge of the pupil. Only when coherent light is incident from opposing points in the pupil can the effect be cancelled. This paper has attempted a theoretical computation of how the contrast in an interference pattern formed on the retina controls the retina's response in three ways; first, by completely disregarding the Stiles Crawford diminution of effective brightness for unit contrast; next, taking the traditional SCE route for zero contrast, and finally enhancing the diminution in the effective brightness by giving an opposing boost to the visibility in commensurate with a contrast intermediate between the two extremes of unity and zero.

  17. Extracellular Vesicles in Brain Tumor Progression.

    PubMed

    D'Asti, Esterina; Chennakrishnaiah, Shilpa; Lee, Tae Hoon; Rak, Janusz

    2016-04-01

    Brain tumors can be viewed as multicellular 'ecosystems' with increasingly recognized cellular complexity and systemic impact. While the emerging diversity of malignant disease entities affecting brain tissues is often described in reference to their signature alterations within the cellular genome and epigenome, arguably these cell-intrinsic changes can be regarded as hardwired adaptations to a variety of cell-extrinsic microenvironmental circumstances. Conversely, oncogenic events influence the microenvironment through their impact on the cellular secretome, including emission of membranous structures known as extracellular vesicles (EVs). EVs serve as unique carriers of bioactive lipids, secretable and non-secretable proteins, mRNA, non-coding RNA, and DNA and constitute pathway(s) of extracellular exit of molecules into the intercellular space, biofluids, and blood. EVs are also highly heterogeneous as reflected in their nomenclature (exosomes, microvesicles, microparticles) attempting to capture their diverse origin, as well as structural, molecular, and functional properties. While EVs may act as a mechanism of molecular expulsion, their non-random uptake by heterologous cellular recipients defines their unique roles in the intercellular communication, horizontal molecular transfer, and biological activity. In the central nervous system, EVs have been implicated as mediators of homeostasis and repair, while in cancer they may act as regulators of cell growth, clonogenicity, angiogenesis, thrombosis, and reciprocal tumor-stromal interactions. EVs produced by specific brain tumor cell types may contain the corresponding oncogenic drivers, such as epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma (and hence are often referred to as 'oncosomes'). Through this mechanism, mutant oncoproteins and nucleic acids may be transferred horizontally between cellular populations altering their individual and collective phenotypes. Oncogenic pathways

  18. K Depletion Enhances the Extracellular Ca2+-Induced Inhibition of the Apical K Channels in the Mtal of Rat Kidney

    PubMed Central

    Gu, Rui-Min; Wei, Yuan; Jiang, Ho-Lin; Lin, Dao-Hong; Sterling, Hyacinth; Bloom, Peter; Balazy, Micheal; Wang, Wen-Hui

    2002-01-01

    We have shown previously that raising extracellular Ca2+ inhibited the apical 70-pS K channel in the thick ascending limb (TAL; Wang, W.H., M. Lu, and S.C. Hebert. 1996. Am. J. Physiol. 270:C103–C111). We now used the patch-clamp technique to study the effect of increasing the extracellular Ca2+ on the 70-pS K channel in the mTAL from rats on a different K diet. Increasing the extracellular Ca2+ from 10 μM to 0.5, 1, and to 1.5 mM in the mTAL from rats on a K-deficient (KD) diet inhibited the channel activity by 30, 65, and 90%, respectively. In contrast, raising the extracellular Ca2+ to 1.5 mM had no significant effect on channel activity in the mTAL from animals on a high K (HK) diet and further increasing the extracellular Ca2+ to 2.5, 3.5, and 5.5 mM decreased the channel activity by 29, 55, and 90%, respectively. Inhibition of the cytochrome P450 monooxygenase completely abolished the effect of the extracellular Ca2+ on channel activity in the mTAL from rats on a different K diet. In contrast, blocking cyclooxygenase did not significantly alter the responsiveness of the 70-pS K channel to the extracellular Ca2+. Moreover, addition of sodium nitropruside, a nitric oxide (NO) donor, not only increased the channel activity, but also blunted the inhibitory effect of the extracellular Ca2+ on the 70-pS K channel and decreased 20-hydroxyeicosatetraenoic acid (20-HETE) concentration in the mTAL from rats on a KD diet. In contrast, inhibiting NOS with L-NAME enhanced the inhibitory effect of the extracellular Ca2+ on the channel activity and increased 20-HETE concentration in the mTAL from rats on a high K diet. Western blot has further shown that the expression of inducible NO synthase (iNOS) is significantly higher in the renal medulla from rats on an HK diet than that on a KD diet. Also, addition of S-nitroso-N-acetylpenicillamine abolished the inhibitory effect of arachidonic acid on channel activity in the mTAL, whereas it did not block the inhibitory effect

  19. Contrast-Enhanced Endoscopic Ultrasound

    PubMed Central

    Dietrich, Christoph F.; Sharma, M.; Hocke, M.

    2012-01-01

    The European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) introduced guidelines on the use of contrast-enhanced ultrasound (CEUS) in 2004. This EFSUMB-document focused mainly on liver applications. However, new applications extending beyond the liver were developed thereafter. Increased interest in recent years in CEUS technique and in the application of CEUS in novel fields like endoscopic ultrasound (EUS) has revolutionized indications and applications. As a result, the EFSUMB initiated a new update of the guidelines in 2011 to include this additional knowledge. Some of the contrast-enhanced EUS (CE-EUS) indications are established, whereas others are preliminary; these latter indications are categorized as emergent CEUS applications since the available evidence is insufficient for general recommendation. This article focuses on the use of CE-EUS in various clinical settings. The reader will get an overview of current indications and possible applications of CE-EUS. This involves the introduction of different contrast studies including color Doppler techniques (known as contrast-enhanced high mechanical index endosonography or CEHMI-EUS) as well as more modern high-resolution contrast-enhanced techniques (known as contrast-enhanced low mechanical index endosonography or CELMI EUS). PMID:24949350

  20. A theory of behavioral contrast.

    PubMed

    Killeen, Peter R

    2014-11-01

    The reinforcers that maintain target instrumental responses also reinforce other responses that compete with them for expression. This competition, and its imbalance at points of transition between different schedules of reinforcement, causes behavioral contrast. The imbalance is caused by differences in the rates at which different responses come under the control of component stimuli. A model for this theory of behavioral contrast is constructed by expanding the coupling coefficient of MPR (Killeen, 1994). The coupling coefficient gives the degree of association of a reinforcer with the target response (as opposed to other competing responses). Competing responses, often identified as interim or adjunctive or superstitious behavior, are intrinsic to reinforcement schedules, especially interval schedules. In addition to that base-rate of competition, additional competing responses may spill over from the prior component, causing initial contrast; and they may be modulated by conditioned reinforcement or punishment from stimuli associated with subsequent component change, causing terminal contrast. A formalization of these hypotheses employed (a) a hysteresis model of off-target responses giving rise to initial contrast, and (b) a competing traces model of the suppression or enhancement of ongoing competitive responses by signals of following-schedule transition. The theory was applied to transient contrast, the following schedule effect, and the component duration effect. PMID:25244535

  1. Cell-Permeable MR Contrast Agents with Increased Intracellular Retention

    PubMed Central

    Endres, Paul J.; MacRenaris, Keith W.; Vogt, Stefan; Meade, Thomas J.

    2009-01-01

    Magnetic resonance imaging (MRI) is a technique used in both clinical and experimental settings to produce high resolution images of opaque organisms without ionizing radiation. Currently, MR imaging is augmented by contrast agents and the vast majority these small molecule Gd(III) chelates are confined to the extracellular regions. As a result, contrast agents are confined to vascular regions reducing their ability to provide information about cell physiology or molecular pathology. We have shown that polypeptides of arginine have the capacity to transport Gd(III) contrast agents across cell membranes. However, this transport is not unidirectional and once inside the cell the arginine-modified contrast agents efflux rapidly, decreasing the intracellular Gd(III) concentration and corresponding MR image intensity. By exploiting the inherent disulfide reducing environment of cells, thiol compounds, Gd(III)-DOTA-SS-Arg8 and Gd(III)-DTPA-SS-Arg8, are cleaved from their cell penetrating peptide transduction domains upon cell internalization. This reaction prolongs the cell-associated lifetime of the chelated Gd(III) by cleaving it from the cell transduction domain. PMID:18803414

  2. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland

    SciTech Connect

    Ehrhart, E.J.; Gillette, E.L.; Barcellos-Hoff, M.H.

    1996-02-01

    High-LET radiation has unique physical and biological properties compared to sparsely ionizing radiation. Recent studies demonstrate that sparsely ionizing radiation rapidly alters the pattern of extracellular matrix expression in several tissues, but little is known about the effect of heavy-ion radiation. This study investigates densely ionizing radiation-induced changes in extracellular matrix localization in the mammary glands of adult female BALB/c mice after whole-body irradiation with 0.8 Gy 600 MeV iron particles. The basement membrane and interstitial extracellular matrix proteins of the mammary gland stroma were mapped with respect to time postirradiation using immunofluorescence. Collagen III was induced in the adipose stroma within 1 day, continued to increase through day 9 and was resolved by day 14. Immunoreactive tenascin was induced in the epithelium by day 1, was evident at the epithelial-stromal interface by day 5-9 and persisted as a condensed layer beneath the basement membrane through day 14. These findings parallel similar changes induced by {gamma} irradiation but demonstrate different onset and chronicity. In contrast, the integrity of epithelial basement membrane, which was unaffected by sparsely ionizing radiation, was disrupted by iron-particle irradiation. Laminin inummoreactivity was mildly irregular at 1 h postirradiation and showed discontinuities and thickening from days 1 to 9. Continuity was restored by day 14. Thus high-LET radiation, like sparsely ionizing radiation, induces rapid remodeling of the stromal extracellular matrix but also appears to alter the integrity of the epithelial basement membrane, which is an important regulator of epithelial cell proliferation and differentiation. 40 refs., 3 figs.

  3. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Gillette, E. L.; Barcellos-Hoff, M. H.; Chaterjee, A. (Principal Investigator)

    1996-01-01

    High-LET radiation has unique physical and biological properties compared to sparsely ionizing radiation. Recent studies demonstrate that sparsely ionizing radiation rapidly alters the pattern of extracellular matrix expression in several tissues, but little is known about the effect of heavy-ion radiation. This study investigates densely ionizing radiation-induced changes in extracellular matrix localization in the mammary glands of adult female BALB/c mice after whole-body irradiation with 0.8 Gy 600 MeV iron particles. The basement membrane and interstitial extracellular matrix proteins of the mammary gland stroma were mapped with respect to time postirradiation using immunofluorescence. Collagen III was induced in the adipose stroma within 1 day, continued to increase through day 9 and was resolved by day 14. Immunoreactive tenascin was induced in the epithelium by day 1, was evident at the epithelial-stromal interface by day 5-9 and persisted as a condensed layer beneath the basement membrane through day 14. These findings parallel similar changes induced by gamma irradiation but demonstrate different onset and chronicity. In contrast, the integrity of epithelial basement membrane, which was unaffected by sparsely ionizing radiation, was disrupted by iron-particle irradiation. Laminin immunoreactivity was mildly irregular at 1 h postirradiation and showed discontinuities and thickening from days 1 to 9. Continuity was restored by day 14. Thus high-LET radiation, like sparsely ionizing radiation, induces rapid-remodeling of the stromal extracellular matrix but also appears to alter the integrity of the epithelial basement membrane, which is an important regulator of epithelial cell proliferation and differentiation.

  4. Heterogeneous expression of extracellular matrix molecules in the red nucleus of the rat.

    PubMed

    Rácz, É; Gaál, B; Matesz, C

    2016-05-13

    Previous studies in our laboratory showed that the organization and heterogeneous molecular composition of extracellular matrix is associated with the variable cytoarchitecture, connections and specific functions of the vestibular nuclei and two related areas of the vestibular neural circuits, the inferior olive and prepositus hypoglossi nucleus. The aim of the present study is to reveal the organization and distribution of various molecular components of extracellular matrix in the red nucleus, a midbrain premotor center. Morphologically and functionally the red nucleus is comprised of the magno- and parvocellular parts, with overlapping neuronal population. By using histochemical and immunohistochemical methods, the extracellular matrix appeared as perineuronal net, axonal coat, perisynaptic matrix or diffuse network in the neuropil. In both parts of the red nucleus we have observed positive hyaluronan, tenascin-R, link protein, and lectican (aggrecan, brevican, versican, neurocan) reactions. Perineuronal nets were detected with each of the reactions and the aggrecan showed the most intense staining in the pericellular area. The two parts were clearly distinguished on the basis of neurocan and HAPLN1 expression as they have lower intensity in the perineuronal nets of large cells and in the neuropil of the magnocellular part. Additionally, in contrast to this pattern, the aggrecan was heavily labeled in the magnocellular region sharply delineating from the faintly stained parvocellular area. The most characteristic finding was that the appearance of perineuronal nets was related with the neuronal size independently from its position within the two subdivisions of red nucleus. In line with these statements none of the extracellular matrix molecules were restricted exclusively to the magno- or parvocellular division. The chemical heterogeneity of the perineuronal nets may support the recently accepted view that the red nucleus comprises more different populations of

  5. Relevance of extracellular DNA in rhizosphere

    NASA Astrophysics Data System (ADS)

    Pietramellara, Giacomo; Ascher, Judith; Baraniya, Divyashri; Arfaioli, Paola; Ceccherini, Maria Teresa; Hawes, Martha

    2013-04-01

    One of the most promising areas for future development is the manipulation of the rhizosphere to produce sustainable and efficient agriculture production systems. Using Omics approaches, to define the distinctive features of eDNA systems and structures, will facilitate progress in rhizo-enforcement and biocontrol studies. The relevance of these studies results clear when we consider the plethora of ecological functions in which eDNA is involved. This fraction can be actively extruded by living cells or discharged during cellular lysis and may exert a key role in the stability and variability of the soil bacterial genome, resulting also a source of nitrogen and phosphorus for plants due to the root's capacity to directly uptake short DNA fragments. The adhesive properties of the DNA molecule confer to eDNA the capacity to inhibit or kill pathogenic bacteria by cation limitation induction, and to facilitate formation of biofilm and extracellular traps (ETs), that may protect microorganisms inhabiting biofilm and plant roots against pathogens and allelopathic substances. The ETs are actively extruded by root border cells when they are dispersed in the rhizosphere, conferring to plants the capacity to extend an endogenous pathogen defence system outside the organism. Moreover, eDNA could be involved in rhizoremediation in heavy metal polluted soil acting as a bioflotation reagent.

  6. Extracellular matrix dynamics and fetal membrane rupture.

    PubMed

    Strauss, Jerome F

    2013-02-01

    The extracellular matrix (ECM) plays an important role in determining cell and organ function: (1) it is an organizing substrate that provides tissue tensile strength; (2) it anchors cells and influences cell morphology and function via interaction with cell surface receptors; and (3) it is a reservoir for growth factors. Alterations in the content and the composition of the ECM determine its physical and biological properties, including strength and susceptibility to degradation. The ECM components themselves also harbor cryptic matrikines, which when exposed by conformational change or proteolysis have potent effects on cell function, including stimulating the production of cytokines and matrix metalloproteinases (MMPs). Collectively, these properties of the ECM reflect a dynamic tissue component that influences both tissue form and function. This review illustrates how defects in ECM synthesis and metabolism and the physiological process of ECM turnover contribute to changes in the fetal membranes that precede normal parturition and contribute to the pathological events leading to preterm premature rupture of membranes (PPROM). PMID:22267536

  7. The NIH Extracellular RNA Communication Consortium

    PubMed Central

    Ainsztein, Alexandra M.; Brooks, Philip J.; Dugan, Vivien G.; Ganguly, Aniruddha; Guo, Max; Howcroft, T. Kevin; Kelley, Christine A.; Kuo, Lillian S.; Labosky, Patricia A.; Lenzi, Rebecca; McKie, George A.; Mohla, Suresh; Procaccini, Dena; Reilly, Matthew; Satterlee, John S.; Srinivas, Pothur R.; Church, Elizabeth Stansell; Sutherland, Margaret; Tagle, Danilo A.; Tucker, Jessica M.; Venkatachalam, Sundar

    2015-01-01

    The Extracellular RNA (exRNA) Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a) generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b) defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies, (c) identifying exRNA biomarkers of disease, (d) demonstrating clinical utility of exRNAs as therapeutic agents and developing scalable technologies required for these studies, and (e) developing a community resource, the exRNA Atlas, to provide the scientific community access to exRNA data, standardized exRNA protocols, and other useful tools and technologies generated by funded investigators. PMID:26320938

  8. Surface Characterization of Extracellular Matrix Scaffolds

    PubMed Central

    Brown, Bryan N.; Barnes, Christopher A.; Kasick, Rena T.; Michel, Roger; Gilbert, Thomas W.; Beer-Stolz, Donna; Castner, David G.; Ratner, Buddy D.; Badylak, Stephen F.

    2009-01-01

    Extracellular matrix (ECM) scaffolds prepared from different tissue sources or using different methods have been demonstrated to have distinctive effects upon cell adhesion patterns and the ability to support and maintain differentiated phenotypes. It is unknown whether the molecular composition or the ultrastructure of the ECM plays a greater role in determining the phenotype of the cells with which it comes into contact. However, when implanted, the topology and ligand landscape of the material will determine the host molecules that bind and the type and behavior of cells that mediate the host response. Therefore, a comprehensive understanding of surface characteristics is essential in the design of scaffolds for specific clinical applications. The surface characteristics of ECM scaffolds derived from porcine urinary bladder, small intestine, and liver as well as the effects of two commonly used methods of chemical cross-linking upon UBM were investigated. Electron microscopy and time of flight secondary ion mass spectroscopy were used to examine the surface characteristics of the scaffolds. The results show that ECM scaffolds have unique morphologic and structural properties which are dependant on the organ or tissue from which the scaffold is harvested. Furthermore, the results show that the surface characteristics of an ECM scaffold are changed through chemical cross-linking. PMID:19828192

  9. Extracellular Vesicles: Potential Roles in Regenerative Medicine

    PubMed Central

    De Jong, Olivier G.; Van Balkom, Bas W. M.; Schiffelers, Raymond M.; Bouten, Carlijn V. C.; Verhaar, Marianne C.

    2014-01-01

    Extracellular vesicles (EV) consist of exosomes, which are released upon fusion of the multivesicular body with the cell membrane, and microvesicles, which are released directly from the cell membrane. EV can mediate cell–cell communication and are involved in many processes, including immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. The vast amount of processes that EV are involved in and the versatility of manner in which they can influence the behavior of recipient cells make EV an interesting source for both therapeutic and diagnostic applications. Successes in the fields of tumor biology and immunology sparked the exploration of the potential of EV in the field of regenerative medicine. Indeed, EV are involved in restoring tissue and organ damage, and may partially explain the paracrine effects observed in stem cell-based therapeutic approaches. The function and content of EV may also harbor information that can be used in tissue engineering, in which paracrine signaling is employed to modulate cell recruitment, differentiation, and proliferation. In this review, we discuss the function and role of EV in regenerative medicine and elaborate on potential applications in tissue engineering. PMID:25520717

  10. Biochemistry of the extracellular matrix of Volvox.

    PubMed

    Sumper, M; Hallmann, A

    1998-01-01

    The volvocine algae range in complexity from unicellular Chlamydomonas to multicellular organisms in the genus Volvox. The transition from unicellularity to multicellularity in the Volvocales is a recent event in evolution. Thus, these organisms provide a unique opportunity for exploring the development of a complex extracellular matrix (ECM) from the cell wall of a unicellular ancestor. The ECM of Volvox is divided into four main zones: The flagellar, boundary, cellular, and deep zones. Each zone is defined by ultrastructure and by characteristic ECM glycoproteins. Volvox ECM is modified under developmental control or in response to external stimuli, like the sex-inducing pheromone or stress factors. The structures of more than 10 ECM glycoproteins from a single species of Volvox are now known in molecular detail and are compared to other algal and plant cell wall/ECM glycoproteins. Although usually classified as hydroxyproline-rich glycoproteins, the striking feature of all algal ECM glycoproteins is a modular composition. Rod-shaped hydroxyproline-rich modules are combined with hydroxyproline-free domains that meet the multiple functional requirements of a complex ECM. The algal ECM provides another example of the combinatorial advantage of shuffling modules that is so evident in the evolution of the metazoan ECMs. PMID:9496634

  11. Extracellular polysaccharide production by thraustochytrid protists.

    PubMed

    Jain, Ruchi; Raghukumar, Seshagiri; Tharanathan, R; Bhosle, N B

    2005-01-01

    Four strains of marine stramenopilan protists, the thraustochytrids, were studied for their ability to produce extracellular polysaccharides (EPSs). Observations by light and scanning electron microscopy revealed the production of a matrix of EPS around groups of cells in stationary cultures. EPS in shake culture filtrates ranged from 0.3 to 1.1 g/L. EPS production, which was studied in greater detail in 2 isolates, SC-1 and CW1, increased with age of cultures, reaching a peak in the stationary phase. Anion exchange chromatography yielded a single fraction of the EPS of both species. The EPS contained 39% to 53% sugars, besides proteins, lipids, uronic acids, and sulfates. Molecular weight of the EPS produced by SC-1 was approximately 94 kDa, and that of CW1, 320 kDa. Glucose formed the major component in the EPS of both isolates-galactose, mannose, and arabinose being the other components. Cultures of both isolates survived air-drying up to a period of 96 hours, suggesting a role for EPS in preventing desiccation of cells. PMID:15909227

  12. Mechanisms of Bacterial Extracellular Electron Exchange.

    PubMed

    White, G F; Edwards, M J; Gomez-Perez, L; Richardson, D J; Butt, J N; Clarke, T A

    2016-01-01

    The biochemical mechanisms by which microbes interact with extracellular soluble metal ions and insoluble redox-active minerals have been the focus of intense research over the last three decades. The process presents two challenges to the microorganism. Firstly, electrons have to be transported at the cell surface, which in Gram-negative bacteria presents an additional problem of electron transfer across the ~6nm of the outer membrane. Secondly, the electrons must be transferred to or from the terminal electron acceptors or donors. This review covers the known mechanisms that bacteria use to transport electrons across the cell envelope to external electron donors/acceptors. In Gram-negative bacteria, electron transfer across the outer membrane involves the use of an outer membrane β-barrel and cytochrome. These can be in the form of a porin-cytochrome protein, such as Cyc2 of Acidithiobacillus ferrooxidans, or a multiprotein porin-cytochrome complex like MtrCAB of Shewanella oneidensis MR-1. For mineral-respiring organisms, there is the additional challenge of transferring the electrons from the cell to mineral surface. For the strict anaerobe Geobacter sulfurreducens this requires electron transfer through conductive pili to associated cytochrome OmcS that directly reduces Fe(III)oxides, while the facultative anaerobe S. oneidensis MR-1 accomplishes mineral reduction through direct membrane contact, contact through filamentous extensions and soluble flavin shuttles, all of which require the outer membrane cytochromes MtrC and OmcA in addition to secreted flavin. PMID:27134022

  13. Molecular Adhesion between Cartilage Extracellular Matrix Macromolecules

    PubMed Central

    2015-01-01

    In this study, we investigated the molecular adhesion between the major constituents of cartilage extracellular matrix, namely, the highly negatively charged proteoglycan aggrecan and the type II/IX/XI fibrillar collagen network, in simulated physiological conditions. Colloidal force spectroscopy was applied to measure the maximum adhesion force and total adhesion energy between aggrecan end-attached spherical tips (end radius R ≈ 2.5 μm) and trypsin-treated cartilage disks with undamaged collagen networks. Studies were carried out in various aqueous solutions to reveal the physical factors that govern aggrecan–collagen adhesion. Increasing both ionic strength and [Ca2+] significantly increased adhesion, highlighting the importance of electrostatic repulsion and Ca2+-mediated ion bridging effects. In addition, we probed how partial enzymatic degradation of the collagen network, which simulates osteoarthritic conditions, affects the aggrecan–collagen interactions. Interestingly, we found a significant increase in aggrecan–collagen adhesion even when there were no detectable changes at the macro- or microscales. It is hypothesized that the aggrecan–collagen adhesion, together with aggrecan–aggrecan self-adhesion, works synergistically to determine the local molecular deformability and energy dissipation of the cartilage matrix, in turn, affecting its macroscopic tissue properties. PMID:24491174

  14. Getting to know the extracellular vesicle glycome.

    PubMed

    Gerlach, Jared Q; Griffin, Matthew D

    2016-04-22

    Extracellular vesicles (EVs) are a diverse population of complex biological particles with diameters ranging from approximately 20 to 1000 nm. Tremendous interest in EVs has been generated following a number of recent, high-profile reports describing their potential utility in diagnostic, prognostic, drug delivery, and therapeutic roles. Subpopulations, such as exosomes, are now known to directly participate in cell-cell communication and direct material transfer. Glycomics, the 'omic' portion of the glycobiology field, has only begun to catalog the surface oligosaccharide and polysaccharide structures and also the carbohydrate-binding proteins found on and inside EVs. The EV glycome undoubtedly contains vital clues essential to better understanding the function, biogenesis, release and transfer of vesicles, however getting at this information is technically challenging and made even more so because of the small physical size of the vesicles and the typically minute yield from physiological-scale biological samples. Vesicle micro-heterogeneity which may be related to specific vesicle origins and functions presents a further challenge. A number of primary studies carried out over the past decade have turned up specific and valuable clues regarding the composition and roles of glycan structures and also glycan binding proteins involved EV biogenesis and transfer. This review explores some of the major EV glycobiological research carried out to date and discusses the potential implications of these findings across the life sciences. PMID:26888195

  15. Interactions of Cartilage Extracellular Matrix Macromolecules.

    PubMed

    Horkay, Ferenc

    2012-12-15

    Articular cartilage is a low-friction, load-bearing tissue located at joint surfaces. The extracellular matrix (ECM) of cartilage consists of a fibrous collagen network, which is pre-stressed by the osmotic swelling pressure exerted by negatively charged proteoglycan aggregates embedded in the collagen network. The major proteoglycan is the bottlebrush shaped aggrecan, which forms complexes with linear hyaluronic acid chains. We quantify microscopic and macroscopic changes resulting from self-assembly between aggrecan and hyaluronic acid using a complementary set of physical measurements to determine structure and interactions by combining scattering techniques, including small-angle X-ray scattering, small-angle neutron scattering, and dynamic light scattering with macroscopic osmotic pressure measurements. It is demonstrated that the osmotic pressure that defines the load bearing ability of cartilage is primarily governed by the main macromolecular components (aggrecan and collagen) of the ECM. Knowledge of the interactions between the macromolecular components of cartilage ECM is essential to understand biological function and to develop successful tissue engineering strategies for cartilage repair. PMID:23997426

  16. Extracellular Matrix Dynamics and Fetal Membrane Rupture

    PubMed Central

    Strauss,, Jerome F.

    2013-01-01

    The extracellular matrix (ECM) plays an important role in determining cell and organ function: (1) it is an organizing substrate that provides tissue tensile strength; (2) it anchors cells and influences cell morphology and function via interaction with cell surface receptors; and (3) it is a reservoir for growth factors. Alterations in the content and the composition of the ECM determine its physical and biological properties, including strength and susceptibility to degradation. The ECM components themselves also harbor cryptic matrikines, which when exposed by conformational change or proteolysis have potent effects on cell function, including stimulating the production of cytokines and matrix metalloproteinases (MMPs). Collectively, these properties of the ECM reflect a dynamic tissue component that influences both tissue form and function. This review illustrates how defects in ECM synthesis and metabolism and the physiological process of ECM turnover contribute to changes in the fetal membranes that precede normal parturition and contribute to the pathological events leading to preterm premature rupture of membranes (PPROM). PMID:22267536

  17. Vascular Extracellular Matrix and Arterial Mechanics

    PubMed Central

    WAGENSEIL, JESSICA E.; MECHAM, ROBERT P.

    2009-01-01

    An important factor in the transition from an open to a closed circulatory system was a change in vessel wall structure and composition that enabled the large arteries to store and release energy during the cardiac cycle. The component of the arterial wall in vertebrates that accounts for these properties is the elastic fiber network organized by medial smooth muscle. Beginning with the onset of pulsatile blood flow in the developing aorta, smooth muscle cells in the vessel wall produce a complex extracellular matrix (ECM) that will ultimately define the mechanical properties that are critical for proper function of the adult vascular system. This review discusses the structural ECM proteins in the vertebrate aortic wall and will explore how the choice of ECM components has changed through evolution as the cardiovascular system became more advanced and pulse pressure increased. By correlating vessel mechanics with physiological blood pressure across animal species and in mice with altered vessel compliance, we show that cardiac and vascular development are physiologically coupled, and we provide evidence for a universal elastic modulus that controls the parameters of ECM deposition in vessel wall development. We also discuss mechanical models that can be used to design better tissue-engineered vessels and to test the efficacy of clinical treatments. PMID:19584318

  18. Routes and mechanisms of extracellular vesicle uptake

    PubMed Central

    Mulcahy, Laura Ann; Pink, Ryan Charles; Carter, David Raul Francisco

    2014-01-01

    Extracellular vesicles (EVs) are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells. PMID:25143819

  19. Tetraspanins in extracellular vesicle formation and function.

    PubMed

    Andreu, Zoraida; Yáñez-Mó, María

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physiological and/or pathological processes. Depending on their origin, they can alter the fate of recipient cells according to the information transferred. In the last two decades, EVs have become the focus of many studies because of their putative use as non-invasive biomarkers and their potential in bioengineering and clinical applications. In order to exploit this ability of EVs many aspects of their biology should be deciphered. Here, we review the mechanisms involved in EV biogenesis, assembly, recruitment of selected proteins, and genetic material as well as the uptake mechanisms by target cells in an effort to understand EV functions and their utility in clinical applications. In these contexts, the role of proteins from the tetraspanin superfamily, which are among the most abundant membrane proteins of EVs, will be highlighted. PMID:25278937

  20. [Characterization and biological role of extracellular vesicles].

    PubMed

    Wójtowicz, Aneta; Baj-Krzyworzeka, Monika; Baran, Jarosław

    2014-01-01

    Extracellular vesicles (EV) form a heterogeneous population of mostly spherical membrane structures released by almost all cells, including tumour cells, both in vivo and in vitro. Their size varies from 30 nm to 1 μm, and size is one of the main criteria of the selection of two categories of EV: small (30-100 nm), more homogeneous exosomes and larger fragments (0.1-1 μm) called membrane microvesicles or ectosomes. The presence of EV has already been detected in many human body fluids: blood, urine, saliva, semen and amniotic fluid. Formation of EV is tightly controlled, and their function and biochemical composition depend on the cell type they originate from. EV are the "vehicles" of bioactive molecules, such as proteins, mRNA and microRNA, and may play an important role in intercellular communication and modulation of e.g. immune system cell activity. In addition, on the surface of tumour-derived microvesicles (TMV), called oncosomes, several markers specific for cancer cells were identified, which indicates a role of TMV in tumour growth and cancer development. On the other hand, TMV may be an important source of tumour-associated antigens (TAA) which can be potentially useful as biomarkers with prognostic value, as well as in development of new forms of targeted immunotherapy of cancer. PMID:25531706

  1. [Screening of strain producing extracellular penicillin acylase].

    PubMed

    Wang, Z; Han, W; Men, D; Wang, Q

    1992-04-01

    Ninety-eight strains having extracellular penicillin acylase activity were derived from soil samples by colour-developing method. 10 strains of them possess higher activity of penicillin acylase. All of those are found to be Bacillus megaterium. The optimum condition of enzyme production was investigated with the strain No. 46 which is from No. 247 by single colony isolation. The productivity of penicillin acylase in the optimum condition have been enhanced 2.5 times more than that in the screening condition. The mutant strain, Bacillus megaterium UL-81, which penicillin acylase activity reached the level of 723u/100ml of broth was obtained from No. 46 by treatment with physical and chemical factors. The penicillin acylase activity of UL-81 can reach 820u/100 ml in 500L fermentor. The mutant strain differed from parent strain in the morphology of colony, the size of cells, the effect of concentration and the addition time of phenylacetic acid on the production of penicillin acylase. PMID:1598760

  2. Extracellular matrix mechanics in lung parenchymal diseases

    PubMed Central

    Suki, Béla; Bates, Jason H.T.

    2008-01-01

    In this review, we examine how the extracellular matrix (ECM) of the lung contributes to the overall mechanical properties of the parenchyma, and how these properties change in disease. The connective tissues of the lung are composed of cells and ECM, which includes a variety of biological macromolecules and water. The macromolecules that are most important in determining the mechanical properties of the ECM are collagen, elastin, and proteoglycans. We first discuss the various components of the ECM and how their architectural organization gives rise to the mechanical properties of the parenchyma. Next, we examine how mechanical forces can affect the physiological functioning of the lung parenchyma. Collagen plays an especially important role in determining the homeostasis and cellular responses to injury because it is the most important load-bearing component of the parenchyma. We then demonstrate how the concept of percolation can be used to link microscopic pathologic alterations in the parenchyma to clinically measurable lung function during the progression of emphysema and fibrosis. Finally, we speculate about the possibility of using targeted tissue engineering to optimize treatment of these two major lung diseases. PMID:18485836

  3. Tetraspanins in Extracellular Vesicle Formation and Function

    PubMed Central

    Andreu, Zoraida; Yáñez-Mó, María

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physiological and/or pathological processes. Depending on their origin, they can alter the fate of recipient cells according to the information transferred. In the last two decades, EVs have become the focus of many studies because of their putative use as non-invasive biomarkers and their potential in bioengineering and clinical applications. In order to exploit this ability of EVs many aspects of their biology should be deciphered. Here, we review the mechanisms involved in EV biogenesis, assembly, recruitment of selected proteins, and genetic material as well as the uptake mechanisms by target cells in an effort to understand EV functions and their utility in clinical applications. In these contexts, the role of proteins from the tetraspanin superfamily, which are among the most abundant membrane proteins of EVs, will be highlighted. PMID:25278937

  4. Roles of extracellular matrix in follicular development.

    PubMed

    Rodgers, R J; van Wezel, I L; Irving-Rodgers, H F; Lavranos, T C; Irvine, C M; Krupa, M

    1999-01-01

    The cellular biology and changes in the extracellular matrix of ovarian follicles during their development are reviewed. During growth of the bovine ovarian follicle the follicular basal lamina doubles 19 times in surface area. It changes in composition, having collagen IV alpha 1-26 and laminin alpha 1, beta 2 and gamma 1 at the primordial stage, and collagen IV alpha 1 and alpha 2, reduced amounts of alpha 3-alpha 5, and a higher content of laminin alpha 1, beta 2 and gamma 1 at the antral stage. In atretic antral follicles laminin alpha 2 was also detected. The follicular epithelium also changes from one layer to many layers during follicular growth. It is clear that not all granulosal cells have equal potential to divide, and we have evidence that the granulosal cells arise from a population of stem cells. This finding has important ramifications and supports the concept that different follicular growth factors can act on different subsets of granulosal cells. In antral follicles, the replication of cells occurs in the middle layers of the membrana granulosa, with older granulosal cells towards the antrum and towards the basal lamina. The basal cells in the membrana granulosa have also been observed to vary in shape between follicies. In smaller antral follicles, they were either columnar or rounded, and in follicles > 5 mm the cells were all rounded. The reasons for these changes in matrix and cell shapes are discussed in relation to follicular development. PMID:10692866

  5. Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy

    PubMed Central

    Järveläinen, Hannu; Sainio, Annele; Koulu, Markku; Wight, Thomas N.; Penttinen, Risto

    2009-01-01

    The extracellular matrix (ECM) consists of numerous macromolecules classified traditionally into collagens, elastin, and microfibrillar proteins, proteoglycans including hyaluronan, and noncollagenous glycoproteins. In addition to being necessary structural components, ECM molecules exhibit important functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. Any structural inherited or acquired defect and/or metabolic disturbance in the ECM may cause cellular and tissue alterations that can lead to the development or progression of disease. Consequently, ECM molecules are important targets for pharmacotherapy. Specific agents that prevent theexcess accumulation of ECM molecules in the vascular system, liver, kidney, skin, and lung; alternatively, agents that inhibit the degradation of the ECM in degenerative diseases such as osteoarthritis would be clinically beneficial. Unfortunately, until recently, the ECM in drug discovery has been largely ignored. However, several of today's drugs that act on various primary targets affect the ECM as a byproduct of the drugs' actions, and this activity may in part be beneficial to the drugs' disease-modifying properties. In the future, agents and compounds targeting directly the ECM will significantly advance the treatment of various human diseases, even those for which efficient therapies are not yet available. PMID:19549927

  6. Lung Extracellular Matrix and Fibroblast Function

    PubMed Central

    2015-01-01

    Extracellular matrix (ECM) is a tissue-specific macromolecular structure that provides physical support to tissues and is essential for normal organ function. In the lung, ECM plays an active role in shaping cell behavior both in health and disease by virtue of the contextual clues it imparts to cells. Qualities including dimensionality, molecular composition, and intrinsic stiffness all promote normal function of the lung ECM. Alterations in composition and/or modulation of stiffness of the focally injured or diseased lung ECM microenvironment plays a part in reparative processes performed by fibroblasts. Under conditions of remodeling or in disease states, inhomogeneous stiffening (or softening) of the pathologic ECM may both precede modifications in cell behavior and be a result of disease progression. The ability of ECM to stimulate further ECM production by fibroblasts and drive disease progression has potentially significant implications for mesenchymal stromal cell–based therapies; in the setting of pathologic ECM stiffness or composition, the therapeutic intent of progenitor cells may be subverted. Taken together, current data suggest that lung ECM actively contributes to health and disease; thus, mediators of cell–ECM signaling or factors that influence ECM stiffness may represent viable therapeutic targets in many lung disorders. PMID:25830832

  7. Heparin affinity purification of extracellular vesicles

    PubMed Central

    Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.

    2015-01-01

    Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely used isolation method is ultracentrifugation (UC) which requires expensive equipment and only partially purifies EVs. Previously we have shown that heparin blocks EV uptake in cells, supporting a direct EV-heparin interaction. Here we show that EVs can be purified from cell culture media and human plasma using ultrafiltration (UF) followed by heparin-affinity beads. UF/heparin-purified EVs from cell culture displayed the EV marker Alix, contained a diverse RNA profile, had lower levels of protein contamination, and were functional at binding to and uptake into cells. RNA yield was similar for EVs isolated by UC. We were able to detect mRNAs in plasma samples with comparable levels to UC samples. In conclusion, we have discovered a simple, scalable, and effective method to purify EVs taking advantage of their heparin affinity. PMID:25988257

  8. Mechanics of composite cytoskeletal and extracellular networks

    NASA Astrophysics Data System (ADS)

    Das, Moumita

    2014-03-01

    Living cells sense and respond to mechanical forces in their surroundings. This mechanical response is mainly due to the cell cytoskeleton, and its interaction with the extracellular matrix (ECM). The cell cytoskeleton is a composite polymeric scaffold made of many different types of protein filaments and crosslinking proteins. Two major filament systems in the cytoskeleton are actin filaments (F-actin) and microtubules (MTs). Actin filaments are semiflexible, while the much stiffer MTs behave as rigid rods. I shall discuss theories that help understand how the direct coupling to the surrounding F-actin matrix allows intracellular MTs to bear large compressive forces and controls the range of force transmission along the MTs, and how the MTs not only enhance the stiffness of the cell cytoskeleton, but can also dramatically endow an initially nearly incompressible F-actin matrix with enhanced compressibility relative to its shear compliance. A second source of compositeness in the cytoskeleton is the presences of different types of crosslinkers that can interact cooperatively leading to enhanced mechanical rigidity and tunable response. Like the cytoskeleton, the ECM is also a polymeric composite. It is primarily composed of a mesh of fibrous proteins, mainly stiff collagen filaments, and a comparatively flexible gel of proteoglycans and hyaluronan. I shall discuss a model that shows how the interplay between the collagen network and the background elastic gel leads to a mechanically robust ECM.

  9. Role of Extracellular Vesicles in Hematological Malignancies

    PubMed Central

    Raimondo, Stefania; Corrado, Chiara; Raimondi, Lavinia; De Leo, Giacomo; Alessandro, Riccardo

    2015-01-01

    In recent years the role of tumor microenvironment in the progression of hematological malignancies has been widely recognized. Recent studies have focused on how cancer cells communicate within the microenvironment. Among several factors (cytokines, growth factors, and ECM molecules), a key role has been attributed to extracellular vesicles (EV), released from different cell types. EV (microvesicles and exosomes) may affect stroma remodeling, host cell functions, and tumor angiogenesis by inducing gene expression modulation in target cells, thus promoting cancer progression and metastasis. Microvesicles and exosomes can be recovered from the blood and other body fluids of cancer patients and contain and deliver genetic and proteomic contents that reflect the cell of origin, thus constituting a source of new predictive biomarkers involved in cancer development and serving as possible targets for therapies. Moreover, due to their specific cell-tropism and bioavailability, EV can be considered natural vehicles suitable for drug delivery. Here we will discuss the recent advances in the field of EV as actors in hematological cancer progression, pointing out the role of these vesicles in the tumor-host interplay and in their use as biomarkers for hematological malignancies. PMID:26583135

  10. Engineering hydrogels as extracellular matrix mimics

    PubMed Central

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun

    2010-01-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell–cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine. PMID:20394538