Science.gov

Sample records for extracellular matrix regulations

  1. Regulation of Corneal Stroma Extracellular Matrix Assembly

    PubMed Central

    Chen, Shoujun; Mienaltowski, Michael J.; Birk, David E.

    2014-01-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. PMID:25819456

  2. Lung extracellular matrix and redox regulation.

    PubMed

    Watson, Walter H; Ritzenthaler, Jeffrey D; Roman, Jesse

    2016-08-01

    Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an 'end-stage' process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation-reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to

  3. Lung extracellular matrix and redox regulation

    PubMed Central

    Watson, Walter H.; Ritzenthaler, Jeffrey D.; Roman, Jesse

    2016-01-01

    Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an ‘end-stage’ process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation–reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to

  4. Regulation of Osteoblast Survival by the Extracellular Matrix and Gravity

    NASA Technical Reports Server (NTRS)

    Globus. Ruth K.; Almeida, Eduardo A. C.; Searby, Nancy D.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    Spaceflight adversely affects the skeleton, posing a substantial risk to astronaut's health during long duration missions. The reduced bone mass observed in growing animals following spaceflight is due at least in part to inadequate bone formation by osteoblasts. Thus, it is of central importance to identify basic cellular mechanisms underlying normal bone formation. The fundamental ideas underlying our research are that interactions between extracellular matrix proteins, integrin adhesion receptors, cytoplasmic signaling and cytoskeletal proteins are key ingredients for the proper functioning of osteoblasts, and that gravity impacts these interactions. As an in vitro model system we used primary fetal rat calvarial cells which faithfully recapitulate osteoblast differentiation characteristically observed in vivo. We showed that specific integrin receptors ((alpha)3(beta)1), ((alpha)5(beta)1), ((alpha)8(betal)1) and extracellular matrix proteins (fibronectin, laminin) were needed for the differentiation of immature osteoblasts. In the course of maturation, cultured osteoblasts switched from depending on fibronectin and laminin for differentiation to depending on these proteins for their very survival. Furthermore, we found that manipulating the gravity vector using ground-based models resulted in activation of key intracellular survival signals generated by integrin/extracellular matrix interactions. We are currently testing the in vivo relevance of some of these observations using targeted transgenic technology. In conclusion, mechanical factors including gravity may participate in regulating survival via cellular interactions with the extracellular matrix. This leads us to speculate that microgravity adversely affects the survival of osteoblasts and contributes to spaceflight-induced osteoporosis.

  5. The Extracellular Matrix Regulates Granuloma Necrosis in Tuberculosis.

    PubMed

    Al Shammari, Basim; Shiomi, Takayuki; Tezera, Liku; Bielecka, Magdalena K; Workman, Victoria; Sathyamoorthy, Tarangini; Mauri, Francesco; Jayasinghe, Suwan N; Robertson, Brian D; D'Armiento, Jeanine; Friedland, Jon S; Elkington, Paul T

    2015-08-01

    A central tenet of tuberculosis pathogenesis is that caseous necrosis leads to extracellular matrix destruction and bacterial transmission. We reconsider the underlying mechanism of tuberculosis pathology and demonstrate that collagen destruction may be a critical initial event, causing caseous necrosis as opposed to resulting from it. In human tuberculosis granulomas, regions of extracellular matrix destruction map to areas of caseous necrosis. In mice, transgenic expression of human matrix metalloproteinase 1 causes caseous necrosis, the pathological hallmark of human tuberculosis. Collagen destruction is the principal pathological difference between humanised mice and wild-type mice with tuberculosis, whereas the release of proinflammatory cytokines does not differ, demonstrating that collagen breakdown may lead to cell death and caseation. To investigate this hypothesis, we developed a 3-dimensional cell culture model of tuberculosis granuloma formation, using bioelectrospray technology. Collagen improved survival of Mycobacterium tuberculosis-infected cells analyzed on the basis of a lactate dehydrogenase release assay, propidium iodide staining, and measurement of the total number of viable cells. Taken together, these findings suggest that collagen destruction is an initial event in tuberculosis immunopathology, leading to caseous necrosis and compromising the immune response, revealing a previously unappreciated role for the extracellular matrix in regulating the host-pathogen interaction. PMID:25676469

  6. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    PubMed Central

    Eisenberg, Jessica L; Safi, Asmahan; Wei, Xiaoding; Espinosa, Horacio D; Budinger, GR Scott; Takawira, Desire; Hopkinson, Susan B; Jones, Jonathan CR

    2012-01-01

    Aim The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC) in the lung, including their deposition and organization of extracellular matrix (ECM) proteins. Methods Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy. Results We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM. Conclusions An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung. PMID:23204878

  7. Extracellular Matrix Components Regulate Cellular Polarity and Tissue Structure in the Developing and Mature Retina

    PubMed Central

    Varshney, Shweta; Hunter, Dale D.; Brunken, William J.

    2015-01-01

    While genetic networks and other intrinsic mechanisms regulate much of retinal development, interactions with the extracellular environment shape these networks and modify their output. The present review has focused on the role of one family of extracellular matrix molecules and their signaling pathways in retinal development. In addition to their effects on the developing retina, laminins play a role in maintaining Müller cell polarity and compartmentalization, thereby contributing to retinal homeostasis. This article which is intended for the clinical audience, reviews the fundamentals of retinal development, extracellular matrix organization and the role of laminins in retinal development. The role of laminin in cortical development is also briefly discussed. PMID:26730321

  8. Formation of atypical podosomes in extravillous trophoblasts regulates extracellular matrix degradation

    PubMed Central

    Patel, Anand; Dash, Philip R.

    2012-01-01

    Throughout pregnancy the cytotrophoblast, the stem cell of the placenta, gives rise to the differentiated forms of trophoblasts. The two main cell lineages are the syncytiotrophoblast and the invading extravillous trophoblast. A successful pregnancy requires extravillous trophoblasts to migrate and invade through the decidua and then remodel the maternal spiral arteries. Many invasive cells use specialised cellular structures called invadopodia or podosomes in order to degrade extracellular matrix. Despite being highly invasive cells, the presence of invadapodia or podosomes has not previously been investigated in trophoblasts. In this study these structures have been identified and characterised in extravillous trophoblasts. The role of specialised invasive structures in trophoblasts in the degradation of the extracellular matrix was compared with well characterised podosomes and invadopodia in other invasive cells and the trophoblast specific structures were characterised by using a sensitive matrix degradation assay which enabled visualisation of the structures and their dynamics. We show trophoblasts form actin rich protrusive structures which have the ability to degrade the extracellular matrix during invasion. The degradation ability and dynamics of the structures closely resemble podosomes, but have unique characteristics that have not previously been described in other cell types. The composition of these structures does not conform to the classic podosome structure, with no distinct ring of plaque proteins such as paxillin or vinculin. In addition, trophoblast podosomes protrude more deeply into the extracellular matrix than established podosomes, resembling invadopodia in this regard. We also show several significant pathways such as Src kinase, MAPK kinase and PKC along with MMP-2 and 9 as key regulators of extracellular matrix degradation activity in trophoblasts, while podosome activity was regulated by the rigidity of the extracellular matrix. PMID

  9. Local fluid transfer regulation in heart extracellular matrix.

    PubMed

    McGee, Maria P; Morykwas, Michael J; Jordan, James E; Wang, Rui; Argenta, Louis C

    2016-06-01

    The interstitial myocardial matrix is a complex and dynamic structure that adapts to local fluctuations in pressure and actively contributes to the heart's fluid exchange and hydration. However, classical physiologic models tend to treat it as a passive conduit for water and solute, perhaps because local interstitial regulatory mechanisms are not easily accessible to experiment in vivo. Here, we examined the interstitial contribution to the fluid-driving pressure ex vivo. Interstitial hydration potentials were determined from influx/efflux rates measured in explants from healthy and ischemia-reperfusion-injured pigs during colloid osmotic pressure titrations. Adaptive responses were further explored by isolating myocardial fibroblasts and measuring their contractile responses to water activity changes in vitro. Results show hydration potentials between 5 and 60 mmHg in healthy myocardia and shifts in excess of 200 mmHg in edematous myocardia after ischemia-reperfusion injury. Further, rates of fluid transfer were temperature-dependent, and in collagen gel contraction assays, myocardial fibroblasts tended to preserve the micro-environment's hydration volume by slowing fluid efflux rates at pressures above 40 mmHg. Our studies quantify components of the fluid-driving forces in the heart interstitium that the classical Starling's equation does not explicitly consider. Measured hydration potentials in healthy myocardia and shifts with edema are larger than predicted from the known values of hydrostatic and colloid osmotic interstitial fluid pressures. Together with fibroblast responses in vitro, they are consistent with regulatory mechanisms that add local biological controls to classic fluid-balance models. PMID:26961911

  10. Molecular Control of Vascular Tube Morphogenesis and Stabilization: Regulation by Extracellular Matrix, Matrix Metalloproteinases, and Endothelial Cell-Pericyte Interactions

    NASA Astrophysics Data System (ADS)

    Davis, George E.; Stratman, Amber N.; Sacharidou, Anastasia

    Recent studies have revealed a critical role for both extracellular matrices and matrix metalloproteinases in the molecular control of vascular morphogenesis and stabilization in three-dimensional (3D) tissue environments. Key interactions involve endothelial cells (ECs) and pericytes, which coassemble to affect vessel formation, remodeling, and stabilization events during development and postnatal life. EC-pericyte interactions control extracellular matrix remodeling events including vascular basement membrane matrix assembly, a necessary step for endothelial tube maturation and stabilization. ECs form tube networks in 3D extracellular matrices in a manner dependent on integrins, membrane-type metalloproteinases, and the Rho GTPases, Cdc42 and Rac1. Recent work has defined an EC lumen signaling complex of proteins composed of these proteins that controls 3D matrix-specific signaling events required for these processes. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels. These tunnels are physical matrix spaces that regulate vascular tube remodeling and represent matrix conduits into which pericytes are recruited to allow dynamic cell-cell interactions with ECs. These dynamic EC-pericyte interactions induce vascular basement membrane matrix deposition, leading to vessel maturation and stabilization.

  11. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics

    PubMed Central

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng

    2014-01-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl−/−; or Yes, Src, and Fyn knockout mice (YSF−/−)] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl−/− MEF showed impaired matrix endocytosis, YSF−/− MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  12. Extracellular matrix and wound healing.

    PubMed

    Maquart, F X; Monboisse, J C

    2014-04-01

    Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects. PMID:24650524

  13. Regulation of Extracellular Matrix Remodeling Proteins by Osteoblasts in Titanium Nanoparticle-Induced Aseptic Loosening Model.

    PubMed

    Xie, Jing; Hou, Yanhua; Fu, Na; Cai, Xiaoxiao; Li, Guo; Peng, Qiang; Lin, Yunfeng

    2015-10-01

    Titanium (Ti)-wear particles, formed at the bone-implant interface, are responsible for aseptic loosening, which is a main cause of total joint replacement failure. There have been many studies on Ti particle-induced function changes in mono-cultured osteoblasts and synovial cells. However, little is known on extracellular matrix remodeling displayed by osteoblasts when in coexistence with Synovial cells. To further mimic the bone-implant interface environment, we firstly established a nanoscaled-Ti particle-induced aseptic loosening system by co-culturing osteoblasts and Synovial cells. We then explored the impact of the Synovial cells on Ti particle-engulfed osteoblasts in the mimicked flamed niche. The matrix metalloproteinases and lysyl oxidases expression levels, two protein families which are critical in osseointegration, were examined under induction by tumor necrosis factor-alpha. It was found that the co-culture between the osteoblasts and Synovial cells markedly increased the migration and proliferation of the osteoblasts, even in the Ti-particle engulfed osteoblasts. Importantly, the Ti-particle engulfed osteoblasts, induced by TNF-alpha after the co-culture, enhanced the release of the matrix metalloproteinases and reduced the expressions of lysyl oxidases. The regulation of extracellular matrix remodeling at the protein level was further assessed by investigations on gene expression of the matrix metalloproteinases and lysyl oxidases, which also suggested that the regulation started at the genetic level. Our research work has therefore revealed the critical role of multi cell-type interactions in the extracellular matrix remodeling within the peri-prosthetic tissues, which provides new insights on aseptic loosening and brings new clues about incomplete osseointegration between the implantation materials and their surrounding bones. PMID:26502645

  14. Haemodynamic and extracellular matrix cues regulate the mechanical phenotype and stiffness of aortic endothelial cells

    PubMed Central

    Collins, Caitlin; Osborne, Lukas D.; Guilluy, Christophe; Chen, Zhongming; O’Brien, E Tim; Reader, John S.; Burridge, Keith; Superfine, Richard; Tzima, Ellie

    2014-01-01

    Endothelial cell (ECs) lining blood vessels express many mechanosensors, including platelet endothelial cell adhesion molecule-1 (PECAM-1), that convert mechanical force to biochemical signals. While it is accepted that mechanical stresses and the mechanical properties of ECs regulate vessel health, the relationship between force and biological response remains elusive. Here we show that ECs integrate mechanical forces and extracellular matrix (ECM) cues to modulate their own mechanical properties. We demonstrate that the ECM influences EC response to tension on PECAM-1. ECs adherent on collagen display divergent stiffening and focal adhesion growth compared to ECs on fibronectin. This is due to PKA-dependent serine phosphorylation and inactivation of RhoA. PKA signaling regulates focal adhesion dynamics and EC compliance in response to shear stress in vitro and in vivo. Our study identifies a ECM-specific, mechanosensitive signaling pathway that regulates EC compliance and may serve as an atheroprotective mechanism maintains blood vessel integrity in vivo. PMID:24917553

  15. Thrombopoietin/TGF-β1 Loop Regulates Megakaryocyte Extracellular Matrix Component Synthesis.

    PubMed

    Abbonante, Vittorio; Di Buduo, Christian A; Gruppi, Cristian; Malara, Alessandro; Gianelli, Umberto; Celesti, Giuseppe; Anselmo, Achille; Laghi, Luigi; Vercellino, Marco; Visai, Livia; Iurlo, Alessandra; Moratti, Remigio; Barosi, Giovanni; Rosti, Vittorio; Balduini, Alessandra

    2016-04-01

    Extracellular matrix (ECM) components initiate crucial biochemical and biomechanical cues that are required for bone marrow homeostasis. In our research, we prove that a peri-cellular matrix composed primarily of type III and type IV collagens, and fibronectin surrounds human megakaryocytes in the bone marrow. The data we collected support the hypothesis that bone marrow megakaryocytes possess a complete mechanism to synthesize the ECM components, and that thrombopoietin is a pivotal regulator of this new function inducing transforming growth factor-β1 (TGF-β1) release and consequent activation of the downstream pathways, both in vitro and in vivo. This activation results in a dose dependent increase of ECM component synthesis by megakaryocytes, which is reverted upon incubation with JAK and TGF-β1 receptor specific inhibitors. These data are pivotal for understanding the central role of megakaryocytes in creating their own regulatory niche within the bone marrow environment. Stem Cells 2016;34:1123-1133. PMID:26748484

  16. Up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver

    PubMed Central

    Zhang, Shuai; Li, Tao-Sheng; Soyama, Akihiko; Tanaka, Takayuki; Yan, Chen; Sakai, Yusuke; Hidaka, Masaaki; Kinoshita, Ayaka; Natsuda, Koji; Fujii, Mio; Kugiyama, Tota; Baimakhanov, Zhassulan; Kuroki, Tamotsu; Gu, Weili; Eguchi, Susumu

    2016-01-01

    Although the healthy liver is known to have high regenerative potential, poor liver regeneration under pathological conditions remains a substantial problem. We investigated the key molecules that impair the regeneration of cholestatic liver. C57BL/6 mice were randomly subjected to partial hepatectomy and bile duct ligation (PH+BDL group, n = 16), partial hepatectomy only (PH group, n = 16), or sham operation (Sham group, n = 16). The liver sizes and histological findings were similar in the PH and sham groups 14 days after operation. However, compared with those in the sham group, the livers in mice in the PH+BDL group had a smaller size, a lower cell proliferative activity, and more fibrotic tissue 14 days after the operation, suggesting the insufficient regeneration of the cholestatic liver. Pathway-focused array analysis showed that many genes were up- or down-regulated over 1.5-fold in both PH+BDL and PH groups at 1, 3, 7, and 14 days after treatment. Interestingly, more genes that were functionally related to the extracellular matrix and inflammatory chemokines were found in the PH+BDL group than in the PH group at 7 and 14 days after treatment. Our data suggest that up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver. PMID:27226149

  17. Up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver.

    PubMed

    Zhang, Shuai; Li, Tao-Sheng; Soyama, Akihiko; Tanaka, Takayuki; Yan, Chen; Sakai, Yusuke; Hidaka, Masaaki; Kinoshita, Ayaka; Natsuda, Koji; Fujii, Mio; Kugiyama, Tota; Baimakhanov, Zhassulan; Kuroki, Tamotsu; Gu, Weili; Eguchi, Susumu

    2016-01-01

    Although the healthy liver is known to have high regenerative potential, poor liver regeneration under pathological conditions remains a substantial problem. We investigated the key molecules that impair the regeneration of cholestatic liver. C57BL/6 mice were randomly subjected to partial hepatectomy and bile duct ligation (PH+BDL group, n = 16), partial hepatectomy only (PH group, n = 16), or sham operation (Sham group, n = 16). The liver sizes and histological findings were similar in the PH and sham groups 14 days after operation. However, compared with those in the sham group, the livers in mice in the PH+BDL group had a smaller size, a lower cell proliferative activity, and more fibrotic tissue 14 days after the operation, suggesting the insufficient regeneration of the cholestatic liver. Pathway-focused array analysis showed that many genes were up- or down-regulated over 1.5-fold in both PH+BDL and PH groups at 1, 3, 7, and 14 days after treatment. Interestingly, more genes that were functionally related to the extracellular matrix and inflammatory chemokines were found in the PH+BDL group than in the PH group at 7 and 14 days after treatment. Our data suggest that up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver. PMID:27226149

  18. Interleukin 18 and extracellular matrix metalloproteinase inducer cross-regulation: implications in acute myocardial infarction.

    PubMed

    Xie, Shuang-Lun; Chen, Yu-Yang; Zhang, Hai-Feng; Deng, Bing-Qing; Shu, Xiao-Rong; Su, Zi-Zhuo; Lin, Yong-Qing; Nie, Ru-Qiong; Wang, Jing-Feng

    2015-03-01

    Circulating interleukin-18 (IL-18) is thought to promote atherosclerosis and cardiovascular complications such as plaque rupture. Atherosclerosis is also characterized by smooth muscle cell migration, a consequence of extracellular matrix (ECM) degradation regulated by metalloproteinases (MMPs). Because extracellular matrix metalloproteinase inducer (EMMPRIN) has been shown to promote plaque instability by inducing ECM degradation and MMP synthesis, we investigated whether a cross-regulatory interaction exists between IL-18 and EMMPRIN in human monocytes. EMMPRIN levels in monocytes were markedly greater in 20 patients with acute myocardial infarction (AMI) compared with 20 patients with stable angina pectoris or 20 healthy volunteers (control group). The levels of IL-18 and MMP-9 in serum were also significantly greater in the AMI group in comparison with the other 2 groups. IL-18 levels positively correlated with increased levels of EMMPRIN in monocytes. In vitro, the expression of EMMPRIN was increased in monocytes cultured with IL-18, and IL-18 secretion was augmented in monocytes cultured with EMMPRIN. Gene silencing of EMMPRIN by small interfering RNA reduced monocyte secretion of both IL-18 and MMP-9. In the present study, cross-regulation between IL-18 and EMMPRIN in monocytes was demonstrated. This interaction may amplify the inflammatory cascade and be responsible for increased monocytic MMP-9 serum levels in atherosclerosis, contributing to atherosclerotic plaque destabilization and subsequent AMI. PMID:25267095

  19. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix

    PubMed Central

    Kubow, Kristopher E.; Vukmirovic, Radmila; Zhe, Lin; Klotzsch, Enrico; Smith, Michael L.; Gourdon, Delphine; Luna, Sheila; Vogel, Viola

    2015-01-01

    Despite the crucial role of extracellular matrix (ECM) in directing cell fate in healthy and diseased tissues—particularly in development, wound healing, tissue regeneration and cancer—the mechanisms that direct the assembly and regulate hierarchical architectures of ECM are poorly understood. Collagen I matrix assembly in vivo requires active fibronectin (Fn) fibrillogenesis by cells. Here we exploit Fn-FRET probes as mechanical strain sensors and demonstrate that collagen I fibres preferentially co-localize with more-relaxed Fn fibrils in the ECM of fibroblasts in cell culture. Fibre stretch-assay studies reveal that collagen I's Fn-binding domain is responsible for the mechano-regulated interaction. Furthermore, we show that Fn-collagen interactions are reciprocal: relaxed Fn fibrils act as multivalent templates for collagen assembly, but once assembled, collagen fibres shield Fn fibres from being stretched by cellular traction forces. Thus, in addition to the well-recognized, force-regulated, cell-matrix interactions, forces also tune the interactions between different structural ECM components. PMID:26272817

  20. Tendon Functional Extracellular Matrix

    PubMed Central

    Screen, H.R.C.; Birk, D.E.; Kadler, K.E.; Ramirez, F; Young, M.F.

    2015-01-01

    This article is one of a series, summarising views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the “Functional Extracellular Matrix” stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely-varying extrinsic and intrinsic factors such as age, nutrition, exercise levels and biomechanics. Consequently, tendon adapts dynamically during development, ageing and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. PMID:25640030

  1. Gene Expression in Human Hippocampus from Cocaine Abusers Identifies Genes which Regulate Extracellular Matrix Remodeling

    PubMed Central

    Mash, Deborah C.; ffrench-Mullen, Jarlath; Adi, Nikhil; Qin, Yujing; Buck, Andrew; Pablo, John

    2007-01-01

    The chronic effects of cocaine abuse on brain structure and function are blamed for the inability of most addicts to remain abstinent. Part of the difficulty in preventing relapse is the persisting memory of the intense euphoria or cocaine “rush”. Most abused drugs and alcohol induce neuroplastic changes in brain pathways subserving emotion and cognition. Such changes may account for the consolidation and structural reconfiguration of synaptic connections with exposure to cocaine. Adaptive hippocampal plasticity could be related to specific patterns of gene expression with chronic cocaine abuse. Here, we compare gene expression profiles in the human hippocampus from cocaine addicts and age-matched drug-free control subjects. Cocaine abusers had 151 gene transcripts upregulated, while 91 gene transcripts were downregulated. Topping the list of cocaine-regulated transcripts was RECK in the human hippocampus (FC = 2.0; p<0.05). RECK is a membrane-anchored MMP inhibitor that is implicated in the coordinated regulation of extracellular matrix integrity and angiogenesis. In keeping with elevated RECK expression, active MMP9 protein levels were decreased in the hippocampus from cocaine abusers. Pathway analysis identified other genes regulated by cocaine that code for proteins involved in the remodeling of the cytomatrix and synaptic connections and the inhibition of blood vessel proliferation (PCDH8, LAMB1, ITGB6, CTGF and EphB4). The observed microarray phenotype in the human hippocampus identified RECK and other region-specific genes that may promote long-lasting structural changes with repeated cocaine abuse. Extracellular matrix remodeling in the hippocampus may be a persisting effect of chronic abuse that contributes to the compulsive and relapsing nature of cocaine addiction. PMID:18000554

  2. Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis.

    PubMed

    Edgar, Lowell T; Underwood, Clayton J; Guilkey, James E; Hoying, James B; Weiss, Jeffrey A

    2014-01-01

    Angiogenesis is regulated by the local microenvironment, including the mechanical interactions between neovessel sprouts and the extracellular matrix (ECM). However, the mechanisms controlling the relationship of mechanical and biophysical properties of the ECM to neovessel growth during sprouting angiogenesis are just beginning to be understood. In this research, we characterized the relationship between matrix density and microvascular topology in an in vitro 3D organ culture model of sprouting angiogenesis. We used these results to design and calibrate a computational growth model to demonstrate how changes in individual neovessel behavior produce the changes in vascular topology that were observed experimentally. Vascularized gels with higher collagen densities produced neovasculatures with shorter vessel lengths, less branch points, and reduced network interconnectivity. The computational model was able to predict these experimental results by scaling the rates of neovessel growth and branching according to local matrix density. As a final demonstration of utility of the modeling framework, we used our growth model to predict several scenarios of practical interest that could not be investigated experimentally using the organ culture model. Increasing the density of the ECM significantly reduced angiogenesis and network formation within a 3D organ culture model of angiogenesis. Increasing the density of the matrix increases the stiffness of the ECM, changing how neovessels are able to deform and remodel their surroundings. The computational framework outlined in this study was capable of predicting this observed experimental behavior by adjusting neovessel growth rate and branching probability according to local ECM density, demonstrating that altering the stiffness of the ECM via increasing matrix density affects neovessel behavior, thereby regulated vascular topology during angiogenesis. PMID:24465500

  3. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    SciTech Connect

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  4. Regulation of Extracellular Matrix Organization by BMP Signaling in Caenorhabditis elegans

    PubMed Central

    Schultz, Robbie D.; Bennett, Emily E.; Ellis, E. Ann; Gumienny, Tina L.

    2014-01-01

    In mammals, Bone Morphogenetic Protein (BMP) pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle. PMID:25013968

  5. Mechanotransduction and extracellular matrix homeostasis

    PubMed Central

    Humphrey, Jay D.; Dufresne, Eric R.; Schwartz, Martin A.

    2015-01-01

    Preface Soft connective tissues at steady state are yet dynamic; resident cells continually read environmental cues and respond to promote homeostasis, including maintenance of the mechanical properties of the extracellular matrix that are fundamental to cellular and tissue health. The mechanosensing process involves assessment of the mechanics of the matrix by the cells through integrins and the actomyosin cytoskeleton, and is followed by a mechano-regulation process that includes the deposition, rearrangement, or removal of matrix to maintain overall form and function. Progress toward understanding the molecular, cellular, and tissue scale effects that promote mechanical homeostasis has helped identify key questions for future research. PMID:25355505

  6. PTEN Regulates Renal Extracellular Matrix Deposit via Increased CTGF in Diabetes Mellitus.

    PubMed

    Zhu, Lin; Zhao, Song; Liu, Shuxia; Liu, Qingjuan; Li, Fan; Hao, Jun

    2016-05-01

    Extracellular matrix accumulation and fibrosis are the features of diabetic nephropathy. PI3K (phosphatidylinositol 3-kinase)/Akt (protein kinase B) signal pathway and its inhibitor PTEN (phosphatase and tensin homolog deleted on chromosome 10) are revealed to modulate renal fibrosis. However, the exact mechanism is still not well known. In the present study we found that compared with normal mice, diabetic mice showed decreased PTEN, increased phospho-Akt (Ser 473), phospho-Akt (Thr 308), CTGF (connective tissue growth factor), α-SMA (α-smooth muscle actin), and matricellular protein in kidney. Knocking down of PTEN caused an increase in phospho-Akt (Ser 473), phospho-Akt (Thr 308), CTGF, secreted fibronectin, and secreted Col 3 in HKC cells (human renal tubular epithelial cells). Again, in vitro experiment revealed 1.89, 2.18, 1.92, 3.06, 2.06-fold increases of phospho-Akt (Ser 473), phospho-Akt (Thr 308), CTGF, secreted fibronectin, and secreted Col 3 in high glucose-stimulated HKC cells in comparison with normal control cells. Furthermore, knocking down of CTGF reversed increased secreted fibronectin and Col 3 in high glucose-treated HKC cells. Moreover, transfection of PTEN expression vector prevented high glucose-caused these changes in HKC cells. Especially, CTGF expression, secretion of fibronectin and Col 3 were, respectively, decreased by 38.81, 53.85, and 39.12%. The treatment of LY294002 inhibited phospho-Akt (Ser 473) and phospho-Akt (Thr 308) expression followed by decreased CTGF, secretory fibronectin and secretory Col 3 in high glucose-treated HKC cells. In the end our study suggests that PTEN regulates renal extracellular matrix production via activated Akt and increased CTGF in diabetes mellitus. J. Cell. Biochem. 117: 1187-1198, 2016. © 2015 Wiley Periodicals, Inc. PMID:26447680

  7. [Regulation of cell activity by the extracellular matrix: the concept of matrikines].

    PubMed

    Maquart, F X; Siméon, A; Pasco, S; Monboisse, J C

    1999-01-01

    The activity of connective tissue cells is modulated by a number of factors present in their environment. In addition to the soluble factors such as hormones, cytokines or growth factors, cells also receive signals from the surrounding extracellular matrix (ECM) macromolecules. Moreover, they may degrade the ECM proteins and liberate peptides which may by themselves constitute new signals for the surrounding cells. Therefore, an actual regulation loop exists in connective tissue, constituted by peptides generated by ECM degradation and connective tissue cells. The term of "matrikine" has been proposed to designate such ECM-derived peptides able to regulate cell activity. In this review, we summarize some data obtained in our laboratory with two different matrikines: the tripeptide glycyl-histidyl-lysine (GHK) and the heptapeptide cysteinyl-asparaginyl-tyrosyl-tyrosyl-seryl-asparaginyl-serine (CNYYSNS). GHK is a potent activator of ECM synthesis and remodeling, whereas CNYYSNS is able to inhibit polymorphonuclear leukocytes activation and decrease the invasive capacities of cancer cells. PMID:10689625

  8. Cadherin-11 is a novel regulator of extracellular matrix synthesis and tissue mechanics.

    PubMed

    Row, Sindhu; Liu, Yayu; Alimperti, Stella; Agarwal, Sandeep K; Andreadis, Stelios T

    2016-08-01

    We discovered that Cadherin-11 (CDH11) regulates collagen and elastin synthesis, both affecting the mechanical properties and contractile function of animal tissues. Using a Cdh11-null mouse model, we observed a significant reduction in the mechanical properties [Youngs' modulus and ultimate tensile strength (UTS)] of Cdh11(-/-) as compared to wild-type (WT) mouse tissues, such as the aorta, bladder and skin. The deterioration of mechanical properties (Youngs' modulus and UTS) was accompanied by reduced collagen and elastin content in Cdh11(-/-) mouse tissues as well as in cells in culture. Similarly, knocking down CDH11 abolished collagen and elastin synthesis in human cells, and consequently reduced their ability to generate force. Conversely, engagement of CDH11 through homophilic interactions, led to swift activation of the TGF-β and ROCK pathways as evidenced by phosphorylation of downstream effectors. Subsequently, activation of the key transcription factors, MRTF-A (also known as MKL1) and MYOCD led to significant upregulation of collagen and elastin genes. Taken together, our results demonstrate a novel role of adherens junctions in regulating extracellular matrix (ECM) synthesis with implications for many important biological processes, including maintenance of tissue integrity, wound healing and tissue regeneration. PMID:27311482

  9. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells.

    PubMed

    Mason, J A; Davison-Versagli, C A; Leliaert, A K; Pape, D J; McCallister, C; Zuo, J; Durbin, S M; Buchheit, C L; Zhang, S; Schafer, Z T

    2016-08-01

    In order for cancer cells to survive during metastasis, they must overcome anoikis, a caspase-dependent cell death process triggered by extracellular matrix (ECM) detachment, and rectify detachment-induced metabolic defects that compromise cell survival. However, the precise signals used by cancer cells to facilitate their survival during metastasis remain poorly understood. We have discovered that oncogenic Ras facilitates the survival of ECM-detached cancer cells by using distinct effector pathways to regulate metabolism and block anoikis. Surprisingly, we find that while Ras-mediated phosphatidylinositol (3)-kinase signaling is critical for rectifying ECM-detachment-induced metabolic deficiencies, the critical downstream effector is serum and glucocorticoid-regulated kinase-1 (SGK-1) rather than Akt. Our data also indicate that oncogenic Ras blocks anoikis by diminishing expression of the phosphatase PHLPP1 (PH Domain and Leucine-Rich Repeat Protein Phosphatase 1), which promotes anoikis through the activation of p38 MAPK. Thus, our study represents a novel paradigm whereby oncogene-initiated signal transduction can promote the survival of ECM-detached cells through divergent downstream effectors. PMID:26915296

  10. Spatial organization of the extracellular matrix regulates cell–cell junction positioning

    PubMed Central

    Tseng, Qingzong; Duchemin-Pelletier, Eve; Deshiere, Alexandre; Balland, Martial; Guillou, Hervé; Filhol, Odile; Théry, Manuel

    2012-01-01

    The organization of cells into epithelium depends on cell interaction with both the extracellular matrix (ECM) and adjacent cells. The role of cell–cell adhesion in the regulation of epithelial topology is well-described. ECM is better known to promote cell migration and provide a structural scaffold for cell anchoring, but its contribution to multicellular morphogenesis is less well-understood. We developed a minimal model system to investigate how ECM affects the spatial organization of intercellular junctions. Fibronectin micropatterns were used to constrain the location of cell–ECM adhesion. We found that ECM affects the degree of stability of intercellular junction positioning and the magnitude of intra- and intercellular forces. Intercellular junctions were permanently displaced, and experienced large perpendicular tensional forces as long as they were positioned close to ECM. They remained stable solely in regions deprived of ECM, where they were submitted to lower tensional forces. The heterogeneity of the spatial organization of ECM induced anisotropic distribution of mechanical constraints in cells, which seemed to adapt their position to minimize both intra- and intercellular forces. These results uncover a morphogenetic role for ECM in the mechanical regulation of cells and intercellular junction positioning. PMID:22307605

  11. The extracellular matrix regulates MaeuCath1a gene expression.

    PubMed

    Wanyonyi, Stephen S; Lefevre, Christophe; Sharp, Julie A; Nicholas, Kevin R

    2013-01-01

    We have previously shown that the gene for MaeuCath1, a cathelicidin secreted in wallaby milk is alternately spliced into two variants, MaeuCath1a and MaeuCath1b which are temporally regulated in order to provide antimicrobial protection to the newborn and stimulate mammary growth, respectively. The current study investigated the extracellular matrix (ECM) for its regulatory role in MaeuCath1 gene expression. Reverse transcription qPCR using RNA isolated from mammary epithelial cells (WallMEC) cultured on ECM showed that ECM regulates MaeuCath1a gene expression in a lactation phase-dependent manner. Luciferase reporter-based assays and in silico analysis of deletion fragments of the 2245bp sequence upstream of the translation start site identified ECM-dependent positive regulatory activity in the -709 to -15 region and repressor activity in the -919 to -710 region. Electrophoretic Gel Mobility Shift Assays (EMSA) using nuclear extract from ECM-treated WallMEC showed differential band shift in the -839 to -710 region. PMID:23500515

  12. Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation.

    PubMed

    Dohn, Michael R; Mundell, Nathan A; Sawyer, Leah M; Dunlap, Julie A; Jessen, Jason R

    2013-11-01

    Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin-fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular

  13. CADM1 Controls Actin Cytoskeleton Assembly and Regulates Extracellular Matrix Adhesion in Human Mast Cells

    PubMed Central

    Moiseeva, Elena P.; Straatman, Kees R.; Leyland, Mark L.; Bradding, Peter

    2014-01-01

    CADM1 is a major receptor for the adhesion of mast cells (MCs) to fibroblasts, human airway smooth muscle cells (HASMCs) and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM). Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion. PMID:24465823

  14. Extracellular matrix in the trabecular meshwork: Intraocular pressure regulation and dysregulation in glaucoma

    PubMed Central

    Vranka, Janice A.; Kelley, Mary J.; Acott, Ted S.; Keller, Kate E.

    2014-01-01

    The trabecular meshwork (TM) is located in the anterior segment of the eye and is responsible for regulating the outflow of aqueous humor. Increased resistance to aqueous outflow causes intraocular pressure to increase, which is the primary risk factor for glaucoma. TM cells reside on a series of fenestrated beams and sheets through which the aqueous humor flows to exit the anterior chamber via Schlemm’s canal. The outer trabecular cells are phagocytic and are thought to function as a pre-filter. However, most of the outflow resistance is thought to be from the extracellular matrix (ECM) of the juxtacanalicular region, the deepest portion of the TM, and from the inner wall basement membrane of Schlemm’s canal. It is becoming increasingly evident that the extracellular milieu is important in maintaining the integrity of the TM. Not only have ultrastructural changes been observed in the ECM of the TM in glaucoma, and a significant number of mutations in ECM genes are known to be associated with glaucoma, but the stiffness of glaucomatous TM appears to be greater than that of normal tissue. Additionally, TGFβ2 has been found to be elevated in the aqueous humor of glaucoma patients and is assumed to be involved in ECM changes deep with the juxtacanalicular region of the TM. This review summarizes the current literature on trabecular ECM as well as the development and function of the TM. Animal models and organ culture models targeting specific ECM molecules to investigate the mechanisms of glaucoma are described. Finally, the growing number of mutations that have been identified in ECM genes and genes that modulate ECM in humans with glaucoma are documented. PMID:25819459

  15. Nitric oxide regulates cell behavior on an interactive cell-derived extracellular matrix scaffold.

    PubMed

    Xing, Qi; Zhang, Lijun; Redman, Travis; Qi, Shaohai; Zhao, Feng

    2015-12-01

    During tissue injury and wound healing process, there are dynamic reciprocal interactions among cells, extracellular matrix (ECM), and mediating molecules which are crucial for functional tissue repair. Nitric oxide (NO) is one of the key mediating molecules that can positively regulate various biological activities involved in wound healing. Various ECM components serve as binding sites for cells and mediating molecules, and the interactions further stimulate cellular activities. Human mesenchymal stem cells (hMSCs) can migrate to the wound site and contribute to tissue regeneration through differentiation and paracrine signaling. The objective of this work was to investigate the regulatory effect of NO on hMSCs in an interactive ECM-rich microenvironment. In order to mimic the in vivo stromal environment in wound site, a cell-derived ECM scaffold that was able to release NO within the range of in vivo wound fluid NO level was fabricated. Results showed that the micro-molar level of NO released from the ECM scaffold had an inhibitory effect on cellular activities of hMSCs. The NO impaired cell growth, altered cell morphology, disrupted the F-actin organization, also decreased the expression of focal adhesion related molecules integrin α5 and paxillin. These results may contribute to the elucidation of how NO acts on hMSCs in wound healing process. PMID:26074441

  16. Combinatorial microenvironmental regulation of liver progenitor differentiation by Notch ligands, TGFβ, and extracellular matrix

    PubMed Central

    Kaylan, Kerim B.; Ermilova, Viktoriya; Yada, Ravi Chandra; Underhill, Gregory H.

    2016-01-01

    The bipotential differentiation of liver progenitor cells underlies liver development and bile duct formation as well as liver regeneration and disease. TGFβ and Notch signaling are known to play important roles in the liver progenitor specification process and tissue morphogenesis. However, the complexity of these signaling pathways and their currently undefined interactions with other microenvironmental factors, including extracellular matrix (ECM), remain barriers to complete mechanistic understanding. Utilizing a series of strategies, including co-cultures and cellular microarrays, we identified distinct contributions of different Notch ligands and ECM proteins in the fate decisions of bipotential mouse embryonic liver (BMEL) progenitor cells. In particular, we demonstrated a cooperative influence of Jagged-1 and TGFβ1 on cholangiocytic differentiation. We established ECM-specific effects using cellular microarrays consisting of 32 distinct combinations of collagen I, collagen III, collagen IV, fibronectin, and laminin. In addition, we demonstrated that exogenous Jagged-1, Delta-like 1, and Delta-like 4 within the cellular microarray format was sufficient for enhancing cholangiocytic differentiation. Further, by combining Notch ligand microarrays with shRNA-based knockdown of Notch ligands, we systematically examined the effects of both cell-extrinsic and cell-intrinsic ligand. Our results highlight the importance of divergent Notch ligand function and combinatorial microenvironmental regulation in liver progenitor fate specification. PMID:27025873

  17. Temporal Regulation of Venous Extracellular Matrix Components during Arteriovenous Fistula Maturation

    PubMed Central

    Hall, Michael R.; Yamamoto, Kota; Protack, Clinton D.; Tsuneki, Masayuki; Kuwahara, Go; Assi, Roland; Brownson, Kirstyn E.; Bai, Hualong; Madri, Joseph A.; Dardik, Alan

    2015-01-01

    Purpose The venous limb of arteriovenous fistulae (AVF) adapts to the arterial environment by dilation and wall thickening; however the temporal regulation of the expression of extracellular matrix (ECM) components in the venous limb of the maturing AVF has not been well characterized. We used a murine model of AVF maturation that recapitulates human AVF maturation to determine the temporal pattern of expression of these ECM components. Methods Aortocaval fistulae were created in C57BL/6J mice and the venous limb was analyzed on post-operative days 1, 3, 7, 21, and 42. A gene microarray analysis was performed on day 7; results were confirmed by qPCR, histology, and immunohistochemistry. Proteases, protease-inhibitors, collagens, glycoproteins and other non-collagenous proteins were characterized. Results The maturing AVF has increased expression of many ECM components, including increased collagen and elastin. Matrix metalloproteinases (MMP) and tissue inhibitor of metalloproteinase 1 (TIMP1) showed increased mRNA and protein expression during the first 7 days of maturation. Increased collagen and elastin expression was also significant at day 7. Expression of structural proteins was increased later during AVF maturation. Osteopontin (OPN) expression was increased at day 1 and sustained during AVF maturation. Conclusion During AVF maturation there is significantly increased expression of ECM components, each of which shows distinct temporal patterns during AVF maturation. Increased expression of regulatory proteins such as MMP and TIMP precedes increased expression of structural proteins such as collagen and elastin, potentially mediating a controlled pattern of ECM degradation and vessel remodeling without structural failure. PMID:25262757

  18. Regulation and use of the extracellular matrix by Trypanosoma cruzi during early infection

    PubMed Central

    Nde, Pius N.; Lima, Maria F.; Johnson, Candice A.; Pratap, Siddharth; Villalta, Fernando

    2012-01-01

    Chagas disease, which was once thought to be confined to endemic regions of Latin America, has now gone global becoming a new worldwide challenge. For more than a century since its discovery, it has remained neglected with no effective drugs or vaccines. The mechanisms by which Trypanosoma cruzi regulates and uses the extracellular matrix (ECM) to invade cells and cause disease are just beginning to be understood. Here we critically review and discuss the regulation of the ECM interactome by T. cruzi, the use of the ECM by T. cruzi and analyze the molecular ECM/T. cruzi interphase during the early process of infection. It has been shown that invasive trypomastigote forms of T. cruzi use and modulate components of the ECM during the initial process of infection. Infective trypomastigotes up-regulate the expression of laminin γ-1 (LAMC1) and thrombospondin (THBS1) to facilitate the recruitment of trypomastigotes to enhance cellular infection. Silencing the expression of LAMC1 and THBS1 by stable RNAi dramatically reduces trypanosome infection. T. cruzi gp83, a ligand that mediates the attachment of trypanosomes to cells to initiate infection, up-regulates LAMC1 expression to enhance cellular infection. Infective trypomastigotes use Tc85 to interact with laminin, p45 mucin to interact with LAMC1 through galectin-3 (LGALS3), a human lectin, and calreticulin (TcCRT) to interact with TSB1 to enhance cellular infection. Silencing the expression of LGALS3 also reduces cellular infection. Despite the role of the ECM in T. cruzi infection, almost nothing is known about the ECM interactome networks operating in the process of T. cruzi infection and its ligands. Here, we present the first elucidation of the human ECM interactome network regulated by T. cruzi and its gp83 ligand that facilitates cellular infection. The elucidation of the human ECM interactome regulated by T. cruzi and the dissection of the molecular ECM/T. cruzi interphase using systems biology approaches are

  19. Regulation of human mesenchymal stem cells differentiation into chondrocytes in extracellular matrix-based hydrogel scaffolds.

    PubMed

    Du, Mingchun; Liang, Hui; Mou, Chenchen; Li, Xiaoran; Sun, Jie; Zhuang, Yan; Xiao, Zhifeng; Chen, Bing; Dai, Jianwu

    2014-02-01

    To induce human mesenchymal stem cells (hMSCs) to differentiate into chondrocytes in three-dimensional (3D) microenvironments, we developed porous hydrogel scaffolds using the cartilage extracellular matrix (ECM) components of chondroitin sulfate (CS) and collagen (COL). The turbidity and viscosity experiments indicated hydrogel could form through pH-triggered co-precipitation when pH=2-3. Enzyme-linked immunosorbent assay (ELISA) confirmed the hydrogel scaffolds could controllably release growth factors as envisaged. Transforming growth factor-β (TGF-β) was released to stimulate hMSCs differentiation into chondrocytes; and then collagen binding domain-basic fibroblast growth factor (CBD-bFGF) was released to improve the differentiation and preserve the chondrocyte phenotype. In in vitro cell culture experiments, the differentiation processes were compared in different microenvironments: 2D culture in culture plate as control, 3D culture in the fabricated scaffolds without growth factors (CC), the samples with CBD-bFGF (CC-C), the samples with TGF-β (CC-T), the samples with CBD-bFGF/TGF-β (CC-CT). Real-time polymerase chain reaction (RT-PCR) revealed the hMSC marker genes of CD44 and CD105 decreased; at the same time the chondrocyte marker genes of collagen type II and aggrecan increased, especially in the CC-CT sample. Immunostaining results further confirmed the hMSC marker protein of CD 44 disappeared and the chondrocyte marker protein of collagen type II emerged over time in the CC-CT sample. These results imply the ECM-based hydrogel scaffolds with growth factors can supply suitable 3D cell niches for hMSCs differentiation into chondrocytes and the differentiation process can be regulated by the controllably released growth factors. PMID:24231133

  20. Symposium: Role of the extracellular matrix in mammary development. Regulation of milk protein and basement membrane gene expression: The influence of the extracellular matrix

    SciTech Connect

    Aggeler, J.; Park, C.S.; Bissell, M.J.

    1988-10-01

    Synthesis and secretion of milk proteins ({alpha}-casein, {beta}-casein, {gamma}-casein, and transferrin) by cultured primary mouse mammary epithelial cells is modulated by the extracellular matrix. In cells grown on released or floating type I collagen gels, mRNA for {beta}-casein and transferrin is increased as much as 30-fold over cells grown on plastic. Induction of {beta}-casein expression depends strongly on the presence of lactogenic hormones, especially prolactin, in the culture. When cells are plated onto partially purified reconstituted basement membrane, dramatic changes in morphology and milk protein gene expression are observed. Cells cultured on the matrix for 6 to 8 d in the presence of prolactin, insulin, and hydrocortisone form hollow spheres and duct-like structures that are completely surrounded by matrix. The cells lining these spheres appear actively secretory and are oriented with their apices facing the lumen. Hybridization experiments indicate that mRNA for {beta}-casein can be increased as much as 70-fold in these cultures. Because > 90% of the cultured cells synthesize immunoreactive {beta}-casein, as compared with only 40% of cells in the late pregnant gland, the matrix appears to be able to induce protein expression in previously silent cells. Synthesis of laminin and assembly of a mammary-specific basal lamina by cells cultured on different extracellular matrices also appears to depend on the presence of lactogenic hormones. These studies provide support for the concept of dynamic reciprocity in which complex interactions between extracellular matrix and the cellular cytoskeleton contribute to the induction and maintenance of tissue-specific gene expression in the mammary gland.

  1. Extracellular matrix controls tubulin monomer levels in hepatocytes by regulating protein turnover

    NASA Technical Reports Server (NTRS)

    Mooney, D. J.; Hansen, L. K.; Langer, R.; Vacanti, J. P.; Ingber, D. E.

    1994-01-01

    Cells have evolved an autoregulatory mechanism to dampen variations in the concentration of tubulin monomer that is available to polymerize into microtubules (MTs), a process that is known as tubulin autoregulation. However, thermodynamic analysis of MT polymerization predicts that the concentration of free tubulin monomer must vary if MTs are to remain stable under different mechanical loads that result from changes in cell adhesion to the extracellular matrix (ECM). To determine how these seemingly contradictory regulatory mechanisms coexist in cells, we measured changes in the masses of tubulin monomer and polymer that resulted from altering cell-ECM contacts. Primary rat hepatocytes were cultured in chemically defined medium on bacteriological petri dishes that were precoated with different densities of laminin (LM). Increasing the LM density from low to high (1-1000 ng/cm2), promoted cell spreading (average projected cell area increased from 1200 to 6000 microns2) and resulted in formation of a greatly extended MT network. Nevertheless, the steady-state mass of tubulin polymer was similar at 48 h, regardless of cell shape or ECM density. In contrast, round hepatocytes on low LM contained a threefold higher mass of tubulin monomer when compared with spread cells on high LM. Furthermore, similar results were obtained whether LM, fibronectin, or type I collagen were used for cell attachment. Tubulin autoregulation appeared to function normally in these cells because tubulin mRNA levels and protein synthetic rates were greatly depressed in round cells that contained the highest level of free tubulin monomer. However, the rate of tubulin protein degradation slowed, causing the tubulin half-life to increase from approximately 24 to 55 h as the LM density was lowered from high to low and cell rounding was promoted. These results indicate that the set-point for the tubulin monomer mass in hepatocytes can be regulated by altering the density of ECM contacts and

  2. Of Extracellular Matrix, Scaffolds, and Signaling: Tissue Architecture Regulates Development, Homeostasis, and Cancer

    PubMed Central

    Nelson, Celeste M.; Bissell, Mina J.

    2010-01-01

    The microenvironment influences gene expression so that the behavior of a cell is largely determined by its interactions with the extracellular matrix, neighboring cells, and soluble local and systemic cues. We describe the essential roles of context and organ structure in directing mammary gland development and differentiated function and in determining the response to oncogenic insults, including mutations. We expand on the concept of “dynamic reciprocity” to present an integrated view of development, cancer, and aging and posit that genes are like the keys on a piano: Although they are essential, it is the context that makes the music. PMID:16824016

  3. Extracellular osmolarity regulates matrix homeostasis in the intervertebral disc and articular cartilage: evolving role of TonEBP.

    PubMed

    Johnson, Zariel I; Shapiro, Irving M; Risbud, Makarand V

    2014-11-01

    Degeneration of the intervertebral disc is characterized by changes in proteoglycan status, loss of bound water molecules, decreased tissue osmotic pressure and a resulting mechanical failure of the disc. A similar spectrum of changes is evident in osteoarthritic articular cartilage. When healthy, resident cells in these skeletal tissues respond to applied mechanical loads by regulating their own osmotic state and the hydration of the extracellular matrix. The transcription factor Tonicity-Responsive Enhancer Binding Protein (TonEBP or NFAT5) is known to mediate the osmoadaptive response in these and other tissues. While the molecular basis of how osmotic loading controls matrix homeostasis is not completely understood, TonEBP regulates the expression of aggrecan and β1,3-glucoronosyltransferase in nucleus pulposus cells, in addition to targets that allow for survival under hypertonic stress. Moreover, in chondrocytes, TonEBP controls expression of several collagen subtypes and Sox9, a master regulator of aggrecan and collagen II expression. Thus, TonEBP-mediated regulation of the matrix composition allows disc cells and chondrocytes to modify the extracellular osmotic state itself. On the other hand, TonEBP in immune cells induces expression of TNF-α, ΙL-6 and MCP-1, pro-inflammatory molecules closely linked to matrix catabolism and pathogenesis of both disc degeneration and osteoarthritis, warranting investigations of this aspect of TonEBP function in skeletal cells. In summary, the TonEBP system, through its effects on extracellular matrix and osmoregulatory genes can be viewed primarily as a protective or homeostatic response to physiological loading. PMID:25172826

  4. Mechanisms of cytoskeletal regulation. Modulation of aortic endothelial cell spectrin by the extracellular matrix.

    PubMed Central

    Pratt, B. M.; Harris, A. S.; Morrow, J. S.; Madri, J. A.

    1984-01-01

    Endothelial cells have a complex cytoskeleton that is responsive to a variety of stimuli such as shear and desquamative injury. The extracellular matrix is known to influence several aspects of cellular behavior, including attachment, spreading, and migration and may, in part, initiate and control vascular responses in growth, differentiation, wound repair, and neoplasia. It is likely that linkage between surface receptors responsible for sensing the matrix and the cytoskeleton may be relevant to understanding the mechanisms of these responses. Spectrin is a high-molecular-weight heterodimer recently identified in many cells that appears to link surface receptors to cortical actin filaments. We have confirmed the existence of spectrin in cultured aortic endothelial cells by metabolic labeling and immunoprecipitation and demonstrated that its organization and intracellular distribution is sensitive to the extracellular matrix. When bovine calf aortic endothelial cells (BAEC) are cultured to confluency on a fibronectin (Fn) substrate, they assume a flattened, spread morphology and exhibit a punctate spectrin distribution with no discernible peripheral localization. In contrast, BAECs cultured on a Type I/III collagen (I/III) substrate exhibit a fibrillar spectrin pattern with significant peripheral localization. When migrating cells were examined, the distribution of spectrin was strikingly different. The cells on the Fn substrate showed no changes in spectrin localization, whereas the cells on I/III exhibited a significant rearrangement, with spectrin being in a coarse fibrillar form, with the fibrils aligned parallel to the direction of migration. The differences in arrangement of this cytoskeletal component on the two substrata reflect the ability of the substrate to perturb the cytoskeletal organization and modulate some aspects of cell behavior such as spreading, proliferation, and migration. These data are consistent with the concept that the nonerythroid

  5. Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate.

    PubMed

    Sasaki, Norihiko; Higashi, Nobuaki; Taka, Tomohiro; Nakajima, Motowo; Irimura, Tatsuro

    2004-03-15

    Extravasation of peripheral blood monocytes through vascular basement membranes requires degradation of extracellular matrix components including heparan sulfate proteoglycans (HSPGs). Heparanase, the heparan sulfate-specific endo-beta-glucuronidase, has previously been shown to be a key enzyme in melanoma invasion, yet its involvement in monocyte extravasation has not been elucidated. We examined a potential regulatory mechanism of heparanase in HSPG degradation and transmigration through basement membranes in leukocyte trafficking using human promonocytic leukemia U937 and THP-1 cells. PMA-treated cells were shown to degrade 35S-sulfated HSPG in endothelial extracellular matrix into fragments of an approximate molecular mass of 5 kDa. This was not found with untreated cells. The gene expression levels of heparanase or the enzyme activity of the amount of cell lysates were no different between untreated and treated cells. Immunocytochemical staining with anti-heparanase mAb revealed pericellular distribution of heparanase in PMA-treated cells but not in untreated cells. Cell surface heparanase capped into a restricted area on PMA-treated cells when they were allowed to adhere. Addition of a chemoattractant fMLP induced polarization of the PMA-treated cells and heparanase redistribution at the leading edge of migration. Therefore a major regulatory process of heparanase activity in the cells seems to be surface expression and capping of the enzyme. Addition of the anti-heparanase Ab significantly inhibited enzymatic activity and transmigration of the PMA-treated cells, suggesting that the cell surface redistribution of heparanase is involved in monocyte extravasation through basement membranes. PMID:15004189

  6. Extracellular matrix and hormones transcriptionally regulate bovine. beta. -casein 5 prime sequences in stably transfected mouse mammary cells

    SciTech Connect

    Schmidhauser, C. Bissell, M.J. ); Myers, C.A.; Casperson, G.F. )

    1990-12-01

    Milk protein regulation involves synergistic action of lactogenic hormones and extracellular matrix (ECM). It is well established that substratum has a dramatic effect on morphology and function of mammary cells. The molecular mechanisms that regulate the ECM- and hormone-dependent gene expression, however, have not been resolved. To address this question, a subpopulation (designated CID 9) of the mouse mammary epithelial cell strain COMMA-2D has been developed in which more than 35% of the cells express {beta}-casein, form alveoli-like structures when plated onto a reconstituted basement membrane, and secrete {beta}-casein undirectionally into a lumen. These cells were stably transfected with a series of chloramphenicol acetyltransferase (CAT) fusion genes to study transcriptional regulation of the bovine {beta}-casein gene. The expression of CAT in these lines demonstrated a striking matrix and hormone dependency. This regulation occurered primarily at the transcriptional level and was dependent on the length of the 5{prime} flanking region of the {beta}-casein promotor. Both matrix and hormonal control of transcription occurred within at least the first 1790 base pairs upstream and/or 42 base pairs downstream of the transcriptional initiation site. The ECM effect was independent of glucocorticoid stimulation. However, prolactin was essential and hydrocortisone further increased CAT expression. Endogenous {beta}-casein expression in these lines was similar to that of the parent CID 9 cells. Our data indicate the existence of matrix-dependent elements that regulate transcription.

  7. The extracellular matrix locally regulates asynchronous concurrent lactation in tammar wallaby (Macropus eugenii).

    PubMed

    Wanyonyi, Stephen S; Lefevre, Christophe; Sharp, Julie A; Nicholas, Kevin R

    2013-08-01

    Asynchronous concurrent lactation (ACL) is an extreme lactation strategy in macropod marsupials including the tammar wallaby, that may hold the key to understanding local control of mammary epithelial cell function. Marsupials have a short gestation and a long lactation consisting of three phases; P2A, P2B and P3, representing early, mid and late lactation respectively and characterised by profound changes in milk composition. A lactating tammar is able to concurrently produce phase 2A and 3 milk from adjacent glands in order to feed a young newborn and an older sibling at heel. Physiological effectors of ACL remain unknown and in this study the extracellular matrix (ECM) is investigated for its role in switching mammary phenotypes between phases of tammar wallaby lactation. Using the level of expression of the genes for the phase specific markers tELP, tWAP, and tLLP-B representing phases 2A, 2B and 3 respectively we show for the first time that tammar wallaby mammary epithelial cells (WallMECs) extracted from P2B acquire P3 phenotype when cultured on P3 ECM. Similarly P2A cells acquire P2B phenotype when cultured on P2B ECM. We further demonstrate that changes in phase phenotype correlate with phase-specific changes in ECM composition. This study shows that progressive changes in ECM composition in individual mammary glands provide a local regulatory mechanism for milk protein gene expression thereby enabling the mammary glands to lactate independently. PMID:23665481

  8. Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins.

    PubMed

    Cooke, M J; Zahir, T; Phillips, S R; Shah, D S H; Athey, D; Lakey, J H; Shoichet, M S; Przyborski, S A

    2010-06-01

    The interaction between cells and the extracellular matrix (ECM) is essential during development. To elucidate the function of ECM proteins on cell differentiation, we developed biomimetic surfaces that display specific ECM peptide motifs in a controlled manner. Presentation of ECM domains for collagen, fibronectin, and laminin influenced the formation of neurites by differentiating PC12 cells. The effect of these peptide sequences was also tested on the development of adult neural stem/progenitor cells. In this system, collagen I and fibronectin induced the formation of beta-III-tubulin positive cells, whereas collagen IV reduced such differentiation. Biomimetic surfaces composed of multiple peptide types enabled the combinatorial effects of various ECM motifs to be studied. Surfaces displaying combined motifs were often predictable as a result of the synergistic effects of ECM peptides studied in isolation. For example, the additive effects of fibronectin and laminin resulted in greater expression of beta-III-tubulin positive cells, whereas the negative effect of the collagen IV domain was canceled out by coexpression of collagen I. However, simultaneous expression of certain ECM domains was less predictable. These data highlight the complexity of the cellular response to combined ECM signals and the need to study the function of ECM domains individually and in combination. PMID:19653304

  9. HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation.

    PubMed

    González-Ramos, Marta; Calleros, Laura; López-Ongil, Susana; Raoch, Viviana; Griera, Mercedes; Rodríguez-Puyol, Manuel; de Frutos, Sergio; Rodríguez-Puyol, Diego

    2013-02-01

    The circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases. PMID:23084979

  10. Role of Microvascular Tone and Extracellular Matrix Contraction in the Regulation of Interstitial Fluid: Implications for Aortic Dissection.

    PubMed

    Mallat, Ziad; Tedgui, Alain; Henrion, Daniel

    2016-09-01

    The pathophysiology of aortic dissection is poorly understood, and its risk is resistant to medical treatment. Most studies have focused on a proposed pathogenic role of transforming growth factor-β in Marfan disease and related thoracic aortic aneurysms and aortic dissections. However, clinical testing of this concept using angiotensin II type 1 receptor antagonists to block transforming growth factor-β signaling fell short of promise. Genetic mutations that predispose to thoracic aortic aneurysms and aortic dissections affect components of the extracellular matrix and proteins involved in cellular force generation. Thus, a role for dysfunctional mechanosensing in abnormal aortic wall remodeling is emerging. However, how abnormal mechanosensing leads to aortic dissection remains a mystery. Here, we review current knowledge about the regulation of interstitial fluid dynamics and myogenic tone and propose that alteration in contractile force reduces vascular tone in the microcirculation (here, aortic vasa vasorum) and leads to elevations of blood flow, transmural pressure, and fluid flux into the surrounding aortic media. Furthermore, reduced contractile force in medial smooth muscle cells coupled with alteration of structural components of the extracellular matrix limits extracellular matrix contraction, further promoting the formation of intramural edema, a critical step in the initiation of aortic dissection. The concept is supported by several pathophysiological and clinical observations. A direct implication of this concept is that drugs that lower blood pressure and limit interstitial fluid accumulation while preserving or increasing microvascular tone would limit the risk of dissection. In contrast, drugs that substantially lower microvascular tone would be ineffective or may accelerate the disease and precipitate aortic dissection. PMID:27444198

  11. Response of extracellular matrix regulators in mouse lung after exposure to photons, protons and simulated solar particle event protons.

    PubMed

    Tian, Jian; Pecaut, Michael J; Coutrakon, George B; Slater, James M; Gridley, Daila S

    2009-07-01

    This study compared the effects of photons (gamma rays), protons and simulated solar particle event protons (sSPE) on the expression of profibrotic factors/extracellular matrix (ECM) regulators in lung tissue after whole-body irradiation. TGF-beta1, matrix metalloproteinase 2 and 9 (MMP-2, -9), and tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1, -2) were assessed on days 4 and 21 in lungs from C57BL/6 mice exposed to 0 Gy or 2 Gy photons (0.7 Gy/min), protons (0.9 Gy/min) and sSPE (0.056 Gy/h). RT-PCR, histological and immunohistochemical techniques were used. The most striking changes included (1) up-regulation of TGF-beta1 by photons and sSPE, but not protons, at both times, (2) MMP-2 enhancement by photons and sSPEs, (3) TIMP-1 up-regulation by photons at both times, and (4) more collagen accumulation after exposure to either photons or sSPE than after exposure to protons. The findings demonstrate that expression of important ECM regulators was highly dependent upon the radiation regimen as well as the time after exposure. The data further suggest that irradiation during an SPE may increase an astronaut's risk for pulmonary complications. The greater perturbations after photon exposure compared to proton exposure have clinical implications and warrant further investigation. PMID:19580505

  12. Extracellular Matrix Abnormalities in Schizophrenia

    PubMed Central

    Berretta, Sabina

    2011-01-01

    Emerging evidence points to the involvement of the brain extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Abnormalities affecting several ECM components, including Reelin and chondroitin sulfate proteoglycans (CSPGs), have been described in subjects with this disease. Solid evidence supports the involvement of Reelin, an ECM glycoprotein involved in corticogenesis, synaptic functions and glutamate NMDA receptor regulation, expressed prevalently in distinct populations of GABAergic neurons, which secrete it into the ECM. Marked changes of Reelin expression in SZ have typically been reported in association with GABA-related abnormalities in subjects with SZ and bipolar disorder. Recent findings from our group point to substantial abnormalities affecting CSPGs, a main ECM component, in the amygdala and entorhinal cortex of subjects with schizophrenia, but not bipolar disorder. Striking increases of glial cells expressing CSPGs were accompanied by reductions of perineuronal nets, CSPG- and Reelin-enriched ECM aggregates enveloping distinct neuronal populations. CSPGs developmental and adult functions, including neuronal migration, axon guidance, synaptic and neurotransmission regulation are highly relevant to the pathophysiology of SZ. Together with reports of anomalies affecting several other ECM components, these findings point to the ECM as a key component of the pathology of SZ. We propose that ECM abnormalities may contribute to several aspects of the pathophysiology of this disease, including disrupted connectivity and neuronal migration, synaptic anomalies and altered GABAergic, glutamatergic and dopaminergic neurotransmission. PMID:21856318

  13. Proteases decode the extracellular matrix cryptome.

    PubMed

    Ricard-Blum, Sylvie; Vallet, Sylvain D

    2016-03-01

    The extracellular matrix is comprised of 1100 core-matrisome and matrisome-associated proteins and of glycosaminoglycans. This structural scaffold contributes to the organization and mechanical properties of tissues and modulates cell behavior. The extracellular matrix is dynamic and undergoes constant remodeling, which leads to diseases if uncontrolled. Bioactive fragments, called matricryptins, are released from the extracellular proteins by limited proteolysis and have biological activities on their own. They regulate numerous physiological and pathological processes such as angiogenesis, cancer, diabetes, wound healing, fibrosis and infectious diseases and either improve or worsen the course of diseases depending on the matricryptins and on the molecular and biological contexts. Several protease families release matricryptins from core-matrisome and matrisome-associated proteins both in vitro and in vivo. The major proteases, which decrypt the extracellular matrix, are zinc metalloproteinases of the metzincin superfamily (matrixins, adamalysins and astacins), cysteine proteinases and serine proteases. Some matricryptins act as enzyme inhibitors, further connecting protease and matricryptin fates and providing intricate regulation of major physiopathological processes such as angiogenesis and tumorigenesis. They strengthen the role of the extracellular matrix as a key player in tissue failure and core-matrisome and matrisome-associated proteins as important therapeutic targets. PMID:26382969

  14. Skip Regulates TGF- β 1-Induced Extracellular Matrix Degrading Proteases Expression in Human PC-3 Prostate Cancer Cells.

    PubMed

    Villar, Victor; Kocic, Jelena; Santibanez, Juan F

    2013-01-01

    Purpose. To determine whether Ski-interacting protein (SKIP) regulates TGF- β 1-stimulated expression of urokinase-type plasminogen activator (uPA), matrix metalloproteinase-9 (MMP-9), and uPA Inhibitor (PAI-1) in the androgen-independent human prostate cancer cell model. Materials and Methods. PC-3 prostate cancer cell line was used. The role of SKIP was evaluated using synthetic small interference RNA (siRNA) compounds. The expression of uPA, MMP-9, and PAI-1 was evaluated by zymography assays, RT-PCR, and promoter transactivation analysis. Results. In PC-3 cells TGF- β 1 treatment stimulated uPA, PAI-1, and MMP-9 expressions. The knockdown of SKIP in PC-3 cells enhanced the basal level of uPA, and TGF- β 1 treatment inhibited uPA production. Both PAI-1 and MMP-9 production levels were increased in response to TGF- β 1. The ectopic expression of SKIP inhibited both TGF- β 1-induced uPA and MMP-9 promoter transactivation, while PAI-1 promoter response to the factor was unaffected. Conclusions. SKIP regulates the expression of uPA, PAI-1, and MMP-9 stimulated by TGF- β 1 in PC-3 cells. Thus, SKIP is implicated in the regulation of extracellular matrix degradation and can therefore be suggested as a novel therapeutic target in prostate cancer treatment. PMID:23766912

  15. Extracellular matrix in ovarian follicles.

    PubMed

    Rodgers, R J; Irving-Rodgers, H F; van Wezel, I L

    2000-05-25

    A lot is known about the control of the development of ovarian follicles by growth factors and hormones, but less is known about the roles of extracellular matrix in the control of follicular growth and development. In this review we focus on the specialized extracellular matrix of the basal laminas that are present in ovarian follicles. These include the follicular basal lamina itself, the Call-Exner bodies of the membrana granulosa, the subendothelial and arteriole smooth muscle basal laminas in the theca, and the basal lamina-like material of the thecal matrix. We discuss the evidence that during follicle development the follicular basal lamina changes in composition, that many of its components are produced by the granulosa cells, and that the follicular basal laminas of different follicles have different ultrastructural appearances, linked to the shape of the aligning granulosa cells. All these studies suggest that the follicular basal lamina is extremely dynamic during follicular development. PMID:10963877

  16. The matrix metalloproteinase-7 regulates the extracellular shedding of syndecan-2 from colon cancer cells.

    PubMed

    Choi, Sojoong; Kim, Jin-Yung; Park, Jun Hyoung; Lee, Seung-Teak; Han, Inn-Oc; Oh, Eok-Soo

    2012-01-27

    The cell surface heparan sulfate proteoglycan syndecan-2 regulates the activation of matrix metalloproteinase-7 (MMP-7) as a docking receptor. Here, we demonstrate the role of MMP-7 on syndecan-2 shedding in colon cancer cells. Western blot analysis showed that shed syndecan-2 was found in the culture media from various colon cancer cells. Overexpression of MMP-7 enhanced syndecan-2 shedding, whereas the opposite was true when MMP-7 levels were knocked-down using small inhibitory RNAs. Consistently, HT29 cells treated with MMP-7, but neither MMP-2 nor MMP-9, showed increased shed syndecan-2 in a time- and concentration-dependent manner. Furthermore, MALDI-TOF MS analysis and N-terminal amino acid sequencing revealed that MMP-7 cleaved both recombinant syndecan-2 and an endogenously glycosylated syndecan-2 ectodomain in the N-terminus at Leu(149) residue in vitro. Taken together, the data suggest that MMP-7 directly mediates shedding of syndecan-2 from colon cancer cells. PMID:22227189

  17. Extracellular matrix as a solid-state regulator in angiogenesis: identification of new targets for anti-cancer therapy

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.

    1992-01-01

    Angiogenesis, the growth of blood capillaries, is regulated by soluble growth factors and insoluble extracellular matrix (ECM) molecules. Soluble angiogenic mitogens act over large distances to initiate capillary growth whereas changes in ECM govern whether individual cells will grow, differentiate, or involute in response to these stimuli in the local tissue microenvironment. Analysis of this local control mechanism has revealed that ECM molecules switch capillary endothelial cells between differentiation and growth by both binding specific transmembrane integrin receptors and physically resisting cell-generated mechanical loads that are applied to these receptors. Control of capillary endothelial cell form and function therefore may be exerted by altering the mechanical properties of the ECM as well as its chemical composition. Understanding of this mechanochemical control mechanism has led to the development of new angiogenesis inhibitors that may be useful for the treatment of cancer.

  18. Extracellular matrix component signaling in cancer.

    PubMed

    Multhaupt, Hinke A B; Leitinger, Birgit; Gullberg, Donald; Couchman, John R

    2016-02-01

    Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromolecules are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin, or basement membrane glycoproteins, but also in terms of matrix rigidity. This can regulate the release and subsequent biological activity of matrix-bound growth factors, for example, transforming growth factor-β. In the environment of tumors, there may be changes in cell populations and their receptor profiles as well as matrix constitution and protein cross-linking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression. PMID:26519775

  19. Extracellular guanosine regulates extracellular adenosine levels

    PubMed Central

    Cheng, Dongmei; Jackson, Travis C.; Verrier, Jonathan D.; Gillespie, Delbert G.

    2013-01-01

    The aim of this investigation was to test the hypothesis that extracellular guanosine regulates extracellular adenosine levels. Rat preglomerular vascular smooth muscle cells were incubated with adenosine, guanosine, or both. Guanosine (30 μmol/l) per se had little effect on extracellular adenosine levels. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) were 0.125 ± 0.020 μmol/l, indicating rapid disposition of extracellular adenosine. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) plus guanosine (30 μmol/l) were 1.173 ± 0.061 μmol/l, indicating slow disposition of extracellular adenosine. Cell injury increased extracellular levels of endogenous adenosine and guanosine, and the effects of cell injury on endogenous extracellular adenosine were modulated by altering the levels of endogenous extracellular guanosine with exogenous purine nucleoside phosphorylase (converts guanosine to guanine) or 8-aminoguanosine (inhibits purine nucleoside phosphorylase). Extracellular guanosine also slowed the disposition of extracellular adenosine in rat preglomerular vascular endothelial cells, mesangial cells, cardiac fibroblasts, and kidney epithelial cells and in human aortic and coronary artery vascular smooth muscle cells and coronary artery endothelial cells. The effects of guanosine on adenosine levels were not mimicked or attenuated by 5-iodotubericidin (adenosine kinase inhibitor), erythro-9-(2-hydroxy-3-nonyl)-adenine (adenosine deaminase inhibitor), 5-aminoimidazole-4-carboxamide (guanine deaminase inhibitor), aristeromycin (S-adenosylhomocysteine hydrolase inhibitor), low sodium (inhibits concentrative nucleoside transporters), S-(4-nitrobenzyl)−6-thioinosine [inhibits equilibrative nucleoside transporter (ENT) type 1], zidovudine (inhibits ENT type 2), or acadesine (known modulator of adenosine levels). Guanosine also increases extracellular inosine, uridine, thymidine, and cytidine, yet decreases

  20. CsrRS and environmental pH regulate group B streptococcus adherence to human epithelial cells and extracellular matrix.

    PubMed

    Park, Su Eun; Jiang, Shengmei; Wessels, Michael R

    2012-11-01

    Streptococcus agalactiae (group B Streptococcus or GBS) is a common colonizer of the gastrointestinal and genital tracts and an important cause of invasive infections in newborn infants and in adults with predisposing chronic conditions or advanced age. Attachment to epithelial surfaces at mucosal sites is a critical step in the successful colonization of a human host, and regulation of this process is likely to play an important role in both commensalism and dissemination to cause invasive disease. We found that inactivation of the CsrRS (or CovRS) two-component system increased GBS adherence to epithelial cells derived from human vaginal, cervical, and respiratory epithelium, as well as increasing adherence to extracellular matrix proteins and increasing biofilm formation on polystyrene. Neutral (as opposed to acidic) pH enhanced GBS binding to vaginal epithelial cells and to fibrinogen and fibronectin, effects that were partially dependent on CsrRS. The regulatory effects of CsrRS and environmental pH on bacterial adherence correlated with their effects on the expression of multiple surface adhesins, as assessed by quantitative reverse transcription-PCR. We conclude that GBS adherence to epithelial and abiotic surfaces is regulated by the CsrRS two-component system and by environmental pH through their regulatory effects on the expression of bacterial surface adhesins. Dynamic regulation of GBS adherence enhances the organism's adaptability to survival in multiple niches in the human host. PMID:22949550

  1. CsrRS and Environmental pH Regulate Group B Streptococcus Adherence to Human Epithelial Cells and Extracellular Matrix

    PubMed Central

    Park, Su Eun; Jiang, Shengmei

    2012-01-01

    Streptococcus agalactiae (group B Streptococcus or GBS) is a common colonizer of the gastrointestinal and genital tracts and an important cause of invasive infections in newborn infants and in adults with predisposing chronic conditions or advanced age. Attachment to epithelial surfaces at mucosal sites is a critical step in the successful colonization of a human host, and regulation of this process is likely to play an important role in both commensalism and dissemination to cause invasive disease. We found that inactivation of the CsrRS (or CovRS) two-component system increased GBS adherence to epithelial cells derived from human vaginal, cervical, and respiratory epithelium, as well as increasing adherence to extracellular matrix proteins and increasing biofilm formation on polystyrene. Neutral (as opposed to acidic) pH enhanced GBS binding to vaginal epithelial cells and to fibrinogen and fibronectin, effects that were partially dependent on CsrRS. The regulatory effects of CsrRS and environmental pH on bacterial adherence correlated with their effects on the expression of multiple surface adhesins, as assessed by quantitative reverse transcription-PCR. We conclude that GBS adherence to epithelial and abiotic surfaces is regulated by the CsrRS two-component system and by environmental pH through their regulatory effects on the expression of bacterial surface adhesins. Dynamic regulation of GBS adherence enhances the organism's adaptability to survival in multiple niches in the human host. PMID:22949550

  2. The regulation of growth and metabolism of kidney stem cell with regional specificity using extracellular matrix derived from kidney

    PubMed Central

    O’Neill, John D.; Freytes, Donald O.; Anandappa, Annabelle; Oliver, Juan A.; Vunjak-Novakovic, Gordana

    2013-01-01

    Native extracellular matrix (ECM) that is secreted and maintained by resident cells is of great interest for cell culture and cell delivery. We hypothesized that specialized bioengineered niches for stem cells can be established using ECM-derived scaffolding materials. Kidney was selected as a model system because of the high regional diversification of renal tissue matrix. By preparing the ECM from three specialized regions of the kidney (cortex, medulla, and papilla; whole kidney, heart, and bladder as controls) in three forms: (i) intact sheets of decellularized ECM, (ii) ECM hydrogels, and (iii) solubilized ECM, we investigated how the structure and composition of ECM affect the function of kidney stem cells (with mesenchymal stem cells, MSCs, as controls). All three forms of the ECM regulated KSC function, with differential structural and compositional effects. KSCs cultured on papilla ECM consistently displayed lower proliferation, higher metabolic activity, and differences in cell morphology, alignment, and structure formation as compared to KSCs on cortex and medulla ECM, effects not observed in corresponding MSC cultures. These data suggest that tissue- and region-specific ECM can provide an effective substrate for in vitro studies of therapeutic stem cells. PMID:24074840

  3. The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney.

    PubMed

    O'Neill, John D; Freytes, Donald O; Anandappa, Annabelle J; Oliver, Juan A; Vunjak-Novakovic, Gordana V

    2013-12-01

    Native extracellular matrix (ECM) that is secreted and maintained by resident cells is of great interest for cell culture and cell delivery. We hypothesized that specialized bioengineered niches for stem cells can be established using ECM-derived scaffolding materials. Kidney was selected as a model system because of the high regional diversification of renal tissue matrix. By preparing the ECM from three specialized regions of the kidney (cortex, medulla, and papilla; whole kidney, heart, and bladder as controls) in three forms: (i) intact sheets of decellularized ECM, (ii) ECM hydrogels, and (iii) solubilized ECM, we investigated how the structure and composition of ECM affect the function of kidney stem cells (with mesenchymal stem cells, MSCs, as controls). All three forms of the ECM regulated KSC function, with differential structural and compositional effects. KSCs cultured on papilla ECM consistently displayed lower proliferation, higher metabolic activity, and differences in cell morphology, alignment, and structure formation as compared to KSCs on cortex and medulla ECM, effects not observed in corresponding MSC cultures. These data suggest that tissue- and region-specific ECM can provide an effective substrate for in vitro studies of therapeutic stem cells. PMID:24074840

  4. The NuRD Chromatin-Remodeling Enzyme CHD4 Promotes Embryonic Vascular Integrity by Transcriptionally Regulating Extracellular Matrix Proteolysis

    PubMed Central

    Ingram, Kyle G.; Curtis, Carol D.; Silasi-Mansat, Robert; Lupu, Florea; Griffin, Courtney T.

    2013-01-01

    The extracellular matrix (ECM) supports vascular integrity during embryonic development. Proteolytic degradation of ECM components is required for angiogenesis, but excessive ECM proteolysis causes blood vessel fragility and hemorrhage. Little is understood about how ECM proteolysis is transcriptionally regulated during embryonic vascular development. We now show that the NuRD ATP-dependent chromatin-remodeling complex promotes vascular integrity by preventing excessive ECM proteolysis in vivo. Mice lacking endothelial CHD4—a catalytic subunit of NuRD complexes—died at midgestation from vascular rupture. ECM components surrounding rupture-prone vessels in Chd4 mutants were significantly downregulated prior to embryonic lethality. Using qPCR arrays, we found two critical mediators of ECM stability misregulated in mutant endothelial cells: the urokinase-type plasminogen activator receptor (uPAR or Plaur) was upregulated, and thrombospondin-1 (Thbs1) was downregulated. Chromatin immunoprecipitation assays showed that CHD4-containing NuRD complexes directly bound the promoters of these genes in endothelial cells. uPAR and THBS1 respectively promote and inhibit activation of the potent ECM protease plasmin, and we detected increased plasmin activity around rupture-prone vessels in Chd4 mutants. We rescued ECM components and vascular rupture in Chd4 mutants by genetically reducing urokinase (uPA or Plau), which cooperates with uPAR to activate plasmin. Our findings provide a novel mechanism by which a chromatin-remodeling enzyme regulates ECM stability to maintain vascular integrity during embryonic development. PMID:24348274

  5. Cooperative regulation of substrate stiffness and extracellular matrix proteins in skin wound healing of axolotls.

    PubMed

    Huang, Ting-Yu; Wu, Cheng-Han; Wang, Mu-Hui; Chen, Bo-Sung; Chiou, Ling-Ling; Lee, Hsuan-Shu

    2015-01-01

    Urodele amphibians (Ambystoma mexicanum), unique among vertebrates, can regenerate appendages and other body parts entirely and functionally through a scar-free healing process. The wound epithelium covering the amputated or damaged site forms early and is essential for initiating the subsequent regenerative steps. However, the molecular mechanism through which the wound reepithelializes during regeneration remains unclear. In this study, we developed an in vitro culture system that mimics an in vivo wound healing process; the biomechanical properties in the system were precisely defined and manipulated. Skin explants that were cultured on 2 to 50 kPa collagen-coated substrates rapidly reepithelialized within 10 to 15 h; however, in harder (1 GPa) and other extracellular matrices (tenascin-, fibronectin-, and laminin-coated environments), the wound epithelium moved slowly. Furthermore, the reepithelialization rate of skin explants from metamorphic axolotls cultured on a polystyrene plate (1 GPa) increased substantially. These findings afford new insights and can facilitate investigating wound epithelium formation during early regeneration using biochemical and mechanical techniques. PMID:25839038

  6. Brain Extracellular Matrix in Neurodegeneration

    PubMed Central

    Bonneh-Barkay, Dafna; Wiley, Clayton A.

    2009-01-01

    The role of extracellular matrix (ECM) in neurological development, function and degeneration has evolved from a simplistic physical adhesion to a system of intricate cellular signaling. While most cells require ECM adhesion to survive, it is now clear that differentiated function is intimately dependent upon cellular interaction with the ECM. Therefore, it is not surprising that the ECM is increasingly found to be involved in the enigmatic process of neurodegeneration. Descriptive studies of human neurodegenerative disorders and experimental studies of animal models of neurodegeneration have begun to define potential mechanisms of ECM disruption that can lead to synaptic and neuronal loss. PMID:18662234

  7. Instructive Roles of Extracellular Matrix on Autophagy

    PubMed Central

    Neill, Thomas; Schaefer, Liliana; Iozzo, Renato V.

    2015-01-01

    Autophagy plays an essential role in maintaining an intricate balance between nutrient demands and energetic requirements during normal homeostasis. Autophagy recycles metabolic substrates from nonspecific bulk degradation of proteins and excess or damaged organelles. Recent work posits an active and dynamic signaling role for extracellular matrix-evoked autophagic regulation, that is, allosteric and independent of prevailing nutrient conditions. Several candidates, representing a diverse repertoire of matrix constituents (decorin, collagen VI, laminin α2, endostatin, endorepellin, and kringle V), can modulate autophagic signaling pathways. Importantly, a novel principle indicates that matrix constituents can differentially modulate autophagic induction and repression via interaction with specific receptors. Most of the matrix-derived factors described here appear to control autophagy in a canonical manner but independent of nutrient deprivation. Because the molecular composition and structure of the extracellular matrix are dynamically remodeled during various physiological and pathological conditions, we propose that matrix-regulated autophagy is key for maintaining proper tissue homeostasis and disease prevention, such as cancer progression and muscular dystrophies. PMID:24976620

  8. Extracellular Matrix Rigidity-dependent Sphingosine-1-phosphate Secretion Regulates Metastatic Cancer Cell Invasion and Adhesion

    PubMed Central

    Ko, Panseon; Kim, Daehwan; You, Eunae; Jung, Jangho; Oh, Somi; Kim, Jaehyun; Lee, Kwang-Ho; Rhee, Sangmyung

    2016-01-01

    Dynamic interaction between cancer cells and the surrounding microenvironment is critical for cancer progression via changes in cellular behavior including alteration of secreted molecules. However, the molecular mechanisms underlying the influence exerted by the cancer microenvironment on secretion of molecules during cancer progression remain largely unknown. In this study, we report that secretion of spingsine-1-phosphate (S1P) and its regulator, SphK1 expression is dependent of the substrate rigidity, which is critical for the balance between cancer cell invasion and adhesion. Conditioned media (CM) of MDA-MB-231, an aggressive breast cancer cell obtained from soft substrate (~0.5 kPa) induced chemo-attractive invasion, while CM obtained from stiff substrate (~2.5 kPa) increased cell adhesion instead. We found that the expression of SphK1 is upregulated in the stiff substrate, resulting in an increase in S1P levels in the CM. We also found that upregulation of SphK1 expression in the stiff substrate is dominant in metastatic cancer cells but not in primary cancer cells. These results suggest that alterations in the mechanical environment of the ECM surrounding the tumor cells actively regulate cellular properties such as secretion, which in turn, may contribute to cancer progression. PMID:26877098

  9. Extracellular Matrix Rigidity-dependent Sphingosine-1-phosphate Secretion Regulates Metastatic Cancer Cell Invasion and Adhesion.

    PubMed

    Ko, Panseon; Kim, Daehwan; You, Eunae; Jung, Jangho; Oh, Somi; Kim, Jaehyun; Lee, Kwang-Ho; Rhee, Sangmyung

    2016-01-01

    Dynamic interaction between cancer cells and the surrounding microenvironment is critical for cancer progression via changes in cellular behavior including alteration of secreted molecules. However, the molecular mechanisms underlying the influence exerted by the cancer microenvironment on secretion of molecules during cancer progression remain largely unknown. In this study, we report that secretion of spingsine-1-phosphate (S1P) and its regulator, SphK1 expression is dependent of the substrate rigidity, which is critical for the balance between cancer cell invasion and adhesion. Conditioned media (CM) of MDA-MB-231, an aggressive breast cancer cell obtained from soft substrate (~0.5 kPa) induced chemo-attractive invasion, while CM obtained from stiff substrate (~2.5 kPa) increased cell adhesion instead. We found that the expression of SphK1 is upregulated in the stiff substrate, resulting in an increase in S1P levels in the CM. We also found that upregulation of SphK1 expression in the stiff substrate is dominant in metastatic cancer cells but not in primary cancer cells. These results suggest that alterations in the mechanical environment of the ECM surrounding the tumor cells actively regulate cellular properties such as secretion, which in turn, may contribute to cancer progression. PMID:26877098

  10. Extracellular matrix composition and rigidity regulate invasive behavior and response to PDT in 3D pancreatic tumor models

    NASA Astrophysics Data System (ADS)

    Cramer, Gwendolyn; El-Hamidi, Hamid; Jafari, Seyedehrojin; Jones, Dustin P.; Celli, Jonathan P.

    2016-03-01

    The composition and mechanical compliance of the extracellular matrix (ECM) have been shown to serve as regulators of tumor growth and invasive behavior. These effects may be particularly relevant in tumors of the pancreas, noted for a profound desmoplastic reaction and an abundance of stroma rich in ECM. In view of recent progress in the clinical implementation of photodynamic therapy (PDT) for pancreatic tumors, in this report we examine how ECM composition and rheological properties impact upon invasive behavior and response to PDT in 3D multicellular pancreatic tumor spheroids in ECM environments with characterized rheological properties. Tumor spheroids were cultured initially in attachment-free conditions to form millimeter-sized spheroids that were transplanted into reconstituted ECM microenvironments (Matrigel and Type I Collagen) that were characterized using bulk oscillatory shear rheology. Analysis of growth behavior shows that the soft collagen ECM promoted growth and extensive invasion and this microenvironment was used in subsequent assessment of PDT and chemotherapy response. Evaluation of treatment response revealed that primary tumor nodule growth is inhibited more effectively with PDT, while verteporfin PDT response is significantly enhanced in the ECM-infiltrating populations that are non-responsive to oxaliplatin chemotherapy. This finding is potentially significant, suggesting the potential for PDT to target these clinically problematic invasive populations that are associated with aggressive metastatic progression and chemoresistance. Experiments to further validate and identify the mechanistic basis of this observation are ongoing.

  11. Extracellular matrix-regulated neural differentiation of human multipotent marrow progenitor cells enhances functional recovery after spinal cord injury

    PubMed Central

    Deng, Win-Ping; Yang, Chi-Chiang; Yang, Liang-Yo; Chen, Chun-Wei D.; Chen, Wei-Hong; Yang, Charn-Bing; Chen, Yu-Hsin; Lai, Wen-Fu T.; Renshaw, Perry F.

    2015-01-01

    BACKGROUND CONTEXT Recent advanced studies have demonstrated that cytokines and extracellular matrix (ECM) could trigger various types of neural differentiation. However, the efficacy of differentiation and in vivo transplantation has not yet thoroughly been investigated. PURPOSE To highlight the current understanding of the effects of ECM on neural differentiation of human bone marrow-derived multipotent progenitor cells (MPCs), regarding state-of-art cure for the animal with acute spinal cord injury (SCI), and explore future treatments aimed at neural repair. STUDY DESIGN A selective overview of the literature pertaining to the neural differentiation of the MSCs and experimental animals aimed at improved repair of SCI. METHODS Extracellular matrix proteins, tenascin-cytotactin (TN-C), tenascin-restrictin (TN-R), and chondroitin sulfate (CS), with the cytokines, nerve growth factor (NGF)/brain-derived neurotrophic factor (BDNF)/retinoic acid (RA) (NBR), were incorporated to induce transdifferentiation of human MPCs. Cells were treated with NBR for 7 days, and then TN-C, TN-R, or CS was added for 2 days. The medium was changed every 2 days. Twenty-four animals were randomly assigned to four groups with six animals in each group: one experimental and three controls. Animals received two (bilateral) injections of vehicle, MPCs, NBR-induced MPCs, or NBR/TN-C-induced MPCs into the lesion sites after SCI. Functional assessment was measured using the Basso, Beattie, and Bresnahan locomotor rating score. Data were analyzed using analysis of variance followed by Student-Newman-Keuls (SNK) post hoc tests. RESULTS Results showed that MPCs with the transdifferentiation of human MPCs to neurons were associated with increased messenger-RNA (mRNA) expression of neuronal markers including nestin, microtubule-associated protein (MAP) 2, glial fibrillary acidic protein, βIII tubulin, and NGF. Greater amounts of neuronal morphology appeared in cultures incorporated with TN-C and TN

  12. The Evolution of Extracellular Matrix

    PubMed Central

    Özbek, Suat; Balasubramanian, Prakash G.; Chiquet-Ehrismann, Ruth; Tucker, Richard P.

    2010-01-01

    We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or “adhesome” also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology. PMID:21160071

  13. Differential β3 Integrin Expression Regulates the Response of Human Lung and Cardiac Fibroblasts to Extracellular Matrix and Its Components.

    PubMed

    Merna, Nick; Fung, Kelsey M; Wang, Jean J; King, Cristi R; Hansen, Kirk C; Christman, Karen L; George, Steven C

    2015-08-01

    Extracellular matrix (ECM) derived from whole organ decellularization has been successfully used in a variety of tissue engineering applications. ECM contains a complex mixture of functional and structural molecules that are ideally suited for the tissue from which the ECM is harvested. However, decellularization disrupts the structural properties and protein composition of the ECM, which may impact function when cells such as the fibroblast are reintroduced during recellularization. We hypothesized that the ECM structure and composition, fibroblast source, and integrin expression would influence the fibroblast phenotype. Human cardiac fibroblasts (HCFs) and normal human lung fibroblasts (NHLFs) were cultured on intact cardiac ECM, collagen gels, and coatings composed of cardiac ECM, lung ECM, and individual ECM components (collagen and fibronectin [FN]) for 48 h. COL1A expression of HCFs and NHLFs cultured on ECM and FN coatings decreased to <50% of that of untreated cells; COL1A expression for HCFs cultured on ECM coatings was one- to twofold higher than HCFs cultured on intact ECM. NHLFs cultured on ECM and FN coatings expressed 12- to 31-fold more alpha-smooth muscle actin (αSMA) than HCFs; the αSMA expression for HCFs and NHLFs cultured on ECM coatings was ∼2- to 5-fold higher than HCFs and NHLFs cultured on intact ECM. HCFs expressed significantly higher levels of β3 and β4 integrins when compared to NHLFs. Inhibition of the β3 integrin, but not β4, resulted in a 16- to 26-fold increase in αSMA expression in HCFs cultured on ECM coatings and FN. Our results demonstrate that β3 integrin expression depends on the source of the fibroblast and that its expression inhibits αSMA expression (and thus the myofibroblast phenotype). We conclude that the fibroblast source and integrin expression play important roles in regulating the fibroblast phenotype. PMID:25926101

  14. Transcriptome Analysis of Ullrich Congenital Muscular Dystrophy Fibroblasts Reveals a Disease Extracellular Matrix Signature and Key Molecular Regulators

    PubMed Central

    Rodríguez, Maria Angels; Jou, Cristina; Puigdelloses, Montserrat; Ortez, Carlos I.; Diaz-Manera, Jordi; Gallardo, Eduardo; Colomer, Jaume; Nascimento, Andrés; Kalko, Susana G.; Jimenez-Mallebrera, Cecilia

    2015-01-01

    Background Collagen VI related myopathies encompass a range of phenotypes with involvement of skeletal muscle, skin and other connective tissues. They represent a severe and relatively common form of congenital disease for which there is no treatment. Collagen VI in skeletal muscle and skin is produced by fibroblasts. Aims & Methods In order to gain insight into the consequences of collagen VI mutations and identify key disease pathways we performed global gene expression analysis of dermal fibroblasts from patients with Ullrich Congenital Muscular Dystrophy with and without vitamin C treatment. The expression data were integrated using a range of systems biology tools. Results were validated by real-time PCR, western blotting and functional assays. Findings We found significant changes in the expression levels of almost 600 genes between collagen VI deficient and control fibroblasts. Highly regulated genes included extracellular matrix components and surface receptors, including integrins, indicating a shift in the interaction between the cell and its environment. This was accompanied by a significant increase in fibroblasts adhesion to laminin. The observed changes in gene expression profiling may be under the control of two miRNAs, miR-30c and miR-181a, which we found elevated in tissue and serum from patients and which could represent novel biomarkers for muscular dystrophy. Finally, the response to vitamin C of collagen VI mutated fibroblasts significantly differed from healthy fibroblasts. Vitamin C treatment was able to revert the expression of some key genes to levels found in control cells raising the possibility of a beneficial effect of vitamin C as a modulator of some of the pathological aspects of collagen VI related diseases. PMID:26670220

  15. Differential β3 Integrin Expression Regulates the Response of Human Lung and Cardiac Fibroblasts to Extracellular Matrix and Its Components

    PubMed Central

    Merna, Nick; Fung, Kelsey M.; Wang, Jean J.; King, Cristi R.; Hansen, Kirk C.; Christman, Karen L.

    2015-01-01

    Extracellular matrix (ECM) derived from whole organ decellularization has been successfully used in a variety of tissue engineering applications. ECM contains a complex mixture of functional and structural molecules that are ideally suited for the tissue from which the ECM is harvested. However, decellularization disrupts the structural properties and protein composition of the ECM, which may impact function when cells such as the fibroblast are reintroduced during recellularization. We hypothesized that the ECM structure and composition, fibroblast source, and integrin expression would influence the fibroblast phenotype. Human cardiac fibroblasts (HCFs) and normal human lung fibroblasts (NHLFs) were cultured on intact cardiac ECM, collagen gels, and coatings composed of cardiac ECM, lung ECM, and individual ECM components (collagen and fibronectin [FN]) for 48 h. COL1A expression of HCFs and NHLFs cultured on ECM and FN coatings decreased to <50% of that of untreated cells; COL1A expression for HCFs cultured on ECM coatings was one- to twofold higher than HCFs cultured on intact ECM. NHLFs cultured on ECM and FN coatings expressed 12- to 31-fold more alpha-smooth muscle actin (αSMA) than HCFs; the αSMA expression for HCFs and NHLFs cultured on ECM coatings was ∼2- to 5-fold higher than HCFs and NHLFs cultured on intact ECM. HCFs expressed significantly higher levels of β3 and β4 integrins when compared to NHLFs. Inhibition of the β3 integrin, but not β4, resulted in a 16- to 26-fold increase in αSMA expression in HCFs cultured on ECM coatings and FN. Our results demonstrate that β3 integrin expression depends on the source of the fibroblast and that its expression inhibits αSMA expression (and thus the myofibroblast phenotype). We conclude that the fibroblast source and integrin expression play important roles in regulating the fibroblast phenotype. PMID:25926101

  16. Airway and Extracellular Matrix Mechanics in COPD

    PubMed Central

    Bidan, Cécile M.; Veldsink, Annemiek C.; Meurs, Herman; Gosens, Reinoud

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD. PMID:26696894

  17. Shell Extracts from the Marine Bivalve Pecten maximus Regulate the Synthesis of Extracellular Matrix in Primary Cultured Human Skin Fibroblasts

    PubMed Central

    Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine

    2014-01-01

    Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the −112/−61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications. PMID:24949635

  18. Shell extracts from the marine bivalve Pecten maximus regulate the synthesis of extracellular matrix in primary cultured human skin fibroblasts.

    PubMed

    Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine

    2014-01-01

    Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the -112/-61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications. PMID:24949635

  19. Substrate stiffness regulates apoptosis and the mRNA expression of extracellular matrix regulatory genes in the rat annular cells.

    PubMed

    Zhang, Yue-Hui; Zhao, Chang-Qing; Jiang, Lei-Sheng; Dai, Li-Yang

    2011-03-01

    Cells are subjected to static tension of different magnitudes when cultured on substrates with different stiffnesses. It has long been recognized that mechanical stress is an important modulator of the intervertebral disc degeneration. Here we studied the influence of substrate stiffness on cell morphology, apoptosis and extracellular matrix (ECM) metabolism of the rat annulus fibrosus (AF) cells which are known to be mechanosensitive cells. Polyacrylamide gel substrates with three different stiffnesses were prepared by varying the concentration of acrylamide and bisacrylamide, and the elastic modulus of the different gel substrates were measured with atomic force microscopy (AFM). First-passage rat annular cells were cultured on soft, intermediate, rigid substrates or plastics for 24 or 48 h. The percentages of apoptotic cells were detected by flow cytometry and caspase-3 activity, and morphologic changes were visualized by Hoechst 33258 staining and F-actin staining. In addition, the expression of ECM genes (Col1α1, Col2α1, aggrecan, MMP-3, MMP-13 and ADAMTS-5) were analyzed by RT-PCR. The three different substrates had elastic moduli varying between 1±0.23 kPa (soft, 5% gel with 0.06% bis), 32±2.89 kPa (intermediate, 10% gel with 0.13% bis) and 63±3.45 kPa (rigid, 10% gel with 0.26% bis) with a thickness about 60-70 μm. Most of the rat AF cells appeared small and rounded, and lost most of their stress fibers when cultured on soft substrate. There was a significant increase in the percentage of apoptotic cells in the rat AF cells cultured on soft and intermediate substrates relative to those on plastic surface, with a parallel decrease in the area of cell spreading and nucleus. The AF cells grown on intermediate or rigid substrate had reduced expression of Col1α1, Col2α1 and aggrecan and enhanced expression of MMP-3, MMP-13, and ADAMTS-5 at 24h or 48 h, respectively, relative to those cultured on plastic surface. Conversely, we observed an up-regulation

  20. Bidirectional extracellular matrix signaling during tissue morphogenesis

    PubMed Central

    Gjorevski, Nikolce; Nelson, Celeste M.

    2009-01-01

    Normal tissue development and function are regulated by the interplay between cells and their surrounding extracellular matrix (ECM). The ECM provides biochemical and mechanical contextual information that is conveyed from the cell membrane through the cytoskeleton to the nucleus to direct cell phenotype. Cells, in turn, remodel the ECM and thereby sculpt their local microenvironment. Here we review the mechanisms by which cells interact with, respond to, and influence the ECM, with particular emphasis placed on the role of this bidirectional communication during tissue morphogenesis. We also discuss the implications for successful engineering of functional tissues ex vivo. PMID:19896886

  1. Extracellular matrix as target for antitumor therapy

    PubMed Central

    Harisi, Revekka; Jeney, Andras

    2015-01-01

    The aim of the present review is to survey the accumulated knowledge on the extracellular matrix (ECM) of tumors referring to its putative utility as therapeutic target. Following the traditional observation on the extensive morphological alteration in the tumor-affected tissue, the well-documented aberrant cellular regulation indicated that ECM components have an active role in tumor progression. However, due to the diverse functions and variable expression of proteoglycans, matrix proteins, and integrins, it is rather difficult to identify a comprehensive therapeutic target among ECM components. At present, the elevated level of heparanase and the prominent expression of αvβ5 integrin are considered as promising therapeutic targets. The inhibition of glycosaminoglycan offers another promising approach in the treatment of those tumors which are stimulated by proteoglycans. It can be ascertained that a selective ECM inhibitor would be a great asset to control metastasis driven by ECM-mediated signaling. PMID:26089687

  2. Differential regulation of extracellular matrix protein expression in carcinoma-associated fibroblasts by TGF-β1 regulates cancer cell spreading but not adhesion

    PubMed Central

    Van Bockstal, Mieke; Lambein, Kathleen; Van Gele, Mireille; De Vlieghere, Elly; Limame, Ridha; Braems, Geert; Van den Broecke, Rudy; Cocquyt, Veronique; Denys, Hannelore; Bracke, Marc; Libbrecht, Louis; De Wever, Olivier

    2014-01-01

    Cancer progression is characterized by a complex reciprocity between neoplastic epithelium and adjacent stromal cells. In ductal carcinoma in situ (DCIS) of the breast, both reduced stromal decorin expression and myxoid stroma are correlated with increased recurrence risk. In this study, we aimed to investigate paracrine regulation of expression of decorin and related extracellular matrix (ECM) proteins in cancer-associated fibroblasts (CAFs). Transforming growth factor-β1 (TGF-β1) was identified as a competent ECM modulator, as it reduced decorin and strongly enhanced versican, biglycan and type I collagen expression. Similar but less pronounced effects were observed when fibroblasts were treated with basic fibroblast growth factor (bFGF). Despite this concerted ECM modulation, TGF-β1 and bFGF differentially regulated alpha-smooth muscle actin (α-SMA) expression, which is often proposed as a CAF-marker. Cancer cell-derived secretomes induced versican and biglycan expression in fibroblasts. Immunohistochemistry on twenty DCIS specimens showed a trend toward periductal versican overexpression in DCIS with myxoid stroma. Cancer cell adhesion was inhibited by decorin, but not by CAF-derived matrices. Cancer cells presented significantly enhanced spreading when seeded on matrices derived from TGF-β1-treated CAF. Altogether these data indicate that preinvasive cancerous lesions might modulate the composition of surrounding stroma through TGF-β1 release to obtain an invasion-permissive microenvironment. PMID:25593993

  3. The Extracellular Matrix and Insulin Resistance

    PubMed Central

    Williams, Ashley S.; Kang, Li; Wasserman, David H.

    2015-01-01

    The extracellular matrix (ECM) is a highly dynamic compartment that undergoes remodeling as a result of injury and repair. Over the past decade, mounting evidence in humans and rodents suggest that ECM remodeling is associated with diet-induced insulin resistance in several metabolic tissues. Additionally, integrin receptors for the ECM have also been implicated in the regulation of insulin action. This review will address what is currently known about the ECM, integrins and insulin action in the muscle, liver and adipose tissue. Understanding how ECM remodeling and integrin signaling regulates insulin action may aid in the development of new therapeutic targets for the treatment of insulin resistance and type 2 diabetes. PMID:26059707

  4. Extracellular matrix-mimetic poly(ethylene glycol) hydrogels engineered to regulate smooth muscle cell proliferation in 3-D.

    PubMed

    Lin, Lin; Marchant, Roger E; Zhu, Junmin; Kottke-Marchant, Kandice

    2014-12-01

    The goal of this project is to engineer a defined, synthetic poly(ethylene glycol) (PEG) hydrogel as a model system to investigate smooth muscle cell (SMC) proliferation in three-dimensions (3-D). To mimic the properties of extracellular matrix, both cell-adhesive peptide (GRGDSP) and matrix metalloproteinase (MMP) sensitive peptide (VPMSMRGG or GPQGIAGQ) were incorporated into the PEG macromer chain. Copolymerization of the biomimetic macromers results in the formation of bioactive hydrogels with the dual properties of cell adhesion and proteolytic degradation. Using these biomimetic scaffolds, the authors studied the effect of scaffold properties, including RGD concentration, MMP sensitivity, and network crosslinking density, as well as heparin as an exogenous factor on 3-D SMC proliferation. The results indicated that the incorporation of cell-adhesive ligand significantly enhanced SMC spreading and proliferation, with cell-adhesive ligand concentration mediating 3-D SMC proliferation in a biphasic manner. The faster degrading hydrogels promoted SMC proliferation and spreading. In addition, 3-D SMC proliferation was inhibited by increasing network crosslinking density and exogenous heparin treatment. These constructs are a good model system for studying the effect of hydrogel properties on SMC functions and show promise as a tissue engineering platform for vascular in vivo applications. PMID:25173839

  5. Expression of SPARC like protein 1 (SPARCL1), extracellular matrix-associated protein is down regulated in gastric adenocarcinoma

    PubMed Central

    Jakharia, Aniruddha; Borkakoty, Biswajyoti

    2016-01-01

    Background SPARC-like protein 1 (SPARCL1/Hevin), a member of the SPARC family is defined by the presence of a highly acidic domain-I, a follistatin-like domain, and an extracellular calcium (EC) binding domain. SPARCL1 has been shown to be down-regulated in many types of cancer and may serve as a negative regulator of cell growth and proliferation. Methods Both tumor and adjacent normal tissue were collected from patients with gastric adenocarcinoma. Monoclonal antibody developed against recombinant SPARCL1 was used to analyze the expression of SPARCL1 by immunohisto chemical and western blotting (WB) analysis. Results The expression of SPARCL1 was found to be significantly lower or negligible in gastric adenocarcinoma tissues in nearly all of the cases in comparison with adjacent normal tissue. This comparison was found to be independent of the patient’s age, sex, and stage of cancer. Conclusions We postulate that down regulation of SPARCL1 may be related to inactivation of its tumor suppressor functions and might play an important role in the development of gastric adenocarcinoma. PMID:27034797

  6. Thalidomide Accelerates the Degradation of Extracellular Matrix in Rat Hepatic Cirrhosis via Down-Regulation of Transforming Growth Factor-β1

    PubMed Central

    Meng, Qingshun; Liu, Jie; Wang, Chuanfang

    2015-01-01

    Purpose The degradation of the extracellular matrix has been shown to play an important role in the treatment of hepatic cirrhosis. In this study, the effect of thalidomide on the degradation of extracellular matrix was evaluated in a rat model of hepatic cirrhosis. Materials and Methods Cirrhosis was induced in Wistar rats by intraperitoneal injection of carbon tetrachloride (CCl4) three times weekly for 8 weeks. Then CCl4 was discontinued and thalidomide (100 mg/kg) or its vehicle was administered daily by gavage for 6 weeks. Serum hyaluronic acid, laminin, procollagen type III, and collagen type IV were examined by using a radioimmunoassay. Matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1), and α-smooth muscle actin (α-SMA) protein in the liver, transforming growth factor β1 (TGF-β1) protein in cytoplasm by using immunohistochemistry and Western blot analysis, and MMP-13, TIMP-1, and TGF-β1 mRNA levels in the liver were studied using reverse transcriptase polymerase chain reaction. Results Liver histopathology was significantly better in rats given thalidomide than in the untreated model group. The levels of TIMP-1 and TGF-β1 mRNA and protein expressions were decreased significantly and MMP-13 mRNA and protein in the liver were significantly elevated in the thalidomide-treated group. Conclusion Thalidomide may exert its effects on the regulation of MMP-13 and TIMP-1 via inhibition of the TGF-β1 signaling pathway, which enhances the degradation of extracellular matrix and accelerates the regression of hepatic cirrhosis in rats. PMID:26446639

  7. Physiological regulation of extracellular matrix collagen and elastin in the arterial wall of rats by noradrenergic tone and angiotensin II.

    PubMed

    Dab, Houcine; Kacem, Kamel; Hachani, Rafik; Dhaouadi, Nadra; Hodroj, Wassim; Sakly, Mohsen; Randon, Jacques; Bricca, Giampiero

    2012-03-01

    The interactions between the effects of the sympathetic nervous system (SNS) and angiotensin II (ANG II) on vascular extracellular matrix (ECM) synthesis were determined in rats. The mRNA and protein content of collagen I, collagen III and elastin in the abdominal aorta (AA) and femoral artery (FA) was investigated in Wistar-Kyoto rats treated for 5 weeks with guanethidine, a sympathoplegic, losartan, an ANG II AT1 receptor (AT1R) blocker, or both. The effects of noradrenaline (NE) and ANG II on collagen III and elastin mRNA, and the receptor involved, were tested in cultured vascular smooth muscle cells (VSMCs) in vitro. Guanethidine increased collagen types I and III and decreased elastin, while losartan had an opposite effect, although without effect on collagen III. The combination of treatments abrogated changes induced by simple treatment with collagen I and elastin, but increased collagen III mRNA in AA and not in FA. NE stimulated collagen III mRNA via β receptors and elastin via α1 and α2 receptors. ANG II stimulated collagen III but inhibited elastin mRNA via AT1R. Overall, SNS and ANG II exert opposite and antagonistic effects on major components of ECM in the vascular wall. This may be of relevance for the choice of a therapeutic strategy in vascular diseases. PMID:21729992

  8. Contact guidance induced organization of extracellular matrix.

    PubMed

    Manwaring, Michael E; Walsh, Jennifer F; Tresco, Patrick A

    2004-08-01

    The scarring response following injury to the central nervous system disrupts the anatomical organization of nervous tissue posing a barrier to the regeneration of axons. In the present study, using materials with nanometer level surface features we examined whether matrix organization could be controlled by engineering meningeal cell asymmetry. Following 5 days in culture, the organization of meningeal cells along with their cytoskeletal elements and extracellular matrix proteins was evaluated. Meningeal cell morphology was markedly affected by nanometer level substrate topography. Cell alignment increased with increasing surface roughness. In addition, linear arrays of extracellular matrix were expressed that appeared related to cellular orientation. When cultured on substrates with topographical features of less than 10 nm neither cells nor their extracellular matrix showed organizational asymmetry. However, as oriented surface roughness increased, cellular and matrix asymmetrical organization became more pronounced reaching a threshold at 345 nm. These results suggest that biomaterial surface topography or other methods of altering the orientation of cells may be used to engineer orientation into the secreted extracellular matrix and as such may be a potential strategy for developing organized cell-derived matrix as a bridging material for nerve repair or other regenerative applications. PMID:15020137

  9. Down Regulation of NO Signaling in Trypanosoma cruzi upon Parasite-Extracellular Matrix Interaction: Changes in Protein Modification by Nitrosylation and Nitration

    PubMed Central

    Pereira, Milton; Soares, Chrislaine; Canuto, Gisele André Baptista; Tavares, Marina Franco Maggi; Colli, Walter; Alves, Maria Julia M.

    2015-01-01

    Background Adhesion of the Trypanosoma cruzi trypomastigotes, the causative agent of Chagas' disease in humans, to components of the extracellular matrix (ECM) is an important step in host cell invasion. The signaling events triggered in the parasite upon binding to ECM are less explored and, to our knowledge, there is no data available regarding •NO signaling. Methodology/Principal Findings Trypomastigotes were incubated with ECM for different periods of time. Nitrated and S-nitrosylated proteins were analyzed by Western blotting using anti-nitrotyrosine and S-nitrosyl cysteine antibodies. At 2 h incubation time, a decrease in NO synthase activity, •NO, citrulline, arginine and cGMP concentrations, as well as the protein modifications levels have been observed in the parasite. The modified proteins were enriched by immunoprecipitation with anti-nitrotyrosine antibodies (nitrated proteins) or by the biotin switch method (S-nitrosylated proteins) and identified by MS/MS. The presence of both modifications was confirmed in proteins of interest by immunoblotting or immunoprecipitation. Conclusions/Significance For the first time it was shown that T. cruzi proteins are amenable to modifications by S-nitrosylation and nitration. When T. cruzi trypomastigotes are incubated with the extracellular matrix there is a general down regulation of these reactions, including a decrease in both NOS activity and cGMP concentration. Notwithstanding, some specific proteins, such as enolase or histones had, at least, their nitration levels increased. This suggests that post-translational modifications of T. cruzi proteins are not only a reflex of NOS activity, implying other mechanisms that circumvent a relatively low synthesis of •NO. In conclusion, the extracellular matrix, a cell surrounding layer of macromolecules that have to be trespassed by the parasite in order to be internalized into host cells, contributes to the modification of •NO signaling in the parasite

  10. The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus

    PubMed Central

    Petters, Tobias; Zhang, Xin; Nesper, Jutta; Treuner-Lange, Anke; Gomez-Santos, Nuria; Hoppert, Michael; Jenal, Urs; Søgaard-Andersen, Lotte

    2012-01-01

    In Myxococcus xanthus the extracellular matrix is essential for type IV pili-dependent motility and starvation-induced fruiting body formation. Proteins of two-component systems including the orphan DNA binding response regulator DigR are essential in regulating the composition of the extracellular matrix. We identify the orphan hybrid histidine kinase SgmT as the partner kinase of DigR. In addition to kinase and receiver domains, SgmT consists of an N-terminal GAF domain and a C-terminal GGDEF domain. The GAF domain is the primary sensor domain. The GGDEF domain binds the second messenger bis-(3′-5′)-cyclic-dimeric-GMP (c-di-GMP) and functions as a c-di-GMP receptor to spatially sequester SgmT. We identify the DigR binding site in the promoter of the fibA gene, which encodes an abundant extracellular matrix metalloprotease. Whole-genome expression profiling experiments in combination with the identified DigR binding site allowed the identification of the DigR regulon and suggests that SgmT/DigR regulates the expression of genes for secreted proteins and enzymes involved in secondary metabolite synthesis. We suggest that SgmT/DigR regulates extracellular matrix composition and that SgmT activity is regulated by two sensor domains with ligand binding to the GAF domain resulting in SgmT activation and c-di-GMP binding to the GGDEF domain resulting in spatial sequestration of SgmT. PMID:22394314

  11. The extracellular matrix modulates the hallmarks of cancer.

    PubMed

    Pickup, Michael W; Mouw, Janna K; Weaver, Valerie M

    2014-12-01

    The extracellular matrix regulates tissue development and homeostasis, and its dysregulation contributes to neoplastic progression. The extracellular matrix serves not only as the scaffold upon which tissues are organized but provides critical biochemical and biomechanical cues that direct cell growth, survival, migration and differentiation and modulate vascular development and immune function. Thus, while genetic modifications in tumor cells undoubtedly initiate and drive malignancy, cancer progresses within a dynamically evolving extracellular matrix that modulates virtually every behavioral facet of the tumor cells and cancer-associated stromal cells. Hanahan and Weinberg defined the hallmarks of cancer to encompass key biological capabilities that are acquired and essential for the development, growth and dissemination of all human cancers. These capabilities include sustained proliferation, evasion of growth suppression, death resistance, replicative immortality, induced angiogenesis, initiation of invasion, dysregulation of cellular energetics, avoidance of immune destruction and chronic inflammation. Here, we argue that biophysical and biochemical cues from the tumor-associated extracellular matrix influence each of these cancer hallmarks and are therefore critical for malignancy. We suggest that the success of cancer prevention and therapy programs requires an intimate understanding of the reciprocal feedback between the evolving extracellular matrix, the tumor cells and its cancer-associated cellular stroma. PMID:25381661

  12. The extracellular matrix modulates the hallmarks of cancer

    PubMed Central

    Pickup, Michael W; Mouw, Janna K; Weaver, Valerie M

    2014-01-01

    The extracellular matrix regulates tissue development and homeostasis, and its dysregulation contributes to neoplastic progression. The extracellular matrix serves not only as the scaffold upon which tissues are organized but provides critical biochemical and biomechanical cues that direct cell growth, survival, migration and differentiation and modulate vascular development and immune function. Thus, while genetic modifications in tumor cells undoubtedly initiate and drive malignancy, cancer progresses within a dynamically evolving extracellular matrix that modulates virtually every behavioral facet of the tumor cells and cancer-associated stromal cells. Hanahan and Weinberg defined the hallmarks of cancer to encompass key biological capabilities that are acquired and essential for the development, growth and dissemination of all human cancers. These capabilities include sustained proliferation, evasion of growth suppression, death resistance, replicative immortality, induced angiogenesis, initiation of invasion, dysregulation of cellular energetics, avoidance of immune destruction and chronic inflammation. Here, we argue that biophysical and biochemical cues from the tumor-associated extracellular matrix influence each of these cancer hallmarks and are therefore critical for malignancy. We suggest that the success of cancer prevention and therapy programs requires an intimate understanding of the reciprocal feedback between the evolving extracellular matrix, the tumor cells and its cancer-associated cellular stroma. PMID:25381661

  13. Nanomechanics of the Cartilage Extracellular Matrix

    NASA Astrophysics Data System (ADS)

    Han, Lin; Grodzinsky, Alan J.; Ortiz, Christine

    2011-08-01

    Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology.

  14. Engineering hydrogels as extracellular matrix mimics

    PubMed Central

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun

    2010-01-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell–cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine. PMID:20394538

  15. Extracellular matrix-modulated Heartless signaling in Drosophila blood progenitors regulates their differentiation via a Ras/ETS/FOG pathway and target of rapamycin function.

    PubMed

    Dragojlovic-Munther, Michelle; Martinez-Agosto, Julian A

    2013-12-15

    Maintenance of hematopoietic progenitors ensures a continuous supply of blood cells during the lifespan of an organism. Thus, understanding the molecular basis for progenitor maintenance is a continued focus of investigation. A large pool of undifferentiated blood progenitors are maintained in the Drosophila hematopoietic organ, the larval lymph gland, by a complex network of signaling pathways that are mediated by niche-, progenitor-, or differentiated hemocyte-derived signals. In this study we examined the function of the Drosophila fibroblast growth factor receptor (FGFR), Heartless, a critical regulator of early lymph gland progenitor specification in the late embryo, during larval lymph gland hematopoiesis. Activation of Heartless signaling in hemocyte progenitors by its two ligands, Pyramus and Thisbe, is both required and sufficient to induce progenitor differentiation and formation of the plasmatocyte-rich lymph gland cortical zone. We identify two transcriptional regulators that function downstream of Heartless signaling in lymph gland progenitors, the ETS protein, Pointed, and the Friend-of-GATA (FOG) protein, U-shaped, which are required for this Heartless-induced differentiation response. Furthermore, cross-talk of Heartless and target of rapamycin signaling in hemocyte progenitors is required for lamellocyte differentiation downstream of Thisbe-mediated Heartless activation. Finally, we identify the Drosophila heparan sulfate proteoglycan, Trol, as a critical negative regulator of Heartless ligand signaling in the lymph gland, demonstrating that sequestration of differentiation signals by the extracellular matrix is a unique mechanism employed in blood progenitor maintenance that is of potential relevance to many other stem cell niches. PMID:23603494

  16. Extracellular matrix-modulated Heartless signaling in Drosophila blood progenitors regulates their differentiation via a Ras/ETS/FOG pathway and target of rapamycin function

    PubMed Central

    Dragojlovic-Munther, Michelle; Martinez-Agosto, Julian A

    2014-01-01

    Maintenance of hematopoietic progenitors ensures a continuous supply of blood cells during the lifespan of an organism. Thus, understanding the molecular basis for progenitor maintenance is a continued focus of investigation. A large pool of undifferentiated blood progenitors are maintained in the Drosophila hematopoietic organ, the larval lymph gland, by a complex network of signaling pathways that are mediated by niche-, progenitor-, or differentiated hemocyte-derived signals. In this study we examined the function of the Drosophila fibroblast growth factor receptor (FGFR), Heartless, a critical regulator of early lymph gland progenitor specification in the late embryo, during larval lymph gland hematopoiesis. Activation of Heartless signaling in hemocyte progenitors by its two ligands, Pyramus and Thisbe, is both required and sufficient to induce progenitor differentiation and formation of the plasmatocyte-rich lymph gland cortical zone. We identify two transcriptional regulators that function downstream of Heartless signaling in lymph gland progenitors, the ETS protein, Pointed, and the Friend-of-GATA (FOG) protein, U-shaped, which are required for this Heartless-induced differentiation response. Furthermore, cross-talk of Heartless and target of rapamycin signaling in hemocyte progenitors is required for lamellocyte differentiation downstream of Thisbe-mediated Heartless activation. Finally, we identify the Drosophila heparan sulfate proteoglycan, Trol, as a critical negative regulator of Heartless ligand signaling in the lymph gland, demonstrating that sequestration of differentiation signals by the extracellular matrix is a unique mechanism employed in blood progenitor maintenance that is of potential relevance to many other stem cell niches. PMID:23603494

  17. Involvement of extracellular matrix constituents in breast cancer

    SciTech Connect

    Lochter, Andre; Bissell, Mina J

    1995-06-01

    It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.

  18. Rho GEFs and GAPs: Emerging integrators of extracellular matrix signaling

    PubMed Central

    Kutys, Matthew L; Yamada, Kenneth M

    2015-01-01

    Investigating cell migration in 3D settings has revealed that specific extracellular matrix environments require differential activities of the Rho GTPases for efficient migration. However, it is largely unknown how the activities of specific Rho GTPases are modulated to direct cell migration in response to different extracellular matrix cues. We have recently reported that extracellular matrix-dependent regulation of a specific Rho GEF is a fundamental mechanism governing cell migration in different microenvironments, providing a direct mechanism for extracellular matrix-specific regulation of Rho GTPase activity directing cell motility. We discovered that the Rho GEF βPix has a unique function during cell migration in fibrillar collagen environments by restraining RhoA signaling through a conserved signaling axis involving Cdc42 and the Rho GAP srGAP1. In this Commentary, we expand upon this new pathway and discuss potential mechanotransductive and therapeutic applications. Additionally, we speculate on a generalized role for Rho GEFs and GAPs in providing localized, context-dependent responses to the cellular microenvironment during cell migration and other cellular processes. PMID:25862162

  19. Extracellular matrix of the developing ovarian follicle.

    PubMed

    Irving-Rodgers, Helen F; Rodgers, Raymond J

    2006-09-01

    There are many different types of extracellular matrices in the different follicle compartments. These have different roles in follicle development and atresia, and they change in composition during these processes. This review focuses on basal lamina matrix in particular, and considers follicular fluid, the newly identified focimatrix, and thecal matrices. When follicles commence growing, the follicular basal lamina changes in its composition from containing all six alpha chains of type IV collagen to only alpha1 and alpha2. Perlecan and nidogen-1 and -2 subsequently become components of the follicular basal lamina, and there is an increase in the amount of laminin chains alpha1, beta2, and gamma1, in the bovine at least. Late in follicular development and on atresia some follicles contain laminin alpha2. On atresia the follicular basal lamina is not degraded, as occurs in ovulation, but can be breached by cells from the thecal layer when it is not aligned by granulosa cells. A novel type of basal lamina-like matrix, called focimatrix (abbreviated from focal intraepithelial matrix), develops between the cells of the membrana granulosa as aggregates of basal lamina material. It does not envelop cells and so cannot perform functions of basal lamina as currently understood. It is hypothesized that focimatrix assists or initiates depolarization of the membrana granulosa necessary for the transformation into luteal cells. The largest osmotically active molecules in follicular fluid are hyaluronan and chondroitin sulfate proteoglycans, including versican and inter-alpha trypsin inhibitor. It has been suggested that these might be responsible for the formation of follicular fluid by creating an osmotic gradient across the follicular wall. The formation, development, and then either ovulation or regression of follicles requires considerable tissue remodeling, cellular replication, and specialization. The expectation of researchers is that extracellular matrix will be

  20. Extracellular Matrix and Its Role in Spermatogenesis

    PubMed Central

    Siu, Michelle K.Y.; Cheng, C. Yan

    2014-01-01

    In adult mammalian testes, such as rats, Sertoli and germ cells at different stages of their development in the seminiferous epithelium are in close contact with the basement membrane, a modified form of extracellular matrix (ECM). In essence, Sertoli and germ cells in particular spermatogonia are “resting” on the basement membrane at different stages of the seminiferous epithelial cycle, relying on its structural and hormonal supports. Thus, it is not entirely unexpected that ECM plays a significant role in regulating spermatogenesis, particularly spermatogonia and Sertoli cells, and the blood-testis barrier (BTB) constituted by Sertoli cells since these cells are in physical contact with the basement membrane. Additionally, the basement membrane is also in close contact with the underlying collagen network and the myoid cell layers, which together with the lymphatic network, constitute the tunica propria. The seminiferous epithelium and the tunica propria, in turn, constitute the seminiferous tubule, which is the functional unit that produces spermatozoa via its interaction with Leydig cells in the interstitium. In short, the basement membrane and the underlying collagen network that create the acellular zone of the tunica propria may even facilitate cross-talk between the seminiferous epithelium, the myoid cells and cells in the interstitium. Recent studies in the field have illustrated the crucial role of ECM in supporting Sertoli and germ cell function in the seminiferous epithelium, including the BTB dynamics. In this chapter, we summarize some of the latest findings in the field regarding the functional role of ECM in spermatogenesis using the adult rat testis as a model. We also highlight specific areas of research that deserve attention for investigators in the field. PMID:19856163

  1. Flavonoids suppress human glioblastoma cell growth by inhibiting cell metabolism, migration, and by regulating extracellular matrix proteins and metalloproteinases expression.

    PubMed

    Santos, Balbino L; Oliveira, Mona N; Coelho, Paulo L C; Pitanga, Bruno P S; da Silva, Alessandra B; Adelita, Taís; Silva, Victor Diógenes A; Costa, Maria de F D; El-Bachá, Ramon S; Tardy, Marcienne; Chneiweiss, Hervé; Junier, Marie-Pierre; Moura-Neto, Vivaldo; Costa, Silvia L

    2015-12-01

    The malignant gliomas are very common primary brain tumors with poor prognosis, which require more effective therapies than the current used, such as with chemotherapy drugs. In this work, we investigated the effects of several polyhydroxylated flavonoids namely, rutin, quercetin (F7), apigenin (F32), chrysin (F11), kaempferol (F12), and 3',4'-dihydroxyflavone (F2) in human GL-15 glioblastoma cells. We observed that all flavonoids decreased the number of viable cells and the mitochondrial metabolism. Furthermore, they damaged mitochondria and rough endoplasmic reticulum, inducing apoptosis. Flavonoids also induced a delay in cell migration, related to a reduction in filopodia-like structures on the cell surface, reduction on metalloproteinase (MMP-2) expression and activity, as well as an increase in intra- and extracellular expression of fibronectin, and intracellular expression of laminin. Morphological changes were also evident in adherent cells characterized by the presence of a condensed cell body with thin and long cellular processes, expressing glial fibrillary acidic protein (GFAP). Therefore, these flavonoids should be tested as potential antitumor agents in vitro and in vivo in other malignant glioma models. PMID:26408079

  2. Achondrogenesis type II, abnormalities of extracellular matrix.

    PubMed

    Horton, W A; Machado, M A; Chou, J W; Campbell, D

    1987-09-01

    Immune and lectin histochemical and microchemical methods were employed to study growth cartilage from seven cases of achondrogenesis type II (Langer-Saldino). The normal architecture of the epiphyseal and growth plate cartilage was replaced by a morphologically heterogeneous tissue. Some areas were comprised of vascular canals surrounded by extensive fibrous tissue and enlarged cells that had the appearance and histochemical characteristics of hypertrophic chondrocytes. Other areas contained a mixture of cells ranging from small to the enlarged chondrocytes. The extracellular matrix in the latter areas was more abundant and had characteristics of both precartilage mesenchymal matrix and typical cartilage matrix; it contained types I and II collagen, cartilage proteoglycan, fibronectin, and peanut agglutinin binding glycoconjugate(s). Peptide mapping of cyanogen bromide cartilage collagen peptides revealed the presence of types I and II collagen. These observations could be explained by a defect in the biosynthesis of type II collagen or in chondrocyte differentiation. PMID:3309860

  3. Hyaluronan Is Not a Ligand but a Regulator of Toll-Like Receptor Signaling in Mesangial Cells: Role of Extracellular Matrix in Innate Immunity

    PubMed Central

    Ebid, Rainer; Anders, Hans-Joachim

    2014-01-01

    Glomerular mesangial cells (MC), like most cell types secrete hyaluronan (HA), which attached to the cell surface via CD44, is the backbone of a hydrophilic gel matrix around these cells. Reduced extracellular matrix thickness and viscosity result from HA cleavage during inflammation. HA fragments were reported to trigger innate immunity via Toll-like receptor-(TLR-) 2 and/or TLR4 in immune cells. We questioned whether HA fragments also regulate the immunostimulatory capacity of smooth muscle cell-like MC. LPS (TLR4-ligand) and PAM3CysSK4 (TLR2-ligand) induced IL-6 secretion in MC; highly purified endotoxin-free HA < 3000 Da up to 50 μg/mL did not. Bovine-testis-hyaluronidase from was used to digest MC-HA into HA fragments of different size directly in the cell culture. Resultant HA fragments did not activate TLR4-deficient MC, while TLR2-deficient MC responded to LPS-contamination of hyaluronidase, not to produced HA fragments. Hyaluronidase increased the stimulatory effect of TLR2-/-3/-5 ligands on their TLR-receptors in TLR4-deficient MC, excluding any effect by LPS-contamination. Supplemented heparin suppressed every stimulatory effect in a dose-dependent manner. We conclude that the glycosaminoglycan HA creates a pericellular jelly barrier, which covers surface receptors like the TLRs. Barrier-thickness and viscosity balanced by HA-synthesis and degradation and the amount of HA-receptors on the cell surface regulate innate immunity via the accessibility of the receptors. PMID:24967246

  4. Nanomechanics of the Cartilage Extracellular Matrix

    PubMed Central

    Han, Lin; Grodzinsky, Alan J.; Ortiz, Christine

    2012-01-01

    Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology. PMID:22792042

  5. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    SciTech Connect

    Zitta, Karina; Brandt, Berenice; Wuensch, Annegret; Meybohm, Patrick; Bein, Berthold; Steinfath, Markus; Scholz, Jens; Albrecht, Martin

    2010-09-03

    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined

  6. Cathepsin-L influences the expression of extracellular matrix in lymphoid organs and plays a role in the regulation of thymic output and of peripheral T cell number.

    PubMed

    Lombardi, Gabriela; Burzyn, Dalia; Mundiñano, Juliana; Berguer, Paula; Bekinschtein, Pedro; Costa, Hector; Castillo, Lilian Fedra; Goldman, Alejandra; Meiss, Roberto; Piazzon, Isabel; Nepomnaschy, Irene

    2005-06-01

    Nackt mice, which are deficient in cathepsin-L (CTSL), show an early impairment during positive selection in the context of class II MHC molecules and as a consequence, the percentage and absolute number of CD4(+) thymocytes are significantly decreased. In this study, we show that lymph nodes from nackt mice are hypertrophied, showing normal absolute numbers of CD4(+) T cells and marked increases in the number of CD8(+) T lymphocytes. Basal proliferative levels are increased in the CD4(+) but not in the CD8(+) population. Lymph node T cells show increases in the expression of alpha(5), alpha(6), and beta(1) integrin chains. These alterations correlate with increases in the expression of extracellular matrix (ECM) components in lymph nodes. Interestingly, laminin, fibronectin, and collagen I and IV are markedly decreased in nackt thymus which shows an augmented output of CD8(+) cells. These results demonstrate that a mutation in the Ctsl gene influences the levels of ECM components in lymphoid organs, the thymic output, and the number of T cells in the periphery. They further raise the possibility that, by regulating the level of expression of ECM components in lymphoid organs, CTSL is able to broadly affect the immune system. PMID:15905545

  7. ZNF469 frequently mutated in the brittle cornea syndrome (BCS) is a single exon gene possibly regulating the expression of several extracellular matrix components

    PubMed Central

    Rohrbach, Marianne; Spencer, Helen L.; Porter, Louise F.; Burkitt-Wright, Emma M.M.; Bürer, Céline; Janecke, Andreas; Bakshi, Madhura; Sillence, David; Al-Hussain, Hailah; Baumgartner, Matthias; Steinmann, Beat; Black, Graeme C.M.; Manson, Forbes D.C.; Giunta, Cecilia

    2013-01-01

    Brittle cornea syndrome (BCS; MIM 229200) is an autosomal recessive generalized connective tissue disorder caused by mutations in ZNF469 and PRDM5. It is characterized by extreme thinning and fragility of the cornea that may rupture in the absence of significant trauma leading to blindness. Keratoconus or keratoglobus, high myopia, blue sclerae, hyperelasticity of the skin without excessive fragility, and hypermobility of the small joints are additional features of BCS. Transcriptional regulation of extracellular matrix components, particularly of fibrillar collagens, by PRDM5 and ZNF469 suggests that they might be part of the same pathway, the disruption of which is likely to cause the features of BCS. In the present study, we have performed molecular analysis of a cohort of 23 BCS affected patients on both ZNF469 and PRDM5, including those who were clinically reported previously [1]; the clinical description of three additional patients is reported in detail. We identified either homozygous or compound heterozygous mutations in ZNF469 in 18 patients while, 4 were found to be homozygous for PRDM5 mutations. In one single patient a mutation in neither ZNF469 nor PRDM5 was identified. Furthermore, we report the 12 novel ZNF469 variants identified in our patient cohort, and show evidence that ZNF469 is a single exon rather than a two exon gene. PMID:23680354

  8. SPARC Regulates Transforming Growth Factor Beta Induced (TGFBI) Extracellular Matrix Deposition and Paclitaxel Response in Ovarian Cancer Cells.

    PubMed

    Tumbarello, David A; Andrews, Melissa R; Brenton, James D

    2016-01-01

    TGFBI has been shown to sensitize ovarian cancer cells to the cytotoxic effects of paclitaxel via an integrin receptor-mediated mechanism that modulates microtubule stability. Herein, we determine that TGFBI localizes within organized fibrillar structures in mesothelial-derived ECM. We determined that suppression of SPARC expression by shRNA decreased the deposition of TGFBI in mesothelial-derived ECM, without affecting its overall protein expression or secretion. Conversely, overexpression of SPARC increased TGFBI deposition. A SPARC-YFP fusion construct expressed by the Met5a cell line co-localized with TGFBI in the cell-derived ECM. Interestingly, in vitro produced SPARC was capable of precipitating TGFBI from cell lysates dependent on an intact SPARC carboxy-terminus with in vitro binding assays verifying a direct interaction. The last 37 amino acids of SPARC were shown to be required for the TGFBI interaction while expression of a SPARC-YFP construct lacking this region (aa 1-256) did not interact and co-localize with TGFBI in the ECM. Furthermore, ovarian cancer cells have a reduced motility and decreased response to the chemotherapeutic agent paclitaxel when plated on ECM derived from mesothelial cells lacking SPARC compared to control mesothelial-derived ECM. In conclusion, SPARC regulates the fibrillar ECM deposition of TGFBI through a novel interaction, subsequently influencing cancer cell behavior. PMID:27622658

  9. Extracellular Matrix Roles During Cardiac Repair

    PubMed Central

    Jourdan-LeSaux, Claude; Zhang, Jianhua; Lindsey, Merry L.

    2010-01-01

    The cardiac extracellular matrix (ECM) provides a platform for cells to maintain structure and function, which in turn maintains tissue function. In response to injury, the ECM undergoes remodeling that involves synthesis, incorporation, and degradation of matrix proteins, with the net outcome determined by the balance of these processes. The major goals of this review are a) to serve as an initial resource for students and investigators new to the cardiac ECM remodeling field, and b) to highlight a few of the key exciting avenues and methodologies that have recently been explored. While we focus on cardiac injury and responses of the left ventricle (LV), the mechanisms reviewed here have pathways in common with other wound healing models. PMID:20670633

  10. Interaction with extracellular matrix proteins influences Lsh/Ity/Bcg (candidate Nramp) gene regulation of macrophage priming/activation for tumour necrosis factor-alpha and nitrite release.

    PubMed

    Formica, S; Roach, T I; Blackwell, J M

    1994-05-01

    The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic

  11. RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells

    PubMed Central

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Munteanu, Maria Cristina; Dinischiotu, Anca

    2016-01-01

    AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE’s proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications. PMID:27015414

  12. RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells.

    PubMed

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Munteanu, Maria Cristina; Dinischiotu, Anca

    2016-01-01

    AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE's proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications. PMID:27015414

  13. [Hematopoietic microenvironment: cellular and extracellular matrix elements].

    PubMed

    Minguell, J J; Fernández, M; Tetas, M; Martínez, J; Bruzzone, M; Rodríguez, J P

    1988-06-01

    In bone marrow, cellular stroma together with extracellular matrix (EM) provide an adequate microenvironment for the proliferation and differentiation of hemopoietic progenitor cells. In this article we describe studies on the cell characteristics of a main stromal phenotype, a fibroblast-like cell and its ability to produce in vitro EM components. Comparative studies were performed in fibroblast cultures derived from normal and acute lymphoblastic leukemic (ALL) bone marrow. The grow characteristics of fibroblasts from ALL marrow as well as its capacity to synthetize collagen, fibronectin and GAGs are impaired when compared to fibroblast from normal marrow. Thus, in ALL the impaired production of EM biomolecules by a transient damaged population of stromal cells, may contribute to the development of a defective microenvironment for hemopoiesis. PMID:3154858

  14. Extracellular matrix motion and early morphogenesis.

    PubMed

    Loganathan, Rajprasad; Rongish, Brenda J; Smith, Christopher M; Filla, Michael B; Czirok, Andras; Bénazéraf, Bertrand; Little, Charles D

    2016-06-15

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. PMID:27302396

  15. Stretching the boundaries of extracellular matrix research.

    PubMed

    Hynes, Richard O

    2014-12-01

    Extracellular matrix (ECM) proteins constitute >1% of the proteome and interact with many modifiers and growth factors to affect most aspects of cellular behaviour during development and normal physiology, as well as in diseases such as fibroses, cancer and many genetic disorders. In addition to biochemical signals provided to cells by ECM proteins, important cell–ECM interactions involve bidirectional mechanotransduction influences, which are dependent on the physical structure and organization of the ECM. These are beginning to be understood using twenty-first-century approaches, including biophysics, nanotechnology, biological engineering and modern microscopy. Articles in this issue of Nature Reviews Molecular Cell Biology review progress in our understanding of the ECM. PMID:25574535

  16. Extracellular Matrix Revisited: Roles in Tissue Engineering

    PubMed Central

    2016-01-01

    The extracellular matrix (ECM) is a heterogeneous, connective network composed of fibrous glycoproteins that coordinate in vivo to provide the physical scaffolding, mechanical stability, and biochemical cues necessary for tissue morphogenesis and homeostasis. This review highlights some of the recently raised aspects of the roles of the ECM as related to the fields of biophysics and biomedical engineering. Fundamental aspects of focus include the role of the ECM as a basic cellular structure, for novel spontaneous network formation, as an ideal scaffold in tissue engineering, and its essential contribution to cell sheet technology. As these technologies move from the laboratory to clinical practice, they are bound to shape the vast field of tissue engineering for medical transplantations. PMID:27230457

  17. Extracellular matrix fluctuations during early embryogenesis

    PubMed Central

    Szabó, A; Rupp, P A; Rongish, B J; Little, C D; Czirók, A

    2011-01-01

    Extracellular matrix (ECM) movements and rearrangements were studied in avian embryos during early stages of development. We show that the ECM moves as a composite material, whereby distinct molecular components as well as spatially separated layers exhibit similar displacements. Using scanning wide field and confocal microscopy we show that the velocity field of ECM displacement is smooth in space and that ECM movements are correlated even at locations separated by several hundred micrometers. Velocity vectors, however, strongly fluctuate in time. The autocorrelation time of the velocity fluctuations is less than a minute. Suppression of the fluctuations yields a persistent movement pattern that is shared among embryos at equivalent stages of development. The high resolution of the velocity fields allows a detailed spatio-temporal characterization of important morphogenetic processes, especially tissue dynamics surrounding the embryonic organizer (Hensen’s node). PMID:21750366

  18. Extracellular matrix and pathogenic mechanisms in osteoarthritis.

    PubMed

    Hardingham, Tim

    2008-01-01

    Osteoarthritis (OA) is a heterogeneous condition of joint degeneration characterized by structural changes in extracellular matrices such as subchondral bone and cartilage. Research has identified many diverse ways of initiating OA, varying from mechanical disruption to gene mutations in structural proteins. A frequent end point is cartilage loss, which can occur irrespective of the initiating mechanism. Of the mechanisms responsible for cartilage matrix damage, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 was identified as of key importance in knockout mice, but work with human cartilage has suggested that ADAMTS-4 was also involved. A transgenic mouse expressing aggrecan lacking a key aggrecanase site clearly showed that loss of aggrecan from cartilage was an important step in both inflammatory and trauma-induced joint degeneration. In OA, cartilage chondrocytes show changes in gene expression, and it remains to be resolved if this reflects adaptive responses to changes in biological, physical, and mechanical signaling rather than any form of differentiation. PMID:18457609

  19. Defining the extracellular matrix using proteomics

    PubMed Central

    Byron, Adam; Humphries, Jonathan D; Humphries, Martin J

    2013-01-01

    The cell microenvironment has a profound influence on the behaviour, growth and survival of cells. The extracellular matrix (ECM) provides not only mechanical and structural support to cells and tissues but also binds soluble ligands and transmembrane receptors to provide spatial coordination of signalling processes. The ability of cells to sense the chemical, mechanical and topographical features of the ECM enables them to integrate complex, multiparametric information into a coherent response to the surrounding microenvironment. Consequently, dysregulation or mutation of ECM components results in a broad range of pathological conditions. Characterization of the composition of ECM derived from various cells has begun to reveal insights into ECM structure and function, and mechanisms of disease. Proteomic methodologies permit the global analysis of subcellular systems, but extracellular and transmembrane proteins present analytical difficulties to proteomic strategies owing to the particular biochemical properties of these molecules. Here, we review advances in proteomic approaches that have been applied to furthering our understanding of the ECM microenvironment. We survey recent studies that have addressed challenges in the analysis of ECM and discuss major outcomes in the context of health and disease. In addition, we summarize efforts to progress towards a systems-level understanding of ECM biology. PMID:23419153

  20. The tetrapartite synapse: Extracellular matrix remodeling contributes to corticoaccumbens plasticity underlying drug addiction.

    PubMed

    Smith, Alexander C W; Scofield, Michael D; Kalivas, Peter W

    2015-12-01

    Synaptic plasticity has long been known to involve three key elements of neuropil, the presynapse, the postsynapse and adjacent glia. Here we review the role of the extracellular matrix in synaptic plasticity as a necessary component forming the tetrapartite synapse. We describe the role of matrix metalloproteinases as enzymes sculpting extracellular proteins and thereby creating an extracellular signaling domain required for synaptic plasticity. Specifically we focus on the role of the tetrapartite synapse in mediating the effects of addictive drugs at cortico-striatal synapses, and conclude that the extracellular signaling domain and its regulation by matrix metalloproteinases is critical for developing and expressing drug seeking behaviors. PMID:25838241

  1. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy.

    PubMed

    Sardone, Francesca; Traina, Francesco; Bondi, Alice; Merlini, Luciano; Santi, Spartaco; Maraldi, Nadir Mario; Faldini, Cesare; Sabatelli, Patrizia

    2016-01-01

    Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient's tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient's tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient's tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies. PMID:27375477

  2. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy

    PubMed Central

    Sardone, Francesca; Traina, Francesco; Bondi, Alice; Merlini, Luciano; Santi, Spartaco; Maraldi, Nadir Mario; Faldini, Cesare; Sabatelli, Patrizia

    2016-01-01

    Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient’s tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient’s tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient’s tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies. PMID:27375477

  3. Molecular Adhesion between Cartilage Extracellular Matrix Macromolecules

    PubMed Central

    2015-01-01

    In this study, we investigated the molecular adhesion between the major constituents of cartilage extracellular matrix, namely, the highly negatively charged proteoglycan aggrecan and the type II/IX/XI fibrillar collagen network, in simulated physiological conditions. Colloidal force spectroscopy was applied to measure the maximum adhesion force and total adhesion energy between aggrecan end-attached spherical tips (end radius R ≈ 2.5 μm) and trypsin-treated cartilage disks with undamaged collagen networks. Studies were carried out in various aqueous solutions to reveal the physical factors that govern aggrecan–collagen adhesion. Increasing both ionic strength and [Ca2+] significantly increased adhesion, highlighting the importance of electrostatic repulsion and Ca2+-mediated ion bridging effects. In addition, we probed how partial enzymatic degradation of the collagen network, which simulates osteoarthritic conditions, affects the aggrecan–collagen interactions. Interestingly, we found a significant increase in aggrecan–collagen adhesion even when there were no detectable changes at the macro- or microscales. It is hypothesized that the aggrecan–collagen adhesion, together with aggrecan–aggrecan self-adhesion, works synergistically to determine the local molecular deformability and energy dissipation of the cartilage matrix, in turn, affecting its macroscopic tissue properties. PMID:24491174

  4. Extracellular Matrix Dynamics and Fetal Membrane Rupture

    PubMed Central

    Strauss,, Jerome F.

    2013-01-01

    The extracellular matrix (ECM) plays an important role in determining cell and organ function: (1) it is an organizing substrate that provides tissue tensile strength; (2) it anchors cells and influences cell morphology and function via interaction with cell surface receptors; and (3) it is a reservoir for growth factors. Alterations in the content and the composition of the ECM determine its physical and biological properties, including strength and susceptibility to degradation. The ECM components themselves also harbor cryptic matrikines, which when exposed by conformational change or proteolysis have potent effects on cell function, including stimulating the production of cytokines and matrix metalloproteinases (MMPs). Collectively, these properties of the ECM reflect a dynamic tissue component that influences both tissue form and function. This review illustrates how defects in ECM synthesis and metabolism and the physiological process of ECM turnover contribute to changes in the fetal membranes that precede normal parturition and contribute to the pathological events leading to preterm premature rupture of membranes (PPROM). PMID:22267536

  5. Extracellular matrix dynamics and fetal membrane rupture.

    PubMed

    Strauss, Jerome F

    2013-02-01

    The extracellular matrix (ECM) plays an important role in determining cell and organ function: (1) it is an organizing substrate that provides tissue tensile strength; (2) it anchors cells and influences cell morphology and function via interaction with cell surface receptors; and (3) it is a reservoir for growth factors. Alterations in the content and the composition of the ECM determine its physical and biological properties, including strength and susceptibility to degradation. The ECM components themselves also harbor cryptic matrikines, which when exposed by conformational change or proteolysis have potent effects on cell function, including stimulating the production of cytokines and matrix metalloproteinases (MMPs). Collectively, these properties of the ECM reflect a dynamic tissue component that influences both tissue form and function. This review illustrates how defects in ECM synthesis and metabolism and the physiological process of ECM turnover contribute to changes in the fetal membranes that precede normal parturition and contribute to the pathological events leading to preterm premature rupture of membranes (PPROM). PMID:22267536

  6. Roles of extracellular matrix in follicular development.

    PubMed

    Rodgers, R J; van Wezel, I L; Irving-Rodgers, H F; Lavranos, T C; Irvine, C M; Krupa, M

    1999-01-01

    The cellular biology and changes in the extracellular matrix of ovarian follicles during their development are reviewed. During growth of the bovine ovarian follicle the follicular basal lamina doubles 19 times in surface area. It changes in composition, having collagen IV alpha 1-26 and laminin alpha 1, beta 2 and gamma 1 at the primordial stage, and collagen IV alpha 1 and alpha 2, reduced amounts of alpha 3-alpha 5, and a higher content of laminin alpha 1, beta 2 and gamma 1 at the antral stage. In atretic antral follicles laminin alpha 2 was also detected. The follicular epithelium also changes from one layer to many layers during follicular growth. It is clear that not all granulosal cells have equal potential to divide, and we have evidence that the granulosal cells arise from a population of stem cells. This finding has important ramifications and supports the concept that different follicular growth factors can act on different subsets of granulosal cells. In antral follicles, the replication of cells occurs in the middle layers of the membrana granulosa, with older granulosal cells towards the antrum and towards the basal lamina. The basal cells in the membrana granulosa have also been observed to vary in shape between follicies. In smaller antral follicles, they were either columnar or rounded, and in follicles > 5 mm the cells were all rounded. The reasons for these changes in matrix and cell shapes are discussed in relation to follicular development. PMID:10692866

  7. Tumorigenic potential of extracellular matrix metalloproteinase inducer.

    PubMed

    Zucker, S; Hymowitz, M; Rollo, E E; Mann, R; Conner, C E; Cao, J; Foda, H D; Tompkins, D C; Toole, B P

    2001-06-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  8. Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress

    PubMed Central

    Luna, Coralia; Li, Guorong; Qiu, Jianmimg; Epstein, David L.

    2009-01-01

    Purpose To investigate the role of miR-29b on the changes in expression of genes involved in the synthesis and deposition of extracellular matrix (ECM) induced by chronic oxidative stress in human trabecular meshwork cells (HTM). Methods Changes in gene expression induced by miR-29b in HTM cells were evaluated by gene array analysis using Affymetrix U133A2 arrays and confirmed by quantitative–PCR. Pathway analysis was conducted using Metacore. Targeting of miR-29b to the 3’-untranslated region of three novel putative targets was evaluated using the Psicheck luciferase system. Chronic oxidative stress was induced by incubation at 40% oxygen for 4–5 days, using cultures incubated at 5% oxygen as controls. Changes in expression in microRNA or gene expression were analyzed by Q-PCR. Cell viability was measured by lactate dehydrogenase release. Results Transfection of HTM cells with miR-29b mimic resulted in downregulation of multiple ECM components, including collagens (COL1A1, COL1A2, COL4A1, COL5A1, COL5A2, COL3A1) LAMC1, and FBN as well as several genes involved in ECM deposition and remodeling, such as SPARC/osteonectin. Three additional genes, BMP1, ADAM12, and NKIRAS2, were identified as direct targets of miR-29b. Chronic oxidative stress induced a significant downregulation of miR-29b in two HTM cell lines that was associated with increased expression of several ECM genes known to be regulated by miR-29b. The increase in expression of these genes was inhibited by transfection with miR-29b mimic. MiR-29b increased cell viability under both chronic oxidative stress and physiologic oxygen concentrations. Conclusions MiR-29b negatively regulates the expression of multiple genes involved in the synthesis and deposition of ECM in trabecular meshwork (TM) cells. Downregulation of miR-29b might contribute to increased expression of several ECM genes under chronic oxidative stress conditions. The balance between the activation of ECM production induced by oxidative

  9. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer.

    PubMed

    Malik, Ruchi; Lelkes, Peter I; Cukierman, Edna

    2015-04-01

    The extracellular matrix (ECM) provides structural and biochemical signals that regulate cell function. A well-controlled balance between cells and surroundings (i.e., dynamic reciprocity) is crucial for regulating ECM architecture. During cancer progression, epithelial cells undergo genetic alterations which, together with stromal changes including ECM remodeling, disturb the homeostatic dynamics of the epithelium. A parallel organization of stromal ECM fibrils is associated with tumorigenic responses. In an emerging paradigm, continuous and progressive regulation via mechanical forces and aberrant signaling are believed to be responsible for tumor-associated ECM remodeling. In this review we discuss the discrete biomechanical and biochemical mechanisms that underlie these architectural changes and highlight their particular relevance to the regulation of the alignment of ECM in the mesenchymal stroma. PMID:25708906

  10. BIOMECHANICAL and BIOCHEMICAL REMODELING of STROMAL EXTRACELLULAR MATRIX IN CANCER

    PubMed Central

    Malik, Ruchi; Lelkes, Peter I; Cukierman, Edna

    2015-01-01

    The extracellular matrix (ECM) provides structural and biochemical signals that regulate cell function. A well-controlled balance between cells and surroundings (i.e., Dynamic Reciprocity) is crucial for regulating ECM architecture. During cancer progression, epithelial cells undergo genetic alterations, which together with stromal changes, including ECM remodeling, disturb the homeostatic dynamics of the epithelium. A parallel organization of stromal ECM fibrils is associated with tumorigenic responses. In an emerging paradigm, continuous and progressive regulation via mechanical forces and aberrant signaling are believed to be responsible for tumor-associated ECM remodeling. In this review, we discuss the discrete biomechanical and biochemical mechanisms that underlie these architectural changes and highlight their particular relevance to the regulation of the alignment of ECM in the mesenchymal stroma. PMID:25708906

  11. Interactions of Cartilage Extracellular Matrix Macromolecules.

    PubMed

    Horkay, Ferenc

    2012-12-15

    Articular cartilage is a low-friction, load-bearing tissue located at joint surfaces. The extracellular matrix (ECM) of cartilage consists of a fibrous collagen network, which is pre-stressed by the osmotic swelling pressure exerted by negatively charged proteoglycan aggregates embedded in the collagen network. The major proteoglycan is the bottlebrush shaped aggrecan, which forms complexes with linear hyaluronic acid chains. We quantify microscopic and macroscopic changes resulting from self-assembly between aggrecan and hyaluronic acid using a complementary set of physical measurements to determine structure and interactions by combining scattering techniques, including small-angle X-ray scattering, small-angle neutron scattering, and dynamic light scattering with macroscopic osmotic pressure measurements. It is demonstrated that the osmotic pressure that defines the load bearing ability of cartilage is primarily governed by the main macromolecular components (aggrecan and collagen) of the ECM. Knowledge of the interactions between the macromolecular components of cartilage ECM is essential to understand biological function and to develop successful tissue engineering strategies for cartilage repair. PMID:23997426

  12. Vascular Extracellular Matrix and Arterial Mechanics

    PubMed Central

    WAGENSEIL, JESSICA E.; MECHAM, ROBERT P.

    2009-01-01

    An important factor in the transition from an open to a closed circulatory system was a change in vessel wall structure and composition that enabled the large arteries to store and release energy during the cardiac cycle. The component of the arterial wall in vertebrates that accounts for these properties is the elastic fiber network organized by medial smooth muscle. Beginning with the onset of pulsatile blood flow in the developing aorta, smooth muscle cells in the vessel wall produce a complex extracellular matrix (ECM) that will ultimately define the mechanical properties that are critical for proper function of the adult vascular system. This review discusses the structural ECM proteins in the vertebrate aortic wall and will explore how the choice of ECM components has changed through evolution as the cardiovascular system became more advanced and pulse pressure increased. By correlating vessel mechanics with physiological blood pressure across animal species and in mice with altered vessel compliance, we show that cardiac and vascular development are physiologically coupled, and we provide evidence for a universal elastic modulus that controls the parameters of ECM deposition in vessel wall development. We also discuss mechanical models that can be used to design better tissue-engineered vessels and to test the efficacy of clinical treatments. PMID:19584318

  13. Surface Characterization of Extracellular Matrix Scaffolds

    PubMed Central

    Brown, Bryan N.; Barnes, Christopher A.; Kasick, Rena T.; Michel, Roger; Gilbert, Thomas W.; Beer-Stolz, Donna; Castner, David G.; Ratner, Buddy D.; Badylak, Stephen F.

    2009-01-01

    Extracellular matrix (ECM) scaffolds prepared from different tissue sources or using different methods have been demonstrated to have distinctive effects upon cell adhesion patterns and the ability to support and maintain differentiated phenotypes. It is unknown whether the molecular composition or the ultrastructure of the ECM plays a greater role in determining the phenotype of the cells with which it comes into contact. However, when implanted, the topology and ligand landscape of the material will determine the host molecules that bind and the type and behavior of cells that mediate the host response. Therefore, a comprehensive understanding of surface characteristics is essential in the design of scaffolds for specific clinical applications. The surface characteristics of ECM scaffolds derived from porcine urinary bladder, small intestine, and liver as well as the effects of two commonly used methods of chemical cross-linking upon UBM were investigated. Electron microscopy and time of flight secondary ion mass spectroscopy were used to examine the surface characteristics of the scaffolds. The results show that ECM scaffolds have unique morphologic and structural properties which are dependant on the organ or tissue from which the scaffold is harvested. Furthermore, the results show that the surface characteristics of an ECM scaffold are changed through chemical cross-linking. PMID:19828192

  14. Biochemistry of the extracellular matrix of Volvox.

    PubMed

    Sumper, M; Hallmann, A

    1998-01-01

    The volvocine algae range in complexity from unicellular Chlamydomonas to multicellular organisms in the genus Volvox. The transition from unicellularity to multicellularity in the Volvocales is a recent event in evolution. Thus, these organisms provide a unique opportunity for exploring the development of a complex extracellular matrix (ECM) from the cell wall of a unicellular ancestor. The ECM of Volvox is divided into four main zones: The flagellar, boundary, cellular, and deep zones. Each zone is defined by ultrastructure and by characteristic ECM glycoproteins. Volvox ECM is modified under developmental control or in response to external stimuli, like the sex-inducing pheromone or stress factors. The structures of more than 10 ECM glycoproteins from a single species of Volvox are now known in molecular detail and are compared to other algal and plant cell wall/ECM glycoproteins. Although usually classified as hydroxyproline-rich glycoproteins, the striking feature of all algal ECM glycoproteins is a modular composition. Rod-shaped hydroxyproline-rich modules are combined with hydroxyproline-free domains that meet the multiple functional requirements of a complex ECM. The algal ECM provides another example of the combinatorial advantage of shuffling modules that is so evident in the evolution of the metazoan ECMs. PMID:9496634

  15. Lung Extracellular Matrix and Fibroblast Function

    PubMed Central

    2015-01-01

    Extracellular matrix (ECM) is a tissue-specific macromolecular structure that provides physical support to tissues and is essential for normal organ function. In the lung, ECM plays an active role in shaping cell behavior both in health and disease by virtue of the contextual clues it imparts to cells. Qualities including dimensionality, molecular composition, and intrinsic stiffness all promote normal function of the lung ECM. Alterations in composition and/or modulation of stiffness of the focally injured or diseased lung ECM microenvironment plays a part in reparative processes performed by fibroblasts. Under conditions of remodeling or in disease states, inhomogeneous stiffening (or softening) of the pathologic ECM may both precede modifications in cell behavior and be a result of disease progression. The ability of ECM to stimulate further ECM production by fibroblasts and drive disease progression has potentially significant implications for mesenchymal stromal cell–based therapies; in the setting of pathologic ECM stiffness or composition, the therapeutic intent of progenitor cells may be subverted. Taken together, current data suggest that lung ECM actively contributes to health and disease; thus, mediators of cell–ECM signaling or factors that influence ECM stiffness may represent viable therapeutic targets in many lung disorders. PMID:25830832

  16. Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy

    PubMed Central

    Järveläinen, Hannu; Sainio, Annele; Koulu, Markku; Wight, Thomas N.; Penttinen, Risto

    2009-01-01

    The extracellular matrix (ECM) consists of numerous macromolecules classified traditionally into collagens, elastin, and microfibrillar proteins, proteoglycans including hyaluronan, and noncollagenous glycoproteins. In addition to being necessary structural components, ECM molecules exhibit important functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. Any structural inherited or acquired defect and/or metabolic disturbance in the ECM may cause cellular and tissue alterations that can lead to the development or progression of disease. Consequently, ECM molecules are important targets for pharmacotherapy. Specific agents that prevent theexcess accumulation of ECM molecules in the vascular system, liver, kidney, skin, and lung; alternatively, agents that inhibit the degradation of the ECM in degenerative diseases such as osteoarthritis would be clinically beneficial. Unfortunately, until recently, the ECM in drug discovery has been largely ignored. However, several of today's drugs that act on various primary targets affect the ECM as a byproduct of the drugs' actions, and this activity may in part be beneficial to the drugs' disease-modifying properties. In the future, agents and compounds targeting directly the ECM will significantly advance the treatment of various human diseases, even those for which efficient therapies are not yet available. PMID:19549927

  17. Extracellular matrix mechanics in lung parenchymal diseases

    PubMed Central

    Suki, Béla; Bates, Jason H.T.

    2008-01-01

    In this review, we examine how the extracellular matrix (ECM) of the lung contributes to the overall mechanical properties of the parenchyma, and how these properties change in disease. The connective tissues of the lung are composed of cells and ECM, which includes a variety of biological macromolecules and water. The macromolecules that are most important in determining the mechanical properties of the ECM are collagen, elastin, and proteoglycans. We first discuss the various components of the ECM and how their architectural organization gives rise to the mechanical properties of the parenchyma. Next, we examine how mechanical forces can affect the physiological functioning of the lung parenchyma. Collagen plays an especially important role in determining the homeostasis and cellular responses to injury because it is the most important load-bearing component of the parenchyma. We then demonstrate how the concept of percolation can be used to link microscopic pathologic alterations in the parenchyma to clinically measurable lung function during the progression of emphysema and fibrosis. Finally, we speculate about the possibility of using targeted tissue engineering to optimize treatment of these two major lung diseases. PMID:18485836

  18. The extracellular matrix of plants: Molecular, cellular and developmental biology

    SciTech Connect

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  19. Remodelling the extracellular matrix in development and disease

    PubMed Central

    Bonnans, Caroline; Chou, Jonathan; Werb, Zena

    2015-01-01

    The extracellular matrix (ECM) is a highly dynamic structure that is present in all tissues and continuously undergoes controlled remodelling. This process involves quantitative and qualitative changes in the ECM, mediated by specific enzymes that are responsible for ECM degradation, such as metalloproteinases. The ECM interacts with cells to regulate diverse functions, including proliferation, migration and differentiation. ECM remodelling is crucial for regulating the morphogenesis of the intestine and lungs, as well as of the mammary and submandibular glands. Dysregulation of ECM composition, structure, stiffness and abundance contributes to several pathological conditions, such as fibrosis and invasive cancer. A better understanding of how the ECM regulates organ structure and function and of how ECM remodelling affects disease progression will contribute to the development of new therapeutics. PMID:25415508

  20. The role of cell-extracellular matrix interactions in glomerular injury.

    PubMed

    Borza, Corina M; Pozzi, Ambra

    2012-05-15

    Glomerulosclerosis is characterized by excessive deposition of extracellular matrix within the glomeruli of the kidney, glomerular cell death, and subsequent loss of functional glomeruli. While in physiological situations the levels of extracellular matrix components are kept constant by a tight balance between formation and degradation, in the case of injury that results in fibrosis there is increased matrix deposition relative to its breakdown. Multiple factors control matrix synthesis and degradation, thus contributing to the development of glomerulosclerosis. This review focuses primarily on the role of cell-matrix interactions, which play a critical role in governing glomerular cell cues in both healthy and diseased kidneys. Cell-extracellular matrix interactions are made possible by various cellular receptors including integrins, discoidin domain receptors, and dystroglycan. Upon binding to a selective extracellular matrix protein, these receptors activate intracellular signaling pathways that can either downregulate or upregulate matrix synthesis and deposition. This, together with the observation that changes in the expression levels of matrix receptors have been documented in glomerular disease, clearly emphasizes the contribution of cell-matrix interactions in glomerular injury. Understanding the molecular mechanisms whereby extracellular matrix receptors regulate matrix homeostasis in the course of glomerular injury is therefore critical for devising more effective therapies to treat and ideally prevent glomerulosclerosis. PMID:22417893

  1. THE ROLE OF CELL-EXTRACELLULAR MATRIX INTERACTIONS IN GLOMERULAR INJURY

    PubMed Central

    Borza, Corina M.; Pozzi, Ambra

    2013-01-01

    Glomerulosclerosis is characterized by excessive deposition of extracellular matrix within the glomeruli of the kidney, glomerular cell death, and subsequent loss of functional glomeruli. While in physiological situations the levels of extracellular matrix components are kept constant by a tight balance between formation and degradation, in the case of injury that results in fibrosis there is increased matrix deposition relative to its breakdown. Multiple factors control matrix synthesis and degradation, thus contributing to the development of glomerulosclerosis. This review focuses primarily on the role of cell-matrix interactions, which play a critical role in governing glomerular cell cues in both healthy and diseased kidneys. Cell-extracellular matrix interactions are made possible by various cellular receptors including integrins, discoidin domain receptors, and dystroglycan. Upon binding to a selective extracellular matrix protein, these receptors activate intracellular signaling pathways that can either downregulate or upregulate matrix synthesis and deposition. This, together with the observation that changes in the expression levels of matrix receptors have been documented in glomerular disease, clearly emphasizes the contribution of cell-matrix interactions in glomerular injury. Understanding the molecular mechanisms whereby extracellular matrix receptors regulate matrix homeostasis in the course of glomerular injury is therefore critical for devising more effective therapies to treat and ideally prevent glomerulosclerosis. PMID:22417893

  2. The extracellular matrix in hepatic regeneration.

    PubMed

    Martinez-Hernandez, A; Amenta, P S

    1995-11-01

    After partial hepatectomy, as a consequence of hepatocyte proliferation, cell clusters containing 10-14 hepatocytes are formed. These clusters are devoid of sinusoids and extracellular matrix; therefore, many hepatocytes are two to three cells removed from the vascular spaces. Four days after hepatectomy, Ito cells send delicate cell processes between the hepatocytes in the clusters. This "invasion" of the clusters coincides with the activation in Ito cells of genes encoding for several laminin chains. The penetration of Ito cells into the clusters is followed by fenestrated endothelial cells, and in this manner the normal hepatocyte vascular relationship is restored. As soon as the normal vascular structure is reestablished, the laminin genes are turned off. This chain of events is similar to the one taking place during hepatogenesis when continuous capillaries are converted into sinusoids. This similarity in hepatogenesis and regeneration suggests that the secreted laminin chains may be signals for the vascularization of the clusters by fenestrated sinusoids. During this process neither entactin nor laminin alpha chains are secreted. The vascularization of the regenerating clusters contrasts sharply to the vascularization of cirrhotic nodules. In the latter case, entactin and perhaps laminin alpha 1 chains are secreted, and the final result is the formation of basement membranes and continuous capillaries rather than fenestrated sinusoids. We suggest that entactin and specific laminin chains play a crucial role in determining the outcome of hepatic injury. Definition of the roles of entactin and laminin chains in vascularization and modulation of the endothelial phenotype will not only elucidate important aspects of regeneration, but may provide a better understanding of cirrhosis and even suggest therapeutic approaches. PMID:7589981

  3. The design of reversible hydrogels to capture extracellular matrix dynamics

    NASA Astrophysics Data System (ADS)

    Rosales, Adrianne M.; Anseth, Kristi S.

    2016-02-01

    The extracellular matrix (ECM) is a dynamic environment that constantly provides physical and chemical cues to embedded cells. Much progress has been made in engineering hydrogels that can mimic the ECM, but hydrogel properties are, in general, static. To recapitulate the dynamic nature of the ECM, many reversible chemistries have been incorporated into hydrogels to regulate cell spreading, biochemical ligand presentation and matrix mechanics. For example, emerging trends include the use of molecular photoswitches or biomolecule hybridization to control polymer chain conformation, thereby enabling the modulation of the hydrogel between two states on demand. In addition, many non-covalent, dynamic chemical bonds have found increasing use as hydrogel crosslinkers or tethers for cell signalling molecules. These reversible chemistries will provide greater temporal control of adhered cell behaviour, and they allow for more advanced in vitro models and tissue-engineering scaffolds to direct cell fate.

  4. TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2) activity in the extracellular environment after pro-MMP-2 activation by MT1 (membrane type 1)-MMP.

    PubMed Central

    Bernardo, M Margarida; Fridman, Rafael

    2003-01-01

    The matrix metalloproteinase (MMP)-2 has a crucial role in extracellular matrix degradation associated with cancer metastasis and angiogenesis. The latent form, pro-MMP-2, is activated on the cell surface by the membrane-tethered membrane type 1 (MT1)-MMP, in a process regulated by the tissue inhibitor of metalloproteinase (TIMP)-2. A complex of active MT1-MMP and TIMP-2 binds pro-MMP-2 forming a ternary complex, which permits pro-MMP-2 activation by a TIMP-2-free neighbouring MT1-MMP. It remains unclear how MMP-2 activity in the pericellular space is regulated in the presence of TIMP-2. To address this question, the effect of TIMP-2 on MMP-2 activity in the extracellular space was investigated in live cells, and their isolated plasma membrane fractions, engineered to control the relative levels of MT1-MMP and TIMP-2 expression. We show that both free and inhibited MMP-2 is detected in the medium, and that the net MMP-2 activity correlates with the level of TIMP-2 expression. Studies to displace MT1-MMP-bound TIMP-2 in a purified system with active MMP-2 show minimal displacement of inhibitor, under the experimental conditions, due to the high affinity interaction between TIMP-2 and MT1-MMP. Thus inhibition of MMP-2 activity in the extracellular space is unlikely to result solely as a result of TIMP-2 dissociation from its complex with MT1-MMP. Consistently, immunoblot analyses of plasma membranes, and surface biotinylation experiments show that the level of surface association of TIMP-2 is independent of MT1-MMP expression. Thus low-affinity binding of TIMP-2 to sites distinct to MT1-MMP may have a role in regulating MMP-2 activity in the extracellular space generated by the ternary complex. PMID:12755684

  5. Effects of ionizing radiation on extracellular matrix

    NASA Astrophysics Data System (ADS)

    Mohamed, F.; Bradley, D. A.; Winlove, C. P.

    2007-09-01

    The extracellular matrix is a ubiquitous and important component of tissues. We investigated the effects of ionizing radiation on the physical properties of its principal macromolecular components, pericardial collagen, ligament elastin and hyaluronan, a representative glycosaminoglycan. Samples were exposed to X-rays from an electron linear accelerator in the range of 10-100 Gy to cover the range of irradiation exposure during radiotherapy. A uniaxial mechanical testing protocol was used to characterize the fibrous proteins. For pericardial tissue the major change was an increase in the elastic modulus in the toe region of the curve (⩽20% strain), from 23±18 kPa for controls to 57±22 kPa at a dose of 10 Gy ( p=0.01, α=0.05). At larger strain (⩾20% strain), the elastic modulus in the linear region decreased from 1.92±0.70 MPa for control pericardium tissue to 1.31±0.56 MPa ( p=0.01, α=0.05) for 10 Gy X-irradiated sample. Similar observations have been made previously on tendon collagen at larger strains. For elastin, the stress-strain relationship was linear up to 30% strain, but the elastic modulus decreased significantly with irradiation (controls 626±65 kPa, irradiated 474±121 kPa ( p=0.02, α=0.05), at 10 Gy X-irradiation). The results suggest that for collagen the primary effect of irradiation is generation of additional cross-links, while for elastin chain scissions are important. The viscosity of HA (at 1.25% w/v and 0.125% w/v) was measured by both cone and plate and capillary viscometry, the former providing measurement at uniform shear rate and the latter providing a more sensitive indication of changes at low viscosity. Both techniques revealed a dose-dependent reduction in viscosity (from 3400±194 cP for controls to 1500±88 cP at a shear rate of 2 s -1 and dose of 75 Gy), again suggesting depolymerization.

  6. Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis

    PubMed Central

    Ponticos, Markella; Smith, Barbara D.

    2014-01-01

    Extracellular matrix (ECM) within the vascular network provides both a structural and regulatory role. The ECM is a dynamic composite of multiple proteins that form structures connecting cells within the network. Blood vessels are distended by blood pressure and, therefore, require ECM components with elasticity yet with enough tensile strength to resist rupture. The ECM is involved in conducting mechanical signals to cells. Most importantly, ECM regulates cellular function through chemical signaling by controlling activation and bioavailability of the growth factors. Cells respond to ECM by remodeling their microenvironment which becomes dysregulated in vascular diseases such hypertension, restenosis and atherosclerosis. This review examines the cellular and ECM components of vessels, with specific emphasis on the regulation of collagen type I and implications in vascular disease. PMID:24474961

  7. The Extracellular Matrix In Development and Morphogenesis: A Dynamic View

    PubMed Central

    Rozario, Tania; DeSimone, Douglas W.

    2009-01-01

    The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field. PMID:19854168

  8. Developmentally regulated changes in extracellular matrix in endothelial and smooth muscle cells in the ductus arteriosus may be related to intimal proliferation

    SciTech Connect

    Boudreau, N.; Rabinovitch, M. )

    1991-02-01

    In the late gestation fetal lamb ductus arteriosus (DA), intimal proliferation is observed, characterized by smooth muscle migration and proliferation in the subendothelium. The nature of changes in the endothelial and smooth muscle extracellular matrix associated with the development of this feature are not known. We assessed the production of glycoproteins (fibronectin, laminin, and type IV collagen) and glycosaminoglycans (GAGs) (hyaluronic acid, heparan sulfate, and chondroitin sulfate) in endothelial and smooth muscle cells harvested from the DA, aorta (Ao), and pulmonary artery of fetal lambs at 100 days gestation, before the appearance of DA intimal proliferation, and at 138 days, when well-developed intimal cushions are seen. In passage 3 cells, glycoprotein synthesis was measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after 48 hours incubation with (35S)methionine, and GAGs were assessed by labeling with (3H) glucosamine and separation on DEAE ion-exchange high performance liquid chromatography. Analyses were carried out on culture medium, cell layer, and solubilized matrix. Fibronectin secretion by DA smooth muscle cells from 100-day lambs was found to be twice that of Ao or pulmonary artery cells. No significant differences were seen in smooth muscle cells from 138-day lambs or when comparing endothelial cells from each of the vascular sites at both gestational ages. As well, there were no DA-specific differences in laminin or type IV collagen. No significant differences in endothelial GAG secretion were observed comparing each vascular site at both gestational ages. Analysis of endothelial-derived matrices, however, revealed increased incorporation of hyaluronic acid in the DA from 100-day lambs, 10-fold that of the pulmonary artery and Ao, and increased heparan sulfate.

  9. Rapid differential transport of Nodal and Lefty on sulfated proteoglycan-rich extracellular matrix regulates left-right asymmetry in Xenopus

    PubMed Central

    Marjoram, Lindsay; Wright, Christopher

    2011-01-01

    The spatiotemporally dynamic distribution of instructive ligands within embryonic tissue, and their feedback antagonists, including inherent stabilities and rates of clearance, are affected by interactions with cell surfaces or extracellular matrix (ECM). Nodal (here, Xnr1 or Nodal1 in Xenopus) and Lefty interact in a cross-regulatory relationship in mesendoderm induction, and are the conserved instructors of left-right (LR) asymmetry in early somitogenesis stage embryos. By expressing Xnr1 and Lefty proproteins that produce mature functional epitope-tagged ligands in vivo, we found that ECM is a principal surface of Nodal and Lefty accumulation. We detected Lefty moving faster than Nodal, with evidence that intact sulfated proteoglycans in the ECM facilitate the remarkable long distance movement of Nodal. We propose that Nodal autoregulation substantially aided by rapid ligand transport underlies the anteriorward shift of Nodal expression in the left LPM (lateral plate mesoderm), and speculate that the higher levels of chondroitin-sulfate proteoglycan (CSPG) in more mature anterior regions provide directional transport cues. Immunodetection and biochemical analysis showed transfer of Lefty from left LPM to right LPM, providing direct evidence that left-side-derived Lefty is a significant influence in ensuring the continued suppression of right-sided expression of Nodal, maintaining unilateral expression of this conserved determinant of asymmetry. PMID:21205792

  10. Regulation of extracellular matrix synthesis by TNF-alpha and TGF-beta1 in type II cells exposed to coal dust.

    PubMed

    Lee, Y C; Rannels, D E

    1998-10-01

    Type II pulmonary epithelial cells respond to anthracite coal dust PSOC 867 with increased synthesis of extracellular matrix (ECM) components. Alveolar macrophages modulate this response by pathways that may involve soluble mediators, including tumor necrosis factor-alpha (TNF-alpha) or transforming growth factor-beta1 (TGF-beta1). The effects of TNF-alpha (10 ng/ml) and/or TGF-beta1 (2 ng/ml) were thus investigated in dust-exposed primary type II cell cultures. In control day 1 or day 3 cultures, TNF-alpha and/or TGF-beta1 had little or no effect on the synthesis of type II cellular proteins, independent of whether the cells were exposed to dust. With PSOC 867 exposure, where ECM protein synthesis is elevated, TNF-alpha and TGF-beta1 further increased both the absolute and relative rates of ECM synthesis on day 3 but had little effect on day 1. Each mediator increased expression of fibronectin mRNA, as well as of ECM fibronectin content, in a manner qualitatively similar to their effects on synthesis. Thus TNF-alpha and TGF-beta1 modulate both ECM synthesis and fibronectin content in coal dust-exposed type II cell cultures. PMID:9755095

  11. Matrix Metalloproteinases: Regulators of the Tumor Microenvironment

    PubMed Central

    Kessenbrock, Kai; Plaks, Vicki; Werb, Zena

    2010-01-01

    Extracellular proteolysis mediates tissue homeostasis. In cancer, altered proteolysis leads to unregulated tumor growth, tissue remodeling, inflammation, tissue invasion, and metastasis. The matrix metalloproteinases (MMPs) represent the most prominent family of proteinases associated with tumorigenesis. Recent technological developments have markedly advanced our understanding of MMPs as modulators of the tumor microenvironment. In addition to their role in extracellular matrix turnover and cancer cell migration, MMPs regulate signaling pathways that control cell growth, inflammation, or angiogenesis and may even work in a nonproteolytic manner. These aspects of MMP function are reorienting our approaches to cancer therapy. PMID:20371345

  12. Cell stiffness, contractile stress and the role of extracellular matrix

    SciTech Connect

    An, Steven S.; Kim, Jina; Ahn, Kwangmi; Trepat, Xavier; Drake, Kenneth J.; Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne; Fredberg, Jeffrey J.; Biswal, Shyam

    2009-05-15

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.

  13. Bioactive extracellular matrix fragments in lung health and disease.

    PubMed

    Gaggar, Amit; Weathington, Nathaniel

    2016-09-01

    The extracellular matrix (ECM) is the noncellular component critical in the maintenance of organ structure and the regulation of tissue development, organ structure, and cellular signaling. The ECM is a dynamic entity that undergoes continuous degradation and resynthesis. In addition to compromising structure, degradation of the ECM can liberate bioactive fragments that cause cellular activation and chemotaxis of a variety of cells. These fragments are termed matrikines, and their cellular activities are sentinel in the development and progression of tissue injury seen in chronic lung disease. Here, we discuss the matrikines that are known to be active in lung biology and their roles in lung disease. We also consider the use of matrikines as disease markers and potential therapeutic targets in lung disease. PMID:27584731

  14. Extracellular matrix stiffness dictates Wnt expression through integrin pathway

    PubMed Central

    Du, Jing; Zu, Yan; Li, Jing; Du, Shuyuan; Xu, Yipu; Zhang, Lang; Jiang, Li; Wang, Zhao; Chien, Shu; Yang, Chun

    2016-01-01

    It is well established that extracellular matrix (ECM) stiffness plays a significant role in regulating the phenotypes and behaviors of many cell types. However, the mechanism underlying the sensing of mechanical cues and subsequent elasticity-triggered pathways remains largely unknown. We observed that stiff ECM significantly enhanced the expression level of several members of the Wnt/β-catenin pathway in both bone marrow mesenchymal stem cells and primary chondrocytes. The activation of β-catenin by stiff ECM is not dependent on Wnt signals but is elevated by the activation of integrin/ focal adhesion kinase (FAK) pathway. The accumulated β-catenin then bound to the wnt1 promoter region to up-regulate the gene transcription, thus constituting a positive feedback of the Wnt/β-catenin pathway. With the amplifying effect of positive feedback, this integrin-activated β-catenin/Wnt pathway plays significant roles in mediating the enhancement of Wnt signal on stiff ECM and contributes to the regulation of mesenchymal stem cell differentiation and primary chondrocyte phenotype maintenance. The present integrin-regulated Wnt1 expression and signaling contributes to the understanding of the molecular mechanisms underlying the regulation of cell behaviors by ECM elasticity. PMID:26854061

  15. Extracellular matrix stiffness dictates Wnt expression through integrin pathway.

    PubMed

    Du, Jing; Zu, Yan; Li, Jing; Du, Shuyuan; Xu, Yipu; Zhang, Lang; Jiang, Li; Wang, Zhao; Chien, Shu; Yang, Chun

    2016-01-01

    It is well established that extracellular matrix (ECM) stiffness plays a significant role in regulating the phenotypes and behaviors of many cell types. However, the mechanism underlying the sensing of mechanical cues and subsequent elasticity-triggered pathways remains largely unknown. We observed that stiff ECM significantly enhanced the expression level of several members of the Wnt/β-catenin pathway in both bone marrow mesenchymal stem cells and primary chondrocytes. The activation of β-catenin by stiff ECM is not dependent on Wnt signals but is elevated by the activation of integrin/ focal adhesion kinase (FAK) pathway. The accumulated β-catenin then bound to the wnt1 promoter region to up-regulate the gene transcription, thus constituting a positive feedback of the Wnt/β-catenin pathway. With the amplifying effect of positive feedback, this integrin-activated β-catenin/Wnt pathway plays significant roles in mediating the enhancement of Wnt signal on stiff ECM and contributes to the regulation of mesenchymal stem cell differentiation and primary chondrocyte phenotype maintenance. The present integrin-regulated Wnt1 expression and signaling contributes to the understanding of the molecular mechanisms underlying the regulation of cell behaviors by ECM elasticity. PMID:26854061

  16. Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins

    PubMed Central

    Barallobre-Barreiro, Javier; Oklu, Rahmi; Lynch, Marc; Fava, Marika; Baig, Ferheen; Yin, Xiaoke; Barwari, Temo; Potier, David N.; Albadawi, Hassan; Jahangiri, Marjan; Porter, Karen E.; Watkins, Michael T.; Misra, Sanjay; Stoughton, Julianne; Mayr, Manuel

    2016-01-01

    Aims Extracellular matrix remodelling has been implicated in a number of vascular conditions, including venous hypertension and varicose veins. However, to date, no systematic analysis of matrix remodelling in human veins has been performed. Methods and results To understand the consequences of venous hypertension, normal and varicose veins were evaluated using proteomics approaches targeting the extracellular matrix. Varicose saphenous veins removed during phlebectomy and normal saphenous veins obtained during coronary artery bypass surgery were collected for proteomics analysis. Extracellular matrix proteins were enriched from venous tissues. The proteomics analysis revealed the presence of >150 extracellular matrix proteins, of which 48 had not been previously detected in venous tissue. Extracellular matrix remodelling in varicose veins was characterized by a loss of aggrecan and several small leucine-rich proteoglycans and a compensatory increase in collagen I and laminins. Gene expression analysis of the same tissues suggested that the remodelling process associated with venous hypertension predominantly occurs at the protein rather than the transcript level. The loss of aggrecan in varicose veins was paralleled by a reduced expression of aggrecanases. Chymase and tryptase β1 were among the up-regulated proteases. The effect of these serine proteases on the venous extracellular matrix was further explored by incubating normal saphenous veins with recombinant enzymes. Proteomics analysis revealed extensive extracellular matrix degradation after digestion with tryptase β1. In comparison, chymase was less potent and degraded predominantly basement membrane-associated proteins. Conclusion The present proteomics study provides unprecedented insights into the expression and degradation of structural and regulatory components of the vascular extracellular matrix in varicosis. PMID:27068509

  17. sarA negatively regulates Staphylococcus epidermidis biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis-dependent release of eDNA.

    PubMed

    Christner, Martin; Heinze, Constanze; Busch, Michael; Franke, Gefion; Hentschke, Moritz; Bayard Dühring, Sara; Büttner, Henning; Kotasinska, Marta; Wischnewski, Victoria; Kroll, Gesche; Buck, Friedrich; Molin, Soeren; Otto, Michael; Rohde, Holger

    2012-10-01

    Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant-associated infections. Nonetheless, large proportions of invasive Staphylococcus epidermidis isolates fail to form a biofilm in vitro. We here tested the hypothesis that this apparent paradox is related to the existence of superimposed regulatory systems suppressing a multicellular biofilm life style in vitro. Transposon mutagenesis of clinical significant but biofilm-negative S. epidermidis 1585 was used to isolate a biofilm positive mutant carrying a Tn917 insertion in sarA, chief regulator of staphylococcal virulence. Genetic analysis revealed that inactivation of sarA induced biofilm formation via overexpression of the giant 1 MDa extracellular matrix binding protein (Embp), serving as an intercellular adhesin. In addition to Embp, increased extracellular DNA (eDNA) release significantly contributed to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from upregulation of metalloprotease SepA, leading to boosted processing of autolysin AtlE, in turn inducing augmented autolysis and release of eDNA. Hence, this study identifies sarA as a negative regulator of Embp- and eDNA-dependent biofilm formation. Given the importance of SarA as a positive regulator of polysaccharide mediated cell aggregation, the regulator enables S. epidermidis to switch between mechanisms of biofilm formation, ensuring S. epidermidis adaptation to hostile environments. PMID:22957858

  18. Characterization of BCE-1, a Transcriptional Enhancer Regulated by Prolactin and Extracellular Matrix and Modulated by the State of Histone Acetylation

    PubMed Central

    Myers, Connie A.; Schmidhauser, Christian; Mellentin-Michelotti, Julia; Fragoso, Gilberto; Roskelley, Calvin D.; Casperson, Gerald; Mossi, Romina; Pujuguet, Philippe; Hager, Gordon; Bissell, Mina J.

    1998-01-01

    We have previously described a 160-bp enhancer (BCE-1) in the bovine β-casein gene that is activated in the presence of prolactin and extracellular matrix (ECM). Here we report the characterization of the enhancer by deletion and site-directed mutagenesis, electrophoretic mobility shift analysis, and in vivo footprinting. Two essential regions were identified by analysis of mutant constructions: one binds C/EBP-β and the other binds MGF/STAT5 and an as-yet-unidentified binding protein. However, no qualitative or quantitative differences in the binding of these proteins were observed in electrophoretic mobility shift analysis using nuclear extracts derived from cells cultured in the presence or absence of ECM with or without prolactin, indicating that prolactin- and ECM-induced transcription was not dependent on the availability of these factors in the functional cell lines employed. An in vivo footprinting analysis of the factors bound to nuclear chromatin in the presence or absence of ECM and/or prolactin found no differences in the binding of C/EBP-β but did not provide definitive results for the other factors. Neither ECM nor prolactin activated BCE-1 in transient transfections, suggesting that the chromosomal structure of the integrated template may be required for ECM-induced transcription. Further evidence is that treatment of cells with inhibitors of histone deacetylase was sufficient to induce transcription of integrated BCE-1 in the absence of ECM. Together, these results suggest that the ECM induces a complex interaction between the enhancer-bound transcription factors, the basal transcriptional machinery, and a chromosomally integrated template responsive to the acetylation state of the histones. PMID:9528790

  19. C/EBP β Mediates Endoplasmic Reticulum Stress Regulated Inflammatory Response and Extracellular Matrix Degradation in LPS-Stimulated Human Periodontal Ligament Cells.

    PubMed

    Bai, Yudi; Wei, Yi; Wu, Lian; Wei, Jianhua; Wang, Xiaojing; Bai, Yuxiang

    2016-01-01

    Periodontitis is an oral inflammatory disease that not only affects the integrity of local tooth-supporting tissues but also impacts systemic health. A compositional shift in oral microbiota has been considered as the main cause of periodontitis; however, the potential mechanism has not been fully defined. Herein, we investigated the role of CCAAT/enhancer-binding protein β (C/EBP β), a member of the C/EBP family of transcription factors, in human periodontal ligament cells (hPDLCs) exposed to Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). RT-PCR and Western blotting analysis showed that the expression of C/EBP β was significantly increased in hPDLCs stimulated with LPS stimuli. Overexpression of C/EBP β by the recombinant adenoviral vector pAd/C/EBP β markedly increased the expression of the pro-inflammatory cytokines IL-6 and IL-8, and matrix metalloproteinases (MMP)-8 and -9 in hPDLCs in response to LPS. Furthermore, the activation of endoplasmic reticulum (ER) stress was confirmed in LPS-stimulated hPDLCs by measuring the expression of the ER stress marker molecules protein kinase-like ER kinase (PERK), eIF2α, GRP78/Bip, and C/EBP homologous protein (CHOP). The ER stress inhibitor salubrinal repressed, but inducer tunicamycin enhanced, the production of IL-6, IL-8, MMP-8, and MMP-9 in hPDLCs. Additionally, ER stress inducer tunicamycin significantly increased the expression level of C/EBP β in hPDLCs. Blocking of C/EBP β by siRNA resulted in a significant decrease in the secretion of IL-6 and IL-8 and expression of MMP-8 and MMP-9 induced by tunicamycin treatment in hPDLCs. Taken together, ER stress appears to play a regulatory role in the inflammatory response and extracellular matrix (ECM) degradation in hPDLCs in response to LPS stimuli by activating C/EBP β expression. This enhances our understanding of human periodontitis pathology. PMID:27011164

  20. C/EBP β Mediates Endoplasmic Reticulum Stress Regulated Inflammatory Response and Extracellular Matrix Degradation in LPS-Stimulated Human Periodontal Ligament Cells

    PubMed Central

    Bai, Yudi; Wei, Yi; Wu, Lian; Wei, Jianhua; Wang, Xiaojing; Bai, Yuxiang

    2016-01-01

    Periodontitis is an oral inflammatory disease that not only affects the integrity of local tooth-supporting tissues but also impacts systemic health. A compositional shift in oral microbiota has been considered as the main cause of periodontitis; however, the potential mechanism has not been fully defined. Herein, we investigated the role of CCAAT/enhancer-binding protein β (C/EBP β), a member of the C/EBP family of transcription factors, in human periodontal ligament cells (hPDLCs) exposed to Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). RT-PCR and Western blotting analysis showed that the expression of C/EBP β was significantly increased in hPDLCs stimulated with LPS stimuli. Overexpression of C/EBP β by the recombinant adenoviral vector pAd/C/EBP β markedly increased the expression of the pro-inflammatory cytokines IL-6 and IL-8, and matrix metalloproteinases (MMP)-8 and -9 in hPDLCs in response to LPS. Furthermore, the activation of endoplasmic reticulum (ER) stress was confirmed in LPS-stimulated hPDLCs by measuring the expression of the ER stress marker molecules protein kinase-like ER kinase (PERK), eIF2α, GRP78/Bip, and C/EBP homologous protein (CHOP). The ER stress inhibitor salubrinal repressed, but inducer tunicamycin enhanced, the production of IL-6, IL-8, MMP-8, and MMP-9 in hPDLCs. Additionally, ER stress inducer tunicamycin significantly increased the expression level of C/EBP β in hPDLCs. Blocking of C/EBP β by siRNA resulted in a significant decrease in the secretion of IL-6 and IL-8 and expression of MMP-8 and MMP-9 induced by tunicamycin treatment in hPDLCs. Taken together, ER stress appears to play a regulatory role in the inflammatory response and extracellular matrix (ECM) degradation in hPDLCs in response to LPS stimuli by activating C/EBP β expression. This enhances our understanding of human periodontitis pathology. PMID:27011164

  1. Monitoring of Extracellular Matrix Formation using Nanosecond Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Sato, Masato; Mitani, Genya; Nagai, Toshihiro; Kutsuna, Toshiharu; Mochida, Joji; Kikuchi, Makoto

    There is a new demand in the field of tissue engineering for evaluation technology of extracellular matrix because the extracellular matrix plays an important role in the function of skeletal tissue such as articular cartilage. We previously proposed a noninvasive method of viscoelastic characterization of tissue phantom, based on the photoacoustic measurement. The purpose of this study was to verify the applicability of the photoacoustic measurement method for monitoring of the development of extracellular matrix using tissue engineering technology. The decay times measured by the photoacoustic method were varied with culture periods when tissue-engineered articular cartilages with various culture periods (-12 weeks) were used as samples. Tissue-engineered cartilage cultured for a long period showed shorter decay times, indicating that the samples approached an elastic solid from a rheological viewpoint. By comparison between biochemical analyses and biomechanical studies, we proved that the photoacoustic signal was a good indicator for evaluating extracellular matrix formation because the change of the photoacoustic decay times would reflect the production of an extracellular matrix.

  2. GALNT3, a gene associated with hyperphosphatemic familial tumoral calcinosis, is transcriptionally regulated by extracellular phosphate and modulates matrix metalloproteinase activity

    PubMed Central

    Chefetz, Ilana; Kohno, Kimitoshi; Izumi, Hiroto; Uitto, Jouni; Richard, Gabriele; Sprecher, Eli

    2011-01-01

    GALNT3 encodes UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyl-transferarase 3 (ppGalNacT3), a glycosyltransferase which has been suggested to prevent proteolysis of FGF23, a potent phosphaturic protein. Accordingly, loss-of-function mutations in GALNT3 cause hyperphosphatemic familial tumoral calcinosis (HFTC), a rare autosomal recessive disorder manifesting with increased kidney reabsorption of phosphate, resulting in severe hyperphosphatemia and widespread ectopic calcifications. Although these findings definitely attribute a role to ppGalNacT3 in the regulation of phosphate homeostasis, little is currently known about the factors regulating GALNT3 expression. In addition, the effect of decreased GALNT3 expression in peripheral tissues has not been explored so far. In the present study, we demonstrate that GALNT3 expression is under the regulation of a number of factors known to be associated with phosphate homeostasis, including inorganic phosphate itself, calcium and 1,25-dihydroxyvitamin D3. In addition, we show that decreased GALNT3 expression in human skin fibroblasts leads to increased expression of FGF7 and of matrix metalloproteinases, which have been previously implicated in the pathogenesis of ectopic calcification. Thus, the present data suggest that ppGalNacT3 may play a role in peripheral tissues of potential relevance to the pathogenesis of disorders of phosphate metabolism. PMID:18976705

  3. Matrix metalloproteinases regulate extracellular levels of SDF-1/CXCL12, IL-6 and VEGF in hydrogen peroxide-stimulated human periodontal ligament fibroblasts.

    PubMed

    Cavalla, Franco; Osorio, Constanza; Paredes, Rodolfo; Valenzuela, María Antonieta; García-Sesnich, Jocelyn; Sorsa, Timo; Tervahartiala, Taina; Hernández, Marcela

    2015-05-01

    Periodontitis is a highly prevalent infectious disease characterized by the progressive inflammatory destruction of tooth-supporting structures, leading to tooth loss. The underling molecular mechanisms of the disease are incompletely understood, precluding the development of more efficient screening, diagnostic and therapeutic approaches. We investigated the interrelation of three known effector mechanisms of the cellular response to periodontal infection, namely reactive oxygen species (ROS), matrix metalloproteinases (MMPs) and cytokines in primary cell cultures of human periodontal ligament fibroblast (hPDLF). We demonstrated that ROS increase the activity/levels of gelatinolytic MMPs, and stimulate cytokine secretion in hPDLF. Additionally, we proved that MMPs possesses immune modulatory capacity, regulating the secreted levels of cytokines in ROS-stimulated hPDLF cultures. This evidence provides further insight in the molecular pathogenesis of periodontitis, contributing to the future development of more effective therapies. PMID:25748833

  4. Strategic Endothelial Cell Tube Formation Assay: Comparing Extracellular Matrix and Growth Factor Reduced Extracellular Matrix.

    PubMed

    Xie, Daniel; Ju, Donghong; Speyer, Cecilia; Gorski, David; Kosir, Mary A

    2016-01-01

    Malignant tumors require a blood supply in order to survive and spread. These tumors obtain their needed blood from the patient's blood stream by hijacking the process of angiogenesis, in which new blood vessels are formed from existing blood vessels. The CXCR2 (chemokine (C-X-C motif) receptor 2) receptor is a transmembrane G-protein-linked molecule found in many cells that is closely associated with angiogenesis(1). Specific blockade of the CXCR2 receptor inhibits angiogenesis, as measured by several assays such as the endothelial tube formation assay. The tube formation assay is useful for studying angiogenesis because it is an excellent method of studying the effects that any given compound or environmental condition may have on angiogenesis. It is a simple and quick in vitro assay that generates quantifiable data and requires relatively few components. Unlike in vivo assays, it does not require animals and can be carried out in less than two days. This protocol describes a variation of the extracellular matrix supporting endothelial tube formation assay, which tests the CXCR2 receptor. PMID:27585062

  5. All-trans retinoic acid regulates the expression of the extracellular matrix protein fibulin-1 in the guinea pig sclera and human scleral fibroblasts

    PubMed Central

    Li, Chuanxu; McFadden, Sally A.; Morgan, Ian; Cui, Dongmei; Hu, Jianmin; Wan, Wenjuan

    2010-01-01

    Purpose Fibulin-1 (FBLN1) mRNA is expressed in human sclera and is an important adhesion modulatory protein that can affect cell–matrix interactions and tissue remodeling. Scleral remodeling is influenced by all-trans retinoic acid (RA). Our purpose was to confirm the presence of fibulin-1 protein in guinea pig sclera and investigate the effect of RA on the expression of fibulin-1 in guinea pig sclera in vivo and in cultured human scleral fibroblasts (HSFs). Methods Confocal fluorescence microscopy was used to study fibulin-1 and aggrecan expression and localization in sclera from control guinea pigs and in animals given RA by daily gavage from 4 to 8 days of age. The effects of RA (from 10−9 to 10−5 M) on fibulin-1 expression in HSFs were observed by immunohistochemistry and assayed by real-time PCR and western blot analysis. Results Fibulin-1 protein expression was detected by confocal fluorescence microscopy in guinea pig sclera and in cultured HSFs. Upregulation of fibulin-1 in scleral tissue was observed after feeding with RA. In vitro, the level of Fbln1 mRNA was increased after treatment of HSFs with RA (at concentrations of 10−8 to 10−6 M; p<0.001), with a maximum effect at 10−7 M. Fibulin-1 protein levels were significantly increased after treatment of HSFs with 10−7 M of RA for 24 or 48 h (p<0.05). Conclusions Fibulin-1 protein was expressed in guinea pig sclera and cultured HSFs. Expression was regulated by RA, a molecule known to be involved in the regulation of eye growth. Further studies on the role of fibulin-1 in the regulation of eye growth, including during the development of myopia, are therefore warranted. PMID:20405022

  6. Extracellular Matrix Assembly in Diatoms (Bacillariophyceae)1

    PubMed Central

    Wustman, Brandon A.; Lind, Jan; Wetherbee, Richard; Gretz, Michael R.

    1998-01-01

    Achnanthes longipes is a marine, biofouling diatom that adheres to surfaces via adhesive polymers extruded during motility or organized into structures called stalks that contain three distinct regions: the pad, shaft, and collar. Four monoclonal antibodies (AL.C1–AL.C4) and antibodies from two uncloned hybridomas (AL.E1 and AL.E2) were raised against the extracellular adhesives of A. longipes. Antibodies were screened against a hot-water-insoluble/hot-bicarbonate-soluble-fraction. The hot-water-insoluble/hot-bicarbonate-soluble fraction was fractionated to yield polymers in three size ranges: F1, ≥ 20,000,000 Mr; F2, ≅100,000 Mr; and F3, <10,000 Mr relative to dextran standards. The ≅100,000-Mr fraction consisted of highly sulfated (approximately 11%) fucoglucuronogalactans (FGGs) and low-sulfate (approximately 2%) FGGs, whereas F1 was composed of O-linked FGG (F2)-polypeptide (F3) complexes. AL.C1, AL.C2, AL.C4, AL.E1, and AL.E2 recognized carbohydrate complementary regions on FGGs, with antigenicity dependent on fucosyl-containing side chains. AL.C3 was unique in that it had a lower affinity for FGGs and did not label any portion of the shaft. Enzyme-linked immunosorbent assay and immunocytochemistry indicated that low-sulfate FGGs are expelled from pores surrounding the raphe terminus, creating the cylindrical outer layers of the shaft, and that highly sulfated FGGs are extruded from the raphe, forming the central core. Antibody-labeling patterns and other evidence indicated that the shaft central-core region is related to material exuded from the raphe during cell motility. PMID:9536061

  7. Targeting the neural extracellular matrix in neurological disorders.

    PubMed

    Soleman, S; Filippov, M A; Dityatev, A; Fawcett, J W

    2013-12-01

    The extracellular matrix (ECM) is known to regulate important processes in neuronal cell development, activity and growth. It is associated with the structural stabilization of neuronal processes and synaptic contacts during the maturation of the central nervous system. The remodeling of the ECM during both development and after central nervous system injury has been shown to affect neuronal guidance, synaptic plasticity and their regenerative responses. Particular interest has focused on the inhibitory role of chondroitin sulfate proteoglycans (CSPGs) and their formation into dense lattice-like structures, termed perineuronal nets (PNNs), which enwrap sub-populations of neurons and restrict plasticity. Recent studies in mammalian systems have implicated CSPGs and PNNs in regulating and restricting structural plasticity. The enzymatic degradation of CSPGs or destabilization of PNNs has been shown to enhance neuronal activity and plasticity after central nervous system injury. This review focuses on the role of the ECM, CSPGs and PNNs; and how developmental and pharmacological manipulation of these structures have enhanced neuronal plasticity and aided functional recovery in regeneration, stroke, and amblyopia. In addition to CSPGs, this review also points to the functions and potential therapeutic value of these and several other key ECM molecules in epileptogenesis and dementia. PMID:24012743

  8. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms.

    PubMed

    Klein, Marlise I; Hwang, Geelsu; Santos, Paulo H S; Campanella, Osvaldo H; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases. PMID:25763359

  9. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    PubMed Central

    Klein, Marlise I.; Hwang, Geelsu; Santos, Paulo H. S.; Campanella, Osvaldo H.; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases. PMID:25763359

  10. Astrocytes as a Source for Extracellular Matrix Molecules and Cytokines

    PubMed Central

    Wiese, Stefan; Karus, Michael; Faissner, Andreas

    2012-01-01

    Research of the past 25 years has shown that astrocytes do more than participating and building up the blood-brain barrier and detoxify the active synapse by reuptake of neurotransmitters and ions. Indeed, astrocytes express neurotransmitter receptors and, as a consequence, respond to stimuli. Within the tripartite synapse, the astrocytes owe more and more importance. Besides the functional aspects the differentiation of astrocytes has gained a more intensive focus. Deeper knowledge of the differentiation processes during development of the central nervous system might help explaining and even help treating neurological diseases like Alzheimer’s disease, Amyotrophic lateral sclerosis, Parkinsons disease, and psychiatric disorders in which astrocytes have been shown to play a role. Specific differentiation of neural stem cells toward the astroglial lineage is performed as a multi-step process. Astrocytes and oligodendrocytes develop from a multipotent stem cell that prior to this has produced primarily neuronal precursor cells. This switch toward the more astroglial differentiation is regulated by a change in receptor composition on the cell surface and responsiveness to Fibroblast growth factor and Epidermal growth factor (EGF). The glial precursor cell is driven into the astroglial direction by signaling molecules like Ciliary neurotrophic factor, Bone Morphogenetic Proteins, and EGF. However, the early astrocytes influence their environment not only by releasing and responding to diverse soluble factors but also express a wide range of extracellular matrix (ECM) molecules, in particular proteoglycans of the lectican family and tenascins. Lately these ECM molecules have been shown to participate in glial development. In this regard, especially the matrix protein Tenascin C (Tnc) proved to be an important regulator of astrocyte precursor cell proliferation and migration during spinal cord development. Nevertheless, ECM molecules expressed by reactive astrocytes

  11. First demonstration of decorin, an extracellular matrix molecule, in bovine mammary tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the mammary gland, the extracellular matrix (ECM) is secreted by and surrounds cells located in both mammary parenchyma (PAR) and stroma. Decorin is an ECM proteoglycan with cell growth regulatory effects mediated by its ability to interact with growth factors or up-regulation of cyclin-dependent...

  12. Specialisation of extracellular matrix for function in tendons and ligaments

    PubMed Central

    Birch, Helen L.; Thorpe, Chavaunne T.; Rumian, Adam P.

    2013-01-01

    Summary Tendons and ligaments are similar structures in terms of their composition, organisation and mechanical properties. The distinction between them stems from their anatomical location; tendons form a link between muscle and bone while ligaments link bones to bones. A range of overlapping functions can be assigned to tendon and ligaments and each structure has specific mechanical properties which appear to be suited for particular in vivo function. The extracellular matrix in tendon and ligament varies in accordance with function, providing appropriate mechanical properties. The most useful framework in which to consider extracellular matrix differences therefore is that of function rather than anatomical location. In this review we discuss what is known about the relationship between functional requirements, structural properties from molecular to gross level, cellular gene expression and matrix turnover. The relevance of this information is considered by reviewing clinical aspects of tendon and ligament repair and reconstructive procedures. PMID:23885341

  13. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    PubMed

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  14. Regulation of the extracellular ligand binding activity of integrins.

    PubMed

    Fernandez, C; Clark, K; Burrows, L; Schofield, N R; Humphries, M J

    1998-07-01

    Integrins are a large heterodimeric family of cell surface adhesion receptors that bind extracellular matrix and cell surface ligands. The extracellular ligand binding activity of integrins is a dynamic and highly regulated event involving the induction of conformational changes within the integrin structure. The adhesive properties of integrins can be controlled by altering the activation state of the integrin, either through conformational change or receptor clustering, using mechanisms that are regulated by intracellular proteins. In this review, we will discuss what is currently known about integrin structure and the ligand binding sites present within the receptor. In addition, the mechanisms by which the ligand binding event is regulated through conformational change will be addressed, and the potential role of intracellular cytoplasmic proteins will be discussed. PMID:9637803

  15. The Gyc76C Receptor Guanylyl Cyclase and the Foraging cGMP-Dependent Kinase Regulate Extracellular Matrix Organization and BMP Signaling in the Developing Wing of Drosophila melanogaster

    PubMed Central

    Schleede, Justin; Blair, Seth S.

    2015-01-01

    The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog). However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen for mutations that disrupt BMP signaling and posterior crossvein development, we identify Gyc76C, a member of the receptor guanylyl cyclase family that includes mammalian natriuretic peptide receptors. We show that Gyc76C and the soluble cGMP-dependent kinase Foraging, likely linked by cGMP, are necessary for normal refinement and maintenance of long-range BMP signaling in the posterior crossvein. This does not occur through cell-autonomous crosstalk between cGMP and BMP signal transduction, but likely through altered extracellular activity of Sog. We identify a novel pathway leading from Gyc76C to the organization of the wing extracellular matrix by matrix metalloproteinases, and show that both the extracellular matrix and BMP signaling effects are largely mediated by changes in the activity of matrix metalloproteinases. We discuss parallels and differences between this pathway and other examples of cGMP activity in both Drosophila melanogaster and mammalian cells and tissues. PMID:26440503

  16. Extracellular matrix components direct porcine muscle stem cell behavior

    SciTech Connect

    Wilschut, Karlijn J.; Haagsman, Henk P.; Roelen, Bernard A.J.

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.

  17. The extracellular matrix as a cell survival factor.

    PubMed Central

    Meredith, J E; Fazeli, B; Schwartz, M A

    1993-01-01

    Programmed cell death (PCD) or apoptosis is a naturally occurring cell suicide pathway induced in a variety of cell types. In many cases, PCD is induced by the withdrawal of specific hormones or growth factors that function as survival factors. In this study, we have investigated the potential role of the extracellular matrix (ECM) as a cell survival factor. Our results indicate that in the absence of any ECM interactions, human endothelial cells rapidly undergo PCD, as determined by cell morphology, nuclei fragmentation, DNA degradation, protein cross-linking, and the expression of the PCD-specific gene TRPM-2. PCD was blocked by plating cells on an immobilized integrin beta 1 antibody but not by antibodies to either the class I histocompatibility antigen (HLA) or vascular cell adhesion molecule-1 (VCAM-1), suggesting that integrin-mediated signals were required for maintaining cell viability. Treatment of the cells in suspension with the tyrosine phosphatase inhibitor sodium orthovanadate also blocked PCD. When other cell types were examined, some, but not all, underwent rapid cell death when deprived of adhesion to the ECM. These results suggest that in addition to regulating cell growth and differentiation, the ECM also functions as a survival factor for many cell types. Images PMID:8257797

  18. Using Extracellular Matrix Proteomics: To Understand Left Ventricular Remodeling

    PubMed Central

    Lindsey, Merry L.; Weintraub, Susan T.; Lange, Richard A.

    2011-01-01

    Survival following myocardial infarction (MI) has improved substantially over the last 40 years; however, the incidence of subsequent congestive heart failure has dramatically increased as a consequence. Discovering plasma markers that signify adverse cardiac remodeling may allow high-risk patients to be recognized earlier and may provide an improved way to assess treatment efficacy. Alterations in extracellular matrix (ECM) regulate cardiac remodeling following MI and potentially provide a large array of candidate indicators. The field of cardiac proteomics has progressed rapidly over the past 20 years, since publication of the first two-dimensional electrophoretic gels of left ventricle proteins. Proteomic approaches are now routinely utilized to better understand how the left ventricle responds to injury. In this review, we will discuss how methods have developed to allow comprehensive evaluation of the ECM proteome. We will explain how ECM proteomic data can be used to predict adverse remodeling for an individual patient and highlight future directions. Although this review will focus on the use of ECM proteomics to better understand post-MI remodeling responses, these approaches have applicability to a wide-range of cardiac pathologies, including pressure overload hypertrophy, viral myocarditis, and non-ischemic heart failure. PMID:22337931

  19. Brain extracellular matrix retains connectivity in neuronal networks

    PubMed Central

    Bikbaev, Arthur; Frischknecht, Renato; Heine, Martin

    2015-01-01

    The formation and maintenance of connectivity are critically important for the processing and storage of information in neuronal networks. The brain extracellular matrix (ECM) appears during postnatal development and surrounds most neurons in the adult mammalian brain. Importantly, the removal of the ECM was shown to improve plasticity and post-traumatic recovery in the CNS, but little is known about the mechanisms. Here, we investigated the role of the ECM in the regulation of the network activity in dissociated hippocampal cultures grown on microelectrode arrays (MEAs). We found that enzymatic removal of the ECM in mature cultures led to transient enhancement of neuronal activity, but prevented disinhibition-induced hyperexcitability that was evident in age-matched control cultures with intact ECM. Furthermore, the ECM degradation followed by disinhibition strongly affected the network interaction so that it strongly resembled the juvenile pattern seen in naïve developing cultures. Taken together, our results demonstrate that the ECM plays an important role in retention of existing connectivity in mature neuronal networks that can be exerted through synaptic confinement of glutamate. On the other hand, removal of the ECM can play a permissive role in modification of connectivity and adaptive exploration of novel network architecture. PMID:26417723

  20. Vascular wall extracellular matrix proteins and vascular diseases

    PubMed Central

    Xu, Junyan; Shi, Guo-Ping

    2014-01-01

    Extracellular matrix proteins form the basic structure of blood vessels. Along with providing basic structural support to blood vessels, matrix proteins interact with different sets of vascular cells via cell surface integrin or non-integrin receptors. Such interactions induce vascular cell de novo synthesis of new matrix proteins during blood vessel development or remodeling. Under pathological conditions, vascular matrix proteins undergo proteolytic processing, yielding bioactive fragments to influence vascular wall matrix remodeling. Vascular cells also produce alternatively spliced variants that induce vascular cell production of different matrix proteins to interrupt matrix homeostasis, leading to increased blood vessel stiffness; vascular cell migration, proliferation, or death; or vascular wall leakage and rupture. Destruction of vascular matrix proteins leads to vascular cell or blood-borne leukocyte accumulation, proliferation, and neointima formation within the vascular wall; blood vessels prone to uncontrolled enlargement during blood flow diastole; tortuous vein development; and neovascularization from existing pathological tissue microvessels. Here we summarize discoveries related to blood vessel matrix proteins within the past decade from basic and clinical studies in humans and animals — from expression to cross-linking, assembly, and degradation under physiological and vascular pathological conditions, including atherosclerosis, aortic aneurysms, varicose veins, and hypertension. PMID:25045854

  1. Gene evolution and functions of extracellular matrix proteins in teeth.

    PubMed

    Yoshizaki, Keigo; Yamada, Yoshihiko

    2013-03-01

    The extracellular matrix (ECM) not only provides physical support for tissues, but it is also critical for tissue development, homeostasis and disease. Over 300 ECM molecules have been defined as comprising the "core matrisome" in mammals through the analysis of whole genome sequences. During tooth development, the structure and functions of the ECM dynamically change. In the early stages, basement membranes (BMs) separate two cell layers of the dental epithelium and the mesenchyme. Later in the differentiation stages, the BM layer is replaced with the enamel matrix and the dentin matrix, which are secreted by ameloblasts and odontoblasts, respectively. The enamel matrix genes and the dentin matrix genes are each clustered in two closed regions located on human chromosome 4 (mouse chromosome 5), except for the gene coded for amelogenin, the major enamel matrix protein, which is located on the sex chromosomes. These genes for enamel and dentin matrix proteins are derived from a common ancestral gene, but as a result of evolution, they diverged in terms of their specific functions. These matrix proteins play important roles in cell adhesion, polarity, and differentiation and mineralization of enamel and dentin matrices. Mutations of these genes cause diseases such as odontogenesis imperfect (OI) and amelogenesis imperfect (AI). In this review, we discuss the recently defined terms matrisome and matrixome for ECMs, as well as focus on genes and functions of enamel and dentin matrix proteins. PMID:23539364

  2. A secretory kinase complex regulates extracellular protein phosphorylation.

    PubMed

    Cui, Jixin; Xiao, Junyu; Tagliabracci, Vincent S; Wen, Jianzhong; Rahdar, Meghdad; Dixon, Jack E

    2015-01-01

    Although numerous extracellular phosphoproteins have been identified, the protein kinases within the secretory pathway have only recently been discovered, and their regulation is virtually unexplored. Fam20C is the physiological Golgi casein kinase, which phosphorylates many secreted proteins and is critical for proper biomineralization. Fam20A, a Fam20C paralog, is essential for enamel formation, but the biochemical function of Fam20A is unknown. Here we show that Fam20A potentiates Fam20C kinase activity and promotes the phosphorylation of enamel matrix proteins in vitro and in cells. Mechanistically, Fam20A is a pseudokinase that forms a functional complex with Fam20C, and this complex enhances extracellular protein phosphorylation within the secretory pathway. Our findings shed light on the molecular mechanism by which Fam20C and Fam20A collaborate to control enamel formation, and provide the first insight into the regulation of secretory pathway phosphorylation. PMID:25789606

  3. [The corneal wound healing and the extracellular matrix].

    PubMed

    Varkoly, Gréta; Bencze, János; Hortobágyi, Tibor; Módis, László

    2016-06-19

    The cornea is the first refractive element of the eye. The transparency of the cornea results from the regularly arranged collagen fibrils, forming lamellar structure and the leucin rich proteoglycans, which make interactions between the fibrils. The adult cornea consists mainly of fibril-forming collagens. The cornea has less amount of fibril associated and non-fibrillar collagens. The main proteoglycans of the cornea are keratan-sulfate proteoglycans and it also contains dermatan-sulfate proteoglycans. Disorders of the proteoglycan synthesis lead to the disruption of the unique pattern and result in thicker collagen fibrils. The abnormal structure of the extracellular matrix can generate corneal disorders and the loss of corneal transparency. Furthermore, proteoglycans and collagens have an important role in wound healing. In injury the keratocytes produce higher amounts of collagens and proteoglycans mediated by growth factors. Depending on the ratio of the cells and growth factors the extracellular matrix returns to normal or corneal scar tissue develops. PMID:27287839

  4. The ECM-Cell Interaction of Cartilage Extracellular Matrix on Chondrocytes

    PubMed Central

    Liu, Shuyun; Huang, Jingxiang; Guo, Weimin; Chen, Jifeng; Zhang, Li; Zhao, Bin; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Xu, Wenjing; Lu, Shibi; Yuan, Mei; Guo, Quanyi

    2014-01-01

    Cartilage extracellular matrix (ECM) is composed primarily of the network type II collagen (COLII) and an interlocking mesh of fibrous proteins and proteoglycans (PGs), hyaluronic acid (HA), and chondroitin sulfate (CS). Articular cartilage ECM plays a crucial role in regulating chondrocyte metabolism and functions, such as organized cytoskeleton through integrin-mediated signaling via cell-matrix interaction. Cell signaling through integrins regulates several chondrocyte functions, including differentiation, metabolism, matrix remodeling, responses to mechanical stimulation, and cell survival. The major signaling pathways that regulate chondrogenesis have been identified as wnt signal, nitric oxide (NO) signal, protein kinase C (PKC), and retinoic acid (RA) signal. Integrins are a large family of molecules that are central regulators in multicellular biology. They orchestrate cell-cell and cell-matrix adhesive interactions from embryonic development to mature tissue function. In this review, we emphasize the signaling molecule effect and the biomechanics effect of cartilage ECM on chondrogenesis. PMID:24959581

  5. Conformal Nanopatterning of Extracellular Matrix Proteins onto Topographically Complex Surfaces

    PubMed Central

    Sun, Yan; Jallerat, Quentin; Szymanski, John M.

    2015-01-01

    We report a method for conformal nanopatterning of extracellular matrix proteins onto engineered surfaces independent of underlying microtopography. This enables fibronectin, laminin, and other proteins to be applied to biomaterial surfaces in complex geometries inaccessible using traditional soft lithography techniques. Engineering combinatorial surfaces that integrate topographical and biochemical micropatterns enhances control of the biotic-abiotic interface, used here to understand cardiomyocyte response to competing physical and chemical cues in the microenvironment. PMID:25506720

  6. Effect of insoluble extracellular matrix molecules on Fas expression in epithelial cells.

    PubMed

    Fine, A; Miranda, K; Farmer, S R; Anderson, N L

    1998-03-01

    Fas, which functions to initiate a signal causing apoptosis, is expressed in epithelia, thus, suggesting a role in controlling cell number during states of cell and matrix turnover. In view of this, we hypothesized that cell-matrix interactions may be an important determinant of Fas expression in epithelial cells. To investigate this, we examined the effect of insoluble extracellular matrix molecules on Fas expression in murine lung epithelial (MLE) cells, a transformed mouse lung epithelial cell line. We report that 1) insoluble extracellular matrices increased Fas mRNA in a time and concentration-dependent manner; 2) induced increases in Fas mRNA were associated with concomitantly increased Fas protein; and 3) nonspecific adherence to a polylysine substrate did not induce Fas mRNA. Consistent with these findings, Fas-induced apoptosis was significantly enhanced in cultures plated on type IV collagen. Employing rat hepatocytes, we confirmed that the insoluble extracellular matrix also increases Fas expression in primary epithelial cells. By amplifying Fas-mediated apoptosis, these data suggest a mechanism whereby the extracellular matrix regulates the fate of specific epithelial cell populations. PMID:9462690

  7. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies

    PubMed Central

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J.; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I.

    2015-01-01

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro. PMID:25736020

  8. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies.

    PubMed

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-01-01

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro. PMID:25736020

  9. Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis

    PubMed Central

    Hielscher, Abigail; Ellis, Kim; Qiu, Connie; Porterfield, Josh; Gerecht, Sharon

    2016-01-01

    The extracellular matrix (ECM) has been demonstrated to facilitate angiogenesis. In particular, fibronectin has been documented to activate endothelial cells, resulting in their transition from a quiescent state to an active state in which the cells exhibit enhanced migration and proliferation. The goal of this study is to examine the role of polymerized fibronectin during vascular tubulogenesis using a 3 dimensional (3D) cell-derived de-cellularized matrix. A fibronectin-rich 3D de-cellularized ECM was used as a scaffold to study vascular morphogenesis of endothelial cells (ECs). Confocal analyses of several matrix proteins reveal high intra- and extra-cellular deposition of fibronectin in formed vascular structures. Using a small peptide inhibitor of fibronectin polymerization, we demonstrate that inhibition of fibronectin fibrillogenesis in ECs cultured atop de-cellularized ECM resulted in decreased vascular morphogenesis. Further, immunofluorescence and ultrastructural analyses reveal decreased expression of stromal matrix proteins in the absence of polymerized fibronectin with high co-localization of matrix proteins found in association with polymerized fibronectin. Evaluating vascular kinetics, live cell imaging showed that migration, migration velocity, and mean square displacement, are disrupted in structures grown in the absence of polymerized fibronectin. Additionally, vascular organization failed to occur in the absence of a polymerized fibronectin matrix. Consistent with these observations, we tested vascular morphogenesis following the disruption of EC adhesion to polymerized fibronectin, demonstrating that block of integrins α5β1 and αvβ3, abrogated vascular morphogenesis. Overall, fibronectin deposition in a 3D cell-derived de-cellularized ECM appears to be imperative for matrix assembly and vascular morphogenesis. PMID:26811931

  10. Degradation of extracellular matrix and its components by hypobromous acid

    PubMed Central

    Rees, Martin D.; McNiven, Tane N.; Davies, Michael J.

    2006-01-01

    EPO (eosinophil peroxidase) and MPO (myeloperoxidase) are highly basic haem enzymes that can catalyse the production of HOBr (hypobromous acid). They are released extracellularly by activated leucocytes and their binding to the polyanionic glycosa-minoglycan components of extracellular matrix (proteoglycans and hyaluronan) may localize the production of HOBr to these materials. It is shown in the present paper that the reaction of HOBr with glycosaminoglycans (heparan sulfate, heparin, chondroitin sulfate and hyaluronan) generates polymer-derived N-bromo derivatives (bromamines, dibromamines, N-bromosulfon-amides and bromamides). Decomposition of these species, which can occur spontaneously and/or via one-electron reduction by low-valent transition metal ions (Cu+ and Fe2+), results in polymer fragmentation and modification. One-electron reduction of the N-bromo derivatives generates radicals that have been detected by EPR spin trapping. The species detected are consistent with metal ion-dependent polymer fragmentation and modification being initiated by the formation of nitrogen-centred (aminyl, N-bromoaminyl, sulfonamidyl and amidyl) radicals. Previous studies have shown that the reaction of HOBr with proteins generates N-bromo derivatives and results in fragmentation of the polypeptide backbone. The reaction of HOBr with extracellular matrix synthesized by smooth muscle cells in vitro induces the release of carbohydrate and protein components in a time-dependent manner, which is consistent with fragmentation of these materials via the formation of N-bromo derivatives. The degradation of extracellular matrix glycosaminoglycans and proteins by HOBr may contribute to tissue damage associated with inflammatory diseases such as asthma. PMID:17014424

  11. The RhoA-Rok-Myosin II Pathway is Involved in Extracellular Matrix-Mediated Regulation of Prolactin Signaling in Mammary Epithelial Cells

    PubMed Central

    Du, Jyun-Yi; Chen, Meng-Chi; Hsu, Tsai-Ching; Wang, Jen-Hsing; Brackenbury, Lisa; Lin, Ting-Hui; Wu, Yi-Ying; Yang, Zhihong; Streuli, Charles H; Lee, Yi-Ju

    2012-01-01

    In mammary epithelial cells (MECs), prolactin-induced signaling and gene expression requires integrin-mediated cell adhesion to basement membrane (BM). In the absence of proper cell–BM interactions, for example, culturing cells on collagen-coated plastic dishes, signal propagation is substantially impaired. Here we demonstrate that the RhoA-Rok-myosin II pathway accounts for the ineffectiveness of prolactin signaling in MECs cultured on collagen I. Under these culture conditions, the RhoA pathway is activated, leading to downregulation of prolactin receptor expression and reduced prolactin signaling. Enforced activation of RhoA in MECs cultured on BM suppresses prolactin receptor levels, and prevents prolactin-induced Stat5 tyrosine phosphorylation and β-casein expression. Overexpression of dominant negative RhoA in MECs cultured on collagen I, or inhibiting Rok activity, increases prolactin receptor expression, and enhances prolactin signaling. In addition, inhibition of myosin II ATPase activity by blebbistatin also exerts a beneficial effect on prolactin receptor expression and prolactin signaling, suggesting that tension exerted by the collagen substratum, in collaboration with the RhoA-Rok-myosin II pathway, contributes to the failure of prolactin signaling. Furthermore, MECs cultured on laminin-coated plastic have similar morphology and response to prolactin as those cultured on collagen I. They display high levels of RhoA activity and are inefficient in prolactin signaling, stressing the importance of matrix stiffness in signal transduction. Our results reveal that RhoA has a central role in determining the fate decisions of MECs in response to cell–matrix interactions. J. Cell. Physiol. 227: 1553–1560, 2012. © 2011 Wiley Periodicals, Inc. PMID:21678418

  12. Milk extracellular vesicles accelerate osteoblastogenesis but impair bone matrix formation.

    PubMed

    Oliveira, Marina C; Arntz, Onno J; Blaney Davidson, Esmeralda N; van Lent, Peter L E M; Koenders, Marije I; van der Kraan, Peter M; van den Berg, Wim B; Ferreira, Adaliene V M; van de Loo, Fons A J

    2016-04-01

    The claimed beneficial effect of milk on bone is still a matter for debate. Recently extracellular vesicles (EVs) that contain proteins and RNA were discovered in milk, but their effect on bone formation has not yet been determined. We demonstrated previously that bovine milk-derived EVs (BMEVs) have immunoregulatory properties. Our aim was to evaluate the effect of BMEVs on osteogenesis by mice and human mesenchymal stem cells (hMSCs). Oral delivery of two concentrations of BMEVs to female DBA/1J mice during 7weeks did not alter the tibia trabecular bone area; however, the osteocytes number increased. In addition, the highest dose of BMEVs markedly increased the woven bone tissue, which is more brittle. The exposure of hMSCs to BMEVs during 21days resulted in less mineralization but higher cell proliferation. Interestingly BMEVs reduced the collagen production, but enhanced the expression of genes characteristic for immature osteoblasts. A kinetic study showed that BMEVs up-regulated many osteogenic genes within the first 4days. However, the production of type I collagen and expression of its genes (COL1A1 and COL1A2) were markedly reduced at days 21 and 28. At day 28, BMEVs again lead to higher proliferation, but mineralization was significantly increased. This was associated with increased expression of sclerostin, a marker for osteocytes, and reduced osteonectin, which is associated to bone matrix formation. Our study adds BMEVs to the list of milk components that can affect bone formation and may shed new light on the contradictory claims of milk on bone formation. PMID:27012623

  13. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction

    PubMed Central

    Dobaczewski, Marcin; Gonzalez-Quesada, Carlos; Frangogiannis, Nikolaos G

    2009-01-01

    The dynamic alterations in the cardiac extracellular matrix following myocardial infarction not only determine the mechanical properties of the infarcted heart, but also directly modulate the inflammatory and reparative response. During the inflammatory phase of healing, rapid activation of matrix metalloproteinases (MMP) causes degradation of the cardiac extracellular matrix. Matrix fragments exert potent pro-inflammatory actions, while MMPs process cytokines and chemokines altering their biological activity. In addition, vascular hyperpermeability results in extravasation of fibronectin and fibrinogen leading to formation of a plasma-derived provisional matrix that serves as a scaffold for leukocyte infiltration. Clearance of the infarct from dead cells and matrix debris is essential for resolution of inflammation and marks the transition to the proliferative phase. The fibrin-based provisional matrix is lysed and cellular fibronectin is secreted. ED-A fibronectin, mechanical tension and Transforming Growth Factor (TGF)-β are essential for modulation of fibroblasts into myofibroblasts, the main collagen-secreting cells in the wound. The matricellular proteins thrombospondin-1 and -2, osteopontin, tenascin-C, periostin, and secreted protein acidic and rich in cysteine (SPARC) are induced in the infarct regulating cellular interactions and promoting matrix organization. As the infarct matures, matrix cross-linking results in formation of a dense collagen-based scar. At this stage, shielding of fibroblasts from external mechanical tension by the mature matrix network may promote deactivation and cellular quiescence. The components of the extracellular matrix do not passively follow the pathologic alterations of the infarcted heart but critically modulate inflammatory and reparative pathways by transducing signals that affect cell survival, phenotype and gene expression. PMID:19631653

  14. Putative functions of extracellular matrix glycoproteins in secondary palate morphogenesis

    PubMed Central

    d'Amaro, Rocca; Scheidegger, Rolf; Blumer, Susan; Pazera, Pawel; Katsaros, Christos; Graf, Daniel; Chiquet, Matthias

    2012-01-01

    Cleft palate is a common birth defect in humans. Elevation and fusion of paired palatal shelves are coordinated by growth and transcription factors, and mutations in these can cause malformations. Among the effector genes for growth factor signaling are extracellular matrix (ECM) glycoproteins. These provide substrates for cell adhesion (e.g., fibronectin, tenascins), but also regulate growth factor availability (e.g., fibrillins). Cleft palate in Bmp7 null mouse embryos is caused by a delay in palatal shelf elevation. In contrast, palatal shelves of Tgf-β3 knockout mice elevate normally, but a cleft develops due to their failure to fuse. However, nothing is known about a possible functional interaction between specific ECM proteins and Tgf-β/Bmp family members in palatogenesis. To start addressing this question, we studied the mRNA and protein distribution of relevant ECM components during secondary palate development, and compared it to growth factor expression in wildtypewild type and mutant mice. We found that fibrillin-2 (but not fibrillin-1) mRNA appeared in the mesenchyme of elevated palatal shelves adjacent to the midline epithelial cells, which were positive for Tgf-β3 mRNA. Moreover, midline epithelial cells started expressing fibronectin upon contact of the two palatal shelves. These findings support the hypothesis that fibrillin-2 and fibronectin are involved in regulating the activity of Tgf-β3 at the fusing midline. In addition, we observed that tenascin-W (but not tenascin-C) was misexpressed in palatal shelves of Bmp7-deficient mouse embryos. In contrast to tenascin-C, tenascin-W secretion was strongly induced by Bmp7 in embryonic cranial fibroblasts in vitro. These results are consistent with a putative function for tenascin-W as a target of Bmp7 signaling during palate elevation. Our results indicate that distinct ECM proteins are important for morphogenesis of the secondary palate, both as downstream effectors and as regulators of Tgf

  15. Putative functions of extracellular matrix glycoproteins in secondary palate morphogenesis.

    PubMed

    d'Amaro, Rocca; Scheidegger, Rolf; Blumer, Susan; Pazera, Pawel; Katsaros, Christos; Graf, Daniel; Chiquet, Matthias

    2012-01-01

    Cleft palate is a common birth defect in humans. Elevation and fusion of paired palatal shelves are coordinated by growth and transcription factors, and mutations in these can cause malformations. Among the effector genes for growth factor signaling are extracellular matrix (ECM) glycoproteins. These provide substrates for cell adhesion (e.g., fibronectin, tenascins), but also regulate growth factor availability (e.g., fibrillins). Cleft palate in Bmp7 null mouse embryos is caused by a delay in palatal shelf elevation. In contrast, palatal shelves of Tgf-β3 knockout mice elevate normally, but a cleft develops due to their failure to fuse. However, nothing is known about a possible functional interaction between specific ECM proteins and Tgf-β/Bmp family members in palatogenesis. To start addressing this question, we studied the mRNA and protein distribution of relevant ECM components during secondary palate development, and compared it to growth factor expression in wildtypewild type and mutant mice. We found that fibrillin-2 (but not fibrillin-1) mRNA appeared in the mesenchyme of elevated palatal shelves adjacent to the midline epithelial cells, which were positive for Tgf-β3 mRNA. Moreover, midline epithelial cells started expressing fibronectin upon contact of the two palatal shelves. These findings support the hypothesis that fibrillin-2 and fibronectin are involved in regulating the activity of Tgf-β3 at the fusing midline. In addition, we observed that tenascin-W (but not tenascin-C) was misexpressed in palatal shelves of Bmp7-deficient mouse embryos. In contrast to tenascin-C, tenascin-W secretion was strongly induced by Bmp7 in embryonic cranial fibroblasts in vitro. These results are consistent with a putative function for tenascin-W as a target of Bmp7 signaling during palate elevation. Our results indicate that distinct ECM proteins are important for morphogenesis of the secondary palate, both as downstream effectors and as regulators of Tgf

  16. Astrocytes and extracellular matrix in extrasynaptic volume transmission

    PubMed Central

    Vargová, Lýdia; Syková, Eva

    2014-01-01

    Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron–glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment. PMID:25225101

  17. Transforming growth factor-beta 1 differentially regulates proliferation, morphology, and extracellular matrix expression by three neural crest-derived neuroblastoma cell lines.

    PubMed

    Rogers, S L; Cutts, J L; Gegick, P J; McGuire, P G; Rosenberger, C; Krisinski, S

    1994-04-01

    We reported previously (S. L. Rogers, P. J. Gegick, S. M. Alexander, and P. G. McGuire, Dev. Biol. 151, 191-203, 1992) that transforming growth factor-beta 1 (TGF beta 1) inhibited proliferation, up-regulated fibronectin synthesis, and suppressed melanogenesis in a population of quail neural crest cells in vitro. Here, we report that cell lines derived from the parent SK-N-SH neuroblastoma line (R. A. Ross, B. A. Spengler, and J. L. Biedler, J. Natl. Cancer Inst. 71, 741-747, 1983) respond differentially to TGF beta 1, and their responses provide further insights into the actions of this growth factor on neural crest subpopulations. The SH-EP cell line exhibits primarily nonneuronal traits and responded to TGF beta 1 with increased thymidine uptake after 6 days of culture, increased expression of fibronectin mRNA and protein, and decreased laminin synthesis. Many SH-EP cells also acquired a dramatically elongated morphology, reminiscent of Schwann cells in culture. Thymidine uptake by the neuronal SY5Y cell line was not substantially altered. Neither fibronectin mRNA nor protein was detectable in either TGF beta 1-treated or untreated cultures, although laminin synthesis was upregulated by the growth factor. In TGF beta 1-treated cultures of the intermediate SH-IN cell line, which has been reported to display both neuronal and nonneuronal characteristics, there was marked flattening of many cells, a steady decrease in thymidine uptake, and increased expression of both fibronectin and laminin. The observed responses of SH-IN cells mimic those observed in primary neural crest cultures and appear to represent similar differentiation toward a mesenchymal phenotype. These results substantiate the idea that closely related but diverging neural crest-derived cell types respond selectively to TGF beta 1 and demonstrate that these SK-N-SH-derived cell lines will be useful in experimental approaches that will allow us to infer mechanisms underlying regulation of neural crest

  18. How Osteoblasts Sense their Environment: Integrin-Extracellular Matrix Interactions and Mechanical Loading of Bone

    NASA Technical Reports Server (NTRS)

    Globus, Ruth K.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Osteoblasts are the cells responsible for forming and replacing bone throughout life. We know that mechanical stimulation through weight-bearing at I gravity on Earth is needed to maintain healthy bone, and that osteoblasts play a critical role in that process. Over the last 9 years in my laboratory at NASA ARC, we have studied the regulation of osteoblast function by interactions between the extracellular matrix and die cell. Using a cell culture approach, we defined the repertoire of adhesion receptors, called integrins, which are expressed on the osteoblast surface, as well as specific extracellular matrix proteins, which are needed for cellular differentiation and survival. We are now extending these observations to determine if integrin signaling is involved in the skeletal responses to disuse and recovery from disuse using the rodent model of hindlimb unloading by tail suspension. Together, our cell culture and animal studies are providing new insight into the regulation of osteoblast function in bone.

  19. Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover

    PubMed Central

    Phillips, P A; McCarroll, J A; Park, S; Wu, M-J; Pirola, R; Korsten, M; Wilson, J S; Apte, M V

    2003-01-01

    weights consistent with MMP2, MMP9, and MMP13. RT-PCR demonstrated the presence of mRNA for metalloproteinase inhibitors TIMP1 and TIMP2 in PSCs while reverse zymography revealed the presence of functional TIMP2 in PSC secretions. MMP2 secretion by PSCs was significantly increased by TGF-β1 and IL-6, but was not affected by TNF-α. Ethanol and acetaldehyde induced secretion of both MMP2 and TIMP2 by PSCs. Conclusions: Pancreatic stellate cells have the capacity to synthesise a number of matrix metalloproteinases, including MMP2, MMP9, and MMP13 and their inhibitors TIMP1 and TIMP2. MMP2 secretion by PSCs is significantly increased on exposure to the proinflammatory cytokines TGF-β1 and IL-6. Both ethanol and its metabolite acetaldehyde increase MMP2 as well as TIMP2 secretion by PSCs. Implication: The role of pancreatic stellate cells in extracellular matrix formation and fibrogenesis may be related to their capacity to regulate the degradation as well as the synthesis of extracellular matrix proteins. PMID:12524413

  20. Structure and Function of the Skeletal Muscle Extracellular Matrix

    PubMed Central

    Gillies, Allison R.; Lieber, Richard L.

    2011-01-01

    The skeletal muscle extracellular matrix (ECM) plays an important role in muscle fiber force transmission, maintenance, and repair. In both injured and diseased states, ECM adapts dramatically, a property thathas clinical manifestations and alters muscle function. Here, we review the structure, composition, and mechanical properties of skeletal muscle ECM, describe the cells that contribute to the maintenance of the ECM and, finally, overview changes that occur with pathology. New scanning electron micrographs of ECM structure are also presented with hypotheses about ECM structure-function relationships. Detailed structure-function relationships of the ECM have yet to be defined and, as a result, we propose areas for future studies. PMID:21949456

  1. 3D Extracellular Matrix from Sectioned Human Tissues

    PubMed Central

    Campbell, Catherine B; Cukierman, Edna; Artym, Vira V

    2014-01-01

    Three-dimensional (3D) matrices have significant advantages compared to conventional two-dimensional (2D) matrices for studying cell adhesion, migration, and tissue organization. Cellular behavior is dependent on the surrounding matrix environment for signaling and induction of biological responses (Carletti, et al., 2011; Pampaloni, et al., 2007; Vlodavsky, 1999). 2D cultures induce an artificial polarity in cultured cells between upper and lower surfaces not present normally in the in vivo environment. No longer nonpolar, many aspects of cellular behavior are altered (Beacham, et al., 2007; Grinnell and Petroll, 2010; Yamada and Cukierman, 2007). In addition, 2D models lack the physical properties of 3D matrix, such as topography, stiffness, and dimensionality. To begin to mimic the 3D environment of in vivo connective tissue extracellular matrix (ECM), collagen gels have been used widely (see Unit 10.3). Culture of cells in collagen gels results in a bipolar fibroblast morphology that resembles the in vivo phenotype (Friedl and Brocker, 2000; Even-Ram and Yamada, 2005; Grinnell and Petroll, 2010). Although more physiological, 3D collagen gels lack the complex biochemical and physical microenvironment present in an in vivo ECM that regulates cellular physiological properties (Beacham, et al., 2007). A variety of methods to create a more in vivo-like ECM have been published (Yamada and Cukierman, 2007). Adding critical ECM components to 3D collagen matrices, including fibronectin, hyaluronan, link protein and glycosaminoglycans, can more accurately mimic the structural microenvironment of the native ECM (Friedl and Brocker, 2000). Other ECM models use cultured cell lines, such as fibroblasts, to derive an ECM lattice through secretion of an organized ECM (Beacham, et al., 2007). Different cell lines have been chosen to generate a specific microenvironment for study of particularly types of cellular behavior (Kutys and Yamada, 2013). For example, cultured bovine

  2. Prion permissive pathways: extracellular matrix genes control susceptibility to prion infection

    PubMed Central

    Imberdis, Thibaut; Harris, David A

    2014-01-01

    There are wide variations in the susceptibility of humans, animals, and cultured cell lines to infection by prions. In this issue of The EMBO Journal, Marbiah et al (2014) identified a gene regulatory network that regulates the susceptibility of cultured cells to prion infection. Surprisingly, a number of these genes impact the structure of the extracellular matrix. These results have important implications for understanding mechanisms of prion infection and also suggest new therapeutic targets. PMID:24952893

  3. Changes in the expression of extracellular matrix (ECM) and matrix metalloproteinases (MMP) of proliferating rat parotid acinar cells.

    PubMed

    Broverman, R L; Nguyen, K H; da Silveira, A; Brinkley, L L; Macauley, S P; Zeng, T; Yamamoto, H; Tarnuzzer, R W; Schultz, G S; Kerr, M; Humphreys-Beher, M G

    1998-07-01

    Tissue morphogenesis, development, and maintenance of function are mediated by signals generated through the composition of the extracellular matrix. The regulation of the composition of matrix is determined by enzymes specific for their degradation, the matrix metalloproteinases. Chronic injections of the beta-adrenergic receptor agonist, isoproterenol, result in a non-neoplastic hypertrophy and hyperplasia of the rat parotid gland. The activity of matrix metalloproteinases, as measured by gelatin zymography and enzymatic digestion of Azocoll substrates by gland lysates, decreased significantly (P < 0.05) following 24 hrs of agonist treatment, and slowly recovered to control values by 6 days of treatment. Daily administration of the broad-spectrum matrix metalloproteinase inhibitor Galardin for 3 days in combination with isoproterenol resulted in enhanced gland hypertrophy compared with that produced by isoproterenol alone. Given alone, Galardin also caused hypertrophy. The relative abundance of mRNA for the extracellular matrix molecules, collagens I and III and fibronectin, declined rapidly following the initiation of beta-agonist treatment in vivo, while laminin B1 and B2 mRNA levels increased initially before declining below control levels. These changes in patterns of mRNA levels also were observed in the concentrations of glandular protein when Western dot blot analysis of collagens I and III and laminin, respectively, was used. The importance of laminin, in vivo, was demonstrated by coinjection of anti-laminin antibody along with isoproterenol, which resulted in the inhibition of beta-agonist-induced parotid gland hypertrophy and hyperplasia. These data suggest that modulation of the ECM is associated with isoproterenol-induced salivary gland hypertrophy and hyperplasia. It is likely that this modulation of the ECM takes place through transcriptional regulation of some ECM genes and regulation of matrix-degrading enzyme activity. PMID:9663435

  4. Streptococcus pyogenes degrades extracellular matrix in chondrocytes via MMP-13

    SciTech Connect

    Sakurai, Atsuo; Okahashi, Nobuo; Maruyama, Fumito; Ooshima, Takashi; Hamada, Shigeyuki; Nakagawa, Ichiro

    2008-08-29

    Group A streptococcus (GAS) causes a wide range of human diseases, including bacterial arthritis. The pathogenesis of arthritis is characterized by synovial proliferation and the destruction of cartilage and subchondral bone in joints. We report here that GAS strain JRS4 invaded a chondrogenic cell line ATDC5 and induced the degradation of the extracellular matrix (ECM), whereas an isogenic mutant of JRS4 lacking a fibronectin-binding protein, SAM1, failed to invade the chondrocytes or degrade the ECM. Reverse transcription-PCR and Western blot analysis revealed that the expression of matrix metalloproteinase (MMP)-13 was strongly elevated during the infection with GAS. A reporter assay revealed that the activation of the AP-1 transcription factor and the phosphorylation of c-Jun terminal kinase participated in MMP-13 expression. These results suggest that MMP-13 plays an important role in the destruction of infected joints during the development of septic arthritis.

  5. Extracellular matrix and its receptors in Drosophila neural development

    PubMed Central

    Broadie, Kendal; Baumgartner, Stefan; Prokop, Andreas

    2011-01-01

    Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: 1) neural progenitor proliferation, 2) axonal growth and pathfinding and 3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions. PMID:21688401

  6. Intermolecular interactions of thrombospondins drive their accumulation in extracellular matrix

    PubMed Central

    Kim, Dae Joong; Christofidou, Elena D.; Keene, Douglas R.; Hassan Milde, Marwah; Adams, Josephine C.

    2015-01-01

    Thrombospondins participate in many aspects of tissue organization in adult tissue homeostasis, and their dysregulation contributes to pathological processes such as fibrosis and tumor progression. The incorporation of thrombospondins into extracellular matrix (ECM) as discrete puncta has been documented in various tissue and cell biological contexts, yet the underlying mechanisms remain poorly understood. We find that collagen fibrils are disorganized in multiple tissues of Thbs1−/− mice. In investigating how thrombospondins become retained within ECM and thereby affect ECM organization, we find that accumulation of thrombospondin-1 or thrombospondin-5 puncta within cell-derived ECM is controlled by a novel, conserved, surface-exposed site on the thrombospondin L-type lectin domain. This site acts to recruit thrombospondin molecules into ECM by intermolecular interactions in trans. This mechanism is fibronectin independent, can take place extracellularly, and is demonstrated to be direct in vitro. The trans intermolecular interactions can also be heterotypic—for example, between thrombospondin-1 and thrombospondin-5. These data identify a novel concept of concentration-dependent, intermolecular “matrix trapping” as a conserved mechanism that controls the accumulation and thereby the functionality of thrombospondins in ECM. PMID:25995382

  7. Extracellular matrix of the bovine ovarian membrana granulosa.

    PubMed

    Rodgers, R J; Irving Rodgers, H F

    2002-05-31

    Much is known about the control of the development of ovarian follicles by growth factors and hormones. The study of extracellular matrix in the ovary, though, is a relatively new area. To date much research has focused on identifying the matrix components present, and more recently, its production and the physiological roles. In this review we focus on the changes that occur in the follicular basal lamina from primordial follicles through to ovulation and formation of the corpus luteum, the changes that occur during follicular atresia, and we discuss our observations of a novel matrix which forms in the membrana granulosa. The follicular basal lamina changes considerably during follicular development in its expression pattern of type IV collagens. Of the laminin chains examined, there appears only to be an increase in amount, except for laminin alpha2. It is expressed only in a small proportion of healthy antral follicles and in the majority of atretic antral follicles. Call-Exner bodies have the same composition as the basal lamina, except they do not contain laminin alpha2, even when the follicular basal lamina does. The novel matrix that develops within the membrana granulosa is similar in composition to Call-Exner bodies which occur predominantly in preantral follicles, except that it is far more common in large antral follicles, does not induce polarization of the surrounding granulosa cells, and does not contain follicular fluid-like material as the Call-Exner bodies of some species do. The expression of this matrix occurs prior to and during the time when granulosa cells express steroidogenic enzymes. It does not exist in corpora lutea. In addition large luteal cells, derived from granulosa cells, do not appear to have a basal lamina. These findings suggest that the maturational changes in the membrana granulosa are accompanied by changes in the matrix. PMID:12044919

  8. Regulation of Immune Responses by Extracellular Vesicles

    PubMed Central

    Robbins, Paul D.; Morelli, Adrian E.

    2015-01-01

    Extracellular vesicles (EVs) including exosomes, are small membrane vesicles derived from multivesicular bodies or from the plasma membrane. Most, if not all, cell types release EVs that then enter the bodily fluids. These vesicles contain a subset of proteins, lipids and nucleic acids that are derived from the parent cell. It is postulated that EVs have important roles in intercellular communication, both locally and systemically, by transferring their contents, including protein, lipids and RNAs, between cells. EVs are involved in numerous physiological processes, and vesicles from both non-immune and immune cells have important roles in immune regulation. Moreover, EV-based therapeutics are being developed and tested clinically for treatment of inflammatory and autoimmune diseases and cancer. Given the tremendous therapeutic potential of EVs this review focuses on the role of EVs in modulating immune responses and the therapeutic applications. PMID:24566916

  9. The Extracellular Matrix in Photosynthetic Mats: A Cyanobacterial Gingerbread House

    NASA Astrophysics Data System (ADS)

    Stuart, R.; Stannard, W.; Bebout, B.; Pett-Ridge, J.; Mayali, X.; Weber, P. K.; Lipton, M. S.; Lee, J.; Everroad, R. C.; Thelen, M.

    2014-12-01

    Hypersaline laminated cyanobacterial mats are excellent model systems for investigating photoautotrophic contributions to biogeochemical cycling on a millimeter scale. These self-sustaining ecosystems are characterized by steep physiochemical gradients that fluctuate dramatically on hour timescales, providing a dynamic environment to study microbial response. However, elucidating the distribution of energy from light absorption into biomass requires a complete understanding of the various constituents of the mat. Extracellular polymeric substances (EPS), which can be composed of proteins, polysaccharides, lipids and DNA are a major component of these mats and may function in the redistribution of nutrients and metabolites within the community. To test this notion, we established a model mat-building culture for comparison with the phylogenetically diverse natural mat communities. In these two systems we determined how proteins and glycans in the matrix changed as a function of light and tracked nutrient flow from the matrix. Using mass spectrometry metaproteomics analysis, we found homologous proteins in both field and culture extracellular matrix that point to cyanobacterial turnover of amino acids, inorganic nutrients, carbohydrates and nucleic acids from the EPS. Other abundant functions identified included oxidative stress response from both the cyanobacteria and heterotrophs and cyanobacterial structural proteins that may play a role in mat cohesion. Several degradative enzymes also varied in abundance in the EPS in response to light availability, suggesting active secretion. To further test cyanobacterial EPS turnover, we generated isotopically-labeled EPS and used NanoSIMS to trace uptake of this labeled EPS. Our findings suggest Cyanobacteria may facilitate nutrient transfer to other groups, as well as uptake of their own products through degradation of EPS components. This work provides evidence for the essential roles of EPS for storage, structural

  10. The Matrix Reloaded: How Sensing the Extracellular Matrix Synchronizes Bacterial Communities

    PubMed Central

    Steinberg, Nitai

    2015-01-01

    In response to chemical communication, bacterial cells often organize themselves into complex multicellular communities that carry out specialized tasks. These communities are frequently referred to as biofilms, which involve the collective behavior of different cell types. Like cells of multicellular eukaryotes, the biofilm cells are surrounded by self-produced polymers that constitute the extracellular matrix (ECM), which binds them to each other and to the surface. In multicellular eukaryotes, it has been evident for decades that cell-ECM interactions control multiple cellular processes during development. While cells both in biofilms and in multicellular eukaryotes are surrounded by ECM and activate various genetic programs, until recently it has been unclear whether cell-ECM interactions are recruited in bacterial communicative behaviors. In this review, we describe the examples reported thus far for ECM involvement in control of cell behavior throughout the different stages of biofilm formation. The studies presented in this review have provided a newly emerging perspective of the bacterial ECM as an active player in regulation of biofilm development. PMID:25825428

  11. Designer Extracellular Matrix Based on DNA-Peptide Networks Generated by Polymerase Chain Reaction.

    PubMed

    Finke, Alexander; Bußkamp, Holger; Manea, Marilena; Marx, Andreas

    2016-08-16

    Cell proliferation and differentiation in multicellular organisms are partially regulated by signaling from the extracellular matrix. The ability to mimic an extracellular matrix would allow particular cell types to be specifically recognized, which is central to tissue engineering. We present a new functional DNA-based material with cell-adhesion properties. It is generated by using covalently branched DNA as primers in PCR. These primers were functionalized by click chemistry with the cyclic peptide c(RGDfK), a peptide that is known to predominantly bind to αvβ3 integrins, which are found on endothelial cells and fibroblasts, for example. As a covalent coating of surfaces, this DNA-based material shows cell-repellent properties in its unfunctionalized state and gains adhesiveness towards specific target cells when functionalized with c(RGDfK). These cells remain viable and can be released under mild conditions by DNase I treatment. PMID:27410200

  12. Social defeat stress promotes tumor growth and angiogenesis by upregulating vascular endothelial growth factor/extracellular signal-regulated kinase/matrix metalloproteinase signaling in a mouse model of lung carcinoma.

    PubMed

    Wu, Xiao; Liu, Bao-Jun; Ji, Shumeng; Wu, Jing-Feng; Xu, Chang-Qing; Du, Yi-Jie; You, Xiao-Fang; Li, Bei; Le, Jing-Jing; Xu, Hai-Lin; Duan, Xiao-Hong; Dong, Jing-Cheng

    2015-07-01

    Numerous epidemiological and experimental animal studies have indicated that chronic psychological stress may promote tumor development. However, the underlying molecular mechanisms by which chronic stress promotes tumorigenesis remain to be fully elucidated and animal models have not yet been well established. In the present study, an established mouse model of repeated social defeat stress (RSDS), was generated and used to investigate the effect of stress on tumor growth and metastasis. C57BL/6 mice were exposed to RSDS for 10 days, followed by subcutaneousl inoculation with Lewis lung carcinoma cells for seven days. The tumor weight and volume as well as the number of the lung metastatic nodules were then determined. Vascular endothelial growth factor (VEGF) serum levels were measured using ELISAs. In addition, expression levels of VEGF receptor (VEGFR) and L1 cell adhesion molecule (L1CAM) messenger (m)RNA were confirmed using reverse transcription quantitative polymerase chain reaction. Furthermore, protein expression levels of phosphorlyated extracellular signal-regulated kinase (pERK), matrix metalloproteinase (MMP)-2 and MMP-9 were examined using western blot analysis. The results showed that RSDS significantly increased the weight and the volume of the primary tumor as well as the number of the lung metastatic nodules. Serum VEGF levels were significantly higher in the tumor-stress group compared with those of the unstressed tumor mice. In addition, tumors in stressed animals demonstrated markedly enhanced expression of VEGFR-2 and L1CAM mRNA as well as pERK, MMP-2 and MMP-9 protein expression. In conclusion, these results suggested that RSDS contributed to lung cancer progression, angiogenesis and metastasis, which was partially associated with increased VEGF secretion and therefore the activation of the ERK signaling pathway, resulting in the induction of MMP-2 and MMP-9 protein expression. PMID:25824133

  13. Synthetic osteogenic extracellular matrix formed by coated silicon dioxide nanosprings

    PubMed Central

    2012-01-01

    Background The design of biomimetic materials that parallel the morphology and biology of extracellular matrixes is key to the ability to grow functional tissues in vitro and to enhance the integration of biomaterial implants into existing tissues in vivo. Special attention has been put into mimicking the nanostructures of the extracellular matrix of bone, as there is a need to find biomaterials that can enhance the bonding between orthopedic devices and this tissue. Methods We have tested the ability of normal human osteoblasts to propagate and differentiate on silicon dioxide nanosprings, which can be easily grown on practically any surface. In addition, we tested different metals and metal alloys as coats for the nanosprings in tissue culture experiments with bone cells. Results Normal human osteoblasts grown on coated nanosprings exhibited an enhanced rate of propagation, differentiation into bone forming cells and mineralization. While osteoblasts did not attach effectively to bare nanowires grown on glass, these cells propagated successfully on nanosprings coated with titanium oxide and gold. We observed a 270 fold increase in the division rate of osteoblasts when grow on titanium/gold coated nanosprings. This effect was shown to be dependent on the nanosprings, as the coating by themselves did not alter the growth rate of osteoblast. We also observed that titanium/zinc/gold coated nanosprings increased the levels of osteoblast production of alkaline phosphatase seven folds. This result indicates that osteoblasts grown on this metal alloy coated nanosprings are differentiating to mature bone making cells. Consistent with this hypothesis, we showed that osteoblasts grown on the same metal alloy coated nanosprings have an enhanced ability to deposit calcium salt. Conclusion We have established that metal/metal alloy coated silicon dioxide nanosprings can be used as a biomimetic material paralleling the morphology and biology of osteogenic extracellular matrix

  14. Extracellular Matrix Modulation: Optimizing Skin Care and Rejuvenation Procedures.

    PubMed

    Widgerow, Alan D; Fabi, Sabrina G; Palestine, Roberta F; Rivkin, Alexander; Ortiz, Arisa; Bucay, Vivian W; Chiu, Annie; Naga, Lina; Emer, Jason; Chasan, Paul E

    2016-04-01

    Normal aging and photoaging of the skin are chronic processes that progress gradually. The extracellular matrix (ECM), constituting over 70% of the skin, is the central hub for repair and regeneration of the skin. As such, the ECM is the area where changes related to photodamage are most evident. Degradation of the ECM with fragmentation of proteins significantly affects cross talk and signaling between cells, the matrix, and its constituents. The accumulation of collagen fragments, amorphous elastin agglutinations, and abnormal cross-linkages between the collagen fragments impedes the ECM from its normal repair and regenerative capacity, which manifests as wrinkled, non-elastic skin. Similar to how the chronic wound healing process requires wound bed preparation before therapeutic intervention, treatment of chronic aging of the skin would likely benefit from a "skin bed preparation" to optimize the outcome of rejuvenation procedures and skin maintenance programs. This involves introducing agents that can combat stress-induced oxidation, proteasome dysfunction, and non-enzymatic cross linkages involved in glycation end products, to collectively modulate this damaged ECM, and upregulate neocollagenesis and elastin production. Agents of particular interest are matrikines, peptides originating from the fragmentation of matrix proteins that exhibit a wide range of biological activities. Peptides of this type (tripeptide and hexapeptide) are incorporated in ALASTIN™ Skin Nectar with TriHex™ technology (ALASTIN Skincare, Inc., Carlsbad, CA), which is designed to target ECM modulation with a goal of optimizing results following invasive and non-invasive dermal rejuvenating procedures. PMID:27050707

  15. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development

    PubMed Central

    Zhang, Weipeng; Sun, Jin; Ding, Wei; Lin, Jinshui; Tian, Renmao; Lu, Liang; Liu, Xiaofen; Shen, Xihui; Qian, Pei-Yuan

    2015-01-01

    Though the essential role of extracellular matrix in biofilm development has been extensively documented, the function of matrix-associated proteins is elusive. Determining the dynamics of matrix-associated proteins would be a useful way to reveal their functions in biofilm development. Therefore, we applied iTRAQ-based quantitative proteomics to evaluate matrix-associated proteins isolated from different phases of Pseudomonas aeruginosa ATCC27853 biofilms. Among the identified 389 proteins, 54 changed their abundance significantly. The increased abundance of stress resistance and nutrient metabolism-related proteins over the period of biofilm development was consistent with the hypothesis that biofilm matrix forms micro-environments in which cells are optimally organized to resist stress and use available nutrients. Secreted proteins, including novel putative effectors of the type III secretion system were identified, suggesting that the dynamics of pathogenesis-related proteins in the matrix are associated with biofilm development. Interestingly, there was a good correlation between the abundance changes of matrix-associated proteins and their expression. Further analysis revealed complex interactions among these modulated proteins, and the mutation of selected proteins attenuated biofilm development. Collectively, this work presents the first dynamic picture of matrix-associated proteins during biofilm development, and provides evidences that the matrix-associated proteins may form an integral and well regulated system that contributes to stress resistance, nutrient acquisition, pathogenesis and the stability of the biofilm. PMID:26029669

  16. Suppression of ICE and Apoptosis in Mammary Epithelial Cells by Extracellular Matrix

    SciTech Connect

    Boudreau, Nancy; Sympson, C. J.; Werb, Zena; Bissell, Mina J.

    1994-12-01

    Apoptosis (programmed cell death) plays a major role in development and tissue regeneration. Basement membrane extracellular matrix (ECM), but not fibronectin or collagen, was shown to suppress apoptosis of mammary epithelial cells in tissue culture and in vivo. Apoptosis was induced by antibodies to beta 1 integrins or by overexpression of stromelysin-1, which degrades ECM. Expression of interleukin-1 beta converting enzyme (ICE) correlated with the loss of ECM, and inhibitors of ICE activity prevented apoptosis. These results suggest that ECM regulates apoptosis in mammary epithelial cells through an integrin-dependent negative regulation of ICE expression.

  17. Constructive remodeling of a synthetic endothelial extracellular matrix

    PubMed Central

    Han, Sewoon; Shin, Yoojin; Jeong, Hyo Eun; Jeon, Jessie S.; Kamm, Roger D.; Huh, Dongeun; Sohn, Lydia L.; Chung, Seok

    2015-01-01

    The construction of well-controllable in vitro models of physiological and pathological vascular endothelium remains a fundamental challenge in tissue engineering and drug development. Here, we present an approach for forming a synthetic endothelial extracellular matrix (ECM) that closely resembles that of the native structure by locally depositing basement membrane materials onto type 1 collagen nanofibers only in a region adjacent to the endothelial cell (EC) monolayer. Culturing the EC monolayer on this synthetic endothelial ECM remarkably enhanced its physiological properties, reducing its vascular permeability, and promoting a stabilized, quiescent phenotype. We demonstrated that the EC monolayer on the synthetic endothelial ECM neither creates non-physiological barriers to cell-cell or cell-ECM interactions, nor hinders molecular diffusion of growth factors and other molecules. The synthetic endothelial ECM and vascular endothelium on it may help us enter in a new phase of research in which various models of the biological barrier behavior can be tested experimentally. PMID:26687334

  18. Insight On Colorectal Carcinoma Infiltration by Studying Perilesional Extracellular Matrix

    PubMed Central

    Nebuloni, Manuela; Albarello, Luca; Andolfo, Annapaola; Magagnotti, Cinzia; Genovese, Luca; Locatelli, Irene; Tonon, Giovanni; Longhi, Erika; Zerbi, Pietro; Allevi, Raffaele; Podestà, Alessandro; Puricelli, Luca; Milani, Paolo; Soldarini, Armando; Salonia, Andrea; Alfano, Massimo

    2016-01-01

    The extracellular matrix (ECM) from perilesional and colorectal carcinoma (CRC), but not healthy colon, sustains proliferation and invasion of tumor cells. We investigated the biochemical and physical diversity of ECM in pair-wised comparisons of healthy, perilesional and CRC specimens. Progressive linearization and degree of organization of fibrils was observed from healthy to perilesional and CRC ECM, and was associated with a steady increase of stiffness and collagen crosslinking. In the perilesional ECM these modifications coincided with increased vascularization, whereas in the neoplastic ECM they were associated with altered modulation of matrisome proteins, increased content of hydroxylated lysine and lysyl oxidase. This study identifies the increased stiffness and crosslinking of the perilesional ECM predisposing an environment suitable for CRC invasion as a phenomenon associated with vascularization. The increased stiffness of colon areas may represent a new predictive marker of desmoplastic region predisposing to invasion, thus offering new potential application for monitoring adenoma with invasive potential. PMID:26940881

  19. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis.

    PubMed

    Swinehart, Ilea T; Badylak, Stephen F

    2016-03-01

    During normal morphogenesis the extracellular matrix (ECM) influences cell motility, proliferation, apoptosis, and differentiation. Tissue engineers have attempted to harness the cell signaling potential of ECM to promote the functional reconstruction, if not regeneration, of injured or missing adult tissues that otherwise heal by the formation of scar tissue. ECM bioscaffolds, derived from decellularized tissues, have been used to promote the formation of site appropriate, functional tissues in many clinical applications including skeletal muscle, fibrocartilage, lower urinary tract, and esophageal reconstruction, among others. These scaffolds function by the release or exposure of growth factors and cryptic peptides, modulation of the immune response, and recruitment of progenitor cells. Herein, we describe this process of ECM induced constructive remodeling and examine similarities to normal tissue morphogenesis. PMID:26699796

  20. Cardiac extracellular matrix proteomics: Challenges, techniques, and clinical implications.

    PubMed

    Chang, Chia Wei; Dalgliesh, Ailsa J; López, Javier E; Griffiths, Leigh G

    2016-01-01

    Extracellular matrix (ECM) has emerged as a dynamic tissue component, providing not only structural support, but also functionally participating in a wide range of signaling events during development, injury, and disease remodeling. Investigation of dynamic changes in cardiac ECM proteome is challenging due to the relative insolubility of ECM proteins, which results from their macromolecular nature, extensive post-translational modification (PTM), and tendency to form protein complexes. Finally, the relative abundance of cellular and mitochondrial proteins in cardiac tissue further complicates cardiac ECM proteomic approaches. Recent developments of various techniques to enrich and analyze ECM proteins are playing a major role in overcoming these challenges. Application of cardiac ECM proteomics in disease tissues can further provide spatial and temporal information relevant to disease diagnosis, prognosis, treatment, and engineering of therapeutic candidates for cardiac repair and regeneration. PMID:26200932

  1. Extracellular matrix production in vitro in cartilage tissue engineering

    PubMed Central

    2014-01-01

    Cartilage tissue engineering is arising as a technique for the repair of cartilage lesions in clinical applications. However, fibrocartilage formation weakened the mechanical functions of the articular, which compromises the clinical outcomes. Due to the low proliferation ability, dedifferentiation property and low production of cartilage-specific extracellular matrix (ECM) of the chondrocytes, the cartilage synthesis in vitro has been one of the major limitations for obtaining high-quality engineered cartilage constructs. This review discusses cells, biomaterial scaffolds and stimulating factors that can facilitate the cartilage-specific ECM production and accumulation in the in vitro culture system. Special emphasis has been put on the factors that affect the production of ECM macromolecules such as collagen type II and proteoglycans in the review, aiming at providing new strategies to improve the quality of tissue-engineered cartilage. PMID:24708713

  2. Characteristic adaptations of the extracellular matrix in dilated cardiomyopathy.

    PubMed

    Louzao-Martinez, Laura; Vink, Aryan; Harakalova, Magdalena; Asselbergs, Folkert W; Verhaar, Marianne C; Cheng, Caroline

    2016-10-01

    Dilated cardiomyopathy (DCM) is a relatively common heart muscle disease characterized by the dilation and thinning of the left ventricle accompanied with left ventricular systolic dysfunction. Myocardial fibrosis is a major feature in DCM and therefore it is inevitable that corresponding extracellular matrix (ECM) changes are involved in DCM onset and progression. Increasing our understanding of how ECM adaptations are involved in DCM could be important for the development of future interventions. This review article discusses the molecular adaptations in ECM composition and structure that have been reported in both animal and human studies of DCM. Furthermore, we provide a transcriptome-based catalogue of ECM genes that are associated with DCM, generated by using NCBI Gene Expression Omnibus database sets for DCM. Based on this in silico analysis, many novel ECM components involved in DCM are identified and discussed in this review. With the information gathered, we propose putative pathways of ECM adaptations in onset and progression of DCM. PMID:27391006

  3. Hypoxia and the extracellular matrix: drivers of tumour metastasis

    PubMed Central

    Gilkes, Daniele M.; Semenza, Gregg L.; Wirtz, Denis

    2014-01-01

    Of the deaths attributed to cancer, 90% are due to metastasis, and treatments that prevent or cure metastasis remain elusive. Emerging data indicate that hypoxia and the extracellular matrix (ECM) might have crucial roles in metastasis. During tumour evolution, changes in the composition and the overall content of the ECM reflect both its biophysical and biological properties and these strongly influence tumour and stromal cell properties, such as proliferation and motility. Originally thought of as independent contributors to metastatic spread, recent studies have established a direct link between hypoxia and the composition and the organization of the ECM, which suggests a new model in which multiple microenvironmental signals might converge to synergistically influence metastatic outcome. PMID:24827502

  4. ADAMTS: a novel family of extracellular matrix proteases.

    PubMed

    Tang, B L

    2001-01-01

    ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) is a novel family of extracellular proteases found in both mammals and invertebrates. Members of the family may be distinguished from the ADAM (a disintegrin and metalloprotease) family members based on the multiple copies of thrombospondin 1-like repeats they carry. With at least nine members in mammals alone, the ADAMTS family members are predicted by their structural domains to be extracellular matrix (ECM) proteins with a wide range of activities and functions distinct from members of the ADAM family that are largely anchored on the cell surface. ADAMTS2 is a procollagen N-proteinase, and the mutations of its gene are responsible for Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis. ADAMTS4 and ADAMTS5 are aggrecanases implicated in the degradation of cartilage aggrecan in arthritic diseases. Other members of the ADAMTS family have also been implicated in roles during embryonic development and angiogenesis. Current and future studies on this emerging group of ECM proteases may provide important insights into developmental or pathological processes involving ECM remodeling. PMID:11167130

  5. Cells involved in extracellular matrix remodeling after acute myocardial infarction

    PubMed Central

    Garcia, Larissa Ferraz; Mataveli, Fábio D’Aguiar; Mader, Ana Maria Amaral Antônio; Theodoro, Thérèse Rachell; Justo, Giselle Zenker; Pinhal, Maria Aparecida da Silva

    2015-01-01

    Objective Evaluate the effects of VEGF165 gene transfer in the process of remodeling of the extracellular matrix after an acute myocardial infarct. Methods Wistar rats were submitted to myocardial infarction, after the ligation of the left descending artery, and the left ventricle ejection fraction was used to classify the infarcts into large and small. The animals were divided into groups of ten, according to the size of infarcted area (large or small), and received or not VEGF165 treatment. Evaluation of different markers was performed using immunohistochemistry and digital quantification. The primary antibodies used in the analysis were anti-fibronectin, anti-vimentin, anti-CD44, anti-E-cadherin, anti-CD24, anti-alpha-1-actin, and anti-PCNA. The results were expressed as mean and standard error, and analyzed by ANOVA, considering statistically significant if p≤0.05. Results There was a significant increase in the expression of undifferentiated cell markers, such as fibronectin (protein present in the extracellular matrix) and CD44 (glycoprotein present in the endothelial cells). However, there was decreased expression of vimentin and PCNA, indicating a possible decrease in the process of cell proliferation after treatment with VEGF165. Markers of differentiated cells, E-cadherin (adhesion protein between myocardial cells), CD24 (protein present in the blood vessels), and alpha-1-actin (specific myocyte marker), showed higher expression in the groups submitted to gene therapy, compared to non-treated group. The value obtained by the relation between alpha-1-actin and vimentin was approximately three times higher in the groups treated with VEGF165, suggesting greater tissue differentiation. Conclusion The results demonstrated the important role of myocytes in the process of tissue remodeling, confirming that VEGF165 seems to provide a protective effect in the treatment of acute myocardial infarct. PMID:25993074

  6. Binding of the extracellular matrix component entactin to Candida albicans.

    PubMed Central

    López-Ribot, J L; Chaffin, W L

    1994-01-01

    We have investigated the interaction between Candida albicans and entactin, a recently characterized glycoprotein present in the extracellular matrix, especially in the basement membrane. Organisms of both the yeast and the hyphal morphologies of the fungus had the ability to bind recombinant entactin, as detected by an indirect immunofluorescence assay. Material present in the 2-mercaptoethanol cell wall extracts from both C. albicans growth forms was capable of binding to immobilized recombinant entactin in a dose-dependent manner. Binding to entactin was approximately twice that observed for laminin. Binding of an extract component(s) to entactin was partially inhibited by an Arg-Gly-Asp-Ser peptide. A polyclonal antientactin antiserum, as well as a pooled antiserum preparation raised against components present in different C. albicans cell wall extracts, completely or almost completely abolished binding. The existence of morphology-specific receptor-like molecules which bind to different domains of the entactin molecule was ruled out in a competition binding assay. The entactin-binding material(s) in the cell wall also displayed some ability to bind laminin and fibronectin, since preadsorption in the presence of these extracellular matrix components resulted in reduction of binding to entactin. Moieties with a molecular mass of approximately 25, 44, and 65 kDa present in the 2-mercaptoethanol cell wall extracts from both blastoconidia and germ tubes were detected in a ligand affinity blotting experiment as having the ability to bind entactin. Interactions between C. albicans and entactin could be important in mediating adhesion of the fungus to the host tissues and may play a role in the establishment of the disseminated form of the disease. Images PMID:7927722

  7. SPARC mediates early extracellular matrix remodeling following myocardial infarction

    PubMed Central

    McCurdy, Sarah M.; Dai, Qiuxia; Zhang, Jianhua; Zamilpa, Rogelio; Ramirez, Trevi A.; Dayah, Tariq; Nguyen, Nguyen; Jin, Yu-Fang; Bradshaw, Amy D.

    2011-01-01

    Secreted protein, acidic, and rich in cysteine (SPARC) is a matricellular protein that functions in the extracellular processing of newly synthesized collagen. Collagen deposition to form a scar is a key event following a myocardial infarction (MI). Because the roles of SPARC in the early post-MI setting have not been defined, we examined age-matched wild-type (WT; n=22) and SPARC-deficient (null; n=25) mice at day 3 post-MI. Day 0 WT (n=28) and null (n=20) mice served as controls. Infarct size was 52 ± 2% for WT and 47 ± 2% for SPARC null (P=NS), indicating that the MI injury was comparable in the two groups. By echocardiography, WT mice increased end-diastolic volumes from 45 ± 2 to 83 ± 5 μl (P < 0.05). SPARC null mice also increased end-diastolic volumes but to a lesser extent than WT (39 ± 3 to 63 ± 5 μl; P < 0.05 vs. day 0 controls and vs. WT day 3 MI). Ejection fraction fell post-MI in WT mice from 57 ± 2 to 19 ± 1%. The decrease in ejection fraction was attenuated in the absence of SPARC (65 ± 2 to 28 ± 2%). Fibroblasts isolated from SPARC null left ventricle (LV) showed differences in the expression of 22 genes encoding extracellular matrix and adhesion molecule genes, including fibronectin, connective tissue growth factor (CTGF; CCN2), matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of metalloproteinase-2 (TIMP-2). The change in fibroblast gene expression levels was mirrored in tissue protein extracts for fibronectin, CTGF, and MMP-3 but not TIMP-2. Combined, the results of this study indicate that SPARC deletion preserves LV function at day 3 post-MI but may be detrimental for the long-term response due to impaired fibroblast activation. PMID:21602472

  8. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D.

    1991-01-01

    Capillary endothelial (CE) cells require two extracellular signals in order to switch from quiescence to growth and back to differentiation during angiogenesis: soluble angiogenic factors and insoluble extracellular matrix (ECM) molecules. Soluble endothelial mitogens, such as basic fibroblast growth factor (FGF), act over large distances to trigger capillary growth, whereas ECM molecules act locally to modulate cell responsiveness to these soluble cues. Recent studies reveal that ECM molecules regulate CE cell growth and differentiation by modulating cell shape and by activating intracellular chemical signaling pathways inside the cell. Recognition of the importance of ECM and cell shape during capillary morphogenesis has led to the identification of a series of new angiogenesis inhibitors. Elucidation of the molecular mechanism of capillary regulation may result in development of even more potent angiogenesis modulators in the future.

  9. Extracellular matrix components induce endocrine differentiation in vitro in NCI-H716 cells.

    PubMed Central

    de Bruïne, A. P.; Dinjens, W. N.; van der Linden, E. P.; Pijls, M. M.; Moerkerk, P. T.; Bosman, F. T.

    1993-01-01

    Endocrine cells occur in +/- 30% of colorectal adenocarcinomas. The significance of this phenomenon in terms of tumor behavior is still controversial. Endocrine differentiation in colorectal cancer cell lines is almost confined to tumor xenografts in vivo, suggesting that endocrine differentiation might be regulated by epithelial-stromal interactions. This hypothesis was studied in the cecal adenocarcinoma-derived cell line NCI-H716 by comparing the expression of chromogranin A protein and messenger RNA in vivo and in vitro and by attempts to induce differentiation in vitro. We found that chromogranin A expression, which was strongest in vivo, could be significantly enhanced in vitro by culturing tumor cells in the presence of native extracellular matrix, on fibroblast feeder layers, and in a defined medium with basic fibroblast growth factor. The results suggest that the extracellular matrix induces endocrine differentiation through factors (e.g., basic fibroblast-growth factor) that may be produced by stromal cells and after secretion bind to the extracellular matrix. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:8456938

  10. A secretory kinase complex regulates extracellular protein phosphorylation

    PubMed Central

    Cui, Jixin; Xiao, Junyu; Tagliabracci, Vincent S; Wen, Jianzhong; Rahdar, Meghdad; Dixon, Jack E

    2015-01-01

    Although numerous extracellular phosphoproteins have been identified, the protein kinases within the secretory pathway have only recently been discovered, and their regulation is virtually unexplored. Fam20C is the physiological Golgi casein kinase, which phosphorylates many secreted proteins and is critical for proper biomineralization. Fam20A, a Fam20C paralog, is essential for enamel formation, but the biochemical function of Fam20A is unknown. Here we show that Fam20A potentiates Fam20C kinase activity and promotes the phosphorylation of enamel matrix proteins in vitro and in cells. Mechanistically, Fam20A is a pseudokinase that forms a functional complex with Fam20C, and this complex enhances extracellular protein phosphorylation within the secretory pathway. Our findings shed light on the molecular mechanism by which Fam20C and Fam20A collaborate to control enamel formation, and provide the first insight into the regulation of secretory pathway phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.06120.001 PMID:25789606

  11. Hydrogels derived from demineralized and decellularized bone extracellular matrix

    PubMed Central

    Sawkins, M.J.; Bowen, W.; Dhadda, P.; Markides, H.; Sidney, L.E.; Taylor, A.J.; Rose, F.R.A.J.; Badylak, S.F.; Shakesheff, K.M.; White, L.J.

    2013-01-01

    The extracellular matrix (ECM) of mammalian tissues has been isolated, decellularized and utilized as a scaffold to facilitate the repair and reconstruction of numerous tissues. Recent studies have suggested that superior function and complex tissue formation occurred when ECM scaffolds were derived from site-specific homologous tissues compared with heterologous tissues. The objectives of the present study were to apply a stringent decellularization process to demineralized bone matrix (DBM), prepared from bovine bone, and to characterize the structure and composition of the resulting ECM materials and DBM itself. Additionally, we sought to produce a soluble form of DBM and ECM which could be induced to form a hydrogel. Current clinical delivery of DBM particles for treatment of bone defects requires incorporation of the particles within a carrier liquid. Differences in osteogenic activity, inflammation and nephrotoxicity have been reported with various carrier liquids. The use of hydrogel forms of DBM or ECM may reduce the need for carrier liquids. DBM and ECM hydrogels exhibited sigmoidal gelation kinetics consistent with a nucleation and growth mechanism, with ECM hydrogels characterized by lower storage moduli than the DBM hydrogels. Enhanced proliferation of mouse primary calvarial cells was achieved on ECM hydrogels, compared with collagen type I and DBM hydrogels. These results show that DBM and ECM hydrogels have distinct structural, mechanical and biological properties and have the potential for clinical delivery without the need for carrier liquids. PMID:23624219

  12. Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel

    NASA Astrophysics Data System (ADS)

    Johnson, Todd D.; Lin, Stephen Y.; Christman, Karen L.

    2011-12-01

    In the native tissue, the interaction between cells and the extracellular matrix (ECM) is essential for cell migration, proliferation, differentiation, mechanical stability, and signaling. It has been shown that decellularized ECMs can be processed into injectable formulations, thereby allowing for minimally invasive delivery. Upon injection and increase in temperature, these materials self-assemble into porous gels forming a complex network of fibers with nanoscale structure. In this study we aimed to examine and tailor the material properties of a self-assembling ECM hydrogel derived from porcine myocardial tissue, which was developed as a tissue specific injectable scaffold for cardiac tissue engineering. The impact of gelation parameters on ECM hydrogels has not previously been explored. We examined how modulating pH, temperature, ionic strength, and concentration affected the nanoscale architecture, mechanical properties, and gelation kinetics. These material characteristics were assessed using scanning electron microscopy, rheometry, and spectrophotometry, respectively. Since the main component of the myocardial matrix is collagen, many similarities between the ECM hydrogel and collagen gels were observed in terms of the nanofibrous structure and modulation of properties by altering ionic strength. However, variation from collagen gels was noted for the gelation temperature along with varied times and rates of gelation. These discrepancies when compared to collagen are likely due to the presence of other ECM components in the decellularized ECM based hydrogel. These results demonstrate how the material properties of ECM hydrogels could be tailored for future in vitro and in vivo applications.

  13. Extracellular matrix-mediated chemotaxis can impede cell migration

    PubMed Central

    Perumpanani, A. J.; Simmons, D. L.; Gearing, A. J. H.; Miller, K. M.; Ward, G.; Norbury, J.; Schneemann, M.; Sherratt, J. A.

    1998-01-01

    Cells use a combination of changes in adhesion, proteolysis and motility (directed and random) during the process of migration. Proteolysis of the extracellular matrix (ECM) results in thecreation of haptotactic gradients which cells use to move in a directed fashion. The proteolytic creation of these gradients also results in the production of digested fragments of ECM. In this study we show that in the human fibrosarcoma cell line HT1080, matrix metalloproteinase-2(MMP-2)-digested fragments of fibronectin exert a chemotactic pull stronger than that of undigested fibronectin. During invasion, this gradient of ECM fragments is established in the wake of an invading cell, running counter to the direction of invasion. The resultant chemotactic pull is anti-invasive, contrary to the traditional view of the role of chemotaxis in invasion. Uncontrolled ECM degradation by high concentrations of MMP can thus result in steep gradients of ECM fragments, which run against the direction of invasion. Consequently, the invasive potential of a cell depends on MMP production in a biphasic mannerimplying that MMP inhibitors will upregulate invasion in high-MMPexpressing cells. Hence the therapeutic use of protease inhibitors against tumours expressing high levels of MMP could produce an augmentation of invasion.

  14. Dynamic Interactions of Epidermal Collagen XVII with the Extracellular Matrix

    PubMed Central

    Nishie, Wataru; Kiritsi, Dimitra; Nyström, Alexander; Hofmann, Silke C.; Bruckner-Tuderman, Leena

    2011-01-01

    Transmembrane collagen XVII, a major component of the hemidesmosomes, is crucial for stable adhesion of the epidermis and dermis in the skin, and its dysfunction results in blistering diseases. The ectodomain of collagen XVII (Ecto-ColXVII) is constitutively shed from the cell surface, but its binding partner(s) in the extracellular matrix (ECM) and the physiologic roles of the ligand interactions remain elusive. Herein, we used a new cleavage site–specific antibody to address the dynamics of collagen XVII shedding and the interactions of Ecto-ColXVII with the ECM. Ecto-ColXVII was present in the migration tracks of primary human keratinocytes and co-localized with laminin 332. The presence of this laminin, but also of collagen IV and Matrigel, in the ECM enhanced shedding and incorporation of Ecto-ColXVII into the matrix. Laminin 332 is a major, but not exclusive, interaction partner in vivo because Ecto-ColXVII deposited in the ECM of laminin 332–deficient keratinocytes was drastically reduced, but Ecto-ColXVII was present in laminin 332–negative human skin. Expression of collagen XVII deletion mutants in HEK 293 cells identified the C-terminal ectodomain stretch Ser978-Pro1497 as necessary for ECM binding. Taken together, migrating keratinocytes shed the Ecto-ColXVII, and this dynamically binds via its C-terminal domain to distinct partners in the ECM. PMID:21801871

  15. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Gillette, E. L.; Barcellos-Hoff, M. H.; Chaterjee, A. (Principal Investigator)

    1996-01-01

    High-LET radiation has unique physical and biological properties compared to sparsely ionizing radiation. Recent studies demonstrate that sparsely ionizing radiation rapidly alters the pattern of extracellular matrix expression in several tissues, but little is known about the effect of heavy-ion radiation. This study investigates densely ionizing radiation-induced changes in extracellular matrix localization in the mammary glands of adult female BALB/c mice after whole-body irradiation with 0.8 Gy 600 MeV iron particles. The basement membrane and interstitial extracellular matrix proteins of the mammary gland stroma were mapped with respect to time postirradiation using immunofluorescence. Collagen III was induced in the adipose stroma within 1 day, continued to increase through day 9 and was resolved by day 14. Immunoreactive tenascin was induced in the epithelium by day 1, was evident at the epithelial-stromal interface by day 5-9 and persisted as a condensed layer beneath the basement membrane through day 14. These findings parallel similar changes induced by gamma irradiation but demonstrate different onset and chronicity. In contrast, the integrity of epithelial basement membrane, which was unaffected by sparsely ionizing radiation, was disrupted by iron-particle irradiation. Laminin immunoreactivity was mildly irregular at 1 h postirradiation and showed discontinuities and thickening from days 1 to 9. Continuity was restored by day 14. Thus high-LET radiation, like sparsely ionizing radiation, induces rapid-remodeling of the stromal extracellular matrix but also appears to alter the integrity of the epithelial basement membrane, which is an important regulator of epithelial cell proliferation and differentiation.

  16. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland

    SciTech Connect

    Ehrhart, E.J.; Gillette, E.L.; Barcellos-Hoff, M.H.

    1996-02-01

    High-LET radiation has unique physical and biological properties compared to sparsely ionizing radiation. Recent studies demonstrate that sparsely ionizing radiation rapidly alters the pattern of extracellular matrix expression in several tissues, but little is known about the effect of heavy-ion radiation. This study investigates densely ionizing radiation-induced changes in extracellular matrix localization in the mammary glands of adult female BALB/c mice after whole-body irradiation with 0.8 Gy 600 MeV iron particles. The basement membrane and interstitial extracellular matrix proteins of the mammary gland stroma were mapped with respect to time postirradiation using immunofluorescence. Collagen III was induced in the adipose stroma within 1 day, continued to increase through day 9 and was resolved by day 14. Immunoreactive tenascin was induced in the epithelium by day 1, was evident at the epithelial-stromal interface by day 5-9 and persisted as a condensed layer beneath the basement membrane through day 14. These findings parallel similar changes induced by {gamma} irradiation but demonstrate different onset and chronicity. In contrast, the integrity of epithelial basement membrane, which was unaffected by sparsely ionizing radiation, was disrupted by iron-particle irradiation. Laminin inummoreactivity was mildly irregular at 1 h postirradiation and showed discontinuities and thickening from days 1 to 9. Continuity was restored by day 14. Thus high-LET radiation, like sparsely ionizing radiation, induces rapid remodeling of the stromal extracellular matrix but also appears to alter the integrity of the epithelial basement membrane, which is an important regulator of epithelial cell proliferation and differentiation. 40 refs., 3 figs.

  17. HOW MATRIX METALLOPROTEINASES REGULATE CELL BEHAVIOR

    PubMed Central

    Sternlicht, Mark D.; Werb, Zena

    2009-01-01

    The matrix metalloproteinases (MMPs) constitute a multigene family of over 25 secreted and cell surface enzymes that process or degrade numerous pericellular substrates. Their targets include other proteinases, proteinase inhibitors, clotting factors, chemotactic molecules, latent growth factors, growth factor–binding proteins, cell surface receptors, cell-cell adhesion molecules, and virtually all structural extracellular matrix proteins. Thus MMPs are able to regulate many biologic processes and are closely regulated themselves. We review recent advances that help to explain how MMPs work, how they are controlled, and how they influence biologic behavior. These advances shed light on how the structure and function of the MMPs are related and on how their transcription, secretion, activation, inhibition, localization, and clearance are controlled. MMPs participate in numerous normal and abnormal processes, and there are new insights into the key substrates and mechanisms responsible for regulating some of these processes in vivo. Our knowledge in the field of MMP biology is rapidly expanding, yet we still do not fully understand how these enzymes regulate most processes of development, homeostasis, and disease. PMID:11687497

  18. The cytoprotective capacity of processed human cardiac extracellular matrix.

    PubMed

    Kappler, Benjamin; Anic, Petra; Becker, Matthias; Bader, Andreas; Klose, Kristin; Klein, Oliver; Oberwallner, Barbara; Choi, Yeong-Hoon; Falk, Volkmar; Stamm, Christof

    2016-07-01

    Freshly isolated human cardiac extracellular matrix sheets (cECM) have been shown to support stem cell proliferation and tissue-specific lineage commitment. We now developed a protocol for standardized production of durable, bio-functional hcECM microparticles and corresponding hydrogel, and tested its cytoprotective effects on contractile cells subjected to ischemia-like conditions. Human ventricular myocardium was decellularized by a 3-step protocol, including Tris/EDTA, SDS and serum incubation (cECM). Following snap-freezing and lyophilization, microparticles were created and characterized by laser diffraction, dynamic image analysis (DIA), and mass spectrometry. Moreover, cECM hydrogel was produced by pepsin digestion. Baseline cell-support characteristics were determined using murine HL-1 cardiomyocytes, and the cytoprotective effects of ECM products were tested under hypoxia and glucose/serum deprivation. In cECM, glycoproteins (thrombospondin 1, fibronectin, collagens and nidogen-1) and proteoglycans (dermatopontin, lumican and mimecan) were preserved, but residual intracellular and blood-borne proteins were also detected. The median particle feret diameter was 66 μm (15-157 μm) by laser diffraction, and 57 μm (20-182 μm) by DIA with crystal violet staining. HL-1 cells displayed enhanced metabolic activity (39 ± 12 %, P < 0.05) and proliferation (16 ± 3 %, P < 0.05) when grown on cECM microparticles in normoxia. During simulated ischemia, cECM microparticles exerted distinct cytoprotective effects (MTS conversion, 240 ± 32 %; BrdU uptake, 45 ± 14 %; LDH release, -72 ± 7 %; P < 0.01, each). When cECM microparticles were solubilized to form a hydrogel, the cytoprotective effect was initially abolished. However, modifying the preparation process (pepsin digestion at pH 2 and 25 °C, 1 mg/ml final cECM concentration) restored the cytoprotective cECM activity. Extracellular matrix from human myocardium can be processed to

  19. The planar cell polarity protein VANGL2 coordinates remodeling of the extracellular matrix.

    PubMed

    Williams, B Blairanne; Mundell, Nathan; Dunlap, Julie; Jessen, Jason

    2012-07-01

    Understanding how planar cell polarity (PCP) is established, maintained, and coordinated in migrating cell populations is an important area of research with implications for both embryonic morphogenesis and tumor cell invasion. We recently reported that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell surface level of membrane type-1 matrix metalloproteinase (MMP14 or MT1-MMP). Here, we further discuss these findings in terms of extracellular matrix (ECM) remodeling, cell migration, and zebrafish gastrulation. We also demonstrate that VANGL2 function impacts the focal degradation of ECM by human cancer cells including the formation or stability of invadopodia. Together, our findings implicate MMP14 as a downstream effector of VANGL2 signaling and suggest a model whereby the regulation of pericellular proteolysis is a fundamental aspect of PCP in migrating cells. PMID:23060953

  20. The planar cell polarity protein VANGL2 coordinates remodeling of the extracellular matrix

    PubMed Central

    Williams, B. Blairanne; Mundell, Nathan; Dunlap, Julie; Jessen, Jason

    2012-01-01

    Understanding how planar cell polarity (PCP) is established, maintained, and coordinated in migrating cell populations is an important area of research with implications for both embryonic morphogenesis and tumor cell invasion. We recently reported that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell surface level of membrane type-1 matrix metalloproteinase (MMP14 or MT1-MMP). Here, we further discuss these findings in terms of extracellular matrix (ECM) remodeling, cell migration, and zebrafish gastrulation. We also demonstrate that VANGL2 function impacts the focal degradation of ECM by human cancer cells including the formation or stability of invadopodia. Together, our findings implicate MMP14 as a downstream effector of VANGL2 signaling and suggest a model whereby the regulation of pericellular proteolysis is a fundamental aspect of PCP in migrating cells. PMID:23060953

  1. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: a systematic review.

    PubMed

    Mosala Nezhad, Zahra; Poncelet, Alain; de Kerchove, Laurent; Gianello, Pierre; Fervaille, Caroline; El Khoury, Gebrine

    2016-06-01

    Extracellular matrix (ECM) derived from small intestinal submucosa (SIS) is widely used in clinical applications as a scaffold for tissue repair. Recently, CorMatrix® porcine SIS-ECM (CorMatrix Cardiovascular, Inc., Roswell, GA, USA) has gained popularity for 'next-generation' cardiovascular tissue engineering due to its ease of use, remodelling properties, lack of immunogenicity, absorbability and potential to promote native tissue growth. Here, we provide an overview of the biology of porcine SIS-ECM and systematically review the preclinical and clinical literature on its use in cardiovascular surgery. CorMatrix® has been used in a variety of cardiovascular surgical applications, and since it is the most widely used SIS-ECM, this material is the focus of this review. Since CorMatrix® is a relatively new product for cardiovascular surgery, some clinical and preclinical studies published lack systematic reporting of functional and pathological findings in sufficient numbers of subjects. There are also emerging reports to suggest that, contrary to expectations, an undesirable inflammatory response may occur in CorMatrix® implants in humans and longer-term outcomes at particular sites, such as the heart valves, may be suboptimal. Large-scale clinical studies are needed driven by robust protocols that aim to quantify the pathological process of tissue repair. PMID:26912574

  2. Extracellular matrix structure and nano-mechanics determine megakaryocyte function.

    PubMed

    Malara, Alessandro; Gruppi, Cristian; Pallotta, Isabella; Spedden, Elise; Tenni, Ruggero; Raspanti, Mario; Kaplan, David; Tira, Maria Enrica; Staii, Cristian; Balduini, Alessandra

    2011-10-20

    Cell interactions with matrices via specific receptors control many functions, with chemistry, physics, and membrane elasticity as fundamental elements of the processes involved. Little is known about how biochemical and biophysical processes integrate to generate force and, ultimately, to regulate hemopoiesis into the bone marrow-matrix environment. To address this hypothesis, in this work we focus on the regulation of MK development by type I collagen. By atomic force microscopy analysis, we demonstrate that the tensile strength of fibrils in type I collagen structure is a fundamental requirement to regulate cytoskeleton contractility of human MKs through the activation of integrin-α2β1-dependent Rho-ROCK pathway and MLC-2 phosphorylation. Most importantly, this mechanism seemed to mediate MK migration, fibronectin assembly, and platelet formation. On the contrary, a decrease in mechanical tension caused by N-acetylation of lysine side chains in type I collagen completely reverted these processes by preventing fibrillogenesis. PMID:21828129

  3. Matrix Metalloproteinase 12-Deficiency Augments Extracellular Matrix Degrading Metalloproteinases and Attenuates IL-13–Dependent Fibrosis

    PubMed Central

    Madala, Satish K.; Pesce, John T.; Ramalingam, Thirumalai R.; Wilson, Mark S.; Minnicozzi, Samantha; Cheever, Allen W.; Thompson, Robert W.; Mentink-Kane, Margaret M.; Wynn, Thomas A.

    2011-01-01

    Infection with the parasitic helminth Schistosoma mansoni causes significant liver fibrosis and extracellular matrix (ECM) remodeling. Matrix metalloproteinases (MMP) are important regulators of the ECM by regulating cellular inflammation, extracellular matrix deposition, and tissue reorganization. MMP12 is a macrophage-secreted elastase that is highly induced in the liver and lung in response to S. mansoni eggs, confirmed by both DNA microarray and real-time PCR analysis. However, the function of MMP12 in chronic helminth-induced inflammation and fibrosis is unclear. In this study, we reveal that MMP12 acts as a potent inducer of inflammation and fibrosis after infection with the helminth parasite S. mansoni. Surprisingly, the reduction in liver and lung fibrosis in MMP12-deficient mice was not associated with significant changes in cytokine, chemokine, TGF-β1, or tissue inhibitors of matrix metalloproteinase expression. Instead, we observed marked increases in MMP2 and MMP13 expression, suggesting that Mmp12 was promoting fibrosis by limiting the expression of specific ECM-degrading MMPs. Interestingly, like MMP12, MMP13 expression was highly dependent on IL-13 and type II–IL-4 receptor signaling. However, in contrast to MMP12, expression of MMP13 was significantly suppressed by the endogenous IL-13 decoy receptor, IL-13Rα2. In the absence of MMP12, expression of IL-13Rα2 was significantly reduced, providing a possible explanation for the increased IL-13-driven MMP13 activity and reduced fibrosis. As such, these data suggest important counter-regulatory roles between MMP12 and ECM-degrading enzymes like MMP2, MMP9, and MMP13 in Th2 cytokine-driven fibrosis. PMID:20181883

  4. Native Cardiac Extracellular Matrix Hydrogels for Cultivation of Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Freytes, Donald O; O’Neill, John D; Duan-Arnold, Yi; Wrona, Emily; Vunjak-Novakovic, Gordana

    2015-01-01

    Summary Biomaterial scaffolds made of native and synthetic materials are designed to serve as a structural and informational template for cell attachment and tissue formation. The use of native extracellular matrix (ECM) is of special interest for the culture of cardiac stem and progenitor cells due to the presence of intrinsic regulatory factors regulating cardiac function. We describe here how to obtain native ECM hydrogels from porcine hearts for the culture of human embryonic, induced pluripotent, and somatic stem cells for cardiac tissue engineering and regenerative medicine applications. PMID:25070328

  5. Natural cardiac extracellular matrix hydrogels for cultivation of human stem cell-derived cardiomyocytes.

    PubMed

    Freytes, Donald O; O'Neill, John D; Duan-Arnold, Yi; Wrona, Emily A; Vunjak-Novakovic, Gordana

    2014-01-01

    Biomaterial scaffolds made of natural and synthetic materials are designed to serve as a structural and informational template for cell attachment and tissue formation. The use of native extracellular matrix (ECM) is of special interest for the culture of cardiac stem and progenitor cells due to the presence of intrinsic regulatory factors regulating cardiac function. We describe here how to obtain native ECM hydrogels from porcine hearts for the culture of human embryonic, induced pluripotent, and somatic stem cells for cardiac tissue engineering and regenerative medicine applications. PMID:25070328

  6. Extracellular matrix turnover in coronary artery ectasia patients.

    PubMed

    Liu, Ruifeng; Chen, Lianfeng; Wu, Wei; Chen, Houzao; Zhang, Shuyang

    2016-03-01

    Dysregulation of the metabolism of the extracellular matrix (ECM) may contribute to coronary artery ectasia (CAE). This study evaluated the turnover of main ECM components and related proteolytic enzymes activities. In this study, thirty patients with CAE, 30 patients with coronary artery disease (CAD) and 30 subjects with normal coronary arteries (Control) were selected. The following circulating ECM metabolism markers were measured: soluble elastin (sElastin), collagen type I cross-linked telopeptides (ICTP), procollagen type I carboxy terminal peptide (PICP), protocollagen III N-terminal propeptide (PIIINP), and procollagen a1(III) C-terminal propeptide (PIIICP). Serum total elastase activity and total matrix metalloproteinase (MMP) activity were also determined. The level of sElastin was higher in the CAE group than in the CAD and Control groups (P1 = 0.009, P2 = 0.000). There was no difference in ICTP (P = 0.168) or PIIICP (P = 0.079) among the three groups. PICP was significantly elevated in CAE (P1 = 0.001, P2 = 0.002). PIIINP was also significantly increased in CAE (P1 = 0.002, P2 = 0.007). Total elastase activity was higher in the CAE group than in the other two groups (P1 = 0.006, P2 = 0.022). Total MMP activity was significantly higher in the CAE group than the Control group (P2 = 0.013) but not higher than the CAD group (P1 = 0.477). In conclusion, within CAE patients the main changes in ECM metabolism were increased degradation of elastin fibres and the transition of collagen from type III to type I. Elastase and MMPs appear to be associated with this kind of ECM turnover. PMID:25576491

  7. Extracellular matrix protein expression is brain region dependent.

    PubMed

    Dauth, Stephanie; Grevesse, Thomas; Pantazopoulos, Harry; Campbell, Patrick H; Maoz, Ben M; Berretta, Sabina; Parker, Kevin Kit

    2016-05-01

    In the brain, extracellular matrix (ECM) components form networks that contribute to structural and functional diversity. Maladaptive remodeling of ECM networks has been reported in neurodegenerative and psychiatric disorders, suggesting that the brain microenvironment is a dynamic structure. A lack of quantitative information about ECM distribution in the brain hinders an understanding of region-specific ECM functions and the role of ECM in health and disease. We hypothesized that each ECM protein as well as specific ECM structures, such as perineuronal nets (PNNs) and interstitial matrix, are differentially distributed throughout the brain, contributing to the unique structure and function in the various regions of the brain. To test our hypothesis, we quantitatively analyzed the distribution, colocalization, and protein expression of aggrecan, brevican, and tenascin-R throughout the rat brain utilizing immunohistochemistry and mass spectrometry analysis and assessed the effect of aggrecan, brevican, and/or tenascin-R on neurite outgrowth in vitro. We focused on aggrecan, brevican, and tenascin-R as they are especially expressed in the mature brain, and have established roles in brain development, plasticity, and neurite outgrowth. The results revealed a differentiated distribution of all three proteins throughout the brain and indicated that their presence significantly reduces neurite outgrowth in a 3D in vitro environment. These results underline the importance of a unique and complex ECM distribution for brain physiology and suggest that encoding the distribution of distinct ECM proteins throughout the brain will aid in understanding their function in physiology and in turn assist in identifying their role in disease. J. Comp. Neurol. 524:1309-1336, 2016. © 2016 Wiley Periodicals, Inc. PMID:26780384

  8. The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development.

    PubMed

    Harper, Angelica R; Summers, Jody A

    2015-04-01

    Myopia is a common ocular condition, characterized by excessive elongation of the ocular globe. The prevalence of myopia continues to increase, particularly among highly educated groups, now exceeding 80% in some groups. In parallel with the increased prevalence of myopia, are increases in associated blinding ocular conditions including glaucoma, retinal detachment and macular degeneration, making myopia a significant global health concern. The elongation of the eye is closely related to the biomechanical properties of the sclera, which in turn are largely dependent on the composition of the scleral extracellular matrix. Therefore an understanding of the cellular and extracellular events involved in the regulation of scleral growth and remodeling during childhood and young adulthood will provide future avenues for the treatment of myopia and its associated ocular complications. PMID:25819458

  9. EVALUATION OF THE EXTRACELLULAR MATRIX OF INJURED SUPRASPINATUS IN RATS

    PubMed Central

    Almeida, Luiz Henrique Oliveira; Ikemoto, Roberto; Mader, Ana Maria; Pinhal, Maria Aparecida Silva; Munhoz, Bruna; Murachovsky, Joel

    2016-01-01

    ABSTRACT Objective: To evaluate the evolution of injuries of the supraspinatus muscle by immunohistochemistry (IHC) and anatomopathological analysis in animal model (Wistar rats). Methods: Twenty-five Wistar rats were submitted to complete injury of the supraspinatus tendon, then subsequently sacrificed in groups of five animals at the following periods: immediately after the injury, 24h after the injury, 48h after, 30 days after and three months after the injury. All groups underwent histological and IHC analysis. Results: Regarding vascular proliferation and inflammatory infiltrate, we found a statistically significant difference between groups 1(control group) and 2 (24h after injury). IHC analysis showed that expression of vascular endothelial growth factor (VEGF) showed a statistically significant difference between groups 1 and 2, and collagen type 1 (Col-1) evaluation presented a statistically significant difference between groups 1 and 4. Conclusion: We observed changes in the extracellular matrix components compatible with remodeling and healing. Remodeling is more intense 24h after injury. However, VEGF and Col-1 are substantially increased at 24h and 30 days after the injury, respectively. Level of Evidence I, Experimental Study. PMID:26997907

  10. Extracellular Matrix and the Mechanics of Large Artery Development

    PubMed Central

    Cheng, Jeffrey K.; Wagenseil, Jessica E.

    2012-01-01

    The large, elastic arteries, as their name suggests, provide elastic distention and recoil during the cardiac cycle in vertebrate animals. The arteries are distended from the pressure of ejecting blood during active contraction of the left ventricle (LV) during systole, and recoil to their original dimensions during relaxation of the LV during diastole. The cyclic distension occurs with minimal energy loss, due to the elastic properties of one of the major structural extracellular matrix (ECM) components, elastin. The maximum distension is limited to prevent damage to the artery by another major ECM component, collagen. The mix of ECM components in the wall largely determines the passive mechanical behavior of the arteries and the subsequent load on the heart during systole. While much research has focused on initial artery formation, there has been less attention on the continuing development of the artery to produce the mature composite wall complete with endothelial cells (ECs), smooth muscle cells (SMCs), and the necessary mix of ECM components for proper cardiovascular function. This review focuses on the physiology of large artery development, including SMC differentiation and ECM production. The effects of hemodynamic forces and ECM deposition on the evolving arterial structure and function are discussed. Human diseases and mouse models with genetic mutations in ECM proteins that affect large artery development are summarized. A review of constitutive models and growth and remodeling theories is presented, along with future directions to improve understanding of ECM and the mechanics of large artery development. PMID:22584609

  11. Extracellular matrix, biotensegrity and tumor microenvironment. An update and overview.

    PubMed

    Noguera, R; Nieto, O A; Tadeo, I; Fariñas, F; Alvaro, T

    2012-06-01

    The extracellular matrix (ECM) constitutes a three-dimensional network that surrounds all cells, organs and tissues in the body. It forms a biophysical filter for protection, nutrition and cell innervation, as well as the medium for facilitating immune response, angiogenesis, fibrosis and tissue regeneration. It is the mechanism by which mechanical forces are transmitted to the basement membrane which, through the integrins, supports the tensegrity system and activates the epigenetic mechanisms of the cell. A review and update on current knowledge on this topic reveals how disturbance of the ECM leads to a loss of efficient filtering, nutrition, elimination, and cell denervation functions, in addition to loss of regeneration capacity and disorders in mechanotransduction. Furthermore, such disturbance results in a loss of substrate, and with it the ability to provide a proper immune response against tumor, toxic and infectious agents. Reciprocal communication between ECM stromal and parenchymatous cells directs gene expression. The oncogenic capacity of the stroma derives from the associated cells as well as from the tumor cells, the angiogenic microenvironment and from an alteration in tensegrity; all of which are dependent on the ECM. It has been shown that the malignant phenotype is reversible by correction of the altered cues of the ECM. PMID:22473691

  12. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors.

    PubMed

    Beningo, Karen A; Dembo, Micah; Wang, Yu-li

    2004-12-28

    Fibroblasts in 2D cultures differ dramatically in behavior from those in the 3D environment of a multicellular organism. However, the basis of this disparity is unknown. A key difference is the spatial arrangement of anchored extracellular matrix (ECM) receptors to the ventral surface in 2D cultures and throughout the entire surface in 3D cultures. Therefore, we asked whether changing the topography of ECM receptor anchorage alone could invoke a morphological response. By using polyacrylamide-based substrates to present anchored fibronectin or collagen on dorsal cell surfaces, we found that well spread fibroblasts in 2D cultures quickly changed into a bipolar or stellate morphology similar to fibroblasts in vivo. Cells in this environment lacked lamellipodia and large actin bundles and formed small focal adhesions only near focused sites of protrusion. These responses depend on substrate rigidity, calcium ion, and, likely, the calcium-dependent protease calpain. We suggest that fibroblasts respond to both spatial distribution and mechanical input of anchored ECM receptors. Changes in cell shape may in turn affect diverse cellular activities, including gene expression, growth, and differentiation, as shown in numerous previous studies. PMID:15601776

  13. Tissue Extracellular Matrix Nanoparticle Presentation in Electrospun Nanofibers

    PubMed Central

    Gibson, Matt; Mao, Hai-Quan; Elisseeff, Jennifer

    2014-01-01

    Biomaterials derived from the decellularization of mature tissues retain biological and architectural features that profoundly influence cellular activity. However, the clinical utility of such materials remains limited as the shape and physical properties are difficult to control. In contrast, scaffolds based on synthetic polymers can be engineered to exhibit specific physical properties, yet often suffer from limited biological functionality. This study characterizes composite materials that present decellularized extracellular matrix (DECM) particles in combination with synthetic nanofibers and examines the ability of these materials to influence stem cell differentiation. Mechanical processing of decellularized tissues yielded particles with diameters ranging from 71 to 334 nm. Nanofiber scaffolds containing up to 10% DECM particles (wt/wt) derived from six different tissues were engineered and evaluated to confirm DECM particle incorporation and to measure bioactivity. Scaffolds containing bone, cartilage, and fat promoted osteogenesis at 1 and 3 weeks compared to controls. In contrast, spleen and lung DECM significantly reduced osteogenic outcomes compared to controls. These findings highlight the potential to incorporate appropriate source DECM nanoparticles within nanofiber composites to design a scaffold with bioactivity targeted to specific applications. PMID:24971329

  14. Fibroblast extracellular matrix and adhesion on microtextured polydimethylsiloxane scaffolds.

    PubMed

    Stanton, Morgan M; Parrillo, Allegra; Thomas, Gawain M; McGimpsey, W Grant; Wen, Qi; Bellin, Robert M; Lambert, Christopher R

    2015-05-01

    The immediate physical and chemical surroundings of cells provide important biochemical cues for their behavior. Designing and tailoring biomaterials for controlled cell signaling and extracellular matrix (ECM) can be difficult due to the complexity of the cell-surface relationship. To address this issue, our research has led to the development of a polydimethylsiloxane (PDMS) scaffold with defined microtopography and chemistry for surface driven ECM assembly. When human fibroblasts were cultured on this microtextured PDMS with 2-6 µm wide vertical features, significant changes in morphology, adhesion, actin cytoskeleton, and fibronectin generation were noted when compared with cells cultured on unmodified PDMS. Investigation of cellular response and behavior was performed with atomic force microscopy in conjunction with fluorescent labeling of focal adhesion cites and fibronectin in the ECM. Changes in the surface topography induced lower adhesion, an altered actin cytoskeleton, and compacted units of fibronectin similar to that observed in vivo. Overall, these findings provide critical information of cell-surface interactions with a microtextured, polymer substrate that can be used in the field of tissue engineering for controlling cellular ECM interactions. PMID:25142015

  15. Cellular and extracellular matrix modulation of corneal stromal opacity.

    PubMed

    Torricelli, Andre A M; Wilson, Steven E

    2014-12-01

    Stromal transparency is a critical factor contributing to normal function of the visual system. Corneal injury, surgery, disease and infection elicit complex wound healing responses that serve to protect against insults and maintain the integrity of the cornea, and subsequently to restore corneal structure and transparency. However, in some cases these processes result in prolonged loss of corneal transparency and resulting diminished vision. Corneal opacity is mediated by the complex actions of many cytokines, growth factors, and chemokines produced by the epithelial cells, stromal cells, bone marrow-derived cells, lacrimal tissues, and nerves. Myofibroblasts, and the disorganized extracellular matrix produced by these cells, are critical determinants of the level and persistence of stromal opacity after corneal injury. Decreases in corneal crystallins in myofibroblasts and corneal fibroblasts contribute to cellular opacity in the stroma. Regeneration of a fully functional epithelial basement membrane (BM) appears to have a critical role in the maintenance of corneal stromal transparency after mild injuries and recovery of transparency when opacity is generated after severe injuries. The epithelial BM likely has a regulatory function whereby it modulates epithelium-derived growth factors such as transforming growth factor (TGF) β and platelet-derived growth factor (PDGF) that drive the development and persistence of myofibroblasts from precursor cells. The purpose of this article is to review the factors involved in the maintenance of corneal transparency and to highlight the mechanisms involved in the appearance, persistency and regression of corneal opacity after stromal injury. PMID:25281830

  16. The significance of the extracellular matrix in intracranial aneurysms.

    PubMed

    Austin, G; Fisher, S; Dickson, D; Anderson, D; Richardson, S

    1993-01-01

    To what extent might change sin the extracellular matrix proteins in intracranial aneurysms (IA) or parent artery (PA) wall contribute to enlargement? Using IA specimens obtained from the coroner's office, the wall structure by light (Trichrome and Actin stains) and immunofluorescent microscopy (IF) (collagen I and fibronectin) have been studied in 18 specimens. It is well known that IA only arise when there is a deficiency in the internal elastic membrane and some breakdown in the media. The results show a normal three layer structure of intima, media, (muscularis), and adventitia in the PA extending out into the neck of the aneurysm. Immunofluorescent stains (IS) show collagen I and fibronectin limited to the adventitia and muscularis, respectively, of the PA and control arteries. The enlarging IA wall shows almost complete loss of this architecture. By IF stain, collagen I and fibronectin are intermingled throughout the IA wall. It is postulated that loss of structure and the confining muscularis layer permit easier elastic enlargement from a more or less homogeneous wall structure. PMID:7681275

  17. Expression of genes encoding extracellular matrix proteins: A macroarray study

    PubMed Central

    FUTYMA, KONRAD; MIOTŁA, PAWEŁ; RÓŻYŃSKA, KRYSTYNA; ZDUNEK, MAŁGORZATA; SEMCZUK, ANDRZEJ; RECHBERGER, TOMASZ; WOJCIEROWSKI, JACEK

    2014-01-01

    Endometrial cancer (EC) is one of the most common gynecological malignancies in Poland, with well-established risk factors. Genetic instability and molecular alterations responsible for endometrial carcinogenesis have been systematically investigated. The aim of the present study was to investigate, by means of cDNA macroarrays, the expression profiles of genes encoding extracellular matrix (ECM) proteins in ECs. Tissue specimens were collected during surgical procedures from 40 patients with EC, and control tissue was collected from 9 patients with uterine leiomyomas. RNA was isolated and RT-PCR with radioisotope-labeled cDNA was performed. The levels of ECM protein gene expression in normal endometrial tissues were compared to the expression of these genes in EC specimens. Statistically significant differences in gene expression, stratified by clinical stage of the ECs, were detected for aggrecan, vitronectin, tenascin R, nidogen and two collagen proteins: type VIII chain α1 and type XI chain α2. All of these proteins were overexpressed in stage III endometrial carcinomas compared to levels in stage I and II uterine neoplasms. In conclusion, increased expression of genes encoding ECM proteins may play an important role in facilitating accelerated disease progression of human ECs. PMID:25231141

  18. Mechanocompatible Polymer-Extracellular-Matrix Composites for Vascular Tissue Engineering.

    PubMed

    Jiang, Bin; Suen, Rachel; Wang, Jiao-Jing; Zhang, Zheng J; Wertheim, Jason A; Ameer, Guillermo A

    2016-07-01

    Small-diameter vascular grafts developed from vascular extracellular matrix (ECM) can potentially be used for bypass surgeries and other vascular reconstruction and repair procedures. The addition of heparin to the ECM improves graft hemocompatibility but often involves chemical cross-linking, which increases ECM mechanical stiffness compared to native arteries. Herein, the importance of maintaining ECM mechanocompatibility is demonstrated, and a mechanocompatible strategy to immobilize heparin onto the ECM via a biodegradable elastomer is described. Specifically, poly(1,8-octamethylene citrate)-co-cysteine is hybridized to the ECM, forming a polymer-ECM composite that allows for heparin immobilization via maleimide-thiol "click" chemistry. Heparinized composites reduce platelet adhesion by >60% in vitro, without altering the elastic modulus of the ECM. In a rat abdominal aortic interposition model, intimal hyperplasia in heparinized mechanocompatible grafts is 65% lower when compared to ECM-only control grafts at four weeks. In contrast, grafts that are heparinized with carbodiimide chemistry exhibit increased intimal hyperplasia (4.2-fold) and increased macrophage infiltration (3.5-fold) compared to ECM-only control grafts. All grafts show similar, partial endothelial cell coverage and little to no ECM remodeling. Overall, a mechanocompatible strategy to improve ECM thromboresistance is described and the importance of ECM mechanical properties for proper in vivo graft performance is highlighted. PMID:27109033

  19. The Biology of the Escherichia coli Extracellular Matrix

    PubMed Central

    Hufnagel, David A.; DePas, William H.; Chapman, Matthew R.

    2015-01-01

    Chapter Summary Escherichia coli (E. coli) is one of the world’s best-characterized organisms, as it has been extensively studied for over a century. However, most of this work has focused on E. coli grown under laboratory conditions that do not faithfully simulate its natural environments. Therefore, the historical perspectives on E. coli physiology and life cycle are somewhat skewed toward experimental systems that feature E. coli growing logarithmically in a test tube. Typically a commensal bacterium, E. coli resides in the lower intestines of a slew of animals. Outside of the lower intestine, E. coli can adapt and survive in a very different set of environmental conditions. Biofilm formation allows E. coli to survive, and even thrive, in environments that do not support the growth of planktonic populations. E. coli can form biofilms virtually everywhere; in the bladder during a urinary tract infection, on in-dwelling medical devices, and outside of the host on plants and in the soil. The E. coli extracellular matrix, primarily composed of the protein polymer named curli and the polysaccharide cellulose, promotes adherence to organic and inorganic surfaces, and resistance to desiccation, the host immune system and other antimicrobials. The pathways that govern E. coli biofilm formation, cellulose production, and curli biogenesis will be discussed in this book chapter, which concludes with insights into the future of E. coli biofilm research and potential therapies. PMID:26185090

  20. The Extracellular Matrix in Bronchopulmonary Dysplasia: Target and Source

    PubMed Central

    Mižíková, Ivana; Morty, Rory E.

    2015-01-01

    Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth that contributes significantly to morbidity and mortality in neonatal intensive care units. BPD results from life-saving interventions, such as mechanical ventilation and oxygen supplementation used to manage preterm infants with acute respiratory failure, which may be complicated by pulmonary infection. The pathogenic pathways driving BPD are not well-delineated but include disturbances to the coordinated action of gene expression, cell–cell communication, physical forces, and cell interactions with the extracellular matrix (ECM), which together guide normal lung development. Efforts to further delineate these pathways have been assisted by the use of animal models of BPD, which rely on infection, injurious mechanical ventilation, or oxygen supplementation, where histopathological features of BPD can be mimicked. Notable among these are perturbations to ECM structures, namely, the organization of the elastin and collagen networks in the developing lung. Dysregulated collagen deposition and disturbed elastin fiber organization are pathological hallmarks of clinical and experimental BPD. Strides have been made in understanding the disturbances to ECM production in the developing lung, but much still remains to be discovered about how ECM maturation and turnover are dysregulated in aberrantly developing lungs. This review aims to inform the reader about the state-of-the-art concerning the ECM in BPD, to highlight the gaps in our knowledge and current controversies, and to suggest directions for future work in this exciting and complex area of lung development (patho)biology. PMID:26779482

  1. Expression of extracellular matrix proteins in adenomatoid odontogenic tumor.

    PubMed

    Modolo, Filipe; Biz, Michelle Tillmann; Martins, Marília Trierveiller; Machado de Sousa, Suzana Orsini; de Araújo, Ney Soares

    2010-03-01

    Altered expression of extracellular matrix (ECM) components has been reported in several pathologies; however, few ECM proteins have been evaluated in adenomatoid odontogenic tumor (AOT). The aim of this study was to analyze the expression and distribution of the ECM proteoglycans: biglycan and decorin; and glycoproteins: osteonectin, osteopontin, bone sialoprotein and osteocalcin in the AOT. Three-micrometer sections from paraffin-embedded specimens were evaluated employing a streptavidin-biotin immunohistochemical method with the antibodies against the proteins previously cited. Only the osteonectin was expressed in the epithelial cells. The eosinophilic amorphous material and the connective tissue showed expression of all components studied. The calcification foci expressed only osteopontin. In conclusion, the low expression of the components studied in neoplastic epithelial cells suggests that the epithelial cells act probably as stimulators of the expression by the stroma, which in turn can act as agonist or antagonist of the tumor growth. These results suggest that the components studied probably have a key role in the biological behavior of the AOT. PMID:20070486

  2. The Extracellular Matrix Contributes to Mechanotransduction in Uterine Fibroids

    PubMed Central

    Leppert, Phyllis C.; Jayes, Friederike L.; Segars, James H.

    2014-01-01

    The role of the extracellular matrix (ECM) and mechanotransduction as an important signaling factor in the human uterus is just beginning to be appreciated. The ECM is not only the substance that surrounds cells, but ECM stiffness will either compress cells or stretch them resulting in signals converted into chemical changes within the cell, depending on the amount of collagen, cross-linking, and hydration, as well as other ECM components. In this review we present evidence that the stiffness of fibroid tissue has a direct effect on the growth of the tumor through the induction of fibrosis. Fibrosis has two characteristics: (1) resistance to apoptosis leading to the persistence of cells and (2) secretion of collagen and other components of the ECM such a proteoglycans by those cells leading to abundant disposition of highly cross-linked, disoriented, and often widely dispersed collagen fibrils. Fibrosis affects cell growth by mechanotransduction, the dynamic signaling system whereby mechanical forces initiate chemical signaling in cells. Data indicate that the structurally disordered and abnormally formed ECM of uterine fibroids contributes to fibroid formation and growth. An appreciation of the critical role of ECM stiffness to fibroid growth may lead to new strategies for treatment of this common disease. PMID:25110476

  3. Engineering extracellular matrix structure in 3D multiphase tissues

    PubMed Central

    Gillette, Brian M.; Rossen, Ninna S.; Das, Nikkan; Leong, Debra; Wang, Meixin; Dugar, Arushi; Sia, Samuel K.

    2011-01-01

    In native tissues, microscale variations in the extracellular matrix (ECM) structure can drive different cellular behaviors. Although control over ECM structure could prove useful in tissue engineering and in studies of cellular behavior, isotropic 3D matrices poorly replicate variations in local microenvironments. In this paper, we demonstrate a method to engineer local variations in the density and size of collagen fibers throughout 3D tissues. The results showed that, in engineered multiphase tissues, the structures of collagen fibers in both the bulk ECM phases (as measured by mesh size and width of fibers) as well as at tissue interfaces (as measured by density of fibers and thickness of tissue interfaces) could be modulated by varying the collagen concentrations and gelling temperatures. As the method makes use of a previously published technique for tissue bonding, we also confirmed that significant adhesion strength at tissue interfaces was achieved under all conditions tested. Hence, this study demonstrates how collagen fiber structures can be engineered within all regions of a tightly integrated multiphase tissue scaffold by exploiting knowledge of collagen assembly. PMID:21840047

  4. Modulation of Leukocyte Behavior by an Inflamed Extracellular Matrix

    PubMed Central

    Schor, Hagai; Vaday, Gayle G.

    2000-01-01

    Inflammation is a response of the immune system to foreign insult or physical damage. Various cellular and humoral components of the immune system are recruited from the vascular system and are translocated through endothelium, and into extracellular matrix (ECM) compartments of inflamed tissues. This translocation is orchestrated by various types of accessory signals, in the form of soluble or complexed molecules, which evoke remarkable transitions in leukocyte activities. Recruited inflammatory cells give rise to mechanisms of migration, including the secretion of enzymes and other pro-inflammatory mediators and the alteration of their adhesive contacts with the ECM. Hence, migrating cells secrete enzymes, chemokines, and cytokines which interact with the ECM, and thereby, provide the cells with intrinsic signals for coordinating their responses. Resultant products of enzymatic modifications to the ECM microenvironment, such as cytokine- and ECM-derived molecules, may be also part of a cell-signaling mechanism that provides leukocytes with information about the nature of their inflammatory activity; such a mechanism may give the immune system data that can be cognitively interpreted for consequential activities. This article reviews the findings that support this notion and describe the dynamic interactions between participants of the inflammatory processes. PMID:11097214

  5. Extracellular matrix as an inductive scaffold for functional tissue reconstruction

    PubMed Central

    BROWN, BRYAN N.; BADYLAK, STEPHEN F.

    2014-01-01

    The extracellular matrix (ECM) is a meshwork of both structural and functional proteins assembled in unique tissue-specific architectures. The ECM both provides the mechanical framework for each tissue and organ and is a substrate for cell signaling. The ECM is highly dynamic, and cells both receive signals from the ECM and contribute to its content and organization. This process of “dynamic reciprocity” is key to tissue development and for homeostasis. Based upon these important functions, ECM-based materials have been used in a wide variety of tissue engineering and regenerative medicine approaches to tissue reconstruction. It has been demonstrated that ECM-based materials, when appropriately prepared, can act as inductive templates for constructive remodeling. Specifically, such materials act as templates for the induction of de novo functional, site-appropriate, tissue formation. Herein, the diverse structural and functional roles of the ECM are reviewed to provide a rationale for the use of ECM scaffolds in regenerative medicine. Translational examples of ECM scaffolds in regenerative are provided, and the potential mechanisms by which ECM scaffolds elicit constructive remodeling are discussed. A better understanding of the ability of ECM scaffold materials to define the microenvironment of the injury site will lead to improved clinical outcomes associated with their use. PMID:24291155

  6. Spherical indentation of free-standing acellular extracellular matrix membranes.

    PubMed

    Cloonan, Aidan J; O'Donnell, Michael R; Lee, William T; Walsh, Michael T; De Barra, Eamonn; McGloughlin, Tim M

    2012-01-01

    Numerous scaffold materials have been developed for tissue engineering and regenerative medicine applications to replace or repair damaged tissues and organs. Naturally occurring scaffold materials derived from acellular xenogeneic and autologous extracellular matrix (ECM) are currently in clinical use. These biological scaffold materials possess inherent variations in mechanical properties. Spherical indentation or ball burst testing has commonly been used to evaluate ECM and harvested tissue due to its ease of use and simulation of physiological biaxial loading, but has been limited by complex material deformation profiles. An analytical methodology has been developed and applied to experimental load-deflection data of a model hyperelastic material and lyophilized ECM scaffolds. An optimum rehydration protocol was developed based on water absorption, hydration relaxation and dynamic mechanical analysis. The analytical methodology was compared with finite element simulations of the tests and excellent correlation was seen between the computed biaxial stress resultants and geometry deformations. A minimum rehydration period of 5 min at 37°C was sufficient for the evaluated multilaminated ECM materials. The proposed approach may be implemented for convenient comparative analysis of ECM materials and source tissues, process optimization or during lot release testing. PMID:21864728

  7. The extracellular matrix: Tools and insights for the "omics" era.

    PubMed

    Naba, Alexandra; Clauser, Karl R; Ding, Huiming; Whittaker, Charles A; Carr, Steven A; Hynes, Richard O

    2016-01-01

    The extracellular matrix (ECM) is a fundamental component of multicellular organisms that provides mechanical and chemical cues that orchestrate cellular and tissue organization and functions. Degradation, hyperproduction or alteration of the composition of the ECM cause or accompany numerous pathologies. Thus, a better characterization of ECM composition, metabolism, and biology can lead to the identification of novel prognostic and diagnostic markers and therapeutic opportunities. The development over the last few years of high-throughput ("omics") approaches has considerably accelerated the pace of discovery in life sciences. In this review, we describe new bioinformatic tools and experimental strategies for ECM research, and illustrate how these tools and approaches can be exploited to provide novel insights in our understanding of ECM biology. We also introduce a web platform "the matrisome project" and the database MatrisomeDB that compiles in silico and in vivo data on the matrisome, defined as the ensemble of genes encoding ECM and ECM-associated proteins. Finally, we present a first draft of an ECM atlas built by compiling proteomics data on the ECM composition of 14 different tissues and tumor types. PMID:26163349

  8. Osmotic Pressure Can Regulate Matrix Gene Expression in Bacillus subtilis

    PubMed Central

    Rubinstein, Shmuel M.; Kolodkin-Gal, Ilana; Mcloon, Anna; Chai, Liraz; Kolter, Roberto; Losick, Richard; Weitz, David A

    2012-01-01

    Many bacteria organize themselves into structurally complex communities known as biofilms in which the cells are held together by an extracellular matrix. In general, the amount of extracellular matrix is related to the robustness of the biofilm. Yet, the specific signals that regulate the synthesis of matrix remain poorly understood. Here we show that the matrix itself can be a cue that regulates the expression of the genes involved in matrix synthesis in Bacillus subtilis. The presence of the exopolysaccharide component of the matrix causes an increase in osmotic pressure that leads to an inhibition of matrix gene expression. We further show that non-specific changes in osmotic pressure also inhibit matrix gene expression and do so by activating the histidine kinase KinD. KinD, in turn, directs the phosphorylation of the master regulatory protein Spo0A, which at high levels represses matrix gene expression. Sensing a physical cue such as osmotic pressure, in addition to chemical cues, could be a strategy to non-specifically coordinate the behavior of cells in communities composed of many different species. PMID:22882172

  9. Sca-1 expression is required for efficient remodeling of the extracellular matrix during skeletal muscle regeneration

    PubMed Central

    Kafadar, Kimberly A.; Yi, Lin; Ahmad, Yusra; So, Leslie; Rossi, Fabio; Pavlath, Grace K.

    2009-01-01

    Sca-1 (Stem Cell Antigen-1) is a member of the Ly-6 family proteins that functions in cell growth, differentiation, and self-renewal in multiple tissues. In skeletal muscle Sca-1 negatively regulates myoblast proliferation and differentiation, and may function in the maintenance of progenitor cells. We investigated the role of Sca-1 in skeletal muscle regeneration and show here that Sca-1 expression is upregulated in a subset of myogenic cells upon muscle injury. We demonstrate that extract from crushed muscle upregulates Sca-1 expression in myoblasts in vitro, and that this effect is reversible and independent of cell proliferation. Sca-1-/- mice exhibit defects in muscle regeneration, with the development of fibrosis following injury. Sca-1-/- muscle displays reduced activity of matrix metalloproteinases, critical regulators of extracellular matrix remodeling. Interestingly, we show that the number of satellite cells is similar in wild-type and Sca-1-/- muscle, suggesting that in satellite cells Sca-1 does not play a role in self-renewal. We hypothesize that Sca-1 upregulates, directly or indirectly, the activity of matrix metalloproteinases, leading to matrix breakdown and efficient muscle regeneration. Further elucidation of the role of Sca-1 in matrix remodeling may aid in the development of novel therapeutic strategies for the treatment of fibrotic diseases. PMID:19059231

  10. Brain extracellular matrix meets COST--matrix for European research networks.

    PubMed

    Gajović, Srećko; Pochet, Roland

    2014-01-01

    Today's researchers are faced with a change from curiosity-driven to mandate-driven research. These two approaches are well combined within scientific networks (Actions) supported by the European Cooperation in Science and Technology (COST) program. The functioning of COST Actions, although directed only to networking, has a substantial impact on European science and can be compared to the functioning of the extracellular matrix in the brain, which although scarce plays a key role in initiation, maintenance, and plasticity of intercellular interactions in the nervous system. COST networks enable interdisciplinary approach and support early-stage researchers, which is a vital asset for the advancement of science. PMID:25410370

  11. Age-related macular degeneration and changes in the extracellular matrix

    PubMed Central

    Nita, Małgorzata; Strzałka-Mrozik, Barbara; Grzybowski, Andrzej; Mazurek, Urszula; Romaniuk, Wanda

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of permanent, irreversible, central blindness (scotoma in the central visual field that makes reading and writing impossible, stereoscopic vision, recognition of colors and details) in patients over the age of 50 years in European and North America countries, and an important role is attributed to disorders in the regulation of the extracellular matrix (ECM). The main aim of this article is to present the crucial processes that occur on the level of Bruch’s membrane, with special consideration of the metalloproteinase substrates, metalloproteinase, and tissue inhibitor of metalloproteinase (TIMP). A comprehensive review of the literature was performed through MEDLINE and PubMed searches, covering the years 2005–2012, using the following keywords: AMD, extracellular matrix, metalloproteinases, tissue inhibitors of metalloproteinases, Bruch’s membrane, collagen, elastin. In the pathogenesis of AMD, a significant role is played by collagen type I and type IV; elastin; fibulin-3, -5, and -6; matrix metalloproteinase (MMP)-2, MMP-9, MMP-14, and MMP-1; and TIMP-3. Other important mechanisms include: ARMS2 and HTR1 proteins, the complement system, the urokinase plasminogen activator system, and pro-renin receptor activation. Continuous rebuilding of the extracellular matrix occurs in both early and advanced AMD, simultaneously with the dysfunction of retinal pigment epithelium (RPE) cells and endothelial cells. The pathological degradation or accumulation of ECM structural components are caused by impairment or hyperactivity of specific MMPs/TIMPs complexes, and is also endangered by the influence of other mechanisms connected with both genetic and environmental factors. PMID:24938626

  12. Overload-Induced Skeletal Muscle Extracellular Matrix Remodeling And Myofiber Growth in Mice Lacking IL-6

    PubMed Central

    White, James P.; Reecy, James M.; Washington, Tyrone A.; Sato, Shuichi; Le, Michael E.; Davis, J. Mark; Wilson, L. Britt; Carson, James A.

    2011-01-01

    Aim Overloading healthy skeletal muscle produces myofiber hypertrophy and extracellular matrix remodeling, and these processes are thought to be interdependent for producing muscle growth. Inflammatory cytokine interleukin-6 (IL-6) gene expression is induced in overloaded skeletal muscle, and the loss of this IL-6 induction can attenuate the hypertrophic response to overload. Although the overload induction of IL-6 in skeletal muscle may be an important regulator of inflammatory processes and satellite cell proliferation, less is known about its role in the regulation of extracellular matrix remodeling. The purpose of the current study was to examine if overload-induced extracellular matrix remodeling, muscle growth, and associated gene expression were altered in mice that lack IL-6, when compared to wild-type mice. Methods Male C57/BL6 (WT) and C57/BL6 × IL-6-/- (IL-6-/-) mice (10 wks of age) were assigned to either a sham control or synergist ablation overload (OV) treatments for 3 or 21 days. Results Plantaris muscle mass increased 59% in WT and 116% in IL-6-/- mice after 21d OV. Myofiber CSA was also increased by 21d OV in both WT and IL-6-/- mice. Overload induced a 2-fold greater increase in the volume of non-contractile tissue in IL-6-/- muscle as compared to WT. Overload also induced a significantly greater accumulation of hydroxyproline and procollagen-1 mRNA in IL-6-/- muscle, when compared to WT muscle after 21d OV. TGF-β and IGF-1 mRNA expression were also induced to a greater extent in IL-6-/- muscle when compared to WT muscle after 21d OV. There was no effect of IL-6 loss on the induction of myogenin, and cyclin D1 mRNA expression after 3d OV. However, MyoD mRNA expression in 3d OV IL-6-/- muscle was attenuated when compared to WT overload mice. Conclusion IL-6 appears to be necessary for the normal regulation of extracellular matrix remodeling during overload-induced growth. PMID:19681796

  13. Process-induced extracellular matrix alterations affect the mechanisms of soft tissue repair and regeneration

    PubMed Central

    Xu, Hui; Sandor, Maryellen; Lombardi, Jared

    2013-01-01

    Extracellular matrices derived from animal tissues for human tissue repairs are processed by various methods of physical, chemical, or enzymatic decellularization, viral inactivation, and terminal sterilization. The mechanisms of action in tissue repair vary among bioscaffolds and are suggested to be associated with process-induced extracellular matrix modifications. We compared three non-cross-linked, commercially available extracellular matrix scaffolds (Strattice, Veritas, and XenMatrix), and correlated extracellular matrix alterations to in vivo biological responses upon implantation in non-human primates. Structural evaluation showed significant differences in retaining native tissue extracellular matrix histology and ultrastructural features among bioscaffolds. Tissue processing may cause both the condensation of collagen fibers and fragmentation or separation of collagen bundles. Calorimetric analysis showed significant differences in the stability of bioscaffolds. The intrinsic denaturation temperature was measured to be 51°C, 38°C, and 44°C for Strattice, Veritas, and XenMatrix, respectively, demonstrating more extracellular matrix modifications in the Veritas and XenMatrix scaffolds. Consequently, the susceptibility to collagenase degradation was increased in Veritas and XenMatrix when compared to their respective source tissues. Using a non-human primate model, three bioscaffolds were found to elicit different biological responses, have distinct mechanisms of action, and yield various outcomes of tissue repair. Strattice permitted cell repopulation and was remodeled over 6 months. Veritas was unstable at body temperature, resulting in rapid absorption with moderate inflammation. XenMatrix caused severe inflammation and sustained immune reactions. This study demonstrates that extracellular matrix alterations significantly affect biological responses in soft tissue repair and regeneration. The data offer useful insights into the rational design of

  14. Semicarbazide-sensitive amine oxidase and extracellular matrix deposition by smooth-muscle cells

    NASA Technical Reports Server (NTRS)

    Langford, Shannon D.; Trent, Margaret B.; Boor, Paul J.

    2002-01-01

    We have recently reported in vivo disruption of collagen and elastin architecture within blood vessel walls resulting from the selective inhibition of the enzyme semicarbazide-sensitive amine oxidase (SSAO). This study further investigates the effects of SSAO inhibition on extracellular matrix deposition by smooth-muscle cells (SMCs) cultured from neonatal rat hearts. SMCs were characterized, SSAO activity was measured, and soluble and insoluble collagen and elastin in the extracellular matrix (ECM) were quantified. Cultured neonatal rat heart SMC exhibited a monotypic synthetic phenotype that likely represents a myofibroblast. Detectable levels of SSAO activity present throughout 30-d culture peaked at 7-14 d, coinciding with the production of ECM. The addition of enzyme inhibitors and alternate SSAO substrates (benzylamine) produced varied and, in some cases, marked changes in SSAO activity as well as in the composition of mature and soluble matrix components. Similar to our previous in vivo findings, in vitro SSAO inhibition produced aberrations in collagen and elastin deposition by heart SMC. Because changes in SSAO activity are associated with cardiovascular pathologic states, this enzyme may play a protective or modulating role by regulating ECM production during pathologic insult.

  15. Selective enrichment of microRNAs in extracellular matrix vesicles produced by growth plate chondrocytes.

    PubMed

    Lin, Zhao; Rodriguez, Nicholas E; Zhao, Junjun; Ramey, Allison N; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi

    2016-07-01

    Matrix vesicles (MVs) are membrane organelles found in the extracellular matrix of calcifying cells, which contain matrix processing enzymes and regulate the extracellular environment via action of these enzymes. It is unknown whether MVs are also exosomic mediators of cell-cell communication via transfer of RNA material, and specifically, microRNA (miRNA). We investigated the presence of RNA in MVs isolated from cultures of costochondral growth zone chondrocytes. Our results showed that the average yield of MV RNA was 1.93±0.78ng RNA/10(4) cells, which was approximately 0.1% of the parent cell's total RNA. MV RNA was well-protected from RNase by the lipid membrane and was highly enriched in small RNA molecules compared to cells. Moreover, coding and non-coding small RNAs in MVs were in proportions that differed from parent cells. Enrichment of specific miRNAs was consistently observed in all three miRNA detection platforms that we used, suggesting that miRNAs are selectively packaged into MVs. MV-enriched miRNAs were related to different signaling pathways associated with bone formation. This study suggests a significant role for MVs as "matrisomes" in cell-cell communication in cartilage and bone development via transfer of specific miRNAs. PMID:27080510

  16. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound

    PubMed Central

    Tracy, Lauren E.; Minasian, Raquel A.; Caterson, E.J.

    2016-01-01

    Significance: Fibroblasts play a critical role in normal wound healing. Various extracellular matrix (ECM) components, including collagens, fibrin, fibronectin, proteoglycans, glycosaminoglycans, and matricellular proteins, can be considered potent protagonists of fibroblast survival, migration, and metabolism. Recent Advances: Advances in tissue culture, tissue engineering, and ex vivo models have made the examination and precise measurements of ECM components in wound healing possible. Likewise, the development of specific transgenic animal models has created the opportunity to characterize the role of various ECM molecules in healing wounds. In addition, the recent characterization of new ECM molecules, including matricellular proteins, dermatopontin, and FACIT collagens (Fibril-Associated Collagens with Interrupted Triple helices), further demonstrates our cursory knowledge of the ECM in coordinated wound healing. Critical Issues: The manipulation and augmentation of ECM components in the healing wound is emerging in patient care, as demonstrated by the use of acellular dermal matrices, tissue scaffolds, and wound dressings or topical products bearing ECM proteins such as collagen, hyaluronan (HA), or elastin. Once thought of as neutral structural proteins, these molecules are now known to directly influence many aspects of cellular wound healing. Future Directions: The role that ECM molecules, such as CCN2, osteopontin, and secreted protein, acidic and rich in cysteine, play in signaling homing of fibroblast progenitor cells to sites of injury invites future research as we continue investigating the heterotopic origin of certain populations of fibroblasts in a healing wound. Likewise, research into differently sized fragments of the same polymeric ECM molecule is warranted as we learn that fragments of molecules such as HA and tenascin-C can have opposing effects on dermal fibroblasts. PMID:26989578

  17. Customized Interface Biofunctionalization of Decellularized Extracellular Matrix: Toward Enhanced Endothelialization.

    PubMed

    Aubin, Hug; Mas-Moruno, Carlos; Iijima, Makoto; Schütterle, Nicolas; Steinbrink, Meike; Assmann, Alexander; Gil, Francesc Javier; Lichtenberg, Artur; Pegueroles, Marta; Akhyari, Payam

    2016-05-01

    Interface biofunctionalization strategies try to enhance and control the interaction between implants and host organism. Decellularized extracellular matrix (dECM) is widely used as a platform for bioengineering of medical implants, having shown its suitability in a variety of preclinical as well as clinical models. In this study, specifically designed, custom-made synthetic peptides were used to functionalize dECM with different cell adhesive sequences (RGD, REDV, and YIGSR). Effects on in vitro endothelial cell adhesion and in vivo endothelialization were evaluated in standardized models using decellularized ovine pulmonary heart valve cusps (dPVCs) and decellularized aortic grafts (dAoGs), respectively. Contact angle measurements and fluorescent labeling of custom-made peptides showed successful functionalization of dPVCs and dAoGs. The functionalization of dPVCs with a combination of bioactive sequences significantly increased in vitro human umbilical vein endothelial cell adhesion compared to nonfunctionalized controls. In a functional rodent aortic transplantation model, fluorescent-labeled peptides on dAoGs were persistent up to 10 days in vivo under exposure to systemic circulation. Although there was a trend toward enhanced in vivo endothelialization of functionalized grafts compared to nonfunctionalized controls, there was no statistical significance and a large biological variability in both groups. Despite failing to show a clear biological effect in the used in vivo model system, our initial findings do suggest that endothelialization onto dECM may be modulated by customized interface biofunctionalization using the presented method. Since bioactive sequences within the dECM-synthetic peptide platform are easily interchangeable and combinable, further control of host cell proliferation, function, and differentiation seems to be feasible, possibly paving the way to a new generation of multifunctional dECM scaffolds for regenerative medicine. PMID

  18. Structural Determinants of Binding of Aromates to Extracellular Matrix

    PubMed Central

    Zhang, Yufen; Lukacova, Viera; Bartus, Vladimir; Balaz, Stefan

    2008-01-01

    For small molecules acting in tissues, including signaling peptides, effectors, inhibitors, and other drug candidates, nonspecific binding to the extracellular matrix (ECM) is a critical phenomenon affecting their disposition, toxicity, and other effects. A commercially available ECM mimic, forming a solidified layer at the bottom of the vials, was used to measure the association constants of 25 simple aromatic compounds to two forms of ECM proteins, solidified (s-ECM) and dissolved (d-ECM) in the buffer during the incubation. Except for small homologous series, the binding data did not correlate with the lipophilicity and acidity of the compounds, contrary to a common expectation for nonspecific binding. To elucidate the putative structures of averaged binding sites of s-ECM and d-ECM, the Comparative Molecular Field Analysis (CoMFA) was applied in a modified version taking into consideration that multiple modes and multiple species may be involved. The method shapes a receptor site model from a set of grid points, in which the interaction energies between a probe atom and superimposed ligands are calculated. Electrostatic and steric energies in the grid points are characterized by regression coefficients. The forward-selection, nonlinear regression analysis was used to optimize the coefficients in the novel multi-species, multi-mode CoMFA models. These models showed satisfactory descriptive and predictive abilities for both s-ECM and d-ECM binding data, which were better than those obtained with the standard, one-mode CoMFA analysis. The calibrated models, defining the electrostatic and van der Waals regions of putative binding sites, are suitable for the prediction of ECM binding for untested chemicals. PMID:17226922

  19. Synthetic Mimics of the Extracellular Matrix: How Simple is Complex Enough?

    PubMed Central

    Kyburz, Kyle A.; Anseth, Kristi S.

    2015-01-01

    Cells reside in a complex and dynamic extracellular matrix where they interact with a myriad of biophysical and biochemical cues that direct their function and regulate tissue homeostasis, wound repair, and even pathophysiological events. There is a desire in the biomaterials community to develop synthetic hydrogels to recapitulate facets of the ECM for in vitro culture platforms and tissue engineering applications. Advances in synthetic hydrogel design and chemistries, including user-tunable platforms, have broadened the field’s understanding of the role of matrix cues in directing cellular processes and enabled the design of improved tissue engineering scaffolds. This review focuses on recent advances in the development and fabrication of hydrogels and discusses what aspects of ECM signals can be incorporated to direct cell function in different contexts. PMID:25753017

  20. Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK.

    PubMed

    Carey, Shawn P; Goldblatt, Zachary E; Martin, Karen E; Romero, Bethsabe; Williams, Rebecca M; Reinhart-King, Cynthia A

    2016-08-01

    Cell migration within 3D interstitial microenvironments is sensitive to extracellular matrix (ECM) properties, but the mechanisms that regulate migration guidance by 3D matrix features remain unclear. To examine the mechanisms underlying the cell migration response to aligned ECM, which is prevalent at the tumor-stroma interface, we utilized time-lapse microscopy to compare the behavior of MDA-MB-231 breast adenocarcinoma cells within randomly organized and well-aligned 3D collagen ECM. We developed a novel experimental system in which cellular morphodynamics during initial 3D cell spreading served as a reductionist model for the complex process of matrix-directed 3D cell migration. Using this approach, we found that ECM alignment induced spatial anisotropy of cells' matrix probing by promoting protrusion frequency, persistence, and lengthening along the alignment axis and suppressing protrusion dynamics orthogonal to alignment. Preference for on-axis behaviors was dependent upon FAK and Rac1 signaling and translated across length and time scales such that cells within aligned ECM exhibited accelerated elongation, front-rear polarization, and migration relative to cells in random ECM. Together, these findings indicate that adhesive and protrusive signaling allow cells to respond to coordinated physical cues in the ECM, promoting migration efficiency and cell migration guidance by 3D matrix structure. PMID:27384462

  1. Oxidation and modification of extracellular matrix and its role in disease.

    PubMed

    Chuang, C Y; Degendorfer, G; Davies, M J

    2014-09-01

    There is accumulating evidence that damage to extracellular materials and particularly the extracellular matrix, can play a major role in multiple human pathologies. In contrast to cells, the extracellular compartment of most biological tissues is relatively poorly equipped to prevent or repair damage caused by oxidation due to lower levels of antioxidant defenses (low molecular mass and enzymatic) and repair systems (both catabolic and enzymatic). The extracellular compartment is therefore likely to be subject to both an increased extent of damage and an overall accumulation of damage due to slow turnover and/or poor repair. The nature and consequences of damage to the extracellular matrix is poorly understood, despite evidence that changes in matrix structure influences not only structural integrity, but also cell adhesion, proliferation, migration and signaling, and cytokine and growth factor binding. In this article the nature of the extracellular matrix is briefly reviewed, together with evidence for the presence of matrix modifications in cardiovascular disease. The oxidants and mechanisms that are known to damage extracellular matrix are reviewed, together with the limited data available to date on how such changes affect structural properties and cellular behavior. PMID:24796988

  2. Prohibitin Attenuates Oxidative Stress and Extracellular Matrix Accumulation in Renal Interstitial Fibrosis Disease

    PubMed Central

    Qin, Yuan-Han; Lei, Feng-Ying; Huang, Wei-Fang

    2013-01-01

    Prohibitin is an evolutionary conserved and pleiotropic protein that has been implicated in various cellular functions, including proliferation, tumour suppression, apoptosis, transcription, and mitochondrial protein folding. Both prohibitin over- and under-expression have been implicated in various diseases and cell types. We recently demonstrated that prohibitin down-regulation results in increased renal interstitial fibrosis (RIF). Here we investigated the role of oxidative stress and prohibitin expression in RIF in unilateral ureteral obstructed rats. Lentivirus-based delivery vectors were used to knockdown or over-express prohibitin. Our results show that increased prohibitin expression was negatively correlated with the RIF index, reactive oxygen species, malon dialdehyde, transforming growth factor β1, collagen IV, fibronectin, and cell apoptosis index. In conclusion, we postulate that prohibitin acts as a positive regulator of mechanisms that counteract oxidative stress and extracellular matrix accumulation and therefore has an antioxidative effect. PMID:24204768

  3. Illustrating the interplay between the extracellular matrix and microRNAs

    PubMed Central

    Piccinini, Anna M; Midwood, Kim S

    2014-01-01

    The discovery of cell surface receptors that bind to extracellular matrix (ECM) components marked a new era in biological research. Since then there has been an increasing appreciation of the importance of studying cells in the context of their extracellular environment. Cell behaviour is profoundly affected by the ECM, whose synthesis and turnover must be finely balanced in order to maintain normal function and prevent disease. In the last decade, microRNAs (miRNAs) have emerged as key regulators of ECM gene expression. As new technologies for the identification and validation of miRNA targets continue to be developed, a growing body of data supporting the role of miRNAs in regulating the ECM biology has arisen from a variety of cell and animal models along with clinical studies. However, more recent findings suggest an intriguing interplay between the ECM and miRNAs: not only can miRNAs control the composition of the ECM, but also the ECM can affect the expression of specific miRNAs. Here we discuss how miRNAs contribute to the synthesis, maintenance and remodelling of the ECM during development and disease. Furthermore, we bring to light evidence that points to a role for the ECM in regulating miRNA expression and function. PMID:24761792

  4. Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss.

    PubMed

    Gentile, Natalie E; Stearns, Kristen M; Brown, Elke H P; Rubin, J Peter; Boninger, Michael L; Dearth, Christopher L; Ambrosio, Fabrisia; Badylak, Stephen F

    2014-11-01

    Rehabilitation therapy is an important aspect of recovery after volumetric muscle loss. However, the traditional rehabilitation approach involves a period of rest and passive loading followed by gradual active loading. Extracellular matrix is a naturally occurring material consisting of structural proteins that provide mechanical strength, structural support, and functional molecules with diverse bioactive properties. There is evidence to suggest that the addition of aggressive regenerative rehabilitation protocols immediately after surgical implantation of an extracellular matrix scaffold to an area of volumetric muscle loss has significant benefits for extracellular matrix remodeling. Rehabilitation exercises likely provide the needed mechanical signals to encourage cell migration and site-specific differentiation in the temporal framework required for constructive remodeling. Herein, the authors review the literature and present an example of an aggressive rehabilitation program implemented immediately after extracellular matrix transplantation into a severely injured quadriceps muscle. PMID:25133624

  5. Aortic Wall Extracellular Matrix Proteins Correlate with Syntax Score in Patients Undergoing Coronary Artery Bypass Surgery

    PubMed Central

    Chiong, Terri; Cheow, Esther S. H.; Woo, Chin C.; Lin, Xiao Y.; Khin, Lay W.; Lee, Chuen N.; Hartman, Mikael; Sze, Siu K.; Sorokin, Vitaly A.

    2016-01-01

    Aims: The SYNTAX score correlate with major cardiovascular events post-revascularization, although the histopathological basis is unclear. We aim to evaluate the association between syntax score and extracellular matrix histological characteristics of aortic punch tissue obtained during coronary artery bypass surgery (CABG). This analysis compares coronary artery bypass surgery patients with High and Low syntax score which were followed up for one year period. Methods and Results: Patients with High (score ≥ 33, (n=77)) and Low Syntax Scores (score ≤ 22, (n=71)) undergoing elective CABG were recruited prospectively. Baseline clinical characteristics and surgical risks were well matched. At 1 year, EMACCE (Sum of cardiovascular death, stroke, congestive cardiac failure, and limb, gut and myocardial ischemia) was significantly elevated in the High syntax group (P=0.022). Mass spectrometry (MS)-based quantitative iTRAQ proteomic results validated on independent cohort by immunohistochemistry (IHC) revealed that the High syntax group had significantly upraised Collagen I (P<0.0001) and Elastin (P<0.0001) content in ascending aortic wall. Conclusion: This study shows that aortic extracellular matrix (ECM) differ between High and Low syntax groups with up-regulation of Collagen I and Elastin level in High Syntax Score group. This identifies aortic punches collected during CABG as another biomarker source related with atherosclerosis severity and possible clinical outcome. PMID:27347220

  6. Brevican-containing perineuronal nets of extracellular matrix in dissociated hippocampal primary cultures.

    PubMed

    John, Nora; Krügel, Hans; Frischknecht, Renato; Smalla, Karl-Heinz; Schultz, Christian; Kreutz, Michael R; Gundelfinger, Eckart D; Seidenbecher, Constanze I

    2006-04-01

    Perineuronal nets (PNN) are specialized extracellular matrix structures enwrapping CNS neurons, which are important regulators for neuronal and synaptic functions. Brevican, a chondroitin sulfate proteoglycan, is an integral component of PNN. Here, we have investigated the appearance of these structures in hippocampal primary cultures. The expression profile of brevican in mixed cultures resembles the in vivo pattern with a strong upregulation of all isoforms during the second and 3rd weeks in culture. Brevican is primarily synthesized by co-cultured glial fibrillary acidic protein (GFAP-)-positive astrocytes and co-assembles with its interaction partners in PNN-like structures on neuronal somata and neurites as identified by counterstaining with the PNN marker Vicia villosa lectin. Both excitatory and inhibitory synapses are embedded into PNN. Furthermore, axon initial segments are strongly covered by a dense brevican coat. Altogether, we show that mature primary cultures can form PNN, and that basic features of these extracellular matrix structures may be studied in vitro. PMID:16503162

  7. Trafficking Mechanisms of Extracellular Matrix Macromolecules: Insights from Vertebrate Development and Human Diseases

    PubMed Central

    Unlu, Gokhan; Levic, Daniel S.; Melville, David B.; Knapik, Ela W.

    2014-01-01

    Cellular life depends on protein transport and membrane traffic. In multicellular organisms, membrane traffic is required for extracellular matrix deposition, cell adhesion, growth factor release, and receptor signaling, which are collectively required to integrate the development and physiology of tissues and organs. Understanding the regulatory mechanisms that govern cargo and membrane flow presents a prime challenge in cell biology. Extracellular matrix (ECM) secretion remains poorly understood, although given its essential roles in the regulation of cell migration, differentiation, and survival, ECM secretion mechanisms are likely to be tightly controlled. Recent studies in vertebrate model systems, from fishes to mammals and in human patients, have revealed complex and diverse loss-of-function phenotypes associated with mutations in components of the secretory machinery. A broad spectrum of diseases from skeletal and cardiovascular to neurological deficits have been linked to ECM trafficking. These discoveries have directly challenged the prevailing view of secretion as an essential but monolithic process. Here, we will discuss the latest findings on mechanisms of ECM trafficking in vertebrates. PMID:24333299

  8. Science of Hyaluronic Acid Beyond Filling: Fibroblasts and Their Response to the Extracellular Matrix.

    PubMed

    Landau, Marina; Fagien, Steven

    2015-11-01

    Loss of viscoelasticity is one of the primarily signs of skin aging, followed by appearance of visible wrinkles. Hyaluronic acid (HA)-based fillers are widely used to fill wrinkles and compensate for volume loss. Recent clinical observations demonstrate persistence of the filling effect longer than the biological availability of the filler. Stimulation of new collagen by cross-linked HA and up-regulation of elastin have been suggested as possible explanation to this observation and have been supported experimentally. Cross-linked HA substitutes for fragmented collagen in restoring extracellular matrix required for normal activity of fibroblasts, such as collagen and elastin production. To restore extracellular matrix efficiently, serial monthly treatments are required. Boosting of facial and nonfacial skin through fibroblast activation is a new indication for HA-based products. Injectable HA has also been recently registered in Europe as agents specific for the improvement of skin quality (Restylane Skinboosters). Further explanation of the possible mechanisms supported by long-term clinical examples is presented herein. PMID:26441098

  9. Fibulin's organization into the extracellular matrix of fetal lung fibroblasts is dependent on fibronectin matrix assembly.

    PubMed

    Roman, J; McDonald, J A

    1993-05-01

    Fibulin is a newly described extracellular matrix (ECM) glycoprotein whose function has not been elucidated. We have observed that cultured fetal lung fibroblasts produce fibulin and have postulated that its expression may be important during lung development. To begin to understand the potential function of fibulin in lung development, we examined its expression and distribution in cultured fetal lung fibroblasts. Immunofluorescence staining of cultured fibroblasts revealed that fibulin was distributed upon their surface in a fibrillar array resembling fibronectin (FN), another ECM glycoprotein expressed by fetal lung fibroblasts and implicated in lung and heart development. Detection of fibulin by immunofluorescence staining of nonpermeabilized cells, its immunoprecipitation from 125I-cell surface-labeled fibroblasts, pulse-chase analysis, and temperature-induced phase separation studies revealed that fibulin is an ECM peripheral membrane protein that is synthesized and secreted by cultured fetal lung fibroblasts shortly after plating and incorporated into their matrix in a divalent cation-dependent manner. Because fibulin co-distributes with both FN and the FN receptor, the integrin alpha 5 beta 1, we examined the possibility that fibulin was interacting with both components. Dissociation of FN receptors from FN fibers with anti-FN receptor antibodies did not affect fibulin's distribution, suggesting that fibulin binds FN and that this interaction is not affected by the state of FN receptor binding. Finally, inhibition of FN matrix assembly prevented the deposition of fibulin, providing further support for FN-fibulin interactions and suggesting that fibulin deposition is dependent on FN matrix assembly. PMID:8481235

  10. A potential role for glia-derived extracellular matrix remodeling in postinjury epilepsy.

    PubMed

    Kim, Soo Young; Porter, Brenda E; Friedman, Alon; Kaufer, Daniela

    2016-09-01

    Head trauma and vascular injuries are known risk factors for acquired epilepsy. The sequence of events that lead from the initial injury to the development of epilepsy involves complex plastic changes and circuit rewiring. In-depth, comprehensive understanding of the epileptogenic process is critical for the identification of disease-modifying targets. Here we review the complex interactions of cellular and extracellular components that may promote epileptogenesis, with an emphasis on the role of astrocytes. Emerging evidence demonstrates that astrocytes promptly respond to brain damage and play a critical role in the development of postinjury epilepsy. Astrocytes have been shown to regulate extracellular matrix (ECM) remodeling, which can affect plasticity and stability of synapses and, in turn, contribute to the epileptogenic process. From these separate lines of evidence, we present a hypothesis suggesting a possible role for astrocyte-regulated remodeling of ECM and perineuronal nets, a specialized ECM structure around fast-spiking inhibitory interneurons, in the development and progression of posttraumatic epilepsies. © 2016 Wiley Periodicals, Inc. PMID:27265805

  11. The Notch pathway mediates the angiotensin II-induced synthesis of extracellular matrix components in podocytes.

    PubMed

    Yao, Min; Wang, Xiaomei; Wang, Xiaomeng; Zhang, Tao; Chi, Yanqing; Gao, Feng

    2015-07-01

    The Notch pathway is known to contribute to the development of glomerular disease. Angiotensin II (Ang II), an important member of the renin-angiotensin system, stimulates the accumulation of extracellular matrix components in glomerular disease; however, the exact mechanisms involved remain to be elucidated. In the present study, we aimed to investigate the effects of the Notch pathway on the synthesis of extracellular matrix components in Ang II-stimulated podocytes. Mouse podocytes were stimulated with Ang II (10-6 mol/l). The activation of the Notch pathway was inhibited by a vector carrying short hairpin RNA (shRNA) targeting Notch1 (sh-Notch1) or by γ-secretase inhibitor (GSI). The protein levels of Notch1, Notch intracellular domain 1 (NICD1), hairy and enhancer of split-1 (Hes1), matrix metalloproteinase (MMP)-2, MMP-9, transforming growth factor-β1 (TGF-β1), type IV collagen and laminin were determined by western blot analysis. The Notch1, Hes1, MMP-2, MMP-9, TGF-β1, type IV collagen and laminin mRNA levels were detected by RT-PCR. The MMP-2 and MMP-9 activity was measured using a cell active fluorescence assay kit. The levels of TGF-β1, type IV collagen and laminin were determined in the culture medium of the podocytes by enzyme-linked immunosorbent assay (ELISA). Our results revealed that Ang II upregulated Notch1, NICD1, Hes1, TGF-β1, type IV collagen and laminin expression and downregulated MMP-2 and MMP-9 expression in the cultured podocytes. The inhibition of the Notch pathway by sh-Notch1 or GSI increased MMP-2 and MMP-9 expression, decreased the TGF-β1 level and suppressed type IV collagen and laminin expression. The inhibition of the Notch pathway by sh-Notch1 or GSI also increased MMP-2 and MMP-9 activity, and decreased TGF-β1 levels, type IV collagen levels and laminin secretion. These findings indicate that the Notch pathway potentially mediates the Ang II-induced synthesis of extracellular matrix components in podocytes through the

  12. Cartilage extracellular matrix metabolism differs in serum and synovial fluid.

    PubMed

    Martin, James A; Wilkey, Andrew L; Brand, Richard A

    2002-01-01

    Most cartilage explant culture studies assume conventional serum-supplemented growth media are biologically equivalent to the natural synovial fluid which baths cartilage in vivo. Few studies have systematically compared the effects of serum versus synovial fluid in culture. To address this assumption we conducted a series of studies to determine if cartilage matrix synthesis is significantly different in serum-based versus synovial fluid-based media. Normal bovine cartilage explants were cultured in DMEM either alone or supplemented with bovine serum or bovine synovial fluid. Matrix synthesis was measured with radiolabeling techniques. We then compared responses to insulin-like growth factor I (IGF-I, a stimulator of matrix synthesis), and interleukin-1beta (IL-1beta, an inhibitor of matrix synthesis). We observed significantly lower matrix synthesis activity in synovial fluid versus serum. Caution shoud be used in extrapolating studies of cartilage grown in media supplemented with serum rather than synovial fluid. PMID:12843702

  13. NG2 proteoglycan increases mesangial cell proliferation and extracellular matrix production

    SciTech Connect

    Xiong Jing; Wang Yang; Zhu, Zhonghua; Liu Jianshe; Wang Yumei; Zhang Chun; Hammes, Hans-Peter; Lang, Florian; Feng Yuxi

    2007-10-05

    As a membrane-spanning protein, NG2 chondroitin sulfate proteoglycan interacts with molecules on both sides of plasma membrane. The present study explored the role of NG2 in the pathogenesis of diabetic nephropathy. In the normal kidneys, NG2 was observed predominantly in glomerular mesangium, Bowman's capsule and interstitial vessels. Both mRNA and protein expression in kidneys was significantly higher in strepozotocin-induced diabetic rats than that in normal rats. In the cultured rat mesangial cell line HBZY-1, overexpression of NG2 promoted mesangial cell proliferation and extracellular matrix (ECM) production, such as type VI collagen and laminin. Furthermore, target knockdown of NG2 resulted in decreased cell proliferation and ECM formation. The observations suggest that NG2 is up-regulated in diabetic nephropathy. It actively participates in the development and progression of glomerulosclerosis by stimulating proliferation of mesangial cells and deposition of ECM.

  14. Engineering approaches for investigating tumor angiogenesis: exploiting the role of the extracellular matrix

    PubMed Central

    Hielscher, Abigail C.; Gerecht, Sharon

    2012-01-01

    A major paradigm shift in cancer research is the emergence of multidisciplinary approaches to investigate complex cell behaviors to elucidate the regulatory mechanisms and to identify therapeutic targets. Recently, efforts are focused on the engineering of complex in-vitro models, which more accurately recapitulate the growth and progression of cancer. These strategies have proven vital for investigating and targeting the events that control tumor angiogenesis. In this review, we explore how the emerging engineering approaches are being utilized to unlock the complex mechanisms regulating tumor angiogenesis. Emphasis is placed on models employing natural and synthetic biomaterials to generate scaffolds mimicking the extracellular matrix (ECM) which plays a critical role in angiogenesis. While the models presented in this review are revolutionary, improvements are still necessary and concepts for advancing and perfecting engineering approaches for modeling tumor angiogenesis are proposed. Overall, the marriage between disparate scientific fields is expected to yield significant improvements of our understanding and treatment of cancer. PMID:23172313

  15. The extracellular matrix modulates H2O2 degradation and redox signaling in endothelial cells

    PubMed Central

    Bagulho, Ana; Vilas-Boas, Filipe; Pena, Andreia; Peneda, Catarina; Santos, Filipa C.; Jerónimo, Ana; de Almeida, Rodrigo F.M.; Real, Carla

    2015-01-01

    The molecular processes that are crucial for cell function, such as proliferation, migration and survival, are regulated by hydrogen peroxide (H2O2). Although environmental cues, such as growth factors, regulate redox signaling, it was still unknown whether the ECM, a component of the cell microenvironment, had a function in this process. Here, we showed that the extracellular matrix (ECM) differently regulated H2O2 consumption by endothelial cells and that this effect was not general for all types of cells. The analysis of biophysical properties of the endothelial cell membrane suggested that this modification in H2O2 consumption rates was not due to altered membrane permeability. Instead, we found that the ECM regulated GPx activity, a known H2O2 scavenger. Finally, we showed that the extent of PTEN oxidation was dependent on the ECM, indicating that the ECM was able to modulate H2O2-dependent protein oxidation. Thus, our results unraveled a new mechanism by which the ECM regulates endothelial cell function by altering redox balance. These results pinpoint the ECM as an important component of redox-signaling. PMID:26409032

  16. An investigation of the influence of extracellular matrix anisotropy and cell-matrix interactions on tissue architecture.

    PubMed

    Dyson, R J; Green, J E F; Whiteley, J P; Byrne, H M

    2016-06-01

    Mechanical interactions between cells and the fibrous extracellular matrix (ECM) in which they reside play a key role in tissue development. Mechanical cues from the environment (such as stress, strain and fibre orientation) regulate a range of cell behaviours, including proliferation, differentiation and motility. In turn, the ECM structure is affected by cells exerting forces on the matrix which result in deformation and fibre realignment. In this paper we develop a mathematical model to investigate this mechanical feedback between cells and the ECM. We consider a three-phase mixture of collagen, culture medium and cells, and formulate a system of partial differential equations which represents conservation of mass and momentum for each phase. This modelling framework takes into account the anisotropic mechanical properties of the collagen gel arising from its fibrous microstructure. We also propose a cell-collagen interaction force which depends upon fibre orientation and collagen density. We use a combination of numerical and analytical techniques to study the influence of cell-ECM interactions on pattern formation in tissues. Our results illustrate the wide range of structures which may be formed, and how those that emerge depend upon the importance of cell-ECM interactions. PMID:26328534

  17. Smooth muscle cell expression of extracellular matrix genes after arterial injury.

    PubMed Central

    Nikkari, S. T.; Järveläinen, H. T.; Wight, T. N.; Ferguson, M.; Clowes, A. W.

    1994-01-01

    Accumulation of extracellular matrix (ECM) after arterial injury is an important event in the development of intimal thickening and is modulated by heparin. To investigate the regulation of matrix protein expression, we have analyzed messenger RNA levels by Northern blotting for various ECM proteins in the rat carotid artery balloon injury model. RNA was extracted from normal arteries and from intima-medial preparations at 2 days, 1 week, 2 weeks, and 4 weeks after balloon injury of arteries in animals receiving either saline or heparin infusion. Transcripts for the heparan sulfate proteoglycans perlecan, syndecan, and ryudocan; the chondroitin sulfate proteoglycan versican; the dermatan sulfate proteoglycan biglycan; type I procollagen; and tropoelastin all were increased on Northern blots beginning at 1 week after injury. By in situ hybridization, the transcripts for elastin nd biglycan were primarily localized to smooth muscle cells in the intima and were diminished by heparin in proportion to the decrease in intimal mass. Other matrix genes (perlecan, ryudocan) were expressed in the intima and media and were not affected by heparin. The results support the conclusion that ECM gene expression is a relatively late event in the response of the carotid artery, and that some of the genes are expressed only in the intima whereas others are expressed in both the intima and media. Images Figure 2 Figure 3 Figure 4 PMID:8203472

  18. Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix.

    PubMed

    Smalyukh, Ivan I; Butler, John; Shrout, Joshua D; Parsek, Matthew R; Wong, Gerard C L

    2008-09-01

    DNA is a common extracellular matrix component of bacterial biofilms. We find that bacteria can spontaneously order in a matrix of aligned concentrated DNA, in which rod-shaped cells of Pseudomonas aeruginosa follow the orientation of extended DNA chains. The alignment of bacteria is ensured by elasticity and liquid crystalline properties of the DNA matrix. These findings show how behavior of planktonic bacteria may be modified in extracellular polymeric substances of biofilms and illustrate the potential of using complex fluids to manipulate embedded nanosized and microsized active particles. PMID:18850984

  19. The extracellular matrix and blood vessel formation: not just a scaffold

    PubMed Central

    Rhodes, John M; Simons, Michael

    2007-01-01

    Abstract The extracellular matrix plays a number of important roles, among them providing structural support and information to cellular structures such as blood vessels imbedded within it. As more complex organisms have evolved, the matrix ability to direct signalling towards the vasculature and remodel in response to signalling from the vasculature has assumed progressively greater importance. This review will focus on the molecules of the extracellular matrix, specifically relating to vessel formation and their ability to signal to the surrounding cells to initiate or terminate processes involved in blood vessel formation. PMID:17488472

  20. Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness.

    PubMed

    Pathak, Amit; Kumar, Sanjay

    2011-04-01

    Invasion of cancer cells into the extracellular matrix (ECM) is a key step in tumor infiltration and metastasis. While the strong influence of ECM stiffness in governing tumor cell migration has been well established in two-dimensional culture paradigms, investigation of this parameter in three-dimensional (3D) ECMs has proven considerably more challenging, in part because perturbations that change 3D ECM stiffness often concurrently change microscale matrix parameters that critically regulate cell migration, such as pore size, fiber architecture, and local material deformability. Here we review the potential importance of these parameters in the context of tumor cell migration in 3D ECMs. We begin by discussing biophysical mechanisms of cell motility in 3D ECMs, with an emphasis on the cell-matrix mechanical interactions that underlie this process and key signatures of mesenchymal and amoeboid modes of motility. We then consider microscale matrix physical properties that are particularly relevant to 3D culture and would be expected to regulate motility, including matrix microstructure and nonlinear elasticity. We also discuss how changes in 3D matrix properties might be expected to trigger transitions in subcellular mechanisms, which in turn contribute to mesenchymal-amoeboid transition (MAT) by imposing restrictions on 3D motility. We expect that the field will gain valuable insight into invasion and metastasis by deepening its understanding of microscale, biophysical interactions between tumor cells and matrix elements and by creating new 3D scaffolds that permit orthogonal manipulation of specific matrix parameters. PMID:21210057

  1. Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate.

    PubMed

    Li, Man-Song; Holstead, Ryan G; Wang, Wuyang; Linsdell, Paul

    2011-01-01

    The CFTR contributes to Cl⁻ and HCO₃⁻ transport across epithelial cell apical membranes. The extracellular face of CFTR is exposed to varying concentrations of Cl⁻ and HCO₃⁻ in epithelial tissues, and there is evidence that CFTR is sensitive to changes in extracellular anion concentrations. Here we present functional evidence that extracellular Cl⁻ and HCO₃⁻ regulate anion conduction in open CFTR channels. Using cell-attached and inside-out patch-clamp recordings from constitutively active mutant E1371Q-CFTR channels, we show that voltage-dependent inhibition of CFTR currents in intact cells is significantly stronger when the extracellular solution contains HCO₃⁻ than when it contains Cl⁻. This difference appears to reflect differences in the ability of extracellular HCO₃⁻ and Cl⁻ to interact with and repel intracellular blocking anions from the pore. Strong block by endogenous cytosolic anions leading to reduced CFTR channel currents in intact cells occurs at physiologically relevant HCO₃⁻ concentrations and membrane potentials and can result in up to ∼50% inhibition of current amplitude. We propose that channel block by cytosolic anions is a previously unrecognized, physiologically relevant mechanism of channel regulation that confers on CFTR channels sensitivity to different anions in the extracellular fluid. We further suggest that this anion sensitivity represents a feedback mechanism by which CFTR-dependent anion secretion could be regulated by the composition of the secretions themselves. Implications for the mechanism and regulation of CFTR-dependent secretion in epithelial tissues are discussed. PMID:20926782

  2. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its related extracellular matrix degrading enzymes in the endometrium during estrous cycle and early gestation in cattle

    PubMed Central

    2010-01-01

    Background Extracellular matrix metalloproteinase inducer (EMMPRIN) regulates several biological functions involving the modulation of cell behaviors via cell-cell and cell-matrix interactions. According to its diverse functions, we hypothesized that EMMPRIN may play an important role in endometrial remodeling and establishment of pregnancy in cow. Methods In this study, endometrial tissues from the cyclic cows during before ovulation, after ovulation and middle of estrous cycle; and pregnant endometrial tissues from Day 19 to 35 of gestation have been used. Expression of mRNA was analyzed by RT-PCR, qPCR and in situ hybridization whereas protein expression by immunohistochemistry and western blot analysis. Results EMMPRIN mRNA was expressed in both cyclic and pregnant endometrium and significantly higher in the endometrium at Day 35 of gestation than the cyclic endometrium. In Western blot analysis, an approximately 65 kDa band was detected in the endometrium, and approximately 51 kDa in the cultured bovine epithelial cells and BT-1 cells, respectively. Both in situ hybridization and immunohistochemistry data showed that EMMPRIN was primarily expressed in luminal and glandular epithelium with strong staining on Day 19 conceptus. At Day 19 of gestation, expression of EMMPRIN mRNA on luminal epithelium was decreased than that observed at middle of estrous cycle, however, on Day 30 of gestation, slightly increased expression was found at the site of placentation. Expression of matrix metalloproteinase-2 (MMP-2) and MMP-14 mRNA were mainly detected in stroma and their expression also decreased at Day 19 of gestation however it was also expressed at the site of placentation at Day 30 of gestation as observed for EMMPRIN. Expression of MMP-1 or -9 mRNA was very low and was below the detection limit in the cyclic and pregnant endometrium. Conclusion EMMPRIN from the luminal epithelium may regulate the expression of stromal MMP-2 and -14 suggesting its crucial role in

  3. A Protein Involved in the Assembly of an Extracellular Calcium Storage Matrix*

    PubMed Central

    Glazer, Lilah; Shechter, Assaf; Tom, Moshe; Yudkovski, Yana; Weil, Simy; Aflalo, Eliahu David; Pamuru, Ramachandra Reddy; Khalaila, Isam; Bentov, Shmuel; Berman, Amir; Sagi, Amir

    2010-01-01

    Gastroliths, the calcium storage organs of crustaceans, consist of chitin-protein-mineral complexes in which the mineral component is stabilized amorphous calcium carbonate. To date, only three proteins, GAP 65, gastrolith matrix protein (GAMP), and orchestin, have been identified in gastroliths. Here, we report a novel protein, GAP 10, isolated from the gastrolith of the crayfish Cherax quadricarinatus and specifically expressed in its gastrolith disc. The encoding gene was cloned by partial sequencing of the protein extracted from the gastrolith matrix. Based on an assembled microarray cDNA chip, GAP 10 transcripts were found to be highly (12-fold) up-regulated in premolt gastrolith disc and significantly down-regulated in the hypodermis at the same molt stage. The deduced protein sequence of GAP 10 lacks chitin-binding domains and does not show homology to known proteins in the GenBankTM data base. It does, however, have an amino acid composition that has similarity to proteins extracted from invertebrate and ascidian-calcified extracellular matrices. The GAP 10 sequence contains a predicted signal peptide and predicted phosphorylation sites. In addition, the protein is phosphorylated and exhibits calcium-binding ability. Repeated daily injections of GAP 10 double strand RNA to premolt C. quadricarinatus resulted in a prolonged premolt stage and in the development of gastroliths with irregularly rough surfaces. These findings suggest that GAP 10 may be involved in the assembly of the gastrolith chitin-protein-mineral complex, particularly in the deposition of amorphous calcium carbonate. PMID:20150428

  4. A protein involved in the assembly of an extracellular calcium storage matrix.

    PubMed

    Glazer, Lilah; Shechter, Assaf; Tom, Moshe; Yudkovski, Yana; Weil, Simy; Aflalo, Eliahu David; Pamuru, Ramachandra Reddy; Khalaila, Isam; Bentov, Shmuel; Berman, Amir; Sagi, Amir

    2010-04-23

    Gastroliths, the calcium storage organs of crustaceans, consist of chitin-protein-mineral complexes in which the mineral component is stabilized amorphous calcium carbonate. To date, only three proteins, GAP 65, gastrolith matrix protein (GAMP), and orchestin, have been identified in gastroliths. Here, we report a novel protein, GAP 10, isolated from the gastrolith of the crayfish Cherax quadricarinatus and specifically expressed in its gastrolith disc. The encoding gene was cloned by partial sequencing of the protein extracted from the gastrolith matrix. Based on an assembled microarray cDNA chip, GAP 10 transcripts were found to be highly (12-fold) up-regulated in premolt gastrolith disc and significantly down-regulated in the hypodermis at the same molt stage. The deduced protein sequence of GAP 10 lacks chitin-binding domains and does not show homology to known proteins in the GenBank data base. It does, however, have an amino acid composition that has similarity to proteins extracted from invertebrate and ascidian-calcified extracellular matrices. The GAP 10 sequence contains a predicted signal peptide and predicted phosphorylation sites. In addition, the protein is phosphorylated and exhibits calcium-binding ability. Repeated daily injections of GAP 10 double strand RNA to premolt C. quadricarinatus resulted in a prolonged premolt stage and in the development of gastroliths with irregularly rough surfaces. These findings suggest that GAP 10 may be involved in the assembly of the gastrolith chitin-protein-mineral complex, particularly in the deposition of amorphous calcium carbonate. PMID:20150428

  5. Integrin-extracellular matrix interactions in connective tissue remodeling and osteoblast differentiation

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Moursi, A.; Zimmerman, D.; Lull, J.; Damsky, C.

    1995-01-01

    The differentiaton of bone cells is a complex multistep process. Bone is somewhat unusual in that it is very actively and continually remodeled in the adult and that maintenance of its mass in the mature organism is exquisitely sensitive to mechanical as well as chemical signals. Bone is also unique because it consists of a very large amount of extracellular matrix (ECM) that is mineralized. The integrin family of ECM receptors has been shown to play an important role in tissue morphogenesis in several systems. Our studies on the regulation of matrix remodeling enzymes by integrins in rabbit synovial fibroblasts show that two b1 integrin fibronectin (FN) receptor complexes (alpha 5 beta 1 and alpha 4 beta 1) cooperate in detecting subtle changes in the composition of the ECM. As a result of signal transduction by these integrins, the levels of mRNA and protein for several members of the metalloproteinase family are regulated in these cells. We have also used antibody and RGD peptide perturbation studies to determine the significance of cell/ECM interactions to normal osteogenesis. We found that interactions between the cell binding domain of FN and integrins are required for both normal morphogenesis and gene expression in cultured osteoblasts that differentiate to form bone-like tissue in culture. These data lead us to propose that beta 1 integrins play an important role in osteoblast differentiation as well as in bone remodeling.

  6. Fibronectin in aging extracellular matrix fibrils is progressively unfolded by cells and elicits an enhanced rigidity response

    PubMed Central

    Antia, Meher; Baneyx, Gretchen; Kubow, Kristopher E.; Vogel, Viola

    2008-01-01

    While the mechanical properties of a substrate or engineered scaffold can govern numerous aspects of cell behavior, cells quickly start to assemble their own matrix and will ultimately respond to their self-made extracellular matrix (ECM) microenvironments. Using fluorescence resonance energy transfer (FRET), we detected major changes in the conformation of a constituent ECM protein, fibronectin (Fn), as cells fabricated a thick three-dimensional (3D) matrix over the course of three days. These data provide the first evidence that matrix maturation occurs and that aging is associated with increased stretching of fibronectin fibrils, which leads to at least partial unfolding of the secondary structure of individual protein modules. A comparison of the conformations of Fn in these 3D matrices with those constructed by cells on rigid and flexible polyacrylamide surfaces suggests that cells in maturing matrices experience a microenviroment of gradually increasing rigidity. In addition, further matrix stiffening is caused by active Fn fiber alignment parallel to the contractile axis of the elongated fibroblasts, a cell-driven effect previously described for other fibrillar matrices. The fibroblasts, therefore, not only cause matrix unfolding, but reciprocally respond to the altered Fn matrix properties by up-regulating their own rigidity response. Consequently, our data demonstrate for the first time that a matured and aged matrix has distinctly different physical and biochemical properties compared to a newly assembled matrix. This might allow cells to specifically recognise the age of a matrix. PMID:19048998

  7. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood

    PubMed Central

    Levy, Aaron D.; Omar, Mitchell H.; Koleske, Anthony J.

    2014-01-01

    Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix (ECM), composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults. PMID:25368556

  8. The widely expressed extracellular matrix protein SMOC-2 promotes keratinocyte attachment and migration

    SciTech Connect

    Maier, Silke; Paulsson, Mats; Hartmann, Ursula

    2008-08-01

    SMOC-2 is a recently discovered member of the BM-40/SPARC/osteonectin family of extracellular multidomain proteins of so far unknown function. While we have shown earlier that the homologous protein SMOC-1 is associated with basement membranes, in this study we demonstrate that, in the mouse, SMOC-2 could be detected in a large number of non-basement membrane localizations, often showing a diffuse tissue distribution. A more distinct expression pattern was seen in skin where SMOC-2 is mainly present in the basal layers of the epidermis. Functionally, recombinant SMOC-2 stimulated attachment of primary epidermal cells as well as several epidermal-derived cell lines but had no effect on the attachment of non-epidermal cells. Inhibition experiments using blocking antibodies against individual integrin subunits allowed the identification of {alpha}v{beta}6 and {alpha}v{beta}1 integrins as important cellular receptors for SMOC-2. Cell attachment as well as the formation of focal adhesions could be attributed to the extracellular calcium-binding domain. The calcium-binding domain also stimulated migration, but not proliferation of keratinocyte-like HaCaT cells. We conclude that SMOC-2, like other members of the BM40/SPARC family, acts as a regulator of cell-matrix interactions.

  9. Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts.

    PubMed

    Birk, D E; Trelstad, R L

    1984-12-01

    The regulation of collagen fibril, bundle, and lamella formation by the corneal fibroblasts, as well as the organization of these elements into an orthogonal stroma, was studied by transmission electron microscopy and high voltage electron microscopy. Transmission and high voltage electron microscopy of chick embryo corneas each demonstrated a series of unique extracellular compartments. Collagen fibrillogenesis occurred within small surface recesses. These small recesses usually contained between 5 and 12 collagen fibrils with typically mature diameters and constant intrafibrillar spacing. The lateral fusion of the recesses resulted in larger recesses and consequent formation of prominent cell surface foldings. Within these surface foldings, bundles that contained 50-100 collagen fibrils were formed. The surface foldings continued to fuse and the cell surface retracted, forming large surface-associated compartments in which bundles coalesced to form lamellae. High voltage electron microscopy of 0.5 micron sections cut parallel to the corneal surface revealed that the corneal fibroblasts and their processes had two major axes at approximately right angles to one another. The surface compartments involved in the production of the corneal stroma were aligned along the fibroblast axes and the orthogonality of the cell was in register with that of the extracellular matrix. In this manner, corneal fibroblasts formed collagen fibrils, bundles, and lamellae within a controlled environment and thereby determined the architecture of the corneal stroma by the configuration of the cell and its associated compartments. PMID:6542105

  10. Extracellular Matrix and Regenerative Therapies from the Cardiac Perspective.

    PubMed

    Dogan, Arin; Parmaksız, Mahmut; Elçin, A Eser; Elçin, Y Murat

    2016-04-01

    Cardiovascular diseases are the leading cause of death and a major cause of financial burden. Regenerative therapies for heart diseases bring the promise of alternative treatment modalities for myocardial infarction, ischemic heart disease, and congestive heart failure. Although, clinical trials attest to the safety of stem cell injection therapies, researchers need to overcome the underlying mechanisms that are limiting the success of future regenerative options. This article aims to review the basic scientific concepts in the field of mechanobiology and the effects of extracellular functions on stem cell fate. PMID:26668014

  11. Carboxy-terminal modulator protein attenuated extracellular matrix deposit by inhibiting phospho-Akt, TGF-β1 and α-SMA in kidneys of diabetic mice.

    PubMed

    Chen, Ning; Hao, Jun; Li, Lisha; Li, Fan; Liu, Shuxia; Duan, Huijun

    2016-06-10

    Glomerulosclerosis and tubular interstitial extracellular matrix deposit and fibrosis are the main features of diabetic nephropathy, which are mediated by activation of PI3K/Akt signal pathway. Carboxy-terminal modulator protein (CTMP) is known as a negative regulator of PI3K/Akt pathway. Whether CTMP regulates renal extracellular matrix metabolism of diabetic nephropathy is still not known. Here, renal decreased CTMP, enhanced phospho-Akt (Ser 473), TGF-β1, α-SMA and extracellular matrix deposit are found in diabetic mice. Furthermore, high glucose decreases CTMP expression accompanied by enhanced phospho-Akt (Ser 473), TGF-β1 and α-SMA in cultured human renal proximal tubular epithelial cells (HKC), which are effectively prevented by transfection of pYr-ads-4-musCTMP vector. Moreover, delivery of pYr-ads-4-musCTMP vector into kidneys via tail vein of diabetic mice increases CTMP expression by 8.84 times followed by 60.00%, 76.50% and 24.37% decreases of phospho-Akt (Ser 473), TGF-β1 and α-SMA compared with diabetic mice receiving pYr-adshuttle-4 vector. Again, increased renal extracellular matrix accumulation of diabetic mice is also inhibited with delivery of pYr-ads-4-musCTMP vector. Our results indicate that CTMP attenuates renal extracellular matrix deposit by regulating the phosphorylation of Akt, TGF-β1 and α-SMA expression in diabetic mice. PMID:27166156

  12. How do fibroblasts translate mechanical signals into changes in extracellular matrix production?

    PubMed

    Chiquet, Matthias; Renedo, Ana Sarasa; Huber, François; Flück, Martin

    2003-03-01

    Mechanical forces are important regulators of connective tissue homeostasis. Our recent experiments in vivo indicate that externally applied mechanical load can lead to the rapid and sequential induction of distinct extracellular matrix (ECM) components in fibroblasts, rather than to a generalized hypertrophic response. Thus, ECM composition seems to be adapted specifically to changes in load. Mechanical stress can regulate the production of ECM proteins indirectly, by stimulating the release of a paracrine growth factor, or directly, by triggering an intracellular signalling pathway that activates the gene. We have evidence that tenascin-C is an ECM component directly regulated by mechanical stress: induction of its mRNA in stretched fibroblasts is rapid both in vivo and in vitro, does not depend on prior protein synthesis, and is not mediated by factors released into the medium. Fibroblasts sense force-induced deformations (strains) in their ECM. Findings by other researchers indicate that integrins within cell-matrix adhesions can act as 'strain gauges', triggering MAPK and NF-kappaB pathways in response to changes in mechanical stress. Our results indicate that cytoskeletal 'pre-stress' is important for mechanotransduction to work: relaxation of the cytoskeleton (e.g. by inhibiting Rho-dependent kinase) suppresses induction of the tenascin-C gene by cyclic stretch, and hence desensitizes the fibroblasts to mechanical signals. On the level of the ECM genes, we identified related enhancer sequences that respond to static stretch in both the tenascin-C and the collagen XII promoter. In the case of the tenascin-C gene, different promoter elements might be involved in induction by cyclic stretch. Thus, different mechanical signals seem to regulate distinct ECM genes in complex ways. PMID:12714044

  13. Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones

    SciTech Connect

    Hansen, R K; Bissell, M J

    2000-06-01

    The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellular matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function.

  14. Polo-like Kinase I is involved in Invasion through Extracellular Matrix

    SciTech Connect

    Bissell, Mina J; Rizki, Aylin; Mott, Joni D.; Bissell, Mina J

    2008-04-02

    Polo-like kinase 1, PLK1, has important functions in maintaining genome stability and is involved in regulation of mitosis. PLK1 is up regulated in many invasive carcinomas. We asked whether it may also play a role in acquisition of invasiveness, a crucial step in transition to malignancy. In a model of metaplastic basal-like breast carcinoma progression, we found that PLK1 expression is necessary but not sufficient to induce invasiveness through laminin-rich extracellular matrix. PLK1 mediates invasion via Vimentin and {beta}1 integrin, both of which are necessary. We observed that PLK1 phosphorylates Vimentin on serine 82, which in turn regulates cell surface levels of {beta}1 integrin. We found PLK1 to be also highly expressed in pre-invasive in situ carcinomas of the breast. These results support a role for the involvement of PLK1 in the invasion process and point to this pathway as a potential therapeutic target for pre-invasive and invasive breast carcinoma treatment.

  15. The endogenous fluorescence of fibroblast in collagen gels as indicator of stiffness of the extracellular matrix

    NASA Astrophysics Data System (ADS)

    Padilla-Martinez, J. P.; Ortega-Martinez, A.; Franco, W.

    2016-03-01

    The stiffness or rigidity of the extracellular matrix (ECM) regulates cell response. Established mechanical tests to measure stiffness, such as indentation and tensile tests, are invasive and destructive to the sample. Endogenous or native molecules to cells and ECM components, like tryptophan and cross-links of collagen, display fluorescence upon irradiation with ultraviolet light. Most likely, the concentration of these endogenous fluorophores changes as the stiffness of the ECM changes. In this work we investigate the endogenous fluorescence of collagen gels containing fibroblasts as a non-invasive non-destructive method to measure stiffness of the ECM. Human fibroblast cells were cultured in three-dimensional gels of type I collagen (50,000 cells/ml). This construct is a simple model of tissue contraction. During contraction, changes in the excitation-emission matrix (a fluorescence map in the 240-520/290-530 nm range) of constructs were measured with a spectrofluoremeter, and changes in stiffness were measured with a standard indentation test over 16 days. Results show that a progressive increase in fluorescence of the 290/340 nm excitation-emission pair correlates with a progressive increase in stiffness (r=0.9, α=0.5). The fluorescence of this excitation-emission pair is ascribed to tryptophan and variations in the fluorescence of this pair correlate with cellular proliferation. In this tissue model, the endogenous functional fluorescence of proliferating fibroblast cells is a biomechanical marker of stiffness of the ECM.

  16. LKB1 loss in melanoma disrupts directional migration toward extracellular matrix cues

    PubMed Central

    Chan, Keefe T.; Asokan, Sreeja B.; King, Samantha J.; Bo, Tao; Dubose, Evan S.; Liu, Wenjin; Berginski, Matthew E.; Simon, Jeremy M.; Davis, Ian J.; Gomez, Shawn M.; Sharpless, Norman E.

    2014-01-01

    Somatic inactivation of the serine/threonine kinase gene STK11/LKB1/PAR-4 occurs in a variety of cancers, including ∼10% of melanoma. However, how the loss of LKB1 activity facilitates melanoma invasion and metastasis remains poorly understood. In LKB1-null cells derived from an autochthonous murine model of melanoma with activated Kras and Lkb1 loss and matched reconstituted controls, we have investigated the mechanism by which LKB1 loss increases melanoma invasive motility. Using a microfluidic gradient chamber system and time-lapse microscopy, in this paper, we uncover a new function for LKB1 as a directional migration sensor of gradients of extracellular matrix (haptotaxis) but not soluble growth factor cues (chemotaxis). Systematic perturbation of known LKB1 effectors demonstrated that this response does not require canonical adenosine monophosphate–activated protein kinase (AMPK) activity but instead requires the activity of the AMPK-related microtubule affinity-regulating kinase (MARK)/PAR-1 family kinases. Inhibition of the LKB1–MARK pathway facilitated invasive motility, suggesting that loss of the ability to sense inhibitory matrix cues may promote melanoma invasion. PMID:25349262

  17. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

    SciTech Connect

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; Burger, Maximilian; Schaefer, Dirk J.; Wolff, Thomas; Gurke, Lorenz; Briquez, Priscilla S.; Larsson, Hans M.; Gianni-Barrera, Roberto; Hubbell, Jeffrey A.; Banfi, Andrea

    2015-04-01

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.

  18. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE PAGESBeta

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; Burger, Maximilian; Schaefer, Dirk J.; Wolff, Thomas; Gurke, Lorenz; Briquez, Priscilla S.; Larsson, Hans M.; Gianni-Barrera, Roberto; et al

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  19. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    SciTech Connect

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; Burger, Maximilian; Schaefer, Dirk J.; Wolff, Thomas; Gurke, Lorenz; Briquez, Priscilla S.; Larsson, Hans M.; Gianni-Barrera, Roberto; Hubbell, Jeffrey A.; Banfi, Andrea

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.

  20. Nrf2 null enhances UVB-induced skin inflammation and extracellular matrix damages.

    PubMed

    Saw, Constance Lay Lay; Yang, Anne Yuqing; Huang, Mou-Tuan; Liu, Yue; Lee, Jong Hun; Khor, Tin Oo; Su, Zheng-Yuan; Shu, Limin; Lu, Yaoping; Conney, Allan H; Kong, Ah-Ng Tony

    2014-01-01

    Nrf2 plays a critical role in defending against oxidative stress and inflammation. We previously reported that Nrf2 confers protection against ultraviolet-B (UVB)-induced inflammation, sunburn reaction, and is involved in sulforaphane-mediated photo-protective effects in the skin. In this study, we aimed to demonstrate the protective role of Nrf2 against inflammation-mediated extracellular matrix (ECM) damage induced by UVB irradiation. Ear biopsy weights were significantly increased in both Nrf2 wild-type (Nrf2 WT) and knockout (Nrf2 KO) mice one week after UVB irradiation. However, these weights increased more significantly in KO mice compared to WT mice, suggesting a greater inflammatory response in KO mice. In addition, we analyzed the protein expression of numerous markers, including macrophage inflammatory protein-2 (MIP-2), pro-matrix metalloproteinase-9 (MMP-9), and p53. p53, a regulator of DNA repair, was overexpressed in Nrf2 KO mice, indicating that the absence of Nrf2 led to more sustained DNA damage. There was also more substantial ECM degradation and increased inflammation in UVB-irradiated Nrf2 KO mice compared to UVB-irradiated WT mice. Furthermore, the protective effects of Nrf2 in response to UVB irradiation were mediated by increased HO-1 protein expression. Collectively, our results show that Nrf2 plays a key role in protecting against UVB irradiation and that the photo-protective effect of Nrf2 is closely related to the inhibition of ECM degradation and inflammation. PMID:25228981

  1. Abnormal osteopontin and matrix extracellular phosphoglycoprotein localization, and odontoblast differentiation, in X-linked hypophosphatemic teeth.

    PubMed

    Salmon, B; Bardet, C; Coyac, B R; Baroukh, B; Naji, J; Rowe, P S; Opsahl Vital, S; Linglart, A; Mckee, M D; Chaussain, C

    2014-08-01

    Mutations in phosphate-regulating gene (PHEX) lead to X-linked hypophosphatemic rickets (XLH), a genetic disease characterized by impaired mineralization in bones and teeth. In human XLH tooth dentin, calcospherites that would normally merge as part of the mineralization process are separated by unmineralized interglobular spaces where fragments of matrix proteins accumulate. Here, we immunolocalized osteopontin (OPN) in human XLH teeth, in a three-dimensional XLH human dental pulp stem cell-collagen scaffold culture model and in a rat tooth injury repair model treated with acidic serine- and aspartate-rich motif peptides (ASARM). In parallel, matrix extracellular phosphoglycoprotein (MEPE) immunolocalization and alkaline phosphatase (ALP) activity were assessed in XLH teeth. OPN was expressed by odontoblasts in the XLH models, and localized to the abnormal calcospherites of XLH tooth dentin. In addition, ALP activity and MEPE localization were abnormal in human XLH teeth, with MEPE showing an accumulation in the unmineralized interglobular spaces in dentin. Furthermore, XLH odontoblasts failed to form a well-polarized odontoblast layer. These data suggest that both MEPE and OPN are involved in impaired tooth mineralization associated with XLH, possibly through different effects on the mineralization process. PMID:25158186

  2. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters

    PubMed Central

    Naba, Alexandra; Clauser, Karl R; Lamar, John M; Carr, Steven A; Hynes, Richard O

    2014-01-01

    The extracellular matrix (ECM) is a major component of tumors and a significant contributor to cancer progression. In this study, we use proteomics to investigate the ECM of human mammary carcinoma xenografts and show that primary tumors of differing metastatic potential differ in ECM composition. Both tumor cells and stromal cells contribute to the tumor matrix and tumors of differing metastatic ability differ in both tumor- and stroma-derived ECM components. We define ECM signatures of poorly and highly metastatic mammary carcinomas and these signatures reveal up-regulation of signaling pathways including TGFβ and VEGF. We further demonstrate that several proteins characteristic of highly metastatic tumors (LTBP3, SNED1, EGLN1, and S100A2) play causal roles in metastasis, albeit at different steps. Finally we show that high expression of LTBP3 and SNED1 correlates with poor outcome for ER−/PR−breast cancer patients. This study thus identifies novel biomarkers that may serve as prognostic and diagnostic tools. DOI: http://dx.doi.org/10.7554/eLife.01308.001 PMID:24618895

  3. [Effect of fibronectin on the synthesis of extracellular matrix proteins in periodontal ligament cells].

    PubMed

    Wan, L; Wu, Z; Zhou, Y

    1996-11-01

    Immunofluorescence staining method and fluorescence spectrophotometry were used to study the synthesis of extracellular matrix proteins in periodontal ligament cells (PDL cells) when exogenous fibronectin (FN) existed. The results showed that the right amount of exogenous FN (0.044 mumol/l) could increase the amount of type I collagen and type III collagen in PDL cells (P < 0.01), inhibit the synthesis of FN itself (P < 0.01). It suggested that exogenous FN can effect the synthesis of extracellular matrix proteins so as to promote a new connective tissue attachment formation. PMID:9592289

  4. Depressed immune surveillance against cancer: role of deficient T cell: extracellular matrix interactions.

    PubMed

    Górski, A; Castronovo, V; Stepień-Sopniewska, B; Grieb, P; Ryba, M; Mrowiec, T; Korczak-Kowalska, G; Wierzbicki, P; Matysiak, W; Dybowska, B

    1994-07-01

    Although T cells infiltrate malignant tumors, the local immune response is usually inefficient and tumors escape destruction. While extracellular matrix proteins strongly costimulate T cell responses in normal individuals, our studies indicate that peripheral blood T cells from cancer patients and tumor infiltrating cells respond poorly or are resistant to stimulative signals mediated by collagen I and IV and fibronectin. Moreover, the adhesive properties of cancer T cells are markedly depressed. Those functional deficiencies are paralleled by variable deficits in integrin and non-integrin T cell receptors for extracellular matrix. Immunotherapy with BCG causes a dramatic but transient increase in T cell: ECM interactions. PMID:7827959

  5. Guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata

    PubMed Central

    Bae, Won-Gyu; Kim, Jangho; Choung, Yun-Hoon; Chung, Yesol; Suh, Kahp Y.; Pang, Changhyun; Chung, Jong Hoon; Jeong, Hoon Eui

    2015-01-01

    Engineering complex extracellular matrix (ECM) is an important challenge for cell and tissue engineering applications as well as for understanding fundamental cell biology. We developed the methodology for fabrication of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with original wrinkling technique for the generation of well-defined native ECM-like platforms by culturing fibroblast cells on the multiscale substrata [1]. This paper provides information on detailed characteristics of polyethylene glycol-diacrylate multiscale substrata. In addition, a possible model for guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata is proposed. PMID:26543882

  6. Redox-Relevant Aspects of the Extracellular Matrix and Its Cellular Contacts via Integrins

    PubMed Central

    de Rezende, Flávia Figueiredo

    2014-01-01

    Abstract Significance: The extracellular matrix (ECM) fulfills essential functions in multicellular organisms. It provides the mechanical scaffold and environmental cues to cells. Upon cell attachment, the ECM signals into the cells. In this process, reactive oxygen species (ROS) are physiologically used as signalizing molecules. Recent Advances: ECM attachment influences the ROS-production of cells. In turn, ROS affect the production, assembly and turnover of the ECM during wound healing and matrix remodeling. Pathological changes of ROS levels lead to excess ECM production and increased tissue contraction in fibrotic disorders and desmoplastic tumors. Integrins are cell adhesion molecules which mediate cell adhesion and force transmission between cells and the ECM. They have been identified as a target of redox-regulation by ROS. Cysteine-based redox-modifications, together with structural data, highlighted particular regions within integrin heterodimers that may be subject to redox-dependent conformational changes along with an alteration of integrin binding activity. Critical Issues: In a molecular model, a long-range disulfide-bridge within the integrin β-subunit and disulfide bridges within the genu and calf-2 domains of the integrin α-subunit may control the transition between the bent/inactive and upright/active conformation of the integrin ectodomain. These thiol-based intramolecular cross-linkages occur in the stalk domain of both integrin subunits, whereas the ligand-binding integrin headpiece is apparently unaffected by redox-regulation. Future Directions: Redox-regulation of the integrin activation state may explain the effect of ROS in physiological processes. A deeper understanding of the underlying mechanism may open new prospects for the treatment of fibrotic disorders. Antioxid. Redox Signal. 20, 1977–1993. PMID:24040997

  7. Targeting of EMILIN-1 and EMILIN-2 to Fibrillin Microfibrils Facilitates their Incorporation into the Extracellular Matrix.

    PubMed

    Schiavinato, Alvise; Keene, Douglas R; Wohl, Alexander P; Corallo, Diana; Colombatti, Alfonso; Wagener, Raimund; Paulsson, Mats; Bonaldo, Paolo; Sengle, Gerhard

    2016-06-01

    Elastin microfibril interface-located proteins (EMILINs) 1 and 2 belong to a family of structurally related extracellular glycoproteins with unique functions in the extracellular space, such as modulation of pro-transforming growth factor-β processing, activation of the extrinsic apoptotic pathway, and regulation of Hedgehog and Wnt ligand bioavailability. However, little is known about how EMILINs may exert their extracellular functions. We therefore investigated the spatiotemporal localization and deposition of EMILIN-1 and -2 within the extracellular space. By using immunoelectron and immunofluorescence microscopy together with biochemical extraction, we showed that EMILIN-1 and -2 are targeted to fibrillin microfibrils in the skin. In addition, during skin wound healing and in vitro matrix fiber assembly by primary dermal fibroblasts, EMILIN-1 and -2 are deposited on and coregulated with fibrillin. Analysis of wounds and mouse embryonic fibroblast cultures showed that EMILIN-1 and -2 network formation also requires the presence of fibronectin. Disruption of microfibrils in fibrillin-1-deficient mice leads to fragmentation of the EMILIN-1 and -2 networks, suggesting an involvement of EMILINs in fibrillin-related skin disorders. The addition of EMILINs to the ligand repertoire of fibrillin strengthens the concept of fibrillin microfibrils as extracellular scaffolds integrating cellular force transmission and growth factor bioactivity. PMID:26945878

  8. Degenerated human intervertebral discs contain autoantibodies against extracellular matrix proteins.

    PubMed

    Capossela, S; Schläfli, P; Bertolo, A; Janner, T; Stadler, B M; Pötzel, T; Baur, M; Stoyanov, J V

    2014-01-01

    Degeneration of intervertebral discs (IVDs) is associated with back pain and elevated levels of inflammatory cells. It has been hypothesised that discogenic pain is a direct result of vascular and neural ingrowth along annulus fissures, which may expose the avascular nucleus pulposus (NP) to the systemic circulation and induce an autoimmune reaction. In this study, we confirmed our previous observation of antibodies in human degenerated and post-traumatic IVDs cultured in vitro. We hypothesised that the presence of antibodies was due to an autoimmune reaction against specific proteins of the disc. Furthermore we identified antigens which possibly trigger an autoimmune response in degenerative disc diseases. We demonstrated that degenerated and post-traumatic IVDs contain IgG antibodies against typical extracellular proteins of the disc, particularly proteins of the NP. We identified IgGs against collagen type II and aggrecan, confirming an autoimmune reaction against the normally immune privileged NP. We also found specific IgGs against collagens types I and V, but not against collagen type III. In conclusion, this study confirmed the association between disc degeneration and autoimmunity, and may open the avenue for future studies on developing prognostic, diagnostic and therapy-monitoring markers for degenerative disc diseases. PMID:24706108

  9. Alterations in the biosynthesis of extracellular matrix molecules in connective tissues by electric and magnetic fields

    SciTech Connect

    Ciombor, D.M.

    1992-01-01

    Pulsed electromagnetic fields (PEMFs) of certain configurations have been shown to be effective clinically in promoting the healing of fracture non-unions and are believed to enhance calcification of extracellular matrix. In vitro studies have suggested that PEMFs may also have the effect of modifying the extracellular matrix by promoting the synthesis of matrix molecules. This study examines the effect of one particular type of PEMF and a sinusoidal continuous wave upon the extracellular matrix and calcification of endochondral ossification in vivo. The pulsed magnetic field (SS-22) utilized in these studies is being used clinically for the treatment of fracture non-unions, a condition in which the bone is not restored to form or function. The sinusoidal continuous wave was designed to provide a 5 Gauss amplitude at a 15 Hz. rate. The synthesis of cartilage molecules is enhanced by this type of PEMF and since wave and subsequent endochondral calcification is stimulated. Histomorphometric studies indicate that the maturation of bone trabeculae is also promoted by this type of PEMF stimulation. These results indicate that a specific PEMF or continuous waveform can change the composition of cartilage extracellular matrix in vivo and raises the possibility that the effects on other processes of endochondral ossification (e.g., fracture healing and growth plates) may occur through a similar mechanism.

  10. Regulation of hamster sperm hyperactivation by extracellular Na.

    PubMed

    Takei, Gen L; Fujinoki, Masakatsu

    2016-06-01

    Mammalian sperm motility has to be hyperactivated to be fertilization-competent. Hyperactivation is regulated by extracellular environment. Osmolality of mammalian semen is higher than that in female reproductive tract; however, the effect of them on hyperactivation has not been investigated. So we investigated the effect of osmotic environment on hyperactivation using hamster spermatozoa at first. Increase in the osmolality of the media (∼370 mOsm) by increasing the concentration of NaCl (∼150 mmol/L) caused the delay of the expression of hyperactivation. When NaCl concentration varied in the same range (75-150 mmol/L) whereas the osmolality was fixed at 370 mOsm by adding mannitol, the delay of hyperactivation occurred dependent on NaCl concentration. Increase in NaCl concentration also caused suppression of curvilinear velocity, bend angle, and sliding velocity of the flagellum at the onset of incubation, suggesting that NaCl concentration affect both activation and hyperactivation in hamster spermatozoa. Hamster sperm intracellular Ca(2+) concentration decreased as extracellular NaCl concentration increased, whereas membrane potential and intracellular pH were unaffected by extracellular NaCl concentration. SN-6 and SEA0400, inhibitors of Na(+)-Ca(2+) exchanger (NCX), increased intracellular Ca(2+) and accelerated hyperactivation in the presence of 150 mmol/L NaCl. Tyrosine phosphorylation on fibrous sheath proteins was unaffected by extracellular NaCl concentration. These results suggest that extracellular Na(+) suppresses hamster sperm hyperactivation by reducing intracellular Ca(2+) via an action of NCX in a tyrosine phosphorylation-independent manner. It seems that the removal of suppression by extracellular Na(+) leads to the expression of hyperactivated motility. PMID:26952096

  11. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink

    NASA Astrophysics Data System (ADS)

    Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo

    2014-06-01

    The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.

  12. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink

    PubMed Central

    Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo

    2014-01-01

    The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method. PMID:24887553

  13. Glycation of extracellular matrix proteins impairs migration of immune cells.

    PubMed

    Haucke, Elisa; Navarrete-Santos, Alexander; Simm, Andreas; Silber, Rolf-Edgar; Hofmann, Britt

    2014-01-01

    The immune response during aging and diabetes is disturbed and may be due to the altered migration of immune cells in an aged tissue. Our study should prove the hypothesis that age and diabetes-related advanced glycation end products (AGEs) have an impact on the migration and adhesion of human T-cells. To achieve our purpose, we used in vitro AGE-modified proteins (soluble albumin and fibronectin [FN]), as well as human collagen obtained from bypass graft. A Boyden chamber was used to study cell migration. Migrated Jurkat T-cells were analyzed by flow cytometry and cell adhesion by crystal violet staining. Actin polymerization was determined by phalloidin-Alexa-fluor 488-labeled antibody and fluorescence microscopy. We found that significantly fewer cells (50%, p = 0.003) migrated through methylglyoxal modified FN. The attachment to FN in the presence of AGE-bovine serum albumin (BSA) was also reduced (p < 0.05). In ex vivo experiments, isolated collagen from human vein graft material negatively affected the migration of the cells depending on the grade of AGE modification of the collagen. Collagen with a low AGE level reduced the cell migration by 30%, and collagen with a high AGE level by 60%. Interaction of the cells with an AGE-modified matrix, but not with soluble AGEs like BSA-AGE per se, was responsible for a disturbed migration. The reduced migration was accompanied by an impaired actin polymerization. We conclude that AGEs-modified matrix protein inhibits cell migration and adhesion of Jurkat T-cells. PMID:24635174

  14. Characterization of the Vibrio cholerae Extracellular Matrix: A Top-Down Solid-State NMR Approach

    PubMed Central

    Reichhardt, Courtney; Fong, Jiunn C.N.; Yildiz, Fitnat; Cegelski, Lynette

    2015-01-01

    Bacterial biofilms are communities of bacterial cells surrounded by a self-secreted extracellular matrix. Biofilm formation by Vibrio cholerae, the human pathogen responsible for cholera, contributes to its environmental survival and infectivity. Important genetic and molecular requirements have been identified for V. cholerae biofilm formation, yet a compositional accounting of these parts in the intact biofilm or extracellular matrix has not been described. As insoluble and non-crystalline assemblies, determinations of biofilm composition pose a challenge to conventional biochemical and biophysical analysis. The V. cholerae extracellular matrix composition is particularly complex with several proteins, complex polysaccharides, and other biomolecules having been identified as matrix parts. We developed a new top-down solid-state NMR approach to spectroscopically assign and quantify the carbon pools of the intact V. cholerae extracellular matrix using 13C CPMAS and 13C{15N}, 15N{31P}, and 13C{31P}REDOR. General sugar, lipid, and amino acid pools were first profiled and then further annotated and quantified as specific carbon types, including carbonyls, amides, glycyl carbons, and anomerics. In addition, 15N profiling revealed a large amine pool relative to amide contributions, reflecting the prevalence of molecular modifications with free amine groups. Our top-down approach could be implemented immediately to examine the extracellular matrix from mutant strains that might alter polysaccharide production or lipid release beyond the cell surface; or to monitor changes that may accompany environmental variations and stressors such as altered nutrient composition, oxidative stress or antibiotics. More generally, our analysis has demonstrated that solid-state NMR is a valuable tool to characterize complex biofilm systems. PMID:24911407

  15. Ingression Progression Complexes Control Extracellular Matrix Remodelling during Cytokinesis in Budding Yeast.

    PubMed

    Foltman, Magdalena; Molist, Iago; Arcones, Irene; Sacristan, Carlos; Filali-Mouncef, Yasmina; Roncero, Cesar; Sanchez-Diaz, Alberto

    2016-02-01

    Eukaryotic cells must coordinate contraction of the actomyosin ring at the division site together with ingression of the plasma membrane and remodelling of the extracellular matrix (ECM) to support cytokinesis, but the underlying mechanisms are still poorly understood. In eukaryotes, glycosyltransferases that synthesise ECM polysaccharides are emerging as key factors during cytokinesis. The budding yeast chitin synthase Chs2 makes the primary septum, a special layer of the ECM, which is an essential process during cell division. Here we isolated a group of actomyosin ring components that form complexes together with Chs2 at the cleavage site at the end of the cell cycle, which we named 'ingression progression complexes' (IPCs). In addition to type II myosin, the IQGAP protein Iqg1 and Chs2, IPCs contain the F-BAR protein Hof1, and the cytokinesis regulators Inn1 and Cyk3. We describe the molecular mechanism by which chitin synthase is activated by direct association of the C2 domain of Inn1, and the transglutaminase-like domain of Cyk3, with the catalytic domain of Chs2. We used an experimental system to find a previously unanticipated role for the C-terminus of Inn1 in preventing the untimely activation of Chs2 at the cleavage site until Cyk3 releases the block on Chs2 activity during late mitosis. These findings support a model for the co-ordinated regulation of cell division in budding yeast, in which IPCs play a central role. PMID:26891268

  16. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen.

    PubMed

    Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben

    2015-11-01

    Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation. PMID:26195589

  17. Ingression Progression Complexes Control Extracellular Matrix Remodelling during Cytokinesis in Budding Yeast

    PubMed Central

    Foltman, Magdalena; Molist, Iago; Arcones, Irene; Sacristan, Carlos; Filali-Mouncef, Yasmina; Roncero, Cesar; Sanchez-Diaz, Alberto

    2016-01-01

    Eukaryotic cells must coordinate contraction of the actomyosin ring at the division site together with ingression of the plasma membrane and remodelling of the extracellular matrix (ECM) to support cytokinesis, but the underlying mechanisms are still poorly understood. In eukaryotes, glycosyltransferases that synthesise ECM polysaccharides are emerging as key factors during cytokinesis. The budding yeast chitin synthase Chs2 makes the primary septum, a special layer of the ECM, which is an essential process during cell division. Here we isolated a group of actomyosin ring components that form complexes together with Chs2 at the cleavage site at the end of the cell cycle, which we named ‘ingression progression complexes’ (IPCs). In addition to type II myosin, the IQGAP protein Iqg1 and Chs2, IPCs contain the F-BAR protein Hof1, and the cytokinesis regulators Inn1 and Cyk3. We describe the molecular mechanism by which chitin synthase is activated by direct association of the C2 domain of Inn1, and the transglutaminase-like domain of Cyk3, with the catalytic domain of Chs2. We used an experimental system to find a previously unanticipated role for the C-terminus of Inn1 in preventing the untimely activation of Chs2 at the cleavage site until Cyk3 releases the block on Chs2 activity during late mitosis. These findings support a model for the co-ordinated regulation of cell division in budding yeast, in which IPCs play a central role. PMID:26891268

  18. Neuron-Glia Interactions in Neural Plasticity: Contributions of Neural Extracellular Matrix and Perineuronal Nets

    PubMed Central

    Dzyubenko, Egor; Gottschling, Christine

    2016-01-01

    Synapses are specialized structures that mediate rapid and efficient signal transmission between neurons and are surrounded by glial cells. Astrocytes develop an intimate association with synapses in the central nervous system (CNS) and contribute to the regulation of ion and neurotransmitter concentrations. Together with neurons, they shape intercellular space to provide a stable milieu for neuronal activity. Extracellular matrix (ECM) components are synthesized by both neurons and astrocytes and play an important role in the formation, maintenance, and function of synapses in the CNS. The components of the ECM have been detected near glial processes, which abut onto the CNS synaptic unit, where they are part of the specialized macromolecular assemblies, termed perineuronal nets (PNNs). PNNs have originally been discovered by Golgi and represent a molecular scaffold deposited in the interface between the astrocyte and subsets of neurons in the vicinity of the synapse. Recent reports strongly suggest that PNNs are tightly involved in the regulation of synaptic plasticity. Moreover, several studies have implicated PNNs and the neural ECM in neuropsychiatric diseases. Here, we highlight current concepts relating to neural ECM and PNNs and describe an in vitro approach that allows for the investigation of ECM functions for synaptogenesis. PMID:26881114

  19. Targeting Inflammatory Cytokines and Extracellular Matrix Composition to Promote Wound Regeneration

    PubMed Central

    Zgheib, Carlos; Xu, Junwang; Liechty, Kenneth W.

    2014-01-01

    Significance: Delayed wound healing is one of the most challenging complications of several diseases, including diabetes. There is a vast interest in finding efficient treatments that promote scarless wound healing. The ability of the fetus to regenerate skin wounds after injury has generated much interest in the fetus as a model of regeneration. In this review, we evaluate the role and differential regulation of inflammation, extracellular matrix (ECM) composition, and mechanical stress in determining wound phenotype after injury. Recent Advances: Comparisons between postnatal and fetal wounds have revealed many differences in the healing process. Fetal skin wound healing is characterized by a reduced inflammatory response, an ECM rich in type III collagen and high-molecular-weight hyaluronic acid (HMW-HA), and minimal mechanical stress. In contrast, adult wounds have a sustained inflammatory response, an ECM with increased type I collagen, and low-molecular-weight (LMW-HA) and are subject to significant mechanical load. Critical Issues: The differential regulation of these processes in the fetus compared with the adult plays a critical role in promoting regeneration in the fetus while resulting in scar formation in the adult. Future Directions: Understanding the significance of inflammation and biomechanical forces in wound healing may help in designing therapeutic strategies for the management of chronic nonhealing wounds. PMID:24757589

  20. Targeting Inflammatory Cytokines and Extracellular Matrix Composition to Promote Wound Regeneration.

    PubMed

    Zgheib, Carlos; Xu, Junwang; Liechty, Kenneth W

    2014-04-01

    Significance: Delayed wound healing is one of the most challenging complications of several diseases, including diabetes. There is a vast interest in finding efficient treatments that promote scarless wound healing. The ability of the fetus to regenerate skin wounds after injury has generated much interest in the fetus as a model of regeneration. In this review, we evaluate the role and differential regulation of inflammation, extracellular matrix (ECM) composition, and mechanical stress in determining wound phenotype after injury. Recent Advances: Comparisons between postnatal and fetal wounds have revealed many differences in the healing process. Fetal skin wound healing is characterized by a reduced inflammatory response, an ECM rich in type III collagen and high-molecular-weight hyaluronic acid (HMW-HA), and minimal mechanical stress. In contrast, adult wounds have a sustained inflammatory response, an ECM with increased type I collagen, and low-molecular-weight (LMW-HA) and are subject to significant mechanical load. Critical Issues: The differential regulation of these processes in the fetus compared with the adult plays a critical role in promoting regeneration in the fetus while resulting in scar formation in the adult. Future Directions: Understanding the significance of inflammation and biomechanical forces in wound healing may help in designing therapeutic strategies for the management of chronic nonhealing wounds. PMID:24757589

  1. Autonomous Extracellular Matrix Remodeling Controls a Progressive Adaptation in Muscle Stem Cell Regenerative Capacity during Development.

    PubMed

    Tierney, Matthew Timothy; Gromova, Anastasia; Sesillo, Francesca Boscolo; Sala, David; Spenlé, Caroline; Orend, Gertraud; Sacco, Alessandra

    2016-03-01

    Muscle stem cells (MuSCs) exhibit distinct behavior during successive phases of developmental myogenesis. However, how their transition to adulthood is regulated is poorly understood. Here, we show that fetal MuSCs resist progenitor specification and exhibit altered division dynamics, intrinsic features that are progressively lost postnatally. After transplantation, fetal MuSCs expand more efficiently and contribute to muscle repair. Conversely, niche colonization efficiency increases in adulthood, indicating a balance between muscle growth and stem cell pool repopulation. Gene expression profiling identified several extracellular matrix (ECM) molecules preferentially expressed in fetal MuSCs, including tenascin-C, fibronectin, and collagen VI. Loss-of-function experiments confirmed their essential and stage-specific role in regulating MuSC function. Finally, fetal-derived paracrine factors were able to enhance adult MuSC regenerative potential. Together, these findings demonstrate that MuSCs change the way in which they remodel their microenvironment to direct stem cell behavior and support the unique demands of muscle development or repair. PMID:26904948

  2. Longitudinal Measurement of Extracellular Matrix Rigidity in 3D Tumor Models Using Particle-tracking Microrheology

    PubMed Central

    El-Hamidi, Hamid; Celli, Jonathan P.

    2014-01-01

    The mechanical microenvironment has been shown to act as a crucial regulator of tumor growth behavior and signaling, which is itself remodeled and modified as part of a set of complex, two-way mechanosensitive interactions. While the development of biologically-relevant 3D tumor models have facilitated mechanistic studies on the impact of matrix rheology on tumor growth, the inverse problem of mapping changes in the mechanical environment induced by tumors remains challenging. Here, we describe the implementation of particle-tracking microrheology (PTM) in conjunction with 3D models of pancreatic cancer as part of a robust and viable approach for longitudinally monitoring physical changes in the tumor microenvironment, in situ. The methodology described here integrates a system of preparing in vitro 3D models embedded in a model extracellular matrix (ECM) scaffold of Type I collagen with fluorescently labeled probes uniformly distributed for position- and time-dependent microrheology measurements throughout the specimen. In vitro tumors are plated and probed in parallel conditions using multiwell imaging plates. Drawing on established methods, videos of tracer probe movements are transformed via the Generalized Stokes Einstein Relation (GSER) to report the complex frequency-dependent viscoelastic shear modulus, G*(ω). Because this approach is imaging-based, mechanical characterization is also mapped onto large transmitted-light spatial fields to simultaneously report qualitative changes in 3D tumor size and phenotype. Representative results showing contrasting mechanical response in sub-regions associated with localized invasion-induced matrix degradation as well as system calibration, validation data are presented. Undesirable outcomes from common experimental errors and troubleshooting of these issues are also presented. The 96-well 3D culture plating format implemented in this protocol is conducive to correlation of microrheology measurements with therapeutic

  3. Development-dependent modification of the extracellular matrix by a sulphated glycoprotein in Volvox carteri

    PubMed Central

    Wenzl, Stephan; Thym, Detlef; Sumper, Manfred

    1984-01-01

    We report the chemical characterization of the highly sulphated glycoprotein SSG 185 from Volvox carteri. SSG 185 is a hydroxyproline-containing, extracellular glycoprotein. The sulphate residues are clustered within the parent saccharide structure of SSG 185, since on mercaptolysis all the sulphate residues are recovered in a small saccharide fragment containing mannose, arabinose and sulphate (in a molar ratio of 1̇1̇2). SSG 185 is a short-lived molecule, serving as a precursor for a high mol. wt. component of the extracellular matrix. Synthesis of SSG 185 is developmentally controlled. Different SSG 185 variants, with unknown modifications in the sulphated saccharide fragment, are synthesized at different developmental stages or under the influence of the sexual inducer. These modifications remain conserved in the aggregated state of SSG 185, indicating the development-dependent modification of the extracellular matrix. ImagesFig. 2.Fig. 3.Fig. 4.Fig. 6.Fig. 7. PMID:16453512

  4. Cyclopamine disrupts tumor extracellular matrix and improves the distribution and efficacy of nanotherapeutics in pancreatic cancer.

    PubMed

    Zhang, Bo; Jiang, Ting; Shen, Shun; She, Xiaojian; Tuo, Yanyan; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2016-10-01

    The dense extracellular matrix in pancreatic ductal adenocarcinoma dramatically reduces the penetration and efficacy of nanotherapeutics. Disruption of the tumor extracellular matrix may help improve the distribution and efficacy of nanotherapeutics in pancreatic cancer. In this study, we tested whether cyclopamine, a special inhibitor of the hedgehog signaling pathway with powerful anti-fibrotic activity, could promote the penetration and efficacy of nanotherapeutics in pancreatic cancer. It was shown that cyclopamine disrupted tumor extracellular fibronectins, decompressed tumor blood vessels, and improved tumor perfusion. Furthermore, cyclopamine improved the accumulation and intratumoral distribution of i.v.-administered fluorescence indicator-labeled nanoparticles. Finally, cyclopamine also significantly improved the tumor growth inhibition effect of i.v.-injected nanotherapeutics in pancreatic tumor xenograft mouse models. Thus, cyclopamine may have great potential to improve the therapeutic effects of nanomedicine in patients with pancreatic cancer. PMID:27376555

  5. Macromolecular Crowding Directs Extracellular Matrix Organization and Mesenchymal Stem Cell Behavior

    PubMed Central

    Zeiger, Adam S.; Loe, Felicia C.; Li, Ran; Raghunath, Michael; Van Vliet, Krystyn J.

    2012-01-01

    Microenvironments of biological cells are dominated in vivo by macromolecular crowding and resultant excluded volume effects. This feature is absent in dilute in vitro cell culture. Here, we induced macromolecular crowding in vitro by using synthetic macromolecular globules of nm-scale radius at physiological levels of fractional volume occupancy. We quantified the impact of induced crowding on the extracellular and intracellular protein organization of human mesenchymal stem cells (MSCs) via immunocytochemistry, atomic force microscopy (AFM), and AFM-enabled nanoindentation. Macromolecular crowding in extracellular culture media directly induced supramolecular assembly and alignment of extracellular matrix proteins deposited by cells, which in turn increased alignment of the intracellular actin cytoskeleton. The resulting cell-matrix reciprocity further affected adhesion, proliferation, and migration behavior of MSCs. Macromolecular crowding can thus aid the design of more physiologically relevant in vitro studies and devices for MSCs and other cells, by increasing the fidelity between materials synthesized by cells in vivo and in vitro. PMID:22649562

  6. Dynamic compressive behavior of human meniscus correlates with its extra-cellular matrix composition.

    PubMed

    Bursac, P; Arnoczky, S; York, A

    2009-01-01

    The menisci of the knee play a significant role in the complex biomechanics of the joint and are critically important in maintaining articular cartilage health. While a general form-function relationship has been identified for the structural orientation of the extra-cellular matrix of the meniscus, the role of individual biochemical components has yet to be fully explored. To determine if correlations exist between the dynamic and static compressive modulus of human menisci and their major extra-cellular matrix constituents (collagen, glycosoaminoglycan and water content), 12 lateral and 11 medial menisci from 13 adult donors were examined. The results showed that in dynamic compression at high loading frequencies (0.1-1 Hz) the menisci behave as a rubber-like elastic material while at lower frequencies (0.01-0.03 Hz) significant viscous dissipation occurs. While regional variations in compressive moduli and extra-cellular matrix composition were observed, the magnitude of both dynamic and static compressive moduli were found to be insensitive to collagen content (p>0.4). However, this magnitude was found to significantly increase with increasing glycosaminoglycan content (p<0.001) and significantly decrease with increasing water content (p<0.001). The results of this study identify significant relationships between the viscoelastic behavior of the meniscus and its extra-cellular matrix composition. PMID:19581729

  7. Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton

    PubMed Central

    von Nandelstadh, Pernilla; Gucciardo, Erika; Lohi, Jouko; Li, Rui; Sugiyama, Nami; Carpen, Olli; Lehti, Kaisa

    2014-01-01

    Basal-like breast carcinomas, characterized by unfavorable prognosis and frequent metastases, are associated with epithelial-to-mesenchymal transition. During this process, cancer cells undergo cytoskeletal reorganization and up-regulate membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14), which functions in actin-based pseudopods to drive invasion by extracellular matrix degradation. However, the mechanisms that couple matrix proteolysis to the actin cytoskeleton in cell invasion have remained unclear. On the basis of a yeast two-hybrid screen for the MT1-MMP cytoplasmic tail-binding proteins, we identify here a novel Src-regulated protein interaction between the dynamic cytoskeletal scaffold protein palladin and MT1-MMP. These proteins were coexpressed in invasive human basal-like breast carcinomas and corresponding cell lines, where they were associated in the same matrix contacting and degrading membrane complexes. The silencing and overexpression of the 90-kDa palladin isoform revealed the functional importance of the interaction with MT1-MMP in pericellular matrix degradation and mesenchymal tumor cell invasion, whereas in MT1-MMP–negative cells, palladin overexpression was insufficient for invasion. Moreover, this invasion was inhibited in a dominant-negative manner by an immunoglobulin domain–containing palladin fragment lacking the dynamic scaffold and Src-binding domains. These results identify a novel protein interaction that links matrix degradation to cytoskeletal dynamics and migration signaling in mesenchymal cell invasion. PMID:24989798

  8. Leptospira interrogans induces uterine inflammatory responses and abnormal expression of extracellular matrix proteins in dogs.

    PubMed

    Wang, Wei; Gao, Xuejiao; Guo, Mengyao; Zhang, Wenlong; Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Leptospira interrogans (L. interrogans), a worldwide zoonosis, infect humans and animals. In dogs, four syndromes caused by leptospirosis have been identified: icteric, hemorrhagic, uremic (Stuttgart disease) and reproductive (abortion and premature or weak pups), and also it caused inflammation. Extracellular matrix (ECM) is a complex mixture of matrix molecules that is crucial to the reproduction. Both inflammatory response and ECM are closed relative to reproductive. The aim of this study was to clarify how L. interrogans affected the uterus of dogs, by focusing on the inflammatory responses, and ECM expression in dogs uterine tissue infected by L. interrogans. In the present study, 27 dogs were divided into 3 groups, intrauterine infusion with L. interrogans, to make uterine infection, sterile EMJH, and normal saline as a control, respectively. The uteruses were removed by surgical operation in 10, 20, and 30 days, respectively. The methods of histopathological analysis, ELISA, Western blot and qPCR were used. The results showed that L. interrogans induced significantly inflammatory responses, which were characterized by inflammatory cellular infiltration and high expression levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in uterine tissue of these dogs. Furthermore, L. interrogans strongly down-regulated the expression of ECM (collagens (CL) IV, fibronectins (FN) and laminins (LN)) in mRNA and protein levels. These data indicated that strongly inflammatory responses, and abnormal regulation of ECM might contribute to the proliferation of dogs infected by L. interrogans. PMID:25153777

  9. Accumulation of Extracellular Matrix in Advanced Lesions of Canine Distemper Demyelinating Encephalitis.

    PubMed

    Seehusen, Frauke; Al-Azreg, Seham A; Raddatz, Barbara B; Haist, Verena; Puff, Christina; Spitzbarth, Ingo; Ulrich, Reiner; Baumgärtner, Wolfgang

    2016-01-01

    In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease. PMID:27441688

  10. Accumulation of Extracellular Matrix in Advanced Lesions of Canine Distemper Demyelinating Encephalitis

    PubMed Central

    Seehusen, Frauke; Al-Azreg, Seham A.; Raddatz, Barbara B.; Haist, Verena; Puff, Christina; Spitzbarth, Ingo; Ulrich, Reiner; Baumgärtner, Wolfgang

    2016-01-01

    In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease. PMID:27441688

  11. Physicomechanical properties of the extracellular matrix of a demineralized bone

    NASA Astrophysics Data System (ADS)

    Kirilova, I. A.; Sharkeev, Yu. P.; Nikolaev, S. V.; Podorozhnaya, V. T.; Uvarkin, P. V.; Ratushnyak, A. S.; Chebodaeva, V. V.

    2016-08-01

    The article describes the results of a study of physicomechanical properties of a demineralized bone matrix of human cancellous and compact bones. A demineralized cancellous bone was shown to have the best characteristics of a porous system for colonization of matrices by cells. The ultimate stress and elasticity modulus of samples of demineralized femoral heads isolated in primary hip replacement was demonstrated to vary in wide ranges. The elasticity modulus ranged from 50 to 250 MPa, and the tensile strength varied from 1.1 to 5.5 MPa. Microhardness measurements by the recovered indentation method were not possible because of the viscoelastic properties of a bone material. To study the piezoelectric properties of samples, a measuring system was developed that comprised a measuring chamber with contact electrodes, a system for controlled sample loading, an amplifier-converter unit, and signal recording and processing software. The measurement results were used to determine the dependence of the signal amplitude on the dynamic deformation characteristics. The findings are discussed in terms of the relationship between the mechanical and electrical properties and the structure of the organic bone component.

  12. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

    PubMed Central

    Baiocchini, Andrea; Montaldo, Claudia; Conigliaro, Alice; Grimaldi, Alessio; Correani, Virginia; Mura, Francesco; Ciccosanti, Fabiola; Rotiroti, Nicolina; Brenna, Alessia; Montalbano, Marzia; D’Offizi, Gianpiero; Capobianchi, Maria Rosaria; Alessandro, Riccardo; Piacentini, Mauro; Schininà, Maria Eugenia; Maras, Bruno; Del Nonno, Franca; Tripodi, Marco; Mancone, Carmine

    2016-01-01

    Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies. PMID:26998606

  13. Neoplastic extracellular matrix environment promotes cancer invasion in vitro.

    PubMed

    Sundquist, Elias; Renko, Outi; Salo, Sirpa; Magga, Johanna; Cervigne, Nilva K; Nyberg, Pia; Risteli, Juha; Sormunen, Raija; Vuolteenaho, Olli; Zandonadi, Flávia; Paes Leme, Adriana F; Coletta, Ricardo D; Ruskoaho, Heikki; Salo, Tuula

    2016-06-10

    The invasion of carcinoma cells is a crucial feature in carcinogenesis. The penetration efficiency not only depends on the cancer cells, but also on the composition of the tumor microenvironment. Our group has developed a 3D invasion assay based on human uterine leiomyoma tissue. Here we tested whether human, porcine, mouse or rat hearts as well as porcine tongue tissues could be similarly used to study carcinoma cell invasion in vitro. Three invasive human oral tongue squamous cell carcinoma (HSC-3, SCC-25 and SCC-15), melanoma (G-361) and ductal breast adenocarcinoma (MDA-MB-231) cell lines, and co-cultures of HSC-3 and carcinoma-associated or normal oral fibroblasts were assayed. Myoma tissue, both native and lyophilized, promoted invasion and growth of the cancer cells. However, the healthy heart or tongue matrices were unable to induce the invasion of any type of cancer cells tested. Moreover, when studied in more detail, small molecular weight fragments derived from heart tissue rinsing media inhibited HSC-3 horizontal migration. Proteome analysis of myoma rinsing media, on the other hand, revealed migration enhancing factors. These results highlight the important role of matrix composition for cancer invasion studies in vitro and further demonstrate the unique properties of human myoma organotypic model. PMID:27090016

  14. Inhaled Steroids Modulate Extracellular Matrix Composition in Bronchial Biopsies of COPD Patients: A Randomized, Controlled Trial

    PubMed Central

    Kunz, Lisette I. Z.; Strebus, Jolanda; Budulac, Simona E.; Lapperre, Therese S.; Sterk, Peter J.; Postma, Dirkje S.; Mauad, Thais; Timens, Wim; Hiemstra, Pieter S.

    2013-01-01

    Rationale Smoking and inflammation contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD), which involves changes in extracellular matrix. This is thought to contribute to airway remodeling and airflow obstruction. We have previously observed that long-term treatment with inhaled corticosteroids can not only reduce bronchial inflammation, but can also attenuate lung function decline in moderate-severe COPD. We hypothesized that inhaled corticosteroids and current smoking modulate bronchial extracellular matrix components in COPD. Objective To compare major extracellular matrix components (elastic fibers; proteoglycans [versican, decorin]; collagens type I and III) in bronchial biopsies 1) after 30-months inhaled steroids treatment or placebo; and 2) between current and ex-smokers with COPD. Methods We included 64 moderate-severe, steroid-naive COPD patients (24/40 (ex)-smokers, 62±7 years, 46 (31–54) packyears, post-bronchodilator forced expiratory volume in one second (FEV1) 62±9% predicted) at baseline in this randomized, controlled trial. 19 and 13 patients received 30-months treatment with fluticasone or placebo, respectively. Bronchial biopsies collected at baseline and after 30 months were studied using (immuno)histochemistry to evaluate extracellular matrix content. Percentage and density of stained area were calculated by digital image analysis. Results 30-Months inhaled steroids increased the percentage stained area of versican (9.6% [CI 0.9 to 18.3%]; p = 0.03) and collagen III (20.6% [CI 3.8 to 37.4%]; p = 0.02) compared to placebo. Increased collagen I staining density correlated with increased post-bronchodilator FEV1 after inhaled steroids treatment (Rs = 0.45, p = 0.04). There were no differences between smokers and ex-smokers with COPD in percentages and densities for all extracellular matrix proteins. Conclusions These data show that long-term inhaled corticosteroids treatment partially changes the

  15. Renal extracellular matrix accumulation in acute puromycin aminonucleoside nephrosis in rats.

    PubMed Central

    Jones, C. L.; Buch, S.; Post, M.; McCulloch, L.; Liu, E.; Eddy, A. A.

    1992-01-01

    Progressive renal fibrosis is considered to be the final common pathway leading to chronic renal insufficiency. In this study, the authors examined some of the cellular and molecular mechanisms regulating the renal accumulation of extracellular matrix (ECM) proteins using rats with puromycin amino-nucleoside (PAN) nephrosis as an acute model system. Puromycin aminonucleoside rats developed reversible nephrotic syndrome accompanied by an interstitial infiltrate of monocytes. The number of interstitial fibroblasts expressing ST4 antigen did not increase. During the first 4 days, steady-state mRNA levels for all genes examined remained at or below control levels. At 1 week, nephrotic syndrome and interstitial inflammation were established, and a period of renal cell proliferation occurred, identified by increased histone mRNA levels and localized by tritiated thymine autoradiography to tubular epithelial cells and occasional interstitial cells. Transforming growth factor-beta (TGF-beta) steady-state mRNA levels were increased eightfold, but returned to control levels by 3 weeks. At week 1, there was a 10- to 20-fold increase in kidney steady-state mRNA levels for genes encoding interstitial matrix proteins collagen I and fibronectin and basement membrane collagen IV. By in situ hybridization, alpha 1(I) procollagen mRNA was localized to interstitial cells. Immunofluorescence microscopy demonstrated focal accumulation of ECM proteins in the tubulointerstitial compartment at 2 and 3 weeks, but by 6 weeks, kidney immunohistology was normal again. Steady-state mRNA levels for the matrix degrading metalloproteinase stromelysin remained at control values, whereas the levels for interstitial collagenase were normal at week 1 and increased twofold to threefold at 2 and 3 weeks. Steady-state mRNA levels for the tissue inhibitor of metalloproteinases (TIMP) increased fivefold at 1 week and returned to baseline values over the next 2 weeks. The results of this study suggest that

  16. Structural basis of Smoothened regulation by its extracellular domains

    NASA Astrophysics Data System (ADS)

    Byrne, Eamon F. X.; Sircar, Ria; Miller, Paul S.; Hedger, George; Luchetti, Giovanni; Nachtergaele, Sigrid; Tully, Mark D.; Mydock-McGrane, Laurel; Covey, Douglas F.; Rambo, Robert P.; Sansom, Mark S. P.; Newstead, Simon; Rohatgi, Rajat; Siebold, Christian

    2016-07-01

    Developmental signals of the Hedgehog (Hh) and Wnt families are transduced across the membrane by Frizzled-class G-protein-coupled receptors (GPCRs) composed of both a heptahelical transmembrane domain (TMD) and an extracellular cysteine-rich domain (CRD). How the large extracellular domains of GPCRs regulate signalling by the TMD is unknown. We present crystal structures of the Hh signal transducer and oncoprotein Smoothened, a GPCR that contains two distinct ligand-binding sites: one in its TMD and one in the CRD. The CRD is stacked atop the TMD, separated by an intervening wedge-like linker domain. Structure-guided mutations show that the interface between the CRD, linker domain and TMD stabilizes the inactive state of Smoothened. Unexpectedly, we find a cholesterol molecule bound to Smoothened in the CRD binding site. Mutations predicted to prevent cholesterol binding impair the ability of Smoothened to transmit native Hh signals. Binding of a clinically used antagonist, vismodegib, to the TMD induces a conformational change that is propagated to the CRD, resulting in loss of cholesterol from the CRD–linker domain–TMD interface. Our results clarify the structural mechanism by which the activity of a GPCR is controlled by ligand-regulated interactions between its extracellular and transmembrane domains.

  17. Structural basis of Smoothened regulation by its extracellular domains.

    PubMed

    Byrne, Eamon F X; Sircar, Ria; Miller, Paul S; Hedger, George; Luchetti, Giovanni; Nachtergaele, Sigrid; Tully, Mark D; Mydock-McGrane, Laurel; Covey, Douglas F; Rambo, Robert P; Sansom, Mark S P; Newstead, Simon; Rohatgi, Rajat

    2016-07-28

    Developmental signals of the Hedgehog (Hh) and Wnt families are transduced across the membrane by Frizzledclass G-protein-coupled receptors (GPCRs) composed of both a heptahelical transmembrane domain (TMD) and an extracellular cysteine-rich domain (CRD). How the large extracellular domains of GPCRs regulate signalling by the TMD is unknown. We present crystal structures of the Hh signal transducer and oncoprotein Smoothened, a GPCR that contains two distinct ligand-binding sites: one in its TMD and one in the CRD. The CRD is stacked a top the TMD, separated by an intervening wedge-like linker domain. Structure-guided mutations show that the interface between the CRD, linker domain and TMD stabilizes the inactive state of Smoothened. Unexpectedly, we find a cholesterol molecule bound to Smoothened in the CRD binding site. Mutations predicted to prevent cholesterol binding impair the ability of Smoothened to transmit native Hh signals. Binding of a clinically used antagonist, vismodegib, to the TMD induces a conformational change that is propagated to the CRD, resulting in loss of cholesterol from the CRD-linker domain-TMD interface. Our results clarify the structural mechanism by which the activity of a GPCR is controlled by ligand-regulated interactions between its extracellular and transmembrane domains. PMID:27437577

  18. β-arrestin Deficiency Protects Against Pulmonary Fibrosis in Mice and Prevents Fibroblast Invasion of Extracellular Matrix

    PubMed Central

    Lovgren, Alysia Kern; Kovacs, Jeffrey J.; Xie, Ting; Potts, Erin N.; Li, Yuejuan; Foster, W. Michael; Liang, Jiurong; Meltzer, Eric B.; Jiang, Dianhua; Lefkowitz, Robert J.; Noble, Paul W.

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease causing unremitting extracellular matrix deposition with resultant distortion of pulmonary architecture and impaired gas exchange. β-arrestins regulate G-protein-coupled receptors through receptor desensitization while acting as signaling scaffolds that facilitate numerous effector pathways. Here we examine the role of β-arrestin1 and β-arrestin2 in the pathobiology of pulmonary fibrosis. In the bleomycin-induced mouse lung fibrosis model, loss of eitherβ-arrestin1 or β-arrestin2 results in protection from mortality, inhibition of matrix deposition, and protected lung function. Fibrosis is prevented despite preserved recruitment of inflammatory cells and fibroblast chemotaxis. However, isolated lung fibroblasts from bleomycin-treated β-arrestin null mice fail to invade extracellular matrix while displaying altered expression of genes involved in matrix production and degradation. Furthermore, knockdown of β-arrestin2 in fibroblasts from IPF patients attenuated the invasive phenotype. These data implicate β-arrestins as mediators of fibroblast invasion and development of pulmonary fibrosis, thus representing a potential target for therapeutic intervention for patients with IPF. PMID:21411739

  19. Extracellular Matrix Proteins, Alkaline Phosphatase and Pyrophosphate as Molecular Determinants of Bone, Tooth, Kidney and Vascular Calcification

    NASA Astrophysics Data System (ADS)

    McKee, Marc D.

    2008-09-01

    Progress in biomineralization research in recent years has identified, characterized and described functions for key noncollagenous extracellular matrix proteins regulating crystal growth in the skeleton and dentition. Some of these same proteins expressed in soft tissues undergoing pathologic calcification also inhibit ectopic crystal growth. In addition to extracellular matrix proteins regulating matrix mineralization, the enzyme tissue-nonspecific alkaline phosphatase—which is highly expressed by cells in mineralized tissues—cleaves pyrophosphate, an anionic small-molecule inhibitor of mineralization. Together with the required mineral ion availability necessary for crystal growth, these molecular determinants appear to function in limiting the spread of pathologic calcification seen in soft tissues such as blood vessels and kidneys. Osteopontin, in particular, is a potent calcification inhibitor that accumulates in mineralized tissues and in calcified deposits during vascular calcification and nephrolithiasis/urolithiasis. Additional research is required to establish the exact temporal sequence in which the molecular determinants of pathologic calcification appear relative to mineral crystal growth in different tissues, and to establish their relationship (if any) to the activation of osteogenic differentiation programs.

  20. Regulation of chronic inflammatory and immune processes by extracellular vesicles.

    PubMed

    Robbins, Paul D; Dorronsoro, Akaitz; Booker, Cori N

    2016-04-01

    Almost all cell types release extracellular vesicles (EVs), which are derived either from multivesicular bodies or from the plasma membrane. EVs contain a subset of proteins, lipids, and nucleic acids from the cell from which they are derived. EV factors, particularly small RNAs such as miRNAs, likely play important roles in cell-to-cell communication both locally and systemically. Most of the functions associated with EVs are in the regulation of immune responses to pathogens and cancer, as well as in regulating autoimmunity. This Review will focus on the different modes of immune regulation, both direct and indirect, by EVs. The therapeutic utility of EVs for the regulation of immune responses will also be discussed. PMID:27035808

  1. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    SciTech Connect

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  2. Morphological Characterization of Organized Extracellular Matrix Deposition by Ascorbic Acid-Stimulated Human Corneal Fibroblasts

    PubMed Central

    Guo, Xiaoqing; Hutcheon, Audrey E. K.; Melotti, Suzanna A.; Zieske, James D.; Trinkaus-Randall, Vickery; Ruberti, Jeffrey W.

    2016-01-01

    Purpose To characterize the structure and morphology of extracellular matrix (ECM) synthesized by untransformed, cultured human corneal fibroblasts in long-term cultures. Methods Human corneal stromal keratocytes were expanded in transwell culture in the presence of fetal bovine serum and a stable derivative of Vitamin C. The cells were allowed to synthesize a fibrillar ECM for up to five weeks. Constructs were assessed via light (phase contrast and differential interference contrast) and transmission (standard and quick freeze/deep etch) microscopy. Results Electron micrographs revealed stratified constructs with multiple parallel layers of cells and an extracellular matrix comprising parallel arrays of small, polydisperse fibrils (27–51 nm) which often alternate in direction. Differential interference contrast images demonstrated oriented ECM fibril arrays parallel to the plane of the construct while quick-freeze deep etch micrographs showed the details of the matrix interaction with fibroblasts via arrays of membrane surface structures. Conclusions Human keratocytes, cultured in a stable Vitamin C derivative, are capable of assembling extracellular matrix which comprise parallel arrays of ECM fibrils. The resulting constructs, which are highly cellular, exhibit morphology similar to the developing mammalian stroma where organized matrix is derived. The appearance of arrays of structures on the cell membranes suggest a role in the local organization of synthesized ECM. This model could provide critical insight into the fundamental processes which govern the genesis of organized connective tissues such as the cornea and may provide a scaffolding suitable for tissue-engineering a biomimetic stroma. PMID:17724187

  3. All-trans retinoic acid and extracellular Ca2+ differentially influence extracellular matrix production by human skin in organ culture.

    PubMed Central

    Varani, J.; Larson, B. K.; Perone, P.; Inman, D. R.; Fligiel, S. E.; Voorhees, J. J.

    1993-01-01

    Two-mm full-thickness punch biopsies of human skin were placed in organ culture in a serum-free, growth factor-free basal medium. Under conditions of low extracellular Ca2+ (0.15 mmol/L), the tissue quickly degenerated. However, degeneration was prevented when the extracellular Ca2+ concentration was increased to 1.4 mmol/L. The tissue remained histologically normal in appearance and biochemically active for up to 12 days. The addition of 3 mumol/L all-trans retinoic acid (RA) to the low-Ca2+ culture medium also prevented tissue degeneration. However, in contrast to what was seen in the presence of 1.4 mmol/L Ca2+, epidermal differentiation did not occur normally in the presence of RA. Rather, the upper layers of the epidermis routinely separated from the underlying basal cells. Fibronectin production by the organ cultured skin was examined. Biosynthetic labeling/immunoprecipitation studies demonstrated that incubation of the tissue in basal medium containing 1.4 mmol/L Ca2+ resulted in a high level of fibronectin production relative to the amount produced in basal medium containing 0.15 mmol/L Ca2+. In contrast, the addition of 3 mumol/L RA to the low Ca2+ basal medium did not stimulate fibronectin production. Similar results were observed in enzyme-linked immunosorbent assays where the addition of Ca2+ to a final concentration of 1.4 mmol/L stimulated fibronectin and thrombospondin production whereas RA (3 mumol/L) did not. Although RA by itself failed to stimulate extracellular matrix production, the addition of 3 mumol/L RA to basal medium containing 1.4 mmol/L Ca2+ led to a further increase in fibronectin production over that seen in the presence of 1.4 mmol/L Ca2+ alone. Taken together, these data indicate that although either 1.4 mmol/L Ca2+ or 3 mumol/L RA facilitates survival of organ-cultured skin in basal medium, they have very different effects on extracellular matrix production. This supports the view, based on histological appearance, that the two

  4. A mouse 3T6 fibroblast cell culture model for the study of normal and protein-engineered collagen synthesis and deposition into the extracellular matrix.

    PubMed

    Lamandé, S R; Bateman, J F

    1993-07-01

    Mouse 3T6 fibroblasts deposited an organized collagenous extracellular matrix during long-term culture in the presence of ascorbic acid. The matrix produced by the cells had a similar distribution of collagen types as the mouse dermal matrix, comprising predominantly type I with smaller amounts of types III and V collagens. By day 8 of culture more than 70% of the collagen in the 3T6 matrix was involved in covalent crosslinkages and required pepsin digestion for extraction. Incorporation of NaB3H4 into reducible crosslinks and aldehydes directly demonstrated the involvement of the alpha 1 (I)CB6 and alpha 2(I)CB3.5 in crosslinks. The pattern of reducible crosslinks in the in vitro 3T6 matrix was similar to that in mouse skin suggesting a comparable fibril organization. Processing of procollagen to collagen occurred efficiently throughout the culture period and the rate of collagen production was unaltered during 15 days of culture, indicating that the development of a collagenous matrix does not directly play a role in procollagen processing or biosynthetic regulation. The existence of a preformed matrix did however, increase the efficiency with which newly synthesised collagen was incorporated into the pericellular matrix. At day 0, when there was no measurable matrix present, 29% of the collagen synthesised was deposited, while by day 15, 88% of the collagen was laid down in the matrix. The development of this 3T6 culture system, where collagen is efficiently incorporated into an organized extracellular matrix, will facilitate detailed studies on matrix organization and regulation and provide a system in which protein-engineered mutant collagens can be expressed to determine their effects on the production of a functional extracellular matrix. PMID:8412990

  5. A materials science vision of extracellular matrix mineralization

    NASA Astrophysics Data System (ADS)

    Reznikov, N.; Steele, J. A. M.; Fratzl, P.; Stevens, M. M.

    2016-08-01

    From an engineering perspective, skeletal tissues are remarkable structures because they are lightweight, stiff and tough, yet produced at ambient conditions. The biomechanical success of skeletal tissues is largely attributable to the process of biomineralization — a tightly regulated, cell-driven formation of billions of inorganic nanocrystals formed from ions found abundantly in body fluids. In this Review, we discuss nature's strategies to produce and sustain appropriate biomechanical properties in mineralizing (by the promotion of mineralization) and non-mineralizing (by the inhibition of mineralization) tissues. We review how perturbations of biomineralization are controlled over a continuum that spans from the desirable (or defective in disease) mineralization of the skeleton to pathological cardiovascular mineralization, and to mineralization of bioengineered constructs. A materials science vision of mineralization is presented with an emphasis on the micro- and nanostructure of mineralized tissues recently revealed by state-of-the-art analytical methods, and on how biomineralization-inspired designs are influencing the field of synthetic materials.

  6. The extracellular-matrix-retaining cyanobacterium Nostoc verrucosum accumulates trehalose, but is sensitive to desiccation.

    PubMed

    Sakamoto, Toshio; Kumihashi, Keisuke; Kunita, Shinpei; Masaura, Takuya; Inoue-Sakamoto, Kaori; Yamaguchi, Masaaki

    2011-08-01

    The aquatic cyanobacterium Nostoc verrucosum forms macroscopic colonies, which consist of both cellular filaments and massive extracellular matrix material. In this study, the physiological features of N. verrucosum were investigated and compared with those of the anhydrobiotic cyanobacterium Nostoc commune. Nostoc verrucosum cells were sensitive to desiccation, but tolerant of freeze-thawing treatment in terms of both cell viability and photosynthetic O(2) evolution. Natural colonies of these cyanobacteria contained similar levels of chlorophyll a, carotenoids, the UV-absorbing pigments scytonemin and mycosporine-like amino acids, and uronic acid [a component of extracellular polysaccharides (EPS)]. EPS from both N. verrucosum and N. commune indicated low acidity and a high affinity for divalent cations, although their sugar compositions differed. The WspA protein, known to be a major component of the extracellular matrix of N. commune, was detected in N. verrucosum. Desiccation caused similarly high levels of trehalose accumulation in both cyanobacteria. Although previously considered relevant to anhydrobiosis in the terrestrial cyanobacterium N. commune, the data presented here suggest that extracellular matrix production and trehalose accumulation are not enough for standing extreme desiccation in N. verrucosum. PMID:21507024

  7. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres

    PubMed Central

    Boncompagni, Simona; Arthurton, Lewis; Akujuru, Eugene; Pearson, Timothy; Steverding, Dietmar; Protasi, Feliciano; Mutungi, Gabriel

    2015-01-01

    A number of studies have previously proposed the existence of glucocorticoid receptors on the plasma membrane of many cell types, including skeletal muscle fibres. However, their exact localisation and the cellular signalling pathway(s) they utilise to communicate with the rest of the cell are still poorly understood. In this study, we investigated the localisation and the mechanism(s) underlying the non-genomic physiological functions of these receptors in mouse skeletal muscle cells. The results show that the receptors were localised in the cytoplasm in myoblasts, in the nucleus in myotubes, in the extracellular matrix, in satellite cells and in the proximity of mitochondria in adult muscle fibres. Also, they bound laminin in a glucocorticoid-dependent manner. Treating small skeletal muscle fibre bundles with the synthetic glucocorticoid beclomethasone dipropionate increased the phosphorylation (= activation) of extracellular signal-regulated kinases 1 and 2, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. This occurred within 5 min and depended on the fibre type and the duration of the treatment. It was also abolished by the glucocorticoid receptor inhibitor, mifepristone, and a monoclonal antibody against the receptor. From these results we conclude that the non-genomic/non-canonical physiological functions of glucocorticoids, in adult skeletal muscle fibres, are mediated by a glucocorticoid receptor localised in the extracellular matrix, in satellite cells and close to mitochondria, and involve activation of the mitogen-activated protein kinase pathway. PMID:25846902

  8. Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging

    SciTech Connect

    Ghajar, Cyrus M; Bissell, Mina J

    2008-10-23

    The extracellular matrix (ECM), once thought to solely provide physical support to a tissue, is a key component of a cell's microenvironment responsible for directing cell fate and maintaining tissue specificity. It stands to reason, then, that changes in the ECM itself or in how signals from the ECM are presented to or interpreted by cells can disrupt tissue organization; the latter is a necessary step for malignant progression. In this review, we elaborate on this concept using the mammary gland as an example. We describe how the ECM directs mammary gland formation and function, and discuss how a cell's inability to interpret these signals - whether as a result of genetic insults or physicochemical alterations in the ECM - disorganizes the gland and promotes malignancy. By restoring context and forcing cells to properly interpret these native signals, aberrant behavior can be quelled and organization re-established. Traditional imaging approaches have been a key complement to the standard biochemical, molecular, and cell biology approaches used in these studies. Utilizing imaging modalities with enhanced spatial resolution in live tissues may uncover additional means by which the ECM regulates tissue structure, on different length scales, through its pericellular organization (short-scale) and by biasing morphogenic and morphostatic gradients (long-scale).

  9. Nanoscale viscoelasticity of extracellular matrix proteins in soft tissues: A multiscale approach.

    PubMed

    Miri, Amir K; Heris, Hossein K; Mongeau, Luc; Javid, Farhad

    2014-02-01

    It is hypothesized that the bulk viscoelasticity of soft tissues is determined by two length-scale-dependent mechanisms: the time-dependent response of the extracellular matrix (ECM) proteins at the nanometer scale and the biophysical interactions between the ECM solid structure and interstitial fluid at the micrometer scale. The latter is governed by poroelasticity theory assuming free motion of the interstitial fluid within the porous ECM structure. In a recent study (Heris, H.K., Miri, A.K., Tripathy, U., Barthelat, F., Mongeau, L., 2013. J. Mech. Behav. Biomed. Mater.), atomic force microscopy was used to measure the response of porcine vocal folds to a creep loading and a 50-nm sinusoidal oscillation. A constitutive model was calibrated and verified using a finite element model to accurately predict the nanoscale viscoelastic moduli of ECM. A generally good correlation was obtained between the predicted variation of the viscoelastic moduli with depth and that of hyaluronic acids in vocal fold tissue. We conclude that hyaluronic acids may regulate vocal fold viscoelasticity. The proposed methodology offers a characterization tool for biomaterials used in vocal fold augmentations. PMID:24317493

  10. Nanoscale Viscoelasticity of Extracellular Matrix Proteins in Soft Tissues: a Multiscale Approach

    PubMed Central

    Miri, Amir K.; Heris, Hossein K.; Mongeau, Luc; Javid, Farhad

    2013-01-01

    We propose that the bulk viscoelasticity of soft tissues results from two length-scale-dependent mechanisms: the time-dependent response of extracellular matrix proteins (ECM) at the nanometer scale and the biophysical interactions between the ECM solid structure and interstitial fluid at the micrometer scale. The latter was modeled using the poroelasticity theory with an assumption of free motion of the interstitial fluid within the porous ECM structure. Following a recent study (Heris, H.K., Miri, A.K., Tripathy, U., Barthelat, F., Mongeau, L., 2013. Journal of the Mechanical Behavior of Biomedical Materials), atomic force microscopy was used to perform creep loading and 50-nm sinusoidal oscillations on porcine vocal folds. The proposed model was calibrated by a finite element model to accurately predict the nanoscale viscoelastic moduli of ECM. A linear correlation was observed between the in-depth distribution of the viscoelastic moduli and that of hyaluronic acids in the vocal fold tissue. We conclude that hyaluronic acids may regulate the vocal fold viscoelasticity at nanoscale. The proposed methodology offers a characterization tool for biomaterials used in vocal fold augmentations. PMID:24317493

  11. Extracellular matrix scaffolding guides lumen elongation by inducing anisotropic intercellular mechanical tension.

    PubMed

    Li, Qiushi; Zhang, Yue; Pluchon, Perrine; Robens, Jeffrey; Herr, Keira; Mercade, Myriam; Thiery, Jean-Paul; Yu, Hanry; Viasnoff, Virgile

    2016-03-01

    The de novo formation of secretory lumens plays an important role during organogenesis. It involves the establishment of a cellular apical pole and the elongation of luminal cavities. The molecular parameters controlling cell polarization have been heavily scrutinized. In particular, signalling from the extracellular matrix (ECM) proved essential to the proper localization of the apical pole by directed protein transport. However, little is known about the regulation of the shape and the directional development of lumen into tubes. We demonstrate that the spatial scaffolding of cells by ECM can control tube shapes and can direct their elongation. We developed a minimal organ approach comprising of hepatocyte doublets cultured in artificial microniches to precisely control the spatial organization of cellular adhesions in three dimensions. This approach revealed a mechanism by which the spatial repartition of integrin-based adhesion can elicit an anisotropic intercellular mechanical stress guiding the osmotically driven elongation of lumens in the direction of minimal tension. This mechanical guidance accounts for the different morphologies of lumen in various microenvironmental conditions. PMID:26878396

  12. Cardiac Extracellular Matrix-Fibrin Hybrid Scaffolds with Tunable Properties for Cardiovascular Tissue Engineering

    PubMed Central

    Williams, Corin; Budina, Erica; Stoppel, Whitney L.; Sullivan, Kelly E.; Emani, Sirisha; Emani, Sitaram M.; Black, Lauren D.

    2014-01-01

    Solubilized cardiac extracellular matrix (ECM) is being developed as an injectable therapeutic that offers promise for promoting cardiac repair. However, the ECM alone forms a hydrogel that is very soft compared to the native myocardium. As both the stiffness and composition of the ECM are important in regulating cell behavior and can have complex synergistic effects, we sought to develop an ECM-based scaffold with tunable biochemical and mechanical properties. We used solubilized rat cardiac ECM from two developmental stages (neonatal, adult) combined with fibrin hydrogels that were crosslinked with transglutaminase. We show that ECM was retained within the gels and Young’s modulus could be tuned to span the range of the developing and mature heart. C-kit+ cardiovascular progenitor cells from pediatric patients with congenital heart defects were seeded into the hybrid gels. Both the elastic modulus and composition of the scaffolds impacted the expression of endothelial and smooth muscle cell genes. Furthermore, we demonstrate that the hybrid gels are injectable, and thus have potential for minimally invasive therapies. ECM-fibrin hybrid scaffolds offer new opportunities for exploiting the effects of both composition and mechanical properties in directing cell behavior for tissue engineering. PMID:25463503

  13. Proteomic profiling of the extracellular matrix (slime sheath) of Dictyostelium discoideum.

    PubMed

    Huber, Robert J; O'Day, Danton H

    2015-10-01

    Dictyostelium discoideum has historically served as a model system for cell and developmental biology, but recently it has gained increasing attention as a model for the study of human diseases. The extracellular matrix (ECM) of this eukaryotic microbe serves multiple essential functions during development. It not only provides structural integrity to the moving multicellular pseudoplasmodium, or slug, it also provides components that regulate cell motility and differentiation. An LC/MS/MS analysis of slug ECM revealed the presence of a large number of proteins in two wild-type strains, NC4 and WS380B. GO annotation identified a large number of proteins involved in some form of binding (e.g. protein, polysaccharide, cellulose, carbohydrate, ATP, cAMP, ion, lipid, vitamin), as well as proteins that modulate metabolic processes, cell movement, and multicellular development. In addition, this proteomic analysis identified numerous expected (e.g. EcmA, EcmD, discoidin I, discoidin II), as well as unexpected (e.g. ribosomal and nuclear proteins) components. These topics are discussed in terms of the structure and function of the ECM during the development of this model amoebozoan and their relevance to ongoing biomedical research. PMID:26152465

  14. Fibroblasts behavior after N-acetylcysteine and amino acids exposure: extracellular matrix gene expression.

    PubMed

    Avantaggiato, Anna; Palmieri, Annalisa; Bertuzzi, Gianluigi; Carinci, Francesco

    2014-06-01

    Reactive oxygen species (ROS) are chemically reactive molecules with impaired electrons that make them unstable and able to react easily with a great variety of molecules. The main targets of ROS are DNA, proteins, and membrane phospholipids. In the skin, ROS are able to affect the production of collagen and elastin, the main components of the extracellular matrix (ECM). This action contributes to the skin's aging. N-Acetylcysteine (NAC) is an acetylated cysteine residue with excellent anti-oxidant activity that boosts glutathione (GSH) levels. This study evaluates the effect of a solution of NAC and amino acids, which is used in aesthetic medicine as an intra-dermal injective treatment, on fibroblast behavior. To this aim, the expression levels of some ECM-related genes (HAS1, HYAL1 ELN, ELANE, MMP2, MMP3, MMP13, COL1A1, COL3A1) were analyzed on cultured dermal fibroblasts using real-time reverse transcription polymerase chain reaction (RT-PCR). All but two collagen genes were up-regulated after 24 hr of treatment. PMID:24438160

  15. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2002-01-01

    Great advances have been made in the identification of the soluble angiogenic factors, insoluble extracellular matrix (ECM) molecules, and receptor signaling pathways that mediate control of angiogenesis--the growth of blood capillaries. This review focuses on work that explores how endothelial cells integrate these chemical signals with mechanical cues from their local tissue microenvironment so as to produce functional capillary networks that exhibit specialized form as well as function. These studies have revealed that ECM governs whether an endothelial cell will switch between growth, differentiation, motility, or apoptosis programs in response to a soluble stimulus based on its ability to mechanically resist cell tractional forces and thereby produce cell and cytoskeletal distortion. Transmembrane integrin receptors play a key role in this mechanochemical transduction process because they both organize a cytoskeletal signaling complex within the focal adhesion and preferentially focus mechanical forces on this site. Molecular filaments within the internal cytoskeleton--microfilaments, microtubules, and intermediate filaments--also contribute to the cell's structural and functional response to mechanical stress through their role as discrete support elements within a tensegrity-stabilized cytoskeletal array. Importantly, a similar form of mechanical control also has been shown to be involved in the regulation of contractility in vascular smooth muscle cells and cardiac myocytes. Thus, the mechanism by which cells perform mechanochemical transduction and the implications of these findings for morphogenetic control are discussed in the wider context of vascular development and cardiovascular physiology.

  16. Machine learning approaches for discrimination of Extracellular Matrix proteins using hybrid feature space.

    PubMed

    Ali, Farman; Hayat, Maqsood

    2016-08-21

    Extracellular Matrix (ECM) proteins are the vital type of proteins that are secreted by resident cells. ECM proteins perform several significant functions including adhesion, differentiation, cell migration and proliferation. In addition, ECM proteins regulate angiogenesis process, embryonic development, tumor growth and gene expression. Due to tremendous biological significance of the ECM proteins and rapidly increases of protein sequences in databases, it is indispensable to introduce a new high throughput computation model that can accurately identify ECM proteins. Various traditional models have been developed, but they are laborious and tedious. In this work, an effective and high throughput computational classification model is proposed for discrimination of ECM proteins. In this model, protein sequences are formulated using amino acid composition, pseudo amino acid composition (PseAAC) and di-peptide composition (DPC) techniques. Further, various combination of feature extraction techniques are fused to form hybrid feature spaces. Several classifiers were employed. Among these classifiers, K-Nearest Neighbor obtained outstanding performance in combination with the hybrid feature space of PseAAC and DPC. The obtained accuracy of our proposed model is 96.76%, which the highest success rate has been reported in the literature so far. PMID:27179459

  17. Physico-mechanical aspects of extracellular matrix influences on tumorigenic behaviors

    PubMed Central

    Cukierman, Edna; Bassi, Daniel E.

    2010-01-01

    Tumor progression in vitro has traditionally been studied in the context of two-dimensional (2D) environments. However, it is now well accepted that 2D substrates are unnaturally rigid compared to the physiological substrate known as extracellular matrix (ECM) that is in direct contact with both normal and tumorigenic cells in vivo. Hence, the patterns of interactions, as well as the strategies used by cells in order to penetrate the ECM, and migrate through a three-dimensional (3D) environment are notoriously different than those observed in 2D. Several substrates, such as collagen I, laminin, or complex mixtures of ECM components have been used as surrogates of native 3D ECM to more accurately study cancer cell behaviors. In addition, 3D matrices developed from normal or tumor-associated fibroblasts have been produced to recapitulate the mesenchymal 3D environment that assorted cells encounter in vivo. Some of these substrates are being used to evaluate physico-mechanical effects on tumor cell behavior. Physiological 3D ECMs exhibit a wide range of rigidities amongst different tissues while the degree of stromal stiffness is known to change during tumorigenesis. In this review we describe some of the physico-mechanical characteristics of tumor-associated ECMs believed to play important roles in regulating epithelial tumorigenic behaviors. PMID:20452434

  18. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle

    PubMed Central

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-01

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling. PMID:26725948

  19. The Extracellular Matrix Protein Brevican Limits Time-Dependent Enhancement of Cocaine Conditioned Place Preference.

    PubMed

    Lubbers, Bart R; Matos, Mariana R; Horn, Annemarie; Visser, Esther; Van der Loo, Rolinka C; Gouwenberg, Yvonne; Meerhoff, Gideon F; Frischknecht, Renato; Seidenbecher, Constanze I; Smit, August B; Spijker, Sabine; van den Oever, Michel C

    2016-06-01

    Cocaine-associated environmental cues sustain relapse vulnerability by reactivating long-lasting memories of cocaine reward. During periods of abstinence, responding to cocaine cues can time-dependently intensify a phenomenon referred to as 'incubation of cocaine craving'. Here, we investigated the role of the extracellular matrix protein brevican in recent (1 day after training) and remote (3 weeks after training) expression of cocaine conditioned place preference (CPP). Wild-type and Brevican heterozygous knock-out mice, which express brevican at ~50% of wild-type levels, received three cocaine-context pairings using a relatively low dose of cocaine (5 mg/kg). In a drug-free CPP test, heterozygous mice showed enhanced preference for the cocaine-associated context at the remote time point compared with the recent time point. This progressive increase was not observed in wild-type mice and it did not generalize to contextual-fear memory. Virally mediated overexpression of brevican levels in the hippocampus, but not medial prefrontal cortex, of heterozygous mice prevented the progressive increase in cocaine CPP, but only when overexpression was induced before conditioning. Post-conditioning overexpression of brevican did not affect remote cocaine CPP, suggesting that brevican limited the increase in remote CPP by altering neuro-adaptive mechanisms during cocaine conditioning. We provide causal evidence that hippocampal brevican levels control time-dependent enhancement of cocaine CPP during abstinence, pointing to a novel substrate that regulates incubation of responding to cocaine-associated cues. PMID:26711251

  20. The role of extracellular matrix in age-related conduction disorders: a forgotten player?

    PubMed Central

    Spadaccio, Cristiano; Rainer, Alberto; Mozetic, Pamela; Trombetta, Marcella; Dion, Robert A; Barbato, Raffaele; Nappi, Francesco; Chello, Massimo

    2015-01-01

    Cardiovascular aging is a physiological process gradually leading to structural degeneration and functional loss of all the cardiac and vascular components. Conduction system is also deeply influenced by the aging process with relevant reflexes in the clinical side. Age-related arrhythmias carry significant morbidity and mortality and represent a clinical and economical burden. An important and unjustly unrecognized actor in the pathophysiology of aging is represented by the extracellular matrix (ECM) that not only structurally supports the heart determining its mechanical and functional properties, but also sends a biological signaling regulating cellular function and maintaining tissue homeostasis. At the biophysical level, cardiac ECM exhibits a peculiar degree of anisotropy, which is among the main determinants of the conductive properties of the specialized electrical conduction system. Age-associated alterations of cardiac ECM are therefore able to profoundly affect the function of the conduction system with striking impact on the patient clinical conditions. This review will focus on the ECM changes that occur during aging in the heart conduction system and on their translation to the clinical scenario. Potential diagnostic and therapeutical perspectives arising from the knowledge on ECM age-associated alterations are further discussed. PMID:25678907

  1. Enrichment of Extracellular Matrix Proteins from Tissues and Digestion into Peptides for Mass Spectrometry Analysis.

    PubMed

    Naba, Alexandra; Clauser, Karl R; Hynes, Richard O

    2015-01-01

    The extracellular matrix (ECM) is a complex meshwork of cross-linked proteins that provides biophysical and biochemical cues that are major regulators of cell proliferation, survival, migration, etc. The ECM plays important roles in development and in diverse pathologies including cardio-vascular and musculo-skeletal diseases, fibrosis, and cancer. Thus, characterizing the composition of ECMs of normal and diseased tissues could lead to the identification of novel prognostic and diagnostic biomarkers and potential novel therapeutic targets. However, the very nature of ECM proteins (large in size, cross-linked and covalently bound, heavily glycosylated) has rendered biochemical analyses of ECMs challenging. To overcome this challenge, we developed a method to enrich ECMs from fresh or frozen tissues and tumors that takes advantage of the insolubility of ECM proteins. We describe here in detail the decellularization procedure that consists of sequential incubations in buffers of different pH and salt and detergent concentrations and that results in 1) the extraction of intracellular (cytosolic, nuclear, membrane and cytoskeletal) proteins and 2) the enrichment of ECM proteins. We then describe how to deglycosylate and digest ECM-enriched protein preparations into peptides for subsequent analysis by mass spectrometry. PMID:26273955

  2. Effects of extracellular matrix molecules on the growth properties of oligodendrocyte progenitor cells in vitro.

    PubMed

    Hu, Jianguo; Deng, Lingxiao; Wang, Xiaofei; Xu, Xiao-Ming

    2009-10-01

    The extracellular matrix (ECM) is a component of neural cell niches and regulates multiple functions of diverse cell types. To date, limited information is available concerning its biological effects on the growth properties of oligodendrocyte progenitor cells (OPCs). In the present study, we examined effects of several ECM components, i.e., fibronectin, laminin, and Matrigel, on the survival, proliferation, migration, process extension, and purity of OPCs isolated from embryonic day 15 rat spinal cords. All three ECM components enhanced these biological properties of the OPCs compared with a non-ECM substrate, poly-D-lysine. However, the extents of their effects were somewhat different. Among these ECMs, fibronectin showed the strongest effect on almost all aspects of the growth properties of OPCs, implying that this molecule is a better substrate for the growth of OPCs in vitro. Because of its survival- and growth-promoting effects on OPCs, fibronectin may be considered as a candidate substrate for enhancing OPC-mediated repair under conditions when exogenous delivery or endogenous stimulation of OPCs is applied. PMID:19472225

  3. A new method for the preparation of biomedical hydrogels comprised of extracellular matrix and oligourethanes.

    PubMed

    Claudio-Rizo, Jesús A; Mendoza-Novelo, Birzabith; Delgado, Jorge; Castellano, Laura E; Mata-Mata, José L

    2016-01-01

    This paper reports a new method to modify hydrogels derived from the acellular extracellular matrix (ECM) and consequently to improve their properties. The method is comprised of the combination of liquid precursors derived from hydrolyzed acellular small intestinal submucosa (hECM) and water-soluble oligourethanes that bear protected isocyanate groups, synthesized from poly(ethylene glycol) (PEG) and hexamethylene diisocyanate (HDI). The results demonstrate that the reactivity of oligourethanes, along with their water solubility, properly induce simultaneously the polymerization of type I collagen and its crosslinking. The polymerization rate and the gel network parameters such as fiber diameter, porosity, crosslinking degree, mechanics, swelling, in vitro degradation and cell proliferation, keep a direct relationship with the oligourethane concentration. Consequently, the hybrid hydrogels formulated with 15 wt.% of oligourethane exhibit enhanced storage modulus and degradation resistance, while maintaining the cell viability and impeding the fibroblast-induced contraction in comparison with the hECM hydrogels without oligourethanes. Therefore, this method is adequate to prepare novel hydrogels where the adjustment of the crosslinking degree controls the materials structure and their properties. This new method offers advantages for regulating the features of ECM-derived templates, thereby extending their possibilities for tissue engineering (TE) applications. PMID:27305317

  4. Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging

    PubMed Central

    Ghajar, Cyrus M.; Bissell, Mina J.

    2010-01-01

    The extracellular matrix (ECM), once thought to solely provide physical support to a tissue, is a key component of a cell’s microenvironment responsible for directing cell fate and maintaining tissue specificity. It stands to reason, then, that changes in the ECM itself or in how signals from the ECM are presented to or interpreted by cells can disrupt tissue organization; the latter is a necessary step for malignant progression. In this review, we elaborate on this concept using the mammary gland as an example. We describe how the ECM directs mammary gland formation and function, and discuss how a cell’s inability to interpret these signals—whether as a result of genetic insults or physicochemical alterations in the ECM—disorganizes the gland and promotes malignancy. By restoring context and forcing cells to properly interpret these native signals, aberrant behavior can be quelled and organization re-established. Traditional imaging approaches have been a key complement to the standard biochemical, molecular, and cell biology approaches used in these studies. Utilizing imaging modalities with enhanced spatial resolution in live tissues may uncover additional means by which the ECM regulates tissue structure, on different length scales, through its pericellular organization (short-scale) and by biasing morphogenic and morphostatic gradients (long-scale). PMID:19009245

  5. Native extracellular matrix: a new scaffolding platform for repair of damaged muscle

    PubMed Central

    Teodori, Laura; Costa, Alessandra; Marzio, Rosa; Perniconi, Barbara; Coletti, Dario; Adamo, Sergio; Gupta, Bhuvanesh; Tarnok, Attila

    2014-01-01

    Effective clinical treatments for volumetric muscle loss resulting from traumatic injury or resection of a large amount of muscle mass are not available to date. Tissue engineering may represent an alternative treatment approach. Decellularization of tissues and whole organs is a recently introduced platform technology for creating scaffolding materials for tissue engineering and regenerative medicine. The muscle stem cell niche is composed of a three-dimensional architecture of fibrous proteins, proteoglycans, and glycosaminoglycans, synthesized by the resident cells that form an intricate extracellular matrix (ECM) network in equilibrium with the surrounding cells and growth factors. A consistent body of evidence indicates that ECM proteins regulate stem cell differentiation and renewal and are highly relevant to tissue engineering applications. The ECM also provides a supportive medium for blood or lymphatic vessels and for nerves. Thus, the ECM is the nature's ideal biological scaffold material. ECM-based bioscaffolds can be recellularized to create potentially functional constructs as a regenerative medicine strategy for organ replacement or tissue repopulation. This article reviews current strategies for the repair of damaged muscle using bioscaffolds obtained from animal ECM by decellularization of small intestinal submucosa (SIS), urinary bladder mucosa (UB), and skeletal muscle, and proposes some innovative approaches for the application of such strategies in the clinical setting. PMID:24982637

  6. The alterations in the extracellular matrix composition guide the repair of damaged liver tissue

    PubMed Central

    Klaas, Mariliis; Kangur, Triin; Viil, Janeli; Mäemets-Allas, Kristina; Minajeva, Ave; Vadi, Krista; Antsov, Mikk; Lapidus, Natalia; Järvekülg, Martin; Jaks, Viljar

    2016-01-01

    While the cellular mechanisms of liver regeneration have been thoroughly studied, the role of extracellular matrix (ECM) in liver regeneration is still poorly understood. We utilized a proteomics-based approach to identify the shifts in ECM composition after CCl4 or DDC treatment and studied their effect on the proliferation of liver cells by combining biophysical and cell culture methods. We identified notable alterations in the ECM structural components (eg collagens I, IV, V, fibronectin, elastin) as well as in non-structural proteins (eg olfactomedin-4, thrombospondin-4, armadillo repeat-containing x-linked protein 2 (Armcx2)). Comparable alterations in ECM composition were seen in damaged human livers. The increase in collagen content and decrease in elastic fibers resulted in rearrangement and increased stiffness of damaged liver ECM. Interestingly, the alterations in ECM components were nonhomogenous and differed between periportal and pericentral areas and thus our experiments demonstrated the differential ability of selected ECM components to regulate the proliferation of hepatocytes and biliary cells. We define for the first time the alterations in the ECM composition of livers recovering from damage and present functional evidence for a coordinated ECM remodelling that ensures an efficient restoration of liver tissue. PMID:27264108

  7. Native extracellular matrix: a new scaffolding platform for repair of damaged muscle.

    PubMed

    Teodori, Laura; Costa, Alessandra; Marzio, Rosa; Perniconi, Barbara; Coletti, Dario; Adamo, Sergio; Gupta, Bhuvanesh; Tarnok, Attila

    2014-01-01

    Effective clinical treatments for volumetric muscle loss resulting from traumatic injury or resection of a large amount of muscle mass are not available to date. Tissue engineering may represent an alternative treatment approach. Decellularization of tissues and whole organs is a recently introduced platform technology for creating scaffolding materials for tissue engineering and regenerative medicine. The muscle stem cell niche is composed of a three-dimensional architecture of fibrous proteins, proteoglycans, and glycosaminoglycans, synthesized by the resident cells that form an intricate extracellular matrix (ECM) network in equilibrium with the surrounding cells and growth factors. A consistent body of evidence indicates that ECM proteins regulate stem cell differentiation and renewal and are highly relevant to tissue engineering applications. The ECM also provides a supportive medium for blood or lymphatic vessels and for nerves. Thus, the ECM is the nature's ideal biological scaffold material. ECM-based bioscaffolds can be recellularized to create potentially functional constructs as a regenerative medicine strategy for organ replacement or tissue repopulation. This article reviews current strategies for the repair of damaged muscle using bioscaffolds obtained from animal ECM by decellularization of small intestinal submucosa (SIS), urinary bladder mucosa (UB), and skeletal muscle, and proposes some innovative approaches for the application of such strategies in the clinical setting. PMID:24982637

  8. Cell-Derived Extracellular Matrix: Basic Characteristics and Current Applications in Orthopedic Tissue Engineering.

    PubMed

    Zhang, Weixiang; Zhu, Yun; Li, Jia; Guo, Quanyi; Peng, Jiang; Liu, Shichen; Yang, Jianhua; Wang, Yu

    2016-06-01

    The extracellular matrix (ECM) is a dynamic and intricate microenvironment with excellent biophysical, biomechanical, and biochemical properties, which can directly or indirectly regulate cell proliferation, adhesion, migration, and differentiation, as well as plays key roles in homeostasis and regeneration of tissues and organs. The ECM has attracted a great deal of attention with the rapid development of tissue engineering in the field of regenerative medicine. Tissue-derived ECM scaffolds (also referred to as decellularized tissues and whole organs) are considered a promising therapy for the repair of musculoskeletal defects, including those that are widely used in orthopedics, although there are a few shortcomings. Similar to tissue-derived ECM scaffolds, cell-derived ECM scaffolds also have highly advantageous biophysical and biochemical properties, in particular their ability to be produced in vitro from a number of different cell types. Furthermore, cell-derived ECM scaffolds more closely resemble native ECM microenvironments. The products of cell-derived ECM have a wide range of biomedical applications; these include reagents for cell culture substrates and biomaterials for scaffolds, hybrid scaffolds, and living cell sheet coculture systems. Although cell-derived ECM has only just begun to be investigated, it has great potential as a novel approach for cell-based tissue repair in orthopedic tissue engineering. This review summarizes and analyzes the various types of cell-derived ECM products applied in cartilage, bone, and nerve tissue engineering in vitro or in vivo and discusses future directions for investigation of cell-derived ECM. PMID:26671674

  9. Changes in the Chondrocyte and Extracellular Matrix Proteome during Post-natal Mouse Cartilage Development*

    PubMed Central

    Wilson, Richard; Norris, Emma L.; Brachvogel, Bent; Angelucci, Constanza; Zivkovic, Snezana; Gordon, Lavinia; Bernardo, Bianca C.; Stermann, Jacek; Sekiguchi, Kiyotoshi; Gorman, Jeffrey J.; Bateman, John F.

    2012-01-01

    Skeletal growth by endochondral ossification involves tightly coordinated chondrocyte differentiation that creates reserve, proliferating, prehypertrophic, and hypertrophic cartilage zones in the growth plate. Many human skeletal disorders result from mutations in cartilage extracellular matrix (ECM) components that compromise both ECM architecture and chondrocyte function. Understanding normal cartilage development, composition, and structure is therefore vital to unravel these disease mechanisms. To study this intricate process in vivo by proteomics, we analyzed mouse femoral head cartilage at developmental stages enriched in either immature chondrocytes or maturing/hypertrophic chondrocytes (post-natal days 3 and 21, respectively). Using LTQ-Orbitrap tandem mass spectrometry, we identified 703 cartilage proteins. Differentially abundant proteins (q < 0.01) included prototypic markers for both early and late chondrocyte differentiation (epiphycan and collagen X, respectively) and novel ECM and cell adhesion proteins with no previously described roles in cartilage development (tenascin X, vitrin, Urb, emilin-1, and the sushi repeat-containing proteins SRPX and SRPX2). Meta-analysis of cartilage development in vivo and an in vitro chondrocyte culture model (Wilson, R., Diseberg, A. F., Gordon, L., Zivkovic, S., Tatarczuch, L., Mackie, E. J., Gorman, J. J., and Bateman, J. F. (2010) Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol. Cell. Proteomics 9, 1296–1313) identified components involved in both systems, such as Urb, and components with specific roles in vivo, including vitrin and CILP-2 (cartilage intermediate layer protein-2). Immunolocalization of Urb, vitrin, and CILP-2 indicated specific roles at different maturation stages. In addition to ECM-related changes, we provide the first biochemical evidence of changing endoplasmic reticulum function during

  10. Silicon-based quantum dots induce inflammation in human lung cells and disrupt extracellular matrix homeostasis.

    PubMed

    Stan, Miruna-Silvia; Sima, Cornelia; Cinteza, Ludmila Otilia; Dinischiotu, Anca

    2015-08-01

    Quantum dots (QDs) are nanocrystalline semiconductor materials that have been tested for biological applications such as cancer therapy, cellular imaging and drug delivery, despite the serious lack of information of their effects on mammalian cells. The present study aimed to evaluate the potential of Si/SiO2 QDs to induce an inflammatory response in MRC-5 human lung fibroblasts. Cells were exposed to different concentrations of Si/SiO2 QDs (25-200 μg·mL(-1)) for 24, 48, 72 and 96 h. The results obtained showed that uptake of QDs was dependent on biocorona formation and the stability of nanoparticles in various biological media (minimum essential medium without or with 10% fetal bovine serum). The cell membrane damage indicated by the increase in lactate dehydrogenase release after exposure to QDs was dose- and time-dependent. The level of lysosomes increased proportionally with the concentration of QDs, whereas an accumulation of autophagosomes was also observed. Cellular morphology was affected, as shown by the disruption of actin filaments. The enhanced release of nitric oxide and the increase in interleukin-6 and interleukin-8 protein expression suggested that nanoparticles triggered an inflammatory response in MRC-5 cells. QDs decreased the protein expression and enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 and also MMP-1 caseinase activity, whereas the protein levels of MMP-1 and tissue inhibitor of metalloproteinase-1 increased. The present study reveals for the first time that silicon-based QDs are able to generate inflammation in lung cells and cause an imbalance in extracellular matrix turnover through a differential regulation of MMPs and tissue inhibitor of metalloproteinase-1 protein expression. PMID:26032556

  11. Activin A Suppresses Osteoblast Mineralization Capacity by Altering Extracellular Matrix (ECM) Composition and Impairing Matrix Vesicle (MV) Production*

    PubMed Central

    Alves, Rodrigo D. A. M.; Eijken, Marco; Bezstarosti, Karel; Demmers, Jeroen A. A.; van Leeuwen, Johannes P. T. M.

    2013-01-01

    During bone formation, osteoblasts deposit an extracellular matrix (ECM) that is mineralized via a process involving production and secretion of highly specialized matrix vesicles (MVs). Activin A, a transforming growth factor-β (TGF-β) superfamily member, was previously shown to have inhibitory effects in human bone formation models through unclear mechanisms. We investigated these mechanisms elicited by activin A during in vitro osteogenic differentiation of human mesenchymal stem cells (hMSC). Activin A inhibition of ECM mineralization coincided with a strong decline in alkaline phosphatase (ALP1) activity in extracellular compartments, ECM and matrix vesicles. SILAC-based quantitative proteomics disclosed intricate protein composition alterations in the activin A ECM, including changed expression of collagen XII, osteonectin and several cytoskeleton-binding proteins. Moreover, in activin A osteoblasts matrix vesicle production was deficient containing very low expression of annexin proteins. ECM enhanced human mesenchymal stem cell osteogenic development and mineralization. This osteogenic enhancement was significantly decreased when human mesenchymal stem cells were cultured on ECM produced under activin A treatment. These findings demonstrate that activin A targets the ECM maturation phase of osteoblast differentiation resulting ultimately in the inhibition of mineralization. ECM proteins modulated by activin A are not only determinant for bone mineralization but also possess osteoinductive properties that are relevant for bone tissue regeneration. PMID:23781072

  12. Effect of spaceflight on the extracellular matrix of skeletal muscle after a crush injury

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Fritz, V. K.; Burkovskaia, T. E.; Il'ina-Kakueva, E. I.

    1992-01-01

    The organization and composition of the extracellular matrix were studied in the crush-injured gastrocnemius muscle of rats subjected to 0 G. After 14 days of flight on Cosmos 2044, the gastrocnemius muscle was removed and evaluated by histochemical and immunohistochemical techniques from the five injured flight rodents and various earth-based treatment groups. In general, the repair process was similar in all injured muscle samples with regard to the organization of the extracellular matrix and myofibers. Small and large myofibers were present within an expanded extracellular matrix, indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with nonenlarged area of nonmuscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well organized and contained more macrophages and blood vessels in the repair region, indicative of a delayed repair process, but did not demonstrate any chronic inflammation. Myofiber repair did vary in muscles from the different groups, being slowest in the flight animals and most complete in the tail-suspended ones.

  13. Sum of the Parts: Composition and Architecture of the Bacterial Extracellular Matrix

    PubMed Central

    McCrate, Oscar A.; Zhou, Xiaoxue; Reichhardt, Courtney; Cegelski, Lynette

    2013-01-01

    Bacterial biofilms are complex multicellular assemblies that exhibit resistance to antibiotics and contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative data are needed to define the molecular composition of bacterial biofilms. E. coli biofilms are known to contain polysaccharides and functional amyloid fibers termed curli, yet accurate determinations of biofilm composition at the molecular level have been elusive. The ability to define the composition of the extracellular matrix is crucial for the elucidation of structure–function relationships that will aid the development of chemical strategies to disrupt biofilms. We have developed an approach that integrates non-perturbative preparation of the extracellular matrix with electron microscopy, biochemistry and solid-state NMR spectroscopy to define the chemical composition of the intact and insoluble extracellular matrix of a clinically important pathogenic bacterium—uropathogenic E. coli. Our data permitted a sum-of-all-the-parts analysis. Electron microscopy revealed supramolecular shell-like structures that encapsulated single cells and enmeshed the bacterial community. Biochemical and solid-state NMR measurements of the matrix and constitutive parts established that the matrix is composed of two major components, curli and cellulose, each in a quantifiable amount. This approach to quantifying the matrix composition is widely applicable to other organisms and to examining the influence of biofilm inhibitors. Collectively, our NMR spectra and the electron micrographs of the purified ECM inspire us to consider the biofilm matrix not as an undefined slime, but as an assembly of polymers with a defined composition and architecture. PMID:23827139

  14. Extracellular Matrix Stiffness Controls VEGF Signaling and Processing in Endothelial Cells.

    PubMed

    Sack, Kelsey D; Teran, Madelane; Nugent, Matthew A

    2016-09-01

    Vascular endothelial growth factor A (VEGF) drives endothelial cell maintenance and angiogenesis. Endothelial cell behavior is altered by the stiffness of the substrate the cells are attached to suggesting that VEGF activity might be influenced by the mechanical cellular environment. We hypothesized that extracellular matrix (ECM) stiffness modifies VEGF-cell-matrix tethering leading to altered VEGF processing and signaling. We analyzed VEGF binding, internalization, and signaling as a function of substrate stiffness in endothelial cells cultured on fibronectin (Fn) linked polyacrylamide gels. Cell produced extracellular matrices on the softest substrates were least capable of binding VEGF, but the cells exhibited enhanced VEGF internalization and signaling compared to cells on all other substrates. Inhibiting VEGF-matrix binding with sucrose octasulfate decreased cell-internalization of VEGF and, inversely, heparin pre-treatment to enhance Fn-matrix binding of VEGF increased cell-internalization of VEGF regardless of matrix stiffness. β1 integrins, which connect cells to Fn, modulated VEGF uptake in a stiffness dependent fashion. Cells on hard surfaces showed decreased levels of activated β1 and inhibition of β1 integrin resulted in a greater proportional decrease in VEGF internalization than in cells on softer matrices. Extracellular matrix binding is necessary for VEGF internalization. Stiffness modifies the coordinated actions of VEGF-matrix binding and β1 integrin binding/activation, which together are critical for VEGF internalization. This study provides insight into how the microenvironment may influence tissue regeneration and response to injury and disease. J. Cell. Physiol. 231: 2026-2039, 2016. © 2016 Wiley Periodicals, Inc. PMID:26773314

  15. Heterogeneous expression of extracellular matrix molecules in the red nucleus of the rat.

    PubMed

    Rácz, É; Gaál, B; Matesz, C

    2016-05-13

    Previous studies in our laboratory showed that the organization and heterogeneous molecular composition of extracellular matrix is associated with the variable cytoarchitecture, connections and specific functions of the vestibular nuclei and two related areas of the vestibular neural circuits, the inferior olive and prepositus hypoglossi nucleus. The aim of the present study is to reveal the organization and distribution of various molecular components of extracellular matrix in the red nucleus, a midbrain premotor center. Morphologically and functionally the red nucleus is comprised of the magno- and parvocellular parts, with overlapping neuronal population. By using histochemical and immunohistochemical methods, the extracellular matrix appeared as perineuronal net, axonal coat, perisynaptic matrix or diffuse network in the neuropil. In both parts of the red nucleus we have observed positive hyaluronan, tenascin-R, link protein, and lectican (aggrecan, brevican, versican, neurocan) reactions. Perineuronal nets were detected with each of the reactions and the aggrecan showed the most intense staining in the pericellular area. The two parts were clearly distinguished on the basis of neurocan and HAPLN1 expression as they have lower intensity in the perineuronal nets of large cells and in the neuropil of the magnocellular part. Additionally, in contrast to this pattern, the aggrecan was heavily labeled in the magnocellular region sharply delineating from the faintly stained parvocellular area. The most characteristic finding was that the appearance of perineuronal nets was related with the neuronal size independently from its position within the two subdivisions of red nucleus. In line with these statements none of the extracellular matrix molecules were restricted exclusively to the magno- or parvocellular division. The chemical heterogeneity of the perineuronal nets may support the recently accepted view that the red nucleus comprises more different populations of

  16. Biofilm Matrix and Its Regulation in Pseudomonas aeruginosa

    PubMed Central

    Wei, Qing; Ma, Luyan Z.

    2013-01-01

    Biofilms are communities of microorganisms embedded in extracellular polymeric substances (EPS) matrix. Bacteria in biofilms demonstrate distinct features from their free-living planktonic counterparts, such as different physiology and high resistance to immune system and antibiotics that render biofilm a source of chronic and persistent infections. A deeper understanding of biofilms will ultimately provide insights into the development of alternative treatment for biofilm infections. The opportunistic pathogen Pseudomonas aeruginosa, a model bacterium for biofilm research, is notorious for its ability to cause chronic infections by its high level of drug resistance involving the formation of biofilms. In this review, we summarize recent advances in biofilm formation, focusing on the biofilm matrix and its regulation in P. aeruginosa, aiming to provide resources for the understanding and control of bacterial biofilms. PMID:24145749

  17. Roles and regulation of the matrix metalloproteinase system in parturition.

    PubMed

    Geng, Junnan; Huang, Cong; Jiang, Siwen

    2016-04-01

    Significant tissue destruction, repair, and remodeling are involved in parturition, which involves fetal membrane rupture, cervical ripening, and uterine contraction and its subsequent involution. Extracellular matrix degradation and remodeling by proteolytic enzymes, such as matrix metalloproteinases (MMPs), are required for the final steps of parturition. MMPs participate in physiological degradation and remodeling through their proteolytic activities on specific substrates, and are balanced by the action of their inhibitors. Disruption to this balance can result in pathological stress that ends with preterm or post-term birth or pre-eclampsia. In this review, we examine the roles and regulation of the MMP system in physiological and pathological labor, and propose a model that illustrates the mechanisms by which the MMP system contributes to these processes. Mol. Reprod. Dev. 83: 276-286, 2016. © 2016 Wiley Periodicals, Inc. PMID:26888468

  18. Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility.

    PubMed

    Theocharidis, Georgios; Drymoussi, Zoe; Kao, Alexander P; Barber, Asa H; Lee, David A; Braun, Kristin M; Connelly, John T

    2016-01-01

    Type VI collagen is a nonfibrillar collagen expressed in many connective tissues and implicated in extracellular matrix (ECM) organization. We hypothesized that type VI collagen regulates matrix assembly and cell function within the dermis of the skin. In the present study we examined the expression pattern of type VI collagen in normal and wounded skin and investigated its specific function in new matrix deposition by human dermal fibroblasts. Type VI collagen was expressed throughout the dermis of intact human skin, at the expanding margins of human keloid samples, and in the granulation tissue of newly deposited ECM in a mouse model of wound healing. Generation of cell-derived matrices (CDMs) by human dermal fibroblasts with stable knockdown of COL6A1 revealed that type VI collagen-deficient matrices were significantly thinner and contained more aligned, thicker, and widely spaced fibers than CDMs produced by normal fibroblasts. In addition, there was significantly less total collagen and sulfated proteoglycans present in the type VI collagen-depleted matrices. Normal fibroblasts cultured on de-cellularized CDMs lacking type VI collagen displayed increased cell spreading, migration speed, and persistence. Taken together, these findings indicate that type VI collagen is a key regulator of dermal matrix assembly, composition, and fibroblast behavior and may play an important role in wound healing and tissue regeneration. PMID:26763426

  19. Glutathione peroxidase 3 localizes to the epithelial lining fluid and the extracellular matrix in interstitial lung disease.

    PubMed

    Schamberger, Andrea C; Schiller, Herbert B; Fernandez, Isis E; Sterclova, Martina; Heinzelmann, Katharina; Hennen, Elisabeth; Hatz, Rudolf; Behr, Jürgen; Vašáková, Martina; Mann, Matthias; Eickelberg, Oliver; Staab-Weijnitz, Claudia A

    2016-01-01

    Aberrant antioxidant activity and excessive deposition of extracellular matrix (ECM) are hallmarks of interstitial lung diseases (ILD). It is known that oxidative stress alters the ECM, but extracellular antioxidant defence mechanisms in ILD are incompletely understood. Here, we extracted abundance and detergent solubility of extracellular antioxidant enzymes from a proteomic dataset of bleomycin-induced lung fibrosis in mice and assessed regulation and distribution of glutathione peroxidase 3 (GPX3) in murine and human lung fibrosis. Superoxide dismutase 3 (Sod3), Gpx3, and Gpx activity were increased in mouse BALF during bleomycin-induced lung fibrosis. In lung tissue homogenates, Gpx3, but not Sod3, was upregulated and detergent solubility profiling indicated that Gpx3 associated with ECM proteins. Immunofluorescence analysis showed that Gpx3 was expressed by bronchial epithelial cells and interstitial fibroblasts and localized to the basement membrane and interstitial ECM in lung tissue. As to human ILD samples, BALF of some patients contained high levels of GPX3, and GPX3 was upregulated in lung homogenates from IPF patients. GPX3 expression in primary human bronchial epithelial cells and lung fibroblasts was downregulated by TNF-α, but more variably regulated by TGF-β1 and menadione. In conclusion, the antioxidant enzyme GPX3 localizes to lung ECM and is variably upregulated in ILD. PMID:27435875

  20. Glutathione peroxidase 3 localizes to the epithelial lining fluid and the extracellular matrix in interstitial lung disease

    PubMed Central

    Schamberger, Andrea C.; Schiller, Herbert B.; Fernandez, Isis E.; Sterclova, Martina; Heinzelmann, Katharina; Hennen, Elisabeth; Hatz, Rudolf; Behr, Jürgen; Vašáková, Martina; Mann, Matthias; Eickelberg, Oliver; Staab-Weijnitz, Claudia A.

    2016-01-01

    Aberrant antioxidant activity and excessive deposition of extracellular matrix (ECM) are hallmarks of interstitial lung diseases (ILD). It is known that oxidative stress alters the ECM, but extracellular antioxidant defence mechanisms in ILD are incompletely understood. Here, we extracted abundance and detergent solubility of extracellular antioxidant enzymes from a proteomic dataset of bleomycin-induced lung fibrosis in mice and assessed regulation and distribution of glutathione peroxidase 3 (GPX3) in murine and human lung fibrosis. Superoxide dismutase 3 (Sod3), Gpx3, and Gpx activity were increased in mouse BALF during bleomycin-induced lung fibrosis. In lung tissue homogenates, Gpx3, but not Sod3, was upregulated and detergent solubility profiling indicated that Gpx3 associated with ECM proteins. Immunofluorescence analysis showed that Gpx3 was expressed by bronchial epithelial cells and interstitial fibroblasts and localized to the basement membrane and interstitial ECM in lung tissue. As to human ILD samples, BALF of some patients contained high levels of GPX3, and GPX3 was upregulated in lung homogenates from IPF patients. GPX3 expression in primary human bronchial epithelial cells and lung fibroblasts was downregulated by TNF-α, but more variably regulated by TGF-β1 and menadione. In conclusion, the antioxidant enzyme GPX3 localizes to lung ECM and is variably upregulated in ILD. PMID:27435875

  1. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes.

    PubMed

    Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Andrews, Norma W

    2016-01-01

    Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca(2+)-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D. PMID:27028538

  2. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes

    PubMed Central

    Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Andrews, Norma W.

    2016-01-01

    Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca2+-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D. PMID:27028538

  3. Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability

    PubMed Central

    Redmile-Gordon, M.A.; Evershed, R.P.; Hirsch, P.R.; White, R.P.; Goulding, K.W.T.

    2015-01-01

    An emerging paradigm in soil science suggests microbes can perform ‘N mining’ from recalcitrant soil organic matter (SOM) in conditions of low N availability. However, this requires the production of extracellular structures rich in N (including enzymes and structural components) and thus defies stoichiometric expectation. We set out to extract newly synthesised peptides from the extracellular matrix in soil and compare the amino acid (AA) profiles, N incorporation and AA dynamics in response to labile inputs of contrasting C/N ratio. Glycerol was added both with and without an inorganic source of N (10% 15N labelled NH4NO3) to a soil already containing a large pool of refractory SOM and incubated for 10 days. The resulting total soil peptide (TSP) and extracellular pools were compared using colorimetric methods, gas chromatography, and isotope ratio mass spectrometry. N isotope compositions showed that the extracellular polymeric substance (EPS) contained a greater proportion of products formed de novo than did TSP, with hydrophobic EPS-AAs (leucine, isoleucine, phenylalanine, hydroxyproline and tyrosine) deriving substantially more N from the inorganic source provided. Quantitative comparison between extracts showed that the EPS contained greater relative proportions of alanine, glycine, proline, phenylalanine and tyrosine. The greatest increases in EPS-peptide and EPS-polysaccharide concentrations occurred at the highest C/N ratios. All EPS-AAs responded similarly to treatment whereas the responses of TSP were more complex. The results suggest that extracellular investment of N (as EPS peptides) is a microbial survival mechanism in conditions of low N/high C which, from an evolutionary perspective, must ultimately lead to the tendency for increased N returns to the microbial biomass. A conceptual model is proposed that describes the dynamics of the extracellular matrix in response to the C/N ratio of labile inputs. PMID:26339106

  4. Role of extracellular matrix in development of skeletal muscle and postmortem aging of meat.

    PubMed

    Nishimura, Takanori

    2015-11-01

    The integrity of skeletal muscle is maintained by the intramuscular connective tissues (IMCTs) that are composed of extracellular matrix (ECM) molecules such as collagens, proteoglycans, and glycoproteins. The ECM plays an important role not only in providing biomechanical strength of the IMCT, but also in regulating muscle cell behavior. Some ECM molecules, such as decorin and laminin, modulate the activity of myostatin that regulates skeletal muscle mass. Furthermore, it has been shown that decorin activates Akt downstream of insulin-like growth factor-I receptor (IGF-IR) and enhances the differentiation of myogenic cells, suggesting that decorin acts as a signaling molecule to myogenic cells. With animal growth, the structural integrity of IMCT increases; collagen fibrils within the endomysium associate more closely with each other, and the collagen fibers in the perimysium become increasingly thick and their wavy pattern grows more regular. These changes increase the mechanical strength of IMCT, contributing to the toughening of meat. However, in highly marbled beef cattle like Wagyu, intramuscular fat deposits mainly in the perimysium between muscle fiber bundles during the fattening period. The development of adipose tissues appears to disorganize the structure of IMCT and contributes to the tenderness of Wagyu beef. The IMCT was considered to be rather immutable compared to myofibrils during postmortem aging of meat. However, several studies have shown that collagen networks in the IMCT are disintegrated and proteoglycan components are degraded during postmortem aging. These changes in ECM appear to reduce the mechanical strength of IMCT and contribute to the tenderness of uncooked meat or cooked meat at low temperature. Thus, the ECM plays a multifunctional role in skeletal muscle development and postmortem aging of meat. PMID:26141816

  5. Absence of K-Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts.

    PubMed

    Muñoz-Félix, José M; Fuentes-Calvo, Isabel; Cuesta, Cristina; Eleno, Nélida; Crespo, Piero; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-10-01

    The involvement of Ras-GTPases in the development of renal fibrosis has been addressed in the last decade. We have previously shown that H- and N-Ras isoforms participate in the regulation of fibrosis. Herein, we assessed the role of K-Ras in cellular processes involved in the development of fibrosis: proliferation, migration, and extracellular matrix (ECM) proteins synthesis. K-Ras knockout (KO) mouse embryonic fibroblasts (K-ras(-/-) ) stimulated with transforming growth factor-β1 (TGF-β1) exhibited reduced proliferation and impaired mobility than wild-type fibroblasts. Moreover, an increase on ECM production was observed in K-Ras KO fibroblasts in basal conditions. The absence of K-Ras was accompanied by reduced Ras activation and ERK phosphorylation, and increased AKT phosphorylation, but no differences were observed in TGF-β1-induced Smad signaling. The MEK inhibitor U0126 decreased cell proliferation independently of the presence of K-ras but reduced migration and ECM proteins expression only in wild-type fibroblasts, while the PI3K-AKT inhibitor LY294002 decreased cell proliferation, migration, and ECM synthesis in both types of fibroblasts. Thus, our data unveil that K-Ras and its downstream effector pathways distinctively regulate key biological processes in the development of fibrosis. Moreover, we show that K-Ras may be a crucial mediator in TGF-β1-mediated effects in this cell type. J. Cell. Physiol. 231: 2224-2235, 2016. © 2016 Wiley Periodicals, Inc. PMID:26873620

  6. Immunohistochemical study of cytoskeletal and extracellular matrix components in the notochord and notochordal sheath of amphioxus

    PubMed Central

    Bočina, Ivana; Saraga-Babić, Mirna

    2006-01-01

    A major cytoskeletal and extracellular matrix proteins of the amphioxus notochordal cells and sheath were detected by immunohistochemical techniques. The three-layered amphioxus notochordal sheath strongly expressed fish collagen type I in its outer and middle layers, while in the innermost layer expression did not occur. The amphioxus notochordal sheath was reactive to applied anti-human antibodies for intermediate filament proteins such as cytokeratins, desmin and vimentin, as well as to microtubule components (ß-tubulin), particularly in the area close to the epipharyngeal groove. Alpha-smooth muscle actin was expressed in some notochordal cells and in the area of the notochordal attachment to the sheath. Thus muscular nature of notochordal cells was shown by immunohistochemistry in tissue section. Our results confirm that genes encoding intermediate filament proteins, microtubules and microfilaments are highly conserved during evolution. Collagen type I was proven to be the key extracellular matrix protein that forms the amphioxus notochordal sheath. PMID:16733537

  7. Chondroitinase injection improves keloid pathology by reorganizing the extracellular matrix with regenerated elastic fibers.

    PubMed

    Ishiko, Toshihiro; Naitoh, Motoko; Kubota, Hiroshi; Yamawaki, Satoko; Ikeda, Mika; Yoshikawa, Katsuhiro; Fujita, Hiroshi; Yamaguchi, Hiroaki; Kurahashi, Yasuhiro; Suzuki, Shigehiko

    2013-05-01

    Keloids are a proliferative fibrotic disease characterized by abnormal accumulation of extracellular matrix in the dermis. Keloid lesions lack skin plasticity due to deficiencies in elastic fiber formation in the extracellular matrix. The loss of elastic fiber is caused by excessive accumulation of chondroitin sulfate (CS), a sulfated glycosaminoglycan. However, there is no radical cure for keloids. Using a model system, we show herein that treatment of keloid tissues with chondroitinase ABC, an enzyme that specifically digests CS, improves clinical features of keloids. Keloid tissues obtained from patients were grafted on nude mice, and chondroitinase ABC was injected into the grafted keloid tissues. Chondroitinase ABC treatment significantly reduced the volume of keloid implants concomitant with recovery of elastic fiber formation. These results suggest that chondroitinase ABC injection is an effective therapy for keloid. PMID:23451938

  8. MMP inhibition as a potential method to augment the healing of skeletal muscle and tendon extracellular matrix

    PubMed Central

    Davis, Max E.; Gumucio, Jonathan P.; Sugg, Kristoffer B.; Bedi, Asheesh

    2013-01-01

    The extracellular matrix (ECM) of skeletal muscle and tendon is composed of different types of collagen molecules that play important roles in the transmission of forces throughout the body, and in the repair and regeneration of injured tissues. Fibroblasts are the primary cells in muscle and tendon that maintain, repair, and modify the ECM in response to mechanical loading, injury, and inactivity. Matrix metalloproteinases (MMPs) are enzymes that digest collagen and other structural molecules, which are synthesized and excreted by fibroblasts. MMPs are required for baseline ECM homeostasis, but disruption of MMP regulation due to injury or disease can alter the normal ECM architecture and prevent proper force transmission. Chronic injuries and diseases of muscles and tendons can be severely debilitating, and current therapeutic modalities to enhance healing are quite limited. This review will discuss the mechanobiology of MMPs, and the potential use of MMP inhibitors to improve the treatment of injured and diseased skeletal muscle and tendon tissue. PMID:23640595

  9. Growth Factor Priming Differentially Modulates Components of the Extracellular Matrix Proteome in Chondrocytes and Synovium-Derived Stem Cells

    PubMed Central

    Xiong, Jennifer C.; Colligan, Ryan M.; Bulinski, J. Chloë; Cook, James L.; Ateshian, Gerard A.; Brown, Lewis M.; Hung, Clark T.

    2014-01-01

    To make progress in cartilage repair it is essential to optimize protocols for two-dimensional cell expansion. Chondrocytes and SDSCs are promising cell sources for cartilage repair. We previously observed that priming with a specific growth factor cocktail (1 ng/mL transforming growth factor-β1, 5 ng/mL basic fibroblast growth factor, and 10 ng/mL platelet-derived growth factor-BB) in two-dimensional culture, led to significant improvement in mechanical and biochemical properties of synovium-derived stem cell (SDSC)-seeded constructs. The current study assessed the effect of growth factor priming on the proteome of canine chondrocytes and SDSCs. In particular, growth factor priming modulated the proteins associated with the extracellular matrix in two-dimensional cultures of chondrocytes and SDSCs, inducing a partial dedifferentiation of chondrocytes (most proteins associated with cartilage were down-regulated in primed chondrocytes) and a partial differentiation of SDSCs (some collagen-related proteins were up-regulated in primed SDSCs). However, when chondrocytes and SDSCs were grown in pellet culture, growth factor-primed cells maintained their chondrogenic potential with respect to glycosaminoglycan and collagen production. In conclusion, the strength of the label-free proteomics technique is that it allows for the determination of changes in components of the extracellular matrix proteome in chondrocytes and SDSCs in response to growth factor priming, which could help in future tissue engineering strategies. PMID:24516581

  10. An Assay to Quantify Chemotactic Properties of Degradation Products from Extracellular Matrix

    PubMed Central

    Sicari, Brian M.; Zhang, Li; Londono, Ricardo; Badylak, Stephen F.

    2015-01-01

    The endogenous chemotaxis of cells toward sites of tissue injury and/or biomaterial implantation is an important component of the host response. Implanted biomaterials capable of recruiting host stem/progenitor cells to a site of interest may obviate challenges associated with cell transplantation. An assay for the identification and quantification of chemotaxis induced by surgically placed biologic scaffolds composed of extracellular matrix is described herein. PMID:24155230

  11. Bral1: "Superglue" for the extracellular matrix in the brain white matter.

    PubMed

    Cicanic, Michal; Sykova, Eva; Vargova, Lydia

    2012-04-01

    Bral1 is a link protein that stabilizes the binding between lecticans and hyaluronic acid and thus maintains the extracellular matrix assembly in the CNS. Bral1 is specifically located in the white matter around the nodes of Ranvier. Recent studies suggest its function in promoting saltatory neural conduction. This article reviews the current knowledge about the structure, expression and function of this link protein. PMID:22300985

  12. N-terminal specific conjugation of extracellular matrix proteins to 2-pyridinecarboxaldehyde functionalized polyacrylamide hydrogels.

    PubMed

    Lee, Jessica P; Kassianidou, Elena; MacDonald, James I; Francis, Matthew B; Kumar, Sanjay

    2016-09-01

    Polyacrylamide hydrogels have been used extensively to study cell responses to the mechanical and biochemical properties of extracellular matrix substrates. A key step in fabricating these substrates is the conjugation of cell adhesion proteins to the polyacrylamide surfaces, which typically involves nonspecifically anchoring these proteins via side-chain functional groups. This can result in a loss of presentation control and altered bioactivity. Here, we describe a new functionalization strategy in which we anchor full-length extracellular matrix proteins to polyacrylamide substrates using 2-pyridinecarboxaldehyde, which can be co-polymerized into polyacrylamide gels and used to immobilize proteins by their N-termini. This one-step reaction proceeds under mild aqueous conditions and does not require additional reagents. We demonstrate that these substrates can readily conjugate to various extracellular matrix proteins, as well as promote cell adhesion and spreading. Notably, this chemistry supports the assembly and cellular remodeling of large collagen fibers, which is not observed using conventional side-chain amine-conjugation chemistry. PMID:27348850

  13. Quantitation and relative distribution of extracellular matrix in Staphylococcus epidermidis biofilm

    SciTech Connect

    Van Pett, K.; Schurman, D.J.; Smith, R.L. )

    1990-05-01

    The relationship between adherence of bacteria to foreign bodies and their deposition of extracellular matrix was examined on glass and suture material. To quantitate bacterial adherence, uptake of ({sup 3}H)thymidine into bacterial DNA was analyzed. Corresponding amounts of extracellular matrix were measured by a new technique using ({sup 14}C)glucose incorporation. This study shows that ({sup 14}C)glucose preferentially labeled bacterial strains in proportion to biofilm production. The ratio of {sup 3}H{sup 14}C in high biofilm producers was 0.9 and in low producers it was 3.7. Radioactive identification of organisms as high and low producers was confirmed by electron microscopy. The results presented here show that production and accumulation of biofilm over time is a stable characteristic in different strains of S. epidermidis. The use of ratios reflecting radiolabeling of bacteria and biofilm by ({sup 3}H)thymidine and ({sup 14}C)glucose, respectively, is a quantitative yet simple technique to assess extracellular matrix of different strains of S. epidermidis.

  14. MicroRNA-375 Suppresses Extracellular Matrix Degradation and Invadopodial Activity in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Jimenez, Lizandra; Sharma, Ved P.; Condeelis, John; Harris, Thomas; Ow, Thomas J.; Prystowsky, Michael B.; Childs, Geoffrey; Segall, Jeffrey E.

    2015-01-01

    Context Head and neck squamous cell carcinoma (HNSCC) is a highly invasive cancer with an association with locoregional recurrence and lymph node metastasis. We have previously reported that low microRNA-375 (miR-375) expression levels correlate with poor patient survival, increased locoregional recurrence, and distant metastasis. Increasing miR-375 expression in HNSCC cell lines to levels found in normal cells results in suppressed invasive properties. HNSCC invasion is mediated in part by invadopodia-associated degradation of the extracellular matrix. Objective To determine whether elevated miR-375 expression in HNSCC cell lines also affects invadopodia formation and activity. Design For evaluation of the matrix degradation properties of the HNSCC lines, an invadopodial matrix degradation assay was used. The total protein levels of invadopodia-associated proteins were measured by Western blot analyses. Immunoprecipitation experiments were conducted to evaluate the tyrosine phosphorylation state of cortactin. Human Protease Arrays were used for the detection of the secreted proteases. Quantitative real time–polymerase chain reaction measurements were used to evaluate the messenger RNA (mRNA) expression of the commonly regulated proteases. Results Increased miR-375 expression in HNSCC cells suppresses extracellular matrix degradation and reduces the number of mature invadopodia. Higher miR-375 expression does not reduce cellular levels of selected invadopodia-associated proteins, nor is tyrosine phosphorylation of cortactin altered. However, HNSCC cells with higher miR-375 expression had significant reductions in the mRNA expression levels and secreted levels of specific proteases. Conclusions MicroRNA-375 regulates invadopodia maturation and function potentially by suppressing the expression and secretion of proteases. PMID:26172508

  15. Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: A topical review.

    PubMed

    Tatullo, Marco; Marrelli, Massimo; Falisi, Giovanni; Rastelli, Claudio; Palmieri, Francesca; Gargari, Marco; Zavan, Barbara; Paduano, Francesco; Benagiano, Vincenzo

    2016-03-01

    Tissue engineering applications need a continuous development of new biomaterials able to generate an ideal cell-extracellular matrix interaction. The stem cell fate is regulated by several factors, such as growth factors or transcription factors. The most recent literature has reported several publications able to demonstrate that environmental factors also contribute to the regulation of stem cell behavior, leading to the opinion that the environment plays the major role in the cell differentiation.The interaction between mesenchymal stem cells (MSCs) and extracellular environment has been widely described, and it has a crucial role in regulating the cell phenotype. In our laboratory (Tecnologica Research Institute, Crotone, Italy), we have recently studied how several physical factors influence the distribution and the morphology of MSCs isolated from dental pulp, and how they are able to regulate stem cell differentiation. Mechanical and geometrical factors are only a small part of the environmental factors able to influence stem cell behavior, however, this influence should be properly known: in fact, this assumption must be clearly considered during those studies involving MSCs; furthermore, these interactions should be considered as an important bias that involves an high number of studies on the MSCs, since in worldwide laboratories the scientists mostly use tissue culture plates for their experiments. PMID:26612837

  16. The extracellular matrix proteins laminin and fibronectin contain binding domains for human plasminogen and tissue plasminogen activator.

    PubMed

    Moser, T L; Enghild, J J; Pizzo, S V; Stack, M S

    1993-09-01

    This study describes the binding of plasminogen and tissue-type plasminogen activator (t-PA) to the extracellular matrix proteins fibronectin and laminin. Plasminogen bound specifically and saturably to both fibronectin and laminin immobilized on microtiter wells, with Kd(app) values of 115 and 18 nM, respectively. Limited proteolysis by endoproteinase V8 coupled with ligand blotting analysis showed that both plasminogen and t-PA preferentially bind to a 55-kDa fibronectin fragment and a 38-kDa laminin fragment. Amino acid sequence analysis demonstrated that the 5-kDa fragment originates with the fibronectin amino terminus whereas the laminin fragment was derived from the carboxyl-terminal globular domain of the laminin A chain. Ligand blotting experiments using isolated plasminogen domains were also used to identify distinct regions of the plasminogen molecule involved in fibronectin and laminin binding. Solution phase fibronectin binding to immobilized plasminogen was mediated primarily via lysine binding site-dependent interactions with plasminogen kringles 1-4. Lysine binding site-dependent binding of soluble laminin to immobilized plasminogen kringles 1-5 as well as an additional lysine binding site-independent interaction between mini-plasminogen and the 38-kDa laminin A chain fragment were also observed. These studies demonstrate binding of plasminogen and tissue-type plasminogen activator to specific regions of the extracellular matrix glycoproteins laminin and fibronectin and provide further insight into the mechanism of regulation of plasminogen activation by components of the extracellular matrix. PMID:8360181

  17. AFM Imaging of RGD Presenting Synthetic Extracellular Matrix using Gold Nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell-interactive polymers have been widely used as synthetic extracellular matrices (sECM) to regulate cell function and promote tissue regeneration. Although it is known that adhesion ligand density and distribution influence the proliferation and differentiation of various cell types, currently a...

  18. Alcohol differentially alters extracellular matrix and adhesion molecule expression in skeletal muscle and heart

    PubMed Central

    Steiner, Jennifer L.; Pruznak, Anne M.; Navaratnarajah, Maithili; Lang, Charles H.

    2015-01-01

    Background The production of fibrosis in response to chronic alcohol abuse is well recognized in liver but has not been fully characterized in striated muscle and may contribute to functional impairment. Therefore, the purpose of this study was to use an unbiased discovery-based approach to determine the effect of chronic alcohol consumption on the expression profile of genes important for cell-cell and cell-extracellular matrix (ECM) interactions in both skeletal and cardiac muscle. Methods Adult male rats were pair-fed an alcohol-containing liquid diet or control diet for 24 wks, and skeletal muscle (gastrocnemius) and heart collected in the freely fed state. A pathway-focused gene expression PCR array was performed on these tissues to assess mRNA content for 84 ECM proteins, and selected proteins were confirmed by Western analysis. Results In gastrocnemius, alcohol feeding up-regulated expression of 11 genes and down-regulated expression of 1 gene. Alcohol increased fibrosis as indicated by increased mRNA and/or protein for collagen α1(I), α2(I), α1(III) and α2(IV) as well as hydroxyproline. Alcohol also increased α-smooth muscle actin protein, an index of myofibroblast activation, but no concomitant change in TGF-β was detected. The mRNA and protein content for other ECM components, such as integrin α-5, L-selectin, PECAM, Sparc and Adamts2 was also increased by alcohol. Only laminin α-3 mRNA was decreased in gastrocnemius from alcohol-fed rats, while 66 ECM- or cell adhesion-related mRNAs were unchanged by alcohol. For heart, expression of 16 genes was up-regulated, expression of 3 genes was down-regulated, and 65 mRNAs were unchanged by alcohol; there were no common alcohol-induced gene expression changes between heart and skeletal muscle. Finally, alcohol increased TNFα and IL-12 mRNA in both skeletal and cardiac muscle, but IL-6 mRNA was increased and IL-10 mRNA decreased only in skeletal muscle. Conclusions These data demonstrate a fibrotic

  19. Extracellular RNAs: A Secret Arm of Immune System Regulation.

    PubMed

    de Candia, Paola; De Rosa, Veronica; Casiraghi, Maurizio; Matarese, Giuseppe

    2016-04-01

    The immune system has evolved to protect multicellular organisms from the attack of a variety of pathogens. To exert this function efficiently, the system has developed the capacity to coordinate the function of different cell types and the ability to down-modulate the response when the foreign attack is over. For decades, immunologists believed that these two characteristics were primarily related to cytokine/chemokine-based communication and cell-to-cell direct contact. More recently, it has been shown that immune cells also communicate by transferring regulatory RNAs, microRNAs in particular, from one cell to the other. Several studies have suggested a functional role of extracellular regulatory RNAs in cell-to-cell communication in different cellular contexts. This minireview focuses on the potential role of extracellular RNA transfer in the regulation of adaptive immune response, also contextualizing it in a broader field of what is known of cell-free RNAs in communication among different organisms in the evolutionary scale. PMID:26887954

  20. Dynamic interactions between cells and their extracellular matrix mediate embryonic development.

    PubMed

    Goody, Michelle F; Henry, Clarissa A

    2010-06-01

    Cells and their surrounding extracellular matrix microenvironment interact throughout all stages of life. Understanding the continuously changing scope of cell-matrix interactions in vivo is crucial to garner insights into both congenital birth defects and disease progression. A current challenge in the field of developmental biology is to adapt in vitro tools and rapidly evolving imaging technology to study cell-matrix interactions in a complex 4-D environment. In this review, we highlight the dynamic modulation of cell-matrix interactions during development. We propose that individual cell-matrix adhesion proteins are best considered as complex proteins that can play multiple, often seemingly contradictory roles, depending upon the context of the microenvironment. In addition, cell-matrix proteins can also exert different short versus long term effects. It is thus important to consider cell behavior in light of the microenvironment because of the constant and dynamic reciprocal interactions occurring between them. Finally, we suggest that analysis of cell-matrix interactions at multiple levels (molecules, cells, tissues) in vivo is critical for an integrated understanding because different information can be acquired from all size scales. PMID:20108219

  1. Extracellular matrix interacts with interferon {alpha} protein: Retention and display of cytotoxicity

    SciTech Connect

    Yoshida, Kimiko; Kondoh, Atsushi; Narumi, Kenta; Yoshida, Teruhiko; Aoki, Kazunori

    2008-11-14

    We have been investigating the efficacy of an intratumoral interferon (IFN)-{alpha} gene transfer against solid cancers, and found that when the gene is transduced into the subcutaneous tumors, IFN-{alpha} concentration is markedly increased in the injected tumor but not in the serum. To explain this effective confinement of IFN-{alpha} to target tissues, we hypothesized that the extracellular matrix in the tumors interacts with IFN-{alpha}. In this study, a solid-phase-binding assay and immunoprecipitation demonstrated that the IFN-{alpha} binds directly to matrix proteins. Immunohistochemical staining showed a co-localization of IFN-{alpha} with pericellular fibronectin. In addition, matrix-bound IFN-{alpha} protein transduced intracellular signaling and potentiated its cytotoxic activity, suggesting that the retention of IFN-{alpha} protein on extracellular matrix is likely to play a role in its in vivo biological activity. The data suggest a therapeutic advantage of the intratumoral IFN-{alpha} gene transfer over the conventional parenteral therapy both in the safety and efficacy.

  2. Analysis of the Aspergillus fumigatus Biofilm Extracellular Matrix by Solid-State Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Reichhardt, Courtney; Ferreira, Jose A. G.; Joubert, Lydia-Marie; Clemons, Karl V.; Stevens, David A.

    2015-01-01

    Aspergillus fumigatus is commonly responsible for lethal fungal infections among immunosuppressed individuals. A. fumigatus forms biofilm communities that are of increasing biomedical interest due to the association of biofilms with chronic infections and their increased resistance to antifungal agents and host immune factors. Understanding the composition of microbial biofilms and the extracellular matrix is important to understanding function and, ultimately, to developing strategies to inhibit biofilm formation. We implemented a solid-state nuclear magnetic resonance (NMR) approach to define compositional parameters of the A. fumigatus extracellular matrix (ECM) when biofilms are formed in RPMI 1640 nutrient medium. Whole biofilm and isolated matrix networks were also characterized by electron microscopy, and matrix proteins were identified through protein gel analysis. The 13C NMR results defined and quantified the carbon contributions in the insoluble ECM, including carbonyls, aromatic carbons, polysaccharide carbons (anomeric and nonanomerics), aliphatics, etc. Additional 15N and 31P NMR spectra permitted more specific annotation of the carbon pools according to C-N and C-P couplings. Together these data show that the A. fumigatus ECM produced under these growth conditions contains approximately 40% protein, 43% polysaccharide, 3% aromatic-containing components, and up to 14% lipid. These fundamental chemical parameters are needed to consider the relationships between composition and function in the A. fumigatus ECM and will enable future comparisons with other organisms and with A. fumigatus grown under alternate conditions. PMID:26163318

  3. Novel human-derived extracellular matrix induces in vitro and in vivo vascularization and inhibits fibrosis

    PubMed Central

    Moore, Marc C; Pandolfi, Vittoria; McFetridge, Peter S

    2015-01-01

    The inability to vascularize engineered organs and revascularize areas of infarction has been a major roadblock to delivering successful regenerative medicine therapies to the clinic. These investigations detail an isolated human extracellular matrix derived from the placenta (hPM) that induces vasculogenesis in vitro and angiogenesis in vivo within bioengineered tissues, with significant immune reductive properties. Compositional analysis showed ECM components (fibrinogen, laminin), angiogenic cytokines (angiogenin, FGF), and immune-related cytokines (annexins, DEFA1) in near physiological ratios. Gene expression profiles of endothelial cells seeded onto the matrix displayed upregulation of angiogenic genes (TGFB1, VEGFA), remodeling genes (MMP9, LAMA5) and vascular development genes (HAND2, LECT1). Angiogenic networks displayed a time dependent stability in comparison to current in vitro approaches that degrade rapidly. In vivo, matrix-dosed bioscaffolds showed enhanced angiogenesis and significantly reduced fibrosis in comparison to current angiogenic biomaterials. Implementation of this human placenta derived extracellular matrix provides an alternative to Matrigel and, due to its human derivation, its development may have significant clinical applications leading to advances in therapeutic angiogenesis techniques and tissue engineering. PMID:25725553

  4. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy.

    PubMed

    Hicks, Debbie; Farsani, Golara Torabi; Laval, Steven; Collins, James; Sarkozy, Anna; Martoni, Elena; Shah, Ashoke; Zou, Yaqun; Koch, Manuel; Bönnemann, Carsten G; Roberts, Mark; Lochmüller, Hanns; Bushby, Kate; Straub, Volker

    2014-05-01

    Bethlem myopathy (BM) [MIM 158810] is a slowly progressive muscle disease characterized by contractures and proximal weakness, which can be caused by mutations in one of the collagen VI genes (COL6A1, COL6A2 and COL6A3). However, there may be additional causal genes to identify as in ∼50% of BM cases no mutations in the COL6 genes are identified. In a cohort of -24 patients with a BM-like phenotype, we first sequenced 12 candidate genes based on their function, including genes for known binding partners of collagen VI, and those enzymes involved in its correct post-translational modification, assembly and secretion. Proceeding to whole-exome sequencing (WES), we identified mutations in the COL12A1 gene, a member of the FACIT collagens (fibril-associated collagens with interrupted triple helices) in five individuals from two families. Both families showed dominant inheritance with a clinical phenotype resembling classical BM. Family 1 had a single-base substitution that led to the replacement of one glycine residue in the triple-helical domain, breaking the Gly-X-Y repeating pattern, and Family 2 had a missense mutation, which created a mutant protein with an unpaired cysteine residue. Abnormality at the protein level was confirmed in both families by the intracellular retention of collagen XII in patient dermal fibroblasts. The mutation in Family 2 leads to the up-regulation of genes associated with the unfolded protein response (UPR) pathway and swollen, dysmorphic rough-ER. We conclude that the spectrum of causative genes in extracellular matrix (ECM)-related myopathies be extended to include COL12A1. PMID:24334769

  5. Extracellular matrix receptors and the differentiation of human megakaryocytes in vitro.

    PubMed

    Molla, A; Mossuz, P; Berthier, R

    1999-03-01

    We investigated the expression and functions of extracellular matrix receptors (or integrins) in the course of the differentiation of human megakaryocytes (Mks) leading to the formation of platelets. Integrins beta1 or Very Late Antigens (VLA) are specialized transmembrane receptors allowing the attachment of the cells to collagen (VLA-2), fibronectin (VLA-4 and -5) and laminin (VLA-6). A proportion of committed megakaryocytic progenitor cells (CFU-MK) adhere to fibronectin but not to collagen or laminin. The early immature Mks are retained on fibronectin (30%) and laminin (12%) but not on collagen whereas large mature Mks are still adherent to fibronectin and laminin and also acquired the capacity to adhere to collagen. The expression of the different VLA in the maturation of Mks correlates well with their adhesive properties. Hence, VLA-2 is not expressed on immature Mks but is present on the mature polyploid cells. VLA-4 is detected only on immature Mks which do not seem to bear VLA-5, while this last integrin appears on late Mks. VLA-6 showed a broad distribution from the early to late stages of Mks differentiation. Integrins beta3 of the cytoadhesin family are represented by alphaIIb beta3 that is the receptor for fibrinogen and alphaV beta3 which mediates adhesion to vitronectin. AlphaIIb beta3 is present on the CFU-MK and highly expressed throughout the Mks maturation stages while alphaV beta3 expression is much lower and seems to be detected only on the late Mks. The regulation of the expression of these receptors by cytokines and their respective roles in the maturation of Mks and the final production of platelets, are discussed. The development of efficient culture systems of human Mks in the presence of the recently cloned thrombopoietin will undoubtedly help to shed more light on the molecular mechanisms of their interactions via integrins with the BM microenvironment. PMID:10194117

  6. SMAD4 mutations causing Myhre syndrome result in disorganization of extracellular matrix improved by losartan

    PubMed Central

    Piccolo, Pasquale; Mithbaokar, Pratibha; Sabatino, Valeria; Tolmie, John; Melis, Daniela; Schiaffino, Maria Cristina; Filocamo, Mirella; Andria, Generoso; Brunetti-Pierri, Nicola

    2014-01-01

    Myhre syndrome (MS, MIM 139210) is a connective tissue disorder that presents with short stature, short hands and feet, facial dysmorphic features, muscle hypertrophy, thickened skin, and deafness. Recurrent missense mutations in SMAD4 encoding for a transducer mediating transforming growth factor β (TGF-β) signaling are responsible for MS. We found that MS fibroblasts showed increased SMAD4 protein levels, impaired matrix deposition, and altered expression of genes encoding matrix metalloproteinases and related inhibitors. Increased TGF-β signaling and progression of aortic root dilation in Marfan syndrome can be prevented by the antihypertensive drug losartan, a TGF-β antagonists and angiotensin-II type 1 receptor blocker. Herein, we showed that losartan normalizes metalloproteinase and related inhibitor transcript levels and corrects the extracellular matrix deposition defect in fibroblasts from MS patients. The results of this study may pave the way toward therapeutic applications of losartan in MS. PMID:24398790

  7. Extracellular matrix is a source of mitogenically active platelet-derived growth factor.

    PubMed

    Field, S L; Khachigian, L M; Sleigh, M J; Yang, G; Vandermark, S E; Hogg, P J; Chesterman, C N

    1996-08-01

    Platelet-derived growth factor (PDGF) is a chemotactic and mitogenic agent for fibroblasts and smooth muscle cells and plays a key role in the development of atherosclerotic lesions. PDGF is produced by a number of normal and transformed cell types and occurs as homo- or heterodimers of A and B polypeptide chains. Using Chinese hamster ovary (CHO) cells transfected with various forms of PDGF, we have previously shown that PDGF A(s) (short splice version) is secreted, PDGF A(l) (long splice version) predominantly extracellular matrix-associated, and PDGF B divided between medium, cells, and matrix. In the present study we have demonstrated the mitogenic activity of matrix-localized PDGF in artificial and more physiologically relevant models by culturing Balb/c-3T3 cells (3T3), human foreskin fibroblasts (HFF), and rabbit aortic smooth muscle cells (SMC) on extracellular matrix (ECM) laid down by PDGF-expressing CHO cells and human umbilical vein endothelial cells (HUVEC). These cells responded to the local growth stimulus of PDGF-containing CHO ECM and HUVEC ECM. We showed that 3T3 cells required proteolytic activity to utilize matrix-localized PDGF, as aprotinin and epsilon-ACA inhibited growth and 3T3 cells were shown to possess plasminogen activator activity. HFF and SMC did not appear to require proteolytic activity (including metalloproteinase and serine protease activity) as a prerequisite for mitogenesis but were able to access immobilized PDGF by contact with the matrix. An understanding of the mechanisms whereby the utilization of stored PDGF is controlled in situations of excessive cellular proliferation will aid in the development of therapy for these conditions. PMID:8707868

  8. Decellularization of porcine skeletal muscle extracellular matrix for the formulation of a matrix hydrogel: a preliminary study.

    PubMed

    Fu, Yuehe; Fan, Xuejiao; Tian, Chunxiang; Luo, Jingcong; Zhang, Yi; Deng, Li; Qin, Tingwu; Lv, Qing

    2016-04-01

    Extracellular matrix (ECM) hydrogels are used as scaffolds to facilitate the repair and reconstruction of tissues. This study aimed to optimize the decellularization process of porcine skeletal muscle ECM and to formulate a matrix hydrogel scaffold. Five multi-step methods (methods A-E) were used to generate acellular ECM from porcine skeletal muscle [rinsing in SDS, trypsin, ethylenediaminetetraacetic acid (EDTA), Triton X-100 and/or sodium deoxycholate at 4-37°C]. The resulting ECM was evaluated using haematoxylin and eosin, 4-6-diamidino-2-phenylindole (DAPI) staining, and DNA quantification. Acellular matrix was dissolved in pepsin and gelled at 37°C. Hydrogel response to temperature was observed in vivo and in vitro. ECM components were assessed by Masson, Sirius red, and alcian blue staining, and total protein content. Acellular porcine skeletal muscle exhibited a uniform translucent white appearance. No intact nuclear residue was detected by haematoxylin and eosin staining, while DAPI staining showed a few nuclei in the matrixes produced by methods B, C, and D. Method A generated a gel that was too thin for gelation. However, the matrix obtained by rinsing in 0.2% trypsin/0.1% EDTA, 0.5% Triton X-100, and 1% Triton X-100/0.2% sodium deoxycholate was nuclei-free and produced a viscous solution that formed a structurally stable white jelly-like hydrogel. The residual DNA content of this solution was 49.37 ± 0.72 ng/mg, significantly less than in fresh skeletal muscle, and decreased to 19.22 ± 0.85 ng/mg after gelation (P < 0.05). The acellular matrix was rich in collagen and glycosaminoglycan, with a total protein concentration of 64.8 ± 6.9%. An acellular ECM hydrogel from porcine skeletal muscle was efficiently produced. PMID:26781342

  9. Tendon extracellular matrix damage, degradation and inflammation in response to in vitro overload exercise

    PubMed Central

    Thorpe, Chavaunne T.; Chaudhry, Saira; Riley, Graham P.; Birch, Helen L.; Clegg, Peter D.; Screen, Hazel R.C.

    2015-01-01

    ABSTRACT The role of inflammation in tendon injury is uncertain and a topic of current interest. In vitro studies of tendon accelerated overload damage can serve as a valuable source of information on the early stages of tendinopathy. Viable fascicle bundles from bovine flexor tendons were subjected to cyclic uniaxial loading from 1–10% strain. Immuno‐staining for inflammatory markers and matrix degradation markers was performed on the samples after mechanical testing. Loaded samples exhibited visible extracellular matrix damage, with disrupted collagen fibers and fiber kinks, and notable damage to the interfascicular matrix. Inflammatory markers COX‐2 and IL‐6 were only expressed in the cyclically loaded samples. Collagen degradation markers MMP‐1 and C1,2C were colocalized in many areas, with staining occurring in the interfascicular matrix or the fascicular tenocytes. These markers were present in control samples, but staining became increasingly intense with loading. Little MMP‐3 or MMP‐13 was evident in control sections. In loaded samples, some sections showed intense staining of these markers, again localized to interfascicular regions. This study suggests that inflammatory markers may be expressed rapidly after tendon overload exercise. Interestingly, both inflammation and damage‐induced matrix remodeling seem to be concentrated in, or in the vicinity of, the highly cellular interfascicular matrix. © 2015 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 33:889–897, 2015. PMID:25721513

  10. Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix

    NASA Technical Reports Server (NTRS)

    Mooney, D. J.; Langer, R.; Ingber, D. E.

    1995-01-01

    This study was undertaken to analyze how cell binding to extracellular matrix produces changes in cell shape. We focused on the initial process of cell spreading that follows cell attachment to matrix and, thus, cell 'shape' changes are defined here in terms of alterations in projected cell areas, as determined by computerized image analysis. Cell spreading kinetics and changes in microtubule and actin microfilament mass were simultaneously quantitated in hepatocytes plated on different extracellular matrix substrata. The initial rate of cell spreading was highly dependent on the matrix coating density and decreased from 740 microns 2/h to 50 microns 2/h as the coating density was lowered from 1000 to 1 ng/cm2. At approximately 4 to 6 hours after plating, this initial rapid spreading rate slowed and became independent of the matrix density regardless of whether laminin, fibronectin, type I collagen or type IV collagen was used for cell attachment. Analysis of F-actin mass revealed that cell adhesion to extracellular matrix resulted in a 20-fold increase in polymerized actin within 30 minutes after plating, before any significant change in cell shape was observed. This was followed by a phase of actin microfilament disassembly which correlated with the most rapid phase of cell extension and ended at about 6 hours; F-actin mass remained relatively constant during the slow matrix-independent spreading phase. Microtubule mass increased more slowly in spreading cells, peaking at 4 hours, the time at which the transition between rapid and slow spreading rates was observed. However, inhibition of this early rise in microtubule mass using either nocodazole or cycloheximide did not prevent this transition. Use of cytochalasin D revealed that microfilament integrity was absolutely required for hepatocyte spreading whereas interference with microtubule assembly (using nocodazole or taxol) or protein synthesis (using cycloheximide) only partially suppressed cell extension. In

  11. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System

    PubMed Central

    Chaturvedi, Vishal; Dye, Danielle E.; Kinnear, Beverley F.; van Kuppevelt, Toin H.; Grounds, Miranda D.; Coombe, Deirdre R.

    2015-01-01

    Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates. PMID:26030912

  12. Lipoprotein lipase enhances binding of lipoproteins to heparan sulfate on cell surfaces and extracellular matrix.

    PubMed Central

    Eisenberg, S; Sehayek, E; Olivecrona, T; Vlodavsky, I

    1992-01-01

    Lipoprotein lipase enhances binding at 4 degrees C of human plasma lipoproteins (chylomicrons, VLDL, intermediate density lipoprotein, LDL, and HDL3) to cultured fibroblasts and hepG-2 cells and to extracellular matrix. Heparinase treatment of cells and matrix reduces the lipoprotein lipase enhanced binding by 90-95%. Lipoprotein lipase causes only a minimal effect on the binding of lipoproteins to heparan sulfate deficient mutant Chinese hamster ovary cells while it promotes binding to wild type cells that is abolished after heparinase treatment. With 125I-LDL, lipoprotein lipase also enhances uptake and proteolytic degradation at 37 degrees C by normal human skin fibroblasts but has no effect in heparinase-treated normal cells or in LDL receptor-negative fibroblasts. These observations prove that lipoprotein lipase causes, predominantly, binding of lipoproteins to heparan sulfate at cell surfaces and in extracellular matrix rather than to receptors. This interaction brings the lipoproteins into close proximity with cell surfaces and may promote metabolic events that occur at the cell surface, including facilitated transfer to cellular receptors. Images PMID:1430223

  13. Transglutaminase 2 interactions with extracellular matrix proteins as probed with celiac disease autoantibodies.

    PubMed

    Cardoso, Inês; Stamnaes, Jorunn; Andersen, Jan Terje; Melino, Gerry; Iversen, Rasmus; Sollid, Ludvig M

    2015-06-01

    Transglutaminases have been implicated in various human diseases. A prominent example is the involvement of transglutaminase 2 (TG2) in the gluten-sensitive enteropathy celiac disease, where the enzyme is both the target of autoantibodies and responsible for the generation of immunogenic gluten epitopes. Here, we aimed to characterize the microenvironment of TG2 in the extracellular matrix (ECM) in order to gain insights into the antigenic structures that are recognized by autoantibodies in celiac disease. A panel of TG2-specific mAbs established from gut plasma cells of celiac disease patients was employed as probes to characterize the interactions between TG2 and ECM constituents. With immunofluorescence staining, microplate protein-binding and surface plasmon resonance assays, we found that the main epitope (epitope 1) recognized by TG2-specific gut plasma cells overlaps with the fibronectin (FN)-binding site of TG2. Furthermore, we found that the same TG2 amino acids that are involved in binding of epitope 1 mAbs are also important for efficient binding of FN. Notably, epitope 1 mAbs recognize TG2 in tissue sections, suggesting that some TG2 in the extracellular matrix has interaction partners in addition to FN. We demonstrate that collagen VI is a strong candidate, on the basis of its tissue expression pattern and ability to bind TG2. Collagen VI may thus serve as a matrix for deposition of TG2 in a context that can also be recognized by epitope 1-targeting autoantibodies. PMID:25808416

  14. Matrix Metalloproteinase-9 Regulates Neuronal Circuit Development and Excitability.

    PubMed

    Murase, Sachiko; Lantz, Crystal L; Kim, Eunyoung; Gupta, Nitin; Higgins, Richard; Stopfer, Mark; Hoffman, Dax A; Quinlan, Elizabeth M

    2016-07-01

    In early postnatal development, naturally occurring cell death, dendritic outgrowth, and synaptogenesis sculpt neuronal ensembles into functional neuronal circuits. Here, we demonstrate that deletion of the extracellular proteinase matrix metalloproteinase-9 (MMP-9) affects each of these processes, resulting in maladapted neuronal circuitry. MMP-9 deletion increases the number of CA1 pyramidal neurons but decreases dendritic length and complexity. Parallel changes in neuronal morphology are observed in primary visual cortex and persist into adulthood. Individual CA1 neurons in MMP-9(-/-) mice have enhanced input resistance and a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs). Additionally, deletion of MMP-9 significantly increases spontaneous neuronal activity in awake MMP-9(-/-) mice and enhances response to acute challenge by the excitotoxin kainate. Our data document a novel role for MMP-9-dependent proteolysis: the regulation of several aspects of circuit maturation to constrain excitability throughout life. PMID:26093382

  15. Platelets and plasma stimulate sheep rotator cuff tendon tenocytes when cultured in an extracellular matrix scaffold.

    PubMed

    Kelly, Brian A; Proffen, Benedikt L; Haslauer, Carla M; Murray, Martha M

    2016-04-01

    The addition of platelet-rich plasma (PRP) to rotator cuff repair has not translated into improved outcomes after surgery. However, recent work stimulating ligament healing has demonstrated improved outcomes when PRP or whole blood is combined with an extracellular matrix carrier. The objective of this study was to evaluate the effect of three components of blood (plasma, platelets, and macrophages) on the in vitro activity of ovine rotator cuff cells cultured in an extracellular matrix environment. Tenocytes were obtained from six ovine infraspinatus tendons and cultured over 14 days in an extracellular matrix scaffold with the following additives: (1) plasma (PPP), (2) plasma and platelets (PAP), (3) plasma and macrophages (PPPM), (4) plasma, platelets and macrophages (PAPM), (5) phosphate buffered saline (PBS), and (6) PBS with macrophages (PBSM). Assays measuring cellular metabolism (AlamarBlue), proliferation (Quantitative DNA assay), synthesis of collagen and cytokines (SIRCOL, TNF-α and IL-10 ELISA, and MMP assay), and collagen gene expression (qPCR) were performed over the duration of the experiment, as well as histology at the conclusion. Plasma was found to stimulate cell attachment and spreading on the scaffold, as well as cellular proliferation. Platelets also stimulated cell proliferation, cellular metabolism, transition of cells to a myofibroblast phenotype, and contraction of the scaffolds. The addition of macrophages did not have any significant effect on the sheep rotator cuff cells in vitro. In vivo studies are needed to determine whether these changes in cellular function will translate into improved tendon healing. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:623-629, 2016. PMID:26419602

  16. The isolation of cell derived extracellular matrix constructs using sacrificial open-cell foams.

    PubMed

    Wolchok, Jeffrey C; Tresco, Patrick A

    2010-12-01

    Extracellular matrix derived from human and animal tissues is being used to repair and reconstruct a variety of tissues clinically. The utility of such constructs is limited by the geometry, composition and constitutive properties of the tissue or organ from which the ECM is harvested. To address this limitation, we have developed an approach to isolate extracellular matrix in bulk from populations of living cells grown in culture on three-dimensional substrates. Human biopsy derived fibroblasts were seeded within open-cell foams and cultured in-vitro for periods up to three weeks, after which the synthetic component was removed by incubation in a water miscible solvent. After several wash steps and lyophilization, a white, lacy, multi-molecular construct was isolated. Tandem mass spectroscopy showed that it contained 22 extracellular matrix constituents, including such proteins and proteoglycans as collagen type I and type III, fibronectin, transforming growth factor beta, decorin and biglycan among others. On average 47 mg of construct was isolated for each gram of synthetic substrate initially seeded with cells. The biomaterial harvested from human tracheal fibroblasts had an elastic modulus (250 kPa) and a composition similar to that of human vocal fold tissue, and supported reseeding with human tracheal derived fibroblasts. An important finding was that the approach was useful in isolating ECM from a variety of cell lineages and developmental stages including skin fibroblasts, brain derived astrocytes and mesenchymal stem cells. The results, together with the archival literature, suggest that the approach can be used to produce a range of cell derived constructs with unique physical and chemical attributes for a variety of research and medical applications. PMID:20950855

  17. The contribution of the extracellular matrix to gravisensing in characean cells

    NASA Technical Reports Server (NTRS)

    Wayne, R.; Staves, M. P.; Leopold, A. C.

    1992-01-01

    The cell-extracellular matrix junction, which includes the cell wall and the outer surface of the plasma membrane, may be an essential region for the perception of gravity by the internodal cells of Chara corallina. Typically, when an internodal cell is oriented vertically, the downwardly directed cytoplasmic stream travels at a velocity that is 10% faster than that of the upwardly directed stream. However when the cells are treated with impermeant hydrolytic enzymes that partially digest cellulose or hemicellulose, the cells lose their ability to respond to gravity even though streaming continues. By contrast, enzymes that digest pectins have no effect on the gravity-induced polarity of cytoplasmic streaming. Furthermore, gravisensing is sensitive to protease treatment; Proteinase K, thermolysin and collagenase but not trypsin, alpha-chymotrypsin or carboxypeptidase B, inhibit gravisensing. These findings indicate that proteins in the cell-extracellular matrix junction may be required for gravisensing. Moreover, the tetrapeptide Arg-Gly-Asp-Ser (RGDS) inhibits gravisensing in a concentration-dependent manner, indicating that the gravireceptor may be an integrin-like protein. The macromolecules necessary for gravisensing have been localized to the cell ends. As a consequence of the exoplasmic site of action of the enzymes and the tetrapeptides, we interpret the results to mean that they are acting on the gravireceptor, although we cannot eliminate the possibility that they are acting on the signal transduction chain. On the whole, our observations indicate that the cell-extracellular matrix junction is a sine qua non for graviperception in statolith-free Chara internodal cells and we suggest that the gravireceptor is located in this region.

  18. Shotgun proteomics implicates extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation

    PubMed Central

    Moore, Nadia H.; Costa, Lucio G.; Shaffer, Scott A; Goodlett, David R.; Guizzetti, Marina

    2009-01-01

    Astrocytes play an important role in neuronal development through the release of soluble factors that affect neuronal maturation. Shotgun proteomics followed by Gene Ontology analysis was used in this study to identify proteins present in the conditioned medium of primary rat astrocytes. 133 secreted proteins were identified, the majority of which were never before reported to be produced by astrocytes. Extracellular proteins were classified based on their biological and molecular functions; most of the identified proteins were involved in neuronal development. Semi-quantitative proteomic analysis was carried out to identify changes in the levels of proteins released by astrocytes after stimulation with the cholinergic agonist carbachol, as we have previously reported that carbachol-treated astrocytes elicit neuritogenesis in hippocampal neurons through the release of soluble factors. Carbachol up-regulated the secretion of 15 proteins and down-regulated the release of 17 proteins. Changes in the levels of four proteins involved in neuronal differentiation (thrombospondin-1, fibronectin, plasminogen activator inhibitor-1, and plasminogen activator urokinase) were verified by Western blot or ELISA. In conclusion, this study identified a large number of proteins involved in neuronal development in the astrocyte secretome and implicated extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation. PMID:19077055

  19. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix.

    PubMed

    Zogaj, X; Nimtz, M; Rohde, M; Bokranz, W; Römling, U

    2001-03-01

    Production of cellulose has been thought to be restricted to a few bacterial species such as the model organism Acetobacter xylinus. We show by enzymatic analysis and mass spectrometry that, besides thin aggregative fimbriae, the second component of the extracellular matrix of the multicellular morphotype (rdar) of Salmonella typhimurium and Escherichia coli is cellulose. The bcsA, bcsB, bcsZ and bcsC genes responsible for cellulose biosynthesis are not regulated by AgfD, the positive transcriptional regulator of the rdar morphotype. Transcription of the bcs genes was not co-expressed with the rdar morphotype under any of the environmental conditions examined. However, cellulose biosynthesis was turned on by the sole expression of adrA, a gene encoding a putative transmembrane protein regulated by agfD, indicating a novel pathway for the activation of cellulose synthesis. The co-expression of cellulose and thin aggregative fimbriae leads to the formation of a highly hydrophobic network with tightly packed cells aligned in parallel in a rigid matrix. As the production of cellulose would now appear to be a property widely distributed among bacteria, the function of the cellulose polymer in bacteria will have to be considered in a new light. PMID:11260463

  20. Virus activated filopodia promote human papillomavirus type 31 uptake from the extracellular matrix

    PubMed Central

    Smith, Jessica L.; Lidke, Diane S.; Ozbun, Michelle A.

    2011-01-01

    Human papillomaviruses (HPVs), etiological agents of epithelial tumors and cancers, initiate infection of basal human keratinocytes (HKs) facilitated by wounding. Virions bind to HKs and their secreted extracellular matrix (ECM), but molecular roles for wounding or ECM binding during infection are unclear. Herein we demonstrate HPV31 activates signals promoting cytoskeletal rearrangements and virion transport required for internalization and infection. Activation of tyrosine and PI3 kinases precedes induction of filopodia whereon virions are transported toward the cell body. Coupled with loss of ECM bound virions this supports a model whereby virus activated filopodial transport contributes to increased and protracted virion uptake into susceptible cells. PMID:18834609

  1. The Extracellular Matrix in Epithelial Ovarian Cancer – A Piece of a Puzzle

    PubMed Central

    Cho, Angela; Howell, Viive M.; Colvin, Emily K.

    2015-01-01

    Epithelial ovarian cancer is the fifth leading cause of cancer-related deaths in women and the most lethal gynecological malignancy. Extracellular matrix (ECM) is an integral component of both the normal and tumor microenvironment. ECM composition varies between tissues and is crucial for maintaining normal function and homeostasis. Dysregulation and aberrant deposition or loss of ECM components is implicated in ovarian cancer progression. The mechanisms by which tumor cells induce ECM remodeling to promote a malignant phenotype are yet to be elucidated. A thorough understanding of the role of the ECM in ovarian cancer is needed for the development of effective biomarkers and new therapies. PMID:26579497

  2. Of extracellular matrix, scaffolds, and signaling: Tissuearchitectureregulates development, homeostasis, and cancer

    SciTech Connect

    Nelson, Celeste M.; Bissell, Mina J.

    2006-03-09

    The microenvironment surrounding cells influences gene expression, such that a cell's behavior is largely determined by its interactions with the extracellular matrix, neighboring cells, and soluble cues released locally or by distant tissues. We describe the essential role of context and organ structure in directing mammary gland development and differentiated function, and in determining response to oncogenic insults including mutations. We expand on the concept of 'dynamic reciprocity' to present an integrated view of development, cancer, and aging, and posit that genes are like piano keys: while essential, it is the context that makes the music.

  3. Emerging Implications for Extracellular Matrix-Based Technologies in Vascularized Composite Allotransplantation

    PubMed Central

    Londono, Ricardo; Gorantla, Vijay S.; Badylak, Stephen F.

    2016-01-01

    Despite recent progress in vascularized composite allotransplantation (VCA), limitations including complex, high dose immunosuppression regimens, lifelong risk of toxicity from immunosuppressants, acute and most critically chronic graft rejection, and suboptimal nerve regeneration remain particularly challenging obstacles restricting clinical progress. When properly configured, customized, and implemented, biomaterials derived from the extracellular matrix (ECM) retain bioactive molecules and immunomodulatory properties that can promote stem cell migration, proliferation and differentiation, and constructive functional tissue remodeling. The present paper reviews the emerging implications of ECM-based technologies in VCA, including local immunomodulation, tissue repair, nerve regeneration, minimally invasive graft targeted drug delivery, stem cell transplantation, and other donor graft manipulation. PMID:26839554

  4. Induction of Tenogenic Differentiation Mediated by Extracellular Tendon Matrix and Short-Term Cyclic Stretching

    PubMed Central

    Plenge, Amelie; Heller, Sandra; Pfeiffer, Bastian; Kasper, Cornelia

    2016-01-01

    Tendon and ligament pathologies are still a therapeutic challenge, due to the difficulty in restoring the complex extracellular matrix architecture and biomechanical strength. While progress is being made in cell-based therapies and tissue engineering approaches, comprehensive understanding of the fate of progenitor cells in tendon healing is still lacking. The aim of this study was to investigate the effect of decellularized tendon matrix and moderate cyclic stretching as natural stimuli which could potentially direct tenogenic fate. Equine adipose-derived mesenchymal stromal cells (MSC) were seeded on decellularized tendon matrix scaffolds. Mechanical stimulation was applied in a custom-made cyclic strain bioreactor. Assessment was performed 4 h, 8 h, and 24 h following mechanical stimulation. Scaffold culture induced cell alignment and changes in expression of tendon-related genes, although cell viability was decreased compared to monolayer culture. Short mechanical stimulation periods enhanced most of the scaffold-induced effects. Collagen 1A2 expression levels were decreased, while collagen 3A1 and decorin levels were increased. Tenascin-C and scleraxis expression showed an initial decrease but had increased 24 h after stimulation. The results obtained suggest that decellularized tendon matrix, supported by cyclic stretching, can induce tenogenic differentiation and the synthesis of tendon components important for matrix remodeling.

  5. Teaching the Extracellular Matrix and Introducing Online Databases within a Multidisciplinary Course with i-Cell-MATRIX: A Student-Centered Approach

    ERIC Educational Resources Information Center

    Sousa, Joao Carlos; Costa, Manuel Joao; Palha, Joana Almeida

    2010-01-01

    The biochemistry and molecular biology of the extracellular matrix (ECM) is difficult to convey to students in a classroom setting in ways that capture their interest. The understanding of the matrix's roles in physiological and pathological conditions study will presumably be hampered by insufficient knowledge of its molecular structure.…

  6. Nonlinear mechanical response of the extracellular matrix: learning from articular cartilage

    NASA Astrophysics Data System (ADS)

    Kearns, Sarah; Das, Moumita

    2015-03-01

    We study the mechanical structure-function relations in the extracellular matrix (ECM) with focus on nonlinear shear and compression response. As a model system, our study focuses on the ECM in articular cartilage tissue which has two major mechanobiological components: a network of the biopolymer collagen that acts as a stiff, reinforcing matrix, and a flexible aggrecan network that facilitates deformability. We model this system as a double network hydrogel made of interpenetrating networks of stiff and flexible biopolymers respectively. We study the linear and nonlinear mechanical response of the model ECM to shear and compression forces using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings.

  7. Relationships between mechanical properties and extracellular matrix constituents of the cervical stroma during pregnancy.

    PubMed

    House, Michael; Kaplan, David L; Socrate, Simona

    2009-10-01

    In normal pregnancy, the cervix maintains its shape during a period of substantial fetal and uterine growth. Hence, maintenance of biomechanical integrity is an important aspect of cervical function. It is known that cervical mechanical properties arise from extracellular matrix (ECM). The most important constituent of the cervical ECM is fibrillar collagen-it is collagen protein that the cervix derives its "strength" from. Other matrix molecules known to affect the collagen network include water, proteoglycans, hyaluronan, and elastin. The objective of this review is to discuss relationships between biochemical constituents and macroscopic mechanical properties. The individual constituents of the ECM will be discussed, especially in regard to collagen remodeling during pregnancy. In addition, the macroscopic mechanical properties of cervical tissue will be reviewed. An improved understanding of the biochemistry of cervical "strength" will shed light on how the cervix maintains its shape in normal pregnancy and shortens in preterm birth. PMID:19796726

  8. Embryonic lung morphogenesis in organ culture: experimental evidence for a proteoglycan function in the extracellular matrix

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Bassett, K. E.; Spooner, B. S. Jr

    1993-01-01

    The lung rudiment, isolated from mid-gestation (11 day) mouse embryos, can undergo morphogenesis in organ culture. Observation of living rudiments, in culture, reveals both growth and ongoing bronchiolar branching activity. To detect proteoglycan (PG) biosynthesis, and deposition in the extracellular matrix, rudiments were metabolically labeled with radioactive sulfate, then fixed, embedded, sectioned and processed for autoradiography. The sulfated glycosaminoglycan (GAG) types, composing the carbohydrate component of the proteoglycans, were evaluated by selective GAG degradative approaches that showed chondroitin sulfate PG principally associated with the interstitial matrix, and heparan sulfate PG principally associated with the basement membrane. Experiments using the proteoglycan biosynthesis disrupter, beta-xyloside, suggest that when chondroitin sulfate PG deposition into the ECM is perturbed, branching morphogenesis is compromised.

  9. Quantitative analysis of 3D extracellular matrix remodelling by pancreatic stellate cells

    PubMed Central

    Robinson, Benjamin K.; Cortes, Ernesto; Rice, Alistair J.; Sarper, Muge

    2016-01-01

    ABSTRACT Extracellular matrix (ECM) remodelling is integral to numerous physiological and pathological processes in biology, such as embryogenesis, wound healing, fibrosis and cancer. Until recently, most cellular studies have been conducted on 2D environments where mechanical cues significantly differ from physiologically relevant 3D environments, impacting cellular behaviour and masking the interpretation of cellular function in health and disease. We present an integrated methodology where cell-ECM interactions can be investigated in 3D environments via ECM remodelling. Monitoring and quantification of collagen-I structure in remodelled matrices, through designated algorithms, show that 3D matrices can be used to correlate remodelling with increased ECM stiffness observed in fibrosis. Pancreatic stellate cells (PSCs) are the key effectors of the stromal fibrosis associated to pancreatic cancer. We use PSCs to implement our methodology and demonstrate that PSC matrix remodelling capabilities depend on their contractile machinery and β1 integrin-mediated cell-ECM attachment. PMID:27170254

  10. Development of biomimetic nanocomposites as bone extracellular matrix for human osteoblastic cells.

    PubMed

    Bhowmick, Arundhati; Mitra, Tapas; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-05-01

    Here, we have developed biomimetic nanocomposites containing chitosan, poly(vinyl alcohol) and nano-hydroxyapatite-zinc oxide as bone extracellular matrix for human osteoblastic cells and characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction. Scanning electron microscopy images revealed interconnected macroporous structures. Moreover, in this study, the problem related to fabricating a porous composite with good mechanical strength has been resolved by incorporating 5wt% of nano-hydroxyapatite-zinc oxide into chitosan-poly(vinyl alcohol) matrix; the present composite showed high tensile strength (20.25MPa) while maintaining appreciable porosity (65.25%). These values are similar to human cancellous bone. These nanocomposites also showed superior water uptake, antimicrobial and biodegradable properties than the previously reported results. Compatibility with human blood and pH was observed, indicating nontoxicity of these materials to the human body. Moreover, proliferation of osteoblastic MG-63 cells onto the nanocomposites was also observed without having any negative effect. PMID:26876999

  11. Response of endothelial cells to decellularized extracellular matrix deposited by bone marrow mesenchymal stem cells

    PubMed Central

    Xu, Yue; Yan, Mengdie; Gong, Yihong; Chen, Lei; Zhao, Feng; Zhang, Zhaoqiang

    2014-01-01

    Objective: Evaluate the behavior and function of human umbilical vein endothelial cells (HUVECs) on decellularized extracellular matrix (ECM) deposited by bone marrow mesenchymal stem cells (BMSCs). Methods: Prepared through chemical approach, decellularized ECM was characterized by use of immunofluorescence staining. The morphology, attachment, proliferation and migration of HUVECs cultured on six-well tissue culture plastic (TCP) and decellularized ECM were investigated. Results: Decellularized ECM was successfully prepared without three-dimensional architecture disruption. This biological scaffold is similar to nature vascular ECM, preserved various matrix proteins such as type I collagen, type III collagen and fibronection. HUVECs on decellularized ECM showed well attachment and regular arrangement. Decellularized ECM could also significantly enhance the migration and proliferation potential of HUVECs in contrast to TCP. Conclusion: Deposited by BMSCs, ECM can affect the behavior of endothelial cell and could be used as a promising material in tissue engineering. PMID:25663998

  12. Regulation and involvement of matrix metalloproteinases in vascular diseases.

    PubMed

    Amin, Matthew; Pushpakumar, Sathnur; Muradashvili, Nino; Kundu, Sourav; Tyagi, Suresh C; Sen, Utpal

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease. PMID:26709763

  13. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment

    PubMed Central

    Klamer, Sofieke; Voermans, Carlijn

    2014-01-01

    Maintenance of haematopoietic stem cells and differentiation of committed progenitors occurs in highly specialized niches. The interactions of haematopoietic stem and progenitor cells (HSPCs) with cells, growth factors and extracellular matrix (ECM) components of the bone marrow (BM) microenvironment control homeostasis of HSPCs. We only start to understand the complexity of the haematopoietic niche(s) that comprises endosteal, arterial, sinusoidal, mesenchymal and neuronal components. These distinct niches produce a broad range of soluble factors and adhesion molecules that modulate HSPC fate during normal hematopoiesis and BM regeneration. Adhesive interactions between HSPCs and the microenvironment will influence their localization and differentiation potential. In this review we highlight the current understanding of the functional role of ECM- and adhesion (regulating) molecules in the haematopoietic niche during homeostatic and regenerative hematopoiesis. This knowledge may lead to the improvement of current cellular therapies and more efficient development of future cellular products. PMID:25482635

  14. Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles

    PubMed Central

    Neeves, Keith B.; Sawyer, Andrew J.; Foley, Conor P.; Saltzman, W. Mark; Olbricht, William L.

    2007-01-01

    This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequentially, nanoparticles and ECM-modifying agents. Infusions were performed in the striatum of the normal rat brain. Monodisperse polystyrene particles with a diameter of 54 nm were used as a model nanoparticle system. Because the size of these particles is comparable to the effective pore size of the ECM, their transport may be significantly hindered compared with the transport of low molecular weight molecules. To enhance the transport of the infused nanoparticles, we attempted to increase the effective pore size of the ECM by two methods: dilating the extracellular space and degrading selected constituents of the ECM. Two methods of dilating the extracellular space were investigated: co-infusion of nanoparticles and a hyperosmolar solution of mannitol, and pre-infusion of an isotonic buffer solution followed by infusion of nanoparticles. These treatments resulted in an increase in the nanoparticle distribution volume of 50% and 123%, respectively. To degrade hyaluronan, a primary structural component of the brain ECM, a pre-infusion of hyaluronidase (20,000 U/mL) was followed after 30 min by infusion of nanoparticles. This treatment resulted in an increase in the nanoparticle distribution of 64%. Our results suggest that both dilation and enzymatic digestion can be incorporated into CED protocols to enhance nanoparticle penetration. PMID:17920047

  15. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy

    SciTech Connect

    Doktycz, Mitchel John; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.

  16. Aldosterone and myocardial extracellular matrix expansion in type 2 diabetes mellitus.

    PubMed

    Rao, Ajay D; Shah, Ravi V; Garg, Rajesh; Abbasi, Siddique A; Neilan, Tomas G; Perlstein, Todd S; Di Carli, Marcelo F; Jerosch-Herold, Micha