Science.gov

Sample records for extracellularly generated reactive

  1. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    PubMed

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  2. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    PubMed Central

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  3. Enzymatic Production of Extracellular Reactive Oxygen Species by Marine Microorganisms

    NASA Astrophysics Data System (ADS)

    Diaz, J. M.; Andeer, P. F.; Hansel, C. M.

    2014-12-01

    Reactive oxygen species (ROS) serve as intermediates in a myriad of biogeochemically important processes, including cell signaling pathways, cellular oxidative stress responses, and the transformation of both nutrient and toxic metals such as iron and mercury. Abiotic reactions involving the photo-oxidation of organic matter were once considered the only important sources of ROS in the environment. However, the recent discovery of substantial biological ROS production in marine systems has fundamentally shifted this paradigm. Within the last few decades, marine phytoplankton, including diatoms of the genus Thalassiosira, were discovered to produce ample extracellular quantities of the ROS superoxide. Even more recently, we discovered widespread production of extracellular superoxide by phylogenetically and ecologically diverse heterotrophic bacteria at environmentally significant levels (up to 20 amol cell-1 hr-1), which has introduced the revolutionary potential for substantial "dark" cycling of ROS. Despite the profound biogeochemical importance of extracellular biogenic ROS, the cellular mechanisms underlying the production of this ROS have remained elusive. Through the development of a gel-based assay to identify extracellular ROS-producing proteins, we have recently found that enzymes typically involved in antioxidant activity also produce superoxide when molecular oxygen is the only available electron acceptor. For example, large (~3600 amino acids) heme peroxidases are involved in extracellular superoxide production by a bacterium within the widespread Roseobacter clade. In Thalassiosira spp., extracellular superoxide is produced by flavoproteins such as glutathione reductase and ferredoxin NADP+ reductase. Thus, extracellular ROS production may occur via secreted and/or cell surface enzymes that modulate between producing and degrading ROS depending on prevailing geochemical and/or ecological conditions.

  4. Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps.

    PubMed

    Parker, Heather; Winterbourn, Christine C

    2012-01-01

    Neutrophils release extracellular traps (NETs) in response to a variety of inflammatory stimuli. These structures are composed of a network of chromatin strands associated with a variety of neutrophil-derived proteins including the enzyme myeloperoxidase (MPO). Studies into the mechanisms leading to the formation of NETs indicate a complex process that differs according to the stimulus. With some stimuli an active nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is required. However, assigning specific reactive oxygen species involved downstream of the oxidase is a difficult task and definitive proof for any single oxidant is still lacking. Pharmacological inhibition of MPO and the use of MPO-deficient neutrophils indicate active MPO is required with phorbol myristate acetate as a stimulus but not necessarily with bacteria. Reactive oxidants and MPO may also play a role in NET-mediated microbial killing. MPO is present on NETs and maintains activity at this site. Therefore, MPO has the potential to generate reactive oxidants in close proximity to trapped microorganisms and thus effect microbial killing. This brief review discusses current evidence for the involvement of reactive oxidants and MPO in NET formation and their potential contribution to NET antimicrobial activity. PMID:23346086

  5. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species.

    PubMed

    Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-01-01

    The successful treatment of bacterial infections is the achievement of a synergy between the host's immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host's immune defences and antibiotic interactions in microbial infections. PMID:26778774

  6. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species

    PubMed Central

    Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-01-01

    The successful treatment of bacterial infections is the achievement of a synergy between the host’s immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host’s immune defences and antibiotic interactions in microbial infections. PMID:26778774

  7. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: Formation of intercellular membrane bridges

    SciTech Connect

    Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon; Kim, Young-Myeong; Ha, Kwon-Soo

    2011-07-15

    Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainly comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.

  8. Species-level variability in extracellular production rates of reactive oxygen species by diatoms

    NASA Astrophysics Data System (ADS)

    Schneider, Robin; Roe, Kelly; Hansel, Colleen; Voelker, Bettina

    2016-03-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 x 10-16 mol cell-1 hr-1, while H2O2 production rates ranged from undetectable to 3.4 x 10-16 mol cell-1 hr-1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O¬2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2 . T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94-100% H2O2; 10-80% O2-) were consistently higher than those for live cultures (65-95% H2O2; 10-50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even between those that are

  9. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms

    PubMed Central

    Schneider, Robin J.; Roe, Kelly L.; Hansel, Colleen M.; Voelker, Bettina M.

    2016-01-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 × 10−16 mol cell−1 h−1, while H2O2 production rates ranged from undetectable to 3.4 × 10−16 mol cell−1 h−1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2-. T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94–100% H2O2; 10–80% O2-) were consistently higher than those for live cultures (65–95% H2O2; 10–50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even

  10. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms.

    PubMed

    Schneider, Robin J; Roe, Kelly L; Hansel, Colleen M; Voelker, Bettina M

    2016-01-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O[Formula: see text]) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O[Formula: see text] were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O[Formula: see text] and H2O2 was examined by measuring recovery of O[Formula: see text] and H2O2 added to the influent medium. O[Formula: see text] production rates ranged from undetectable to 7.3 × 10(-16) mol cell(-1) h(-1), while H2O2 production rates ranged from undetectable to 3.4 × 10(-16) mol cell(-1) h(-1). Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O[Formula: see text] in light than dark, even when the organisms were killed, indicating that O[Formula: see text] is produced via a passive photochemical process on the cell surface. The ratio of H2O2 to O[Formula: see text] production rates was consistent with production of H2O2 solely through dismutation of O[Formula: see text] for T. oceanica, while T. pseudonana made much more H2O2 than O[Formula: see text]. T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94-100% H2O2; 10-80% O[Formula: see text]) were consistently higher than those for live cultures (65-95% H2O2; 10-50% O[Formula: see text]). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O

  11. Calcite formation in soft coral sclerites is determined by a single reactive extracellular protein.

    PubMed

    Rahman, M Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-09-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called "calcite and aragonite seas." Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that -OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature. PMID:21768106

  12. Calcite Formation in Soft Coral Sclerites Is Determined by a Single Reactive Extracellular Protein*

    PubMed Central

    Rahman, M. Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-01-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called “calcite and aragonite seas.” Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that –OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature. PMID:21768106

  13. Guanidino compounds generate reactive oxygen species.

    PubMed

    Mori, A; Kohno, M; Masumizu, T; Noda, Y; Packer, L

    1996-09-01

    Methylguanidine, guanidinoacetic acid and guanidinosuccinic acid are endogenous substances in body tissues. Extremely high levels of these substances are known to be related to the pathogenesis of epilepsy and renal failure such as uremia. In this study it was demonstrated that methylguanidine, guanidinoacetic acid and guanidinosuccinic acid, and arginine generate hydroxyl radicals in aqueous solution. These findings suggest that a high level of guanidino compounds accumulating near or within cells such as neurons (in an epileptogenic focus) or nephrons (in uremic patients) may cause free radical damage leading to these clinical disorders. Arginine may have a similar role in the pathogenesis of hyperarginemia. PMID:8886279

  14. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  15. Competitive adsorption of Reactive Orange 16 and Reactive Brilliant Blue R on polyaniline/bacterial extracellular polysaccharides composite--a novel eco-friendly polymer.

    PubMed

    Janaki, V; Vijayaraghavan, K; Ramasamy, A K; Lee, Kui-Jae; Oh, Byung-Taek; Kamala-Kannan, Seralathan

    2012-11-30

    The performance of polyaniline/extracellular polymeric substances (Pn/EPS) composite as an adsorbent to remove the anionic reactive dyes, Reactive Brilliant Blue R (RBBR) and Reactive Orange 16 (RO), was investigated in single and binary systems. The pH(pzc) of Pn/EPS composite was calculated as 3.7 through potentiometric mass titration method. Electrostatic interaction between the dye anion and the nitrogen present in the polymer was identified as a major mechanism in adsorption process. Single component isotherms followed the Langmuir model with the maximum adsorption capacity of 0.5775 mmol g(-1) for RBBR and 0.4748 mmol g(-1) for RO. In binary system, both the reactive dye anions compete with each other and resulted in lower uptake. Binary adsorption data were interpreted well by the Sheindorf-Rehbun-Sheintuch equation as compared to extended Langmuir model with constant interaction factor. Kinetic analysis of single solute followed pseudo-first order model. Thermodynamic studies computed that RBBR and RO adsorption was endothermic, spontaneous, and feasible process. PMID:23036702

  16. Reactive oxygen species generation and signaling in plants

    PubMed Central

    Tripathy, Baishnab Charan; Oelmüller, Ralf

    2012-01-01

    The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS. PMID:23072988

  17. The Role of Reactive Oxygen Species (ROS) in the Formation of Extracellular Traps (ETs) in Humans

    PubMed Central

    Stoiber, Walter; Obermayer, Astrid; Steinbacher, Peter; Krautgartner, Wolf-Dietrich

    2015-01-01

    Extracellular traps (ETs) are reticulate structures of extracellular DNA associated with antimicrobial molecules. Their formation by phagocytes (mainly by neutrophils: NETs) has been identified as an essential element of vertebrate innate immune defense. However, as ETs are also toxic to host cells and potent triggers of autoimmunity, their role between pathogen defense and human pathogenesis is ambiguous, and they contribute to a variety of acute and chronic inflammatory diseases. Since the discovery of ET formation (ETosis) a decade ago, evidence has accumulated that most reaction cascades leading to ET release involve ROS. An important new facet was added when it became apparent that ETosis might be directly linked to, or be a variant of, the autophagy cell death pathway. The present review analyzes the evidence to date on the interplay between ROS, autophagy and ETosis, and highlights and discusses several further aspects of the ROS-ET relationship that are incompletely understood. These aspects include the role of NADPH oxidase-derived ROS, the molecular requirements of NADPH oxidase-dependent ETosis, the roles of NADPH oxidase subtypes, extracellular ROS and of ROS from sources other than NADPH oxidase, and the present evidence for ROS-independent ETosis. We conclude that ROS interact with ETosis in a multidimensional manner, with influence on whether ETosis shows beneficial or detrimental effects. PMID:25946076

  18. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis.

    PubMed

    Barth, Cristiane R; Funchal, Giselle A; Luft, Carolina; de Oliveira, Jarbas R; Porto, Bárbara N; Donadio, Márcio V F

    2016-04-01

    Neutrophil extracellular traps (NETs) are a combination of DNA fibers and granular proteins, such as neutrophil elastase (NE). NETs are released in the extracellular space in response to different stimuli. Carrageenan is a sulfated polysaccharide extracted from Chondrus crispus, a marine algae, used for decades in research for its potential to induce inflammation in different animal models. In this study, we show for the first time that carrageenan injection can induce NET release in a mouse model of acute peritonitis. Carrageenan induced NET release by viable neutrophils with NE and myeloperoxidase (MPO) expressed on DNA fibers. Furthermore, although this polysaccharide was able to stimulate reactive oxygen species (ROS) generation by peritoneal neutrophils, NADPH oxidase derived ROS were dispensable for NET formation by carrageenan. In conclusion, our results show that carrageenan-induced inflammation in the peritoneum of mice can induce NET formation in an ROS-independent manner. These results may add important information to the field of inflammation and potentially lead to novel anti-inflammatory agents targeting the production of NETs. PMID:26786873

  19. Reactive Oxygen Species (ROS) generation by lunar simulants

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Rickman, Douglas; Schoonen, Martin A.

    2016-05-01

    The current interest in human exploration of the Moon and past experiences of Apollo astronauts has rekindled interest into the possible harmful effects of lunar dust on human health. In comparison to the Apollo-era explorations, human explorers may be weeks on the Moon, which will raise the risk of inhalation exposure. The mineralogical composition of lunar dust is well documented, but its effects on human health are not fully understood. With the aim of understanding the reactivity of dusts that may be encountered on geologically different lunar terrains, we have studied Reactive Oxygen Species (ROS) generation by a suite of lunar simulants of different mineralogical-chemical composition dispersed in water and Simulated Lung Fluid (SLF). To further explore the reactivity of simulants under lunar environmental conditions, we compared the reactivity of simulants both in air and inert atmosphere. As the impact of micrometeorites with consequent shock-induced stresses is a major environmental factor on the Moon, we also studied the effect of mechanical stress on samples. Mechanical stress was induced by hand crushing the samples both in air and inert atmosphere. The reactivity of samples after crushing was analyzed for a period of up to nine days. Hydrogen peroxide (H2O2) in water and SLF was analyzed by an in situ electrochemical probe and hydroxyl radical (•OH) by Electron Spin Resonance (ESR) spectroscopy and Adenine probe. Out of all simulants, CSM-CL-S was found to be the most reactive simulant followed by OB-1 and then JSC-1A simulant. The overall reactivity of samples in the inert atmosphere was higher than in air. Fresh crushed samples showed a higher level of reactivity than uncrushed samples. Simulant samples treated to create agglutination, including the formation of zero-valent iron, showed less reactivity than untreated simulants. ROS generation in SLF is initially slower than in deionized water (DI), but the ROS formation is sustained for as long as 7

  20. Disulfiram anti-cancer efficacy without copper overload is enhanced by extracellular H2O2 generation: antagonism by tetrathiomolybdate

    PubMed Central

    Calderon-Aparicio, Ali; Strasberg-Rieber, Mary; Rieber, Manuel

    2015-01-01

    Highlights exogenous SOD increases apoptosis by sub-toxic disulfiram without copper overload H2O2 generation from glucose oxidase also potentiates disulfiram toxicity N-acetylcysteine suppresses antitumor potentiation of DSF by H2O2 generation sub-toxic tetrathiomolybdate inhibits potentiation of DSF by SOD Background Cu/Zn superoxide dismutases (SODs) like the extracellular SOD3 and cytoplasmic SOD1 regulate cell proliferation by generating hydrogen peroxide (H2O2). This pro-oxidant inactivates essential cysteine residues in protein tyrosine phosphatases (PTP) helping receptor tyrosine kinase activation by growth factor signaling, and further promoting downstream MEK/ERK linked cell proliferation. Disulfiram (DSF), currently in clinical cancer trials is activated by copper chelation, being potentially capable of diminishing the copper dependent activation of MEK1/2 and SOD1/SOD3 and promoting reactive oxygen species (ROS) toxicity. However, copper (Cu) overload may occur when co-administered with DSF, resulting in toxicity and mutagenicity against normal tissue, through generation of the hydroxyl radical (•OH) by the Fenton reaction. Purpose To investigate: a) whether sub-toxic DSF efficacy can be increased without Cu overload against human melanoma cells with unequal BRAF(V600E) mutant status and Her2-overexpressing SKBR3 breast cancer cells, by increasing H2O2from exogenous SOD; b) to compare the anti-tumor efficacy of DSF with that of another clinically used copper chelator, tetrathiomolybdate (TTM) Results a) without copper supplementation, exogenous SOD potentiated sub-toxic DSF toxicity antagonized by sub-toxic TTM or by the anti-oxidant N-acetylcysteine; b) exogenous glucose oxidase, another H2O2 generator resembled exogenous SOD in potentiating sub-toxic DSF. Conclusions potentiation of sub-lethal DSF toxicity by extracellular H2O2 against the human tumor cell lines investigated, only requires basal Cu and increased ROS production, being unrelated to non

  1. Reactive microgliosis: extracellular μ-calpain and microglia-mediated dopaminergic neurotoxicity

    PubMed Central

    Levesque, Shannon; Wilson, Belinda; Gregoria, Vincent; Thorpe, Laura B.; Dallas, Shannon; Polikov, Vadim S.; Hong, Jau-Shyong

    2010-01-01

    Microglia, the innate immune cells in the brain, can become chronically activated in response to dopaminergic neuron death, fuelling a self-renewing cycle of microglial activation followed by further neuron damage (reactive microgliosis), which is implicated in the progressive nature of Parkinson’s disease. Here, we use an in vitro approach to separate neuron injury factors from the cellular actors of reactive microgliosis and discover molecular signals responsible for chronic and toxic microglial activation. Upon injury with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium, N27 cells (dopaminergic neuron cell line) released soluble neuron injury factors that activated microglia and were selectively toxic to dopaminergic neurons in mixed mesencephalic neuron-glia cultures through nicotinamide adenine dinucleotide phosphate oxidase. μ-Calpain was identified as a key signal released from damaged neurons, causing selective dopaminergic neuron death through activation of microglial nicotinamide adenine dinucleotide phosphate oxidase and superoxide production. These findings suggest that dopaminergic neurons may be inherently susceptible to the pro-inflammatory effects of neuron damage, i.e. reactive microgliosis, providing much needed insight into the chronic nature of Parkinson’s disease. PMID:20123724

  2. Phenazine production enhances extracellular DNA release via hydrogen peroxide generation in Pseudomonas aeruginosa

    PubMed Central

    Das, Theerthankar; Manefield, Mike

    2013-01-01

    In Pseudomonas aeruginosa eDNA is a crucial component essential for biofilm formation and stability. In this study we report that release of eDNA is influenced by the production of phenazine in P. aeruginosa. A ∆phzA-G mutant of P. aeruginosa PA14 deficient in phenazine production generated significantly less eDNA in comparison with the phenazine producing strains. The relationship between eDNA release and phenazine production is bridged via hydrogen peroxide (H2O2) generation and subsequent H2O2 mediated cell lysis and ultimately release of chromosomal DNA into the extracellular environment as eDNA. PMID:23710274

  3. Designer Extracellular Matrix Based on DNA-Peptide Networks Generated by Polymerase Chain Reaction.

    PubMed

    Finke, Alexander; Bußkamp, Holger; Manea, Marilena; Marx, Andreas

    2016-08-16

    Cell proliferation and differentiation in multicellular organisms are partially regulated by signaling from the extracellular matrix. The ability to mimic an extracellular matrix would allow particular cell types to be specifically recognized, which is central to tissue engineering. We present a new functional DNA-based material with cell-adhesion properties. It is generated by using covalently branched DNA as primers in PCR. These primers were functionalized by click chemistry with the cyclic peptide c(RGDfK), a peptide that is known to predominantly bind to αvβ3 integrins, which are found on endothelial cells and fibroblasts, for example. As a covalent coating of surfaces, this DNA-based material shows cell-repellent properties in its unfunctionalized state and gains adhesiveness towards specific target cells when functionalized with c(RGDfK). These cells remain viable and can be released under mild conditions by DNase I treatment. PMID:27410200

  4. Cis-urocanic acid inhibits bovine neutrophil generation of extracellular superoxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neutrophils play a fundamental role in the host innate immune response during mastitis and other bacterial-mediated diseases of cattle through their ability to phagocytose and kill bacteria. The ability of neutrophils to kill bacteria is mediated through the generation of reactive oxygen species (R...

  5. Decolorization and biodegradation of reactive blue 220 textile dye by Lentinus crinitus extracellular extract.

    PubMed

    Niebisch, Carolina Heyse; Malinowski, Alexandre Knoll; Schadeck, Ruth; Mitchell, David A; Kava-Cordeiro, Vanessa; Paba, Jaime

    2010-08-15

    Studies were carried on the decolorization of the textile dye reactive blue 220 (RB220) by a novel isolate of Lentinus crinitus fungi. The optimal conditions for the production of destaining activity were obtained in media containing intermediate concentrations of ammonium oxalate and glucose (10 g L(-1)) as nitrogen and carbon sources, respectively, at 28 degrees C and pH 5.5. Maximum decolorization efficiency against RB220 achieved in this study was around 95%. Ultra-violet and visible (UV-vis) spectrophotometric analyses, before and after decolorization, suggest that decolorization was due to biodegradation. This effect was associated with a putative low molecular weight laccase (41 kDa) displaying good tolerance to a wide range of pH values, salt concentrations and temperatures, suggesting a potential role for this organism in the remediation of real dye containing effluents. PMID:20452721

  6. Extracellular ATP promotes stomatal opening of Arabidopsis thaliana through heterotrimeric G protein α subunit and reactive oxygen species.

    PubMed

    Hao, Li-Hua; Wang, Wei-Xia; Chen, Chen; Wang, Yu-Fang; Liu, Ting; Li, Xia; Shang, Zhong-Lin

    2012-07-01

    In recent years, adenosine tri-phosphate (ATP) has been reported to exist in apoplasts of plant cells as a signal molecule. Extracellular ATP (eATP) plays important roles in plant growth, development, and stress tolerance. Here, extracellular ATP was found to promote stomatal opening of Arabidopsis thaliana in light and darkness. ADP, GTP, and weakly hydrolyzable ATP analogs (ATPγS, Bz-ATP, and 2meATP) showed similar effects, whereas AMP and adenosine did not affect stomatal movement. Apyrase inhibited stomatal opening. ATP-promoted stomatal opening was blocked by an NADPH oxidase inhibitor (diphenylene iodonium) or deoxidizer (dithiothreitol), and was impaired in null mutant of NADPH oxidase (atrbohD/F). Added ATP triggered ROS generation in guard cells via NADPH oxidase. ATP also induced Ca(2+) influx and H(+) efflux in guard cells. In atrbohD/F, ATP-induced ion flux was strongly suppressed. In null mutants of the heterotrimeric G protein α subunit, ATP-promoted stomatal opening, cytoplasmic ROS generation, Ca(2+) influx, and H(+) efflux were all suppressed. These results indicated that eATP-promoted stomatal opening possibly involves the heterotrimeric G protein, ROS, cytosolic Ca(2+), and plasma membrane H(+)-ATPase. PMID:22138967

  7. Detecting, Visualizing and Quantitating the Generation of Reactive Oxygen Species in an Amoeba Model System

    PubMed Central

    Zhang, Xuezhi; Soldati, Thierry

    2013-01-01

    Reactive oxygen species (ROS) comprise a range of reactive and short-lived, oxygen-containing molecules, which are dynamically interconverted or eliminated either catalytically or spontaneously. Due to the short life spans of most ROS and the diversity of their sources and subcellular localizations, a complete picture can be obtained only by careful measurements using a combination of protocols. Here, we present a set of three different protocols using OxyBurst Green (OBG)-coated beads, or dihydroethidium (DHE) and Amplex UltraRed (AUR), to monitor qualitatively and quantitatively various ROS in professional phagocytes such as Dictyostelium. We optimised the beads coating procedures and used OBG-coated beads and live microscopy to dynamically visualize intraphagosomal ROS generation at the single cell level. We identified lipopolysaccharide (LPS) from E. coli as a potent stimulator for ROS generation in Dictyostelium. In addition, we developed real time, medium-throughput assays using DHE and AUR to quantitatively measure intracellular superoxide and extracellular H2O2 production, respectively. PMID:24300479

  8. A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery.

    PubMed

    Chen, Ko-Jie; Liang, Hsiang-Fa; Chen, Hsin-Lung; Wang, Yucai; Cheng, Po-Yuan; Liu, Hao-Li; Xia, Younan; Sung, Hsing-Wen

    2013-01-22

    The therapeutic effectiveness of chemotherapy is optimal only when tumor cells are subjected to a maximum drug exposure. To increase the intratumoral drug concentration and thus the efficacy of chemotherapy, a thermoresponsive bubble-generating liposomal system is proposed for triggering localized extracellular drug delivery. The key component of this liposomal formulation is the encapsulated ammonium bicarbonate (ABC), which is used to create the transmembrane gradient needed for a highly efficient encapsulation of doxorubicin (DOX). At an elevated temperature (42 °C), decomposition of ABC generates CO(2) bubbles, creating permeable defects in the lipid bilayer that rapidly release DOX and instantly increase the drug concentration locally. Because the generated CO(2) bubbles are hyperechogenic, they also enhance ultrasound imaging. Consequently, this new liposomal system encapsulated with ABC may also provide an ability to monitor a temperature-controlled drug delivery process. PMID:23240550

  9. Generation of specific monoclonal antibodies against the extracellular loops of human claudin-3 by immunizing mice with target-expressing cells.

    PubMed

    Ando, Hiroshi; Suzuki, Masayo; Kato-Nakano, Mariko; Kawamoto, Shinobu; Misaka, Hirofumi; Kimoto, Naoya; Furuya, Akiko; Nakamura, Kazuyasu

    2015-01-01

    Human claudin-3 (CLDN3) is a tetraspanin transmembrane protein of tight junction structures and is known to be over-expressed in some malignant tumors. Although a specific monoclonal antibody (MAb) against the extracellular domains of CLDN3 would be a valuable tool, generation of such MAbs has been regarded as difficult using traditional hybridoma techniques, because of the conserved sequence homology of CLDN3s among various species. In addition, high sequence similarity is shared among claudin family members, and potential cross-reactivity of MAb should be evaluated carefully. To overcome these difficulties, we generated CLDN3-expressing Chinese hamster ovary and Sf9 cells to use an immunogens and performed cell-based screening to eliminate cross-reactive antibodies. As a result, we generated MAbs that recognized the extracellular loops of CLDN3 but not those of CLDN4, 5, 6, or 9. Further in vitro studies suggested that the isolated MAbs possessed the desired binding properties for the detection or targeting of CLDN3. PMID:25744656

  10. Complement factor H modulates the activation of human neutrophil granulocytes and the generation of neutrophil extracellular traps.

    PubMed

    Schneider, Andrea E; Sándor, Noémi; Kárpáti, Éva; Józsi, Mihály

    2016-04-01

    Factor H (FH) is a major inhibitor of the alternative pathway of complement activation in plasma and on certain host surfaces. In addition to being a complement regulator, FH can bind to various cells via specific receptors, including binding to neutrophil granulocytes through complement receptor type 3 (CR3; CD11b/CD18), and modulate their function. The cellular roles of FH are, however, poorly understood. Because neutrophils are important innate immune cells in inflammatory processes and the host defense against pathogens, we aimed at studying the effects of FH on various neutrophil functions, including the generation of extracellular traps. FH co-localized with CD11b on the surface of neutrophils isolated from peripheral blood of healthy individuals, and cell-bound FH retained its cofactor activity and enhanced C3b degradation. Soluble FH supported neutrophil migration and immobilized FH induced cell spreading. In addition, immobilized but not soluble FH enhanced IL-8 release from neutrophils. FH alone did not trigger the cells to produce neutrophil extracellular traps (NETs), but NET formation induced by PMA and by fibronectin plus fungal β-glucan were inhibited by immobilized, but not by soluble, FH. Moreover, in parallel with NET formation, immobilized FH also inhibited the production of reactive oxygen species induced by PMA and by fibronectin plus β-glucan. Altogether, these data indicate that FH has multiple regulatory roles on neutrophil functions. While it can support the recruitment of neutrophils, FH may also exert anti-inflammatory effects and influence local inflammatory and antimicrobial reactions, and reduce tissue damage by modulating NET formation. PMID:26938503

  11. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  12. Autophagy and Reactive Oxygen Species Are Involved in Neutrophil Extracellular Traps Release Induced by C. albicans Morphotypes

    PubMed Central

    Kenno, Samyr; Perito, Stefano; Mosci, Paolo; Vecchiarelli, Anna; Monari, Claudia

    2016-01-01

    Neutrophil extracellular traps (NETs) are a combination of DNA fibers and granular enzymes, such as elastase and myeloperoxidase. In this study, we demonstrate that Candida albicans hyphal (CAH) cells and yeast (CAY) cells induce differential amounts, kinetics and mechanisms of NET release. CAH cells induced larger quantities of NET compared to CAY cells and can stimulate rapid NET formation up to 4 h of incubation. CAY cells are, also, able to induce rapid NET formation, but this ability was lost at 4 h. Both reactive oxygen species (ROS) and autophagy are implicated in NET induced by CAH and CAY cells, but with a time-different participation of these two mechanisms. In particular, in the early phase (15 min) CAH cells stimulate NET via autophagy, but not via ROS, while CAY cells induce NET via both autophagy and ROS. At 4 h, only CAH cells stimulate NET formation using autophagy as well as ROS. Finally, we demonstrate that NET release, in response to CAH cells, involves NF-κB activation and is strongly implicated in hyphal destruction. PMID:27375599

  13. Autophagy and Reactive Oxygen Species Are Involved in Neutrophil Extracellular Traps Release Induced by C. albicans Morphotypes.

    PubMed

    Kenno, Samyr; Perito, Stefano; Mosci, Paolo; Vecchiarelli, Anna; Monari, Claudia

    2016-01-01

    Neutrophil extracellular traps (NETs) are a combination of DNA fibers and granular enzymes, such as elastase and myeloperoxidase. In this study, we demonstrate that Candida albicans hyphal (CAH) cells and yeast (CAY) cells induce differential amounts, kinetics and mechanisms of NET release. CAH cells induced larger quantities of NET compared to CAY cells and can stimulate rapid NET formation up to 4 h of incubation. CAY cells are, also, able to induce rapid NET formation, but this ability was lost at 4 h. Both reactive oxygen species (ROS) and autophagy are implicated in NET induced by CAH and CAY cells, but with a time-different participation of these two mechanisms. In particular, in the early phase (15 min) CAH cells stimulate NET via autophagy, but not via ROS, while CAY cells induce NET via both autophagy and ROS. At 4 h, only CAH cells stimulate NET formation using autophagy as well as ROS. Finally, we demonstrate that NET release, in response to CAH cells, involves NF-κB activation and is strongly implicated in hyphal destruction. PMID:27375599

  14. Nucleotide receptor signaling in murine macrophages is linked to reactive oxygen species generation.

    PubMed

    Pfeiffer, Zachary A; Guerra, Alma N; Hill, Lindsay M; Gavala, Monica L; Prabhu, Usha; Aga, Mini; Hall, David J; Bertics, Paul J

    2007-05-15

    Macrophage activation is critical in the innate immune response and can be regulated by the nucleotide receptor P2X7. In this regard, P2X7 signaling is not well understood but has been implicated in controlling reactive oxygen species (ROS) generation by various leukocytes. Although ROS can contribute to microbial killing, the role of ROS in nucleotide-mediated cell signaling is unclear. In this study, we report that the P2X7 agonists ATP and 3'-O-(4-benzoyl) benzoic ATP (BzATP) stimulate ROS production by RAW 264.7 murine macrophages. These effects are potentiated in lipopolysaccharide-primed cells, demonstrating an important interaction between extracellular nucleotides and microbial products in ROS generation. In terms of nucleotide receptor specificity, RAW 264.7 macrophages that are deficient in P2X7 are greatly reduced in their capacity to generate ROS in response to BzATP treatment (both with and without LPS priming), thus supporting a role for P2X7 in this process. Because MAP kinase activation is key for nucleotide regulation of macrophage function, we also tested the hypothesis that P2X7-mediated MAP kinase activation is dependent on ROS production. We observed that BzATP stimulates MAP kinase (ERK1/ERK2, p38, and JNK1/JNK2) phosphorylation and that the antioxidants N-acetylcysteine and ascorbic acid strongly attenuate BzATP-mediated JNK1/JNK2 and p38 phosphorylation but only slightly reduce BzATP-induced ERK1/ERK2 phosphorylation. These studies reveal that P2X7 can contribute to macrophage ROS production, that this effect is potentiated upon lipopolysaccharide exposure, and that ROS are important participants in the extracellular nucleotide-mediated activation of several MAP kinase systems. PMID:17448897

  15. Generation of Reactive Oxygen Species from Silicon Nanowires

    PubMed Central

    Leonard, Stephen S; Cohen, Guy M; Kenyon, Allison J; Schwegler-Berry, Diane; Fix, Natalie R; Bangsaruntip, Sarunya; Roberts, Jenny R

    2014-01-01

    Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor–liquid–solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals. PMID:25452695

  16. Khat (Catha edulis) generates reactive oxygen species and promotes hepatic cell apoptosis via MAPK activation.

    PubMed

    Abid, Morad Dirhem Naji; Chen, Juan; Xiang, Min; Zhou, Jie; Chen, Xiaoping; Gong, Feili

    2013-08-01

    A number of studies have suggested an association between khat (Catha edulis) chewing and acute liver lesions or chronic liver disease. However, little is known about the effects of khat on hepatic cells. In the current study, we investigated the mechanism behind khat-induced apoptosis in the L02 human hepatic cell line. We used cell growth inhibition assay, flow cytometry and Hoechst 33258 staining to measure hepatocyte apoptosis induced by khat. Western blot analysis was used to detect the expression levels of caspase-8 and -9, as well as those of Bax and Bcl-2. We also measured reactive oxygen species production. The results indicated that khat induced significant hepatocyte apoptosis in L02 cells. We found that khat activated caspase-8 and -9, upregulated Bax protein expression and downregulated Bcl-2 expression levels, which resulted in the coordination of apoptotic signals. Khat-induced hepatocyte apoptosis is primarily regulated through the sustained activation of the c-Jun NH2-terminal kinase (JNK) pathway and only partially via the extracellular signal-regulated kinase (ERK) cascade. Furthermore, the khat-induced reactive oxygen species (ROS) production and the activation of the ROS scavenger, N-acetyl-L-cysteine (NAC), attenuated the khat-induced activation of JNK and ERK. Our results demonstrate that khat triggers the generation of intracellular ROS and sequentially induces the sustainable activation of JNK, which in turn results in a decrease in cell viability and an increase in cell apoptosis. PMID:23708648

  17. Bioreductively Activated Reactive Oxygen Species (ROS) Generators as MRSA Inhibitors.

    PubMed

    Khodade, Vinayak S; Sharath Chandra, Mallojjala; Banerjee, Ankita; Lahiri, Surobhi; Pulipeta, Mallikarjuna; Rangarajan, Radha; Chakrapani, Harinath

    2014-07-10

    The number of cases of drug resistant Staphylococcus aureus infections is on the rise globally and new strategies to identify drug candidates with novel mechanisms of action are in urgent need. Here, we report the synthesis and evaluation of a series of benzo[b]phenanthridine-5,7,12(6H)-triones, which were designed based on redox-active natural products. We find that the in vitro inhibitory activity of 6-(prop-2-ynyl)benzo[b]phenanthridine-5,7,12(6H)-trione (1f) against methicillin-resistant Staphylococcus aureus (MRSA), including a panel of patient-derived strains, is comparable or better than vancomycin. We show that the lead compound generates reactive oxygen species (ROS) in the cell, contributing to its antibacterial activity. PMID:25050164

  18. Photosensitizing Nanoparticles and The Modulation of Reactive Oxygen Species generation

    NASA Astrophysics Data System (ADS)

    Tada, Dayane; Baptista, Mauricio

    2015-05-01

    The association of PhotoSensitizer (PS) molecules with nanoparticles (NPs) forming photosensitizing NPs, has emerged as a therapeutic strategy to improve PS tumor targeting, to protect PS from deactivation reactions and to enhance both PS solubility and circulation time. Since association with NPs usually alters PS photophysical and photochemical properties, photosensitizing NPs are an important tool to modulate reactive oxygen species (ROS) generation. Depending on the design of the photosensitizing NP, i.e., type of PS, the NP material and the method applied for the construction of the photosensitizing NP, the deactivation routes of the excited state can be controlled, allowing the generation of either singlet oxygen or other ROS. Controlling the type of generated ROS is desirable not only in biomedical applications, as in Photodynamic Therapy where the type of ROS affects therapeutic efficiency, but also in other technological relevant fields like energy conversion, where the electron and energy transfer processes are necessary to increase the efficiency of photoconversion cells. The current review highlights some of the recent developments in the design of Photosensitizing NPs aimed at modulating the primary photochemical events after light absorption.

  19. Quantitative assessment of reactive oxygen sonochemically generated by cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Miyashita, Takuya; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-07-01

    Acoustic cavitation bubbles can induce not only a thermal bioeffect but also a chemical bioeffect. When cavitation bubbles collapse and oscillate violently, they produce reactive oxygen species (ROS) that cause irreversible changes to the tissue. A sonosensitizer can promote such ROS generation. A treatment method using a sonosensitizer is called sonodynamic treatment. Rose bengal (RB) is one of the sonosensitizers whose in vivo and in vitro studies have been reported. In sonodynamic treatment, it is important to produce ROS at a high efficiency. For the efficient generation of ROS, a triggered high-intensity focused ultrasound (HIFU) sequence has been proposed. In this study, cavitation bubbles were generated in a chamber where RB solution was sealed, and a high-speed camera captured the behavior of these cavitation bubbles. The amount of ROS was also quantified by a potassium iodide (KI) method and compared with high-speed camera pictures to investigate the effectiveness of the triggered HIFU sequence. As a result, ROS could be obtained efficiently by this sequence.

  20. Plasma-generated reactive oxygen species for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sousa, J. S.; Hammer, M. U.; Winter, J.; Tresp, H.; Duennbier, M.; Iseni, S.; Martin, V.; Puech, V.; Weltmann, K. D.; Reuter, S.

    2012-10-01

    To get a better insight into the effects of reactive oxygen species (ROS) on cellular components, fundamental studies are essential to determine the nature and concentration of plasma-generated ROS, and the chemistry induced in biological liquids by those ROS. In this context, we have measured the absolute density of the main ROS created in three different atmospheric pressure plasma sources: two geometrically distinct RF-driven microplasma jets (μ-APPJ [1] and kinpen [2]), and an array of microcathode sustained discharges [3]. Optical diagnostics of the plasma volumes and effluent regions have been performed: UV absorption for O3 and IR emission for O2(a^1δ) [4]. High concentrations of both ROS have been obtained (10^14--10^17cm-3). The effect of different parameters, such as gas flows and mixtures and power coupled to the plasmas, has been studied. For plasma biomedicine, the determination of the reactive species present in plasma-treated liquids is of great importance. In this work, we focused on the measurement of the concentration of H2O2 and NOX radicals, generated in physiological solutions like NaCl and PBS.[4pt] [1] N. Knake et al., J. Phys. D: App. Phys. 41, 194006 (2008)[0pt] [2] K.D. Weltmann et al., Pure Appl. Chem. 82, 1223 (2010)[0pt] [3] J.S. Sousa et al., Appl. Phys. Lett. 97, 141502 (2010)[0pt] [4] J.S. Sousa et al., Appl. Phys. Lett. 93, 011502 (2008)

  1. Fabrication and biological evaluation of uniform extracellular matrix coatings on discontinuous photolithography generated micropallet arrays

    PubMed Central

    Gunn, Nicholas M.; Bachman, Mark; Li, Guann-Pyng; Nelson, Edward L.

    2010-01-01

    ABSTRACT/SYNOPSIS The recent identification of rare cell populations within tissues that are associated with specific biological behaviors, e.g., progenitor cells, has illuminated a limitation of current technologies to study such adherent cells directly from primary tissues. The micropallet array is a recently developed technology designed to address this limitation by virtue of its capacity to isolate and recover single adherent cells on individual micropallets. The capacity to apply this technology to primary tissues and cells with restricted growth characteristics, particularly adhesion requirements, is critically dependent upon the capacity to generate functional extracellular matrix (ECM) coatings. The discontinuous nature of the micropallet array surface provides specific constraints on the processes for generating the desired ECM coatings that are necessary to achieve the full functional capacity of the micropallet array. We have developed strategies, reported herein, to generate functional coatings with various ECM protein components: fibronectin, EHS tumor basement membrane extract, collagen, and laminin-5; confirmed by evaluation for rapid cellular adherence of four dissimilar cell types: fibroblast, breast epithelial, pancreatic epithelial, and myeloma. These findings are important for the dissemination and expanded use of micropallet arrays and similar microtechnologies requiring the integrated use of ECM protein coatings to promote cellular adherence. PMID:20648537

  2. Ascorbate and α-tocopherol differentially modulate reactive oxygen species generation by neutrophils in response to FcγR and TLR agonists.

    PubMed

    Chapple, Iain Lc; Matthews, John B; Wright, Helen J; Scott, Ann E; Griffiths, Helen R; Grant, Melissa M

    2013-01-01

    Periodontitis, a ubiquitous chronic inflammatory disease, is associated with reduced antioxidant defences and neutrophil hyperactivity in terms of reactive oxygen species (ROS) generation. Its phenotype is thus characterized by oxidative stress. We have determined the effect of antioxidant micronutrients ascorbate and α-tocopherol on neutrophil ROS generation. Peripheral neutrophils from periodontally-healthy individuals (n = 20) were challenged with phorbol myristate acetate, IgG-opsonised Staphylococcus aureus, Fusobacterium nucleatum or PBS in the presence and absence of micronutrients (50 µM). Total and extracellular ROS were measured by luminol and isoluminol chemiluminescence respectively. Total and extracellular unstimulated, baseline ROS generation was unaffected by α-tocopherol, but inhibited by ascorbate and a combination of both micronutrients. Fcγ-receptor (Fcγ-R)-stimulated total or extracellular ROS generation was not affected by the presence of individual micronutrients. However, the combination significantly reduced extracellular FcγR-stimulated ROS release. Neither micronutrient inhibited TLR-stimulated total ROS, but the combination caused inhibition. Ascorbate and the micronutrient combination, but not α-tocopherol, inhibited extracellular ROS release by TLR-stimulated cells. Such micronutrient effects in vivo could be beneficial in reducing collateral tissue damage in chronic inflammatory diseases, such as periodontitis, while retaining immune-mediated neutrophil function. PMID:22914919

  3. Plasma effects on the generation of reactive oxygen and nitrogen species in cancer cells in-vitro exposed by atmospheric pressure pulsed plasma jets

    NASA Astrophysics Data System (ADS)

    Kim, Sun Ja; Chung, T. H.

    2015-08-01

    Atmospheric pressure pulsed helium plasma jets are utilized for plasma-cell interactions. The effect of operating parameters such as applied voltage, pulse repetition frequency, and duty ratio on the generation of specific reactive oxygen and nitrogen species in gas and liquid phases and within cells is investigated. The apoptotic changes detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling assay in cells caused by plasma exposure are observed to correlate well with the levels of extracellular and intracellular reactive oxygen and nitrogen species.

  4. Reactive oxygen generated by Nox1 triggers the angiogenic switch

    PubMed Central

    Arbiser, Jack L.; Petros, John; Klafter, Robert; Govindajaran, Baskaran; McLaughlin, Elizabeth R.; Brown, Lawrence F.; Cohen, Cynthia; Moses, Marsha; Kilroy, Susan; Arnold, Rebecca S.; Lambeth, J. David

    2002-01-01

    The reactive oxygen-generating enzyme Nox1 transforms NIH 3T3 cells, rendering them highly tumorigenic and, as shown herein, also increases tumorigenicity of DU-145 prostate epithelial cells. Although Nox1 modestly stimulates cell division in both fibroblasts and epithelial cells, an increased mitogenic rate alone did not account fully for the marked tumorigenicity. Herein, we show that Nox1 is a potent trigger of the angiogenic switch, increasing the vascularity of tumors and inducing molecular markers of angiogenesis. Vascular endothelial growth factor (VEGF) mRNA becomes markedly up-regulated by Nox1 both in cultured cells and in tumors, and VEGF receptors (VEGFR1 and VEGFR2) are highly induced in vascular cells in Nox1-expressing tumors. Matrix metalloproteinase activity, another marker of the angiogenic switch, also is induced by Nox1. Nox1 induction of VEGF is eliminated by coexpression of catalase, indicating that hydrogen peroxide signals part of the switch to the angiogenic phenotype. PMID:11805326

  5. Reactive Transport Modeling of Acid Gas Generation and Condensation

    SciTech Connect

    G. Zhahg; N. Spycher; E. Sonnenthal; C. Steefel

    2005-01-25

    Pulvirenti et al. (2004) recently conducted a laboratory evaporation/condensation experiment on a synthetic solution of primarily calcium chloride. This solution represents one potential type of evaporated pore water at Yucca Mountain, Nevada, a site proposed for geologic storage of high-level nuclear waste. These authors reported that boiling this solution to near dryness (a concentration factor >75,000 relative to actual pore waters) leads to the generation of acid condensate (pH 4.5) presumably due to volatilization of HCl (and minor HF and/or HNO{sub 3}). To investigate the various processes taking place, including boiling, gas transport, and condensation, their experiment was simulated by modifying an existing multicomponent and multiphase reactive transport code (TOUGHREACT). This code was extended with a Pitzer ion-interaction model to deal with high ionic strength. The model of the experiment was set-up to capture the observed increase in boiling temperature (143 C at {approx}1 bar) resulting from high concentrations of dissolved salts (up to 8 m CaCl{sub 2}). The computed HCI fugacity ({approx} 10{sup -4} bars) generated by boiling under these conditions is not sufficient to lower the pH of the condensate (cooled to 80 and 25 C) down to observed values unless the H{sub 2}O mass fraction in gas is reduced below {approx}10%. This is because the condensate becomes progressively diluted by H{sub 2}O gas condensation. However, when the system is modeled to remove water vapor, the computed pH of instantaneous condensates decreases to {approx}1.7, consistent with the experiment (Figure 1). The results also show that the HCl fugacity increases, and calcite, gypsum, sylvite, halite, MgCl{sub 2}4H{sub 2}O and CaCl{sub 2} precipitate sequentially with increasing concentration factors.

  6. Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids

    PubMed Central

    Yoshimura, Aya; Kawamata, Masaki; Yoshioka, Yusuke; Katsuda, Takeshi; Kikuchi, Hisae; Nagai, Yoshitaka; Adachi, Naoki; Numakawa, Tadahiro; Kunugi, Hiroshi; Ochiya, Takahiro; Tamai, Yoshitaka

    2016-01-01

    Extracellular vesicles (EVs) play an important role in the transfer of biomolecules between cells. To elucidate the intercellular transfer fate of EVs in vivo, we generated a new transgenic (Tg) rat model using green fluorescent protein (GFP)-tagged human CD63. CD63 protein is highly enriched on EV membranes via trafficking into late endosomes and is often used as an EV marker. The new Tg rat line in which human CD63-GFP is under control of the CAG promoter exhibited high expression of GFP in various body tissues. Exogenous human CD63-GFP was detected on EVs isolated from three body fluids of the Tg rats: blood serum, breast milk and amniotic fluid. In vitro culture allowed transfer of serum-derived CD63-GFP EVs into recipient rat embryonic fibroblasts, where the EVs localized in endocytic organelles. These results suggested that this Tg rat model should provide significant information for understanding the intercellular transfer and/or mother-child transfer of EVs in vivo. PMID:27539050

  7. Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids.

    PubMed

    Yoshimura, Aya; Kawamata, Masaki; Yoshioka, Yusuke; Katsuda, Takeshi; Kikuchi, Hisae; Nagai, Yoshitaka; Adachi, Naoki; Numakawa, Tadahiro; Kunugi, Hiroshi; Ochiya, Takahiro; Tamai, Yoshitaka

    2016-01-01

    Extracellular vesicles (EVs) play an important role in the transfer of biomolecules between cells. To elucidate the intercellular transfer fate of EVs in vivo, we generated a new transgenic (Tg) rat model using green fluorescent protein (GFP)-tagged human CD63. CD63 protein is highly enriched on EV membranes via trafficking into late endosomes and is often used as an EV marker. The new Tg rat line in which human CD63-GFP is under control of the CAG promoter exhibited high expression of GFP in various body tissues. Exogenous human CD63-GFP was detected on EVs isolated from three body fluids of the Tg rats: blood serum, breast milk and amniotic fluid. In vitro culture allowed transfer of serum-derived CD63-GFP EVs into recipient rat embryonic fibroblasts, where the EVs localized in endocytic organelles. These results suggested that this Tg rat model should provide significant information for understanding the intercellular transfer and/or mother-child transfer of EVs in vivo. PMID:27539050

  8. Second harmonic generation microscopy analysis of extracellular matrix changes in human idiopathic pulmonary fibrosis.

    PubMed

    Tilbury, Karissa; Hocker, James; Wen, Bruce L; Sandbo, Nathan; Singh, Vikas; Campagnola, Paul J

    2014-08-01

    Patients with idiopathic fibrosis (IPF) have poor long-term survival as there are limited diagnostic/prognostic tools or successful therapies. Remodeling of the extracellular matrix (ECM) has been implicated in IPF progression; however, the structural consequences on the collagen architecture have not received considerable attention. Here, we demonstrate that second harmonic generation (SHG) and multiphoton fluorescence microscopy can quantitatively differentiate normal and IPF human tissues. For SHG analysis, we developed a classifier based on wavelet transforms, principle component analysis, and a K-nearest-neighbor algorithm to classify the specific alterations of the collagen structure observed in IPF tissues. The resulting ROC curves obtained by varying the numbers of principal components and nearest neighbors yielded accuracies of >95%. In contrast, simpler metrics based on SHG intensity and collagen coverage in the image provided little or no discrimination. We also characterized the change in the elastin/collagen balance by simultaneously measuring the elastin autofluorescence and SHG intensities and found that the IPF tissues were less elastic relative to collagen. This is consistent with known mechanical consequences of the disease. Understanding ECM remodeling in IPF via nonlinear optical microscopy may enhance our ability to differentiate patients with rapid and slow progression and, thus, provide better prognostic information. PMID:25134793

  9. Second harmonic generation microscopy analysis of extracellular matrix changes in human idiopathic pulmonary fibrosis

    PubMed Central

    Tilbury, Karissa; Hocker, James; Wen, Bruce L.; Sandbo, Nathan; Singh, Vikas; Campagnola, Paul J.

    2014-01-01

    Abstract. Patients with idiopathic fibrosis (IPF) have poor long-term survival as there are limited diagnostic/prognostic tools or successful therapies. Remodeling of the extracellular matrix (ECM) has been implicated in IPF progression; however, the structural consequences on the collagen architecture have not received considerable attention. Here, we demonstrate that second harmonic generation (SHG) and multiphoton fluorescence microscopy can quantitatively differentiate normal and IPF human tissues. For SHG analysis, we developed a classifier based on wavelet transforms, principle component analysis, and a K-nearest-neighbor algorithm to classify the specific alterations of the collagen structure observed in IPF tissues. The resulting ROC curves obtained by varying the numbers of principal components and nearest neighbors yielded accuracies of >95%. In contrast, simpler metrics based on SHG intensity and collagen coverage in the image provided little or no discrimination. We also characterized the change in the elastin/collagen balance by simultaneously measuring the elastin autofluorescence and SHG intensities and found that the IPF tissues were less elastic relative to collagen. This is consistent with known mechanical consequences of the disease. Understanding ECM remodeling in IPF via nonlinear optical microscopy may enhance our ability to differentiate patients with rapid and slow progression and, thus, provide better prognostic information. PMID:25134793

  10. Method for generating a highly reactive plasma for exhaust gas after treatment and enhanced catalyst reactivity

    SciTech Connect

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2000-07-01

    This patent application describes a method and apparatus of exhaust gas remediation that enhance the reactivity of the material catalysts found within catalytic converters of cars, trucks, and power stations.

  11. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I.

    PubMed

    Zhang, Bo; Chu, Wei; Wei, Peng; Liu, Ying; Wei, Taotao

    2015-12-01

    Xanthohumol is a prenylflavonoid extracted from hops (Humulus lupulus). It possesses anti-cancer and anti-inflammatory activities in vitro and in vivo, and offers therapeutic benefits for treatment of metabolic syndromes. However, the precise mechanisms underlying its pharmacological effects remain to be elucidated, together with its cellular target. Here, we provide evidence that xanthohumol directly interacts with the mitochondrial electron transfer chain complex I (NADH dehydrogenase), inhibits the oxidative phosphorylation, triggers the production of reactive oxygen species, and induces apoptosis. In addition, we show that as a result of the inhibition of the mitochondrial oxidative phosphorylation, xanthohumol exposure causes a rapid decrease of mitochondrial transmembrane potential. Furthermore, we showed that xanthohumol up-regulates the glycolytic capacity in cells, and thus compensates cellular ATP generation. Dissection of the multiple steps of aerobic respiration by extracellular flux assays revealed that xanthohumol specifically inhibits the activity of mitochondrial complex I, but had little effect on that of complex II, III and IV. Inhibition of complex I by xanthohumol caused the overproduction of reactive oxygen species, which are responsible for the induction of apoptosis in cancer cells. We also found that isoxanthohumol, the structural isomer of xanthohumol, is inactive to cells, suggesting that the reactive 2-hydroxyl group of xanthohumol is crucial for its targeting to the mitochondrial complex I. Together, the remodeling of cell metabolism revealed here has therapeutic potential for the use of xanthohumol. PMID:26453927

  12. Quantitative assessment of reactive oxygen species generation by cavitation incepted efficiently using nonlinear propagation effect

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-10-01

    Sonodynamic treatment is a treatment method that uses chemical bio-effect of cavitation bubbles. Reactive oxygen species that can kill cancerous tissue is induced by such chemical effect of cavitation bubbles and it is important to generate them efficiently for effective sonodynamic treatment. Cavitation cloud can be formed by an effect of nonlinear propagation and focus and in this study, it was experimentally investigated if cavitation cloud was useful for efficient generation of reactive oxygen species. As a result, it was demonstrated that cavitation cloud would be useful for efficient generation of reactive oxygen species.

  13. Two-Photon Photochemical Generation of Reactive Enediyne

    PubMed Central

    Poloukhtine, Andrei; Popik, Vladimir V.

    2008-01-01

    p-Quinoid cyclopropenone-containing enediyne precursor (1) has been synthesized by mono-cyclopropanation of one of the triple bonds in p-dimethoxy substituted 3,4-benzocyclodeca-1,5-diyne followed by oxidative demethylation. Cyclopropenone 1 is stable up to 90°C but readily produces reactive enediyne 2 upon single-photon (Φ300nm = 0.46) or two-photon (σ800 nm = 0.5 GM) photolysis. The photo-product 2 undergoes Bergman cyclization at 40°C with the life time of 88 h. PMID:16958537

  14. Reactive Carbonyl Species In Vivo: Generation and Dual Biological Effects

    PubMed Central

    Semchyshyn, Halyna M.

    2014-01-01

    Reactive carbonyls are widespread species in living organisms and mainly known for their damaging effects. The most abundant reactive carbonyl species (RCS) are derived from oxidation of carbohydrates, lipids, and amino acids. Chemical modification of proteins, nucleic acids, and aminophospholipids by RCS results in cytotoxicity and mutagenicity. In addition to their direct toxicity, modification of biomolecules by RCS gives rise to a multitude of adducts and cross links that are increasingly implicated in aging and pathology of a wide range of human diseases. Understanding of the relationship between metabolism of RCS and the development of pathological disorders and diseases may help to develop effective approaches to prevent a number of disorders and diseases. On the other hand, constant persistence of RCS in cells suggests that they perform some useful role in living organisms. The most beneficial effects of RCS are their establishment as regulators of cell signal transduction and gene expression. Since RCS can modulate different biological processes, new tools are required to decipher the precise mechanisms underlying dual effects of RCS. PMID:24634611

  15. Reactive oxygen species and hydrogen peroxide generation in cell migration

    PubMed Central

    Rudzka, Dominika A; Cameron, Jenifer M; Olson, Michael F

    2015-01-01

    Directional cell migration is a complex process that requires spatially and temporally co-ordinated regulation of actin cytoskeleton dynamics. In response to external cues, signals are transduced to elicit cytoskeletal responses. It has emerged that reactive oxygen species, including hydrogen peroxide, are important second messengers in pathways that influence the actin cytoskeleton, although the identities of key proteins regulated by hydrogen peroxide are largely unknown. We recently showed that oxidation of cofilin1 is elevated in migrating cells relative to stationary cells, and that the effect of this post-translational modification is to reduce cofilin1-actin binding and to inhibit filamentous-actin severing by cofilin1. These studies revealed that cofilin1 regulation by hydrogen peroxide contributes to directional cell migration, and established a template for discovering additional proteins that are regulated in an analogous manner. PMID:27066166

  16. Stratospheric ozone reactive chemicals generated by space launches worldwide

    SciTech Connect

    Brady, B.B.; Fournier, E.W.; Martin, L.R.; Cohen, R.B.

    1994-11-01

    We report quantities of inorganic chlorine compounds and aluminum oxide particles (Al203) deposited in the stratosphere and troposphere by solid rocket propelled launch vehicles. Totals are presented by launch vehicle type, summarized on an annual basis, and projected to the year 2010 using standard mission models. Data are given for Air Force, NASA (shuttle and expendable vehicles), the European Space Agency (ESA) (Ariane 5), and the Japanese Space Agency (H-1 and H-2). Whereas inorganic chlorine compounds released by solid rockets are directly related to stratospheric ozone depletion, much uncertainty surrounds reactivity of aluminum oxide particles. We also compare current and future effects of space launch on stratospheric ozone depletion with those of Ozone Depleting Chemicals (ODCs). As a baseline, we use projections of future ODC use by SMC, Air Force Materiel Command (AFMC), and the world. Relevant stratospheric chemistry is considered to make a legitimate comparison of ODC and solid rocket exhaust.

  17. Development of an Enhanced GenVARR™ (Generator Volt Ampere Reactive Reserve) System

    SciTech Connect

    Schatz, Joe E.

    2009-03-12

    Transmission system operators require near real time knowledge of reactive power capability to reliably operate large electric power transmission systems. Reactive power produced by, or capable of being produced by, a power generator is often estimated based on a series of mega volt amperes (MVA) capability curves for the generator. These curves indicate the ability of the generator to produce real and reactive power under a variety of conditions. In transmission planning and operating studies, it is often assumed, based on estimates for these capability curves, that the generator can provide its rated MVA capability output when needed for system stability However, generators may not always operate at levels depicted by the maximum MVA capability curve due to present constraints. Transmission system operators utilizing the generators’ capability curves for operation decisions regarding transmission system stability or for planning horizons may overestimate the capability of the generators to supply reactive power when required. Southern Company has enhanced GenVARR(TM), the system of plant data query, retrieval, and analysis and calculates the actual – not estimated -- remaining reactive power output capability. The remaining reactive output is considered spinning reserve and is displayed graphically to transmission control center and generating plant operators to identify real time VAR limits. GenVARR is capable of aggregating generators from a defined region, or other user selectable combinations, to represent the available reserves that the operators are specifically interested in. GenVARR(TM) has been put into live production operation and is expected to significantly improve the overall visibility of the reactive reserve capability of the system. This new version of GenVARR(TM) significantly enhances the products structure and performance, and enables links to other key transmission system operation tools.

  18. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  19. Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotics.

    PubMed

    Pritsos, C A; Sartorelli, A C

    1986-07-01

    Mitomycin C (MC) is a naturally occurring anticancer agent which has been shown to be more cytotoxic to hypoxic tumor cells than to their aerobic counterparts. The mechanism of action of this agent is thought to involve biological reductive activation, to a species that alkylates DNA. A comparison of the cytotoxicity of MC to EMT6 tumor cells with that of the structural analogues porfiromycin (PM), N-(N',N'-dimethylaminomethylene)amine analogue of mitomycin C (BMY-25282), and N-(N',N'-dimethylaminomethylene)amine analogue of porfiromycin (BL-6783) has demonstrated that PM is considerably less cytotoxic to aerobic EMT6 cells than MC, whereas BMY-25282 and BL-6783 are significantly more toxic. The relative abilities of each of these compounds to generate oxygen free radicals following biological activation were measured. Tumor cell sonicates, reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase, xanthine oxidase, and mitochondria were used as the biological reducing systems. All four mitomycin antibiotics produced oxygen radicals following biological reduction, a process that may account for the aerobic cytotoxicity of agents of this class. The generation of relative amounts of superoxide and hydroxyl radical were also measured in EMT6 cell sonicates. BMY-25282 and BL-6783 produced significantly greater quantities of oxygen free radicals with the EMT6 cell sonicate, reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase, and mitochondria than did MC and PM. In contrast, BMY-25282 and BL-6783 did not generate detectable levels of free radicals in the presence of xanthine oxidase, whereas this enzyme was capable of generating free radicals with MC and PM as substrates. MC consistently produced greater amounts of free radicals than PM with all of the reducing systems. BMY-25282, BL-6783, and MC all generated hydroxyl radicals, while PM did not appear to form these radicals. The findings indicate that a correlation exists between

  20. Water-soluble fullerene materials for bioapplications: photoinduced reactive oxygen species generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The photoinduced reactive oxygen species (ROS) generation from several water-soluble fullerenes was examined. Macromolecular or small molecular water-soluble fullerene complexes/derivatives were prepared and their 1O2 and O2•- generation abilities were evaluated by EPR spin-trapping methods. As a r...

  1. Extracellular respiration

    PubMed Central

    Gralnick, Jeffrey A.; Newman, Dianne K.

    2009-01-01

    Summary Although it has long been known that microbes can generate energy using diverse strategies, only recently has it become clear that a growing number involve electron transfer to or from extracellular substrates. The best-known example of what we will term ‘extracellular respiration’ is electron transfer between microbes and minerals, such as iron and manganese (hydr)oxides. This makes sense, given that these minerals are sparingly soluble. What is perhaps surprising, however, is that a number of substrates that might typically be classified as ‘soluble’ are also respired at the cell surface. There are several reasons why this might be the case: the substrate, in its ecological context, might be associated with a solid surface and thus effectively insoluble; the substrate, while soluble, might simply be too large to transport inside the cell; or the substrate, while benign in one redox state, might become toxic after it is metabolized. In this review, we discuss various examples of extracellular respiration, paying particular attention to what is known about the molecular mechanisms underlying these processes. As will become clear, much remains to be learned about the biochemistry, cell biology and regulation of extracellular respiration, making it a rich field of study for molecular microbiologists. PMID:17581115

  2. A flexible active and reactive power control strategy for a variable speed constant frequency generating system

    SciTech Connect

    Tang, Y.; Xu, L.

    1995-07-01

    Variable-speed constant-frequency generating systems are used in wind power, hydro power, aerospace, and naval power generations to enhance efficiency and reduce friction. In these applications, an attractive candidate is the slip power recovery system comprising of doubly excited induction machine or doubly excited brushless reluctance machine and PWM converters with a dc link. In this paper, a flexible active and reactive power control strategy is developed, such that the optimal torque-speed profile of the turbine can be followed and overall reactive power can be controlled, while the machine copper losses have been minimized. At the same time, harmonics injected into the power network has also been minimized. In this manner, the system can function as both a high-efficient power generator and a flexible reactive power compensator.

  3. Evidence for extracellular, but not intracellular, generation of angiotensin II in the rat adrenal zona glomerulosa

    SciTech Connect

    Urata, H.; Khosla, M.C.; Bumpus, M.; Husain, A. )

    1988-11-01

    Based on the observation that high levels of renin and angiotensin II (Ang II) are found in the adrenal zona glomerulosa (ZG), it has been postulated that Ang II is formed intracellularly by the renin-converting enzyme cascade in this tissue. To test this hypothesis, the authors examined renin-angiotensin system components in subcellular fractions of the rat adrenal ZG. Renin activity and immunoreactive-Ang II (IR-Ang II) were observed in vesicular fractions but were not colocalized. In addition, angiotensinogen, angiotensin I, and converting enzyme were not observed in the renin or IR-Ang II-containing vesicular fractions. These data do not support the hypothesis that Ang II is formed intracellularly within the renin-containing vesicles of the ZG. Rather, since modulatable renin release from adrenal ZG slices was observed and renin activity was found in dense vesicular fractions (33-39% sucrose), it is likely that Ang II formation in the ZG is extracellular and initiated by the release of vesicular renin. In ZG lysomal fractions {sup 125}I-labeled Ang II was degraded to {sup 125}I-labeled des-(Phe{sup 8})Ang II. Since Ang II antibodies do not recognize des-(Phe{sup 8})Ang II, these finding explain why IR-Ang II in the ZG is due predominantly to Ang II and not to its C-terminal immunoreactive fragments.

  4. Cardiac Extracellular Matrix Scaffold Generated Using Sarcomeric Disassembly and Antigen Removal.

    PubMed

    Papalamprou, Angela; Griffiths, Leigh G

    2016-04-01

    Xenogeneic cardiac extracellular matrix (cECM) scaffolds for reconstructive cardiac surgery applications have potential to overcome the limitations of current clinically utilized patch materials. A potentially ideal cECM scaffold would be immunologically acceptable while preserving the native cECM niche. Production of such a scaffold necessitates removal of cellular and antigenic components from cardiac tissue while preserving cECM structure/function properties. Existing decellularization methodologies predominantly utilize denaturing detergents which might irreversibly alter cECM material properties. To overcome potential deficiencies of current approaches, the effect of sarcomere relaxation and disassembly on resultant cECM scaffold cellularity was investigated. Additionally, the ability of sequential differential protein solubilization (antigen removal-AR) to reduce cECM scaffold antigenicity was examined. Sarcomeric relaxation and disassembly were necessary to achieve scaffold acellularity. All groups in which AR was employed displayed statistically significant decreases in residual antigenicity regardless of their degree of acellularity. AR combined with sarcomeric disassembly preserved structural, biochemical, mechanical and recellularization properties of the cECM scaffold. However, sodium dodecyl sulfate significantly altered cECM properties. This study demonstrates the importance of solubilizing cellular elements and antigenic components in a stepwise manner for production of a potentially ideal cECM scaffold and may have implications for future tissue engineering and regenerative medicine applications. PMID:26215309

  5. Dissolution and reactive oxygen species generation of inhaled cemented tungsten carbide particles in artificial human lung fluids

    NASA Astrophysics Data System (ADS)

    Stefaniak, A. B.; Leonard, S. S.; Hoover, M. D.; Virji, M. A.; Day, G. A.

    2009-02-01

    Inhalation of both cobalt (Co) and tungsten carbide (WC) particles is associated with development of hard metal lung disease (HMD) via generation of reactive oxygen species (ROS), whereas Co alone is sufficient to cause asthma via solubilization and hapten formation. We characterized bulk and aerodynamically size-separated W, WC, Co, spray dryer (pre-sintered), and chamfer grinder (post-sintered) powders. ROS generation was measured in the murine RAW 264.7 cell line using electron spin resonance. When dose was normalized to surface area, hydroxyl radical generation was independent of particle size, which suggests that particle surface chemistry may be an important exposure factor. Chamfer grinder particles generated the highest levels of ROS, consistent with the hypothesis that intimate contact of metals is important for ROS generation. In artificial extracellular lung fluid, alkylbenzyldimethylammonium chloride (ABDC), added to prevent mold growth during experiments, did not influence dissolution of Co (44.0±5.2 vs. 48.3±6.4%) however, dissolution was higher (p<0.05) in the absence of phosphate (62.0±5.4 vs. 48.3±6.4%). In artificial macrophage phagolysosomal fluid, dissolution of Co (36.2±10.4%) does not appear to be influenced (p=0.30) by the absence of glycine (29.8±2.1%), phosphate (39.6±8.6%), or ABDC (44.0±10.5%). These results aid in assessing and understanding Co and W inhalation dosimetry.

  6. Reactive uptake of HOCl to laboratory generated sea salt particles and nascent sea-spray aerosol

    NASA Astrophysics Data System (ADS)

    Campbell, N. R.; Ryder, O. S.; Bertram, T. H.

    2013-12-01

    Field observations suggest that the reactive uptake of HOCl on marine aerosol particles is an important source of chlorine radicals, particularly under low NOx conditions. However to date, laboratory measurements disagree on the magnitude of the reactive uptake coefficient for HOCl by a factor of 5 (γ(HOCl) ranges between 0.0004 and 0.0018), and there are no measurements of γ(HOCl) on nascent sea-spray aerosol. Here, we present measurements of the reactive uptake of HOCl to laboratory generated sodium chloride and sea-spray aerosol particles generated in a novel Marine Aerosol Reference Tank (MART), coupled to an entrained aerosol flow reactor and Chemical Ionization Mass Spectrometer (CIMS). Measurements of γ(HOCl) retrieved here are compared against those in the literature, and the role of organic coatings on nascent sea-spray aerosol is explored.

  7. The role of leukocyte-generated reactive metabolites in the pathogenesis of idiosyncratic drug reactions.

    PubMed

    Uetrecht, J P

    1992-01-01

    Evidence strongly suggests that many adverse drug reactions, including idiosyncratic drug reactions, involve reactive metabolites. Furthermore, certain functional groups, which are readily oxidized to reactive metabolites, are associated with a high incidence of adverse reactions. Most drugs can probably form reactive metabolites, but a simple comparison of covalent binding in vitro is unlikely to provide an accurate indication of the relative risk of a drug causing an idiosyncratic reaction because it does not provide an indication of how efficiently the metabolite is detoxified in vivo. In addition, the incidence and nature of adverse reactions associated with a given drug is probably determined in large measure by the location of reactive metabolite formation, as well as the chemical reactivity of the reactive metabolite. Such factors will determine which macromolecules the metabolites will bind to, and it is known that covalent binding to some proteins, such as those in the leukocyte membrane, is much more likely to lead to an immune-mediated reaction or other type of toxicity. Some reactive metabolites, such as acyl glucuronides, circulate freely and could lead to adverse reactions in almost any organ; however, most reactive metabolites have a short biological half-life, and although small amounts may escape the organ where they are formed, these metabolites are unlikely to reach sufficient concentrations to cause toxicity in other organs. Many idiosyncratic drug reactions involve leukocytes, especially agranulocytosis and drug-induced lupus. We and others have demonstrated that drugs can be metabolized by activated neutrophils and monocytes to reactive metabolites. The major reaction appears to be reaction with leukocyte-generated hypochlorous acid. Hypochlorous acid is quite reactive, and therefore it is likely that many other drugs will be found that are metabolized by activated leukocytes. Some neutrophil precursors contain myeloperoxidase and the NADPH

  8. The generation of hybrid electrospun nanofiber layer with extracellular matrix derived from human pluripotent stem cells, for regenerative medicine applications.

    PubMed

    Shtrichman, Ronit; Zeevi-Levin, Naama; Zaid, Rinat; Barak, Efrat; Fishman, Bettina; Ziskind, Anna; Shulman, Rita; Novak, Atara; Avrahami, Ron; Livne, Erella; Lowenstein, Lior; Zussman, Eyal; Itskovitz-Eldor, Joseph

    2014-10-01

    Extracellular matrix (ECM) has been utilized as a biological scaffold for tissue engineering applications in a variety of body systems, due to its bioactivity and biocompatibility. In the current study we developed a modified protocol for the efficient and reproducible derivation of mesenchymal progenitor cells (MPCs) from human embryonic stem cells as well as human induced pluripotent stem cells (hiPSCs) originating from hair follicle keratinocytes (HFKTs). ECM was produced from these MPCs and characterized in comparison to adipose mesenchymal stem cell ECM, demonstrating robust ECM generation by the excised HFKT-iPSC-MPCs. Exploiting the advantages of electrospinning we generated two types of electrospun biodegradable nanofiber layers (NFLs), fabricated from polycaprolactone (PCL) and poly(lactic-co-glycolic acid) (PLGA), which provide mechanical support for cell seeding and ECM generation. Elucidating the optimized decellularization treatment we were able to generate an available "off-the-shelf" implantable product (NFL-ECM). Using rat subcutaneous transplantation model we demonstrate that this stem-cell-derived construct is biocompatible and biodegradable and holds great potential for tissue regeneration applications. PMID:25185111

  9. ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    EPA Science Inventory

    ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    Arsenic-associated cancer (lung, bladder, skin, liver, kidney) remains a significant world- wide public health problem (e.g., Taiwan, Chile, Bangladesh, India, China and Thailand). Rece...

  10. Free IL-12p40 Monomer is a Polyfunctional Adapter for Generating Novel IL-12-Like Heterodimers Extracellularly

    PubMed Central

    Abdi, Kaveh; Singh, Nevil J.; Spooner, Eric; Kessler, Benedikt M.; Radaev, Sergei; Lantz, Larry; Xiao, Tsan Sam; Matzinger, Polly; Sun, Peter D.; Ploegh, Hidde L.

    2014-01-01

    IL-12p40 partners with the p35 and p19 polypeptides to generate the heterodimeric cytokines IL-12 and IL-23 respectively. These cytokines play critical and distinct roles in host defense. The assembly of these heterodimers is thought to take place within the cell, resulting in the secretion of fully functional cytokines. Although the p40 subunit alone can also be rapidly secreted in response to inflammatory signals, its biological significance remains unclear. Here, we show that the secreted p40 monomer can generate de novo IL-12-like activities by combining extracellulary with p35 released from other cells. Surprisingly, an unbiased proteomic analysis reveals multiple such extracellular binding partners for p40 in the serum of mice after an endotoxin challenge. We biochemically validate the binding of one of these novel partners—the CD5 antigen-like glycoprotein CD5L— to the p40 monomer. Nevertheless, the assembled p40-CD5L heterodimer does not recapitulate the biological activity of IL-12. These findings underscore the plasticity of secreted free p40 monomer, suggesting that p40 functions as an adapter which is able to generate multiple de novo composites in combination with other locally available polypeptide partners, post secretion. PMID:24821971

  11. New Aspects on the Structure of Neutrophil Extracellular Traps from Chronic Obstructive Pulmonary Disease and In Vitro Generation

    PubMed Central

    Krautgartner, Wolf-Dietrich; Klappacher, Michaela; Kofler, Barbara; Steinbacher, Peter; Vitkov, Ljubomir; Grabcanovic-Musija, Fikreta; Studnicka, Michael

    2014-01-01

    Polymorphonuclear neutrophils have in recent years attracted new attention due to their ability to release neutrophil extracellular traps (NETs). These web-like extracellular structures deriving from nuclear chromatin have been depicted in ambiguous roles between antimicrobial defence and host tissue damage. NETs consist of DNA strands of varying thickness and are decorated with microbicidal and cytotoxic proteins. Their principal structure has in recent years been characterised at molecular and ultrastructural levels but many features that are of direct relevance to cytotoxicity are still incompletely understood. These include the extent of chromatin decondensation during NET formation and the relative amounts and spatial distribution of the microbicidal components within the NET. In the present work, we analyse the structure of NETs found in induced sputum of patients with acutely exacerbated chronic obstructive pulmonary disease (COPD) using confocal laser microscopy and electron microscopy. In vitro induced NETs from human neutrophils serve for purposes of comparison and extended analysis of NET structure. Results demonstrate that COPD sputa are characterised by the pronounced presence of NETs and NETotic neutrophils. We provide new evidence that chromatin decondensation during NETosis is most extensive and generates substantial amounts of double-helix DNA in ‘beads-on-a-string’ conformation. New information is also presented on the abundance and location of neutrophil elastase (NE) and citrullinated histone H3 (citH3). NE occurs in high densities in nearly all non-fibrous constituents of the NETs while citH3 is much less abundant. We conclude from the results that (i) NETosis is an integral part of COPD pathology; this is relevant to all future research on the etiology and therapy of the disease; and that (ii) release of ‘beads-on-a-string’ DNA studded with non-citrullinated histones is a common feature of in vivo NETosis; this is of relevance to both

  12. Generation of reactive oxygen species by interaction between antioxidants used as food additive and metal ions.

    PubMed

    Iwasaki, Yusuke; Oda, Momoko; Tsukuda, Yuri; Nagamori, Yuki; Nakazawa, Hiroyuki; Ito, Rie; Saito, Koichi

    2014-01-01

    Food additives, such as preservatives, sweeteners, coloring agents, and flavoring agents, are widely used in food manufacturing. However, their combined effects on the human body are not known. The purpose of this study was to examine whether combinations of antioxidants and metal ions generate reactive oxygen species (ROS) under in vitro conditions using electron spin resonance (ESR). Among the metal ions examined, only iron and copper generated ROS in the presence of antioxidants. Moreover, certain phenolic antioxidants having pro-oxidant activity induced DNA oxidation and degradation via the generation of high levels of ROS in the presence of copper ion, resulting in complete degradation of DNA in vitro. PMID:25212818

  13. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure

    PubMed Central

    Atkin-Smith, Georgia K.; Tixeira, Rochelle; Paone, Stephanie; Mathivanan, Suresh; Collins, Christine; Liem, Michael; Goodall, Katharine J.; Ravichandran, Kodi S.; Hulett, Mark D.; Poon, Ivan K.H.

    2015-01-01

    Disassembly of apoptotic cells into smaller fragments (a form of extracellular vesicle called apoptotic bodies) can facilitate removal of apoptotic debris and intercellular communication. However, the mechanism underpinning this process is unclear. While observing monocytes undergoing apoptosis by time-lapse microscopy, we discovered a new type of membrane protrusion that resembles a ‘beads-on-a-string' structure. Strikingly, the ‘beads' are frequently sheared off the ‘string' to form apoptotic bodies. Generation of apoptotic bodies via this mechanism can facilitate a sorting process and results in the exclusion of nuclear contents from apoptotic bodies. Mechanistically, generation of ‘beads-on-a-string' protrusion is controlled by the level of actomyosin contraction and apoptopodia formation. Furthermore, in an unbiased drug screen, we identified the ability of sertraline (an antidepressant) to block the formation of ‘beads-on-a-string' protrusions and apoptotic bodies. These data uncover a new mechanism of apoptotic body formation in monocytes and also compounds that can modulate this process. PMID:26074490

  14. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.

    PubMed

    Xu, Yu-Shang; Zheng, Tao; Yong, Xiao-Yu; Zhai, Dan-Dan; Si, Rong-Wei; Li, Bing; Yu, Yang-Yang; Yong, Yang-Chun

    2016-07-01

    Although microbial fuel cells (MFCs) is considered as one of the most promising technology for renewable energy harvesting, low power output still accounts one of the bottlenecks and limits its further development. In this work, it is found that Cu(2+) (0.1μgL(-1)-0.1mgL(-1)) or Cd(2+) (0.1μgL(-1)-1mgL(-1)) significantly improve the electricity generation in MFCs. The maximum power output achieved with trace level of Cu(2+) (∼6nM) or Cd(2+) (∼5nM) is 1.3 times and 1.6 times higher than that of the control, respectively. Further analysis verifies that addition of Cu(2+) or Cd(2+) effectively improves riboflavin production and bacteria attachment on the electrode, which enhances bacterial extracellular electron transfer (EET) in MFCs. These results unveil the mechanism for power output enhancement by Cu(2+) or Cd(2+) addition, and suggest that metal ion addition should be a promising strategy to enhance EET as well as power generation of MFCs. PMID:27038263

  15. Effect of fluticasone propionate on neutrophil chemotaxis, superoxide generation, and extracellular proteolytic activity in vitro.

    PubMed Central

    Llewellyn-Jones, C. G.; Hill, S. L.; Stockley, R. A.

    1994-01-01

    BACKGROUND--Corticosteroids are widely used in the treatment of many inflammatory conditions but the exact mode of action on neutrophil function is uncertain. Fluticasone propionate is a new topically active synthetic steroid which can be measured in body fluids and which undergoes first pass metabolism. METHODS--The effects of fluticasone propionate on the function of neutrophils isolated from normal, healthy control subjects and on the chemotactic activity of sputum sol phase were assessed. RESULTS--Preincubation of neutrophils with fluticasone propionate reduced the chemotactic response to 10(-8) mol/l F-Met-Leu-Phe (FMLP) and to a 1:5 dilution of sputum sol phase in a dose dependent manner. Furthermore, when fluticasone propionate was added to sputum from eight patients with stable chronic obstructive bronchitis the chemotactic activity of a 1:5 dilution of the sol phase fell from a mean (SE) value of 22.2 (1.21) cells/field to 19.6 (0.89), 17.1 (0.74), and 11.9 (0.6) cells field at 1 mumol/l, 10 mumol/l, and 100 mumol/l, respectively. In further experiments fluticasone propionate preincubated with neutrophils inhibited fibronectin degradation by resting cells and by cells stimulated by FMLP (15.2% inhibition of resting cells, 5.1% inhibition of stimulated cells with 1 mumol/l fluticasone propionate, 24% and 18.7% inhibition respectively at 100 mumol/l fluticasone propionate. Fluticasone propionate had no effect on generation of superoxide anion by resting or stimulated cells. CONCLUSIONS--These results indicate that fluticasone propionate has a direct suppressive effect on several aspects of neutrophil function and may suggest a role for this agent in the modulation of neutrophil mediated damage to connective tissue. PMID:8202875

  16. Silver nanoparticles rapidly induce atypical human neutrophil cell death by a process involving inflammatory caspases and reactive oxygen species and induce neutrophil extracellular traps release upon cell adhesion.

    PubMed

    Liz, Rafael; Simard, Jean-Christophe; Leonardi, Laurien Bruna Araújo; Girard, Denis

    2015-09-01

    Inflammation is one of the major toxic effects reported in response to in vitro or in vivo nanoparticle (NP) exposure. Among engineered NPs, silver nanoparticles (AgNPs) are very attractive for the development of therapeutic strategies, especially because of their antimicrobial properties. In humans, neutrophils, key players in inflammation, are the most abundant blood leukocytes that spontaneously undergo apoptosis, a central cell death mechanism regulating inflammation. The aim of this study was to evaluate the effect of AgNPs on neutrophil apoptosis. Transmission electronic microscopy reveals that AgNPs rapidly penetrate inside neutrophils. AgNPs induced atypical cell death where the cell volume increased and the cell surface expression of CD16 remained unaltered unlike apoptotic neutrophils where cell shrinkage and loss of CD16 are typically observed. The AgNP-induced atypical cell death is distinct from necrosis and reversed by a pancaspase inhibitor or by inhibitors of the inflammatory caspase-1 and caspase-4. In addition, AgNPs induced IL-1β production inhibited by caspase-1 and caspase-4 inhibitors and also induced caspase-1 activity. Reactive oxygen species (ROS) production was increased by AgNPs and the atypical cell death was inhibited by the antioxidant n-acetylcysteine. Under similar experimental conditions, adhesion of neutrophils leads to neutrophil extracellular trap (NET) release induced by AgNPs. However, this process was not reversed by caspase inhibitors. We conclude that AgNPs rapidly induced an atypical cell death in neutrophils by a mechanism involving caspase-1, -4 and ROS. However, in adherent neutrophils, AgNPs induced NET release and, therefore, are novel agents able to trigger NET release. PMID:26241783

  17. Generation of reactive oxidative species from thermal treatment of sugar solutions.

    PubMed

    Wang, Qingyang; Durand, Erwann; Elias, Ryan J; Tikekar, Rohan V

    2016-04-01

    Sugars, prominently fructose, have been shown to accelerate the degradation of food components during thermal treatment. Yet, the mechanism by which this occurs is not well understood. Fructose and glucose have been reported to undergo autoxidation to generate reactive oxidative species (ROS) under physiological conditions; however, information on ROS generation during thermal treatment is limited. We observed that hydrogen peroxide was generated during thermal treatment (up to 70 °C) of aqueous solutions of fructose and glucose (up to 10% w/v), with significantly higher concentrations observed in fructose solutions. The rate of generation of hydrogen peroxide increased with temperature, pH, oxygen concentration and the presence of phosphate buffer. Singlet oxygen was also detected in fructose and glucose solutions prepared in phosphate buffer. Results of this study indicated that fructose and glucose undergo oxidation during thermal treatment resulting in generation of ROS that may have deleterious effects on food components. PMID:26593495

  18. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    NASA Astrophysics Data System (ADS)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to

  19. Fibrinogen cleavage by the Streptococcus pyogenes extracellular cysteine protease and generation of antibodies that inhibit enzyme proteolytic activity.

    PubMed

    Matsuka, Y V; Pillai, S; Gubba, S; Musser, J M; Olmsted, S B

    1999-09-01

    The extracellular cysteine protease from Streptococcus pyogenes is a virulence factor that plays a significant role in host-pathogen interaction. Streptococcal protease is expressed as an inactive 40-kDa precursor that is autocatalytically converted into a 28-kDa mature (active) enzyme. Replacement of the single cysteine residue involved in formation of the enzyme active site with serine (C192S mutation) abolished detectable proteolytic activity and eliminated autocatalytic processing of zymogen to the mature form. In the present study, we investigated activity of the wild-type (wt) streptococcal protease toward human fibrinogen and bovine casein. The former is involved in blood coagulation, wound healing, and other aspects of hemostasis. Treatment with streptococcal protease resulted in degradation of the COOH-terminal region of fibrinogen alpha chain, indicating that fibrinogen may serve as an important substrate for this enzyme during the course of human infection. Polyclonal antibodies generated against recombinant 40- and 28-kDa (r40- and r28-kDa) forms of the C192S streptococcal protease mutant exhibited high enzyme-linked immunosorbent assay titers but demonstrated different inhibition activities toward proteolytic action of the wt enzyme. Activity of the wt protease was readily inhibited when the reaction was carried out in the presence of antibodies generated against r28-kDa C192S mutant. Antibodies produced against r40-kDa C192S mutant had no significant effect on proteolysis. These data suggest that the presence of the NH(2)-terminal prosegment prevents generation of functionally active antibodies and indicate that inhibition activity of antibodies most likely depends on their ability to bind the active-site region epitope(s) of the protein. PMID:10456870

  20. Fibrinogen Cleavage by the Streptococcus pyogenes Extracellular Cysteine Protease and Generation of Antibodies That Inhibit Enzyme Proteolytic Activity

    PubMed Central

    Matsuka, Yury V.; Pillai, Subramonia; Gubba, Siddeswar; Musser, James M.; Olmsted, Stephen B.

    1999-01-01

    The extracellular cysteine protease from Streptococcus pyogenes is a virulence factor that plays a significant role in host-pathogen interaction. Streptococcal protease is expressed as an inactive 40-kDa precursor that is autocatalytically converted into a 28-kDa mature (active) enzyme. Replacement of the single cysteine residue involved in formation of the enzyme active site with serine (C192S mutation) abolished detectable proteolytic activity and eliminated autocatalytic processing of zymogen to the mature form. In the present study, we investigated activity of the wild-type (wt) streptococcal protease toward human fibrinogen and bovine casein. The former is involved in blood coagulation, wound healing, and other aspects of hemostasis. Treatment with streptococcal protease resulted in degradation of the COOH-terminal region of fibrinogen α chain, indicating that fibrinogen may serve as an important substrate for this enzyme during the course of human infection. Polyclonal antibodies generated against recombinant 40- and 28-kDa (r40- and r28-kDa) forms of the C192S streptococcal protease mutant exhibited high enzyme-linked immunosorbent assay titers but demonstrated different inhibition activities toward proteolytic action of the wt enzyme. Activity of the wt protease was readily inhibited when the reaction was carried out in the presence of antibodies generated against r28-kDa C192S mutant. Antibodies produced against r40-kDa C192S mutant had no significant effect on proteolysis. These data suggest that the presence of the NH2-terminal prosegment prevents generation of functionally active antibodies and indicate that inhibition activity of antibodies most likely depends on their ability to bind the active-site region epitope(s) of the protein. PMID:10456870

  1. Deleting the Redundant TSH Receptor C-Peptide Region Permits Generation of the Conformationally Intact Extracellular Domain by Insect Cells.

    PubMed

    Chen, Chun-Rong; Salazar, Larry M; McLachlan, Sandra M; Rapoport, Basil

    2015-07-01

    The TSH receptor (TSHR) extracellular domain (ECD) comprises a N-terminal leucine-rich repeat domain and an hinge region (HR), the latter contributing to ligand binding and critical for receptor activation. The crystal structure of the leucine-rich repeat domain component has been solved, but previous attempts to generate conformationally intact complete ECD or the isolated HR component for structural analysis have failed. The TSHR HR contains a C-peptide segment that is removed during spontaneous TSHR intramolecular cleavage into disulfide linked A- and B-subunits. We hypothesized that deletion of the redundant C-peptide would overcome the obstacle to generating conformationally intact TSHR ECD protein. Indeed, lacking the C-peptide region, the TSHR ECD (termed ECD-D1) and the isolated HR (termed HR-D1) were secreted into medium of insect cells infected with baculoviruses coding for these modified proteins. The identities of TSHR ECD-D1 and HR-D1 were confirmed by ELISA and immunoblotting using TSHR-specific monoclonal antibodies. The TSHR-ECD-D1 in conditioned medium was folded correctly, as demonstrated by its ability to inhibit radiolabeled TSH binding to the TSH holoreceptor. The TSHR ECD-D1 purification was accomplished in a single step using a TSHR monoclonal antibody affinity column, whereas the HR-D1 required a multistep protocol with a low yield. In conclusion, we report a novel approach to generate the TSHR ECD, as well as the isolated HR in insect cells, the former in sufficient amounts for structural studies. However, such studies will require previous complexing of the ECD with a ligand such as TSH or a thyroid-stimulating antibody. PMID:25860033

  2. Generation of reactive oxygen species and radiation response in lymphocytes and tumor cells.

    PubMed

    Shankar, Bhavani; Kumar, S Santosh; Sainis, K B

    2003-10-01

    Several types of lymphoid and myeloid tumor cells are known to be relatively resistant to radiation-induced apoptosis compared to normal lymphocytes. The intracellular generation of reactive oxygen species was measured in irradiated spleen cells from C57BL/6 and BALB/c mice and murine tumor cells (EL-4 and P388) by flow cytometry using dichlorodihydrofluoresceindiacetate and dihydrorhodamine 123 as fluorescent probes. The amount of reactive oxygen species generated per cell was low in the tumor cells compared to spleen cells exposed to 1 to 10 Gy of gamma radiation. This could be due to the higher total antioxidant levels in tumor cells compared to normal cells. Further, the changes in mitochondrial membrane potential and cytoplasmic Ca2+ content were appreciable in lymphocytes even at a dose of 1 Gy. In EL-4 cells, no such changes were observed at any of the doses used. About 65% of spleen cells underwent apoptosis 24 h after 1 Gy irradiation. However, under the same conditions, EL-4 and P388 cells failed to undergo apoptosis, but they accumulated in G2/M phase. Thus the intrinsic radioresistance of tumor cells may be due to a decreased generation of reactive oxygen species after irradiation and down-regulation of the subsequent events leading to apoptosis. PMID:12968927

  3. Scavenging activity of "beta catechin" on reactive oxygen species generated by photosensitization of riboflavin.

    PubMed

    Kumari, M V; Yoneda, T; Hiramatsu, M

    1996-05-01

    "beta CATECHIN", a preparation containing green tea extract, ascorbic acid, sunflower seed extract, dunaliella carotene and natural vitamin E, has been designed as a model "universal antioxidant" that offers protection via its scavenging action on a wide range of free radicals, both water-soluble and fat-soluble. Reactive oxygen species like singlet oxygen, hydroxyl and superoxide radicals, are often generated in biological systems during photosensitized oxidation reactions. We report on the simultaneous effect of "beta CATECHIN" on active oxygen species generated during the photosensitized oxidation of riboflavin using 2,2,6,6-tetramethyl-4-piperidone (TMPD) as a "spin-trapping" agent. The intensities of the resulting stable nitroxide radical adduct, 2,2,6,6-tetramethyl-4-piperidone-1-oxyl (TEMPONE), were detected by electron spin resonance (ESR) spectroscopy. Results show simultaneous, nonspecific and complete scavenging action of reactive oxygen species generated in our in vitro model system by "beta CATECHIN". It is therefore suggested that "beta CATECHIN" could offer protection against free radical insult and in preventing cancer and other diseases that are mediated by reactive oxygen species. PMID:8739038

  4. TNFα-Induced Apoptosis Enabled by CCN1/CYR61: Pathways of Reactive Oxygen Species Generation and Cytochrome c Release

    PubMed Central

    Juric, Vladislava; Chen, Chih-Chiun; Lau, Lester F.

    2012-01-01

    Although TNFα is a strong inducer of apoptosis, its cytotoxicity in most normal cells in vitro requires blockade of NFκB signaling or inhibition of de novo protein synthesis, typically by the addition of cycloheximide. However, several members of CCN (CYR61/CTGF/NOV) family of extracellular matrix proteins enable TNFα-dependent apoptosis in vitro without inhibiting NFκB or de novo protein synthesis, and CCN1 (CYR61) is essential for optimal TNFα cytotoxicity in vivo. Previous studies showed that CCN1 unmasks the cytotoxicity of TNFα by binding integrins αvβ5, α6β1, and the cell surface heparan sulfate proteoglycan syndecan 4 to induce the accumulation of a high level of reactive oxygen species (ROS), leading to a biphasic activation of JNK necessary for apoptosis. Here we show for the first time that CCN1 interacts with the low density lipoprotein receptor-related protein 1 (LRP1) in a protein complex, and that binding to LRP1 is critical for CCN1-induced ROS generation and apoptotic synergism with TNFα. We also found that neutral sphingomyelinase 1 (nSMase1), which contributes to CCN1-induced ROS generation, is required for CCN1/TNFα-induced apoptosis. Furthermore, CCN1 promotes the activation of p53 and p38 MAPK, which mediate enhanced cytochrome c release to amplify the cytotoxicity of TNFα. By contrast, LRP1, nSMase1, p53, and p38 MAPK are not required when TNFα-dependent apoptosis is facilitated by the presence of cycloheximide, indicating that they function in the CCN1 signaling pathway that converges with TNFα-induced signaling events. Since CCN1/CYR61 is a physiological regulator of TNFα cytotoxicity at least in some contexts, these findings may reveal important mediators of TNFα-induced apoptosis in vivo and identify potential therapeutic targets for thwarting TNFα-dependent tissue damage. PMID:22363611

  5. Multilayer Heterojunction Anodes for Saline Wastewater Treatment: Design Strategies and Reactive Species Generation Mechanisms.

    PubMed

    Yang, Yang; Shin, Jieun; Jasper, Justin T; Hoffmann, Michael R

    2016-08-16

    Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated discrete Sb-SnO2 islands, were prepared by spray pyrolysis. The Ir0.7Ta0.3O2 bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO2 interlayer and overcoated Sb-SnO2 islands enhance the evolution of reactive chlorine. The surficial Sb-SnO2 islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ·OH and Cl· are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl2·(-). The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH4(+) can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH4(+)). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production. PMID:27402194

  6. Prooxidant action of knipholone anthrone: copper dependent reactive oxygen species generation and DNA damage.

    PubMed

    Habtemariam, S; Dagne, E

    2009-07-01

    Knipholone (KP) and knipholone anthrone (KA) are natural 4-phenylanthraquinone structural analogues with established differential biological activities including in vitro antioxidant and cytotoxic properties. By using DNA damage as an experimental model, the comparative Cu(II)-dependent prooxidant action of these two compounds were studied. In the presence of Cu(II) ions, the antioxidant KA (3.1-200 microM) but not KP (6-384 microM) caused a concentration-dependent pBR322 plasmid DNA strand scission. The DNA damage induced by KA could be abolished by reactive oxygen species scavengers, glutathione and catalase as well as EDTA and a specific Cu(I) chelator bathocuproine disulfonic acid. In addition to Cu(II) chelating activity, KA readily reduces Cu(II) to Cu(I). Copper-dependent generation of reactive oxygen species and the subsequent macromolecular damage may be involved in the antimicrobial and cytotoxic activity of KA. PMID:19345716

  7. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species

    PubMed Central

    2010-01-01

    Background Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Results Our results show that hydroxyl radicals (.OH) were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Conclusion Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute lung injury. Since type of

  8. Secretoglobin 1A1 and 1A1A Differentially Regulate Neutrophil Reactive Oxygen Species Production, Phagocytosis and Extracellular Trap Formation

    PubMed Central

    Côté, Olivier; Clark, Mary Ellen; Viel, Laurent; Labbé, Geneviève; Seah, Stephen Y. K.; Khan, Meraj A.; Douda, David N.; Palaniyar, Nades; Bienzle, Dorothee

    2014-01-01

    Secretoglobin family 1A member 1 (SCGB 1A1) is a small protein mainly secreted by mucosal epithelial cells of the lungs and uterus. SCGB 1A1, also known as club (Clara) cell secretory protein, represents a major constituent of airway surface fluid. The protein has anti-inflammatory properties, and its concentration is reduced in equine recurrent airway obstruction (RAO) and human asthma. RAO is characterized by reversible airway obstruction, bronchoconstriction and neutrophilic inflammation. Direct effects of SCGB 1A1 on neutrophil functions are unknown. We have recently identified that the SCGB1A1 gene is triplicated in equids and gives rise to two distinct proteins. In this study we produced the endogenously expressed forms of SCGBs (SCGB 1A1 and 1A1A) as recombinant proteins, and analyzed their effects on reactive oxygen species production, phagocytosis, chemotaxis and neutrophil extracellular trap (NET) formation ex vivo. We further evaluated whether NETs are present in vivo in control and inflamed lungs. Our data show that SCGB 1A1A but not SCGB 1A1 increase neutrophil oxidative burst and phagocytosis; and that both proteins markedly reduce neutrophil chemotaxis. SCGB 1A1A reduced chemotaxis significantly more than SCGB 1A1. NET formation was significantly reduced in a time- and concentration-dependent manner by SCGB 1A1 and 1A1A. SCGB mRNA in bronchial biopsies, and protein concentration in bronchoalveolar lavage fluid, was lower in horses with RAO. NETs were present in bronchoalveolar lavage fluid from horses with exacerbated RAO, but not in fluid from horses with RAO in remission or in challenged healthy horses. These findings indicate that SCGB 1A1 and 1A1A have overlapping and diverging functions. Considering disparities in the relative abundance of SCGB 1A1 and 1A1A in airway secretions of animals with RAO suggests that these functional differences may contribute to the pathogenesis of RAO and other neutrophilic inflammatory lung diseases. PMID:24777050

  9. Hypoxia induces adipocyte differentiation of adipose-derived stem cells by triggering reactive oxygen species generation.

    PubMed

    Kim, Ji Hye; Kim, Seok-Ho; Song, Seung Yong; Kim, Won-Serk; Song, Sun U; Yi, TacGhee; Jeon, Myung-Shin; Chung, Hyung-Min; Xia, Ying; Sung, Jong-Hyuk

    2014-01-01

    Generation of reactive oxygen species (ROS) by NADPH oxidase 4 (Nox4) induces the proliferation and migration of adipose-derived stem cells (ASCs). However, the functional role of mitochondrial ROS (mtROS) generation in ASCs is unknown. Therefore, we have investigated whether hypoxia induces the differentiation of ASCs via ROS generation. We also have tried to identify the cellular mechanisms of ROS generation underlying adipocyte differentiation. Hypoxia (2%) and ROS generators, such as antimycin and rotenone, induced adipocyte differentiation, which was attenuated by an ROS scavenger. Although Nox4 generates ROS and regulates proliferation of ASCs, Nox4 inhibition or Nox4 silencing did not inhibit adipocyte differentiation; indeed fluorescence intensity of mito-SOX increased in hypoxia, and treatment with mito-CP, a mtROS scavenger, significantly reduced hypoxia-induced adipocyte differentiation. Phosphorylation of Akt and mTOR was induced by hypoxia, while inhibition of these molecules prevented adipocyte differentiation. Thus hypoxia induces adipocyte differentiation by mtROS generation, and the PI3K/Akt/mTOR pathway is involved. PMID:23956071

  10. Light Emitting Diode-Generated Blue Light Modulates Fibrosis Characteristics: Fibroblast Proliferation, Migration Speed, and Reactive Oxygen Species Generation

    PubMed Central

    Mamalis, Andrew; Garcha, Manveer; Jagdeo, Jared

    2016-01-01

    Background and Objective Blue light is part of the visible light spectrum that does not generate harmful DNA adducts associated with skin cancer and photoaging, and may represent a safer therapeutic modality for treatment of keloid scars and other fibrotic skin diseases. Our laboratory previously demonstrated that light-emitting diode (LED) red and infrared light inhibits proliferation of skin fibroblasts. Moreover, different wavelengths of light can produce different biological effects. Furthermore, the effects of LED blue light (LED-BL) on human skin fibroblasts are not well characterized. This study investigated the effects of LED-BL on human skin fibroblast proliferation, viability, migration speed, and reactive oxygen-species (ROS) generation. Methods and Materials Irradiation of adult human skin fibroblasts using commercially-available LED-BL panels was performed in vitro, and modulation of proliferation and viability was quantified using the trypan blue dye exclusion assay, migratory speed was assessed using time-lapse video microscopy, and intracellular ROS generation was measured using the dihydrorhodamine flow cytometry assay. Statistical differences between groups were determined by ANOVA and Student s t-test. Results Human skin fibroblasts treated with LED-BL fluences of 5, 30, 45, and 80 J/cm2 demonstrated statistically significant dose-dependent decreases in relative proliferation of 8.4%, 29.1%, 33.8%, 51.7%, and 55.1%, respectively, compared to temperature and environment matched bench control plates, respectively. LED-BL fluences of 5, 30, 45 and 80 J/cm2 decreased fibroblast migration speed to 95 ± 7.0% (p = 0.64), 81.3 ± 5.5% (p = 0.021), 48.5 ± 2.7% (p < 0.0001), and 32.3 ± 1.9% (p < 0.0001), respectively, relative to matched controls. LED fluences of 5, 10, 30, and 80 J/cm2 resulted in statistically significant increases in reactive oxygen species of 110.4%, 116.6%, 127.5%, and 130%, respectively, relative to bench controls. Conclusion At

  11. Preferential Extracellular Generation of the Active Parkinsonian Toxin MPP+ by Transporter-Independent Export of the Intermediate MPDP+

    PubMed Central

    Pape, Regina; Meiser, Johannes; Karreman, Christiaan; Strittmatter, Tobias; Odermatt, Meike; Cirri, Erica; Friemel, Anke; Ringwald, Markus; Pasquarelli, Noemi; Ferger, Boris; Brunner, Thomas; Marx, Andreas; Möller, Heiko M.; Hiller, Karsten; Leist, Marcel

    2015-01-01

    Abstract Aims: 1-Methyl-4-phenyl-tetrahydropyridine (MPTP) is among the most widely used neurotoxins for inducing experimental parkinsonism. MPTP causes parkinsonian symptoms in mice, primates, and humans by killing a subpopulation of dopaminergic neurons. Extrapolations of data obtained using MPTP-based parkinsonism models to human disease are common; however, the precise mechanism by which MPTP is converted into its active neurotoxic metabolite, 1-methyl-4-phenyl-pyridinium (MPP+), has not been fully elucidated. In this study, we aimed to address two unanswered questions related to MPTP toxicology: (1) Why are MPTP-converting astrocytes largely spared from toxicity? (2) How does MPP+ reach the extracellular space? Results: In MPTP-treated astrocytes, we discovered that the membrane-impermeable MPP+, which is generally assumed to be formed inside astrocytes, is almost exclusively detected outside of these cells. Instead of a transporter-mediated export, we found that the intermediate, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+), and/or its uncharged conjugate base passively diffused across cell membranes and that MPP+ was formed predominately by the extracellular oxidation of MPDP+ into MPP+. This nonenzymatic extracellular conversion of MPDP+ was promoted by O2, a more alkaline pH, and dopamine autoxidation products. Innovation and Conclusion: Our data indicate that MPTP metabolism is compartmentalized between intracellular and extracellular environments, explain the absence of toxicity in MPTP-converting astrocytes, and provide a rationale for the preferential formation of MPP+ in the extracellular space. The mechanism of transporter-independent extracellular MPP+ formation described here indicates that extracellular genesis of MPP+ from MPDP is a necessary prerequisite for the selective uptake of this toxin by catecholaminergic neurons. Antioxid. Redox Signal. 23, 1001–1016. PMID:26413876

  12. The analysis of a reactive hydromagnetic internal heat generating poiseuille fluid flow through a channel.

    PubMed

    Hassan, A R; Maritz, R

    2016-01-01

    In this paper, the analysis of a reactive hydromagnetic Poiseuille fluid flow under different chemical kinetics through a channel in the presence of a heat source is carried out. An exothermic reaction is assumed while the concentration of the material is neglected. The Adomian decomposition method together with Pade approximation technique are used to obtain the solutions of the governing nonlinear non-dimensional differential equations. Effects of various physical parameters on the velocity and temperature fields of the fluid flow are investigated. The entropy generation analysis, irreversibility distribution ratio, Bejan number and the conditions for thermal criticality for different chemical kinetics are also presented. PMID:27563527

  13. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species.

    PubMed

    Serena, Elena; Figallo, Elisa; Tandon, Nina; Cannizzaro, Christopher; Gerecht, Sharon; Elvassore, Nicola; Vunjak-Novakovic, Gordana

    2009-12-10

    Exogenous electric fields have been implied in cardiac differentiation of mouse embryonic stem cells and the generation of reactive oxygen species (ROS). In this work, we explored the effects of electrical field stimulation on ROS generation and cardiogenesis in embryoid bodies (EBs) derived from human embryonic stem cells (hESC, line H13), using a custom-built electrical stimulation bioreactor. Electrical properties of the bioreactor system were characterized by electrochemical impedance spectroscopy (EIS) and analysis of electrical currents. The effects of the electrode material (stainless steel, titanium-nitride-coated titanium, titanium), length of stimulus (1 and 90 s) and age of EBs at the onset of electrical stimulation (4 and 8 days) were investigated with respect to ROS generation. The amplitude of the applied electrical field was 1 V/mm. The highest rate of ROS generation was observed for stainless steel electrodes, for signal duration of 90 s and for 4-day-old EBs. Notably, comparable ROS generation was achieved by incubation of EBs with 1 nM H(2)O(2). Cardiac differentiation in these EBs was evidenced by spontaneous contractions, expression of troponin T and its sarcomeric organization. These results imply that electrical stimulation plays a role in cardiac differentiation of hESCs, through mechanisms associated with the intracellular generation of ROS. PMID:19720058

  14. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    NASA Astrophysics Data System (ADS)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  15. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.

    PubMed

    Hibbs, John B; Vavrin, Zdenek; Cox, James E

    2016-08-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  16. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose

    PubMed Central

    Hibbs, John B.; Vavrin, Zdenek; Cox, James E.

    2016-01-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  17. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    SciTech Connect

    Hamaguchi, Satoshi

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  18. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Satoshi

    2013-07-01

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  19. UVB dependence of quantum dot reactive oxygen species generation in common skin cell models

    PubMed Central

    MORTENSEN, LUKE J.; FAULKNOR, RENEA; RAVICHANDRAN, SUPRIYA; ZHENG, HONG; DELOUISE, LISA A.

    2015-01-01

    Studies have shown that UVB can slightly increase the penetration of nanoparticles through skin and significantly alter skin cell biology, thus it is important to understand if and how UVB may impact subsequent nanoparticle skin cell interactions. The research presented herein evaluates the effect of UVB on quantum dot (QD) uptake and reactive oxygen species (ROS) generation in primary keratinocytes, primary melanocytes, and related cell lines. QD exposure induced cell type dependent ROS responses increased by pre-exposing cells to UVB and correlated with the level of QD uptake. Our results suggest that keratinocytes may be at greater risk for QD induced ROS generation than melanocytes, and raise awareness about the differential cellular effects that topically applied nanomaterials may have on UVB exposed skin. PMID:26485933

  20. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species

    PubMed Central

    Jones, Rheinallt M; Luo, Liping; Ardita, Courtney S; Richardson, Arena N; Kwon, Young Man; Mercante, Jeffrey W; Alam, Ashfaqul; Gates, Cymone L; Wu, Huixia; Swanson, Phillip A; Lambeth, J David; Denning, Patricia W; Neish, Andrew S

    2013-01-01

    The resident prokaryotic microbiota of the metazoan gut elicits profound effects on the growth and development of the intestine. However, the molecular mechanisms of symbiotic prokaryotic–eukaryotic cross-talk in the gut are largely unknown. It is increasingly recognized that physiologically generated reactive oxygen species (ROS) function as signalling secondary messengers that influence cellular proliferation and differentiation in a variety of biological systems. Here, we report that commensal bacteria, particularly members of the genus Lactobacillus, can stimulate NADPH oxidase 1 (Nox1)-dependent ROS generation and consequent cellular proliferation in intestinal stem cells upon initial ingestion into the murine or Drosophila intestine. Our data identify and highlight a highly conserved mechanism that symbiotic microorganisms utilize in eukaryotic growth and development. Additionally, the work suggests that specific redox-mediated functions may be assigned to specific bacterial taxa and may contribute to the identification of microbes with probiotic potential. PMID:24141879

  1. UVB Dependence of Quantum Dot Reactive Oxygen Species Generation in Common Skin Cell Models.

    PubMed

    Mortensen, Luke J; Faulknor, Renea; Ravichandran, Supriya; Zheng, Hong; DeLouise, Lisa A

    2015-09-01

    Studies have shown that UVB can slightly increase the penetration of nanoparticles through skin and significantly alter skin cell biology, thus it is important to understand if and how UVB may impact subsequent nanoparticle skin cell interactions. The research presented herein evaluates the effect of UVB on quantum dot (QD) uptake and reactive oxygen species (ROS) generation in primary keratinocytes, primary melanocytes, and related cell lines. QD exposure induced cell type dependent ROS responses increased by pre-exposing cells to UVB and correlated with the level of QD uptake. Our results suggest that keratinocytes may be at greater risk for QD induced ROS generation than melanocytes, and raise awareness about the differential cellular effects that topically applied nanomaterials may have on UVB exposed skin. PMID:26485933

  2. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation

    SciTech Connect

    Meeran, Syed M.; Katiyar, Suchitra; Katiyar, Santosh K.

    2008-05-15

    Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygen species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.

  3. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    SciTech Connect

    Yan, Wei; He, Hao Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-24

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  4. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    NASA Astrophysics Data System (ADS)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  5. Photochemistry of Dissolved Black Carbon Released from Biochar: Reactive Oxygen Species Generation and Phototransformation.

    PubMed

    Fu, Heyun; Liu, Huiting; Mao, Jingdong; Chu, Wenying; Li, Qilin; Alvarez, Pedro J J; Qu, Xiaolei; Zhu, Dongqiang

    2016-02-01

    Dissolved black carbon (BC) released from biochar can be one of the more photoactive components in the dissolved organic matter (DOM) pool. Dissolved BC was mainly composed of aliphatics and aromatics substituted by aromatic C-O and carboxyl/ester/quinone moieties as determined by solid-state nuclear magnetic resonance. It underwent 56% loss of absorbance at 254 nm, almost complete loss of fluorescence, and 30% mineralization during a 169 h simulated sunlight exposure. Photoreactions preferentially targeted aromatic and methyl moieties, generating CH2/CH/C and carboxyl/ester/quinone functional groups. During irradiation, dissolved BC generated reactive oxygen species (ROS) including singlet oxygen and superoxide. The apparent quantum yield of singlet oxygen was 4.07 ± 0.19%, 2-3 fold higher than many well-studied DOM. Carbonyl-containing structures other than aromatic ketones were involved in the singlet oxygen sensitization. The generation of superoxide apparently depended on electron transfer reactions mediated by silica minerals in dissolved BC, in which phenolic structures served as electron donors. Self-generated ROS played an important role in the phototransformation. Photobleaching of dissolved BC decreased its ability to further generate ROS due to lower light absorption. These findings have significant implications on the environmental fate of dissolved BC and that of priority pollutants. PMID:26717492

  6. Autophagy-related Gene 7 (ATG7) and Reactive Oxygen Species/Extracellular Signal-regulated Kinase Regulate Tetrandrine-induced Autophagy in Human Hepatocellular Carcinoma*

    PubMed Central

    Gong, Ke; Chen, Chao; Zhan, Yao; Chen, Yan; Huang, Zebo; Li, Wenhua

    2012-01-01

    Tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the broadly used Chinese medicinal herb Stephaniae tetrandrae, exhibits potent antitumor effects and has the potential to be used as a cancer chemotherapeutic agent. We previously reported that high concentrations of tetrandrine induce apoptosis in liver cancer cells. Here, we found that in human hepatocellular carcinoma (HCC) cells, a low dose of tetrandrine (5 μm) induced the expression of LC3-II, resulted in the formation of acidic autophagolysosome vacuoles (AVOs), and caused a punctate fluorescence pattern with the GFP-LC3 protein, which all are markers for cellular autophagy. Tetrandrine induced the production of intracellular reactive oxygen species (ROS), and treatment with ROS scavengers significantly abrogated the tetrandrine-induced autophagy. These results suggest that the generation of ROS plays an important role in promoting tetrandrine-induced autophagy. Tetrandrine-induced mitochondrial dysfunction resulted in ROS accumulation and autophagy. ROS generation activated the ERK MAP kinase, and the ERK signaling pathway at least partially contributed to tetrandrine-induced autophagy in HCC cells. Moreover, we found that tetrandrine transcriptionally regulated the expression of autophagy related gene 7 (ATG7), which promoted tetrandrine-induced autophagy. In addition to in vitro studies, similar results were also observed in vivo, where tetrandrine caused the accumulation of ROS and induced cell autophagy in a tumor xenograft model. Interestingly, tetrandrine treatment also induced autophagy in a ROS-dependent manner in C. elegans muscle cells. Therefore, these findings suggest that tetrandrine is a potent autophagy agonist and may be a promising clinical chemotherapeutic agent. PMID:22927446

  7. No evidence for role of extracellular choline-acetyltransferase in generation of gamma oscillations in rat hippocampal slices in vitro.

    PubMed

    Hollnagel, J O; ul Haq, R; Behrens, C J; Maslarova, A; Mody, I; Heinemann, U

    2015-01-22

    Acetylcholine (ACh) is well known to induce persistent γ-oscillations in the hippocampus when applied together with physostigmine, an inhibitor of the ACh degrading enzyme acetylcholinesterase (AChE). Here we report that physostigmine alone can also dose-dependently induce γ-oscillations in rat hippocampal slices. We hypothesized that this effect was due to the presence of choline in the extracellular space and that this choline is taken up into cholinergic fibers where it is converted to ACh by the enzyme choline-acetyltransferase (ChAT). Release of ACh from cholinergic fibers in turn may then induce γ-oscillations. We therefore tested the effects of the choline uptake inhibitor hemicholinium-3 (HC-3) on persistent γ-oscillations either induced by physostigmine alone or by co-application of ACh and physostigmine. We found that HC-3 itself did not induce γ-oscillations and also did not prevent physostigmine-induced γ-oscillation while washout of physostigmine and ACh-induced γ-oscillations was accelerated. It was recently reported that ChAT might also be present in the extracellular space (Vijayaraghavan et al., 2013). Here we show that the effect of physostigmine was prevented by the ChAT inhibitor (2-benzoylethyl)-trimethylammonium iodide (BETA) which could indicate extracellular synthesis of ACh. However, when we tested for effects of extracellularly applied acetyl-CoA, a substrate of ChAT for synthesis of ACh, physostigmine-induced γ-oscillations were attenuated. Together, these findings do not support the idea that ACh can be synthesized by an extracellularly located ChAT. PMID:25453770

  8. Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation.

    PubMed

    Lin, Patricia W; Myers, Loren E S; Ray, Laurie; Song, Shuh-Chyung; Nasr, Tala R; Berardinelli, Andrew J; Kundu, Kousik; Murthy, Niren; Hansen, Jason M; Neish, Andrew S

    2009-10-15

    Uncontrolled inflammatory responses in the immature gut may play a role in the pathogenesis of many intestinal inflammatory syndromes that present in newborns or children, such as necrotizing enterocolitis (NEC), idiopathic inflammatory bowel diseases (IBD), or infectious enteritis. Consistent with previous reports that murine intestinal function matures over the first 3 weeks of life, we show that inflammatory signaling in the neonatal mouse gut increases during postnatal maturation, with peak responses occurring at 2-3 weeks. Probiotic bacteria can block inflammatory responses in cultured epithelia by inducing the generation of reactive oxygen species (ROS), which inhibit NF-kappaB activation through oxidative inactivation of the key regulatory enzyme Ubc12. We now report for the first time that the probiotic Lactobacillus rhamnosus GG (LGG) can induce ROS generation in intestinal epithelia in vitro and in vivo. Intestines from immature mice gavage fed LGG exhibited increased GSH oxidation and cullin-1 deneddylation, reflecting local ROS generation and its resultant Ubc12 inactivation, respectively. Furthermore, prefeeding LGG prevented TNF-alpha-induced intestinal NF-kappaB activation. These studies indicate that LGG can reduce inflammatory signaling in immature intestines by inducing local ROS generation and may be a mechanism by which probiotic bacteria can prevent NEC in premature infants or reduce the severity of IBD in children. PMID:19660542

  9. Redox cycling and generation of reactive oxygen species in commercial infant formulas.

    PubMed

    Boatright, William L; Crum, Andrea D

    2016-04-01

    Three nationally prominent commercial powdered infant formulas generated hydrogen peroxide, ranging from 10.46 to 11.62 μM, when prepared according to the manufacturer's instructions. Treating infant formulas with the chelating agent diethylene triamine pentaacetic acid (DTPA) significantly reduced H2O2 generation. In contrast, the addition of disodium ethylenediaminetetraacetic acid (EDTA) elevated the level of H2O2 generated in the same infant formulas by approximately 3- to 4-fold above the untreated infant formulas. The infant formulas contained ascorbate radicals ranging from about 138 nM to 40 nM. Treatment with catalase reduced the ascorbate radical contents by as much as 67%. Treatment with DTPA further reduced ascorbate radical signals to below quantifiable levels in most samples, further implicating the involvement of transition metal redox cycling in reactive oxygen species (ROS) formation. Supportive evidence of the generation of ROS is provided using luminol-enhanced luminescence (LEL) in both model mixtures of ascorbic acid and in commercial infant formulas. PMID:26593482

  10. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    SciTech Connect

    Jablonowski, H.; Hammer, M. U.; Reuter, S.; Bussiahn, R.; Weltmann, K.-D.; Woedtke, Th. von

    2015-12-15

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  11. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    NASA Astrophysics Data System (ADS)

    Jablonowski, H.; Bussiahn, R.; Hammer, M. U.; Weltmann, K.-D.; von Woedtke, Th.; Reuter, S.

    2015-12-01

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100-400 nm) and, in particular, vacuum ultraviolet (VUV, 10-200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•-) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  12. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect

    SciTech Connect

    Xu, T.; Senger, R.; Finsterle, S.

    2008-10-15

    Corrosion of steel canisters, stored in a repository for spent fuel and high-level nuclear wastes, leads to the generation and accumulation of hydrogen gas in the backfilled emplacement tunnels, which may significantly affect long-term repository safety. Previous studies used H{sub 2} generation rates based on the volume of the waste or canister material and the stoichiometry of the corrosion reaction. However, iron corrosion and H{sub 2} generation rates vary with time, depending on factors such as amount of iron, water availability, water contact area, and aqueous and solid chemistry. To account for these factors and feedback mechanisms, we developed a chemistry model related to iron corrosion, coupled with two-phase (liquid and gas) flow phenomena that are driven by gas-pressure buildup associated with H{sub 2} generation and water consumption. Results indicate that by dynamically calculating H{sub 2} generation rates based on a simple model of corrosion chemistry, and by coupling this corrosion reaction with two-phase flow processes, the degree and extent of gas pressure buildup could be much smaller compared to a model that neglects the coupling between flow and reactive transport mechanisms. By considering the feedback of corrosion chemistry, the gas pressure increases initially at the canister, but later decreases and eventually returns to a stabilized pressure that is slightly higher than the background pressure. The current study focuses on corrosion under anaerobic conditions for which the coupled hydrogeochemical model was used to examine the role of selected physical parameters on the H{sub 2} gas generation and corresponding pressure buildup in a nuclear waste repository. The developed model can be applied to evaluate the effect of water and mineral chemistry of the buffer and host rock on the corrosion reaction for future site-specific studies.

  13. Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin

    NASA Astrophysics Data System (ADS)

    Herrling, Th.; Jung, K.; Fuchs, J.

    2006-03-01

    Free radicals/reactive oxygen species (ROS) generated in skin by UV irradiation were measured by electron spin resonance (ESR). To increase the sensitivity of measurement the short life free radicals/ROS were scavenged and accumulated by using the nitroxyl probe 3-carboxy-2,2,5,5-tetrametylpyrrolidine-1-oxyl (PCA). The spatial distribution of free radicals/ROS measured in pig skin biopsies with ESR imaging after UV irradiation corresponds to the intensity decay of irradiance in the depth of the skin. The main part of free radicals/ROS were generated by UVA (320-400 nm) so that the spatial distribution of free radicals reaches up to the lower side of the dermis. In vivo measurements on human skin were performed with a L-band ESR spectrometer and a surface coil integrating the signal intensities from all skin layers to get a sufficient signal amplitude. Using this experimental arrangement the protection of UVB and UVA/B filter against the generation of free radicals/ROS in skin were measured. The protection against ROS and the repair of damages caused by them can be realized with active antioxidants characterized by a high antioxidative power (AP). The effect of UV filter and antioxidants corresponding to their protection against free radicals/ROS in skin generated by UVAB irradiation can be quantified by the new radical sun protection factor (RSF). The RSF indicates the increase of time for staying in the sun to generate the same number of free radicals/ROS in the skin like for the unprotected skin. Regarding the amount of generated free radicals/ROS in skin as an biophysical endpoint the RSF characterizes both the protection against UVB and UVA radiation.

  14. Generation of Reactive Oxygen and Anti-Oxidant Species by Hydrodynamically-Stressed Suspensions of Morinda citrofolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The generation of reactive oxygen species (ROS) by plant cell suspension cultures, in response to the imposition of both biotic and abiotic stress, is well-documented. This study investigated the generation of hydrogen peroxide by hydrodynamically-stressed cultures of Morinda citrifolia, over a 5-ho...

  15. Manipulating the selection forces during affinity maturation to generate cross-reactive HIV antibodies

    PubMed Central

    Wang, Shenshen; Mata-Fink, Jordi; Kriegsman, Barry; Hanson, Melissa; Irvine, Darrell J.; Eisen, Herman N.; Burton, Dennis R.; Wittrup, K. Dane; Kardar, Mehran; Chakraborty, Arup K.

    2015-01-01

    Summary Generation of potent antibodies by a mutation-selection process called affinity maturation is a key component of effective immune responses. Antibodies that protect against highly mutable pathogens must neutralize diverse strains. Developing effective immunization strategies to drive their evolution requires understanding how affinity maturation happens in an enviroment where variants of the same antigen are present. We present an in silico model of affinity maturation driven by antigen variants which reveals that induction of cross-reactive antibodies often occurs with low probability because conflicting selection forces, imposed by different antigen variants, can frustrate affinity maturation. We describe how variables such as temporal pattern of antigen administration influence the outcome of this frustrated evolutionary process. Our calculations predict, and experiments in mice with variant gp120 constructs of the HIV envelope protein confirm, that sequential immunization with antigen variants is preferred over a cocktail for induction of cross-reactive antibodies focused on the shared CD4 binding site epitope. PMID:25662010

  16. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    SciTech Connect

    Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L.

    2011-01-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  17. Internally Generated Reactivation of Single Neurons in Human Hippocampus During Free Recall

    PubMed Central

    Gelbard-Sagiv, Hagar; Mukamel, Roy; Harel, Michal; Malach, Rafael; Fried, Itzhak

    2009-01-01

    The emergence of memory, a trace of things past, into human consciousness is one of the greatest mysteries of the human mind. Whereas the neuronal basis of recognition memory can be probed experimentally in human and nonhuman primates, the study of free recall requires that the mind declare the occurrence of a recalled memory (an event intrinsic to the organism and invisible to an observer). Here, we report the activity of single neurons in the human hippocampus and surrounding areas when subjects first view cinematic episodes consisting of audiovisual sequences and again later when they freely recall these episodes. A subset of these neurons exhibited selective firing, which often persisted throughout and following specific episodes for as long as 12 seconds. Verbal reports of memories of these specific episodes at the time of free recall were preceded by selective reactivation of the same hippocampal and entorhinal cortex neurons. We suggest that this reactivation is an internally generated neuronal correlate for the subjective experience of spontaneous emergence of human recollection. PMID:18772395

  18. Fucoidan protects ARPE-19 cells from oxidative stress via normalization of reactive oxygen species generation through the Ca²⁺-dependent ERK signaling pathway.

    PubMed

    Li, Xiaoxia; Zhao, Haiyan; Wang, Qingfa; Liang, Hongyan; Jiang, Xiaofeng

    2015-05-01

    Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM) and it is the main cause of loss of vision. In previous years, interest in the biological activities of marine organisms has intensified. The effect of fucoidan from the seaweed Fucus vesiculosus on the molecular mechanisms of numerous diseases has been studied, while to date, its effect on DR was yet to be investigated. Therefore, the aim of the present study was to evaluate the role of fucoidan in DR. The human retinal pigment epithelial cell line ARPE‑19 was exposed to high D‑glucose in the presence or absence of fucoidan. Cell viability was monitored using MTT and lactate dehydrogenase assays. The intracellular reactive oxygen species (ROS) generation was measured using fluorescence spectrophotometry. Cell apoptosis was measured by flow cytometry using Annexin V‑fluorescein isothiocyanate staining. Ca2+ influx was measured with a calcium imaging system and the activation of the extracellular signal‑regulated kinase (ERK) protein was evaluated using western blot analysis. The non‑toxic fucoidan protected ARPE‑19 cells from high glucose‑induced cell death and normalized high glucose‑induced generation of ROS. Fucoidan also inhibited high glucose‑induced cell apoptosis, as well as the Ca2+ influx and ERK1/2 phosphorylation in ARPE‑19 cells. Taken together, these findings indicated that fucoidan protects ARPE‑19 cells against high glucose‑induced oxidative damage via normalization of ROS generation through the Ca2+‑dependent ERK signaling pathway. PMID:25606812

  19. Wear Particles Impair Antimicrobial Activity Via Suppression of Reactive Oxygen Species Generation and ERK1/2 Phosphorylation in Activated Macrophages.

    PubMed

    Chen, Weishen; Li, Ziqing; Guo, Ying; Zhou, Yuhuan; Zhang, Yangchun; Luo, Guotian; Yang, Xing; Li, Chaohong; Liao, Weiming; Sheng, Puyi

    2015-01-01

    Implant-related infection (IRI) is closely related to the local immunity of peri-implant tissues. The generation of reactive oxygen species (ROS) in activated macrophages plays a prominent role in the innate immune response. In previous studies, we indicated that implant wear particles promote endotoxin tolerance by decreasing the release of proinflammatory cytokines. However, it is unclear whether ROS are involved in the damage of the local immunity of peri-implant tissues. In the present study, we assessed the mechanism of local immunosuppression using titanium (Ti) particles and/or lipopolysaccharide (LPS) to stimulate RAW 264.7 cells. The results indicate that the Ti particles induced the generation of a moderate amount of ROS through nicotinamide adenine dinucleotide phosphate oxidase-1, but not through catalase. Pre-exposure to Ti particles inhibited ROS generation and extracellular-regulated protein kinase activation in LPS-stimulated macrophages. These findings indicate that chronic stimulation by Ti particles may lead to a state of oxidative stress and persistent inflammation, which may result in the attenuation of the immune response of macrophages to bacterial components such as LPS. Eventually, immunosuppression develops in peri-implant tissues, which may be a risk factor for IRI. PMID:25577344

  20. Tks5-dependent, Nox-mediated Generation of Reactive Oxygen Species is Necessary for Invadopodia Formation*

    PubMed Central

    Diaz, Begoña; Shani, Gidon; Pass, Ian; Anderson, Diana; Quintavalle, Manuela; Courtneidge, Sara A.

    2009-01-01

    Invadopodia are actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior. We show here that reactive oxygen species (ROS) generated by the NADPH oxidase (Nox) system are necessary for invadopodia formation and function. The invadopodia protein Tks5 is structurally related to p47phox, a Nox component in phagocytic cells. Knockdown of Tks5 reduces total ROS levels in cancer cells. Furthermore, Tks5 and p22phox can associate with each other, suggesting that Tks5 is part of the Nox complex. Tyrosine phosphorylation of Tks5 and Tks4, but not other Src substrates, is reduced by Nox inhibition. We propose that Tks5 facilitates the production of ROS necessary for invadopodia formation, and that in turn ROS modulates Tks5 tyrosine phosphorylation in a positive feedback loop. PMID:19755709

  1. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration.

    PubMed

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-01-01

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40(phox) and p47(phox)) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration. PMID:26853930

  2. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  3. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration

    PubMed Central

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-01-01

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40phox and p47phox) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration. PMID:26853930

  4. p53 activation contributes to patulin-induced nephrotoxicity via modulation of reactive oxygen species generation

    PubMed Central

    Jin, Huan; Yin, Shutao; Song, Xinhua; Zhang, Enxiang; Fan, Lihong; Hu, Hongbo

    2016-01-01

    Patulin is a major mycotoxin found in fungal contaminated fruits and their derivative products. Previous studies showed that patulin was able to induce increase of reactive oxygen species (ROS) generation and oxidative stress was suggested to play a pivotal role in patulin-induced multiple toxic signaling. The objective of the present study was to investigate the functional role of p53 in patulin-induced oxidative stress. Our study demonstrated that higher levels of ROS generation and DNA damage were induced in wild-type p53 cell lines than that found in either knockdown or knockout p53 cell lines in response to patulin exposure, suggesting p53 activation contributed to patulin-induced ROS generation. Mechanistically, we revealed that the pro-oxidant role of p53 in response to patulin was attributed to its ability to suppress catalase activity through up-regulation of PIG3. Moreover, these in vitro findings were further validated in the p53 wild-type/knockout mouse model. To the best of our knowledge, this is the first report addressing the functional role of p53 in patulin-induced oxidative stress. The findings of the present study provided novel insights into understanding mechanisms behind oxidative stress in response to patulin exposure. PMID:27071452

  5. Urea degradation by electrochemically generated reactive chlorine species: products and reaction pathways.

    PubMed

    Cho, Kangwoo; Hoffmann, Michael R

    2014-10-01

    This study investigated the transformation of urea by electrochemically generated reactive chlorine species (RCS). Solutions of urea with chloride ions were electrolyzed using a bismuth doped TiO2 (BiOx/TiO2) anode coupled with a stainless steel cathode at applied anodic potentials (Ea) of either +2.2 V or +3.0 V versus the normal hydrogen electrode. In NaCl solution, the current efficiency of RCS generation was near 30% at both potentials. In divided cell experiments, the pseudo-first-order rate of total nitrogen decay was an order of magnitude higher at Ea of +3.0 V than at +2.2 V, presumably because dichlorine radical (Cl2(-)·) ions facilitate the urea transformation primary driven by free chlorine. Quadrupole mass spectrometer analysis of the reactor headspace revealed that N2 and CO2 are the primary gaseous products of the oxidation of urea, whose urea-N was completely transformed into N2 (91%) and NO3(-) (9%). The higher reaction selectivity with respect to N2 production can be ascribed to a low operational ratio of free available chlorine to N. The mass-balance analysis recovered urea-C as CO2 at 77%, while CO generation most likely accounts for the residual carbon. In light of these results, we propose a reaction mechanism involving chloramines and chloramides as reaction intermediates, where the initial chlorination is the rate-determining step in the overall sequence of reactions. PMID:25219459

  6. Estimation of reactive power export and import capability for non-utility generators

    SciTech Connect

    Nolan, G.J.; Winge, D.E.; Khalafalla, E.B.; Swartley, B.S.; Arnold, E.H.

    1995-12-31

    Non-utility generators (NUGs) are typically required by their electric power sales agreement to have the capability to supply power to the purchasing utility near unity power factor. With the advent of large combustion turbine generators, many NUGs are simple or combined cycle facilities with generating capacities in excess of low megawatts. Utilities are recognizing that these large NUG facilities can be significant contributors to the reactive power (megavars-Mvars) flow needed to support system requirements and transmission level grid voltages. NUGs are now being dispatched for Mvar export and import activities to meet utility requirements. The ability of a NUG to export or import Mvars is highly dependent on the actual transmission intertie voltage level. Unless plant specific studies are performed, this can be difficult to ascertain for the NUG`s operating and engineering personnel. This paper presents a method, based on system load flow studies, for estimating the capacity of a NUG to export or import Mvars at a given transmission intertie voltage level. It also explores other key variables which determine the ability of a NUG to export or import VARS. This methodology can be used to aid operating personnel at existing facilities or as a guide during the design of a new facility.

  7. Surface functionalization of titanium dioxide nanoparticles: Photo-stability and reactive oxygen species (ROS) generation

    NASA Astrophysics Data System (ADS)

    Louis, Kacie M.

    Metal oxide nanoparticles are becoming increasingly prevalent in society for applications of sunscreens, cosmetics, paints, biomedical imaging, and photovoltaics. Due to the increased surface area to volume ratio of nanoparticles compared to bulk materials, it is important to know the health and safety impacts of these materials. One mechanism of toxicity of nominally "safe" materials such as TiO 2 is through the photocatalytic generation of reactive oxygen species (ROS). ROS production and ligand degradation can affect the bioavailability of these particles in aqueous organisms. We have investigated ROS generation by functionalized TiO2 nanoparticles and its influence on aggregation and bioavailability and toxicity to zebrafish embryos/larvae. For these studies we investigated anatase TiO2 nanoparticles. For application purposes and solution stability, the TiO2 nanoparticles were functionalized with a variety of ligands such as citrate, 3,4-dihydroxybenzaldehyde, and ascorbate. We quantitatively examined the amount of ROS produced in aqueous solution using fluorescent probes and see that more ROS is produced under UV light than in the dark control. Our measurements show that TiO2 toxicity reaches a maximum for nanoparticles with smaller diameters, and is correlated with surface area dependent changes in ROS generation. In an effort to reduce toxicity through control of the surface and surface ligands, we synthesized anatase nanoparticles of different sizes, functionalized them with different ligands, and examined the resulting ROS generation and ligand stability. Using a modular ligand containing a hydrophobic inner region and a hydrophilic outer region, we synthesized water-stable nanoparticles, via two different chemical reactions, having much-reduced ROS generation and thus reduced toxicity. These results suggest new strategies for making safer nanoparticles while still retaining their desired properties. We also examine the degradation of the different ligands

  8. Reactive Oxygen Species Generation Linked to Sources of Atmospheric Particulate Matter and Cardiorespiratory Effects.

    PubMed

    Bates, Josephine T; Weber, Rodney J; Abrams, Joseph; Verma, Vishal; Fang, Ting; Klein, Mitchel; Strickland, Matthew J; Sarnat, Stefanie Ebelt; Chang, Howard H; Mulholland, James A; Tolbert, Paige E; Russell, Armistead G

    2015-11-17

    Exposure to atmospheric fine particulate matter (PM2.5) is associated with cardiorespiratory morbidity and mortality, but the mechanisms are not well understood. We assess the hypothesis that PM2.5 induces oxidative stress in the body via catalytic generation of reactive oxygen species (ROS). A dithiothreitol (DTT) assay was used to measure the ROS-generation potential of water-soluble PM2.5. Source apportionment on ambient (Atlanta, GA) PM2.5 was performed using the chemical mass balance method with ensemble-averaged source impact profiles. Linear regression analysis was used to relate PM2.5 emission sources to ROS-generation potential and to estimate historical levels of DTT activity for use in an epidemiologic analysis for the period of 1998-2009. Light-duty gasoline vehicles (LDGV) exhibited the highest intrinsic DTT activity, followed by biomass burning (BURN) and heavy-duty diesel vehicles (HDDV) (0.11 ± 0.02, 0.069 ± 0.02, and 0.052 ± 0.01 nmol min(-1) μg(-1)source, respectively). BURN contributed the largest fraction to total DTT activity over the study period, followed by LDGV and HDDV (45, 20, and 14%, respectively). DTT activity was more strongly associated with emergency department visits for asthma/wheezing and congestive heart failure than PM2.5. This work provides further epidemiologic evidence of a biologically plausible mechanism, that of oxidative stress, for associations of adverse health outcomes with PM2.5 mass and supports continued assessment of the utility of the DTT activity assay as a measure of ROS-generating potential of particles. PMID:26457347

  9. REACTIVE OXYGEN SPECIES GENERATION BY THE ETHYLENE-BIS-DITHIOCARBAMATE (EBDC) FUNGICIDE MANCOZEB AND ITS CONTRIBUTION TO NEURONAL TOXICITY IN MESENCEPHALIC CELLS

    PubMed Central

    Domico, Lisa M.; Cooper, Keith R.; Bernard, Laura P.; Zeevalk, Gail D.

    2007-01-01

    Previous in vitro studies in our laboratory have shown that mancozeb (MZ) and maneb (MB), both widely used EBDC fungicides, are equipotent neurotoxicants that produce cell loss in mesencephalic dopaminergic and GABAergic cells after an acute 24 h exposure. Mitochondrial uncoupling and inhibition were associated with fungicide exposure. Inhibition of mitochondrial respiration is known to increase free radical production. Here the mechanism(s) of neuronal damage associated with MZ exposure was further explored by determining the role that reactive oxygen species (ROS) played in toxicity. Damage to mesencephalic dopamine and GABA cell populations were significantly attenuated when carried out in the presence of ascorbate or SOD indicative of a free radical mediated contribution to toxicity. ROS generation monitored by H2O2 production using Amplex Red increased in a dose-dependent manner in response to MZ. Inhibition of intracellular catalase with aminotriazole had little effect on H2O2 generation, whereas exogenously added catalase significantly reduced H2O2 production demonstrating a large extracellular contribution to ROS generation. Conversely, cells preloaded with the ROS indicator dye DCF showed significant MZ-induced ROS production, demonstrating an increase in intracellular ROS. Both the organic backbone of MZ as well as its associated Mn ion, but not Zn ion were responsible and required for H2O2 generation. The functionally diverse NADPH oxidase inhibitors, diphenylene iodonium chloride, apocynin, and 4-(2-aminoethyl)benzene- sulfonyl fluoride hydrochloride significantly attenuated H2O2 production by MZ. In growth medium lacking cells, MZ produced little H2O2, but enhanced H2O2 generation when added with xanthine plus xanthine oxidase whereas, in cultured cells, allopurinol partially attenuated H2O2 production by MZ. Minocycline, an inhibitor of microglial activation, modestly reduced H2O2 formation in mesencephalic cells. In contrast, neuronal enriched

  10. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials.

    PubMed

    Garza, Kristine M; Soto, Karla F; Murr, Lawrence E

    2008-01-01

    We have investigated the cytotoxicity and reactive oxygen species (ROS) generation for indoor and outdoor soots: candle, wood, diesel, tire, and natural gas burner soots--along with surrogate black carbon, various multiwall carbon nanotube aggregate materials, TiO2 (anatase) and chrysotile asbestos as reference materials. All soots were observed utilizing TEM and FESEM to be composed of aggregated, primary spherules (20-80 nm diameter) forming complex, branched fractal structures. These spherules were composed of intercalated, turbostratic arrangements of curved graphene fragments with varying concentrations ofpolycyclic aromatic hydrocarbon (PAH) isomers. In vitro cultures with an immortalized human lung epithelial carcinoma cell line (A549) treated with these materials showed decreased cell viability and variations in ROS production, with no correlations to PAH content. The data demonstrate that soots are cytotoxic and that cytotoxicity is not related to PAH content but is related to ROS generation, suggesting that soot induces cellular oxidative stress and that cell viability assays can be indicators of ROS production. PMID:18488419

  11. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials

    PubMed Central

    Garza, Kristine M; Soto, Karla F; Murr, Lawrence E

    2008-01-01

    We have investigated the cytotoxicity and reactive oxygen species (ROS) generation for indoor and outdoor soots: candle, wood, diesel, tire, and natural gas burner soots – along with surrogate black carbon, various multiwall carbon nanotube aggregate materials, TiO2 (anatase) and chrysotile asbestos as reference materials. All soots were observed utilizing TEM and FESEM to be composed of aggregated, primary spherules (20–80 nm diameter) forming complex, branched fractal structures. These spherules were composed of intercalated, turbostratic arrangements of curved graphene fragments with varying concentrations of polycyclic aromatic hydrocarbon (PAH) isomers. In vitro cultures with an immortalized human lung epithelial carcinoma cell line (A549) treated with these materials showed decreased cell viability and variations in ROS production, with no correlations to PAH content. The data demonstrate that soots are cytotoxic and that cytotoxicity is not related to PAH content but is related to ROS generation, suggesting that soot induces cellular oxidative stress and that cell viability assays can be indicators of ROS production. PMID:18488419

  12. Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola

    PubMed Central

    Choi, Yoon-E; Lee, Changsu

    2016-01-01

    The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola. PMID:27103853

  13. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    SciTech Connect

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  14. Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola.

    PubMed

    Choi, Yoon-E; Lee, Changsu; Goodwin, Stephen B

    2016-03-01

    The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola. PMID:27103853

  15. PKCα promotes generation of reactive oxygen species via DUOX2 in hepatocellular carcinoma

    SciTech Connect

    Wang, Jiajun; Shao, Miaomiao; Liu, Min; Peng, Peike; Li, Lili; Wu, Weicheng; Wang, Lan; Duan, Fangfang; Zhang, Mingming; Song, Shushu; Jia, Dongwei; Ruan, Yuanyuan; Gu, Jianxin

    2015-08-07

    Hepatocellular carcinoma (HCC) remains the second leading cause of cancer-related death worldwide, and elevated rates of reactive oxygen species (ROS) have long been considered as a hallmark of almost all types of cancer including HCC. Protein kinase C alpha (PKCα), a serine/threonine kinase among conventional PKC family, is recognized as a major player in signal transduction and tumor progression. Overexpression of PKCα is commonly observed in human HCC and associated with its poor prognosis. However, how PKCα is involved in hepatocellular carcinogenesis remains not fully understood. In this study, we found that among the members of conventional PKC family, PKCα, but not PKCβI or βII, promoted ROS production in HCC cells. PKCα stimulated generation of ROS by up-regulating DUOX2 at post-transcriptional level. Depletion of DUOX2 abrogated PKCα-induced activation of AKT/MAPK pathways as well as cell proliferation, migration and invasion in HCC cells. Moreover, the expression of DUOX2 and PKCα was well positively correlated in both HCC cell lines and patient samples. Collectively, our findings demonstrate that PKCα plays a critical role in HCC development by inducing DUOX2 expression and ROS generation, and propose a strategy to target PKCα/DUOX2 as a potential adjuvant therapy for HCC treatment. - Highlights: • PKCα promotes the generation of ROS in hepatocellular carcinoma. • PKCα induces ROS production by up-regulating DUOX2 at post-transcriptional level. • DUOX2 is required for PKCα-induced AKT/MAPK activation and tumor progression in HCC. • The expression of PKCα is positively correlated with DUOX2 in HCC.

  16. TGF-β1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway

    PubMed Central

    Abe, Yoshifusa; Sakairi, Toru; Beeson, Craig

    2013-01-01

    Transforming growth factor (TGF)-β has been associated with podocyte injury; we have examined its effect on podocyte bioenergetics. We studied transformed mouse podocytes, exposed to TGF-β1, using a label-free assay system, Seahorse XF24, which measures oxygen consumption rates (OCR) and extracellular acidification rates (ECAR). Both basal OCR and ATP generation-coupled OCR were significantly higher in podocytes exposed to 0.3–10 ng/ml of TGF-β1 for 24, 48, and 72 h. TGF-β1 (3 ng/ml) increased oxidative capacity 75%, and 96% relative to control after 48 and 72 h, respectively. ATP content was increased 19% and 30% relative to control after a 48- and 72-h exposure, respectively. Under conditions of maximal mitochondrial function, TGF-β1 increased palmitate-driven OCR by 49%. Thus, TGF-β1 increases mitochondrial oxygen consumption and ATP generation in the presence of diverse energy substrates. TGF-β1 did not increase cell number or mitochondrial DNA copy number but did increase mitochondrial membrane potential (MMP), which could explain the OCR increase. Reactive oxygen species (ROS) increased by 32% after TGF-β1 exposure for 48 h. TGF-β activated the mammalian target of rapamycin (mTOR) pathway, and rapamycin reduced the TGF-β1-stimulated increases in OCR, ECAR, ATP generation, cellular metabolic activity, and protein generation. Our data suggest that TGF-β1, acting, in part, via mTOR, increases mitochondrial MMP and OCR, resulting in increased ROS generation and that this may contribute to podocyte injury. PMID:24049142

  17. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation.

    PubMed

    Liu, Wenhua; Ming, Yao; Li, Ping; Huang, Zhongwen

    2012-05-01

    In this study, Dunaliella salina (D. salina) maintained in 30‰ salinity for more than two years was exposed to the salinities of 5‰, 10‰, 20‰, 30‰ (control) in order to investigate oxidative burst and it's possible connection with extracellular carbonic anhydrase (CA) under hypo-osmotic stress (low salinity). The results indicated that intracellular ROS contents increased significantly when cells were exposed to salinity of 5 and 10‰, and the increase also occurred at 20‰ salinity. The activity of extracellular CA and its gene (P60) expression decreased significantly when cells were exposed to salinity of 5-20‰. Data from H₂O₂ treatments hinted that ROS production was possibly one of the factors affecting CA, including enzyme activity and gene expression levels. Significant inhibition of effective quantum efficiency of PSII and photosynthetic oxygen evolution rate were observed with the increase of ROS production and decline of CA activities. Taken together, hypo-osmotic stresses could induce ROS production in D. salina, and CA enzyme activities and expression levels were consequently inhibited. As a result, algal photosynthesis and oxygen evolution were inhibited. PMID:22377429

  18. Effect of reactive oxygen species (ROS) generating system for control of airborne microorganisms in meat processing environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of reactive oxygen species (ROS) generating AirOcare equipment on the reduction of airborne bacteria in a meat processing environment was determined. Serratia marcescens and lactic acid bacteria (Lactococcus lactis subsp. lactis and Lactobacillus plantarum) were used to artificiall...

  19. Efficient generation of cavitation bubbles and reactive oxygen species using triggered high-intensity focused ultrasound sequence for sonodynamic treatment

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    Sonodynamic treatment is a method of treating cancer using reactive oxygen species (ROS) generated by cavitation bubbles in collaboration with a sonosensitizer at a target tissue. In this treatment method, both localized ROS generation and ROS generation with high efficiency are important. In this study, a triggered high-intensity focused ultrasound (HIFU) sequence, which consists of a short, extremely high intensity pulse immediately followed by a long, moderate-intensity burst, was employed for the efficient generation of ROS. In experiments, a solution sealed in a chamber was exposed to a triggered HIFU sequence. Then, the distribution of generated ROS was observed by the luminol reaction, and the amount of generated ROS was quantified using KI method. As a result, the localized ROS generation was demonstrated by light emission from the luminol reaction. Moreover, it was demonstrated that the triggered HIFU sequence has higher efficiency of ROS generation by both the KI method and the luminol reaction emission.

  20. Generation of Functional Insulin-Producing Cells From Mouse Embryonic Stem Cells Through 804G Cell-Derived Extracellular Matrix and Protein Transduction of Transcription Factors

    PubMed Central

    Kaitsuka, Taku; Noguchi, Hirofumi; Shiraki, Nobuaki; Kubo, Takuya; Wei, Fan-Yan; Hakim, Farzana; Kume, Shoen

    2014-01-01

    Embryonic stem (ES) and induced pluripotent stem (iPS) cells have potential applications to regenerative medicine for diabetes; however, a useful and safe way to generate pancreatic β cells has not been developed. In this study, we tried to establish an effective method of differentiation through the protein transduction of three transcription factors (Pdx1, NeuroD, and MafA) important to pancreatic β cell development. The method poses no risk of unexpected genetic modifications in target cells. Transduction of the three proteins induced the differentiation of mouse ES and mouse iPS cells into insulin-producing cells. Furthermore, a laminin-5-rich extracellular matrix efficiently induced differentiation under feeder-free conditions. Cell differentiation was confirmed with the expression of the insulin 1 gene in addition to marker genes in pancreatic β cells, the differentiated cells secreted glucose-responsive C-peptide, and their transplantation restored normoglycemia in diabetic mice. Moreover, Pdx1 protein transduction had facilitative effects on differentiation into pancreatic endocrine progenitors from human iPS cells. These results suggest the direct delivery of recombinant proteins and treatment with laminin-5-rich extracellular matrix to be useful for the generation of insulin-producing cells. PMID:24292793

  1. Neutrophil Extracellular Traps Identification in Tegumentary Lesions of Patients with Paracoccidioidomycosis and Different Patterns of NETs Generation In Vitro

    PubMed Central

    Della Coletta, Amanda Manoel; Bachiega, Tatiana Fernanda; de Quaglia e Silva, Juliana Carvalho; Soares, Ângela Maria Victoriano de Campos; De Faveri, Julio; Marques, Silvio Alencar; Marques, Mariângela Esther Alencar; Ximenes, Valdecir Farias; Dias-Melicio, Luciane Alarcão

    2015-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in most Latin American countries, especially in Brazil. It is caused by the thermo-dimorphic fungus of the genus Paracoccidioides (Paracoccidioides brasiliensis and Paracoccidioides lutzii). Innate immune response plays a crucial role in host defense against fungal infections, and neutrophils (PMNs) are able to combat microorganisms with three different mechanisms: phagocytosis, secretion of granular proteins, which have antimicrobial properties, and the most recent described mechanism called NETosis. This new process is characterized by the release of net-like structures called Neutrophil Extracellular Traps (NETs), which is composed of nuclear (decondensed DNA and histones) and granular material such as elastase. Several microorganisms have the ability of inducing NETs formation, including gram-positive and gram-negative bacteria, viruses and some fungi. We proposed to identify NETs in tegumentary lesions of patients with PCM and to analyze the interaction between two strains of P. brasiliensis and human PMNs by NETs formation in vitro. In this context, the presence of NETs in vivo was evidenced in tegumentary lesions of patients with PCM by confocal spectrum analyzer. Furthermore, we showed that the high virulent P. brasiliensis strain 18 (Pb18) and the lower virulent strain Pb265 are able to induce different patterns of NETs formation in vitro. The quantification of extracellular DNA corroborates the idea of the ability of P. brasiliensis in inducing NETs release. In conclusion, our data show for the first time the identification of NETs in lesions of patients with PCM and demonstrate distinct patterns of NETs in cultures challenged with fungi in vitro. The presence of NETs components both in vivo and in vitro open new possibilities for the detailed investigation of immunity in PCM. PMID:26327485

  2. Neutrophil Extracellular Traps Identification in Tegumentary Lesions of Patients with Paracoccidioidomycosis and Different Patterns of NETs Generation In Vitro.

    PubMed

    Della Coletta, Amanda Manoel; Bachiega, Tatiana Fernanda; de Quaglia e Silva, Juliana Carvalho; Soares, Ângela Maria Victoriano de Campos; De Faveri, Julio; Marques, Silvio Alencar; Marques, Mariângela Esther Alencar; Ximenes, Valdecir Farias; Dias-Melicio, Luciane Alarcão

    2015-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in most Latin American countries, especially in Brazil. It is caused by the thermo-dimorphic fungus of the genus Paracoccidioides (Paracoccidioides brasiliensis and Paracoccidioides lutzii). Innate immune response plays a crucial role in host defense against fungal infections, and neutrophils (PMNs) are able to combat microorganisms with three different mechanisms: phagocytosis, secretion of granular proteins, which have antimicrobial properties, and the most recent described mechanism called NETosis. This new process is characterized by the release of net-like structures called Neutrophil Extracellular Traps (NETs), which is composed of nuclear (decondensed DNA and histones) and granular material such as elastase. Several microorganisms have the ability of inducing NETs formation, including gram-positive and gram-negative bacteria, viruses and some fungi. We proposed to identify NETs in tegumentary lesions of patients with PCM and to analyze the interaction between two strains of P. brasiliensis and human PMNs by NETs formation in vitro. In this context, the presence of NETs in vivo was evidenced in tegumentary lesions of patients with PCM by confocal spectrum analyzer. Furthermore, we showed that the high virulent P. brasiliensis strain 18 (Pb18) and the lower virulent strain Pb265 are able to induce different patterns of NETs formation in vitro. The quantification of extracellular DNA corroborates the idea of the ability of P. brasiliensis in inducing NETs release. In conclusion, our data show for the first time the identification of NETs in lesions of patients with PCM and demonstrate distinct patterns of NETs in cultures challenged with fungi in vitro. The presence of NETs components both in vivo and in vitro open new possibilities for the detailed investigation of immunity in PCM. PMID:26327485

  3. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Lavado, Andrea S.; Chauhan, Veeren M.; Alhaj Zen, Amer; Giuntini, Francesca; Jones, D. Rhodri E.; Boyle, Ross W.; Beeby, Andrew; Chan, Weng C.; Aylott, Jonathan W.

    2015-08-01

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn

  4. In situ generation of functionality in a reactive haloalkane-based ligand for the design of new porous coordination polymers.

    PubMed

    Kanoo, Prakash; Matsuda, Ryotaro; Sato, Hiroshi; Li, Liangchun; Jeon, Hyung Joon; Kitagawa, Susumu

    2013-10-01

    Herein, we report new porous coordination polymers (PCPs) via a facile synthetic approach called "in situ generation of functionality in the ligand". Upon a synthetic process of PCPs, a neutral (-CH2OH) or a cationic functionality (-CH2-[4,4'-bipyridine](+)) was generated on a isophthalate ligand from a reactive haloalkane (-CH2Br) moiety, affording two new PCPs. The PCPs have two-dimensional layered structures with large potential solvent-accessible voids for CO2 adsorption. PMID:24016100

  5. Cryptococcus neoformans capsule protects cell from oxygen reactive species generated by antimicrobial photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Prates, Renato Araujo; Hamblin, Michael R.; Kato, Ilka T.; Fuchs, Beth; Mylonakis, Eleytherios; Simões Ribeiro, Martha; Tegos, George

    2011-03-01

    Antimicrobial photodynamic inactivation (APDI) is based on the utilization of substances that can photosensitize biological tissues and are capable of being activated in the presence of light. Cryptococcus neoformans is an yeast surrounded by a capsule composed primarily of glucoronoxylomannan that plays an important role in its virulence. This yeast causes infection on skin, lungs and brain that can be associated with neurological sequelae and neurosurgical interventions, and its conventional treatment requires prolonged antifungal therapy, which presents important adverse effects. The aim of this study was to evaluate the protective effect of Cryptococcus neoformans capsule against reactive oxygen species generated by APDI. Cryptococcus neoformans KN99α, which is a strain able to produce capsule, and CAP59 that does not present capsule production were submitted to APDI using methylene blue (MB), rose bengal (RB), and pL-ce6 as photosensitizers (PS). Then microbial inactivation was evaluated by counting colony form units following APDI and confocal laser scanning microscopy (CLSM) illustrated localization as well as the preferential accumulation of PS into the fungal cells. C. neoformans KN99α was more resistant to APDI than CAP59 for all PSs tested. CLSM showed incorporation of MB and RB into the cytoplasm and a preferential uptake in mitochondria. A nuclear accumulation of MB was also observed. Contrarily, pL-ce6 appears accumulated in cell wall and cell membrane and minimal florescence was observed inside the fungal cells. In conclusion, the ability of C. neoformans to form capsule enhances survival following APDI.

  6. Determination of photochemically-generated reactive oxygen species in natural water.

    PubMed

    Zhan, Manjun

    2009-01-01

    Reactive oxygen species (ROS) can be produced by interactions between sunlight and light-absorbing substances in natural water environment. ROS may participate in the indirect photolysis of trace organic pollutants, therefore resulting in changes in their environmental fates and ecological risks in natural water systems. Bisphenol A (BPA), an endocrine-disrupting chemical, exits widely in natural waters. The photodegradation of BPA promoted by ROS (*OH, 1O2, HO2*/O2(*-)), which were produced on the excitation of ubiquitous constituents (such as nitrate ion, humic substances and Fe(III)-oxalate complexes) in natural water under simulated solar radiation was investigated. Both molecular probe method and electron spin resonance (ESR) test were used for the characterization of the generated ROS. It was found that *OH was photochemically produced in the presence of nitrate ions, humic substances and Fe(III)-oxalate complexes and that 102 was produced with the presence of humic substances. The steady-state concentrations of *OH was 1.27x10(-14) mol/L in a nitrate solution, and the second-order rate constant of BPA with *OH was 1.01 x 10(10) L/(mol x s). PMID:19634440

  7. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    NASA Astrophysics Data System (ADS)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    diffusion model at the scale of a single rock is developed incorporating the proposed kinetic rate expressions. Simulations of initiation, washout and AMD flows are discussed to gain a better understanding of the role of porosity, effective diffusivity and reactive surface area in generating AMD. Simulations indicate that flow boundary conditions control generation of acid rock drainage as porosity increases.

  8. A Porous Tissue Engineering Scaffold Selectively Degraded by Cell-Generated Reactive Oxygen Species

    PubMed Central

    Martin, John R.; Gupta, Mukesh K.; Page, Jonathan M.; Yu, Fang; Davidson, Jeffrey M.; Guelcher, Scott A.

    2014-01-01

    Biodegradable tissue engineering scaffolds are commonly fabricated from poly(lactide-co-glycolide) (PLGA) or similar polyesters that degrade by hydrolysis. PLGA hydrolysis generates acidic breakdown products that trigger an accelerated, autocatalytic degradation mechanism that can create mismatched rates of biomaterial breakdown and tissue formation. Reactive oxygen species (ROS) are key mediators of cell function in both health and disease, especially at sites of inflammation and tissue healing, and induction of inflammation and ROS are natural components of the in vivo response to biomaterial implantation. Thus, polymeric biomaterials that are selectively degraded by cell-generated ROS may have potential for creating tissue engineering scaffolds with better matched rates of tissue in-growth and cell-mediated scaffold biodegradation. To explore this approach, a series of poly(thioketal) (PTK) urethane (PTK-UR) biomaterial scaffolds were synthesized that degrade specifically by an ROS-dependent mechanism. PTK-UR scaffolds had significantly higher compressive moduli than analogous poly(ester urethane) (PEUR) scaffolds formed from hydrolytically-degradable ester-based diols (p < 0.05). Unlike PEUR scaffolds, the PTK-UR scaffolds were stable under aqueous conditions out to 25 weeks but were selectively degraded by ROS, indicating that their biodegradation would be exclusively cell-mediated. The in vitro oxidative degradation rates of the PTK-URs followed first-order degradation kinetics, were significantly dependent on PTK composition (p < 0.05), and correlated to ROS concentration. In subcutaneous rat wounds, PTK-UR scaffolds supported cellular infiltration and granulation tissue formation, followed first-order degradation kinetics over 7 weeks, and produced significantly greater stenting of subcutaneous wounds compared to PEUR scaffolds. These combined results indicate that ROS-degradable PTK-UR tissue engineering scaffolds have significant advantages over analogous

  9. Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation.

    PubMed

    Qin, Wenxiu; Wang, Yujun; Fang, Guodong; Wu, Tongliang; Liu, Cun; Zhou, Dongmei

    2016-05-01

    Natural organic matter (NOM) significantly affects the fate, bioavailability, and toxicity of arsenic in the environment. In the present study, we investigated the oxidation of As(III) in the presence of hydroquinone (HQ) and benzoquinone (BQ), which were selected as model quinone moieties for NOM. It was found that As(III) was oxidized to As(V) in the presence of HQ or BQ at neutral conditions, and the oxidation efficiency of As(III) increased from 33% to 92% in HQ solutions and from 0 to 80% in BQ solutions with pH increasing from 6.5 to 8.5. The oxidation mechanism was further explored with electron spin resonance (ESR) technique. The results showed that semiquinone radicals (SQ(-)) were generated from the comproportionation reaction between BQ and HQ, which mediated the formation of superoxide anion (O2(-)), hydrogen peroxide (H2O2) and hydroxyl radical (OH). Both the SQ(-), H2O2 and OH contributed to the oxidation of As(III). The increase of pH favored the formation of SQ(-), and thus promoted the generation of reactive oxygen species (ROS) as well as As(III) oxidation. Increasing concentrations of HQ and BQ from 0.1 to 1.0 mM enhanced As(III) oxidation from 65% to 94% and from 10% to 53%, respectively. The findings of this study facilitate our understanding of the fate and transformation of As(III) in organic-rich aquatic environments and highlight quinone moieties as the potential oxidants for As(III) in the remediation of arsenic contaminated sites. PMID:26891359

  10. The phosphorylation status of extracellular-regulated kinase 1/2 in astrocytes and neurons from rat hippocampus determines the thrombin-induced calcium release and ROS generation.

    PubMed

    Zündorf, Gregor; Reiser, Georg

    2011-12-01

    Challenge of protease-activated receptors induces cytosolic Ca(2+) concentration ([Ca(2+) ](c)) increase, mitogen-activated protein kinase activation and reactive oxygen species (ROS) formation with a bandwidth of responses in individual cells. We detected in this study in situ the thrombin-induced [Ca(2+) ](c) rise and ROS formation in dissociated hippocampal astrocytes and neurons in a mixed culture. In identified cells, single cell responses were correlated with extracellular-regulated kinase (ERK)1/2 phosphorylation level. On average, in astrocytes, thrombin induced a transient [Ca(2+) ](c) rise with concentration-dependent increase in amplitude and extrusion rate and high ERK1/2 phosphorylation level. Correlation analysis of [Ca(2+) ](c) response characteristics of single astrocytes reveals that astrocytes with nuclear phosphoERK1/2 localization have a smaller Ca(2+) amplitude and extrusion rate compared with cells with a cytosolic phosphoERK1/2 localization. In naive neurons, without thrombin challenge, variable ERK1/2 phosphorylation patterns are observed. ROS were detected by hydroethidine. Only in neurons with increased ERK1/2 phosphorylation level, we see sustained intracellular rise in fluorescence of the dye lasting over several minutes. ROS formation was abolished by pre-incubation with the NADPH oxidase inhibitor apocynin. Additionally, thrombin induced an immediate, transient hydroethidine fluorescence increase. This was interpreted as NADPH oxidase-mediated O(2) (•-) -release into the extracellular milieu, because it was decreased by pre-incubation with apocynin, and could be eluted by superfusion. In conclusion, the phosphorylation status of ERK1/2 determines the thrombin-dependent [Ca(2+) ](c) increase and ROS formation and, thus, influences the capacity of thrombin to regulate neuroprotection or neurodegeneration. PMID:21988180

  11. Endothelial-cell apoptosis induced by cleaved high-molecular-weight kininogen (HKa) is matrix dependent and requires the generation of reactive oxygen species

    PubMed Central

    Sun, Danyu; McCrae, Keith R.

    2006-01-01

    High–molecular-weight kininogen (HK) is an abundant plasma protein that plays a central role in activation of the kallikrein-kinin system. Cleavage of HK by plasma kallikrein results in release of the nonapeptide bradykinin (BK), leaving behind cleaved high–molecular-weight kininogen (HKa). Previous studies have demonstrated that HKa induces apoptosis of proliferating endothelial cells and inhibits angiogenesis in vivo, activities mediated primarily through its domain 5. However, the mechanisms by which these effects occur are not well understood. Here, we demonstrate that HKa induces apoptosis of endothelial cells cultured on gelatin, vitronectin, fibronectin, or laminin but not collagen type I or IV. The ability of HKa to induce endothelial-cell apoptosis is dependent on the generation of intracellular reactive oxygen species and associated with depletion of glutathione and peroxidation of endothelial-cell lipids, effects that occur only in cells cultured on matrix proteins permissive for HKa-induced apoptosis. Finally, the ability of HKa to induce endothelial-cell apoptosis is blocked by the addition of reduced glutathione or N-acetylcysteine. These studies demonstrate a unique role for oxidant stress in mediating the activity of an antiangiogenic polypeptide and highlight the importance of the extracellular matrix in regulating endothelial-cell survival. PMID:16418331

  12. In vitro elastogenesis: instructing human vascular smooth muscle cells to generate an elastic fiber-containing extracellular matrix scaffold.

    PubMed

    Hinderer, Svenja; Shena, Nian; Ringuette, Léa-Jeanne; Hansmann, Jan; Reinhardt, Dieter P; Brucker, Sara Y; Davis, Elaine C; Schenke-Layland, Katja

    2015-06-01

    Elastic fibers are essential for the proper function of organs including cardiovascular tissues such as heart valves and blood vessels. Although (tropo)elastin production in a tissue-engineered construct has previously been described, the assembly to functional elastic fibers in vitro using human cells has been highly challenging. In the present study, we seeded primary isolated human vascular smooth muscle cells (VSMCs) onto 3D electrospun scaffolds and exposed them to defined laminar shear stress using a customized bioreactor system. Increased elastin expression followed by elastin deposition onto the electrospun scaffolds, as well as on newly formed fibers, was observed after six days. Most interestingly, we identified the successful deposition of elastogenesis-associated proteins, including fibrillin-1 and -2, fibulin-4 and -5, fibronectin, elastin microfibril interface located protein 1 (EMILIN-1) and lysyl oxidase (LOX) within our engineered constructs. Ultrastructural analyses revealed a developing extracellular matrix (ECM) similar to native human fetal tissue, which is composed of collagens, microfibrils and elastin. To conclude, the combination of a novel dynamic flow bioreactor and an electrospun hybrid polymer scaffold allowed the production and assembly of an elastic fiber-containing ECM. PMID:25784676

  13. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis

    PubMed Central

    McCormick, Rachel; Pearson, Timothy; Vasilaki, Aphrodite

    2016-01-01

    Regulated changes in reactive oxygen and nitrogen species (RONS) activities are important in maintaining the normal sequence and development of myogenesis. Both excessive formation and reduction in RONS have been shown to affect muscle differentiation in a negative way. Cultured cells are typically grown in 20% O2 but this is not an appropriate physiological concentration for a number of cell types, including skeletal muscle. The aim was to examine the generation of RONS in cultured skeletal muscle cells under a physiological oxygen concentration condition (6% O2) and determine the effect on muscle myogenesis. Primary mouse satellite cells were grown in 20% or 6% O2 environments and RONS activity was measured at different stages of myogenesis by real-time fluorescent microscopy using fluorescent probes with different specificities i.e. dihydroethidium (DHE), 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA) and 5-(and-6)-chloromethyl-2′,7′ -dichlorodihydrofluorescein diacetate (CM-DCFH-DA). Data demonstrate that satellite cell proliferation increased when cells were grown in 6% O2 compared with 20% O2. Myoblasts grown in 20% O2 showed an increase in DCF fluorescence and DHE oxidation compared with myoblasts grown at 6% O2. Myotubes grown in 20% O2 also showed an increase in DCF and DAF-FM fluorescence and DHE oxidation compared with myotubes grown in 6% O2. The catalase and MnSOD contents were also increased in myoblasts and myotubes that were maintained in 20% O2 compared with myoblasts and myotubes grown in 6% O2. These data indicate that intracellular RONS activities in myoblasts and myotubes at rest are influenced by changes in environmental oxygen concentration and that the increased ROS may influence myogenesis in a negative manner. PMID:26827127

  14. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen species.

    PubMed

    Farhan, Mohd; Khan, Husain Yar; Oves, Mohammad; Al-Harrasi, Ahmed; Rehmani, Nida; Arif, Hussain; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-02-01

    Catechins, the dietary phytochemicals present in green tea and other beverages, are considered to be potent inducers of apoptosis and cytotoxicity to cancer cells. While it is believed that the antioxidant properties of catechins and related dietary agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, these properties cannot account for apoptosis induction and chemotherapeutic observations. Catechin (C), epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) are the four major constituents of green tea. In this article, using human peripheral lymphocytes and comet assay, we show that C, EC, EGC and EGCG cause cellular DNA breakage and can alternatively switch to a prooxidant action in the presence of transition metals such as copper. The cellular DNA breakage was found to be significantly enhanced in the presence of copper ions. Catechins were found to be effective in providing protection against oxidative stress induced by tertbutylhydroperoxide, as measured by oxidative DNA breakage in lymphocytes. The prooxidant action of catechins involved production of hydroxyl radicals through redox recycling of copper ions. We also determined that catechins, particularly EGCG, inhibit proliferation of breast cancer cell line MDA-MB-231 leading to a prooxidant cell death. Since it is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies, cancer cells would be more subject to redox cycling between copper ions and catechins to generate reactive oxygen species (ROS) responsible for DNA breakage. Such a copper dependent prooxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells. PMID:26861392

  15. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis.

    PubMed

    McCormick, Rachel; Pearson, Timothy; Vasilaki, Aphrodite

    2016-08-01

    Regulated changes in reactive oxygen and nitrogen species (RONS) activities are important in maintaining the normal sequence and development of myogenesis. Both excessive formation and reduction in RONS have been shown to affect muscle differentiation in a negative way. Cultured cells are typically grown in 20% O2 but this is not an appropriate physiological concentration for a number of cell types, including skeletal muscle. The aim was to examine the generation of RONS in cultured skeletal muscle cells under a physiological oxygen concentration condition (6% O2) and determine the effect on muscle myogenesis. Primary mouse satellite cells were grown in 20% or 6% O2 environments and RONS activity was measured at different stages of myogenesis by real-time fluorescent microscopy using fluorescent probes with different specificities i.e. dihydroethidium (DHE), 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) and 5-(and-6)-chloromethyl-2',7' -dichlorodihydrofluorescein diacetate (CM-DCFH-DA). Data demonstrate that satellite cell proliferation increased when cells were grown in 6% O2 compared with 20% O2. Myoblasts grown in 20% O2 showed an increase in DCF fluorescence and DHE oxidation compared with myoblasts grown at 6% O2. Myotubes grown in 20% O2 also showed an increase in DCF and DAF-FM fluorescence and DHE oxidation compared with myotubes grown in 6% O2. The catalase and MnSOD contents were also increased in myoblasts and myotubes that were maintained in 20% O2 compared with myoblasts and myotubes grown in 6% O2. These data indicate that intracellular RONS activities in myoblasts and myotubes at rest are influenced by changes in environmental oxygen concentration and that the increased ROS may influence myogenesis in a negative manner. PMID:26827127

  16. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen Species

    PubMed Central

    Farhan, Mohd; Khan, Husain Yar; Oves, Mohammad; Al-Harrasi, Ahmed; Rehmani, Nida; Arif, Hussain; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-01-01

    Catechins, the dietary phytochemicals present in green tea and other beverages, are considered to be potent inducers of apoptosis and cytotoxicity to cancer cells. While it is believed that the antioxidant properties of catechins and related dietary agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, these properties cannot account for apoptosis induction and chemotherapeutic observations. Catechin (C), epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) are the four major constituents of green tea. In this article, using human peripheral lymphocytes and comet assay, we show that C, EC, EGC and EGCG cause cellular DNA breakage and can alternatively switch to a prooxidant action in the presence of transition metals such as copper. The cellular DNA breakage was found to be significantly enhanced in the presence of copper ions. Catechins were found to be effective in providing protection against oxidative stress induced by tertbutylhydroperoxide, as measured by oxidative DNA breakage in lymphocytes. The prooxidant action of catechins involved production of hydroxyl radicals through redox recycling of copper ions. We also determined that catechins, particularly EGCG, inhibit proliferation of breast cancer cell line MDA-MB-231 leading to a prooxidant cell death. Since it is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies, cancer cells would be more subject to redox cycling between copper ions and catechins to generate reactive oxygen species (ROS) responsible for DNA breakage. Such a copper dependent prooxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells. PMID:26861392

  17. Nucleic acid reactivity: challenges for next-generation semiempirical quantum models.

    PubMed

    Huang, Ming; Giese, Timothy J; York, Darrin M

    2015-07-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic differential overlap and self-consistent density-functional tight-binding semiempirical models are evaluated against high-level QM benchmark calculations for seven biologically important datasets. The datasets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling "modified divide-and-conquer" model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles for the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic

  18. Nucleic acid reactivity : challenges for next-generation semiempirical quantum models

    PubMed Central

    Huang, Ming; Giese, Timothy J.; York, Darrin M.

    2016-01-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity in order to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic diffierential overlap (NDDO) and self-consistent density-functional tight-binding (SCC-DFTB) semiempirical models are evaluated against high-level quantum mechanical benchmark calculations for seven biologically important data sets. The data sets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling “modified divide-and-conquer” model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles within the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio

  19. FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk

    PubMed Central

    Nikolova, Yuliya S.; Iruku, Swetha P.; Lin, Chien-Wei; Conley, Emily Drabant; Puralewski, Rachel; French, Beverly; Hariri, Ahmad R.; Sibille, Etienne

    2015-01-01

    The A allele of the FRAS1-related extracellular matrix protein 3 (FREM3) rs7676614 single nucleotide polymorphism (SNP) was linked to major depressive disorder (MDD) in an early genome-wide association study (GWAS), and to symptoms of psychomotor retardation in a follow-up investigation. In line with significant overlap between age- and depression-related molecular pathways, parallel work has shown that FREM3 expression in postmortem human brain decreases with age. Here, we probe the effect of rs7676614 on amygdala reactivity and perceptual processing speed, both of which are altered in depression and aging. Amygdala reactivity was assessed using a face-matching BOLD fMRI paradigm in 365 Caucasian participants in the Duke Neurogenetics Study (DNS) (192 women, mean age 19.7 ± 1.2). Perceptual processing speed was indexed by reaction times in the same task and the Trail Making Test (TMT). The effect of rs7676614 on FREM3 mRNA brain expression levels was probed in a postmortem cohort of 169 Caucasian individuals (44 women, mean age 50.8 ± 14.9). The A allele of rs7676614 was associated with blunted amygdala reactivity to faces, slower reaction times in the face-matching condition (p < 0.04), as well as marginally slower performance on TMT Part B (p = 0.056). In the postmortem cohort, the T allele of rs6537170 (proxy for the rs7676614 A allele), was associated with trend-level reductions in gene expression in Brodmann areas 11 and 47 (p = 0.066), reminiscent of patterns characteristic of older age. The low-expressing allele of another FREM3 SNP (rs1391187) was similarly associated with reduced amygdala reactivity and slower TMT Part B speed, in addition to reduced BA47 activity and extraversion (p < 0.05). Together, these results suggest common genetic variation associated with reduced FREM3 expression may confer risk for a subtype of depression characterized by reduced reactivity to environmental stimuli and slower perceptual processing speed, possibly suggestive of

  20. Procyanidins from Nelumbo nucifera Gaertn. Seedpod induce autophagy mediated by reactive oxygen species generation in human hepatoma G2 cells.

    PubMed

    Duan, Yuqing; Xu, Hui; Luo, Xiaoping; Zhang, Haihui; He, Yuanqing; Sun, Guibo; Sun, Xiaobo

    2016-04-01

    In this study, autophagic effect of procyanidins from lotus (Nelumbo nucifera Gaertn.) seedpod (LSPCs) on human hepatoma G2 (HepG2) cells, and the inherent correlation between autophagic levels and reactive oxygen species (ROS) generation were investigated. The results showed that LSPCs increased monodansylcadaverine (MDC) fluorescence intensity and LC3-I/LC3-II conversion in HepG2 cells. In addition, the typically autophagic characteristics (autophagosomes and autolysosomes) were observed in LSPCs-treated cells, but not found in the cells treated with autophagy inhibitor 3-methyladenine (3-MA). Furthermore, the elevated ROS level was in line with the increasing of autophagy activation caused by LSPCs, however, both 3-MA and the ROS scavenger N-acetylcyteine (NAC) inhibitors effectively suppressed the autophagy and ROS generation triggered by LSPCs. As a result, these results indicated that LSPCs induced HepG2 cell autophagy in a time- and dose-dependent manner, and promoted reactive oxygen species (ROS) generation on HepG2 cells. Moreover, we found that LSPCs caused DNA damage, S phase arrest and the decrement of mitochondria membrane potential (MMP) which were associated with ROS generation. In summary, our findings demonstrated that the LSPCs-induced autophagy and autophagic cell death were triggered by the ROS generation in HepG2 cells, which might be associated with ROS generation through the mitochondria-dependent signaling way. PMID:27044822

  1. Interaction of Platelet Activating Factor, Reactive Oxygen Species Generated by Xanthine Oxidase, and Leukocytes in the Generation of Hepatic Injury After Shock/Resuscitation

    PubMed Central

    Yamakawa, Yasuhiko; Takano, Manabu; Patel, Mayur; Tien, Nevin; Takada, Tadahiro; Bulkley, Gregory B.

    2000-01-01

    Objective To evaluate the putative relation of platelet activating factor (PAF), xanthine oxidase, reactive oxidants, and leukocytes in the pathogenesis of hepatic injury after shock/resuscitation (S/R) in vivo. Background Reactive oxygen metabolites generated by xanthine oxidase at reperfusion have been found to trigger postischemic injury in many organs, including the liver. However, the precise linear sequence of the mechanism of consequent hepatic injury after S/R remains to be characterized. Methods Unheparinized male rats were bled to a mean blood pressure of 45 ± 3 mmHg. After 2 hours of shock, they were resuscitated by reinfusion of shed blood (anticoagulated with citrate-phosphate-dextrose) and crystalloid and observed for the next 6 or 24 hours. Results S/R caused the oxidation of hepatic glutathione and generated centrolobular leukocyte accumulation at 6 hours, followed by predominantly centrolobular hepatocellular injury at 24 hours. Each of these components was attenuated by PAF inhibition with WEB 2170, xanthine oxidase inhibition with allopurinol, antioxidant treatment with N-acetylcysteine, or severe leukopenia induced by vinblastine. In each case, the degree of leukocyte accumulation at 6 hours correlated with the hepatocellular injury seen at 24 hours. However, xanthine oxidase inhibition with allopurinol failed to attenuate further the small level of residual hepatocellular injury seen in leukopenic rats. Conclusion These findings suggest that reactive oxidants generated by xanthine oxidase at reperfusion, stimulated by PAF, mediate hepatocellular injury by triggering leukocyte accumulation, primarily within the centrolobular sinusoids. PMID:10714632

  2. From Microbiology to Cancer Biology: The Rid Protein Family Prevents Cellular Damage Caused by Endogenously Generated Reactive Nitrogen Species

    PubMed Central

    Downs, Diana M.; Ernst, Dustin C.

    2015-01-01

    Summary The Rid family of proteins is highly conserved and broadly distributed throughout the domains of life. Genetic and biochemical studies, primarily in Salmonella enterica, have defined a role for RidA in responding to endogenously generated reactive metabolites. The data show that 2-aminoacrylate (2AA), a reactive enamine intermediate generated by some pyridoxal 5′-phosphate (PLP)-dependent enzymes, accumulates in the absence of RidA. The accumulation of 2AA leads to covalent modification and inactivation of several enzymes involved in essential metabolic processes. This review describes the 2AA hydrolyzing activity of RidA and the effect of this biochemical activity on the metabolic network, which impacts organism fitness. The reported activity of RidA and the consequences encountered in vivo when RidA is absent have challenged fundamental assumptions in enzymology, biochemistry and cell metabolism regarding the fate of transiently-generated reactive enamine intermediates. The current understanding of RidA in Salmonella and the broad distribution of Rid family proteins provide exciting opportunities for future studies to define metabolic roles of Rid family members from microbes to man. PMID:25620221

  3. Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator

    SciTech Connect

    Albuquerque, Fabio L.; Moraes, Adelio J.; Guimaraes, Geraldo C.; Sanhueza, Sergio M.R.; Vaz, Alexandre R.

    2010-07-15

    In the case of photovoltaic (PV) systems acting as distributed generation (DG) systems, the DC energy that is produced is fed to the grid through the power-conditioning unit (inverter). The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can replace CSIs, we can generate reactive power proportionally to the remaining unused capacity at any given time. According to the theory of instantaneous power, the inverter reactive power can be regulated by changing the amplitude of its output voltage. In addition, the inverter active power can be adjusted by modifying the phase angle of its output voltage. Based on such theory, both the active power supply and the reactive power compensation (RPC) can be carried out simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of a PV system can still be used to improve the inverter utilisation factor. Some MATLAB simulation results are included here to show the feasibility of the method. (author)

  4. Identification of cross-reactive single-domain antibodies against serum albumin using next-generation DNA sequencing.

    PubMed

    Henry, Kevin A; Tanha, Jamshid; Hussack, Greg

    2015-10-01

    Antibodies that cross-react with multiple isoforms or homologue of a given protein are often desirable, especially in therapeutic applications. Here, we report the identification of several unique, clonally unrelated, single-domain antibodies (sdAbs) that bind to multiple serum albumin orthologues (human, rhesus, rat and mouse) with low-to-medium nanomolar affinity from a llama immunized only with human serum albumin. Using single-round panning of a phage-displayed sdAb library against serum albumins and next-generation DNA sequencing, we were able to predict patterns of sdAb reactivity to the albumins of different species with ∼90% accuracy. We expect this strategy to be generally applicable for identifying cross-reactive sdAbs, particularly when these exist at low frequency and/or are poorly enriched by panning. Moreover, the sdAbs identified here are of potential interest for serum half-life extension of biologics. PMID:26319004

  5. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    SciTech Connect

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  6. Calcium-dependent trichosanthin-induced generation of reactive oxygen species involved in apoptosis of human choriocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chunyang; Ma, Hui; Chen, Die Yan

    2001-04-01

    The type-I ribosome-inactivating protein trichosanthin (TCS) has a broad spectrum of biological and pharmacological activities, including abortifacient, anti-tumor and anti-HIV. We found for the first time that TCS induced production of reactive oxygen species (ROS) in JAR cells by using fluorescent probe 2',7'-dichlorofluorescin diacetate with confocal laser scanning microscopy. TCS-induced ROS showed dependence on the increase in intracellular calcium and on the presence of extracellular calcium. The production of ROS increased rapidly after the application of TCS, which paralleled TCS-indued increase in intracellular calcium monitored using fluo 3-AM, suggesting that TCS-induced ROS might mediate by the increase in intracellular Ca2PLU concentration. Simultaneous observation of the nuclear morphological changes and production of ROS in JAR cells with two-photon laser scanning microscopy and confocal laser scanning microscopy revealed that ROS involved in the apoptosis of JAR cells, which was confirmed by that antioxidant (alpha) -tocopherol prevented TCS-induced ROS formation and cell death. The finding that calcium-dependent TCS-induced ROS involved in the apoptosis of JAR cells might provide new insight into the anti-tumor and anti-HIV mechanism of TCS.

  7. An assay for pro-oxidant reactivity based on phenoxyl radicals generated by laccase.

    PubMed

    Moţ, Augustin Cătălin; Coman, Cristina; Miron, Carmen; Damian, Grigore; Sarbu, Costel; Silaghi-Dumitrescu, Radu

    2014-01-15

    A transient species may be detected with UV-vis and EPR spectroscopy during turnover of a laccase with quercetin; this species is assigned as a quercetin-derived radical, based on EPR spectra as well the observed UV-vis similarities (a 540nm centred band) with previously reported data. The rates of formation and decay of this species correlate well (r=0.9946) with the pro-oxidant reactivity manifested by flavonoids in the presence of laccase. An assay for the pro-oxidant reactivity of natural products is hence proposed based on the results reported here; its application is demonstrated for a series of pure compounds as well as for several propolis extracts. This assay has the advantages of using a biologically relevant process (haemoglobin oxidation), and not requiring the addition of oxidising agents such as peroxide or superoxide. Correlations, or the lack thereof, between the pro-oxidant parameters and the redox potentials, antioxidant capacities and lipophilicities, were analysed. The laccase employed in our study does display reactivity-related similarities to a range of other proteins, including human plasma ceruloplasmin. PMID:24054233

  8. Direct and Indirect Co-culture of Chondrocytes and Mesenchymal Stem Cells for the Generation of Polymer/Extracellular Matrix Hybrid Constructs

    PubMed Central

    Levorson, Erica J.; Santoro, Marco; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    In this work, the influence of direct cell-cell contact in co-cultures of mesenchymal stem cells (MSCs) and chondrocytes for the improved deposition of cartilage-like extracellular matrix (ECM) within nonwoven fibrous poly(∊ -caprolactone) (PCL) scaffolds was examined. To this end, chondrocytes and MSCs were either co-cultured in direct contact by mixing on a single PCL scaffold or via indirect co-culture whereby the two cell types were seeded on separate scaffolds which were then cultured together in the same system either statically or under media perfusion in a bioreactor. In static cultures, the chondrocyte scaffold of an indirectly co-cultured group generated significantly greater amounts of glycosaminoglycan and collagen than the direct co-culture group initially seeded with the same number of chondrocytes. Furthermore, improved ECM production was linked to greater cellular proliferation and distribution throughout the scaffold in static culture. In perfusion cultures, flow had a significant effect on the proliferation of the chondrocytes. The ECM contents within the chondrocyte containing scaffolds of the indirect co-culture groups either approximated or surpassed the amounts generated within the direct co-culture group. Additionally, within bioreactor culture there were indications that chondrocytes had an influence on the chondrogenesis of MSCs as evidenced by increases in cartilaginous ECM synthetic capacity. This work demonstrates that it is possible to generate PCL/ECM hybrid scaffolds for cartilage regeneration by utilizing the factors secreted by two different cell types, chondrocytes and MSCs, even in the absence of juxtacrine signaling. PMID:24365703

  9. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses

    PubMed Central

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    Between 15–20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis. PMID:25580106

  10. Oxidation-extraction spectrometry of reactive oxygen species (ROS) generated by chlorophyllin magnesium (Chl-Mg) under ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Guo, Yuwei; Cheng, Chunping; Wang, Jun; Jin, Xudong; Liu, Bin; Wang, Zhiqiu; Gao, Jingqun; Kang, Pingli

    2011-09-01

    In order to examine the mechanism and process of sonodynamic reaction, the chlorophyllin magnesium (Chl-Mg) acting as a sonosensitizer was irradiated by ultrasound, and the generation of reactive oxygen species (ROS) were detected by the method of oxidation-extraction spectrometry (OES). That is, under ultrasonic irradiation in the presence of Chl-Mg, the 1,5-diphenyl carbazide (DPCI) is oxidized by generated ROS into 1,5-diphenyl carbazone (DPCO), which can be extracted by mixed organic solvent and display a obvious visible absorption at 563 nm wavelength. Besides, the generation conditions of ROS were also reviewed. The results demonstrated that the quantities of generated ROS increased with the increase of ultrasonic irradiation time, Chl-Mg concentration and DPCI concentration. Finally, several radical scavengers (l-Histidine (His), 2,6-Di-tert-butyl-methylphenol (BHT) and Vitamin C (VC)) were used to determine the kind of the generated ROS. It was found that at least the hydroxyl radical (OH) and singlet oxygen ( 1O 2) were generated in the presence of Chl-Mg under ultrasonic irradiation. It is wish that this paper might offer some valuable references for the study on the mechanism of SDT and the application of Chl-Mg in tumor treatment.

  11. Next-generation re-sequencing of genes involved in increased platelet reactivity in diabetic patients on acetylsalicylic acid.

    PubMed

    Postula, Marek; Janicki, Piotr K; Eyileten, Ceren; Rosiak, Marek; Kaplon-Cieslicka, Agnieszka; Sugino, Shigekazu; Wilimski, Radosław; Kosior, Dariusz A; Opolski, Grzegorz; Filipiak, Krzysztof J; Mirowska-Guzel, Dagmara

    2016-06-01

    The objective of this study was to investigate whether rare missense genetic variants in several genes related to platelet functions and acetylsalicylic acid (ASA) response are associated with the platelet reactivity in patients with diabetes type 2 (T2D) on ASA therapy. Fifty eight exons and corresponding introns of eight selected genes, including PTGS1, PTGS2, TXBAS1, PTGIS, ADRA2A, ADRA2B, TXBA2R, and P2RY1 were re-sequenced in 230 DNA samples from T2D patients by using a pooled PCR amplification and next-generation sequencing by Illumina HiSeq2000. The observed non-synonymous variants were confirmed by individual genotyping of 384 DNA samples comprising of the individuals from the original discovery pools and additional verification cohort of 154 ASA-treated T2DM patients. The association between investigated phenotypes (ASA induced changes in platelets reactivity by PFA-100, VerifyNow and serum thromboxane B2 level [sTxB2]), and accumulation of rare missense variants (genetic burden) in investigated genes was tested using statistical collapsing tests. We identified a total of 35 exonic variants, including 3 common missense variants, 15 rare missense variants, and 17 synonymous variants in 8 investigated genes. The rare missense variants exhibited statistically significant difference in the accumulation pattern between a group of patients with increased and normal platelet reactivity based on PFA-100 assay. Our study suggests that genetic burden of the rare functional variants in eight genes may contribute to differences in the platelet reactivity measured with the PFA-100 assay in the T2DM patients treated with ASA. PMID:26599574

  12. A LAIR-1 insertion generates broadly reactive antibodies against malaria variant antigens

    PubMed Central

    Abdi, Abdirahman; Perez, Mathilde Foglierini; Geiger, Roger; Tully, Claire Maria; Jarrossay, David; Maina Ndungu, Francis; Wambua, Juliana; Bejon, Philip; Fregni, Chiara Silacci; Fernandez-Rodriguez, Blanca; Barbieri, Sonia; Bianchi, Siro; Marsh, Kevin; Thathy, Vandana; Corti, Davide; Sallusto, Federica

    2016-01-01

    Plasmodium falciparum antigens expressed on the surface of infected erythrocytes are important targets of naturally acquired immunity against malaria, but their high number and variability provide the pathogen with a powerful means of escape from host antibodies1–4. Although broadly reactive antibodies against these antigens could be useful as therapeutics and in vaccine design, their identification has proven elusive. Here, we report the isolation of human monoclonal antibodies that recognize erythrocytes infected by different P. falciparum isolates and opsonize these cells by binding to members of the RIFIN family. These antibodies acquired broad reactivity through a novel mechanism of insertion of a large DNA fragment between the V and DJ segments. The insert, which is both necessary and sufficient for binding to RIFINs, encodes the entire 100 amino acid collagen-binding domain of LAIR-1, an Ig superfamily inhibitory receptor encoded on chromosome 19. In each of the two donors studied, the antibodies are produced by a single expanded B cell clone and carry distinct somatic mutations in the LAIR-1 domain that abolish binding to collagen and increase binding to infected erythrocytes. These findings illustrate, with a biologically relevant example, a novel mechanism of antibody diversification by interchromosomal DNA transposition and demonstrate the existence of conserved epitopes that may be suitable candidates for the development of a malaria vaccine. PMID:26700814

  13. A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens.

    PubMed

    Tan, Joshua; Pieper, Kathrin; Piccoli, Luca; Abdi, Abdirahman; Foglierini, Mathilde; Geiger, Roger; Tully, Claire Maria; Jarrossay, David; Ndungu, Francis Maina; Wambua, Juliana; Bejon, Philip; Fregni, Chiara Silacci; Fernandez-Rodriguez, Blanca; Barbieri, Sonia; Bianchi, Siro; Marsh, Kevin; Thathy, Vandana; Corti, Davide; Sallusto, Federica; Bull, Peter; Lanzavecchia, Antonio

    2016-01-01

    Plasmodium falciparum antigens expressed on the surface of infected erythrocytes are important targets of naturally acquired immunity against malaria, but their high number and variability provide the pathogen with a powerful means of escape from host antibodies. Although broadly reactive antibodies against these antigens could be useful as therapeutics and in vaccine design, their identification has proven elusive. Here we report the isolation of human monoclonal antibodies that recognize erythrocytes infected by different P. falciparum isolates and opsonize these cells by binding to members of the RIFIN family. These antibodies acquired broad reactivity through a novel mechanism of insertion of a large DNA fragment between the V and DJ segments. The insert, which is both necessary and sufficient for binding to RIFINs, encodes the entire 98 amino acid collagen-binding domain of LAIR1, an immunoglobulin superfamily inhibitory receptor encoded on chromosome 19. In each of the two donors studied, the antibodies are produced by a single expanded B-cell clone and carry distinct somatic mutations in the LAIR1 domain that abolish binding to collagen and increase binding to infected erythrocytes. These findings illustrate, with a biologically relevant example, a novel mechanism of antibody diversification by interchromosomal DNA transposition and demonstrate the existence of conserved epitopes that may be suitable candidates for the development of a malaria vaccine. PMID:26700814

  14. Extracellular calcium sensing and extracellular calcium signaling

    NASA Technical Reports Server (NTRS)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  15. Antioxidant defence systems and generation of reactive oxygen species in osteosarcoma cells with defective mitochondria: effect of selenium.

    PubMed

    Wojewoda, Marta; Duszyński, Jerzy; Szczepanowska, Joanna

    2010-01-01

    Mitochondrial diseases originate from mutations in mitochondrial or nuclear genes encoding for mitochondrial proteome. Neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP) syndrome is associated with the T8993G transversion in ATP6 gene which results in substitution at the very conservative site in the subunit 6 of mitochondrial ATP synthase. Defects in the mitochondrial respiratory chain and the ATPase are considered to be accompanied by changes in the generation of reactive oxygen species (ROS). This study aimed to elucidate effects of selenium on ROS and antioxidant system of NARP cybrid cells with 98% of T8993G mutation load. We found that selenium decreased ROS generation and increased the level and activity of antioxidant enzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Therefore, we propose selenium to be a promising therapeutic agent not only in the case of NARP syndrome but also other diseases associated with mitochondrial dysfunctions and oxidative stress. PMID:20138159

  16. Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent.

    PubMed

    El-Desoky, Hanaa S; Ghoneim, Mohamed M; El-Sheikh, Ragaa; Zidan, Naglaa M

    2010-03-15

    The indirect electrochemical removal of pollutants from effluents has become an attractive method in recent years. Removal (decolorization and mineralization) of Levafix Blue CA and Levafix Red CA reactive azo-dyes from aqueous media by electro-generated Fenton's reagent (Fe(2+)/H(2)O(2)) using a reticulated vitreous carbon cathode and a platinum gauze anode was optimized. Progress of oxidation (decolorization and mineralization) of the investigated azo-dyes with time of electro-Fenton's reaction was monitored by UV-visible absorbance measurements, Chemical oxygen demand (COD) removal and HPLC analysis. The results indicated that the electro-Fenton's oxidation system is efficient for treatment of such types of reactive dyes. Oxidation of each of the investigated azo-dyes by electro-generated Fenton's reagent up to complete decolorization and approximately 90-95% mineralization was achieved. Moreover, the optimized electro-Fenton's oxidation was successfully applied for complete decolorization and approximately 85-90% mineralization of both azo-dyes in real industrial wastewater samples collected from textile dyeing house at El-Mahalla El-Kobra, Egypt. PMID:19926217

  17. High osmotic pressure increases reactive oxygen species generation in rabbit corneal epithelial cells by endoplasmic reticulum

    PubMed Central

    Wang, Peng; Sheng, Minjie; Li, Bing; Jiang, Yaping; Chen, Yihui

    2016-01-01

    Tear high osmotic pressure (HOP) has been recognized as the core mechanism underlying ocular surface inflammation, injury and symptoms and is closely associated with many ocular surface diseases, especially dry eye. The endoplasmic reticulum (ER) is a multi-functional organelle responsible for protein synthesis, folding and transport, biological synthesis of lipids, vesicle transport and intracellular calcium storage. Accumulation of unfolded proteins and imbalance of calcium ion in the ER would induce ER stress and protective unfolded protein response (UPR). Many studies have demonstrated that ER stress can induce cell apoptosis. However, the association between tear HOP and ER stress has not been studied systematically. In the present study, rabbit corneal epithelial cells were treated with HOP and results showed that the production of reactive oxygen species increased markedly, which further activated the ER signaling pathway and ultimately induced cell apoptosis. These findings shed new lights on the pathogenesis and clinical treatment of dry eye and other ocular surface diseases. PMID:27158374

  18. Extracellular guanosine regulates extracellular adenosine levels

    PubMed Central

    Cheng, Dongmei; Jackson, Travis C.; Verrier, Jonathan D.; Gillespie, Delbert G.

    2013-01-01

    The aim of this investigation was to test the hypothesis that extracellular guanosine regulates extracellular adenosine levels. Rat preglomerular vascular smooth muscle cells were incubated with adenosine, guanosine, or both. Guanosine (30 μmol/l) per se had little effect on extracellular adenosine levels. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) were 0.125 ± 0.020 μmol/l, indicating rapid disposition of extracellular adenosine. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) plus guanosine (30 μmol/l) were 1.173 ± 0.061 μmol/l, indicating slow disposition of extracellular adenosine. Cell injury increased extracellular levels of endogenous adenosine and guanosine, and the effects of cell injury on endogenous extracellular adenosine were modulated by altering the levels of endogenous extracellular guanosine with exogenous purine nucleoside phosphorylase (converts guanosine to guanine) or 8-aminoguanosine (inhibits purine nucleoside phosphorylase). Extracellular guanosine also slowed the disposition of extracellular adenosine in rat preglomerular vascular endothelial cells, mesangial cells, cardiac fibroblasts, and kidney epithelial cells and in human aortic and coronary artery vascular smooth muscle cells and coronary artery endothelial cells. The effects of guanosine on adenosine levels were not mimicked or attenuated by 5-iodotubericidin (adenosine kinase inhibitor), erythro-9-(2-hydroxy-3-nonyl)-adenine (adenosine deaminase inhibitor), 5-aminoimidazole-4-carboxamide (guanine deaminase inhibitor), aristeromycin (S-adenosylhomocysteine hydrolase inhibitor), low sodium (inhibits concentrative nucleoside transporters), S-(4-nitrobenzyl)−6-thioinosine [inhibits equilibrative nucleoside transporter (ENT) type 1], zidovudine (inhibits ENT type 2), or acadesine (known modulator of adenosine levels). Guanosine also increases extracellular inosine, uridine, thymidine, and cytidine, yet decreases

  19. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma

    PubMed Central

    Attri, Pankaj; Sarinont, Thapanut; Kim, Minsup; Amano, Takaaki; Koga, Kazunori; Cho, Art E.; Ha Choi, Eun; Shiratani, Masaharu

    2015-01-01

    The presence of salts in biological solution can affect the activity of the reactive species (RS) generated by plasma, and so they can also have an influence on the plasma-induced sterilization. In this work, we assess the influence that diethylammonium dihydrogen phosphate (DEAP), an ionic liquid (IL), and sodium chloride (NaCl), an ionic salt (IS), have on the structural changes in hemoglobin (Hb) in the presence of RS generated using dielectric barrier discharge (DBD) plasma in the presence of various gases [O2, N2, Ar, He, NO (10%) + N2 and Air]. We carry out fluorescence spectroscopy to verify the generation of •OH with or without the presence of DEAP IL and IS, and we use electron spin resonance (ESR) to check the generation of H• and •OH. In addition, we verified the structural changes in the Hb structure after treatment with DBD in presence and absence of IL and IS. We then assessed the structural stability of the Hb in the presence of IL and IS by using molecular dynamic (MD) simulations. Our results indicate that the IL has a strong effect on the conservation of the Hb structure relative to that of IS against RS generated by plasma. PMID:26656857

  20. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Attri, Pankaj; Sarinont, Thapanut; Kim, Minsup; Amano, Takaaki; Koga, Kazunori; Cho, Art E.; Ha Choi, Eun; Shiratani, Masaharu

    2015-12-01

    The presence of salts in biological solution can affect the activity of the reactive species (RS) generated by plasma, and so they can also have an influence on the plasma-induced sterilization. In this work, we assess the influence that diethylammonium dihydrogen phosphate (DEAP), an ionic liquid (IL), and sodium chloride (NaCl), an ionic salt (IS), have on the structural changes in hemoglobin (Hb) in the presence of RS generated using dielectric barrier discharge (DBD) plasma in the presence of various gases [O2, N2, Ar, He, NO (10%) + N2 and Air]. We carry out fluorescence spectroscopy to verify the generation of •OH with or without the presence of DEAP IL and IS, and we use electron spin resonance (ESR) to check the generation of H• and •OH. In addition, we verified the structural changes in the Hb structure after treatment with DBD in presence and absence of IL and IS. We then assessed the structural stability of the Hb in the presence of IL and IS by using molecular dynamic (MD) simulations. Our results indicate that the IL has a strong effect on the conservation of the Hb structure relative to that of IS against RS generated by plasma.

  1. Effect of plasma jet diameter on the efficiency of reactive oxygen and nitrogen species generation in water

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Kakuta, Maito; Furuta, Hiroshi; Akatsuka, Hiroshi; Hatta, Akimitsu

    2016-06-01

    The plasma jet generation of reactive oxygen and nitrogen species (RONS) in solution is important in biology, medicine, and disinfection. Studies using a wide variety of plasma jet devices have been carried out for this purpose, making it difficult to compare the performance between devices. In this study, we compared the efficiency of RONS generation in deionized (DI) water between 3.7-mm- and 800-µm-sized helium (He) plasma jets (hereafter mm-jet and µm-jet, respectively) at different treatment distances and times. The efficiency of RONS generation was determined by considering the total amount of RONS generated in DI water with respect to the input energy and gas consumption. We found that the mm-jet generated 20% more RONS in the DI water than the µm-jet at the optimized distance. However, when the input power and He gas consumption were taken into account, we discovered that the µm-jet was 5 times more efficient in generating RONS in the DI water. Under the parameters investigated in this study, the concentration of RONS continued to increase as a function of treatment time (up to 30 min). However treatment distance had a marked effect on the efficiency of RONS generation: treatment distances of 25 and 30 mm were optimal for the mm-jet and µm-jet, respectively. Our method of comparing the efficiency of RONS generation in solution between plasma jets could be used as a reference protocol for the development of efficient plasma jet sources for use in medicine, biology, and agriculture.

  2. Mechanisms of rapid reactive oxygen species generation in response to cytosolic Ca2+ or Zn2+ loads in cortical neurons.

    PubMed

    Clausen, Aaron; McClanahan, Taylor; Ji, Sung G; Weiss, John H

    2013-01-01

    Excessive "excitotoxic" accumulation of Ca(2+) and Zn(2+) within neurons contributes to neurodegeneration in pathological conditions including ischemia. Putative early targets of these ions, both of which are linked to increased reactive oxygen species (ROS) generation, are mitochondria and the cytosolic enzyme, NADPH oxidase (NOX). The present study uses primary cortical neuronal cultures to examine respective contributions of mitochondria and NOX to ROS generation in response to Ca(2+) or Zn(2+) loading. Induction of rapid cytosolic accumulation of either Ca(2+) (via NMDA exposure) or Zn(2+) (via Zn(2+)/Pyrithione exposure in 0 Ca(2+)) caused sharp cytosolic rises in these ions, as well as a strong and rapid increase in ROS generation. Inhibition of NOX activation significantly reduced the Ca(2+)-induced ROS production with little effect on the Zn(2+)- triggered ROS generation. Conversely, dissipation of the mitochondrial electrochemical gradient increased the cytosolic Ca(2+) or Zn(2+) rises caused by these exposures, consistent with inhibition of mitochondrial uptake of these ions. However, such disruption of mitochondrial function markedly suppressed the Zn(2+)-triggered ROS, while partially attenuating the Ca(2+)-triggered ROS. Furthermore, block of the mitochondrial Ca(2+) uniporter (MCU), through which Zn(2+) as well as Ca(2+) can enter the mitochondrial matrix, substantially diminished Zn(2+) triggered ROS production, suggesting that the ROS generation occurs specifically in response to Zn(2+) entry into mitochondria. Finally, in the presence of the sulfhydryl-oxidizing agent 2,2'-dithiodipyridine, which impairs Zn(2+) binding to cytosolic metalloproteins, far lower Zn(2+) exposures were able to induce mitochondrial Zn(2+) uptake and consequent ROS generation. Thus, whereas rapid acute accumulation of Zn(2+) and Ca(2+) each can trigger injurious ROS generation, Zn(2+) entry into mitochondria via the MCU may do so with particular potency. This may be of

  3. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate

    SciTech Connect

    Arana, Lide; Gangoiti, Patricia; Ouro, Alberto; Rivera, Io-Guane; Ordonez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Munoz, Antonio

    2012-02-15

    We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A{sub 2} and protein kinase C-{alpha}, and NADPH oxidase activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-{alpha} and cPLA{sub 2}-{alpha} in this pathway. -- Highlights: Black-Right-Pointing-Pointer Ceramide 1-phosphate (C1P) stimulates reactive oxygen species (ROS) formation. Black-Right-Pointing-Pointer The enzyme responsible for ROS generation by C1P in macrophages is NADPH oxidase. Black-Right-Pointing-Pointer NADPH oxidase lies downstream of cPLA{sub 2}-{alpha} and PKC-{alpha} in this pathway. Black-Right-Pointing-Pointer ROS generation is essential for the stimulation of macrophage proliferation by C1P.

  4. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    PubMed

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation. PMID:24788892

  5. Diminished Macrophage Apoptosis and Reactive Oxygen Species Generation after Phorbol Ester Stimulation in Crohn's Disease

    PubMed Central

    Palmer, Christine D.; Rahman, Farooq Z.; Sewell, Gavin W.; Ahmed, Afshan; Ashcroft, Margaret; Bloom, Stuart L.; Segal, Anthony W.; Smith, Andrew M.

    2009-01-01

    Background Crohn's Disease (CD) is a chronic relapsing disorder characterized by granulomatous inflammation of the gastrointestinal tract. Although its pathogenesis is complex, we have recently shown that CD patients have a systemic defect in macrophage function, which results in the defective clearance of bacteria from inflammatory sites. Methodology/Principal Findings Here we have identified a number of additional macrophage defects in CD following diacylglycerol (DAG) homolog phorbol-12-myristate-13-acetate (PMA) activation. We provide evidence for decreased DNA fragmentation, reduced mitochondrial membrane depolarization, impaired reactive oxygen species production, diminished cytochrome c release and increased IL-6 production compared to healthy subjects after PMA exposure. The observed macrophage defects in CD were stimulus-specific, as normal responses were observed following p53 activation and endoplasmic reticulum stress. Conclusion These findings add to a growing body of evidence highlighting disordered macrophage function in CD and, given their pivotal role in orchestrating inflammatory responses, defective apoptosis could potentially contribute to the pathogenesis of CD. PMID:19907654

  6. Ligation of Glycophorin A Generates Reactive Oxygen Species Leading to Decreased Red Blood Cell Function

    PubMed Central

    Khoory, Joseph; Estanislau, Jessica; Elkhal, Abdallah; Lazaar, Asmae; Melhorn, Mark I.; Brodsky, Abigail; Illigens, Ben; Hamachi, Itaru; Kurishita, Yasutaka; Ivanov, Alexander R.; Shevkoplyas, Sergey; Shapiro, Nathan I.; Ghiran, Ionita C.

    2016-01-01

    Acute, inflammatory conditions associated with dysregulated complement activation are characterized by significant increases in blood concentration of reactive oxygen species (ROS) and ATP. The mechanisms by which these molecules arise are not fully understood. In this study, using luminometric- and fluorescence-based methods, we show that ligation of glycophorin A (GPA) on human red blood cells (RBCs) results in a 2.1-fold, NADPH-oxidase-dependent increase in intracellular ROS that, in turn, trigger multiple downstream cascades leading to caspase-3 activation, ATP release, and increased band 3 phosphorylation. Functionally, using 2D microchannels to assess membrane deformability, GPS-ligated RBCs travel 33% slower than control RBCs, and lipid mobility was hindered by 10% using fluorescence recovery after photobleaching (FRAP). These outcomes were preventable by pretreating RBCs with cell-permeable ROS scavenger glutathione monoethyl ester (GSH-ME). Our results obtained in vitro using anti-GPA antibodies were validated using complement-altered RBCs isolated from control and septic patients. Our results suggest that during inflammatory conditions, circulating RBCs significantly contribute to capillary flow dysfunctions, and constitute an important but overlooked source of intravascular ROS and ATP, both critical mediators responsible for endothelial cell activation, microcirculation impairment, platelet activation, as well as long-term dysregulated adaptive and innate immune responses. PMID:26784696

  7. Reactive-power compensation of coal mining excavators by using a new-generation STATCOM

    SciTech Connect

    Bilgin, H.F.; Ermis, M.; Kose, K.N.; Cadirci, I.; Acik, A.; Demirci, T.; Terciyanli, A.; Kocak, C.; Yorukoglu, M.

    2007-01-15

    This paper deals with the development and implementation of a current-source-converter-based static synchronous compensator (CSC-STATCOM) applied to the volt-ampere-reactive (VAR) compensation problem of coal mining excavators. It is composed of a +/- 750-kVAR full-bridge CSC with selective harmonic elimination, a low-pass input filter tuned to 200 Hz, and a Delta/Y-connected coupling transformer for connection to medium-voltage load bus. Each power semiconductor switch is composed of an asymmetrical integrated gate commutated thyristor (IGCT) connected in series with a reverse-blocking diode and switched at 500 Hz to eliminate 5th, 7th, 11th, and 13th current harmonics produced by the CSC. Operating principles, power stage, design of dc link, and input filter are also described in this paper. It has been verified by field tests that the developed STATCOM follows rapid fluctuations in nearly symmetrical lagging and leading VAR consumption of electric excavators, resulting in nearly unity power factor on monthly basis, and the harmonic current spectra in the lines of CSC-STATCOM at the point of common coupling comply with the IEEE Standard 519-1992.

  8. Colloidal gold nanorings for improved photodynamic therapy through field-enhanced generation of reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Hu, Yue; Yang, Yamin; Wang, Hongjun; Du, Henry

    2013-02-01

    Au nanostructures that exhibit strong localized surface plasmon resonance (SPR) have excellent potential for photo-medicine, among a host of other applications. Here, we report the synthesis and use of colloidal gold nanorings (GNRs) with potential for enhanced photodynamic therapy of cancer. The GNRs were fabricated via galvanic replacement reaction of sacrificial Co nanoparticles in gold salt solution with low molecular weight (Mw = 2,500) poly(vinylpyrrolidone) (PVP) as a stabilizing agent. The size and the opening of the GNRs were controlled by the size of the starting Co particles and the concentration of the gold salt. UV-Vis absorption measurements indicated the tunability of the SPR of the GNRs from 560 nm to 780 nm. MTT assay showed that GNRs were non-toxic and biocompatible when incubated with breast cancer cells as well as the healthy counterpart cells. GNRs conjugated with 5-aminolevulinic acid (5-ALA) photosensitizer precursor led to elevated formation of reactive oxygen species and improved efficacy of photodynamic therapy of breast cancer cells under light irradiation compared to 5-ALA alone. These results can be attributed to significantly enhance localized electromagnetic field of the GNRs.

  9. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I.

    PubMed

    Hirst, Judy; Roessler, Maxie M

    2016-07-01

    Complex I (NADH:ubiquinone oxidoreductase) is critical for respiration in mammalian mitochondria. It oxidizes NADH produced by the Krebs' tricarboxylic acid cycle and β-oxidation of fatty acids, reduces ubiquinone, and transports protons to contribute to the proton-motive force across the inner membrane. Complex I is also a significant contributor to cellular oxidative stress. In complex I, NADH oxidation by a flavin mononucleotide, followed by intramolecular electron transfer along a chain of iron-sulfur clusters, delivers electrons and energy to bound ubiquinone. Either at cluster N2 (the terminal cluster in the chain) or upon the binding/reduction/dissociation of ubiquinone/ubiquinol, energy from the redox process is captured to initiate long-range energy transfer through the complex and drive proton translocation. This review focuses on current knowledge of how the redox reaction and proton transfer are coupled, with particular emphasis on the formation and role of semiquinone intermediates in both energy transduction and reactive oxygen species production. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26721206

  10. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation.

    PubMed

    Shi, Long; Chen, Hongmei; Yu, Xiaoming; Wu, Xinyi

    2013-11-01

    Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes. PMID:23955437

  11. Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism

    SciTech Connect

    Yang, Mei; Zhang, Minfang; Tahara, Yoshio; Chechetka, Svetlana; Miyako, Eijiro; Iijima, Sumio; Yudasaka, Masako

    2014-10-01

    Understanding the molecular mechanisms responsible for the cytotoxic effects of carbon nanomaterials is important for their future biomedical applications. Carbon nanotubular materials induce the generation of reactive oxygen species (ROS), which causes cell death; however, the exact details of this process are still unclear. Here, we identify a mechanism of ROS generation that is involved in the apoptosis of RAW264.7 macrophages caused by excess uptake of carbon nanohorns (CNHs), a typical type of carbon nanotubule. CNH accumulated in the lysosomes, where they induced lysosomal membrane permeabilization (LMP) and the subsequent release of lysosomal proteases, such as cathepsins, which in turn caused mitochondrial dysfunction and triggered the generation of ROS in the mitochondria. The nicotinamide adenine dinucleotide phosphate oxidase was not directly involved in CNH-related ROS production, and the ROS generation cannot be regulated by mitochondrial electron transport chain. ROS fed back to amplify the mitochondrial dysfunction, leading to the subsequent activation of caspases and cell apoptosis. Carbon nanotubules commonly accumulate in the lysosomes after internalization in cells; however, lysosomal dysfunction has not attracted much attention in toxicity studies of these materials. These results suggest that LMP, a neglected mechanism, may be the primary reason for carbon nanotubule toxicity. - Highlights: • We clarify an apoptotic mechanism of RAW264.7 cells caused by carbon nanohorns. • In the meantime, the mechanism of CNH-induced ROS generation is identified. • LMP is the initial factor of CNH-induced ROS generation and cell death. • Cathepsins work as mediators that connect LMP and mitochondrial dysfunction.

  12. Generation, Characterization, and Tunable Reactivity of Organometallic Fragments Bound to a Protein Ligand.

    PubMed

    Key, Hanna M; Clark, Douglas S; Hartwig, John F

    2015-07-01

    Organotransition metal complexes catalyze important synthetic transformations, and the development of these systems has rested on the detailed understanding of the structures and elementary reactions of discrete organometallic complexes bound to organic ligands. One strategy for the creation of new organometallic systems is to exploit the intricate and highly structured ligands found in natural metalloproteins. We report the preparation and characterization of discrete rhodium and iridium fragments bound site-specifically in a κ(2)-fashion to the protein carbonic anhydrase as a ligand. The reactions of apo human carbonic anhydrase with [Rh(nbd)2]BF4 or [M(CO)2(acac)] (M=Rh, Ir) form proteins containing Rh or Ir with organometallic ligands. A colorimetric assay was developed to quantify rapidly the metal occupancy at the native metal-binding site, and (15)N-(1)H NMR spectroscopy was used to establish the amino acids to which the metal is bound. IR spectroscopy and EXAFS revealed the presence and number of carbonyl ligands and the number total ligands, while UV-vis spectroscopy provided a signature to readily identify species that had been fully characterized. Exploiting these methods, we observed fundamental stoichiometric reactions of the artificial organometallic site of this protein, including reactions that simultaneously form and cleave metal-carbon bonds. The preparation and reactivity of these artificial organometallic proteins demonstrate the potential to study a new genre of organometallic complexes for which the rates and outcomes of organometallic reactions can be controlled by genetic manipulation of the protein scaffold. PMID:26020584

  13. Generation of reactive astrocytes from NG2 cells is regulated by sonic hedgehog.

    PubMed

    Honsa, Pavel; Valny, Martin; Kriska, Jan; Matuskova, Hana; Harantova, Lenka; Kirdajova, Denisa; Valihrach, Lukas; Androvic, Peter; Kubista, Mikael; Anderova, Miroslava

    2016-09-01

    NG2 cells, a fourth glial cell type in the adult mammalian central nervous system, produce oligodendrocytes in the healthy nervous tissue, and display wide differentiation potential under pathological conditions, where they could give rise to reactive astrocytes. The factors that control the differentiation of NG2 cells after focal cerebral ischemia (FCI) are largely unknown. Here, we used transgenic Cspg4-cre/Esr1/ROSA26Sortm14(CAG-tdTomato) mice, in which tamoxifen administration triggers the expression of red fluorescent protein (tomato) specifically in NG2 cells and cells derived therefrom. Differentiation potential (in vitro and in vivo) of tomato-positive NG2 cells from control or postischemic brains was determined using the immunohistochemistry, single cell RT-qPCR and patch-clamp method. The ischemic injury was induced by middle cerebral artery occlusion, a model of FCI. Using genetic fate-mapping method, we identified sonic hedgehog (Shh) as an important factor that influences differentiation of NG2 cells into astrocytes in vitro. We also manipulated Shh signaling in the adult mouse brain after FCI. Shh signaling activation significantly increased the number of astrocytes derived from NG2 cells in the glial scar around the ischemic lesion, while Shh signaling inhibition caused the opposite effect. Since Shh signaling modifications did not change the proliferation rate of NG2 cells, we can conclude that Shh has a direct influence on the differentiation of NG2 cells and therefore, on the formation and composition of a glial scar, which consequently affects the degree of the brain damage. GLIA 2016;64:1518-1531. PMID:27340757

  14. Hierarchical Testing with Automated Document Generation for Amanzi, ASCEM's Subsurface Flow and Reactive Transport Simulator

    NASA Astrophysics Data System (ADS)

    Moulton, J. D.; Steefel, C. I.; Yabusaki, S.; Castleton, K.; Scheibe, T. D.; Keating, E. H.; Freedman, V. L.

    2013-12-01

    The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments use a graded and iterative approach, beginning with simplified highly abstracted models, and adding geometric and geologic complexity as understanding is gained. To build confidence in this assessment capability, extensive testing of the underlying tools is needed. Since the tools themselves, such as the subsurface flow and reactive-transport simulator, Amanzi, are under active development, testing must be both hierarchical and highly automated. In this presentation we show how we have met these requirements, by leveraging the python-based open-source documentation system called Sphinx with several other open-source tools. Sphinx builds on the reStructured text tool docutils, with important extensions that include high-quality formatting of equations, and integrated plotting through matplotlib. This allows the documentation, as well as the input files for tests, benchmark and tutorial problems, to be maintained with the source code under a version control system. In addition, it enables developers to build documentation in several different formats (e.g., html and pdf) from a single source. We will highlight these features, and discuss important benefits of this approach for Amanzi. In addition, we'll show that some of ASCEM's other tools, such as the sampling provided by the Uncertainty Quantification toolset, are naturally leveraged to enable more comprehensive testing. Finally, we will highlight the integration of this hiearchical testing and documentation framework with our build system and tools (CMake, CTest, and CDash).

  15. Testosterone improves erectile function through inhibition of reactive oxygen species generation in castrated rats

    PubMed Central

    Li, Rui; Meng, Xianghu; Zhang, Yan; Wang, Tao; Yang, Jun; Niu, Yonghua; Cui, Kai; Wang, Shaogang

    2016-01-01

    Testosterone is overwhelmingly important in regulating erectile physiology. However, the associated molecular mechanisms are poorly understood. The purpose of this study was to explore the effects and mechanisms of testosterone in erectile dysfunction (ED) in castrated rats. Forty male Sprague-Dawley rats were randomized to four groups (control, sham-operated, castration and castration-with-testosterone-replacement). Reactive oxygen species (ROS) production was measured by dihydroethidium (DHE) staining. Erectile function was assessed by the recording of intracavernous pressure (ICP) and mean arterial blood pressure (MAP). Protein expression levels were examined by western blotting. We found that castration reduced erectile function and that testosterone restored it. Nitric oxide synthase (NOS) activity was decrease in the castrated rats, and testosterone administration attenuated this decrease (each p < 0.05). The testosterone, dihydrotestosterone, cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) concentrations were lower in the castrated rats, and testosterone restored these levels (each p < 0.05). Furthermore, the cyclooxygenase-2 (COX-2) and prostacyclin synthase (PTGIS) expression levels and phospho-endothelial nitric oxide synthase (p-eNOS, Ser1177)/endothelial nitric oxide synthase (eNOS) ratio were reduced in the castrated rats compared with the controls (each p < 0.05). In addition, the p40phox and p67phox expression levels were increased in the castrated rats, and testosterone reversed these changes (each p < 0.05). Overall, our results demonstrate that testosterone ameliorates ED after castration by reducing ROS production and increasing the activity of the eNOS/cGMP and COX-2/PTGIS/cAMP signaling pathways. PMID:27168996

  16. Reactive Oxygen Species Generation by Lunar Simulants in Simulated Lung Fluid

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Kaur, J.; Rickman, D.

    2015-12-01

    The current interest in human exploration of the Moon and other airless planetary bodies has rekindled research into the harmful effects of Lunar dust on human health. Our team has evaluated the spontaneous formation of Reactive Oxygen Species (ROS; hydroxyl radicals, superoxide, and hydrogen peroxide) of a suite of lunar simulants when dispersed in deionized water. Of these species, hydroxyl radical reacts almost immediately with any biomolecule leading to oxidative damage. Sustained production of OH radical as a result of mineral exposure can initiate or enhance disease. The results in deionized water indicate that mechanical stress and the absence of molecular oxygen and water, important environmental characteristics of the lunar environment, can lead to enhanced production of ROS in general. On the basis of the results with deionized water, a few of the simulants were selected for additional studies to evaluate the formation of hydrogen peroxide, a precursor of hydroxyl radical in Simulated Lung Fluid. These simulants dispersed in deionized water typically produce a maximum in H2O2 within 10 to 40 minutes. However, experiments in SLF show a slow steady increase in H2O2 concentration that has been documented to continue for as long as 7 hours. Control experiments with one simulant demonstrate that the rise in H2O2 depends on the availability of dissolved O2. We speculate that this continuous rise in oxygenated SLF might be a result of metal ion-mediated oxidation of organic components, such as glycine in SLF. Ion-mediated oxidation essentially allows dissolved molecular oxygen to react with dissolved organic compounds by forming a metal-organic complex. Results of separate experiments with dissolved Fe, Ni, and Cu and speciation calculations support this notion.

  17. Nanopore formation process in artificial cell membrane induced by plasma-generated reactive oxygen species.

    PubMed

    Tero, Ryugo; Yamashita, Ryuma; Hashizume, Hiroshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Hori, Masaru; Ito, Masafumi

    2016-09-01

    We investigated morphological change of an artificial lipid bilayer membrane induced by oxygen radicals which were generated by non-equilibrium atmospheric pressure plasma. Neutral oxygen species, O((3)Pj) and O2((1)Δg), were irradiated of a supported lipid bilayer existing under a buffer solution at various conditions of dose time and distances, at which the dose amounts of the oxygen species were calculated quantitatively. Observation using an atomic force microscope and a fluorescence microscope revealed that dose of the neutral oxygen species generated nanopores with the diameter of 10-50 nm in a phospholipid bilayer, and finally destructed the bilayer structure. We found that protrusions appeared on the lipid bilayer surface prior to the formation of nanopores, and we attributed the protrusions to the precursor of the nanopores. We propose a mechanism of the pore formation induced by lipid oxidation on the basis of previous experimental and theoretical studies. PMID:27216034

  18. Peroxiredoxin 1 knockdown sensitizes cancer cells to reactive oxygen species-generating drugs - an alternative approach for chemotherapy.

    PubMed

    He, Tiantian; Hatem, Elie; Vernis, Laurence; Huang, Meng-Er

    2014-10-01

    Peroxiredoxins have multiple cellular functions as major antioxidants, signaling regulators and tumor suppressors. Peroxiredoxin 1 (PRX1) is the most abundant among the six isoforms of human peroxiredoxins, catalyzing the reduction of peroxides utilizing thioredoxin 1as an electron donor. PRX1 is frequently over-expressed in various cancer cells, which is thought to be associated with carcinogenesis, metastasis and resistance to radiotherapy or chemotherapy. We investigated how modulations of intracellular redox system, especially PRX1, affect cancer cell sensitivity to reactive oxygen species (ROS)-generating drugs. We observed that stable and transient Prx1 knockdown (Prx1-) significantly enhances HeLa cell sensitivity to β-lapachone (β-lap), a potential anticancer agent, and to other ROS-generating molecules. ROS accumulation played a crucial role in drug-enhanced Prx1- cell death. For β-lap, Prx1- cells sensitization is achieved through combined action of accumulation of ROS and enhancement of mitogen-activated protein kinase pathway activation. The effect of other ROS-inducing drugs on Prx1- cell survival will also be presented and discussed. Taken together, our data provide evidence that PRX1 could be an interesting anticancer target and modulation of intracellular redox states through PRX1 inhibition could be an alternative approach to enhance cancer cell sensitivity to ROS-generating drugs. PMID:26461286

  19. Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells.

    PubMed

    Chu, Naying; Yao, Guodong; Liu, Yuan; Cheng, Maosheng; Ikejima, Takashi

    2016-09-01

    Compound 8 (C8) is a newly synthesized bis-benzimidazole derivative and exerts significant anti-tumor activity in vitro. Previous studies demonstrated that C8 induced apoptosis and autophagy in human promyelocytic leukemia HL60 cells. However, cytotoxicity study on human peripheral blood mononuclear cells (hPBMC) showed that C8 exhibited less toxicity in normal cells. In this study, the molecular mechanism of C8 on human cervical carcinoma HeLa cells was investigated. The results showed that C8 inhibited the growth of HeLa cells and triggered both apoptotic and autophagic cell death. Subsequent experiment also indicated that reactive oxygen species (ROS) generation was induced in C8-treated HeLa cells. Since ROS scavenger decreased the ratio of apoptotic and autophagic cells, ROS generation contributed to C8-induced apoptosis and autophagy. Furthermore, inhibitors of apoptosis and autophagy also reduced ROS generation, respectively. Autophagy inhibition increased cell growth compared to C8-treated group and attenuated apoptotic cell death, indicating that C8-induced autophagy promoted apoptosis for cell death. However, the percentage of autophagic cells was enhanced when limiting apoptosis process. Taken together, C8 induced ROS-mediated apoptosis and autophagy in HeLa cells, autophagy promoted apoptosis but the former was antagonized by the latter. The data also gave us a new perspective on the anti-tumor effect of C8. PMID:27497983

  20. Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe?

    PubMed

    Cooper, Paul R; Palmer, Lisa J; Chapple, Iain L C

    2013-10-01

    The discovery of neutrophil extracellular traps in 2004 opened a fascinating new chapter in immune-mediated microbial killing. Brinkman et al. demonstrated that neutrophils, when catastrophically stimulated, undergo a novel form of programmed cell death (neutrophil extracellular trap formation) whereby they decondense their entire nuclear chromatin/DNA and release the resulting structure into the cytoplasm to mix with granule-derived antimicrobial peptides before extruding these web-like structures into the extracellular environment. The process requires the activation of the granule enzyme peptidyl arginine deiminase-4, the formation of reactive oxygen species (in particular hypochlorous acid), the neutrophil microtubular system and the actin cytoskeleton. Recent work by Yousefi et al. demonstrated that exposure to different agents for shorter stimulation periods resulted in neutrophil extracellular trap release from viable granulocytes, and that such neutrophil extracellular traps comprised mitochondrial DNA rather than nuclear DNA and were also capable of microbial entrapment and destruction. Deficiency in NADPH-oxidase production (as found in patients with chronic granulomatous disease) results in an inability to produce neutrophil extracellular traps and, along with their failure to produce antimicrobial reactive oxygen species, these patients suffer from severe, and sometimes life-threatening, infections. However, conversely the release of nuclear chromatin into tissues is also potentially autoimmunogenic and is now associated with the generation of anti-citrullinated protein antibodies in seropositive rheumatoid arthritis. Other neutrophil-derived nuclear and cytoplasmic contents are also pathogenic, either through direct effects on tissues or via autoimmune processes (e.g. autoimmune vasculitis). In this review, we discuss the plant origins of a highly conserved innate immune method of microbial killing, the history and biology of neutrophil extracellular

  1. Reactive molecular dynamics of network polymers: Generation, characterization and mechanical properties

    NASA Astrophysics Data System (ADS)

    Shankar, Chandrashekar

    The goal of this research was to gain a fundamental understanding of the properties of networks created by the ring opening metathesis polymerization (ROMP) of dicyclopentadiene (DCPD) used in self-healing materials. To this end we used molecular simulation methods to generate realistic structures of DCPD networks, characterize their structures, and determine their mechanical properties. Density functional theory (DFT) calculations, complemented by structural information derived from molecular dynamics simulations were used to reconstruct experimental Raman spectra and differential scanning calorimetry (DSC) data. We performed coarse-grained simulations comparing networks generated via the ROMP reaction process and compared them to those generated via a RANDOM process, which led to the fundamental realization that the polymer topology has a unique influence on the network properties. We carried out fully atomistic simulations of DCPD using a novel algorithm for recreating ROMP reactions of DCPD molecules. Mechanical properties derived from these atomistic networks are in excellent agreement with those obtained from coarse-grained simulations in which interactions between nodes are subject to angular constraints. This comparison provides self-consistent validation of our simulation results and helps to identify the level of detail necessary for the coarse-grained interaction model. Simulations suggest networks can classified into three stages: fluid-like, rubber-like or glass-like delineated by two thresholds in degree of reaction alpha: The onset of finite magnitudes for the Young's modulus, alphaY, and the departure of the Poisson ration from 0.5, alphaP. In each stage the polymer exhibits a different predominant mechanical response to deformation. At low alpha < alphaY it flows. At alpha Y < alpha < alphaP the response is entropic with no change in internal energy. At alpha > alphaP the response is enthalpic change in internal energy. We developed graph theory

  2. Nitric oxide reactivity of [2Fe-2S] clusters leading to H2S generation.

    PubMed

    Tran, Camly T; Williard, Paul G; Kim, Eunsuk

    2014-08-27

    The crosstalk between two biologically important signaling molecules, nitric oxide (NO) and hydrogen sulfide (H2S), proceeds via elusive mechanism(s). Herein we report the formation of H2S by the action of NO on synthetic [2Fe-2S] clusters when the reaction environment is capable of providing a formal H(•) (e(-)/H(+)). Nitrosylation of (NEt4)2[Fe2S2(SPh)4] (1) in the presence of PhSH or (t)Bu3PhOH results in the formation of (NEt4)[Fe(NO)2(SPh)2] (2) and H2S with the concomitant generation of PhSSPh or (t)Bu3PhO(•). The amount of H2S generated is dependent on the electronic environment of the [2Fe-2S] cluster as well as the type of H(•) donor. Employment of clusters with electron-donating groups or H(•) donors from thiols leads to a larger amount of H2S evolution. The 1/NO reaction in the presence of PhSH exhibits biphasic decay kinetics with no deuterium kinetic isotope effect upon PhSD substitution. However, the rates of decay increase significantly with the use of 4-MeO-PhSH or 4-Me-PhSH in place of PhSH. These results provide the first chemical evidence to suggest that [Fe-S] clusters are likely to be a site for the crosstalk between NO and H2S in biology. PMID:25113815

  3. Generation and reactivation of T-cell receptor A joining region pseudogenes in primates

    SciTech Connect

    Thiel, C.; Lanchbury, J.S.; Otting, N.

    1996-06-01

    Tandemly duplicated T-cell receptor (Tcr) AJ (J{alpha}) segments contribute significantly to TCRA chain junctional region diversity in mammals. Since only limited data exists on TCRA diversity in nonhuman primates, we examined the TCRAJ regions of 37 chimpanzee and 71 rhesus macaque TCRA cDNA clones derived from inverse polymerase chain reaction on peripheral blood mononuclear cell cDNA of healthy animals. Twenty-five different TCRAJ regions were characterized in the chimpanzee and 36 in the rhesus macaque. Each bears a close structural relationship to an equivalent human TCRAJ region. Conserved amino acid motifs are shared between all three species. There are indications that differences between nonhuman primates and humans exist in the generation of TCRAJ pseudogenes. The nucleotide and amino acid sequences of the various characterized TCRAJ of each species are reported and we compare our results to the available information on human genomic sequences. Although we provide evidence of dynamic processes modifying TCRAJ segments during primate evolution, their repertoire and primary structure appears to be relatively conserved. 21 refs., 2 figs.

  4. Picosecond Spectroscopy of Reactive Intermediates: Generation and Dynamics of Arylmethyl Ions and Radicals in Solution.

    NASA Astrophysics Data System (ADS)

    Schmidt, Jeffrey Allan

    A detailed experimental description is presented of a practical and relatively inexpensive approach for two simultaneous and independent types of picosecond spectroscopic measurements. Two data collection subsystems, (1) a picosecond pump-probe transient absorption/emission spectrometer and (2) a streak camera system for time-dependent measurements of absorption and emission, were developed as independent subsystems within an integrated system based on a single mode-locked Nd:YAG laser which concurrently supplies each subsystem with picosecond pulses. Considerations concerning electrical and optical interfacing between the two subsystems are discussed. With these two subsystems, picosecond-pulsed photolyses of diphenylmethyl chloride, diphenylmethyl bromide, triphenylmethyl chloride, triphenylmethyl bromide, and triphenylacetyl chloride in acetonitrile, methylene chloride, and cyclohexane were studied. The dependence of the yields of radicals and ions are discussed with respect to the nature of the starting compound and the solvent. Ion-pair dynamics were monitored with subsystems 1 and 2. Microscopic rate constants for the collapse of the contact ion pair (CIP), separation of the CIP, and reformation of the CIP from the separated ions were calculated. The photophysics and photochemistry of the triphenylmethyl radical generated from triphenylmethyl chloride, and triphenylacetyl chloride, and tert-butyl triphenylperacetate in solution were studied by means of a unique three-pulse picosecond transient absorption technique. The emission lifetime of the excited triphenylmethyl radical was measured as a function of solvent polarity with subsystem 2. These data were collectively used to gain an understanding of the electronically excited triphenylmethyl radical.

  5. Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species.

    PubMed

    He, Di; Ma, Jinxing; Collins, Richard N; Waite, T David

    2016-04-01

    While it has been recognized for some time that addition of nanoparticlate zerovalent iron (nZVI) to oxygen-containing water results in both corrosion of Fe(0) and oxidation of contaminants, there is limited understanding of either the relationship between transformation of nZVI and oxidant formation or the factors controlling the lifetime and extent of oxidant production. Using Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, we show that while nZVI particles are transformed to ferrihydrite then lepidocrocite in less than 2 h, oxidant generation continues for up to 10 h. The major products (Fe(II) and H2O2) of the reaction of nZVI with oxygenated water are associated, for the most part, with the surface of particles present with these surface-associated Fenton reagents inducing oxidation of a target compound (in this study, (14)C-labeled formate). Effective oxidation of formate only occurred after formation of iron oxides on the nZVI surface with the initial formation of high surface area ferrihydrite facilitating rapid and extensive adsorption of formate with colocation of this target compound and surface-associated Fe(II) and H2O2 apparently critical to formate oxidation. Ongoing formate oxidation long after nZVI is consumed combined with the relatively slow consumption of Fe(II) and H2O2 suggest that these reactants are regenerated during the nZVI-initiated heterogeneous Fenton process. PMID:26958862

  6. Apoptosis induction of U937 human leukemia cells by diallyl trisulfide induces through generation of reactive oxygen species

    PubMed Central

    2012-01-01

    Background Diallyl trisulfide (DATS) is one of the major constituents in garlic oil and has demonstrated various pharmacological activities, including antimicrobial, antihyperlipidemic, antithrombotic, and anticancer effects. However, the mechanisms of antiproliferative activity in leukemia cells are not fully understood. In this study, the apoptotic effects of DATS were investigated in human leukemia cells. Results Results of this study indicated that treatment with DATS resulted in significantly inhibited leukemia cell growth in a concentration- and time-dependent manner by induction of apoptosis. In U937 cells, DATS-induced apoptosis was correlated with down-regulation of Bcl-2, XIAP, and cIAP-1 protein levels, cleavage of Bid proteins, activation of caspases, and collapse of mitochondrial membrane potential. The data further demonstrated that DATS increased intracellular reactive oxygen species (ROS) generation, which was attenuated by pretreatment with antioxidant N-acetyl-l-cysteine (NAC), a scavenger of ROS. In addition, administration of NAC resulted in significant inhibition of DATS-induced apoptosis by inhibiting activation of caspases. Conclusions The present study reveals that the cytotoxicity caused by DATS is mediated by generation of ROS and subsequent activation of the ROS-dependent caspase pathway in U937 leukemia cells. PMID:22578287

  7. Phloretin induces cell cycle arrest and apoptosis of human glioblastoma cells through the generation of reactive oxygen species.

    PubMed

    Liu, Yuanyuan; Fan, Chenghe; Pu, Lv; Wei, Cui; Jin, Haiqiang; Teng, Yuming; Zhao, Mingming; Yu, Albert Cheung Hoi; Jiang, Feng; Shu, Junlong; Li, Fan; Peng, Qing; Kong, Jian; Pan, Bing; Zheng, Lemin; Huang, Yining

    2016-06-01

    Phloretin, a flavonoid present in various plants, has been reported to exert anticarcinogenic effects. However, the mechanism of its chemo-preventive effect on human glioblastoma cells is not fully understood. This study aimed to investigate the molecular mechanism of phloretin and its associated chemo-preventive effect in human glioblastoma cells. The results indicate that phloretin inhibited cell proliferation by inducing cell cycle arrest at the G0-G1 phase and induced apoptosis of human glioblastoma cells. Phloretin-induced cell cycle arrest was associated with increased expression of p27 and decreased expression of cdk2, cdk4, cdk6, cyclinD and cyclinE. Moreover, the PI3K/AKT/mTOR signaling cascades were suppressed by phloretin in a dose-dependent manner. In addition, phloretin triggered the mitochondrial apoptosis pathway and generated reactive oxygen species (ROS). This was accompanied by the up-regulation of Bax, Bak and c-PARP and the down-regulation of Bcl-2. The antioxidant agents N-acetyl-L-cysteine and glutathione weakened the effect of phloretin on glioblastoma cells. In conclusion, these results demonstrate that phloretin exerts potent chemo-preventive activity in human glioblastoma cells through the generation of ROS. PMID:26983952

  8. Caudatin induces caspase-dependent apoptosis in human glioma cells with involvement of mitochondrial dysfunction and reactive oxygen species generation.

    PubMed

    Zhu, Liang-Zhen; Hou, Ya-Jun; Zhao, Ming; Yang, Ming-Feng; Fu, Xiao-Ting; Sun, Jing-Yi; Fu, Xiao-Yan; Shao, Lu-Rong; Zhang, Hui-Fang; Fan, Cun-Dong; Gao, Hong-Li; Sun, Bao-Liang

    2016-08-01

    Caudatin as one species of C-21 steroidal from Cynanchum bungei decne displays potential anticancer activity. However, the underlying mechanisms remain elusive. In the present study, the growth suppressive effect and mechanism of caudatin on human glioma U251 and U87 cells were evaluated in vitro. The results indicated that caudatin significantly inhibited U251 and U87 cell growth in both a time- and dose-dependent manner. Flow cytometry analysis revealed that caudatin-induced cell growth inhibition was achieved by induction of cell apoptosis, as convinced by the increase of Sub-G1 peak, PARP cleavage and activation of caspase-3, caspase-7 and caspase-9. Caudatin treatment also resulted in mitochondrial dysfunction which correlated with an imbalance of Bcl-2 family members. Further investigation revealed that caudatin triggered U251 cell apoptosis by inducing reactive oxygen species (ROS) generation through disturbing the redox homeostasis. Moreover, pretreatment of caspase inhibitors apparently weakens caudatin-induced cell killing, PARP cleavage and caspase activation and eventually reverses caudatin-mediated apoptosis. Importantly, caudatin significantly inhibited U251 tumour xenografts in vivo through induction of cell apoptosis involving the inhibition of cell proliferation and angiogenesis, which further validate its value in combating human glioma in vivo. Taken together, the results described above all suggest that caudatin inhibited human glioma cell growth by induction of caspase-dependent apoptosis with involvement of mitochondrial dysfunction and ROS generation. PMID:27184666

  9. Bcl-2 overexpression inhibits generation of intracellular reactive oxygen species and blocks adriamycin-induced apoptosis in bladder cancer cells.

    PubMed

    Kong, Chui-Ze; Zhang, Zhe

    2013-01-01

    Resistance to induction of apoptosis is a major obstacle for bladder cancer treatment. Bcl-2 is thought to be involved in anti-apoptotic signaling. In this study, we investigated the effect of Bcl-2 overexpression on apoptotic resistance and intracellular reactive oxygen species (ROS) generation in bladder cancer cells. A stable Bcl-2 overexpression cell line, BIU87-Bcl-2, was constructed from human bladder cancer cell line BIU87 by transfecting recombinant Bcl-2 [pcDNA3.1(+)-Bcl-2]. The sensitivity of transfected cells to adriamycin (ADR) was assessed by MTT assay. Apoptosis was examined by flow cytometry and acridine orange fluorescence staining. Intracellular ROS was determined using flow cytometry, and the activities of superoxide dismutase (SOD) and catalase (CAT) were also investigated by the xanthinoxidase and visible radiation methods using SOD and CAT detection kits. The susceptibility of BIU87-Bcl-2 cells to ADR treatment was significantly decreased as compared with control BIU87 cells. Enhanced expression of Bcl-2 inhibited intracellular ROS generation following ADR treatment. Moreover, the suppression of SOD and CAT activity induced by ADR treatment was blocked in the BIU87-Bcl-2 case but not in their parental cells. The overexpression of Bcl-2 renders human bladder cancer cells resistant to ADR-induced apoptosis and ROS might act as an important secondary messenger in this process. PMID:23621258

  10. Protective effects of α-tocopherol and ascorbic acid against cardol-induced cell death and reactive oxygen species generation in Staphylococcus aureus.

    PubMed

    Murata, Wakae; Tanaka, Toshio; Kubo, Isao; Fujita, Ken-ichi

    2013-06-01

    Cardol (C₁₅:₃), isolated from cashew (Anacardium occidentale L.) nut shell liquid, has been shown to exhibit bactericidal activity against various strains of Staphylococcus aureus, including methicillin-resistant strains. The maximum level of reactive oxygen species generation was detected at around the minimum bactericidal concentration of cardol, while reactive oxygen species production drastically decreased at doses above the minimum bactericidal concentration. The primary response for bactericidal activity around the bactericidal concentration was noted to primarily originate from oxidative stress such as intracellular reactive oxygen species generation. High doses of cardol (C₁₅:₃) were shown to induce leakage of K⁺ from S. aureus cells, which may be related to the decrease in reactive oxygen species. Antioxidants such as α-tocopherol and ascorbic acid restricted reactive oxygen species generation and restored cellular damage induced by the lipid. Cardol (C₁₅:₃) overdose probably disrupts the native membrane-associated function as it acts as a surfactant. The maximum antibacterial activity of cardols against S. aureus depends on their log P values (partition coefficient in octanol/water) and is related to their similarity to those of anacardic acids isolated from the same source. PMID:23670625

  11. Induction of reactive oxygen species generation inhibits epithelial-mesenchymal transition and promotes growth arrest in prostate cancer cells.

    PubMed

    Das, Trinath P; Suman, Suman; Damodaran, Chendil

    2014-07-01

    Oxidative stress is one causative factor of the pathogenesis and aggressiveness of most of the cancer types, including prostate cancer (CaP). A moderate increase in reactive oxygen species (ROS) induces cell proliferation whereas excessive amounts of ROS promote apoptosis. In this study, we explored the pro-oxidant property of 3,9-dihydroxy-2-prenylcoumestan (psoralidin [pso]), a dietary agent, on CaP (PC-3 and C4-2B) cells. Pso greatly induced ROS generation (more than 20-fold) that resulted in the growth inhibition of CaP cells. Overexpression of anti-oxidant enzymes superoxide dismutase 1 (SOD1), SOD2, and catalase, or pretreatment with the pharmacological inhibitor N-acetylcysteine (NAC) significantly attenuated both pso-mediated ROS generation and pso-mediated growth inhibition in CaP cells. Furthermore, pso administration significantly inhibited the migratory and invasive property of CaP cells by decreasing the transcription of β-catenin, and slug, which promote epithelial-mesenchymal transition (EMT), and by concurrently inducing E-cadherin expression in CaP cells. Pso-induced ROS generation in CaP cells resulted in loss of mitochondrial membrane potential, cytochrome-c release, and activation of caspase-3 and -9 and poly (ADP-ribose) polymerase (PARP), which led to apoptosis. On the other hand, overexpression of anti-oxidants rescued pso-mediated effects on CaP cells. These findings suggest that increasing the threshold of intracellular ROS could prevent or treat CaP growth and metastasis. PMID:23475579

  12. Apogossypolone targets mitochondria and light enhances its anticancer activity by stimulating generation of singlet oxygen and reactive oxygen species

    PubMed Central

    Hu, Zhe-Yu; Wang, Jing; Cheng, Gang; Zhu, Xiao-Feng; Huang, Peng; Yang, Dajun; Zeng, Yi-Xin

    2011-01-01

    Apogossypolone (ApoG2), a novel derivative of gossypol, has been shown to be a potent inhibitor of antiapoptotic Bcl-2 family proteins and to have antitumor activity in multiple types of cancer cells. Recent reports suggest that gossypol stimulates the generation of cellular reactive oxygen species (ROS) in leukemia and colorectal carcinoma cells; however, gossypol-mediated cell death in leukemia cells was reported to be ROS-independent. This study was conducted to clarify the effect of ApoG2-induced ROS on mitochondria and cell viability, and to further evaluate its utility as a treatment for nasopharyngeal carcinoma (NPC). We tested the photocytotoxicity of ApoG2 to the poorly differentiated NPC cell line CNE-2 using the ROS-generating TL/10 illumination system. The rapid ApoG2-induced cell death was partially reversed by the antioxidant N-acetyl-L-cysteine (NAC), but the ApoG2-induced reduction of mitochondrial membrane potential (MMP) was not reversed by NAC. In the presence of TL/10 illumination, ApoG2 generated massive amounts of singlet oxygen and was more effective in inhibiting cell growth than in the absence of illumination. We also determined the influence of light on the anti-proliferative activity of ApoG2 using a CNE-2–xenograft mouse model. ApoG2 under TL/10 illumination healed tumor wounds and suppressed tumor growth more effectively than ApoG2 treatment alone. These results indicate that the ApoG2-induced CNE-2 cell death is partly ROS-dependent. ApoG2 may be used with photodynamic therapy (PDT) to treat NPC. PMID:21192843

  13. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.

    PubMed Central

    Kushnareva, Yulia; Murphy, Anne N; Andreyev, Alexander

    2002-01-01

    Several lines of evidence indicate that mitochondrial reactive oxygen species (ROS) generation is the major source of oxidative stress in the cell. It has been shown that ROS production accompanies cytochrome c release in different apoptotic paradigms, but the site(s) of ROS production remain obscure. In the current study, we demonstrate that loss of cytochrome c by mitochondria oxidizing NAD(+)-linked substrates results in a dramatic increase of ROS production and respiratory inhibition. This increased ROS production can be mimicked by rotenone, a complex I inhibitor, as well as other chemical inhibitors of electron flow that act further downstream in the electron transport chain. The effects of cytochrome c depletion from mitoplasts on ROS production and respiration are reversible upon addition of exogenous cytochrome c. Thus in these models of mitochondrial injury, a primary site of ROS generation in both brain and heart mitochondria is proximal to the rotenone inhibitory site, rather than in complex III. ROS production at complex I is critically dependent upon a highly reduced state of the mitochondrial NAD(P)(+) pool and is achieved upon nearly complete inhibition of the respiratory chain. Redox clamp experiments using the acetoacetate/L-beta-hydroxybutyrate couple in the presence of a maximally inhibitory rotenone concentration suggest that the site is approx. 50 mV more electronegative than the NADH/NAD(+) couple. In the absence of inhibitors, this highly reduced state of mitochondria can be induced by reverse electron flow from succinate to NAD(+), accounting for profound ROS production in the presence of succinate. These results lead us to propose a model of thermodynamic control of mitochondrial ROS production which suggests that the ROS-generating site of complex I is the Fe-S centre N-1a. PMID:12180906

  14. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2-x NPs

    NASA Astrophysics Data System (ADS)

    Qiu, Yuan; Rojas, Elena; Murray, Richard A.; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E.

    2015-04-01

    Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties.Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell

  15. Combustion-derived flame generated ultrafine soot generates reactive oxygen species and activates Nrf2 antioxidants differently in neonatal and adult rat lungs

    PubMed Central

    2013-01-01

    Background Urban particulate matter (PM) has been epidemiologically correlated with multiple cardiopulmonary morbidities and mortalities, in sensitive populations. Children exposed to PM are more likely to develop respiratory infections and asthma. Although PM originates from natural and anthropogenic sources, vehicle exhaust rich in polycyclic aromatic hydrocarbons (PAH) can be a dominant contributor to the PM2.5 and PM0.1 fractions and has been implicated in the generation of reactive oxygen species (ROS). Objectives Current studies of ambient PM are confounded by the variable nature of PM, so we utilized a previously characterized ethylene-combusted premixed flame particles (PFP) with consistent and reproducible physiochemical properties and 1) measured the oxidative potential of PFP compared to ambient PM, 2) determined the ability of PFPs to generate oxidative stress and activate the transcription factor using in vitro and ex vivo models, and 3) we correlated these responses with antioxidant enzyme expression in vivo. Methods We compared oxidative stress response (HMOX1) and antioxidant enzyme (SOD1, SOD2, CAT, and PRDX6) expression in vivo by performing a time-course study in 7-day old neonatal and young adult rats exposed to a single 6-hour exposure to 22.4 μg/m3 PFPs. Results We showed that PFP is a potent ROS generator that induces oxidative stress and activates Nrf2. Induction of the oxidative stress responsive enzyme HMOX1 in vitro was mediated through Nrf2 activation and was variably upregulated in both ages. Furthermore, antioxidant enzyme expression had age and lung compartment variations post exposure. Of particular interest was SOD1, which had mRNA and protein upregulation in adult parenchyma, but lacked a similar response in neonates. Conclusions We conclude that PFPs are effective ROS generators, comparable to urban ambient PM2.5, that induce oxidative stress in neonatal and adult rat lungs. PFPs upregulate a select set of antioxidant enzymes in

  16. Salinomycin simultaneously induces apoptosis and autophagy through generation of reactive oxygen species in osteosarcoma U2OS cells.

    PubMed

    Kim, Sang-Hun; Choi, Young-Jun; Kim, Kwang-Youn; Yu, Sun-Nyoung; Seo, Young-Kyo; Chun, Sung-Sik; Noh, Kyung-Tae; Suh, Jeung-Tak; Ahn, Soon-Cheol

    2016-04-29

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore. It was reported to anticancer activity on various cancer cell lines. In this study, salinomycin was examined on apoptosis and autophagy through generation of reactive oxygen species (ROS) in osteosarcoma U2OS cells. Apoptosis, autophagy, mitochondrial membrane potential (MMP) and ROS were analyzed using flow cytometry. Also, expressions of apoptosis- and autophagy-related proteins were determined by western blotting. As a result, salinomycin triggered apoptosis of U2OS cells, which was accompanied by change of MMP and cleavage of caspases-3 and poly (ADP-ribose) polymerase. And salinomycin increased the expression of autophagy-related protein and accumulation of acidic vesicular organelles (AVO). Salinomycin-induced ROS production promotes both apoptosis and autophagy, as evidenced by the result that treatment of N-acetyl-l-cysteine (NAC), a ROS scavenger, attenuated both apoptosis and autophagy. In addition, inhibition of autophagy by 3-methyladenine (3 MA) enhanced the salinoymcin-induced apoptosis. Taken together, these results suggested that salinomycin-induced autophagy, as a survival mechanism, might be a potential strategy through ROS regulation in cancer therapy. PMID:27033598

  17. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO(2-x) NPs.

    PubMed

    Qiu, Yuan; Rojas, Elena; Murray, Richard A; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E

    2015-04-21

    Cerium Oxide nanoparticles (CeO(2-x) NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO(2-x) NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO(2-x) NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO(2-x) NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO(2-x) NPs. The brush coating does not prevent CeO(2-x) NPs from displaying antioxidant properties. PMID:25789459

  18. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species

    SciTech Connect

    Chang, Junghwa; Jung, Hye Jin; Jeong, Seung Hun; Kim, Hyoung Kyu; Han, Jin; Kwon, Ho Jeong

    2014-12-12

    Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identification and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders.

  19. Low-Level Laser Therapy Activates NF-kB via Generation of Reactive Oxygen Species in Mouse Embryonic Fibroblasts

    PubMed Central

    Huang, Ying-Ying; Tomkinson, Elizabeth M.; Sharma, Sulbha K.; Kharkwal, Gitika B.; Saleem, Taimur; Mooney, David; Yull, Fiona E.; Blackwell, Timothy S.; Hamblin, Michael R.

    2011-01-01

    Background Despite over forty years of investigation on low-level light therapy (LLLT), the fundamental mechanisms underlying photobiomodulation at a cellular level remain unclear. Methodology/Principal Findings In this study, we isolated murine embryonic fibroblasts (MEF) from transgenic NF-kB luciferase reporter mice and studied their response to 810 nm laser radiation. Significant activation of NF-kB was observed at fluences higher than 0.003 J/cm2 and was confirmed by Western blot analysis. NF-kB was activated earlier (1 hour) by LLLT compared to conventional lipopolysaccharide treatment. We also observed that LLLT induced intracellular reactive oxygen species (ROS) production similar to mitochondrial inhibitors, such as antimycin A, rotenone and paraquat. Furthermore, we observed similar NF-kB activation with these mitochondrial inhibitors. These results, together with inhibition of laser induced NF-kB activation by antioxidants, suggests that ROS play an important role in the laser induced NF-kB signaling pathways. However, LLLT, unlike mitochondrial inhibitors, induced increased cellular ATP levels, which indicates that LLLT also upregulates mitochondrial respiration. Conclusion We conclude that LLLT not only enhances mitochondrial respiration, but also activates the redox-sensitive NFkB signaling via generation of ROS. Expression of anti-apoptosis and pro-survival genes responsive to NFkB could explain many clinical effects of LLLT. PMID:21814580

  20. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials

    PubMed Central

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-01-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials. PMID:27194379

  1. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-05-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials.

  2. Induction of apoptosis by three marine algae through generation of reactive oxygen species in human leukemic cell lines.

    PubMed

    Huang, Huey-Lan; Wu, Shwu-Li; Liao, Hui-Fen; Jiang, Chii-Ming; Huang, Ray-Ling; Chen, Yu-Yawn; Yang, Yuh-Cheng; Chen, Yu-Jen

    2005-03-01

    In this study, we examined the antitumor effect of marine algae extracts on human hepatoma and leukemia cells. Ethyl acetate extracts from Colpomenia sinuosa (Cs-EA), Halimeda discoidae (Hd-EA), and Galaxaura oblongata (Go-EA) directly inhibited the growth of human hepatoma HuH-7 cells and leukemia U937 and HL-60 cells in a time- and dose-dependent manner. Specifically, these algae extracts induced apoptosis of U937 and HL-60 cells as evaluated by detection of hypodiploid cells using flow cytometry and observation of condensed and fragmented nuclei in algae extract-treated cells. Intracellular reactive oxygen species (ROS), especially hydrogen peroxide and superoxide anion, were increased about 2-3-fold in U937 cells treated with Cs-EA for 3-5 h. Interestingly, antioxidant N-acetylcysteine effectively blocked Cs-EA-, Hd-EA-, and Go-EA-induced apoptosis, suggesting that ROS is a key mediator in the apoptotic signaling pathway. In conclusion, our results show that algae extracts induce apoptosis in human leukemia cells through generation of ROS. PMID:15740073

  3. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials.

    PubMed

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-01-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials. PMID:27194379

  4. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5.

    PubMed

    Verma, Vishal; Fang, Ting; Xu, Lu; Peltier, Richard E; Russell, Armistead G; Ng, Nga Lee; Weber, Rodney J

    2015-04-01

    We compare the relative toxicity of various organic aerosol (OA) components identified by an aerosol mass spectrometer (AMS) based on their ability to generate reactive oxygen species (ROS). Ambient fine aerosols were collected from urban (three in Atlanta, GA and one in Birmingham, AL) and rural (Yorkville, GA and Centerville, AL) sites in the Southeastern United States. The ROS generating capability of the water-soluble fraction of the particles was measured by the dithiothreitol (DTT) assay. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for DTT activity and water-soluble metals. Organic aerosol composition was measured at selected sites using a high-resolution time-of-flight AMS. Positive matrix factorization of the AMS spectra resolved the organic aerosol into isoprene-derived OA (Isop_OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA). The association of the DTT activity of water-soluble PM2.5 (WS_DTT) with these factors was investigated by linear regression techniques. BBOA and MO-OOA were most consistently linked with WS_DTT, with intrinsic water-soluble activities of 151 ± 20 and 36 ± 22 pmol/min/μg, respectively. Although less toxic, MO-OOA was most widespread, contributing to WS_DTT activity at all sites and during all seasons. WS_DTT activity was least associated with biogenic secondary organic aerosol. The OA components contributing to WS_DTT were humic-like substances (HULIS), which are abundantly emitted in biomass burning (BBOA) and include highly oxidized OA from multiple sources (MO-OOA). Overall, OA contributed approximately 60% to the WS_DTT activity, with the remaining probably from water-soluble metals, which were mostly associated with the hydrophilic WS_DTT fraction. PMID:25748105

  5. A new algorithm for real-time optimal dispatch of active and reactive power generation retaining nonlinearity

    SciTech Connect

    Roy, L.; Rao, N.D.

    1983-04-01

    This paper presents a new method for optimal dispatch of real and reactive power generation which is based on cartesian coordinate formulation of economic dispatch problem and reclassification of state and control variables associated with generator buses. The voltage and power at these buses are classified as parametric and functional inequality constraints, and are handled by reduced gradient technique and penalty factor approach respectively. The advantage of this classification is the reduction in the size of the equality constraint model, leading to less storage requirement. The rectangular coordinate formulation results in an exact equality constraint model in which the coefficient matrix is real, sparse, diagonally dominant, smaller in size and need be computed and factorized once only in each gradient step. In addition, Lagragian multipliers are calculated using a new efficient procedure. A natural outcome of these features is the solution of the economic dispatch problem, faster than other methods available to date in the literature. Rapid and reliable convergence is an additional desirable characteristic of the method. Digital simulation results are presented on several IEEE test systems to illustrate the range of application of the method visa-vis the popular Dommel-Tinney (DT) procedure. It is found that the proposed method is more reliable, 3-4 times faster and requires 20-30 percent less storage compared to the DT algorithm, while being just as general. Thus, owing to its exactness, robust mathematical model and less computational requirements, the method developed in the paper is shown to be a practically feasible algorithm for on-line optimal power dispatch.

  6. Mitochondrial handling of excess Ca2+ is substrate-dependent with implications for reactive oxygen species generation

    PubMed Central

    Aldakkak, Mohammed; Stowe, David F.; Dash, Ranjan K.; Camara, Amadou K.S.

    2012-01-01

    Aim The mitochondrial electron transport chain is the major source of reactive oxygen species (ROS) during cardiac ischemia. Several mechanisms modulate ROS production; one is mitochondrial Ca2+ uptake. Here we sought to elucidate the effects of extra-mitochondrial Ca2+ (e[Ca2+]) on ROS production (measured as H2O2 release) from complexes I and III. Results Mitochondria, isolated from guinea pig hearts, were pre-incubated with increasing concentrations of CaCl2 and then energized with the complex I substrate Na+-pyruvate or the complex II substrate Na+-succinate. Mitochondrial H2O2 release rates were assessed after giving either rotenone or antimycin A to inhibit complex I or III, respectively. After pyruvate, mitochondria maintained a fully polarized membrane potential (Δψ, assessed using rhodamine 123) and were able to generate NADH (assessed using autofluorescence) even with excess e[Ca2+] (assessed using CaGreen-5N), whereas they remained partially depolarized and did not generate NADH after succinate. This partial Δψ depolarization with succinate was accompanied by a large release of H2O2 (assessed using amplex red/horseradish peroxidase) with later addition of antimycin A. In the presence of excess e[Ca2+], adding cyclosporine A to inhibit mitochondrial permeability transition pore (mPTP) opening restored Δψ and significantly decreased antimycin A-induced H2O2 release. Conclusions Succinate accumulates during ischemia to become the major substrate utilized by cardiac mitochondria. The inability of mitochondria to maintain a fully polarized Δψ under excess e[Ca2+] when succinate, but not pyruvate, is the substrate may indicate a permeabilization of the mitochondrial membrane which enhances H2O2 emission from complex III during ischemia. PMID:23010495

  7. Copper ions strongly activate the phosphoinositide-3-kinase/Akt pathway independent of the generation of reactive oxygen species.

    PubMed

    Ostrakhovitch, Elena A; Lordnejad, Mohammad Reza; Schliess, Freimut; Sies, Helmut; Klotz, Lars-Oliver

    2002-01-15

    Copper is implicated in metabolic disorders, such as Wilson's disease or Alzheimer's disease. Analysis of signaling pathways regulating cellular survival and function in response to a copper stress is crucial for understanding the pathogenesis of such diseases. Exposure of human skin fibroblasts or HeLa cells to Cu(2+) resulted in a dose- and time-dependent activation of the antiapoptotic kinase Akt/protein kinase B, starting at concentrations as low as 3 microM. Only Cu(II), but not Cu(I), had this effect. Activation of Akt was accompanied by phosphorylation of a downstream target of Akt, glycogen synthase kinase-3. Inhibitors of phosphoinositide-3-kinase (PI3K) completely blocked activation of Akt by Cu(2+), indicating a requirement of PI3K for Cu(2+)-induced activation of Akt. Indeed, cellular PI3K activity was strongly enhanced after exposure to Cu(2+). Copper ions may lead to the formation of reactive oxygen species, such as hydrogen peroxide. Activation of Akt by hydrogen peroxide or growth factors is known to proceed via the activation growth factor receptors. In line with this, pretreatment with inhibitors of growth factor receptor tyrosine kinases blocked activation of Akt by hydrogen peroxide and growth factors, as did a src-family tyrosine kinase inhibitor or the broad-spectrum tyrosine kinase inhibitor genistein. Activation of Akt by Cu(2+), however, remained unimpaired, implying (i) that tyrosine kinase activation is not involved in Cu(2+) activation of Akt and (ii) that activation of the PI3K/Akt pathway by Cu(2+) is initiated independently of that induced by reactive oxygen species. Comparison of the time course of the oxidation of 2',7'-dichlorodihydrofluorescein in copper-treated cells with that of Akt activation led to the conclusion that production of hydroperoxides cannot be an upstream event in copper-induced Akt activation. Rather, both activation of Akt and generation of ROS are proposed to occur in parallel, regulating cell survival after a

  8. C-terminal domain of rodent intestinal mucin Muc3 is proteolytically cleaved in the endoplasmic reticulum to generate extracellular and membrane components.

    PubMed Central

    Wang, Rongquan; Khatri, Ismat A; Forstner, Janet F

    2002-01-01

    Although human MUC3 and rodent Muc3 are both membrane-associated intestinal mucins, the present study has explored the possibility that rodent Muc3 might exist in soluble as well as membrane forms. No evidence was obtained for the existence of soluble splice variants; however, experiments with heterologous cells transfected with cDNA encoding the 381-residue C-terminal domain of rodent Muc3 showed that a definitive proteolytic cleavage occurs during processing in the endoplasmic reticulum. The products consisted of a V5-tagged 30 kDa extracellular glycopeptide and a Myc-tagged 49 kDa membrane-associated glycopeptide. Throughout their cellular transport to the plasma membrane, the two fragments remained associated by non-covalent SDS-sensitive interactions. Site-specific mutagenesis pinpointed the need for glycine and serine residues in the cleavage sequence Leu-Ser-Lys-Gly-Ser-Ile-Val-Val, which is localized between the two epidermal-growth-factor-like motifs of the mucin. A similar cleavage sequence (Phe-Arg-Pro-Gly downward arrow Ser-Val-Val-Val, where downward arrow signifies the cleavage site) has been reported in human MUC1 and analogous sites are present in human MUC3, MUC12 and MUC17. Thus early proteolytic cleavage may be a conserved characteristic of many membrane-associated mucins, possibly as a prelude to later release of their large extracellular domains at cell surfaces. PMID:12027806

  9. Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig

    PubMed Central

    Choi, Kwang-Hwan; Park, Jin-Kyu; Son, Dongchan; Hwang, Jae Yeon; Lee, Dong-Kyung; Ka, Hakhyun; Park, Joonghoon; Lee, Chang-Kyu

    2016-01-01

    Cellular reprogramming of committed cells into a pluripotent state can be induced by ectopic expression of genes such as OCT4, SOX2, KLF4, and MYC. Reprogrammed cells can be maintained by activating endogenous pluripotent networks without transgene expression. Although various research groups have attempted to generate pig induced pluripotent stem cells (iPSCs), authentic iPSCs have not be obtained, instead showing dependence on transgene expression. In this study, iPSCs were derived from porcine fetal fibroblasts via drug-inducible vectors carrying human transcription factors (OCT4, SOX2, KLF4, and MYC). Therefore, this study investigated characteristics of iPSCs and reprogramming mechanisms in pig. The iPSCs were stably maintained over an extended period with potential in vitro differentiation into three germ layers. In addition, the pluripotent state of iPSCs was regulated by modulating culture conditions. They showed naive- or primed-like pluripotent states in LIF or bFGF supplemented culture conditions, respectively. However, iPSCs could not be maintained without ectopic expression of transgenes. The cultured iPSCs expressed endogenous transcription factors such as OCT4 and SOX2, but not NANOG (a known gateway to complete reprogramming). Endogenous genes related to mesenchymal-to-epithelial transition (DPPA2, CDH1, EPCAM, and OCLN) were not sufficiently reactivated, as measured by qPCR. DNA methylation analysis for promoters of OCT4, NANOG, and XIST showed that epigenetic reprogramming did not occur in female iPSCs. Based on our results, expression of exogenous genes could not sufficiently activate the essential endogenous genes and remodel the epigenetic milieu to achieve faithful pluripotency in pig. Accordingly, investigating iPSCs could help us improve and develop reprogramming methods by understanding reprogramming mechanisms in pig. PMID:27336671

  10. Generation of reactive oxygen species by a novel berberine–bile acid analog mediates apoptosis in hepatocarcinoma SMMC-7721 cells

    SciTech Connect

    Li, Qingyong; Zhang, Li; Zu, Yuangang; Liu, Tianyu; Zhang, Baoyou; He, Wuna

    2013-04-19

    Graphical abstract: - Highlights: • Anticancer effects of B4, a novel berberine–bile acid analog, were tested. • B4 inhibited cell proliferation in hepatocellular carcinoma cells. • It also stimulated mitochondrial ROS production and membrane depolarization. • Effects of B4 were inhibited by a non-specific ROS scavenger. • Regulation of ROS generation may be a strategy for treating hepatic carcinoma. - Abstract: 2,3-Methenedioxy-9-O-(3′α,7′α-dihydroxy-5′β-cholan-24′-propy-lester) berberine (B4) is a novel berberine–bile acid analog synthesized in our laboratory. Previously, we showed that B4 exerted greater cytotoxicity than berberine in several human cancer cell lines. Therefore, we further evaluated the mechanism governing its anticancer actions in hepatocellular carcinoma SMMC-7721 cells. B4 inhibited the proliferation of SMMC-7721 cells, and stimulated reactive oxygen species (ROS) production and mitochondrial membrane depolarization; anti-oxidant capacity was reduced. B4 also induced the release of cytochrome c from the mitochondria to the cytosol and an increase in poly ADP-ribose polymerase (PARP) cleavage products, reflective of caspase-3 activation. Moreover, B4 induced the nuclear translocation of apoptosis-inducing factor (AIF) and a rise in DNA fragmentation. Pretreatment with the anti-oxidant N-acetylcysteine (NAC) inhibited B4-mediated effects, including cytotoxicity, ROS production, mitochondrial membrane depolarization increase in intracellular Ca{sup 2+}, cytochrome c release, PARP cleavage, and AIF translocation. Our data suggest that B4 induces ROS-triggered caspase-dependent and caspase-independent apoptosis pathways in SMMC-7721 cells and that ROS production may be a specific potential strategy for treating hepatic carcinoma.

  11. Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig.

    PubMed

    Choi, Kwang-Hwan; Park, Jin-Kyu; Son, Dongchan; Hwang, Jae Yeon; Lee, Dong-Kyung; Ka, Hakhyun; Park, Joonghoon; Lee, Chang-Kyu

    2016-01-01

    Cellular reprogramming of committed cells into a pluripotent state can be induced by ectopic expression of genes such as OCT4, SOX2, KLF4, and MYC. Reprogrammed cells can be maintained by activating endogenous pluripotent networks without transgene expression. Although various research groups have attempted to generate pig induced pluripotent stem cells (iPSCs), authentic iPSCs have not be obtained, instead showing dependence on transgene expression. In this study, iPSCs were derived from porcine fetal fibroblasts via drug-inducible vectors carrying human transcription factors (OCT4, SOX2, KLF4, and MYC). Therefore, this study investigated characteristics of iPSCs and reprogramming mechanisms in pig. The iPSCs were stably maintained over an extended period with potential in vitro differentiation into three germ layers. In addition, the pluripotent state of iPSCs was regulated by modulating culture conditions. They showed naive- or primed-like pluripotent states in LIF or bFGF supplemented culture conditions, respectively. However, iPSCs could not be maintained without ectopic expression of transgenes. The cultured iPSCs expressed endogenous transcription factors such as OCT4 and SOX2, but not NANOG (a known gateway to complete reprogramming). Endogenous genes related to mesenchymal-to-epithelial transition (DPPA2, CDH1, EPCAM, and OCLN) were not sufficiently reactivated, as measured by qPCR. DNA methylation analysis for promoters of OCT4, NANOG, and XIST showed that epigenetic reprogramming did not occur in female iPSCs. Based on our results, expression of exogenous genes could not sufficiently activate the essential endogenous genes and remodel the epigenetic milieu to achieve faithful pluripotency in pig. Accordingly, investigating iPSCs could help us improve and develop reprogramming methods by understanding reprogramming mechanisms in pig. PMID:27336671

  12. The role of water and structure on the generation of reactive oxygen species in peptide/hypericin complexes.

    PubMed

    Souza, Márcia I; Silva, Emerson R; Jaques, Ygor M; Ferreira, Fabio F; Fileti, Eudes E; Alves, Wendel A

    2014-07-01

    Hybrid associates formed between peptide assemblies and fluorophores are attractive mainly because of their unique properties for biomedical applications. Recently, we demonstrated that the production of reactive oxygen species (ROS) by hypericin and their stability in excited states are enhanced upon conjugation with l,l-diphenylalanine microtubes (FF-MNTs). Although the detailed mechanisms responsible for improving the photophysical properties of ROS remain unclear, tentative hypotheses have suggested that the driving force is the growth of overall dipolar moments ascribed either to coupling between aligned H2O dipoles within the ordered structures or to the organization of hypericin molecules on peptide interfaces. To provide new insights on ROS activity in hypericin/FF-MNTs hybrids and further explore the role of water in this respect, we present results obtained from investigations on the behavior of these complexes organized into different crystalline arrangements. Specifically, we monitored and compared the photophysical performance of hypericin bound to FF-MNTs with peptides organized in both hexagonal (water-rich) and orthorhombic (water-free) symmetries. From a theoretical perspective, we present the results of new molecular dynamics simulations that highlight the distinct hypericin/peptide interaction at the interface of FF-MNTs for the different symmetries. As a conclusion, we propose that although water enhances photophysical properties, the organization induced by peptide structures and the availability of a hydrophobic environment surrounding the hypericin/peptide interface are paramount to optimizing ROS generation. The findings presented here provide useful basic research insights for designing peptide/fluorophore complexes with outstanding technological potential. PMID:24845629

  13. A photoreducible copper(II)-tren complex of practical value: generation of a highly reactive click catalyst.

    PubMed

    Harmand, Lydie; Lambert, Romain; Scarpantonio, Luca; McClenaghan, Nathan D; Lastécouères, Dominique; Vincent, Jean-Marc

    2013-11-25

    A detailed study on the photoreduction of the copper(II) precatalyst 1 to generate a highly reactive cuprous species for the copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction is presented. For the photoactive catalyst described herein, the activation is driven by a photoinduced electron transfer (PET) process harnessing a benzophenone-like ketoprofenate chromophore as a photosensitizer, which is equally the counterion. The solvent is shown to play a major role in the Cu(II) to Cu(I) reduction process as the final electron source, and the influence of the solvent nature on the photoreduction efficiency has been studied. Particular attention was paid to the use of water as a potential solvent, aqueous media being particularly appealing for CuAAC processes. The ability to solubilize the copper-tren complexes in water through the formation of inclusion complexes with β-CDs is demonstrated. Data is also provided on the fate of the copper(I)-tren catalytic species when reacting with O2, O2 being used to switch off the catalysis. These data show that partial oxidation of the secondary benzylamine groups of the ligand to benzylimines occurs. Preliminary results show that when prolonged irradiation times are employed a Cu(I) to Cu(0) over-reduction process takes place, leading to the formation of copper nanoparticles (NPs). Finally, the main objective of this work being the development of photoactivable catalysts of practical value for the CuAAC, the catalytic, photolatent, and recycling properties of 1 in water and organic solvents are reported. PMID:24127367

  14. Low level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, Aaron Chih-Hao; Arany, Praveen R.; Huang, Ying-Ying; Tomkinson, Elizabeth M.; Saleem, Taimur; Yull, Fiona E.; Blackwell, Timothy S.; Hamblin, Michael R.

    2009-02-01

    Despite over forty years of investigation on low-level light therapy (LLLT), the fundamental mechanisms underlying photobiomodulation remain unclear. In this study, we isolated murine embryonic fibroblasts (MEF) from transgenic NF-kB luciferase reporter mice and studied their response to 810-nm laser radiation. Significant activation of NFkB was observed for fluences higher than 0.003 J/cm2. NF-kB activation by laser was detectable at 1-hour time point. Moreover, we demonstrated that laser phosphorylated both IKK α/β and NF-kB 15 minutes after irradiation, which implied that laser activates NF-kB via phosphorylation of IKK α/β. Suspecting mitochondria as the source of NF-kB activation signaling pathway, we demonstrated that laser increased both intracellular reactive oxygen species (ROS) by fluorescence microscopy with dichlorodihydrofluorescein and ATP synthesis by luciferase assay. Mitochondrial inhibitors, such as antimycin A, rotenone and paraquat increased ROS and NF-kB activation but had no effect on ATP. The ROS quenchers N-acetyl-L-cysteine and ascorbic acid abrogated laser-induced NF-kB and ROS but not ATP. These results suggested that ROS might play an important role in the signaling pathway of laser induced NF-kB activation. However, the western blot showed that antimycin A, a mitochondrial inhibitor, did not activate NF-kB via serine phosphorylation of IKK α/β as the laser did. On the other hand, LLLT, unlike mitochondrial inhibitors, induced increased cellular ATP levels, which indicates that light also upregulates mitochondrial respiration. ATP upregulation reached a maximum at 0.3 J/cm2 or higher. We conclude that LLLT not only enhances mitochondrial respiration, but also activates the redox-sensitive transcription factor NF-kB by generating ROS as signaling molecules.

  15. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures--Botrytis cinerea interaction.

    PubMed

    Pietrowska, E; Różalska, S; Kaźmierczak, A; Nawrocka, J; Małolepsza, U

    2015-01-01

    This article reports events connected to cell survival and Botrytis cinerea infection development in cell suspension cultures of two tomato cultivars which show different levels of susceptibility to the pathogen: cv. Corindo (more susceptible) and cv. Perkoz (less susceptible). In parallel changes in reactive oxygen (ROS) and nitrogen (RNS) species generation and in S-nitrosoglutathione reductase (GSNOR) activity were studied. In vivo staining methods with acridine orange (AO) and ethidium bromide (EB) as well as fluorescent microscopy were used to assess tomato and B. cinerea cells death. The biochemical studies of ROS and RNS concentrations in plant cell extract were complemented by in vivo ROS and nitric oxide (NO) imaging using nitro blue tetrazolium (NBT), diaminobenzidine (DAB) and diaminofluorescein diacetate (DAF-DA) staining methods, and confocal microscope technique. B. cinerea infection proceeded slower in Perkoz cell cultures. It was evidenced by measuring the pathogen conidia germination and germination tube development in which nuclei revealing cell death dominated. Two different types of tomato cell death were observed: cells with necrotic nuclei dominated in Corindo whereas in Perkoz cells with characteristic of vacuolar death type prevailed. In Perkoz cells, constitutive levels of NO and S-nitrosothiols (SNO) were significantly higher and hydrogen peroxide (H₂O₂) and superoxide anion (O₂(-)) concentrations were slightly higher as compared with Corindo cells. Moreover, increases in these molecule concentrations as a result of B. cinerea inoculation were observed in both, Perkoz and Corindo cell cultures. The enzymatic GSNOR activity seems to be an important player in controlling the SNO level in tomato cells. Involvements of the studied compounds in molecular mechanisms of tomato resistance to B. cinerea are discussed in the paper. PMID:25064634

  16. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species.

    PubMed

    Farah, Mohammad Abul; Ali, Mohammad Ajmal; Chen, Shen-Ming; Li, Ying; Al-Hemaid, Fahad Mohammad; Abou-Tarboush, Faisal Mohammad; Al-Anazi, Khalid Mashay; Lee, Joongku

    2016-05-01

    Silver nanoparticles (AgNPs) are an important class of nanomaterial used for a wide range of industrial and biomedical applications. Adenium obesum is a plant of the family Apocynaceae that is rich in toxic cardiac glycosides; however, there is scarce information on the anticancer potential of its AgNPs. We herein report the novel biosynthesis of AgNPs using aqueous leaf extract of A. obesum (AOAgNPs). The synthesis of AOAgNPs was monitored by color change and ultraviolet-visible spectroscopy (425 nm). It was further characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The FTIR spectra for the AOAgNPs indicated the presence of terpenoids, long chain fatty acids, secondary amide derivatives and proteins that could be responsible for the reduction and capping of the formed AOAgNPs. X-ray diffraction confirmed the crystallinity of the AgNPs. The TEM images revealed mostly spherical particles in the size range of 10-30 nm. The biological properties of novel AOAgNPs were investigated on MCF-7 breast cancer cells. Cell viability was determined by the MTT assay. Generation of reactive oxygen species (ROS), DNA damage, induction of apoptosis and autophagy were assessed. A dose-dependent decrease in the cell viability was observed. The IC50 value was calculated as 217 μg/ml. Both qualitative and quantitative evaluation confirmed about a 2.5 fold increase in the generation of ROS at the highest concentration of 150 μg/ml. A significant (p<0.05) increase in the DNA damage evaluated by comet assay was evident. Flow cytometry revealed an increase in the apoptotic cells (24%) in the AOAgNPs treated group compared to the control. Acridine orange staining of acidic vesicles in exposed cells confirmed the induction of autophagy. These findings suggest that AOAgNPs increased the level of ROS resulting in heightened the DNA damage, apoptosis and autophagy in MCF-7 cells. PMID:26852099

  17. α-Tocopherol protects keratinocytes against ultraviolet A irradiation by suppressing glutathione depletion, lipid peroxidation and reactive oxygen species generation

    PubMed Central

    WU, CHI-MING; CHENG, YA-LI; DAI, YOU-HUA; CHEN, MEI-FEI; WANG, CHEE-CHAN

    2014-01-01

    This study aimed to investigate whether α-tocopherol is able to protect keratinocytes against ultraviolet A (UVA) radiation by increasing glutathione (γ-glutamylcysteinylglycine; GSH) levels or decreasing lipid peroxidation and reactive oxygen species (ROS) generation. The cell survival fraction was 43.6% when keratinocytes were irradiated with UVA at a dose of 8 J/cm2. α-Tocopherol was added prior to UVA irradiation and the cell viability was assayed. The cell survival fractions were 60.2, 77.1, 89.0, 92.9 and 96.2% when α-tocopherol was added at concentrations of 2.9, 5.9, 8.8, 11.8 and 14.7 IU/ml, respectively. These results suggested that α-tocopherol is capable of protecting keratinocytes against UVA irradiation. Furthermore, the levels of GSH, lipid peroxidation and ROS were measured. The levels of GSH were 0.354 and 0.600 mmol/g protein in keratinocytes irradiated with UVA (8 J/cm2) and in non-irradiated cells, respectively, whereas they were 0.364, 0.420, 0.525, 0.540 and 0.545 mmol/g protein when α-tocopherol was added at concentrations of 2.9, 5.9, 8.8, 11.8 and 14.7 IU/ml, respectively. The levels of lipid peroxidation were 20.401 or 5.328 μmol/g [malondialdehyde (MDA)/protein] in keratinocytes irradiated with UVA (8 J/cm2) and in non-irradiated cells, respectively, whereas they were 11.685, 6.544, 5.847, 4.390 and 2.164 μmol/g (MDA/protein) when α-tocopherol was added at concentrations of 2.9, 5.9, 8.8, 11.8 and 14.7 IU/ml, respectively. The levels of ROS were 3,952.17 or 111.87 1/mg protein in keratinocytes irradiated with UVA (8 J/cm2) and in non-irradiated cells, respectively, whereas they were 742.48, 579.36, 358.16, 285.63 and 199.82 1/mg protein when α-tocopherol was added at concentrations of 2.9, 5.9, 8.8, 11.8 and 14.7 IU/ml, respectively. These findings suggested that α-tocopherol protects keratinocytes against UVA irradiation, possibly through increasing the levels of GSH or decreasing the levels of lipid peroxidation and ROS

  18. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—Generation of reactive oxygen species and cell damage

    SciTech Connect

    Yin, Jun-Jie; Liu, Jun; Ehrenshaft, Marilyn; Roberts, Joan E.; Fu, Peter P.; Mason, Ronald P.; Zhao, Baozhong

    2012-08-15

    Nano-sized titanium dioxide (TiO{sub 2}) is among the top five widely used nanomaterials for various applications. In this study, we determine the phototoxicity of TiO{sub 2} nanoparticles (nano-TiO{sub 2}) with different molecular sizes and crystal forms (anatase and rutile) in human skin keratinocytes under UVA irradiation. Our results show that all nano-TiO{sub 2} particles caused phototoxicity, as determined by the MTS assay and by cell membrane damage measured by the lactate dehydrogenase (LDH) assay, both of which were UVA dose- and nano-TiO{sub 2} dose-dependent. The smaller the particle size of the nano-TiO{sub 2} the higher the cell damage. The rutile form of nano-TiO{sub 2} showed less phototoxicity than anatase nano-TiO{sub 2}. The level of photocytotoxicity and cell membrane damage is mainly dependent on the level of reactive oxygen species (ROS) production. Using polyunsaturated lipids in plasma membranes and human serum albumin as model targets, and employing electron spin resonance (ESR) oximetry and immuno-spin trapping as unique probing methods, we demonstrated that UVA irradiation of nano-TiO{sub 2} can induce significant cell damage, mediated by lipid and protein peroxidation. These overall results suggest that nano-TiO{sub 2} is phototoxic to human skin keratinocytes, and that this phototoxicity is mediated by ROS generated during UVA irradiation. Highlights: ► We evaluate the phototoxicity of nano-TiO{sub 2} with different sizes and crystal forms. ► The smaller the particle size of the nano-TiO{sub 2} the higher the cell damage. ► The rutile form of nano-TiO{sub 2} showed less phototoxicity than anatase nano-TiO{sub 2}. ► ESR oximetry and immuno-spin trapping techniques confirm UVA-induced cell damage. ► Phototoxicity is mediated by ROS generated during UVA irradiation of nano-TiO{sub 2}.

  19. Reactive oxygen species generated by PAH o-quinones cause change-in-function mutations in p53.

    PubMed

    Yu, Deshan; Berlin, Jesse A; Penning, Trevor M; Field, Jeffrey

    2002-06-01

    Polycyclic aromatic hydrocarbons (PAHs) in tobacco smoke may cause human lung cancer via metabolic activation to ultimate carcinogens. p53 is one of the most commonly mutated tumor suppressor genes in this disease. An analysis of the p53 mutational database shows that G to T transversions are a signature mutation of lung cancer. Aldo-keto reductases (AKRs) activate PAH trans-dihydrodiol proximate carcinogens to yield their corresponding reactive and redox-active o-quinones, e.g., benzo[a]pyrene-7,8-dione (BP-7,8-dione). We employed a yeast reporter system to determine whether PAH o-quinones or the ROS they generate cause change-in-function mutations in p53. N-Methyl-N-nitroso-N'-nitro-guanidine, a standard alkylating mutagen was used as a positive control. MNNG caused a dose-dependent increase in mutant yeast colonies and at the highest concentrations 8-14% of the yeast colonies were mutated and were characterized by G:C to A:T transitions in the p53 DNA binding domain. Treatment of p53 cDNA with micromolar concentrations of (+/-)-anti-7,8-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene, (anti-BPDE, an ultimate carcinogen) or sub-micromolar concentrations of BP-7,8-dione in the presence of redox-cycling conditions (NADPH and CuCl(2)) also caused p53 mutations in a dose-dependent manner. We found that no mutants were observed with PAH o-quinones or NADPH alone. p53 mutagenesis by BP-7,8-dione was attenuated by ROS scavengers and completely abrogated by a combination of superoxide dismutase and catalase, indicating that both superoxide anion and hydroxyl radicals were the responsible mutagens. The bulk of the mutations detected were single-point mutations and were not random in occurrence. Over 46% of BP-7,8-dione-induced mutations were G:C to T:A transversions, consistent with the formation of 8-oxo-dGuo or its secondary oxidation products. In addition, 25% of these mutations were at hotspots in p53 which are known to be mutated in lung cancer

  20. Program for certification of waste from contained firing facility: Establishment of waste as non-reactive and discussion of potential waste generation problems

    SciTech Connect

    Green, L.; Garza, R.; Maienschein, J.; Pruneda, C.

    1997-09-30

    Debris from explosives testing in a shot tank that contains 4 weight percent or less of explosive is shown to be non-reactive under the specified testing protocol in the Code of Federal Regulations. This debris can then be regarded as a non-hazardous waste on the basis of reactivity, when collected and packaged in a specified manner. If it is contaminated with radioactive components (e.g. depleted uranium), it can therefore be disposed of as radioactive waste or mixed waste, as appropriate (note that debris may contain other materials that render it hazardous, such as beryllium). We also discuss potential waste generation issues in contained firing operations that are applicable to the planned new Contained Firing Facility (CFF). The goal of this program is to develop and document conditions under which shot debris from the planned Contained Firing Facility (CFF) can be handled, shipped, and accepted for waste disposal as non-reactive radioactive or mixed waste. This report fulfills the following requirements as established at the outset of the program: 1. Establish through testing the maximum level of explosive that can be in a waste and still have it certified as non-reactive. 2. Develop the procedure to confirm the acceptability of radioactive-contaminated debris as non-reactive waste at radioactive waste disposal sites. 3. Outline potential disposal protocols for different CFF scenarios (e.g. misfires with scattered explosive).

  1. Application of simultaneous active and reactive power modulation of superconducting magnetic energy storage unit to damp turbine-generator subsynchronous oscillations

    SciTech Connect

    Wu, Chijui; Lee, Yuangshung )

    1993-03-01

    An active and reactive power (P-Q) simultaneous control scheme which is based on a superconducting magnetic energy storage (SMES) unit is designed to damp out the subsynchronous resonant (SSR) oscillations of a turbine-generator unit. In order to suppress unstable torsional mode oscillations, a proportional-integral-derivative (PID) controller is employed to modulate the active and reactive power input/output of the SMES unit according to speed deviation of the generator shaft. The gains of the proposed PID controller are determined by pole assignment approach based on modal control theory. Eigenvalue analysis of the studied system shows that the PID controller is quite effective over a wide range of operating conditions. Dynamic simulations using the nonlinear system model are also performed to demonstrate the damping effect of the proposed control scheme under disturbance conditions.

  2. Sum-Frequency Generation Spectroscopy for Studying Organic Layers at Water-Air Interfaces: Microlayer Monitoring and Surface Reactivity

    NASA Astrophysics Data System (ADS)

    Laß, Kristian; Kleber, Joscha; Bange, Hermann; Friedrichs, Gernot

    2015-04-01

    The sea surface microlayer, according to commonly accepted terminology, comprises the topmost millimetre of the oceanic water column. It is often enriched with organic matter and is directly influenced by sunlight exposure and gas exchange with the atmosphere, hence making it a place for active biochemistry and photochemistry as well as for heterogeneous reactions. In addition, surface active material either is formed or accumulates directly at the air-water interface and gives rise to very thin layers, sometimes down to monomolecular thickness. This "sea surface nanolayer" determines the viscoelastic properties of the seawater surface and thus may impact the turbulent air-sea gas exchange rates. To this effect, this small scale layer presumably plays an important role for large scale changes of atmospheric trace gas concentrations (e.g., by modulating the ocean carbon sink characteristics) with possible implications for coupled climate models. To date, detailed knowledge about the composition, structure, and reactivity of the sea surface nanolayer is still scarce. Due to its small vertical dimension and the small amount of material, this surfactant layer is very difficult to separate and analyse. A way out is the application of second-order nonlinear optical methods, which make a direct surface-specific and background-free detection of this interfacial layer possible. In recent years, we have introduced the use of vibrational sum frequency generation (VSFG) spectroscopy to gain insight into natural and artificial organic monolayers at the air-water interface. In this contribution, the application of VSFG spectroscopy for the analysis of the sea surface nanolayer will be illustrated. Resulting spectra are interpreted in terms of layer composition and surfactant classes, in particular with respect to carbohydrate-containing molecules such as glycolipids. The partitioning of the detected surfactants into soluble and non-soluble ("wet" and "dry") surfactants will be

  3. Evaluation of reactive oxygen species generating AirOcare system for reducing airborne microbial populations in a meat processing plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microbial contamination of meat and meat products is of continuing concern to the meat industry and regulatory agencies. Air has been established as a source of microbial contamination in slaughter and processing facilities. The objective of this research was to determine the efficacy of reactiv...

  4. Extracellular toxicity of 6-hydroxydopamine on PC12 cells.

    PubMed

    Blum, D; Torch, S; Nissou, M F; Benabid, A L; Verna, J M

    2000-04-14

    6-hydroxydopamine (6-OHDA) is usually thought to cross cell membrane through dopamine uptake transporters, to inhibit mitochondrial respiration and to generate intracellular reactive oxygen species. In this study, we show that the anti-oxidants catalase, glutathione and N-acetyl-cysteine are able to reverse the toxic effects of 6-OHDA. These two latter compounds considerably slow down 6-OHDA oxidation in a cell free system suggesting a direct chemical interaction with the neurotoxin. Moreover, desipramine does not protect PC12 cells and 6-OHDA is also strongly toxic towards non-catecholaminergic C6 and NIH3T3 cells. These results thus suggest that 6-OHDA toxicity on PC12 cells mainly involves an extracellular process. PMID:10754220

  5. NADPH oxidase-mediated generation of reactive oxygen species: A new mechanism for X-ray-induced HeLa cell death

    SciTech Connect

    Liu Qing; He Xiaoqing; Liu Yongsheng; Du Bingbing; Wang Xiaoyan; Zhang Weisheng; Jia Pengfei; Dong Jingmei; Ma Jianxiu; Wang Xiaohu; Li Sha; Zhang Hong

    2008-12-19

    Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91{sup phox} was dose-dependent. Meanwhile, the cytoplasmic subunit p47{sup phox} was translocated to the cell membrane and localized with p22{sup phox} and gp91{sup phox} to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.

  6. UV Light-Induced Generation of Reactive Oxygen Species and Antimicrobial Properties of Cellulose Fabric Modified by 3,3',4,4'-Benzophenone Tetracarboxylic Acid.

    PubMed

    Hou, Aiqin; Feng, Guanchen; Zhuo, Jingyuan; Sun, Gang

    2015-12-23

    3,3',4,4'-Benzophenone tetracarboxylic acid (BPTCA) could directly react with hydroxyl groups on cellulose to form ester bonds. The modified cotton fabrics not only provided good wrinkle-free and ultraviolet (UV) protective functions, but also exhibited important photochemical properties such as producing reactive oxygen species (ROS) including hydroxyl radicals (HO(•)) and hydrogen peroxide (H2O2) under UV light exposure. The amounts of the produced hydroxyl radical and hydrogen peroxide were measured, and photochemical reactive mechanism of the BPTCA treated cellulose was discussed. The results reveal that the fabrics possess good washing durability in generation of hydroxyl radicals and hydrogen peroxide. The cotton fabrics modified with different concentrations of BPTCA and cured at an elevated temperature demonstrated excellent antimicrobial activities, which provided 99.99% antibacterial activities against both E. coli and S. aureus. The advanced materials have potential applications in medical textiles and biological material fields. PMID:26636826

  7. Allicin protects rat cardiomyoblasts (H9c2 cells) from hydrogen peroxide-induced oxidative injury through inhibiting the generation of intracellular reactive oxygen species.

    PubMed

    Chan, Jackie Yan-Yan; Tsui, Hei-Tung; Chung, Ivan Ying-Ming; Chan, Robbie Yat-Kan; Kwan, Yiu-Wa; Chan, Shun-Wan

    2014-11-01

    Oxidative stress is considered an important factor that promotes cell death in response to a variety of pathophysiological conditions. This study investigated the antioxidant properties of allicin, the principle ingredient of garlic, on preventing oxidative stress-induced injury. The antioxidant capacities of allicin were measured by using 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay and hydrogen peroxide (H(2)O(2))-induced cell damage on H9c2 cardiomyoblasts. Allicin (0.3-10 μM) pre-incubation could concentration-dependently attenuate the intracellular reactive oxygen species (ROS) increase induced by H(2)O(2) on H9c2 cells. It could also protect H9c2 cells against H(2)O(2)-induced cell damage. However, the DPPH free radical scavenging activity of allicin was shown to be low. Therefore, it is believed that the protective effect of allicin on H9c2 cells could inhibit intracellular ROS production instead of scavenging extracellular H(2)O(2) or free radicals. For the observed protective effect on H9c2 cells, allicin might also be effective in reducing free radical-induced myocardial cell death in ischemic condition. PMID:24945597

  8. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology

    PubMed Central

    Oliveira, Matheus P.; Correa Soares, Juliana B. R.; Oliveira, Marcus F.

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  9. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology.

    PubMed

    Oliveira, Matheus P; Correa Soares, Juliana B R; Oliveira, Marcus F

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  10. Generation of reactive oxygen species from 5-aminolevulinic acid and Glutamate in cooperation with excited CdSe/ZnS QDs

    NASA Astrophysics Data System (ADS)

    Duong, Hong Dinh; Lee, Jee Won; Rhee, Jong Il

    2014-08-01

    CdSe/ZnS quantum dots (QDs) can be joined in the reductive pathway involving the electron transfer to an acceptor or in the oxidative pathway involving the hole transfer to a donor. They were exploited in the oxidation reactions of 5-aminolevulinic acid (ALA) and glutamate (GLU) for the generation of reactive oxygen species (ROS) such as hydroxyl radical (HO●) and superoxide anion (O2 ● -). Fast and highly efficient oxidation reactions of ALA to produce HO● and of GLU to produce O2 ●- were observed in the cooperation of mercaptopropionic acid (MPA)-capped CdSe/ZnS QDs under LED irradiation. Fluorescence spectroscopy and electron spin resonance (ESR) spectroscopy were used to evaluate the generation of different forms of ROS. Confocal fluorescent microscopic images of the size and morphology of HeLa cells confirmed the ROS generation from ALA or GLU in cooperation with CdSe/ZnS QDs under LED irradiation.

  11. Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation

    PubMed Central

    Thakur, Anita; Alam, Md. Jahangir; Ajayakumar, MR; Ghaskadbi, Saroj; Sharma, Manish; Goswami, Shyamal K.

    2015-01-01

    Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE) is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose) generate DCFH-DA positive ROS only for 2 h; while those treated with 100 µM NE (apoptotic dose) sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H2O2 but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses. PMID:26070033

  12. Growth inhibition dependent on reactive oxygen species generated by C9-UK-2A, a derivative of the antifungal antibiotic UK-2A, in Saccharomyces cerevisiae.

    PubMed

    Fujita, Ken-Ichi; Tani, Kazunori; Usuki, Yoshinosuke; Tanaka, Toshio; Taniguchi, Makoto

    2004-08-01

    UK-2A is a potent antifungal antibiotic and its structure is highly similar to that of antimycin A3 (AA). UK-2A and AA inhibit mitochondrial electron transport at complex III. C9-UK-2A, which has been prepared to improve the duration of the antifungal activity of UK-2A, shows durable fungicidal activities against various species of fungi and induces both membrane injury and the generation of cellular reactive oxygen species (ROS) against Rhodotorula mucilaginosa IFO 0001 cells. We found that C9-UK-2A inhibited the vegetative growth of Saccharomyces cerevisiae IFO 0203 cells accompanying cellular ROS generation in Sabouraud dextrose (SD) medium, which contained a fermentable carbon source. The ROS generation was completely restricted by pretreatment with a lipophilic antioxidant alpha-tocopherol. In addition, the pretreatment with the antioxidant protected against the growth inhibition induced by C9-UK-2A. C9-UK-2A also induced ROS generation in isolated mitochondria of the S. cerevisiae cells. The addition of both a complex I inhibitor rotenone and a complex II inhibitor thenoyltrifluoroacetone reduced ROS generation induced by C9-UK-2A in the whole cells and the isolated mitochondria. The addition of the inhibitors of complex III, AA or myxothiazol, or of complex IV, KCN, did not reduce ROS generation. These results suggest that C9-UK-2A induces ROS generation due to the blockade of electron flow at complex III, thereby inhibiting the growth of S. cerevisiae in SD medium. PMID:15515888

  13. Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation.

    PubMed

    Thakur, Anita; Alam, Md Jahangir; Ajayakumar, M R; Ghaskadbi, Saroj; Sharma, Manish; Goswami, Shyamal K

    2015-08-01

    Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE) is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose) generate DCFH-DA positive ROS only for 2h; while those treated with 100 µM NE (apoptotic dose) sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H2O2 but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses. PMID:26070033

  14. Effects of the electrical parameters and gas flow rate on the generation of reactive species in liquids exposed to atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Baek, Eun Jeong; Joh, Hea Min; Kim, Sun Ja; Chung, T. H.

    2016-07-01

    In this work, an atmospheric pressure plasma jet was fabricated and studied for plasma-liquid interactions. The plasma jet consists of a quartz-covered pin electrode and outer quartz tube with a tapered nozzle. Using the current-voltage (I-V) and optical emission characteristics of the plasma jet, the plasma density and the speed of the plume were investigated. The optical emission spectra clearly indicated the excited NO, O, OH, N2, and N2+ in the plasma plumes. Then the plasma jets were applied to the deionized water. We investigated the effects of the operating parameters such as applied voltage, pulse frequency, and gas flow rate on the generation of reactive species in the gas and liquid phases. The densities of reactive species including OH radicals were obtained at the plasma-liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. The nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of reactive oxygen and nitrogen species (RONS) in the plasmas and liquids.

  15. Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C-H bond activation

    NASA Astrophysics Data System (ADS)

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R.

    2013-11-01

    Both ceria (CeO2) and alumina (Al2O3) are very important catalyst support materials. Neutral binary oxide nanoclusters (NBONCs), CexAlyOz, are generated and detected in the gas phase and their reactivity with carbon monoxide (CO) and butane (C4H10) is studied. The very active species CeAlO4• can react with CO and butane via O atom transfer (OAT) and H atom transfer (HAT), respectively. Other CexAlyOz NBONCs do not show reactivities toward CO and C4H10. The structures, as well as the reactivities, of CexAlyOz NBONCs are studied theoretically employing density functional theory (DFT) calculations. The ground state CeAlO4• NBONC possesses a kite-shaped structure with an OtCeObObAlOt configuration (Ot, terminal oxygen; Ob, bridging oxygen). An unpaired electron is localized on the Ot atom of the AlOt moiety rather than the CeOt moiety: this Ot centered radical moiety plays a very important role for the reactivity of the CeAlO4• NBONC. The reactivities of Ce2O4, CeAlO4•, and Al2O4 toward CO are compared, emphasizing the importance of a spin-localized terminal oxygen for these reactions. Intramolecular charge distributions do not appear to play a role in the reactivities of these neutral clusters, but could be important for charged isoelectronic BONCs. DFT studies show that the reaction of CeAlO4• with C4H10 to form the CeAlO4H•C4H9• encounter complex is barrierless. While HAT processes have been previously characterized for cationic and anionic oxide clusters, the reported study is the first observation of a HAT process supported by a ground state neutral oxide cluster. Mechanisms for catalytic oxidation of CO over surfaces of AlxOy/MmOn or MmOn/AlxOy materials are proposed consistent with the presented experimental and theoretical results.

  16. The use of chimeric virus-like particles harbouring a segment of hantavirus Gc glycoprotein to generate a broadly-reactive hantavirus-specific monoclonal antibody.

    PubMed

    Zvirbliene, Aurelija; Kucinskaite-Kodze, Indre; Razanskiene, Ausra; Petraityte-Burneikiene, Rasa; Klempa, Boris; Ulrich, Rainer G; Gedvilaite, Alma

    2014-02-01

    Monoclonal antibodies (MAbs) against viral glycoproteins have important diagnostic and therapeutic applications. In most cases, the MAbs specific to viral glycoproteins are raised against intact virus particles. The biosynthesis of viral glycoproteins in heterologous expression systems such as bacteria, yeast, insect or mammalian cells is often problematic due to their low expression level, improper folding and limited stability. To generate MAbs against hantavirus glycoprotein Gc, we have used initially a recombinant yeast-expressed full-length Puumala virus (PUUV) Gc protein. However, this approach was unsuccessful. As an alternative recombinant antigen, chimeric virus-like particles (VLPs) harboring a segment of PUUV Gc glycoprotein were generated in yeast Saccharomyces cerevisiae. A 99 amino acid (aa)-long segment of Gc protein was inserted into the major capsid protein VP1 of hamster polyomavirus at previously defined positions: either site #1 (aa 80-89) or site #4 (aa 280-289). The chimeric proteins were found to self-assemble to VLPs as evidenced by electron microscopy. Chimeric VLPs induced an efficient insert-specific antibody response in immunized mice. Monoclonal antibody (clone #10B8) of IgG isotype specific to hantavirus Gc glycoprotein was generated. It recognized recombinant full-length PUUV Gc glycoprotein both in ELISA and Western blot assay and reacted specifically with hantavirus-infected cells in immunofluorescence assay. Epitope mapping studies revealed the N-terminally located epitope highly conserved among different hantavirus strains. In conclusion, our approach to use chimeric VLPs was proven useful for the generation of virus-reactive MAb against hantavirus Gc glycoprotein. The generated broadly-reactive MAb #10B8 might be useful for various diagnostic applications. PMID:24513568

  17. The Use of Chimeric Virus-like Particles Harbouring a Segment of Hantavirus Gc Glycoprotein to Generate a Broadly-Reactive Hantavirus-Specific Monoclonal Antibody

    PubMed Central

    Zvirbliene, Aurelija; Kucinskaite-Kodze, Indre; Razanskiene, Ausra; Petraityte-Burneikiene, Rasa; Klempa, Boris; Ulrich, Rainer G.; Gedvilaite, Alma

    2014-01-01

    Monoclonal antibodies (MAbs) against viral glycoproteins have important diagnostic and therapeutic applications. In most cases, the MAbs specific to viral glycoproteins are raised against intact virus particles. The biosynthesis of viral glycoproteins in heterologous expression systems such as bacteria, yeast, insect or mammalian cells is often problematic due to their low expression level, improper folding and limited stability. To generate MAbs against hantavirus glycoprotein Gc, we have used initially a recombinant yeast-expressed full-length Puumala virus (PUUV) Gc protein. However, this approach was unsuccessful. As an alternative recombinant antigen, chimeric virus-like particles (VLPs) harboring a segment of PUUV Gc glycoprotein were generated in yeast Saccharomyces cerevisiae. A 99 amino acid (aa)-long segment of Gc protein was inserted into the major capsid protein VP1 of hamster polyomavirus at previously defined positions: either site #1 (aa 80–89) or site #4 (aa 280–289). The chimeric proteins were found to self-assemble to VLPs as evidenced by electron microscopy. Chimeric VLPs induced an efficient insert-specific antibody response in immunized mice. Monoclonal antibody (clone #10B8) of IgG isotype specific to hantavirus Gc glycoprotein was generated. It recognized recombinant full-length PUUV Gc glycoprotein both in ELISA and Western blot assay and reacted specifically with hantavirus-infected cells in immunofluorescence assay. Epitope mapping studies revealed the N-terminally located epitope highly conserved among different hantavirus strains. In conclusion, our approach to use chimeric VLPs was proven useful for the generation of virus-reactive MAb against hantavirus Gc glycoprotein. The generated broadly-reactive MAb #10B8 might be useful for various diagnostic applications. PMID:24513568

  18. Development of new generation of copolymers via reactive extrusion in a twin screw extruder and application in various PVC blends

    NASA Astrophysics Data System (ADS)

    Kim, In

    Polymerization in twin screw extruders has largely involved homopolymers. Here we generalize this and polymerize a range of copolymers and terpolymers including epsilon-caprolactam(CA), o-lauryl lactam(LA), epsilon-caprolactone(CL), and gamma-butyrolactone(GBL) in a modular intermeshing co-rotating twin screw extruder. We considered different types of copolymer structures (di-block, tri-block, and random-block) and different backbones of copolymer(lactams-lactones) as well as the variables of temperature profile, screw speed, monomer feed rate, the ratio of monomer to initiator, and feeding order of co-monomers on reactive extrusion of polyamides-polylactones based (co)polymers. Specially designed block copolymers have played a role as compatibilizing agents in the system of immiscible polymer blends. We apply the di-block copolymer(P(LA-b-CL)) and random block copolymer (P(LA/CA-b-CL)) produced by reactive extrusion as a compatibilizing agent in immiscible polymer blend systems: (i) poly(vinyl chloride) (PVC)/polyamide 12 (PA12), (ii) PVC/polypropylene(PP), and (iii) PVC/Ethylene-propylene-non-conjugated diene elastomer(EPDM).

  19. Photosensitized damage inflicted on plasma membranes of live cells by an extracellular generator of singlet oxygen--a linear dependence of a lethal dose on light intensity.

    PubMed

    Zarębski, Mirosław; Kordon, Magdalena; Dobrucki, Jurek W

    2014-01-01

    We describe a study of the influence of a dose rate, i.e. light intensity or photon flux, on the efficiency of induction of a loss of integrity of plasma membranes of live cells in culture. The influence of a photon flux on the size of the light dose, which was capable of causing lethal effects, was measured in an experimental system where singlet oxygen was generated exclusively outside of live cells by ruthenium(II) phenantroline complex. Instantaneous, sensitive detection of a loss of integrity of a plasma membrane was achieved by fluorescence confocal imaging of the entry of this complex into a cell interior. We demonstrate that the size of the lethal dose of light is directly proportional to the intensity of the exciting light. Thus, the probability of a photon of the exciting light inflicting photosensitized damage on plasma membranes diminishes with increasing density of the incident photons. PMID:24279807

  20. Redox Cycling of Catechol Estrogens Generating Apurinic/Apyrimidinic Sites and 8-oxo-Deoxyguanosine via Reactive Oxygen Species Differentiates Equine and Human Estrogens

    PubMed Central

    Wang, Zhican; Chandrasena, Esala R.; Yuan, Yang; Peng, Kuan-wei; van Breemen, Richard B.; Thatcher, Gregory R. J.; Bolton, Judy L.

    2010-01-01

    Metabolic activation of estrogens to catechols and further oxidation to highly reactive o-quinones generates DNA damage including apurinic/apyrimidinic (AP) sites. 4-Hydroxyequilenin (4-OHEN) is the major catechol metabolite of equine estrogens present in estrogen replacement formulations, known to cause DNA strand breaks, oxidized bases, and stable and depurinating adducts. However, the direct formation of AP sites by 4-OHEN has not been characterized. In the present study, the induction of AP sites in vitro by 4-OHEN and the endogenous catechol estrogen metabolite, 4-hydroxyestrone (4-OHE) was examined by an aldehyde reactive probe assay. Both 4-OHEN and 4-OHE can significantly enhance the levels of AP sites in calf thymus DNA in the presence of the redox cycling agents, copper ion and NADPH. The B-ring unsaturated catechol 4-OHEN induced AP sites without added copper, whereas 4-OHE required copper. AP sites were also generated much more rapidly by 4-OHEN. For both catechol estrogens, the levels of AP sites correlated linearly with 8-oxo-dG levels, implying that depuriniation resulted from reactive oxygen species (ROS) rather than depurination of estrogen-DNA adducts. ROS modulators such as catalase which scavenges hydrogen peroxide and a Cu(I) chelator blocked the formation of AP sites. In MCF-7 breast cancer cells, 4-OHEN significantly enhanced the formation of AP sites with added NADH. In contrast, no significant induction of AP sites was detected in 4-OHE-treated cells. The greater redox activity of the equine catechol estrogen produces rapid oxidative DNA damage via ROS, which is enhanced by redox cycling agents and interestingly by NADPH-dependent quinone oxidoreductase (NQO1). PMID:20509668

  1. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter.

    PubMed

    Valavanidis, A; Fiotakis, K; Bakeas, E; Vlahogianni, T

    2005-01-01

    A range of epidemiological studies in the 1990s showed that exposure to ambient particulate matter (PM) is associated with adverse health effects in the respiratory system and increased morbidity and mortality rates. Oxidative stress has emerged as a pivotal mechanism that underlies the toxic pulmonary effects of PM. A key question from a variety of studies was whether the adverse health effects of PM are mediated by the carbonaceous particles of their reactive chemical compounds adsorbed into the particles. Experimental evidence showed that PM contains redox-active transition metals, redox cycling quinoids and polycyclic aromatic hydrocarbons (PAHs) which act synergistically to produce reactive oxygen species (ROS). Fine PM has the ability to penetrate deep into the respiratory tree where it overcomes the antioxidant defences in the fluid lining of the lungs by the oxidative action of ROS. From a previous study [Valavanidis A, Salika A, Theodoropoulou A. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions. Atmospher Environ 2000; 34 : 2379-2386], we established that ferrous ions in PM play an important role in the generation of hydroxyl radicals in the presence of hydrogen peroxide (H2O2). In the present study, we investigated the synergistic effect of transition metals and persistent quinoid and semiquinone radicals for the generation of ROS without the presence of H2O2. We experimented with airborne particulate matter, such as TSPs (total suspended particulates), fresh automobile exhaust particles (diesel, DEP and gasoline, GEP) and fresh wood smoke soot. Using electron paramagnetic resonance (EPR), we examined the quantities of persistent free radicals, characteristic of a mixture of quinoid radicals with different structures and a carbonaceous core of carbon-centred radicals. We extracted, separated and analysed the quinoid compounds by EPR at alkaline solution (pH 9.5) and by TLC. Also, we studied the direct

  2. Formation of diatomic molecular radicals in reactive nitrogen-carbon plasma generated by electron cyclotron resonance discharge and pulsed laser ablation

    SciTech Connect

    Liang, Peipei; Li, Yanli; You, Qinghu; Cai, Hua; Yang, Xu; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-04-15

    The reactive nitrogen-carbon plasma generated by electron cyclotron resonance (ECR) microwave discharge of N{sub 2} gas and pulsed laser ablation of a graphite target was characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy with space resolution for a study of gas-phase reactions and molecular radical formation in the plasma. The plasma exhibits very high reactivity compared with the plasma generated solely by ECR discharge or by pulsed laser ablation and contains highly excited species originally present in the ambient gaseous environment and directly ablated from the target as well as formed as the products of gas-phase reactions occurring in the plasma. The space distribution and the time evolution of the plasma emission give an access to the gas-phase reactions for the formation of C{sub 2} and CN radicals, revealing that C{sub 2} radicals are formed mainly in the region near the target while CN radicals can be formed in a much larger region not only in the vicinity of the target, but especially in the region near a substrate far away from the target.

  3. Gardenin B-induced cell death in human leukemia cells involves multiple caspases but is independent of the generation of reactive oxygen species.

    PubMed

    Cabrera, Javier; Saavedra, Ester; Del Rosario, Henoc; Perdomo, Juan; Loro, Juan F; Cifuente, Diego A; Tonn, Carlos E; García, Celina; Quintana, José; Estévez, Francisco

    2016-08-25

    Flavonoids have attracted great interest due to their possible anticancer activities. Here we investigated the antiproliferative activity of the flavonoids isolated from Baccharis scandens against human leukemia cell lines and found that the methoxyflavonoid gardenin B was the most cytotoxic compound against HL-60 and U-937 cells, showing IC50 values between 1.6 and 3.0 μM, but had no significant cytotoxic effects against quiescent or proliferating human peripheral blood mononuclear cells. These effects on viability were accompanied by the concentration- and time-dependent appearance of apoptosis as evidenced by DNA fragmentation, formation of apoptotic bodies and a sub-G1 ratio increase. Comparative studies with the best-studied bioflavonoid quercetin indicate that gardenin B is a more cytotoxic and more apoptotic inducer than quercetin. Cell death induced by gardenin B was associated with: (i) a significant induction of caspase-2, -3, -8 and -9 activities; (ii) cleavage of the initiator caspases (caspase-2, -8 and -9), of the executioner caspase-3, and of poly(ADP-ribose) polymerase; and (iii) a concentration-dependent reactive oxygen species generation. In conclusion, apoptosis induced by gardenin B is associated with activation of both the extrinsic and the intrinsic apoptotic pathways of cell death and occurs through a mechanism that is independent of the generation of reactive oxygen species. PMID:27423764

  4. Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species.

    PubMed

    Villasana, Laura E; Weber, Sydney; Akinyeke, Tunde; Raber, Jacob

    2016-09-01

    Apolipoprotein E (apoE), involved in cholesterol and lipid metabolism, also influences cognitive function and injury repair. In humans, apoE is expressed in three isoforms. E4 is a risk factor for age-related cognitive decline and Alzheimer's disease, particularly in women. E4 might also be a risk factor for developing behavioral and cognitive changes following (56) Fe irradiation, a component of the space environment astronauts are exposed to during missions. These changes might be related to enhanced generation of reactive oxygen species (ROS). In this study, we compared the behavioral and cognitive performance of sham-irradiated and irradiated wild-type (WT) mice and mice expressing the human E3 or E4 isoforms, and assessed the generation of ROS in hippocampal slices from these mice. E4 mice had greater anxiety-like and conditioned fear behaviors than WT mice, and these genotype differences were associated with greater levels of ROS in E4 than WT mice. The greater generation of ROS in the hippocampus of E4 than WT mice might contribute to their higher anxiety levels and enhanced fear conditioning. In E4, but not WT, mice, phorbol-12-myristate-13-acetate-treated hippocampal slices showed more dihydroxy ethidium oxidation in sham-irradiated than irradiated mice and hippocampal heme oxygenase-1 levels were higher in irradiated than sham-irradiated E4 mice. Mice with apolipoprotein E4 (E4), a risk factor for Alzheimer's disease, have greater anxiety-like and conditioned fear behaviors than wild-type (WT) mice. Generation of reactive oxygen species (ROS, in red) 3 months following (56) Fe irradiation, a component of the space environment astronauts are exposed to, is more pronounced in the hippocampus of E4 than WT mice. In E4, but not WT, mice, hippocampal levels of the oxidative stress-relevant marker heme oxygenase-1 are higher in irradiated than sham-irradiated E4 mice. PMID:27412623

  5. Intracellular Zn(2+) Increase in Cardiomyocytes Induces both Electrical and Mechanical Dysfunction in Heart via Endogenous Generation of Reactive Nitrogen Species.

    PubMed

    Tuncay, Erkan; Turan, Belma

    2016-02-01

    Oxidants increase intracellular free Zn(2+) concentration ([Zn(2+)]i) in ventricular myocytes, which contributes to oxidant-induced alterations in excitation-contraction coupling (ECC). However, it is not clear whether increased [Zn(2+)]i in cardiomyocytes via increased reactive nitrogen species (RNS) has a role on heart function under pathological conditions, such as hyperglycemia. In this study, first we aimed to investigate the role of increased [Zn(2+)]i under in vitro condition in the development of both electrical and mechanical dysfunction of isolated papillary muscle strips from rat heart via exposed samples to a Zn(2+)-ionophore (Zn-pyrithione; 1 μM) for 20 min. Under simultaneous measurement of intracellular action potential and contractile activity in these preparations, Zn-pyrithione exposure caused marked prolongation in action potential repolarization phase and slowdown in both contraction and relaxation rates of twitch activity. Second, in order to demonstrate an association between increased [Zn(2+)]i and increased RNS, we monitored intracellular [Zn(2+)]i under an acute exposure of nitric oxide (NO) donor sodium nitroprusside, SNP, in freshly isolated quiescent cardiomyocytes loaded with FluoZin-3. Resting level of free Zn(2+) is significantly higher in cardiomyocytes under hyperglycemic condition compared to those of the controls, which seems to be associated with increased level of RNS production in hyperglycemic cardiomyocytes. Western blot analysis showed that Zn-pyrithione exposure induced a marked decrease in the activity of protein phosphatase 1 and 2A, member of macromolecular protein complex of cardiac ryanodine receptors, RyR2, besides significant increase in the phosphorylation level of extracellular signal-regulated kinase1/2 as a concentration-dependent manner. Overall, the present data demonstrated that there is a cross-relationship between increased RNS production and increased [Zn(2+)]i level in cardiomyocytes under pathological

  6. Generation and characterization of a human-mouse chimeric antibody against the extracellular domain of claudin-1 for cancer therapy using a mouse model.

    PubMed

    Hashimoto, Yosuke; Tada, Minoru; Iida, Manami; Nagase, Shotaro; Hata, Tomoyuki; Watari, Akihiro; Okada, Yoshiaki; Doi, Takefumi; Fukasawa, Masayoshi; Yagi, Kiyohito; Kondoh, Masuo

    2016-08-12

    Claudin-1 (CLDN-1), an integral transmembrane protein, is an attractive target for drug absorption, prevention of infection, and cancer therapy. Previously, we generated mouse anti-CLDN-1 monoclonal antibodies (mAbs) and found that they enhanced epidermal absorption of a drug and prevented hepatitis C virus infection in human hepatocytes. Here, we investigated anti-tumor activity of a human-mouse chimeric IgG1, xi-3A2, from one of the anti-CLDN-1 mAbs, clone 3A2. Xi-3A2 accumulated in the tumor tissues in mice bearing with human CLDN-1-expressing tumor cells. Xi-3A2 activated Fcγ receptor IIIa-expressing reporter cells in the presence of human CLDN-1-expressing cells, suggesting xi-3A2 has a potential to exhibit antibody-dependent cellular cytotoxicity against CLDN-1 expressing tumor cells. We also constructed a mutant xi-3A2 antibody with Gly, Ser, and Ile substituted with Ala, Asp, and Arg at positions 236, 239, and 332 of the Fc domain. This mutant antibody showed greater activation of Fcγ receptor IIIa and in vivo anti-tumor activity in mice bearing human CLDN-1-expressing tumors than xi-3A2 did. These findings indicate that the G236A/S239D/I332E mutant of xi-3A2 might be a promising lead for tumor therapy. PMID:27286708

  7. The study of radiation-induced damage and remodeling of extracellular matrix of rectum and bladder by second-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Kochueva, Marina V.; Sergeeva, Ekaterina A.; Ignatjeva, Natalya Yu.; Zakharkina, Olga L.; Kuznetzov, Sergej S.; Kiseleva, Elena B.; Babak, Ksenia V.; Kamensky, Vladislav A.; Maslennikova, Anna V.

    2014-02-01

    Adverse events in normal tissues after irradiation of malignant tumors are of great importance in modern radiation oncology. Second harmonic generation (SHG) microscopy allows observe the structure of collagen fibers and bundles without additional staining. The study objective was evaluation the dose-time dependences of the structural changes occurring in collagen of rat rectum and bladder after gamma-irradiation. Animals were irradiated by a local field at single doses of 10 Gy and 40 Gy. The study of collagen state was carried out in a week and a month after radiation exposure. Paraffin-embedded material was sectioned on the slices 10 mkm thick and SHG-imaging was performed by LSM 510 Meta (Carl Zeiss, Germany). Excitation was implemented with a pulsed (100-fs) titanium-sapphire laser at a wavelength of 800 nm and a pulse repetition frequency of 80 MHz, registration was performed at two wavelengths: 362-415 nm according to collagen fluorescence and 512-576 nm according to myoglobin fluorescence. In a week after irradiation, sings of epithelial damage and edema of submucosal layer, more significant after the dose of 40 Gy were observed on LSM-images. The SHG signal decreased at this time reflecting the processes of collagen degradation independently either in bladder or in rectum. In a month after radiation the increase of size and number of collagen-bearing structures was observed, more essential after irradiation in a dose of 40 Gy. LSM microscopy with SHG allows evaluate changes of normal tissues after ionizing radiation and get information in addition to standard and special histological staining.

  8. Inorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes

    PubMed Central

    Cailotto, Frederic; Bianchi, Arnaud; Sebillaud, Sylvie; Venkatesan, Narayanan; Moulin, David; Jouzeau, Jean-Yves; Netter, Patrick

    2007-01-01

    ANK is a multipass transmembrane protein transporter thought to play a role in the export of intracellular inorganic pyrophosphate and so to contribute to the pathophysiology of chondrocalcinosis. As transforming growth factor-beta-1 (TGF-β1) was shown to favor calcium pyrophosphate dihydrate deposition, we investigated the contribution of ANK to the production of extracellular inorganic pyrophosphate (ePPi) by chondrocytes and the signaling pathways involved in the regulation of Ank expression by TGF-β1. Chondrocytes were exposed to 10 ng/mL of TGF-β1, and Ank expression was measured by quantitative polymerase chain reaction and Western blot. ePPi was quantified in cell supernatants. RNA silencing was used to define the respective roles of Ank and PC-1 in TGF-β1-induced ePPi generation. Finally, selective kinase inhibitors and dominant-negative/overexpression plasmid strategies were used to explore the contribution of several signaling pathways to Ank induction by TGF-β1. TGF-β1 strongly increased Ank expression at the mRNA and protein levels, as well as ePPi production. Using small interfering RNA technology, we showed that Ank contributed approximately 60% and PC-1 nearly 20% to TGF-β1-induced ePPi generation. Induction of Ank by TGF-β1 required activation of the extracellular signal-regulated kinase (ERK) pathway but not of p38-mitogen-activated protein kinase or of protein kinase A. In line with the general protein kinase C (PKC) inhibitor calphostin C, Gö6976 (a Ca2+-dependent PKC inhibitor) diminished TGF-β1-induced Ank expression by 60%, whereas a 10% inhibition was observed with rottlerin (a PKCδ inhibitor). These data suggest a regulatory role for calcium in TGF-β1-induced Ank expression. Finally, we demonstrated that the stimulatory effect of TGF-β1 on Ank expression was inhibited by the suppression of the Ras/Raf-1 pathway, while being enhanced by their constitutive activation. Transient overexpression of Smad 7, an inhibitory Smad, failed

  9. Airborne particulate matter PM2.5 from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an in vitro approach

    PubMed Central

    Sierra-Vargas, Martha Patricia; Guzman-Grenfell, Alberto Martin; Blanco-Jimenez, Salvador; Sepulveda-Sanchez, Jose David; Bernabe-Cabanillas, Rosa Maria; Cardenas-Gonzalez, Beatriz; Ceballos, Guillermo; Hicks, Juan Jose

    2009-01-01

    Background The Mexico City Metropolitan Area is densely populated, and toxic air pollutants are generated and concentrated at a higher rate because of its geographic characteristics. It is well known that exposure to particulate matter, especially to fine and ultra-fine particles, enhances the risk of cardio-respiratory diseases, especially in populations susceptible to oxidative stress. The aim of this study was to evaluate the effect of fine particles on the respiratory burst of circulating neutrophils from asthmatic patients living in Mexico City. Methods In total, 6 subjects diagnosed with mild asthma and 11 healthy volunteers were asked to participate. Neutrophils were isolated from peripheral venous blood and incubated with fine particles, and the generation of reactive oxygen species was recorded by chemiluminescence. We also measured plasma lipoperoxidation susceptibility and plasma myeloperoxidase and paraoxonase activities by spectrophotometry. Results Asthmatic patients showed significantly lower plasma paraoxonase activity, higher susceptibility to plasma lipoperoxidation and an increase in myeloperoxidase activity that differed significantly from the control group. In the presence of fine particles, neutrophils from asthmatic patients showed an increased tendency to generate reactive oxygen species after stimulation with fine particles (PM2.5). Conclusion These findings suggest that asthmatic patients have higher oxidation of plasmatic lipids due to reduced antioxidant defense. Furthermore, fine particles tended to increase the respiratory burst of blood human neutrophils from the asthmatic group. On the whole, increased myeloperoxidase activity and susceptibility to lipoperoxidation with a concomitant decrease in paraoxonase activity in asthmatic patients could favor lung infection and hence disrupt the control of asthmatic crises. PMID:19563660

  10. Lindane-induced generation of reactive oxygen species and depletion of glutathione do not result in necrosis in renal distal tubule cells.

    PubMed

    Piskac-Collier, Amanda L; Smith, Mary Ann

    2009-01-01

    Lindane is a chlorinated hydrocarbon pesticide, currently used in prescription shampoos and lotions to treat scabies and lice infestations. Lindane is known to be nephrotoxic; however, the mechanism of action is not well understood. In other organ systems, lindane produces cellular damage by generation of free radicals and oxidative stress. Morphological changes were observed in lindane-treated Madin-Darby canine kidney (MDCK) cells indicative of apoptosis. Lindane treatment induced time-dependent reactive oxygen species (ROS) generation. Onset of ROS generation correlated with an initial increase in total glutathione (GSH) levels above control values, with a subsequent decline in a time-dependent manner. This decline may be attributed to quenching of free radicals by GSH, thereby decreasing the cellular stores of this antioxidant. Necrotic injury was assessed by measuring lactate dehydrogenase (LDH) leakage from the cell after lindane exposure. No significant LDH leakage was noted for all concentrations tested over time. Generation of ROS and alterations in cellular protective mechanisms did not result in necrotic injury in MDCK cells, which corresponds with our morphological findings of lindane-induced apoptotic changes as opposed to necrosis in MDCK cells. Thus, lindane exposure results in oxidative damage and alterations in antioxidant response in renal distal tubule cells, followed by cell death not attributed to necrotic injury. PMID:20077184

  11. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  12. Bacterial extracellular lignin peroxidase

    DOEpatents

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  13. Generation of blood group specificity: new insights from structural studies on the complexes of A- and B-reactive saccharides with basic winged bean agglutinin.

    PubMed

    Kulkarni, Kiran A; Katiyar, Samiksha; Surolia, Avadhesha; Vijayan, Mamannamana; Suguna, Kaza

    2007-08-15

    Basic winged bean agglutinin binds A-blood group substance with higher affinity and B-blood group substance with lesser affinity. It does not bind the O substance. The crystal structures of the lectin, complexed with A-reactive and B-reactive di and tri saccharides, have been determined. In addition, the complexes of the lectin with fucosylated A-trisaccharides and B-trisaccharides and with a variant of the A-trisaccharide have been modeled. These structures and models provide valuable insights into the structural basis of blood group specificities. All the four carbohydrate binding loops of the lectin contribute to the primary combining site while the loop of variable length contributes to the secondary binding site. In a significant advance to the current understanding, the interactions at the secondary binding site also contribute substantially, albeit in a subtle manner, to determine the blood group specificity. Compared with the interactions of the B-trisaccharide with the lectin, the third sugar residue of the A-reactive trisacharide forms an additional hydrogen bond with a lysine residue in the variable loop. In the former, the formation of such a hydrogen bond is prevented by a shift in the orientation of third sugar resulting from an internal hydrogen bond in it. The formation of this bond is also facilitated by an interaction dependent change in the rotamer conformation of the lysyl residue of the variable loop. Thus, the difference in the interactions at the secondary site is generated by coordinated movements in the ligand as well as the protein. A comparison of the crystal structure and the model of the complex involving the variant of the A-trisaccharide results in the delineation of the relative contributions of the interactions at the primary and the secondary sites in determining blood group specificity. PMID:17510954

  14. The lectin-like domain of tumor necrosis factor improves lung function after rat lung transplantation—Potential role for a reduction in reactive oxygen species generation*

    PubMed Central

    Hamacher, Jürg; Stammberger, Uz; Roux, Jeremie; Kumar, Sanjiv; Yang, Guang; Xiong, Chenling; Schmid, Ralph A.; Fakin, Richard M.; Chakraborty, Trinad; Hossain, Hamid M. D.; Pittet, Jean-François; Wendel, Albrecht; Black, Stephen M.; Lucas, Rudolf

    2016-01-01

    peptide significantly improves lung function after lung transplantation in the rat, in part, by reducing neutrophil content and reactive oxygen species generation. These studies suggest that the TIP peptide is a potential therapeutic agent against the ischemia reperfusion injury associated with lung transplantation. PMID:20081530

  15. H2S Inhibits Hyperglycemia-Induced Intrarenal Renin-Angiotensin System Activation via Attenuation of Reactive Oxygen Species Generation

    PubMed Central

    Ni, Jun; Li, Chen; Shao, Decui; Liu, Jia; Shen, Yang; Wang, Zhen; Zhou, Li; Zhang, Wei; Huang, Yu; Yu, Chen; Wang, Rui; Lu, Limin

    2013-01-01

    Decrease in endogenous hydrogen sulfide (H2S) was reported to participate in the pathogenesis of diabetic nephropathy (DN). This study is aimed at exploring the relationship between the abnormalities in H2S metabolism, hyperglycemia-induced oxidative stress and the activation of intrarenal renin-angiotensin system (RAS). Cultured renal mesangial cells (MCs) and streptozotocin (STZ) induced diabetic rats were used for the studies. The expressions of angiotensinogen (AGT), angiotensin converting enzyme (ACE), angiotensin II (Ang II) type I receptor (AT1), transforming growth factor-β1 (TGF-β1) and collagen IV were measured by real time PCR and Western blot. Reactive oxygen species (ROS) production was assessed by fluorescent probe assays. Cell proliferation was analyzed by 5'-bromo-2'-deoxyuridine incorporation assay. Ang II concentration was measured by an enzyme immunoassay. AGT, ACE and AT1 receptor mRNA levels and Ang II concentration were increased in high glucose (HG) -treated MCs, the cell proliferation rate and the production of TGF-β1 and of collagen IV productions were also increased. The NADPH oxidase inhibitor diphenylenechloride iodonium (DPI) was able to reverse the HG-induced RAS activation and the changes in cell proliferation and collagen synthesis. Supplementation of H2S attenuated HG-induced elevations in ROS and RAS activation. Blockade on H2S biosynthesis from cystathione-γ-lyase (CSE) by DL-propargylglycine (PPG) resulted in effects similar to that of HG treatment. In STZ-induced diabetic rats, the changes in RAS were also reversed by H2S supplementation without affecting blood glucose concentration. These data suggested that the decrease in H2S under hyperglycemic condition leads to an imbalance between oxidative and reductive species. The increased oxidative species results in intrarenal RAS activation, which, in turn, contributes to the pathogenesis of renal dysfunction. PMID:24058553

  16. Colistin-Induced Apoptosis of Neuroblastoma-2a Cells Involves the Generation of Reactive Oxygen Species, Mitochondrial Dysfunction, and Autophagy.

    PubMed

    Dai, Chongshan; Tang, Shusheng; Velkov, Tony; Xiao, Xilong

    2016-09-01

    Neurotoxicity remains a poorly characterized adverse effect associated with colistin therapy. The aim of the present study was to investigate the mechanism of colistin-induced neurotoxicity using the mouse neuroblastoma2a (N2a) cell line. Colistin treatment (0-200 μM) of N2a neuronal cells induced apoptotic cell death in a dose-dependent manner. Colistin-induced neurotoxicity was associated with a significant increase of reactive oxygen species (ROS) levels, with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase (CAT), and the glutathione (GSH) levels. Mitochondrial dysfunction was evident from the dissipation of membrane potential and the increase of Bax/Bcl-2, followed by the release of cytochrome c (CytC). Caspase-3/7, -8, and -9 activations were also detected. Colistin-induced neurotoxicity significantly increased the gene expression of p53 (1.6-fold), Bax (3.3-fold), and caspase-8 (2.2-fold) (all p < 0.01). The formation of autophagic vacuoles was evident with the significant increases (all p < 0.05 or 0.01) of both of Beclin 1 and LC3B following colistin treatment (50-200 μM). Furthermore, inhibition of autophagy by pretreatment with chloroquine diphosphate (CQ) enhanced colistin-induced apoptosis via caspase activation, which could be attenuated by co-treatment with the pan-caspase inhibitor Z-VAD-FMK. In summary, our study reveals that colistin-induced neuronal cell death involves ROS-mediated oxidative stress and mitochondrial dysfunction, followed by caspase-dependent apoptosis and autophagy. A knowledge base of the neuronal signaling pathways involved in colistin-induced neurotoxicity will greatly facilitate the discovery of neuroprotective agents for use in combination with colistin to prevent this undesirable side effect. PMID:26316077

  17. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species.

    PubMed

    Kowaltowski, A J; Castilho, R F; Vercesi, A E

    1996-01-01

    In this study, we show that mitochondrial membrane permeability transition in Ca(2+)-loaded mitochondria treated with carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) or inorganic phosphate (P(i)) is preceded by enhanced production of H2O2. This production is inhibited either by ethylene glycobis(b-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA) or Mg2+, but not by cyclosporin A. Permeability transition is prevented either by EGTA, catalase or dithiothreitol, suggesting the involvement of Ca2+, H2O2 and oxidation of membrane protein thiols in this mechanism. When mitochondria are incubated under anaerobiosis, no permeabilization or H2O2 production occurs. Based on these results we conclude that mitochondrial permeability transition induced by P(i) or FCCP-uncoupling is dependent on mitochondrial-generated reactive oxygen species. PMID:8549822

  18. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    PubMed Central

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-01-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2−), hydroxyl radical (HO·), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO· (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma. PMID:25715710

  19. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro.

    PubMed

    Gao, Liang; Liu, Ru; Gao, Fuping; Wang, Yaling; Jiang, Xinglu; Gao, Xueyun

    2014-07-22

    We have performed fundamental assays of gold nanocages (AuNCs) as intrinsic inorganic photosensitizers mediating generation of reactive oxygen species (ROS) by plasmon-enabled photochemistry under near-infrared (NIR) one/two-photon irradiation. We disclosed that NIR light excited hot electrons transform into either ROS or hyperthermia. Electron spin resonance spectroscopy was applied to demonstrate the production of three main radical species, namely, singlet oxygen ((1)O2), superoxide radical anion (O2(-•)), and hydroxyl radical ((•)OH). The existence of hot electrons from irradiated AuNCs was confirmed by a well-designed photoelectrochemical experiment based on a three-electrode system. It could be speculated that surface plasmons excited in AuNCs first decay into hot electrons, and then the generated hot electrons sensitize oxygen to form ROS through energy and electron transfer modes. We also compared AuNCs' ROS generation efficiency in different surface chemical environments under one/two-photon irradiation and verified that, compared with one-photon irradiation, two-photon irradiation could bring about much more ROS. Furthermore, in vitro, under two-photon irradiation, ROS can trigger mitochondrial depolarization and caspase protein up-regulation to initiate tumor cell apoptosis. Meanwhile, hyperthermia mainly induces tumor cell necrosis. Our findings suggest that plasmon-mediated ROS and hyperthermia can be facilely regulated for optimized anticancer phototherapy. PMID:24992260

  20. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  1. Xylazine as a Drug of Abuse and Its Effects on the Generation of Reactive Species and DNA Damage on Human Umbilical Vein Endothelial Cells

    PubMed Central

    Veléz, Christian; Álvarez, Lyvia; Zayas, Beatriz

    2014-01-01

    Human xylazine (XYL) abuse among addicts has received great interest due to its potential toxic effects upon addicts and the need to understand the mechanism of action associated with the potential health effects. XYL is an alpha-2 agonist restricted to veterinarian applications, without human medical applications. Our previous work demonstrated that XYL and its combination with cocaine (COC) and/or 6-monoacetylmorphine (6-MAM) induce cell death through an apoptotic mechanism. The aim of this study was to determine the effect of xylazine on the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as well as DNA damage on endothelial cell. Human umbilical vein endothelial cells (HUVEC) were treated with XYL (60 μM), COC (160 μM), 6-MAM (160 μM), camptothecin (positive control, 50 μM), XYL/COC (50 μM), XYL/6-MAM (50 μM), and XYL/COC/6-MAM (40 μM) for a period of 24 hours. Generation of intracellular ROS, RNS, and DNA fragmentation were analyzed using a fluorometric assay. Results reveal that XYL and 6-MAM increase levels of ROS; no induction of RNS production was observed. The combination of these drugs shows significant increase in DNA fragmentation in G2/M phase, while XYL, COC, and 6-MAM, without combination, present higher DNA fragmentation in G0/G1 phase. These findings support that these drugs and their combination alter important biochemical events aligned with an apoptotic mechanism of action in HUVEC. PMID:25435874

  2. Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C–H bond activation

    SciTech Connect

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R.

    2013-11-21

    Both ceria (CeO{sub 2}) and alumina (Al{sub 2}O{sub 3}) are very important catalyst support materials. Neutral binary oxide nanoclusters (NBONCs), Ce{sub x}Al{sub y}O{sub z}, are generated and detected in the gas phase and their reactivity with carbon monoxide (CO) and butane (C{sub 4}H{sub 10}) is studied. The very active species CeAlO{sub 4}{sup •} can react with CO and butane via O atom transfer (OAT) and H atom transfer (HAT), respectively. Other Ce{sub x}Al{sub y}O{sub z} NBONCs do not show reactivities toward CO and C{sub 4}H{sub 10}. The structures, as well as the reactivities, of Ce{sub x}Al{sub y}O{sub z} NBONCs are studied theoretically employing density functional theory (DFT) calculations. The ground state CeAlO{sub 4}{sup •} NBONC possesses a kite-shaped structure with an O{sub t}CeO{sub b}O{sub b}AlO{sub t} configuration (O{sub t}, terminal oxygen; O{sub b}, bridging oxygen). An unpaired electron is localized on the O{sub t} atom of the AlO{sub t} moiety rather than the CeO{sub t} moiety: this O{sub t} centered radical moiety plays a very important role for the reactivity of the CeAlO{sub 4}{sup •} NBONC. The reactivities of Ce{sub 2}O{sub 4}, CeAlO{sub 4}{sup •}, and Al{sub 2}O{sub 4} toward CO are compared, emphasizing the importance of a spin-localized terminal oxygen for these reactions. Intramolecular charge distributions do not appear to play a role in the reactivities of these neutral clusters, but could be important for charged isoelectronic BONCs. DFT studies show that the reaction of CeAlO{sub 4}{sup •} with C{sub 4}H{sub 10} to form the CeAlO{sub 4}H•C{sub 4}H{sub 9}{sup •} encounter complex is barrierless. While HAT processes have been previously characterized for cationic and anionic oxide clusters, the reported study is the first observation of a HAT process supported by a ground state neutral oxide cluster. Mechanisms for catalytic oxidation of CO over surfaces of Al{sub x}O{sub y}/M{sub m}O{sub n} or M{sub m}O{sub n

  3. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis.

    PubMed

    Röhm, Marc; Grimm, Melissa J; D'Auria, Anthony C; Almyroudis, Nikolaos G; Segal, Brahm H; Urban, Constantin F

    2014-05-01

    NADPH oxidase is a crucial enzyme in antimicrobial host defense and in regulating inflammation. Chronic granulomatous disease (CGD) is an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates. Aspergillus species are ubiquitous, filamentous fungi, which can cause invasive aspergillosis, a major cause of morbidity and mortality in CGD, reflecting the critical role for NADPH oxidase in antifungal host defense. Activation of NADPH oxidase in neutrophils can be coupled to the release of proteins and chromatin that comingle in neutrophil extracellular traps (NETs), which can augment extracellular antimicrobial host defense. NETosis can be driven by NADPH oxidase-dependent and -independent pathways. We therefore undertook an analysis of whether NADPH oxidase was required for NETosis in Aspergillus fumigatus pneumonia. Oropharyngeal instillation of live Aspergillus hyphae induced neutrophilic pneumonitis in both wild-type and NADPH oxidase-deficient (p47(phox-/-)) mice which had resolved in wild-type mice by day 5 but progressed in p47(phox-/-) mice. NETs, identified by immunostaining, were observed in lungs of wild-type mice but were absent in p47(phox-/-) mice. Using bona fide NETs and nuclear chromatin decondensation as an early NETosis marker, we found that NETosis required a functional NADPH oxidase in vivo and ex vivo. In addition, NADPH oxidase increased the proportion of apoptotic neutrophils. Together, our results show that NADPH oxidase is required for pulmonary clearance of Aspergillus hyphae and generation of NETs in vivo. We speculate that dual modulation of NETosis and apoptosis by NADPH oxidase enhances antifungal host defense and promotes resolution of inflammation upon infection clearance. PMID:24549323

  4. Platelet reactivity after administration of third generation P2Y12-antagonists does not depend on body weight in contrast to clopidogrel.

    PubMed

    Olivier, Christoph B; Schnabel, Katharina; Weber, Susanne; Zhou, Qian; Bode, Christoph; Moser, Martin; Diehl, Philipp

    2016-07-01

    The current standard of antiplatelet therapy for patients with myocardial infarction (MI) includes the P2Y12-receptor antagonist clopidogrel, prasugrel or ticagrelor. While it has been shown that platelet reactivity after clopidogrel administration depends on factors such as body weight, it is not known if these factors have an effect on the activity of prasugrel or ticagrelor. Thus, this study aimed to analyse factors associated with high residual platelet reactivity after administration of third generation P2Y12-antagonists compared to clopidogrel. In a single centre registry the antiplatelet effect of clopidogrel, prasugrel or ticagrelor was investigated by aggregometry in patients after MI. To assess the overall capacity of platelet aggregation whole blood was induced with thrombin receptor activating peptide (TRAP; 32 µM). To specifically quantify the effect of P2Y12-antagonists, blood was stimulated with 6.4 µM adenosine diphophosphate (ADP). Relative ADP induced aggregation (r-ADP-agg) was defined as the ADP-TRAP-ratio to reflect an individual degree of P2Y12-dependent platelet inhibition. Platelet function of 238 patients was analysed [clopidogrel (n = 58), prasugrel (n = 65), ticagrelor (n = 115)]. It was found that the r-ADP-agg correlated significantly with body weight in patients after clopidogrel administration (r = 0.423; p < 0.001). In contrast, this association was not present in patients after prasugrel (r = -0.117; p = 0.354) or ticagrelor (r = -0.082; p = 0.382) administration. Comparison of the correlation coefficients showed a significant difference (p = 0.003). In contrast to clopidogrel, platelet reactivity after administration of prasugrel or ticagrelor does not depend on body weight in patients after MI. Hence, our mechanistic data support the results of large clinical trials indicating that patients with high body weight do not need to be treated with increased doses of third generation P2Y12-antagonists to achieve

  5. Diosgenin Induces Apoptosis in HepG2 Cells through Generation of Reactive Oxygen Species and Mitochondrial Pathway

    PubMed Central

    Kim, Dae Sung; Jeon, Byoung Kook; Lee, Young Eun; Woo, Won Hong; Mun, Yeun Ja

    2012-01-01

    Diosgenin, a naturally occurring steroid saponin found abundantly in legumes and yams, is a precursor of various synthetic steroidal drugs. Diosgenin is studied for the mechanism of its action in apoptotic pathway in human hepatocellular carcinoma cells. Based on DAPI staining, diosgenin-treated cells manifested nuclear shrinkage, condensation, and fragmentation. Treatment of HepG2 cells with 40 μM diosgenin resulted in activation of the caspase-3, -8, -9 and cleavage of poly-ADP-ribose polymerase (PARP) and the release of cytochrome c. In the upstream, diosgenin increased the expression of Bax, decreased the expression of Bid and Bcl-2, and augmented the Bax/Bcl-2 ratio. Diosgenin-induced, dose-dependent induction of apoptosis was accompanied by sustained phosphorylation of JNK, p38 MAPK and apoptosis signal-regulating kinase (ASK)-1, as well as generation of the ROS. NAC administration, a scavenger of ROS, reversed diosgene-induced cell death. These results suggest that diosgenin-induced apoptosis in HepG2 cells through Bcl-2 protein family-mediated mitochndria/caspase-3-dependent pathway. Also, diosgenin strongly generated ROS and this oxidative stress might induce apoptosis through activation of ASK1, which are critical upstream signals for JNK/p38 MAPK activation in HepG2 cancer cells. PMID:22719792

  6. Mechanisms of strong pressure wave generations during knocking combustion: compressible reactive flow simulations with detailed chemical kinetics

    NASA Astrophysics Data System (ADS)

    Terashima, Hiroshi; Koshi, Mitsuo

    2014-11-01

    Knocking is a very severe pressure oscillation caused by interactions between flame propagation and end-gas autoignition in spark-assisted engines. In this study, knocking combustion modeled in one-dimensional space is simulated using a highly efficient compressible flow solver with detailed chemical kinetics for clarifying the process of knocking occurrence. Especially, mechanisms of strong pressure wave generation are addressed. A robust and fast explicit integration method is used to efficiently handle stiff chemistry, and species bundling for effectively estimating the diffusion coefficients. The detailed mechanisms such as n-butane of 113 species and n-heptane of 373 species are directly applied. Results demonstrate that the negative temperature coefficient (NTC) region of n-heptane significantly influence the knocking timing and intensity. In the NTC region, stronger pressure wave is generated due to rapid heat release of a very small portion in the end-gas, which is attributed to low temperature oxidation and inhomogeneous temperature distributions in the end-gas. The knocking intensity is thus amplified in the NTC region, taking a maximum value. In the case of n-butane with no NTC region, relatively weak knocking intensity is observed in all conditions with no clear peak.

  7. Tendon Functional Extracellular Matrix

    PubMed Central

    Screen, H.R.C.; Birk, D.E.; Kadler, K.E.; Ramirez, F; Young, M.F.

    2015-01-01

    This article is one of a series, summarising views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the “Functional Extracellular Matrix” stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely-varying extrinsic and intrinsic factors such as age, nutrition, exercise levels and biomechanics. Consequently, tendon adapts dynamically during development, ageing and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. PMID:25640030

  8. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    SciTech Connect

    Teng, Chih-Chuan; Kuo, Hsing-Chun; Cheng, Ho-Chen; Wang, Ting-Chung; Sze, Chun-I

    2012-08-15

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr{sup 15} and Cdc25cSer{sup 216}. Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer{sup 216} expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer{sup 216} in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer{sup 216} cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  9. Iron deprivation-induced reactive oxygen species generation leads to non-autolytic PCD in Brassica napus leaves

    PubMed Central

    Tewari, Rajesh Kumar; Hadacek, Franz; Sassmann, Stefan; Lang, Ingeborg

    2013-01-01

    Using iron-deprived (–Fe) chlorotic as well as green iron-deficient (5 μM Fe) and iron-sufficient supplied (50 μM Fe) leaves of young hydroponically reared Brassica napus plants, we explored iron deficiency effects on triggering programmed cell death (PCD) phenomena. Iron deficiency increased superoxide anion but decreased hydroxyl radical (•OH) formation (TBARS levels). Impaired photosystem II efficiency led to hydrogen peroxide accumulation in chloroplasts; NADPH oxidase activity, however, remained on the same level in all treatments. Non-autolytic PCD was observed especially in the chlorotic leaf of iron-deprived plants, to a lesser extent in iron-deficient plants. It correlated with higher DNAse-, alkaline protease- and caspase-3-like activities, DNA fragmentation and chromatin condensation, hydrogen peroxide accumulation and higher superoxide dismutase activity. A significant decrease in catalase activity together with rising levels of dehydroascorbic acid indicated a strong disturbance of the redox homeostasis, which, however, was not caused by •OH formation in concordance with the fact that iron is required to catalyse the Fenton reaction leading to •OH generation. This study documents the chain of events that contributes to the development of non-autolytic PCD in advanced stages of iron deficiency in B. napus leaves. PMID:23825883

  10. Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species.

    PubMed

    Kelley, Matthew A; Hebert, Valeria Y; Thibeaux, Taylor M; Orchard, Mackenzie A; Hasan, Farhana; Cormier, Stephania A; Thevenot, Paul T; Lomnicki, Slawomir M; Varner, Kurt J; Dellinger, Barry; Latimer, Brian M; Dugas, Tammy R

    2013-12-16

    Particulate matter (PM) is emitted during thermal decomposition of waste. During this process, aromatic compounds chemisorb to the surface of metal-oxide-containing PM, forming a surface-stabilized environmentally persistent free radical (EPFR). We hypothesized that EPFR-containing PM redox cycle to produce ROS and that this redox cycle is maintained in biological environments. To test our hypothesis, we incubated model EPFRs with the fluorescent probe dihydrorhodamine (DHR). Marked increases in DHR fluorescence were observed. Using a more specific assay, hydroxyl radicals ((•)OH) were also detected, and their level was further increased by cotreatment with thiols or ascorbic acid (AA), known components of epithelial lining fluid. Next, we incubated our model EPFR in bronchoalveolar lavage fluid (BALF) or serum. Detection of EPFRs and (•)OH verified that PM generate ROS in biological fluids. Moreover, incubation of pulmonary epithelial cells with EPFR-containing PM increased (•)OH levels compared to those in PM lacking EPFRs. Finally, measurements of oxidant injury in neonatal rats exposed to EPFRs by inhalation suggested that EPFRs induce an oxidant injury within the lung lining fluid and that the lung responds by increasing antioxidant levels. In summary, our EPFR-containing PM redox cycle to produce ROS, and these ROS are maintained in biological fluids and environments. Moreover, these ROS may modulate toxic responses of PM in biological tissues such as the lung. PMID:24224526

  11. ORGANOHALIDE FORMATION ON CHLORINATION OF ALGAL EXTRACELLULAR PRODUCTS

    EPA Science Inventory

    When certain chemical and physical parameters were controlled during chlorination of algal extracellular products (ECP), organohalide formation was modified. In general, decreases in temperature and contact time decreased the generation of purgeable (POX), nonpurgeable (NPOX), an...

  12. Sonochemical degradation of methyl orange in the presence of Bi2WO6: Effect of operating parameters and the generated reactive oxygen species.

    PubMed

    He, Ling-Ling; Liu, Xian-Ping; Wang, Yong-Xia; Wang, Zhi-Xin; Yang, Yan-Jie; Gao, Yan-Ping; Liu, Bin; Wang, Xin

    2016-11-01

    The Bi2WO6 was prepared by the hydrothermal method and its sonocatalytic activity was studied in the degradation of methyl orange (MO) solutions. The effects of catalytic activity of Bi2WO6 on dye were inspected by the change in absorbance of dye with UV-vis spectrometer. The influences of operational parameters such as the addition amount of Bi2WO6, pH, the initial concentration of dyes, ultrasonic power and irradiation time on the degradation ratio were investigated. In addition, the obtained results indicated that the kinetics of sonochemical reactions of MO were consistent with the pseudo first-order kinetics and Bi2WO6 had excellent reusability and stability during the sonochemical degradation processes. The generation and kinds of reactive oxygen species (ROS) and their influence on the sonochemical degradation of MO were determined by the methods of oxidation-extraction spectrophotometry and ROS scavengers. The results indicate that the degradation of MO in the presence of Bi2WO6 under ultrasonic irradiation is related to the generation of ROS, in which both singlet molecular oxygen ((1)O2) and hydroxyl radical (OH) play important roles in the sonochemical degradation of MO. These experimental results provide a sound foundation for the further development of Bi2WO6 as a sonocatalyst in wastewater treatment. PMID:27245960

  13. Alantolactone induces apoptosis of human cervical cancer cells via reactive oxygen species generation, glutathione depletion and inhibition of the Bcl-2/Bax signaling pathway

    PubMed Central

    JIANG, YAN; XU, HANJIE; WANG, JIAFEI

    2016-01-01

    Alantolactone is the active ingredient in frankincense, and is extracted from the dry root of elecampane. It has a wide variety of uses, including as an insect repellent, antibacterial, antidiuretic, analgesic and anticancer agent. In addition, alantolactone induces apoptosis of human cervical cancer cells, however, its mechanism of action remains to be elucidated. Therefore, the present study investigated whether alantolactone was able to induce apoptosis of human cervical cancer cells, and its potential mechanisms of action were analyzed. Treatment of HeLa cells with alantolactone (0, 10, 20, 30, 40, 50 and 60 µM) for 12 h significantly inhibited growth in a dose-dependent manner. Cells treated with 30 µM of alantolactone for 0, 3, 6 and 12 h demonstrated marked induction of apoptosis in a time-dependent manner. Treatment of HeLa cells with 30 µM of alantolactone for 0, 3, 6 and 12 h significantly induced the generation of reactive oxygen species (ROS) and inhibited glutathione (GSH) production in HeLa cells in a dose-dependent manner. Alantolactone additionally markedly inhibited the Bcl-2/Bax signaling pathway in HeLa cells. Therefore, administration of alantolactone induced apoptosis of human cervical cancer cells via ROS generation, GSH depletion and inhibition of the Bcl-2/Bax signaling pathway. PMID:27313767

  14. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species.

    PubMed

    Sudarshan, Sunil; Sourbier, Carole; Kong, Hye-Sik; Block, Karen; Valera Romero, Vladimir A; Yang, Youfeng; Galindo, Cynthia; Mollapour, Mehdi; Scroggins, Bradley; Goode, Norman; Lee, Min-Jung; Gourlay, Campbell W; Trepel, Jane; Linehan, W Marston; Neckers, Len

    2009-08-01

    Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an inherited cancer syndrome linked to biallelic inactivation of the gene encoding the tricarboxylic acid cycle enzyme fumarate hydratase (FH). Individuals with HLRCC are at risk to develop cutaneous and uterine leiomyomas and an aggressive form of kidney cancer. Pseudohypoxic drive-the aberrant activation of cellular hypoxia response pathways despite normal oxygen tension-is considered to be a likely mechanism underlying the etiology of this tumor. Pseudohypoxia requires the oxygen-independent stabilization of the alpha subunit of the hypoxia-inducible transcription factor (HIF-1alpha). Under normoxic conditions, proline hydroxylation of HIF-1alpha permits VHL recognition and subsequent targeting for proteasomal degradation. Here, we demonstrate that inactivating mutations of FH in an HLRCC-derived cell line result in glucose-mediated generation of cellular reactive oxygen species (ROS) and ROS-dependent HIF-1alpha stabilization. Additionally, we demonstrate that stable knockdown of FH in immortalized renal epithelial cells results in ROS-dependent HIF-1alpha stabilization. These data reveal that the obligate glycolytic switch present in HLRCC is critical to HIF stabilization via ROS generation. PMID:19470762

  15. Generation of prostate tumor-initiating cells is associated with elevation of reactive oxygen species and IL-6/STAT3 signaling.

    PubMed

    Qu, Yi; Oyan, Anne Margrete; Liu, Runhui; Hua, Yaping; Zhang, Jigang; Hovland, Randi; Popa, Mihaela; Liu, Xiaojun; Brokstad, Karl A; Simon, Ronald; Molven, Anders; Lin, Biaoyang; Zhang, Wei-dong; McCormack, Emmet; Kalland, Karl-Henning; Ke, Xi-Song

    2013-12-01

    How prostate cancer is initiated remains a topic of debate. In an effort to establish a human model of prostate carcinogenesis, we adapted premalignant human prostate EPT2-D5 cells to protein-free medium to generate numerous tight prostate spheres (D5HS) in monolayer culture. In contrast to EPT2-D5 cells, the newly generated D5HS efficiently formed large subcutaneous tumors and subsequent metastases in vivo, showing the tumorigenicity of D5HS spheres. A striking production of interleukin (IL)-6 mRNA and protein was found in D5HS cells. The essential roles of IL-6 and the downstream STAT3 signaling in D5HS tumor sphere formation were confirmed by neutralizing antibody, chemical inhibitors, and fluorescent pathway reporter. In addition, elevated reactive oxygen species (ROS) produced upon protein depletion was required for the activation of IL-6/STAT3 in D5HS. Importantly, a positive feedback loop was found between ROS and IL-6 during tumor sphere formation. The association of ROS/IL-6/STAT3 to the carcinogenesis of human prostate cells was further examined in xenograft tumors and verified by limiting dilution implantations. Collectively, we have for the first time established human prostate tumor-initiating cells based on physiologic adaption. The intrinsic association of ROS and IL-6/STAT3 signaling in human prostate carcinogenesis shed new light on this relationship and define therapeutic targets in this setting. PMID:24101153

  16. Photodynamic Inactivation of Candida albicans with Imidazoacridinones: Influence of Irradiance, Photosensitizer Uptake and Reactive Oxygen Species Generation

    PubMed Central

    Taraszkiewicz, Aleksandra; Szewczyk, Grzegorz; Sarna, Tadeusz; Bielawski, Krzysztof P.; Nakonieczna, Joanna

    2015-01-01

    The increasing applicability of antifungal treatments, the limited range of available drug classes and the emergence of drug resistance in Candida spp. suggest the need for new treatment options. To explore the applicability of C. albicans photoinactivation, we examined nine structurally different imidazoacridinone derivatives as photosensitizing agents. The most effective derivatives showed a >104-fold reduction of viable cell numbers. The fungicidal action of the three most active compounds was compared at different radiant powers(3.5 to 63 mW/cm2), and this analysis indicated that 7 mW/cm2 was the most efficient. The intracellular accumulation of these compounds in fungal cells correlated with the fungicidal activity of all 9 derivatives. The lack of effect of verapamil, an inhibitor targeting Candida ABC efflux pumps, suggests that these imidazoacridinones are not substrates for ABC transporters. Thus, unlike azoles, a major class of antifungals used against Candida, ABC transporter-mediated resistance is unlikely. Electron paramagnetic resonance (EPR)-spin trapping data suggested that the fungicidal light-induced action of these derivatives might depend on the production of superoxide anion. The highest generation rate of superoxide anion was observed for 1330H, 1610H, and 1611. Singlet oxygen production was also detected upon the irradiation of imidazoacridinone derivatives with UV laser light, with a low to moderate yield, depending on the type of compound. Thus, imidazoacridinone derivatives examined in the present study might act via mixed type I/type II photodynamic mechanism. The presented data indicate lack of direct correlation between the structures of studied imidazoacridinones, cell killing ability, and ROS production. However, we showed for the first time that for imidazoacridinones not only intracellular accumulation is necessary prerequisite of lethal photosensitization of C. albicans, but also localization within particular cellular structures

  17. Reactive oxygen species spermine metabolites generated from amine oxidases and radiation represent a therapeutic gain in cancer treatments.

    PubMed

    Amendola, Roberto; Cervelli, Manuela; Fratini, Emiliano; Sallustio, Davide E; Tempera, Giampiero; Ueshima, Taichi; Mariottini, Paolo; Agostinelli, Enzo

    2013-09-01

    The most frequent interventions in cancer therapy are currently the destruction of cells by irradiation or administration of drugs both able to induce radical formation and toxic metabolites by enzyme-catalyzed reactions. The aim of this study was to determine the cell viability of cells undergoing a DNA damage threshold accomplished by ROS overproduction via both ectopic expression of murine spermine oxidase (mSMOX) and bovine serum amine oxidase (BSAO) enzymes. Low dose of X-irradiation delivers a challenging dose of damage as evaluated in proficient Chinese hamster AA8 cell line and both deficient transcription-coupled nucleotide excision repair (NER) UV61 cells and deficient base excision repair (BER) EM9 cells, at 6 and 24 h after exposure. The priming dose of ROS overexposure by mSMOX provokes an adaptive response in N18TG2, AA8 and EM9 cell lines at 24 h. Interestingly, in the UV61 cells, ROS overexposure by mSMOX delivers an earlier adaptive response to radiation. The enzymatic formation of toxic metabolites has mainly been investigated on wild-type (WT) and multidrug-resistant (MDR) cancer cell lines, using and spermine as substrate of the BSAO enzyme. MDR cells are more sensitive to the toxic polyamine metabolites than WT cells, thus indicating a new therapeutic strategy to overcome MDR tumors. Since SMOX in mammals is differentially activated in a tissue-specific manner and cancer cells can differ in terms of DNA repair and MDR capabilities, it could be of interest to simultaneously treat with very low dose of X-rays and/or to alter SMOX metabolism to generate a differential response in healthy and cancer tissues. PMID:23857253

  18. Photodynamic Inactivation of Candida albicans with Imidazoacridinones: Influence of Irradiance, Photosensitizer Uptake and Reactive Oxygen Species Generation.

    PubMed

    Taraszkiewicz, Aleksandra; Szewczyk, Grzegorz; Sarna, Tadeusz; Bielawski, Krzysztof P; Nakonieczna, Joanna

    2015-01-01

    The increasing applicability of antifungal treatments, the limited range of available drug classes and the emergence of drug resistance in Candida spp. suggest the need for new treatment options. To explore the applicability of C. albicans photoinactivation, we examined nine structurally different imidazoacridinone derivatives as photosensitizing agents. The most effective derivatives showed a >10(4)-fold reduction of viable cell numbers. The fungicidal action of the three most active compounds was compared at different radiant powers (3.5 to 63 mW/cm2), and this analysis indicated that 7 mW/cm2 was the most efficient. The intracellular accumulation of these compounds in fungal cells correlated with the fungicidal activity of all 9 derivatives. The lack of effect of verapamil, an inhibitor targeting Candida ABC efflux pumps, suggests that these imidazoacridinones are not substrates for ABC transporters. Thus, unlike azoles, a major class of antifungals used against Candida, ABC transporter-mediated resistance is unlikely. Electron paramagnetic resonance (EPR)-spin trapping data suggested that the fungicidal light-induced action of these derivatives might depend on the production of superoxide anion. The highest generation rate of superoxide anion was observed for 1330H, 1610H, and 1611. Singlet oxygen production was also detected upon the irradiation of imidazoacridinone derivatives with UV laser light, with a low to moderate yield, depending on the type of compound. Thus, imidazoacridinone derivatives examined in the present study might act via mixed type I/type II photodynamic mechanism. The presented data indicate lack of direct correlation between the structures of studied imidazoacridinones, cell killing ability, and ROS production. However, we showed for the first time that for imidazoacridinones not only intracellular accumulation is necessary prerequisite of lethal photosensitization of C. albicans, but also localization within particular cellular

  19. Reactive metabolites and agranulocytosis.

    PubMed

    Uetrecht, J P

    1996-01-01

    Central to most hypotheses of the mechanism of idiosyncratic drug-induced blood dyscrasias is the involvement of reactive metabolites. In view of the reactive nature of the majority of such metabolites, it is likely that they are formed by, or in close proximity to the blood cells affected. The major oxidative system of neutrophils generates hypochlorous acid. We have demonstrated that the drugs associated with the highest incidence of agranulocytosis are oxidized to reactive metabolites by hypochlorous acid and/or activated neutrophils. There are many mechanisms by which such reactive metabolites could induce agranulocytosis. In the case of aminopyrine-induced agranulocytosis, most cases appear to involve drug-dependent anti-neutrophil antibodies, and these are likely to be induced by cell membrane antigens modified by the reactive metabolite of aminopyrine. The target of agranulocytosis associated with many other drugs is usually neutrophil precursors and may involve cytotoxicity or a cell-mediated immune reaction induced by a reactive metabolite. In the case of aplastic anaemia, there is evidence in some cases for involvement of cytotoxic T cells, which could either be induced by metabolites generated by neutrophils, or more likely, by reactive metabolites generated by stem cells. PMID:8987247

  20. Catha edulis Extract Induces H9c2 Cell Apoptosis by Increasing Reactive Oxygen Species Generation and Activation of Mitochondrial Proteins

    PubMed Central

    Mohan, Syam; Abdelwahab, Siddig Ibrahim; Hobani, Yahya Hasan; Syam, Suvitha; Al-Zubairi, Adel S.; Al-Sanousi, Rashad; Oraiby, Magbool Essa

    2016-01-01

    Background: Catha edulis (Khat) is an evergreen shrub or small tree, traditionally used by various peoples of the Arabian Peninsula and Africa as an integral component of the socioeconomic traditions. It is believed that the psychostimulant nature and toxic nature of khat is primarily due to the presence of cathinone and cathine respectively. Studies have shown that khat chewing is closely associated with cardiac complications, especially myocardial infarction. Hence in this study, we exposed cathine-rich khat extract in a cardiomyoblast H9c2 (2-1) cell line to check the cell death mechanism. Materials and Methods: Extraction of Catha edulis leaves was done and the presence of cathine was confirmed with LC-MS-MS. The anti-proliferative activity was assayed using MTT and apoptosis detection by acridine orange/propidium iodide assay. The expression of Bcl-2 and Bax protein and caspase-3/7 expression were analyzed. The level of reactive oxygen species generation was also evaluated. Results: The khat extract showed an IC50 value of 86.5 μg/ml at 48 hours treatment. We have observed significant early apoptosis events by intervened acridine orange within the fragmented DNA with bright green fluorescence upon treatment. The Bcl-2 expression in the treatment with IC50 concentration of khat extract for 24, 48 and 72 hours of incubation significantly decreased with increase in bax level. The increased activation of caspase-3/7 was significantly observed upon treatment together with significant increase of ROS was detected at 24 and 48 hours treatment. Conclusion: Collectively, our results provide insight into the mechanisms by which Catha edulis leaves mediate cell death in cardiomyocytes. SUMMARY Catha edulis (Khat) is an evergreen psychotropic shrub or small treeExtraction of khat leaves was done and the presence of cathine was confirmed with liquid chromatography-mass spectrometry-mass spectrometryThe khat extract showed an IC50 value of 86.5 μg/ml at 48 h treatment in

  1. Transcriptional Reactivation of OTX2, RX1 and SIX3 during Reprogramming Contributes to the Generation of RPE Cells from Human iPSCs

    PubMed Central

    Li, Peng; Sun, Xiaofeng; Ma, Zhizhong; Liu, Yinan; Jin, Ying; Ge, Ruimin; Hao, Limin; Ma, Yanling; Han, Shuo; Sun, Haojie; Zhang, Mingzhi; Li, Ruizhi; Li, Tao; Shen, Li

    2016-01-01

    Directed differentiation of human induced pluripotent stem cells (iPSCs) into retinal pigmented epithelium (RPE) holds great promise in cell replacement therapy for patients suffering from degenerative eye diseases, including age-related macular degeneration (AMD). In this study, we generated iPSCs from human dermal fibroblasts (HDFs) by electroporation with episomal plasmid vectors encoding OCT4, SOX2, KLF4, L-MYC together with p53 suppression. Intriguingly, cell reprogramming resulted in a metastable transcriptional activation and selective demethylation of neural and retinal specification-associated genes, such as OTX2, RX1 and SIX3. In contrast, RPE progenitor genes were transcriptionally silent in HDFs and descendant iPSCs. Overexpression of OCT4 and SOX2 directly stimulated the expression of OTX2, RX1 and SIX3 in HDFs and iPSCs. Luciferase and chromatin immunoprecipitation (ChIP) assays further identified an OCT4- and two SOX2-binding sites located in the proximal promoter of OTX2. Histone acetylation and methylation on the local promoter also participated in the reactivation of OTX2. The transcriptional conversion of RX1 and SIX3 genes partially attributed to DNA demethylation. Subsequently, iPSCs were induced into the RPE cells displaying the characteristics of polygonal shapes and pigments, and expressing typical RPE cell markers. Taken together, our results establish readily efficient and safe protocols to produce iPSCs and iPSC-derived RPE cells, and underline that the reactivation of anterior neural transcription factor OTX2, eye field transcription factor RX1 and SIX3 in iPSCs is a feature of pluripotency acquisition and predetermines the potential of RPE differentiation. PMID:27019633

  2. Transcriptional Reactivation of OTX2, RX1 and SIX3 during Reprogramming Contributes to the Generation of RPE Cells from Human iPSCs.

    PubMed

    Li, Peng; Sun, Xiaofeng; Ma, Zhizhong; Liu, Yinan; Jin, Ying; Ge, Ruimin; Hao, Limin; Ma, Yanling; Han, Shuo; Sun, Haojie; Zhang, Mingzhi; Li, Ruizhi; Li, Tao; Shen, Li

    2016-01-01

    Directed differentiation of human induced pluripotent stem cells (iPSCs) into retinal pigmented epithelium (RPE) holds great promise in cell replacement therapy for patients suffering from degenerative eye diseases, including age-related macular degeneration (AMD). In this study, we generated iPSCs from human dermal fibroblasts (HDFs) by electroporation with episomal plasmid vectors encoding OCT4, SOX2, KLF4, L-MYC together with p53 suppression. Intriguingly, cell reprogramming resulted in a metastable transcriptional activation and selective demethylation of neural and retinal specification-associated genes, such as OTX2, RX1 and SIX3. In contrast, RPE progenitor genes were transcriptionally silent in HDFs and descendant iPSCs. Overexpression of OCT4 and SOX2 directly stimulated the expression of OTX2, RX1 and SIX3 in HDFs and iPSCs. Luciferase and chromatin immunoprecipitation (ChIP) assays further identified an OCT4- and two SOX2-binding sites located in the proximal promoter of OTX2. Histone acetylation and methylation on the local promoter also participated in the reactivation of OTX2. The transcriptional conversion of RX1 and SIX3 genes partially attributed to DNA demethylation. Subsequently, iPSCs were induced into the RPE cells displaying the characteristics of polygonal shapes and pigments, and expressing typical RPE cell markers. Taken together, our results establish readily efficient and safe protocols to produce iPSCs and iPSC-derived RPE cells, and underline that the reactivation of anterior neural transcription factor OTX2, eye field transcription factor RX1 and SIX3 in iPSCs is a feature of pluripotency acquisition and predetermines the potential of RPE differentiation. PMID:27019633

  3. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation.

    PubMed

    Simon, Anne; Maletz, Sibylle X; Hollert, Henner; Schäffer, Andreas; Maes, Hanna M

    2014-01-01

    To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban. PMID:25170332

  4. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Simon, Anne; Maletz, Sibylle X.; Hollert, Henner; Schäffer, Andreas; Maes, Hanna M.

    2014-08-01

    To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban.

  5. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation

    PubMed Central

    2014-01-01

    To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban. PMID:25170332

  6. On Development and Characterisation of a Mobile and Metrologically Traceable Reference Gas Generator for Ammonia and Other Reactive Species in Ambient Air Levels

    NASA Astrophysics Data System (ADS)

    Leuenberger, Daiana; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Niederhauser, Bernhard

    2016-04-01

    Ammonia NH3 in the atmosphere is the major precursor for neutralising atmospheric acids and is thus affecting not only the long-range transport of sulphur dioxide and nitrogen oxides but also stabilies secondary particulate matter. These aerosols have negative impacts on air quality and human health. Moreover, they negatively affect terrestrial ecosystems after deposition. NH3 has been included in the air quality monitoring networks and emission reduction directives of European nations. Atmospheric concentrations are in the order of 0.5-500 nmol/mol. However, the lowest substance amount fraction of available certified reference material (CRM) is 30 μmol/mol. The EMRP JRP ENV55 MetNH3 aims at overcoming this discrepancy by assessing and developing novel approaches for the production of CRM and measurement methods. The Federal Institute of Metrology METAS has developed a mobile and metrologically traceable reference gas generator for reactive gases (ReGaS1). This device is based on the specific temperature dependent permeation of the reference substance through a membrane into a flow of carrier gas and subsequent dynamic dilution to desired amount fractions. The characteristics of individual components lead to the uncertainty estimation for the generated NH3 gas mixture according to GUM, which is aimed to be <3 %. Here we present insights into the development of said instrument and results of the first performance tests. Moreover, we include results of the study on adsorption/desorption effects in dry as well as humidified matrix gas into the discussion on the generation of reference gas mixtures.

  7. Xylella fastidiosa Extracellular Genomic DNA May Play a Role For Enhancing Biofilm Formation In Vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylella fastidiosa (Xf) produces extracellular DNA in PD3 liquid medium. This extracellular DNA may play a role in enhancing biofilm formation, a factor that is required by Xf to establish infection in host plants. Amounts of extracellular DNA generated by Xf in vitro were positively correlated with...

  8. Clinical performance of the Multispot HIV-1/HIV-2 rapid test to correctly differentiate HIV-2 from HIV-1 infection in screening algorithms using third and fourth generation assays and to identify cross reactivity with the HIV-1 Western Blot

    PubMed Central

    Ramos, Eric M.; Harb, Socorro; Dragavon, Joan; Coombs, Robert W.

    2014-01-01

    Background An accurate and rapid serologic method to differentiate HIV-2 from HIV-1 infection is required since the confirmatory HIV-1 Western Blot (WB) may demonstrate cross-reactivity with HIV-2 antibodies. Objectives To evaluate the performance of the Bio-Rad Multispot HIV-1/HIV-2 rapid assay as a supplemental test to correctly identify HIV-2 infection and identify HIV-1 WB cross-reactivity with HIV-2 in clinical samples tested at an academic medical center. Study design Between August 2008 and July 2012, clinical samples were screened for HIV using either 3rd-or 4th-generation HIV-1/2 antibody or combination antibody and HIV-1 p24 antigen assays, respectively. All repeatedly reactive samples were reflexed for Multispot rapid testing. Multispot HIV-2 and HIV-1 and HIV-2-reactive samples were further tested using an HIV-2 immunoblot assay and HIV-1 or HIV-2 RNA assays when possible. The HIV-1 WB was performed routinely for additional confirmation and to assess for HIV-2 antibody cross-reactivity. Results Of 46,061 samples screened, 890 (89.6%) of 993 repeatedly reactive samples were also Multispot-reactive: 882 for HIV-1; three for only HIV-2; and five for both HIV-1 and HIV-2. All three HIV-2-only Multispot-positives along with a single dually reactive HIV-1/2 Multispot-positive were also HIV-2 immunoblot-positive; the latter was HIV-1 RNA negative and HIV-2 RNA positive. Conclusions The Multispot rapid test performed well as a supplemental test for HIV-1/2 diagnostic testing. Four new HIV-2 infections (0.45%) were identified from among 890 Multispot-reactive tests. The use of HIV-1 WB alone to confirm HIV-1/2 screening assays may underestimate the true prevalence of HIV-2 infection in the United States. PMID:24342468

  9. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    PubMed

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  10. EPR and ENDOR characterization of the reactive intermediates in the generation of NO by cryoreduced oxy-nitric oxide synthase from Geobacillus stearothermophilus.

    PubMed

    Davydov, Roman; Sudhamsu, Jawahar; Lees, Nicholas S; Crane, Brian R; Hoffman, Brian M

    2009-10-14

    Cryoreduction EPR/ENDOR/step-annealing measurements with substrate complexes of oxy-gsNOS (3; gsNOS is nitric oxide synthase from Geobacillus stearothermophilus) confirm that Compound I (6) is the reactive heme species that carries out the gsNOS-catalyzed (Stage I) oxidation of L-arginine to N-hydroxy-L-arginine (NOHA), whereas the active species in the (Stage II) oxidation of NOHA to citrulline and HNO/NO(-) is the hydroperoxy-ferric form (5). When 3 is reduced by tetrahydrobiopterin (BH4), instead of an externally supplied electron, the resulting BH4(+) radical oxidizes HNO/NO(-) to NO. In this report, radiolytic one-electron reduction of 3 and its complexes with Arg, Me-Arg, and NO(2)Arg was shown by EPR and (1)H and (14,15)N ENDOR spectroscopies to generate 5; in contrast, during cryoreduction of 3/NOHA, the peroxo-ferric-gsNOS intermediate (4/NOHA) was trapped. During annealing at 145 K, ENDOR shows that 5/Arg and 5/Me-Arg (but not 5/NO(2)Arg) generate a Stage I primary product species in which the OH group of the hydroxylated substrate is coordinated to Fe(III), characteristic of 6 as the active heme center. Analysis shows that hydroxylation of Arg and Me-Arg is quantitative. Annealing of 4/NOHA at 160 K converts it first to 5/NOHA and then to the Stage II primary enzymatic product. The latter contains Fe(III) coordinated by water, characteristic of 5 as the active heme center. It further contains quantitative amounts of citrulline and HNO/NO(-); the latter reacts with the ferriheme to form the NO-ferroheme upon further annealing. Stage I delivery of the first proton of catalysis to the (unobserved) 4 formed by cryoreduction of 3 involves a bound water that may convey a proton from L-Arg, while the second proton likely derives from the carboxyl side chain of Glu 248 or the heme carboxylates; the process also involves proton delivery by water(s). In the Stage II oxidation of NOHA, the proton that converts 4/NOHA to 5/NOHA likely is derived from NOHA itself, a

  11. Reactive Power Compensating System.

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  12. Controlling Material Reactivity Using Architecture.

    PubMed

    Sullivan, Kyle T; Zhu, Cheng; Duoss, Eric B; Gash, Alexander E; Kolesky, David B; Kuntz, Joshua D; Lewis, Jennifer A; Spadaccini, Christopher M

    2016-03-01

    3D-printing methods are used to generate reactive material architectures. Several geometric parameters are observed to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. The architecture offers an additional route to control, at will, the energy release rate in reactive composite materials. PMID:26669517

  13. The application of profluorescent nitroxides to detect reactive oxygen species derived from combustion-generated particulate matter: Cigarette smoke - A case study

    NASA Astrophysics Data System (ADS)

    Miljevic, B.; Fairfull-Smith, K. E.; Bottle, S. E.; Ristovski, Z. D.

    2010-06-01

    Reactive oxygen species (ROS) and related free radicals are considered to be key factors underpinning the various adverse health effects associated with exposure to ambient particulate matter. Therefore, measurement of ROS is a crucial factor for assessing the potential toxicity of particles. In this work, a novel profluorescent nitroxide, BPEAnit, was investigated as a probe for detecting particle-derived ROS. BPEAnit has a very low fluorescence emission due to inherent quenching by the nitroxide group, but upon radical trapping or redox activity, a strong fluorescence is observed. BPEAnit was tested for detection of ROS present in mainstream and sidestream cigarette smoke. In the case of mainstream cigarette smoke, there was a linear increase in fluorescence intensity with an increasing number of cigarette puffs, equivalent to an average of 101 nmol ROS per cigarette based on the number of moles of the probe reacted. Sidestream cigarette smoke sampled from an environmental chamber exposed BPEAnit to much lower concentrations of particles, but still resulted in a clearly detectible increase in fluorescence intensity with sampling time. It was calculated that the amount of ROS was equivalent to 50 ± 2 nmol per mg of particulate matter; however, this value decreased with ageing of the particles in the chamber. Overall, BPEAnit was shown to provide a sensitive response related to the oxidative capacity of the particulate matter. These findings present a good basis for employing the new BPEAnit probe for the investigation of particle-related ROS generated from cigarette smoke as well as from other combustion sources.

  14. Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization.

    PubMed

    Stefani, Christian; Al-Eisawi, Zaynab; Jansson, Patric J; Kalinowski, Danuta S; Richardson, Des R

    2015-11-01

    Bis(thiosemicarbazones) and their copper (Cu) complexes possess unique anti-neoplastic properties. However, their mechanism of action remains unclear. We examined the structure-activity relationships of twelve bis(thiosemicarbazones) to elucidate factors regarding their anti-cancer efficacy. Importantly, the alkyl substitutions at the diimine position of the ligand backbone resulted in two distinct groups, namely, unsubstituted/monosubstituted and disubstituted bis(thiosemicarbazones). This alkyl substitution pattern governed their: (1) Cu(II/I) redox potentials; (2) ability to induce cellular (64)Cu release; (3) lipophilicity; and (4) anti-proliferative activity. The potent anti-cancer Cu complex of the unsubstituted bis(thiosemicarbazone) analog, glyoxal bis(4-methyl-3-thiosemicarbazone) (GTSM), generated intracellular reactive oxygen species (ROS), which was attenuated by Cu sequestration by a non-toxic Cu chelator, tetrathiomolybdate, and the anti-oxidant, N-acetyl-l-cysteine. Fluorescence microscopy suggested that the anti-cancer activity of Cu(GTSM) was due, in part, to lysosomal membrane permeabilization (LMP). For the first time, this investigation highlights the role of ROS and LMP in the anti-cancer activity of bis(thiosemicarbazones). PMID:26335599

  15. Generation and Improvement of Effector Function of a Novel Broadly Reactive and Protective Monoclonal Antibody against Pneumococcal Surface Protein A of Streptococcus pneumoniae.

    PubMed

    Kristian, Sascha A; Ota, Takayuki; Bubeck, Sarah S; Cho, Rebecca; Groff, Brian C; Kubota, Tsuguo; Destito, Giuseppe; Laudenslager, John; Koriazova, Lilia; Tahara, Tomoyuki; Kanda, Yutaka

    2016-01-01

    A proof-of-concept study evaluating the potential of Streptococcus pneumoniae Pneumococcal Surface Protein A (PspA) as a passive immunization target was conducted. We describe the generation and isolation of several broadly reactive mouse anti-PspA monoclonal antibodies (mAbs). MAb 140H1 displayed (i) 98% strain coverage, (ii) activity in complement deposition and opsonophagocytic killing (OPK) assays, which are thought to predict the in vivo efficacy of anti-pneumococcal mAbs, (iii) efficacy in mouse sepsis models both alone and in combination with standard-of-care antibiotics, and (iv) therapeutic activity in a mouse pneumonia model. Moreover, we demonstrate that antibody engineering can significantly enhance anti-PspA mAb effector function. We believe that PspA has promising potential as a target for the therapy of invasive pneumococcal disease by mAbs, which could be used alone or in conjunction with standard-of-care antibiotics. PMID:27171010

  16. The reaction of pristane (2,6,10,14-tetramethylpentadecane) with radiolytically generated reactive oxygen intermediates results in a stable genotoxic compound as assessed by the SOS chromotest.

    PubMed

    Janz, S; Brede, O; Müller, J

    1991-07-01

    The most widely studied model of plasmacytomagenesis is the induction of plasmacytomas in BALB/c mice by i.p. injections of the isoalkane pristane (2,6,10,14-tetramethylpentadecane). Employing a simple quantitative and well-established short-term bacterial genotoxicity assay, the SOS chromotest, as a model system, we have investigated whether pristane may potentially be involved in causing or modulating the genotoxic events thought to induce plasma cell tumorigenesis. We found that incorporation of pristane into the cell membranes enhance the SOS response in Escherichia coli PQ37 and PQ300 induced by gamma-radiation under hyperoxic conditions. Moreover, the oxidation of pristane by radiolytically generated reactive oxygen intermediates yielded a stable, genotoxic product active on E. coli PQ300, a SOS tester strain designed to detect oxidative genotoxins. We discuss these findings in relation to the tumor-promoting role of the chronic i.p. inflammation that accompanies plasmacytomagenesis and conclude that, under these specific conditions, pristane may possess a previously unrecognized genotoxic activity in its tumorigenic potential. PMID:2070489

  17. Core-shell AgSiO2-protoporphyrin IX nanoparticle: Effect of the Ag core on reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Lismont, M.; Pá; ez-Martinez, C.; Dreesen, L.

    2015-03-01

    Photodynamic therapy (PDT) for cancer is based on the use of a light sensitive molecule to produce, under specific irradiation, toxic reactive oxygen species (ROS). A way to improve the therapy efficiency is to increase the amount of produced ROS near cancer cells. This aim can be achieved by using a metal enhanced process arising when an optically active molecule is located near a metallic nanoparticle (NP). Here, the coupling effect between silver (Ag) NPs and protoporphyrin IX (PpIX) molecules, a clinically approved photosensitizer, is studied compared first, to PpIX fluorescence yield and second, to ROS production efficiency. By applying a modified Stöber process, PpIX was encapsulated into a silica (SiO2) shell, surrounding a 60 nm sized Ag core. We showed that, compared to SiO2-PpIX NPs, Ag coated SiO2-PpIX NPs dramatically decreased PpIX fluorescence together with singlet oxygen production efficiency. However, after incubation time in the dark, the amount of superoxide anions generated by the Ag doped sample was higher than the control sample one.

  18. Characterization of Xanthophyll Pigments, Photosynthetic Performance, Photon Energy Dissipation, Reactive Oxygen Species Generation and Carbon Isotope Discrimination during Artemisinin-Induced Stress in Arabidopsis thaliana

    PubMed Central

    Hussain, M. Iftikhar; Reigosa, Manuel J.

    2015-01-01

    Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope discrimination in Arabidopsis thaliana were studied. Arabidopsis ecotype Columbia (Col-0) seedlings were grown in perlite and watered with 50% Hoagland nutrient solution. Adult plants of Arabidopsis were treated with artemisinin at 0, 40, 80, 160 μM for one week. Artemisinin, in the range 40–160 μM, decreased the fresh biomass, chl a, b and leaf mineral contents. Photosynthetic efficiency, yield and electron transport rate in Arabidopsis were also reduced following exposure to 80 and 160 μM artemisinin. The ΦNPQ and NPQ were less than control. Artemisinin treatment caused an increase in root oxidizability and lipid peroxidation (MDA contents) of Arabidopsis. Calcium and nitrogen contents decreased after 80 and 160 μM artemisinin treatment compared to control. δ13C values were less negative following treatment with artemisinin as compared to the control. Artemisinin also decreased leaf protein contents in Arabidopsis. Taken together, these data suggest that artemisinin inhibits many physiological and biochemical processes in Arabidopsis. PMID:25635811

  19. Mycobacterial HBHA induces endoplasmic reticulum stress-mediated apoptosis through the generation of reactive oxygen species and cytosolic Ca2+ in murine macrophage RAW 264.7 cells

    PubMed Central

    Choi, J-A; Lim, Y-J; Cho, S-N; Lee, J-H; Jeong, J A; Kim, E J; Park, J B; Kim, S H; Park, H S; Kim, H-J; Song, C-H

    2013-01-01

    Mycobacterial heparin-binding haemagglutinin antigen (HBHA) is a virulence factor that induces apoptosis of macrophages. Endoplasmic reticulum (ER) stress-mediated apoptosis is an important regulatory response that can be utilised to study the pathogenesis of tuberculosis. In the present study, HBHA stimulation induced ER stress sensor molecules in a caspase-dependent manner. Pre-treatment of RAW 264.7 cells with an IκB kinase 2 inhibitor reduced not only C/EBP homology protein expression but also IL-6 and monocyte chemotactic protein-1 (MCP-1) production. BAPTA-AM reduced both ER stress responses and caspase activation and strongly suppressed HBHA-induced IL-6 and MCP-1 production in RAW 264.7 cells. Enhanced reactive oxygen species (ROS) production and elevated cytosolic [Ca2+]i levels were essential for HBHA-induced ER stress responses. Collectively, our data suggest that HBHA induces cytosolic [Ca2+]i, which influences the generation of ROS associated with the production of proinflammatory cytokines. These concerted and complex cellular responses induce ER stress-associated apoptosis during HBHA stimulation in macrophages. These results indicate that the ER stress pathway has an important role in the HBHA-induced apoptosis during mycobacterial infection. PMID:24336077

  20. A ‘tissue model’ to study the barrier effects of living tissues on the reactive species generated by surface air discharge

    NASA Astrophysics Data System (ADS)

    He, Tongtong; Liu, Dingxin; Xu, Han; liu, Zhichao; Xu, Dehui; Li, Dong; Li, Qiaosong; Rong, Mingzhe; Kong, Michael G.

    2016-05-01

    Gelatin gels are used as surrogates of human tissues to study their barrier effects on incoming reactive oxygen and nitrogen species (RONS) generated by surface air discharge. The penetration depth of nitrite into gelatin gel is measured in real time during plasma treatment, and the permeabilities of nitrite, nitrate, O3 and H2O2 through gelatin gel films are quantified by measuring their concentrations in the water underneath such films after plasma treatment. It is found that the penetration speed of nitrite increases linearly with the mass fraction of water in the gelatin gels, and the permeabilities of nitrite and O3 are comparably smaller than that for H2O2 and nitrate due to differences in their chemistry in gelatin gels. These results provide a quantitative basis to estimate the penetration processes of RONS in human tissues, and they also confirm that the composition of RONS is strongly dependent on the tissue depth and the plasma treatment time. A small electric field of up to 20 V cm‑1 can greatly reduce the barrier effects of the tissue model regardless of their directions, for which the underlying mechanism is unclear. However, the electric field force on the objective RONS should not be the dominant mechanism.

  1. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices

    PubMed Central

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2016-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism. PMID:26793199

  2. The interaction of atmospheric pressure plasma jets with cancer and normal cells: generation of intracellular reactive oxygen species and changes of the cell proliferation and cell cycle

    NASA Astrophysics Data System (ADS)

    Chung, Tae Hun; Joh, Hea Min; Kim, Sun Ja; Leem, Sun Hee

    2013-09-01

    The possibility of atmospheric pressure plasmas is emerging as a candidate in cancer therapy. The primary role is played by reactive oxygen species (ROS), UV photons, charged particles and electric fields. Among them, intracellular ROS induced by plasma are considered to be the key constituents that induce cellular changes and apoptosis. In this study, the effects of atmospheric pressure plasma jet on cancer cells (human lung carcinoma cells) and normal cells (embryonic kidney cells and bronchial epithelial cells) were investigated. The plasma treatment was performed under different working gases, applied voltages, gas flow rates, and with and without additive oxygen flow. Using a detection dye, we observed that plasma exposure leads to the increase of the intracellular ROS and that the intracellular ROS production can be controlled by plasma parameters. A significant ROS generation was induced by plasma exposure on cancer cells and the overproduction of ROS contributes to the reduced cell proliferation. Normal cells were observed to be less affected by the plasma-mediated ROS and cell proliferation was less changed. The plasma treatment also resulted in the alteration of the cell cycle that contributes to the induction of apoptosis in cancer cells. The selective effect on cancer and normal cells provides a promising prospect of cold plasma as cancer therapy. This work was supported by the National Research Foundation of Korea under Contract No. 2012R1A1A2002591 and 2012R1A1A3010213.

  3. Effect of resveratrol on Helicobacter pylori-induced interleukin-8 secretion, reactive oxygen species generation and morphological changes in human gastric epithelial cells.

    PubMed

    Zaidi, Syed Faisal Haider; Ahmed, Kanwal; Yamamoto, Takeshi; Kondo, Takashi; Usmanghani, Khan; Kadowaki, Makoto; Sugiyama, Toshiro

    2009-11-01

    Inflammatory cytokine interleukin-8 (IL-8) and reactive oxygen species (ROS) overexpressed in the gastric mucosa when exposed to Helicobacter pylori, defined as a class I carcinogen. Moreover, infection with H. pylori leads to morphological changes in co-cultured cells known as hummingbird phenomenon along with increased motility. Resveratrol, a highly abundant polyphenol in red grapes, has shown anti-inflammatory, anti-cancer, cardioprotective and neuroprotective activities. However, the effect of resveratrol in H. pylori-infected cells has not been investigated. The present study was, therefore, aimed to evaluate the effect of resveratrol on the induction of IL-8, ROS and hummingbird morphology in H. pylori-infected gastric epithelial cells. The non-toxic concentration of resveratrol for both H. pylori and epithelial cells was determined by brucella broth dilution method and DNA fragmentation assay. The non-toxic resveratrol (< or =100 microM) treatment did not demonstrate any inhibitory effect against H. pylori adhesion to gastric epithelial cells. However, preincubation of the cells with 75 and 100 muM of resveratrol significantly (p<0.05 and p<0.01 respectively) inhibited the secretion of IL-8 from H. pylori-infected cells. In addition, resveratrol pretreatment at 1-100 muM suppressed H. pylori-induced ROS generation in a concentration dependent manner. Moreover, H. pylori-initiated morphological changes were markedly blocked by resveratrol. Hence, resveratrol can be considered as a potential candidate against various H. pylori related gastric pathogenic processes. PMID:19881312

  4. Characterization of xanthophyll pigments, photosynthetic performance, photon energy dissipation, reactive oxygen species generation and carbon isotope discrimination during artemisinin-induced stress in Arabidopsis thaliana.

    PubMed

    Hussain, M Iftikhar; Reigosa, Manuel J

    2015-01-01

    Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope discrimination in Arabidopsis thaliana were studied. Arabidopsis ecotype Columbia (Col-0) seedlings were grown in perlite and watered with 50% Hoagland nutrient solution. Adult plants of Arabidopsis were treated with artemisinin at 0, 40, 80, 160 μM for one week. Artemisinin, in the range 40-160 μM, decreased the fresh biomass, chl a, b and leaf mineral contents. Photosynthetic efficiency, yield and electron transport rate in Arabidopsis were also reduced following exposure to 80 and 160 μM artemisinin. The ΦNPQ and NPQ were less than control. Artemisinin treatment caused an increase in root oxidizability and lipid peroxidation (MDA contents) of Arabidopsis. Calcium and nitrogen contents decreased after 80 and 160 μM artemisinin treatment compared to control. δ13C values were less negative following treatment with artemisinin as compared to the control. Artemisinin also decreased leaf protein contents in Arabidopsis. Taken together, these data suggest that artemisinin inhibits many physiological and biochemical processes in Arabidopsis. PMID:25635811

  5. Generation and Improvement of Effector Function of a Novel Broadly Reactive and Protective Monoclonal Antibody against Pneumococcal Surface Protein A of Streptococcus pneumoniae

    PubMed Central

    Cho, Rebecca; Groff, Brian C.; Kubota, Tsuguo; Destito, Giuseppe; Laudenslager, John; Koriazova, Lilia; Tahara, Tomoyuki; Kanda, Yutaka

    2016-01-01

    A proof-of-concept study evaluating the potential of Streptococcus pneumoniae Pneumococcal Surface Protein A (PspA) as a passive immunization target was conducted. We describe the generation and isolation of several broadly reactive mouse anti-PspA monoclonal antibodies (mAbs). MAb 140H1 displayed (i) 98% strain coverage, (ii) activity in complement deposition and opsonophagocytic killing (OPK) assays, which are thought to predict the in vivo efficacy of anti-pneumococcal mAbs, (iii) efficacy in mouse sepsis models both alone and in combination with standard-of-care antibiotics, and (iv) therapeutic activity in a mouse pneumonia model. Moreover, we demonstrate that antibody engineering can significantly enhance anti-PspA mAb effector function. We believe that PspA has promising potential as a target for the therapy of invasive pneumococcal disease by mAbs, which could be used alone or in conjunction with standard-of-care antibiotics. PMID:27171010

  6. In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain.

    PubMed

    Zhang, Surong; Fu, Juanling; Zhou, Zongcan

    2004-02-01

    Manganese (Mn) is known to induce mitochondrial dysfunction in excessive dose; however the mechanisms underlying its action are not elucidated clearly. To determine if Mn2+ can act directly on mitochondria or indirectly by producing reactive oxygen species (ROS), isolated mitochondria were exposed to different concentration of Mn2+ (5, 50, 500, 1000 microM). ROS generation, respiratory control ratio (RCR), mitochondrial membrane potential (MMP) and respiratory chain complexes activities were investigated. Dose-dependent inhibition of respiratory chain complexes and induction of ROS were observed; these changes were paralleled by decreasing of respiratory control ratio (RCR) both with succinate or glutamate + malate. Further investigation indicated that the membrane potential determined by Rhodamine123 release decreased after MnCl2 exposure at 1000 microM. In addition, effects of the antioxidants NAC (500 microM), GSH (500 microM) and Vitamin C (500 microM) were studied at 500 microM Mn2+. The results indicate that the effect of Mn2+ exposure on respiratory chain is not site-specific, and antioxidants can protect the mitochondria function by reducing the formation of free radicals. PMID:14630064

  7. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices.

    PubMed

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2015-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism. PMID:26793199

  8. Deconvoluting Mixtures ofEmissions Sources to Investigate PM2.5's Ability to Generate Reactive Oxygen Species and its Associations with Cardiorespiratory Effects

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Bates, J.; Abrams, J.; Verma, V.; Fang, T.; Klein, M.; Strickland, M. J.; Sarnat, S. E.; Chang, H. H.; Mulholland, J. A.; Tolbert, P. E.; Russell, A. G.

    2015-12-01

    It is hypothesized that fine particulate matter (PM2.5) inhalation can catalytically generate reactive oxygen species (ROS) in excess of the body's antioxidant capacity, leading to oxidative stress and ultimately adverse health. PM2.5 emissions from different sources vary widely in chemical composition, with varied effects on the body. Here, the ability of mixtures of different sources of PM2.5 to generate ROS and associations of this capability with acute health effects were investigated. A dithiothreitol (DTT) assay that integrates over different sources was used to quantify ROS generation potential of ambient water-soluble PM2.5 in Atlanta from June 2012 - June 2013. PM2.5 source impacts, estimated using the Chemical Mass Balance method with ensemble-averaged source impact profiles, were related to DTT activity using a linear regression model, which provided information on intrinsic DTT activity (i.e., toxicity) of each source. The model was then used to develop a time series of daily DTT activity over a ten-year period (1998-2010) for use in an epidemiologic study. Light-duty gasoline vehicles exhibited the highest intrinsic DTT activity, followed by biomass burning and heavy-duty diesel vehicles. Biomass burning contributed the largest fraction to total DTT activity, followed by gasoline and diesel vehicles (45%, 20% and 14%, respectively). These results suggest the importance of aged oxygenated organic aerosols and metals in ROS generation. Epidemiologic analyses found significant associations between estimated DTT activity and emergency department visits for congestive heart failure and asthma/wheezing attacks in the 5-county Atlanta area. Estimated DTT activity was the only pollutant measure out of PM2.5, O3, and PM2.5 constituents elemental carbon and organic carbon) that exhibited a significant link to congestive heart failure. In two-pollutant models, DTT activity was significantly associated with asthma/wheeze and congestive heart failure while PM2

  9. Role played by paxillin and paxillin tyrosine phosphorylation in hepatocyte growth factor/sphingosine-1-phosphate-mediated reactive oxygen species generation, lamellipodia formation, and endothelial barrier function

    PubMed Central

    Usatyuk, Peter V.; Jacobson, Jeffrey; Cress, Anne E.; Garcia, Joe G. N.; Salgia, Ravi; Natarajan, Viswanathan

    2015-01-01

    Abstract Paxillin is a multifunctional and multidomain focal adhesion adaptor protein. It serves as an important scaffolding protein at focal adhesions by recruiting and binding to structural and signaling molecules. Paxillin tyrosine phosphorylation at Y31 and Y118 is important for paxillin redistribution to focal adhesions and angiogenesis. Hepatocyte growth factor (HGF) and sphingosine-1-phosphate (S1P) are potent stimulators of lamellipodia formation, a prerequisite for endothelial cell migration. The role played by paxillin and its tyrosine phosphorylated forms in HGF- or S1P-induced lamellipodia formation and barrier function is unclear. HGF or S1P stimulated lamellipodia formation, tyrosine phosphorylation of paxillin at Y31 and Y118, and c-Abl in human lung microvascular endothelial cells (HLMVECs). Knockdown of paxillin with small interfering RNA (siRNA) or transfection with paxillin mutants (Y31F or Y118F) mitigated HGF- or S1P-induced lamellipodia formation, translocation of p47phox to lamellipodia, and reactive oxygen species (ROS) generation in HLMVECs. Furthermore, exposure of HLMVECs to HGF or S1P stimulated c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 in a time-dependent fashion, and down-regulation of c-Abl with siRNA attenuated HGF- or S1P-mediated lamellipodia formation, translocation of p47phox to lamellipodia, and endothelial barrier enhancement. In vivo, knockdown of paxillin with siRNA in mouse lungs attenuated ventilator-induced lung injury. Together, these results suggest that c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates HGF- or S1P-mediated lamellipodia formation, ROS generation in lamellipodia, and endothelial permeability. PMID:26697169

  10. Fe(III) mineral reduction followed by partial dissolution and reactive oxygen species generation during 2,4,6-trinitrotoluene transformation by the aerobic yeast Yarrowia lipolytica.

    PubMed

    Ziganshin, Ayrat M; Ziganshina, Elvira E; Byrne, James; Gerlach, Robin; Struve, Ellen; Biktagirov, Timur; Rodionov, Alexander; Kappler, Andreas

    2015-01-01

    Understanding the factors that influence pollutant transformation in the presence of ferric (oxyhydr)oxides is crucial to the efficient application of different remediation strategies. In this study we determined the effect of goethite, hematite, magnetite and ferrihydrite on the transformation of 2,4,6-trinitrotoluene (TNT) by Yarrowia lipolytica AN-L15. The presence of ferric (oxyhydr)oxides led to a small decrease in the rate of TNT removal. In all cases, a significant release of NO2 (-) from TNT and further NO2 (-) oxidation to NO3 (-) was observed. A fraction of the released NO2 (-) was abiotically decomposed to NO and NO2, and then NO was likely oxidized abiotically to NO2 by O2. ESR analysis revealed the generation of superoxide in the culture medium; its further protonation at low pH resulted in the formation of hydroperoxyl radical. Presumably, a fraction of NO released during TNT degradation reacted with superoxide and formed peroxynitrite, which was further rearranged to NO3 (-) at the acidic pH values observed in this study. A transformation and reduction of ferric (oxyhydr)oxides followed by partial dissolution (in the range of 7-86% of the initial Fe(III)) were observed in the presence of cells and TNT. Mössbauer spectroscopy showed some minor changes for goethite, magnetite and ferrihydrite samples during their incubation with Y. lipolytica and TNT. This study shows that i) reactive oxygen and nitrogen species generated during TNT transformation by Y. lipolytica participate in the abiotic conversion of TNT and ii) the presence of iron(III) minerals leads to a minor decrease in TNT transformation. PMID:25852985

  11. In vitro effects of cholesterol β-D-glucoside, cholesterol and cycad phytosterol glucosides on respiration and reactive oxygen species generation in brain mitochondria.

    PubMed

    Panov, Alexander; Kubalik, Nataliya; Brooks, Benjamin R; Shaw, Christopher A

    2010-10-01

    The cluster of neurodegenerative disorders in the western Pacific termed amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC) has been repeatedly linked to the use of seeds of various species of cycad. Identification and chemical synthesis of the most toxic compounds in the washed cycad seeds, a variant phytosteryl glucosides, and even more toxic cholesterol β-D-glucoside (CG), which is produced by the human parasite Helicobacter pylori, provide a possibility to study in vitro the mechanisms of toxicity of these compounds. We studied in detail the effects of CG on the respiratory activities and generation of reactive oxygen species (ROS) by nonsynaptic brain and heart mitochondria oxidizing various substrates. The stimulatory effects of CG on respiration and ROS generation showed strong substrate dependence, suggesting involvement of succinate dehydrogenase (complex II). Maximal effects on ROS production were observed with 1 μmol CG/1 mg mitochondria. At this concentration the cycad toxins β-sitosterol-β-D-glucoside and stigmasterol-β-D-glucoside had effects on respiration and ROS production similar to CG. However, poor solubility precluded full concentration analysis of these toxins. Cholesterol, stigmasterol and β-sitosterol had no effect on mitochondrial functions studied at concentrations up to 100 μmol/mg protein. Our results suggest that CG may influence mitochondrial functions through changes in the packing of the bulk membrane lipids, as was shown earlier by Deliconstantinos et al. (Biochem Cell Biol 67:16-24, 1989). The neurotoxic effects of phytosteryl glucosides and CG may be associated with increased oxidative damage of neurons. Unlike heart mitochondria, in activated neurons mitochondria specifically increase ROS production associated with succinate oxidation (Panov et al., J Biol Chem 284:14448-14456, 2009). PMID:20938651

  12. Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells.

    PubMed

    Shah, Anu; Xia, Ling; Goldberg, Howard; Lee, Ken W; Quaggin, Susan E; Fantus, I George

    2013-03-01

    Thioredoxin-interacting protein (TxNIP) is up-regulated by high glucose and is associated with oxidative stress. It has been implicated in hyperglycemia-induced β-cell dysfunction and apoptosis. As high glucose and oxidative stress mediate diabetic nephropathy (DN), the contribution of TxNIP was investigated in renal mesangial cell reactive oxygen species (ROS) generation and collagen synthesis. To determine the role of TxNIP, mouse mesangial cells (MC) cultured from wild-type C3H and TxNIP-deficient Hcb-19 mice were incubated in HG. Confocal microscopy was used to measure total and mitochondrial ROS production (DCF and MitoSOX) and collagen IV. Trx and NADPH oxidase activities were assayed and NADPH oxidase isoforms, Nox2 and Nox4, and antioxidant enzymes were determined by immunoblotting. C3H MC exposed to HG elicited a significant increase in cellular and mitochondrial ROS as well as Nox4 protein expression and NADPH oxidase activation, whereas Hcb-19 MC showed no response. Trx activity was attenuated by HG only in C3H MC. These defects in Hcb-19 MC were not due to increased antioxidant enzymes or scavenging of ROS, but associated with decreased ROS generation. Adenovirus-mediated overexpression of TxNIP in Hcb-19 MC and TxNIP knockdown with siRNA in C3H confirmed the specific role of TxNIP. Collagen IV accumulation in HG was markedly reduced in Hcb-19 cells. TxNIP is a critical component of the HG-ROS signaling pathway, required for the induction of mitochondrial and total cell ROS and the NADPH oxidase isoform, Nox4. TxNIP is a potential target to prevent DN. PMID:23329835

  13. Thioredoxin-interacting Protein Mediates High Glucose-induced Reactive Oxygen Species Generation by Mitochondria and the NADPH Oxidase, Nox4, in Mesangial Cells*

    PubMed Central

    Shah, Anu; Xia, Ling; Goldberg, Howard; Lee, Ken W.; Quaggin, Susan E.; Fantus, I. George

    2013-01-01

    Thioredoxin-interacting protein (TxNIP) is up-regulated by high glucose and is associated with oxidative stress. It has been implicated in hyperglycemia-induced β-cell dysfunction and apoptosis. As high glucose and oxidative stress mediate diabetic nephropathy (DN), the contribution of TxNIP was investigated in renal mesangial cell reactive oxygen species (ROS) generation and collagen synthesis. To determine the role of TxNIP, mouse mesangial cells (MC) cultured from wild-type C3H and TxNIP-deficient Hcb-19 mice were incubated in HG. Confocal microscopy was used to measure total and mitochondrial ROS production (DCF and MitoSOX) and collagen IV. Trx and NADPH oxidase activities were assayed and NADPH oxidase isoforms, Nox2 and Nox4, and antioxidant enzymes were determined by immunoblotting. C3H MC exposed to HG elicited a significant increase in cellular and mitochondrial ROS as well as Nox4 protein expression and NADPH oxidase activation, whereas Hcb-19 MC showed no response. Trx activity was attenuated by HG only in C3H MC. These defects in Hcb-19 MC were not due to increased antioxidant enzymes or scavenging of ROS, but associated with decreased ROS generation. Adenovirus-mediated overexpression of TxNIP in Hcb-19 MC and TxNIP knockdown with siRNA in C3H confirmed the specific role of TxNIP. Collagen IV accumulation in HG was markedly reduced in Hcb-19 cells. TxNIP is a critical component of the HG-ROS signaling pathway, required for the induction of mitochondrial and total cell ROS and the NADPH oxidase isoform, Nox4. TxNIP is a potential target to prevent DN. PMID:23329835

  14. Assessment of the long-term stability of cementitious barriers of radioactive waste repositories by using digital-image-based microstructure generation and reactive transport modelling

    SciTech Connect

    Galindez, Juan Manuel; Molinero, Jorge

    2010-08-15

    Cement-based grout plays a significant role in the design and performance of nuclear waste repositories: used correctly, it can enhance their safety. However, the high water-to-binder ratios, which are required to meet the desired workability and injection ability at early age, lead to high porosity that may affect the durability of this material and undermine its long-term geochemical performance. In this paper, a new methodology is presented in order to help the process of mix design which best meets the compromise between these two conflicting requirements. It involves the combined use of the computer programs CEMHYD3D for the generation of digital-image-based microstructures and CrunchFlow, for the reactive transport calculations affecting the materials so simulated. This approach is exemplified with two grout types, namely, the so-called Standard mix 5/5, used in the upper parts of the structure, and the 'low-pH' P308B, to be injected at higher depths. The results of the digital reconstruction of the mineralogical composition of the hardened paste are entirely logical, as the microstructures display high degrees of hydration, large porosities and low or nil contents of aluminium compounds. Diffusion of solutes in the pore solution was considered to be the dominant transport process. A single scenario was studied for both mix designs and their performances were compared. The reactive transport model adequately reproduces the process of decalcification of the C-S-H and the precipitation of calcite, which is corroborated by empirical observations. It was found that the evolution of the deterioration process is sensitive to the chemical composition of groundwater, its effects being more severe when grout is set under continuous exposure to poorly mineralized groundwater. Results obtained appear to indicate that a correct conceptualization of the problem was accomplished and support the assumption that, in absence of more reliable empirical data, it might

  15. Extracellular magnesium and calcium blockers modulate macrophage activity.

    PubMed

    Libako, Patrycja; Nowacki, Wojciech; Castiglioni, Sara; Mazur, Andrzej; Maier, Jeanette A M

    2016-03-01

    Magnesium (Mg) possesses anti-inflammatory properties, partly because it antagonizes calcium (Ca) and inhibits L-type Ca channels. Our aim was to determine the effects of different concentrations of extracellular Mg, with or without Ca-channel blockers, in macrophages. A macrophage-like cell line J774.E was cultured in different concentrations of extracellular Mg and exposed to i) the phorbol ester PMA to induce the production of reactive oxygen species ii) lipopolysaccharide to induce the production of pro-inflammatory cytokines, or iii) ovalbumin to study endocytosis. The Ca antagonists verapamil and/or TMB-8 were used to interfere with Ca homeostasis. Different concentrations of extracellular Mg did not impact on endocytosis, while Ca antagonists markedly decreased it. Low extracellular Mg exacerbated, whereas Ca antagonists inhibited, PMA-induced production of free radicals. Ca blockers prevented lipopolysaccharide-induced transcription and release of IL-1β, IL-6 and TNF-α, while extracellular Mg had only a marginal effect. Ca channel inhibitors markedly reduced the activity of J774.E cells, thus underscoring the critical role of Ca in the non-specific immune response, a role which was, in some instances, also modulated by extracellular Mg. PMID:27160489

  16. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    SciTech Connect

    Sunil, Vasanthi R.; Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  17. Reactive arthritis

    MedlinePlus

    Reactive arthritis is a group of conditions that may involve the joints, eyes, and urinary and genital systems. ... The exact cause of reactive arthritis is unknown. It occurs most often in men younger than age 40. It may follow an infection in the urethra ...

  18. Algal extracellular release in river-floodplain dissolved organic matter: response of extracellular enzymatic activity during a post-flood period

    PubMed Central

    Sieczko, Anna; Maschek, Maria; Peduzzi, Peter

    2015-01-01

    River-floodplain systems are susceptible to rapid hydrological events. Changing hydrological connectivity of the floodplain generates a broad range of conditions, from lentic to lotic. This creates a mixture of allochthonously and autochthonously derived dissolved organic matter (DOM). Autochthonous DOM, including photosynthetic extracellular release (PER), is an important source supporting bacterial secondary production (BSP). Nonetheless, no details are available regarding microbial extracellular enzymatic activity (EEA) as a response to PER under variable hydrological settings in river-floodplain systems. To investigate the relationship between bacterial and phytoplankton components, we therefore used EEA as a tool to track the microbial response to non-chromophoric, but reactive and ecologically important DOM. The study was conducted in three floodplain subsystems with distinct hydrological regimes (Danube Floodplain National Park, Austria). The focus was on the post-flood period. Enhanced %PER (up to 48% of primary production) in a hydrologically isolated subsystem was strongly correlated with β-glucosidase, which was related to BSP. This shows that—in disconnected floodplain backwaters with high terrestrial input—BSP can also be driven by autochthonous carbon sources (PER). In a semi-isolated section, in the presence of fresh labile material from primary producers, enhanced activity of phenol oxidase was observed. In frequently flooded river-floodplain systems, BSP was mainly driven by enzymatic degradation of particulate primary production. Our research demonstrates that EEA measurements are an excellent tool to describe the coupling between bacteria and phytoplankton, which cannot be deciphered when focusing solely on chromophoric DOM. PMID:25741326

  19. Algal extracellular release in river-floodplain dissolved organic matter: response of extracellular enzymatic activity during a post-flood period.

    PubMed

    Sieczko, Anna; Maschek, Maria; Peduzzi, Peter

    2015-01-01

    River-floodplain systems are susceptible to rapid hydrological events. Changing hydrological connectivity of the floodplain generates a broad range of conditions, from lentic to lotic. This creates a mixture of allochthonously and autochthonously derived dissolved organic matter (DOM). Autochthonous DOM, including photosynthetic extracellular release (PER), is an important source supporting bacterial secondary production (BSP). Nonetheless, no details are available regarding microbial extracellular enzymatic activity (EEA) as a response to PER under variable hydrological settings in river-floodplain systems. To investigate the relationship between bacterial and phytoplankton components, we therefore used EEA as a tool to track the microbial response to non-chromophoric, but reactive and ecologically important DOM. The study was conducted in three floodplain subsystems with distinct hydrological regimes (Danube Floodplain National Park, Austria). The focus was on the post-flood period. Enhanced %PER (up to 48% of primary production) in a hydrologically isolated subsystem was strongly correlated with β-glucosidase, which was related to BSP. This shows that-in disconnected floodplain backwaters with high terrestrial input-BSP can also be driven by autochthonous carbon sources (PER). In a semi-isolated section, in the presence of fresh labile material from primary producers, enhanced activity of phenol oxidase was observed. In frequently flooded river-floodplain systems, BSP was mainly driven by enzymatic degradation of particulate primary production. Our research demonstrates that EEA measurements are an excellent tool to describe the coupling between bacteria and phytoplankton, which cannot be deciphered when focusing solely on chromophoric DOM. PMID:25741326

  20. Extracellular Metabolic Energetics Can Promote Cancer Progression

    PubMed Central

    Loo, Jia Min; Scherl, Alexis; Nguyen, Alexander; Man, Fung Ying; Weinberg, Ethan; Zeng, Zhaoshi; Saltz, Leonard; Paty, Philip B.; Tavazoie, Sohail F.

    2014-01-01

    Summary Colorectal cancer primarily metastasizes to the liver and kills over 600,000 people annually. By functionally screening 661 miRNAs in parallel during liver colonization, we have identified miR-551a and miR-483 as robust endogenous suppressors of liver colonization and metastasis. These miRNAs convergently target creatine kinase, brain-type (CKB), which phosphorylates the metabolite creatine, to generate phosphocreatine. CKB is released into the extracellular space by metastatic cells encountering hepatic hypoxia and catalyzes production of extracellular phosphocreatine, which is imported through the SLC6A8 transporter and used to generate ATP—fueling metastatic survival. Combinatorial therapeutic viral delivery of miR-551a and miR-483-5p through single-dose adeno-associated viral (AAV) delivery significantly suppressed colon cancer metastatic colonization, as did CKB inhibition with a small-molecule inhibitor. Importantly, human liver metastases express higher CKB and SLC6A8 levels and reduced miR-551a/miR-483 levels relative to primary tumors. We identify the extracellular space as an important compartment for malignant energetic catalysis and therapeutic targeting. PMID:25601461

  1. A constant current source for extracellular microiontophoresis.

    PubMed

    Walker, T; Dillman, N; Weiss, M L

    1995-12-01

    A sophisticated constant-current source suitable for extracellular microiontophoresis of tract-tracing substances, such as Phaseolus vulgaris leucoagglutinin, Biocytin or Fluoro-Gold, is described. This design uses a flyback switched-mode power supply to generate controllable high-voltage and operational amplifier circuitry to regulate current and provide instrumentation. Design features include a fast rise time, +/- 2000 V supply (stable output in < 250 ms), simultaneous load current and voltage monitoring, and separate pumping and holding current settings. Three features of this constant-current source make it especially useful for extracellular microiontophoresis. First, the output voltage monitor permits one to follow changes in the microelectrode resistance during current injection. Second, the voltage-limit (or out-of-compliance) indicator circuitry will sound an alarm when the iontophoretic pump is unable to generate the desired current, such as when the micropipette is blocked. Third, the high-compliance voltage power supply insures up to +/- 20 microA of current through 100 M omega resistance. This device has proven itself to be a reliable constant-current source for extracellular microiontophoresis in the laboratory. PMID:8788057

  2. Deferiprone reduces amyloid-β and tau phosphorylation levels but not reactive oxygen species generation in hippocampus of rabbits fed a cholesterol-enriched diet.

    PubMed

    Prasanthi, Jaya R P; Schrag, Matthew; Dasari, Bhanu; Marwarha, Gurdeep; Dickson, April; Kirsch, Wolff M; Ghribi, Othman

    2012-01-01

    Accumulation of amyloid-β (Aβ) peptide and the hyperphosphorylation of tau protein are major hallmarks of Alzheimer's disease (AD). The causes of AD are not well known but a number of environmental and dietary factors are suggested to increase the risk of developing AD. Additionally, altered metabolism of iron may have a role in the pathogenesis of AD. We have previously demonstrated that cholesterol-enriched diet causes AD-like pathology with iron deposition in rabbit brain. However, the extent to which chelation of iron protects against this pathology has not been determined. In this study, we administered the iron chelator deferiprone in drinking water to rabbits fed with a 2% cholesterol diet for 12 weeks. We found that deferiprone (both at 10 and 50 mg/kg/day) significantly decreased levels of Aβ40 and Aβ42 as well as BACE1, the enzyme that initiates cleavage of amyloid-β protein precursor to yield Aβ. Deferiprone also reduced the cholesterol diet-induced increase in phosphorylation of tau but failed to reduce reactive oxygen species generation. While deferiprone treatment was not associated with any change in brain iron levels, it was associated with a significant reduction in plasma iron and cholesterol levels. These results demonstrate that deferiprone confers important protection against hypercholesterolemia-induced AD pathology but the mechanism(s) may involve reduction in plasma iron and cholesterol levels rather than chelation of brain iron. We propose that adding an antioxidant therapy to deferiprone may be necessary to fully protect against cholesterol-enriched diet-induced AD-like pathology. PMID:22406440

  3. Generation of Reactive Oxygen Species by Polyenylpyrroles Derivatives Causes DNA Damage Leading to G2/M Arrest and Apoptosis in Human Oral Squamous Cell Carcinoma Cells

    PubMed Central

    Hua, Kuo-Feng; Liao, Pei-Chun; Fang, Zhanxiong; Yang, Feng-Ling; Yang, Yu-Liang; Chen, Yi-Lin; Chiu, Yi-Chich; Liu, May-Lan; Lam, Yulin; Wu, Shih-Hsiung

    2013-01-01

    Oral squamous cell carcinoma (OSCC) accounts for 5.8% of all malignancies in Taiwan and the incidence of OSCC is on the rise. OSCC is also a common malignancy worldwide and the five-year survival rate remains poor. Therefore, new and effective treatments are needed to control OSCC. In the present study we have investigated the efficacy and associated mechanisms of polyenylpyrroles and their analogs in both in vitro cell culture and in vivo nude mice xenografts. Auxarconjugatin B (compound 1a) resulted in cell cycle arrest in the G2/M phase and caspase-dependent apoptosis in OEC-M1 and HSC-3 cells by activating DNA damage and mitochondria dysfunction through the loss of mitochondrial membrane potential, release of cytochrome c, increase in B-cell lymphoma-2-associated X protein level, and decrease in B-cell lymphoma-2 level. Compound 1a-induced generation of intracellular reactive oxygen species through cytochrome P450 1A1 was identified as a major mechanism of its effect for DNA damage, mitochondria dysfunction and apoptosis, which was reversed by antioxidant N-acetylcysteine as well as cytochrome P450 1A1 inhibitor and specific siRNA. Furthermore, compound 1a-treated nude mice showed a reduction in the OEC-M1 xenograft tumor growth and an increase in the caspase-3 activation in xenograft tissue. These results provide promising insights as to how compound 1a mediates cytotoxicity and may prove to be a molecular rationale for its translation into a potential therapeutic against OSCC. PMID:23840748

  4. Preeclampsia and Extracellular Vesicles.

    PubMed

    Gilani, Sarwat I; Weissgerber, Tracey L; Garovic, Vesna D; Jayachandran, Muthuvel

    2016-09-01

    Preeclampsia is a hypertensive pregnancy disorder characterized by development of hypertension and proteinuria after 20 weeks of gestation that remains a leading cause of maternal and neonatal morbidity and mortality. While preeclampsia is believed to result from complex interactions between maternal and placental factors, the proximate pathophysiology of this syndrome remains elusive. Cell-to-cell communication is a critical signaling mechanism for feto-placental development in normal pregnancies. One mechanism of cellular communication relates to activated cell-derived sealed membrane vesicles called extracellular vesicles (EVs). The concentrations and contents of EVs in biological fluids depend upon their cells of origin and the stimuli which trigger their production. Research on EVs in preeclampsia has focused on EVs derived from the maternal vasculature (endothelium, vascular smooth muscle) and blood (erythrocytes, leukocytes, and platelets), as well as placental syncytiotrophoblasts. Changes in the concentrations and contents of these EVs may contribute to the pathophysiology of preeclampsia by accentuating the pro-inflammatory and pro-coagulatory states of pregnancy. This review focuses on possible interactions among placental- and maternal-derived EVs and their contents in the initiation and progression of the pathogenesis of preeclampsia. Understanding the contributions of EVs in the pathogenesis of preeclampsia may facilitate their use as diagnostic and prognostic biomarkers. PMID:27590522

  5. Extracellular Control of Limb Regeneration

    NASA Astrophysics Data System (ADS)

    Calve, S.; Simon, H.-G.

    Adult newts possess the ability to completely regenerate organs and appendages. Immediately after limb loss, the extracellular matrix (ECM) undergoes dramatic changes that may provide mechanical and biochemical cues to guide the formation of the blastema, which is comprised of uncommitted stem-like cells that proliferate to replace the lost structure. Skeletal muscle is a known reservoir for blastema cells but the mechanism by which it contributes progenitor cells is still unclear. To create physiologically relevant culture conditions for the testing of primary newt muscle cells in vitro, the spatio-temporal distribution of ECM components and the mechanical properties of newt muscle were analyzed. Tenascin-C and hyaluronic acid (HA) were found to be dramatically upregulated in the amputated limb and were co-expressed around regenerating skeletal muscle. The transverse stiffness of muscle measured in situ was used as a guide to generate silicone-based substrates of physiological stiffness. Culturing newt muscle cells under different conditions revealed that the cells are sensitive to both matrix coating and substrate stiffness: Myoblasts on HA-coated soft substrates display a rounded morphology and become more elongated as the stiffness of the substrate increases. Coating of soft substrates with matrigel or fibronectin enhanced cell spreading and eventual cell fusion.

  6. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade

    PubMed Central

    2011-01-01

    Background Reactive oxygen species (ROS), superoxide and hydrogen peroxide (H2O2), are necessary for appropriate responses to immune challenges. In the brain, excess superoxide production predicts neuronal cell loss, suggesting that Parkinson's disease (PD) with its wholesale death of dopaminergic neurons in substantia nigra pars compacta (nigra) may be a case in point. Although microglial NADPH oxidase-produced superoxide contributes to dopaminergic neuron death in an MPTP mouse model of PD, this is secondary to an initial die off of such neurons, suggesting that the initial MPTP-induced death of neurons may be via activation of NADPH oxidase in neurons themselves, thus providing an early therapeutic target. Methods NADPH oxidase subunits were visualized in adult mouse nigra neurons and in N27 rat dopaminergic cells by immunofluorescence. NADPH oxidase subunits in N27 cell cultures were detected by immunoblots and RT-PCR. Superoxide was measured by flow cytometric detection of H2O2-induced carboxy-H2-DCFDA fluorescence. Cells were treated with MPP+ (MPTP metabolite) following siRNA silencing of the Nox2-stabilizing subunit p22phox, or simultaneously with NADPH oxidase pharmacological inhibitors or with losartan to antagonize angiotensin II type 1 receptor-induced NADPH oxidase activation. Results Nigral dopaminergic neurons in situ expressed three subunits necessary for NADPH oxidase activation, and these as well as several other NADPH oxidase subunits and their encoding mRNAs were detected in unstimulated N27 cells. Overnight MPP+ treatment of N27 cells induced Nox2 protein and superoxide generation, which was counteracted by NADPH oxidase inhibitors, by siRNA silencing of p22phox, or losartan. A two-wave ROS cascade was identified: 1) as a first wave, mitochondrial H2O2 production was first noted at three hours of MPP+ treatment; and 2) as a second wave, H2O2 levels were further increased by 24 hours. This second wave was eliminated by pharmacological inhibitors

  7. Molecular cloning of an Onchocerca volvulus extracellular Cu-Zn superoxide dismutase.

    PubMed Central

    James, E R; McLean, D C; Perler, F

    1994-01-01

    Onchocerca volvulus, a human parasitic nematode, is the third leading cause of preventable blindness worldwide. This study describes the molecular cloning of a novel superoxide dismutase (SOD) from the parasite. This putative O. volvulus extracellular SOD (OvEcSOD) is 628 nucleotides (nt) long, including a 22-nt 5' spliced leader (SL1) and a portion encoding an N-terminal hydrophobic 42-amino-acid signal peptide. The remainder of the cDNA shares 71% identity with an O. volvulus cytosolic SOD sequence and is 3 nt longer. All residues involved in metal ion binding, active site formation, folding, and dimer formation in SODs are conserved. Data indicate the OvEcSOD and O. volvulus cytosolic SOD are separate gene products and that the OvEcSOD appears to possess the characteristics of a membrane-bound or secreted enzyme which may be involved in the parasite defense against phagocyte-generated reactive oxygen species. Images PMID:8300230

  8. Reactive Oxygen Species and Neutrophil Function.

    PubMed

    Winterbourn, Christine C; Kettle, Anthony J; Hampton, Mark B

    2016-06-01

    Neutrophils are essential for killing bacteria and other microorganisms, and they also have a significant role in regulating the inflammatory response. Stimulated neutrophils activate their NADPH oxidase (NOX2) to generate large amounts of superoxide, which acts as a precursor of hydrogen peroxide and other reactive oxygen species that are generated by their heme enzyme myeloperoxidase. When neutrophils engulf bacteria they enclose them in small vesicles (phagosomes) into which superoxide is released by activated NOX2 on the internalized neutrophil membrane. The superoxide dismutates to hydrogen peroxide, which is used by myeloperoxidase to generate other oxidants, including the highly microbicidal species hypochlorous acid. NOX activation occurs at other sites in the cell, where it is considered to have a regulatory function. Neutrophils also release oxidants, which can modify extracellular targets and affect the function of neighboring cells. We discuss the identity and chemical properties of the specific oxidants produced by neutrophils in different situations, and what is known about oxidative mechanisms of microbial killing, inflammatory tissue damage, and signaling. PMID:27050287

  9. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  10. Reactive Arthritis

    MedlinePlus

    ... with treatment and may cause joint damage. What Research Is Being Conducted on Reactive Arthritis? Researchers continue ... such as methotrexate and sulfasalazine. More information on research is available from the following websites: National Institutes ...

  11. Formation and Reactivity of Biogenic Iron Microminerals

    SciTech Connect

    Beveridge, Terrance J.; Glasauer, Susan; Korenevsky, Anton; Ferris, F. Grant

    2000-08-08

    The overall purpose of the project is to explore and quantify the processes that control the formation and reactivity of biogenic iron microminerals and their impact on the solubility of metal contaminants. The research addresses how surface components of bacterial cells, extracellular organic material, and the aqueous geochemistry of the DIRB microenvironment impacts the mineralogy, chemical state and micromorphology of reduced iron phases.

  12. Extracellular matrix and wound healing.

    PubMed

    Maquart, F X; Monboisse, J C

    2014-04-01

    Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects. PMID:24650524

  13. Prediction of in vivo potential for metabolic activation of drugs into chemically reactive intermediate: correlation of in vitro and in vivo generation of reactive intermediates and in vitro glutathione conjugate formation in rats and humans.

    PubMed

    Masubuchi, Noriko; Makino, Chie; Murayama, Nobuyuki

    2007-03-01

    The covalent binding of reactive intermediates to macromolecules might have potential involvement in severe adverse drug reactions. Thus, quantification of reactive metabolites is necessary during the early stage of drug discovery to avoid serious toxicity. In this study, the relationship between covalent binding and glutathione (GSH) conjugate formation in rat and human liver microsomes were investigated using 10 representative radioactive compounds that have been reported as hepatotoxic or having other toxicity derived from their reactive intermediates: acetaminophen, amodiaquine, carbamazepine, clozapine, diclofenac, furosemide, imipramine, indomethacin, isoniazid, and tienilic acid, all at a concentration of 10 microM. The GSH conjugate formation rate correlates well with the covalent binding of radioactivity (both rat and human, r2 = 0.93), which suggests that quantification of the GSH conjugate can be used to estimate covalent binding. To quantify the GSH-conjugation rate with non-radiolabeled compounds in vitro, the validation study for the determination of GSH conjugate formation using 35S-GSH by radio-HPLC was useful to predict metabolic activation. Following oral administration of 20 mg/kg of the radiolabeled compounds to rats, radioactivity that covalently bound to plasma and liver proteins was determined. The in vivo maximum covalent binding level in liver based on the free fraction of plasma area under the concentration curve (AUC) and in vitro covalent binding rate was found to correlate well (r2 = 0.79). Therefore, this model for in vitro covalent binding studies in human and rat and in vivo rat studies might be useful in predicting human metabolic activation of compounds. PMID:17309281

  14. Extracellular Vesicles from Caveolin-Enriched Microdomains Regulate Hyaluronan-Mediated Sustained Vascular Integrity

    PubMed Central

    Mirzapoiazova, Tamara; Lennon, Frances E.; Mambetsariev, Bolot; Allen, Michael; Riehm, Jacob; Poroyko, Valeriy A.; Singleton, Patrick A.

    2015-01-01

    Defects in vascular integrity are an initiating factor in several disease processes. We have previously reported that high molecular weight hyaluronan (HMW-HA), a major glycosaminoglycan in the body, promotes rapid signal transduction in human pulmonary microvascular endothelial cells (HPMVEC) leading to barrier enhancement. In contrast, low molecular weight hyaluronan (LMW-HA), produced in disease states by hyaluronidases and reactive oxygen species (ROS), induces HPMVEC barrier disruption. However, the mechanism(s) of sustained barrier regulation by HA are poorly defined. Our results indicate that long-term (6–24 hours) exposure of HMW-HA induced release of a novel type of extracellular vesicle from HLMVEC called enlargeosomes (characterized by AHNAK expression) while LMW-HA long-term exposure promoted release of exosomes (characterized by CD9, CD63, and CD81 expression). These effects were blocked by inhibiting caveolin-enriched microdomain (CEM) formation. Further, inhibiting enlargeosome release by annexin II siRNA attenuated the sustained barrier enhancing effects of HMW-HA. Finally, exposure of isolated enlargeosomes to HPMVEC monolayers generated barrier enhancement while exosomes led to barrier disruption. Taken together, these results suggest that differential release of extracellular vesicles from CEM modulate the sustained HPMVEC barrier regulation by HMW-HA and LMW-HA. HMW-HA-induced specialized enlargeosomes can be a potential therapeutic strategy for diseases involving impaired vascular integrity. PMID:26447809

  15. Skeletal muscle reperfusion injury is enhanced in extracellular superoxide dismutase knockout mouse.

    PubMed

    Park, Jong Woong; Qi, Wen-Ning; Cai, Yongting; Zelko, Igor; Liu, John Q; Chen, Long-En; Urbaniak, James R; Folz, Rodney J

    2005-07-01

    This study investigates the role of extracellular SOD (EC-SOD), the major extracellular antioxidant enzyme, in skeletal muscle ischemia and reperfusion (I/R) injury. Pedicled cremaster muscle flaps from homozygous EC-SOD knockout (EC-SOD-/-) and wild-type (WT) mice were subjected to 4.5-h ischemia and 90-min reperfusion followed by functional and molecular analyses. Our results revealed that EC-SOD-/- mice showed significantly profound I/R injury compared with WT littermates. In particular, there was a delayed and incomplete recovery of arterial spasm and blood flow during reperfusion, and more severe acute inflammatory reaction and muscle damage were noted in EC-SOD-/- mice. After 90-min reperfusion, intracellular SOD [copper- and zinc-containing SOD (CuZn-SOD) and manganese-containing (Mn-SOD)] mRNA levels decreased similarly in both groups. EC-SOD mRNA levels increased in WT mice, whereas EC-SOD mRNA was undetectable, as expected, in EC-SOD-/- mice. In both groups of animals, CuZn-SOD protein levels decreased and Mn-SOD protein levels remained unchanged. EC-SOD protein levels decreased in WT mice. Histological analysis showed diffuse edema and inflammation around muscle fibers, which was more pronounced in EC-SOD-/- mice. In conclusion, our data suggest that EC-SOD plays an important role in the protection from skeletal muscle I/R injury caused by excessive generation of reactive oxygen species. PMID:15778274

  16. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis

    PubMed Central

    Dan Dunn, Joe; Alvarez, Luis AJ; Zhang, Xuezhi; Soldati, Thierry

    2015-01-01

    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria. PMID:26432659

  17. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis.

    PubMed

    Dan Dunn, Joe; Alvarez, Luis Aj; Zhang, Xuezhi; Soldati, Thierry

    2015-12-01

    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria. PMID:26432659

  18. Reactive arthritis.

    PubMed

    Keat, A

    1999-01-01

    Reactive arthritis is one of the spondyloarthropathy family of clinical syndromes. The clinical features are those shared by other members of the spondyloarthritis family, though it is distinguished by a clear relationship with a precipitating infection. Susceptibility to reactive arthritis is closely linked with the class 1 HLA allele B27; it is likely that all sub-types pre-dispose to this condition. The link between HLA B27 and infection is mirrored by the development of arthritis in HLA B27-transgenic rats. In this model, arthritis does not develop in animals maintained in a germ-free environment. Infections of the gastrointestinal, genitourinary and respiratory tract appear to provoke reactive arthritis and a wide range of pathogens has now been implicated. Although mechanistic parallels may exist, reactive arthritis is distinguished from Lyme disease, rheumatic fever and Whipple's disease by virtue of the distinct clinical features and the link with HLA B27. As in these conditions both antigens and DNA of several micro-organisms have been detected in joint material from patients with reactive arthritis. The role of such disseminated microbial elements in the provocation or maintenance of arthritis remains unclear. HLA B27-restricted T-cell responses to microbial antigens have been demonstrated and these may be important in disease pathogenesis. The importance of dissemination of bacteria from sites of mucosal infection and their deposition in joints has yet to be fully understood. The role of antibiotic therapy in the treatment of reactive arthritis is being explored; in some circumstances, both the anti-inflammatory and anti-microbial effects of certain antibiotics appear to be valuable. The term reactive arthritis should be seen as a transitory one, reflecting a concept which may itself be on the verge of replacement, as our understanding of the condition develops. Nevertheless it appropriately describes arthritis that is associated with demonstrable

  19. Acidic extracellular microenvironment and cancer

    PubMed Central

    2013-01-01

    Acidic extracellular pH is a major feature of tumor tissue, extracellular acidification being primarily considered to be due to lactate secretion from anaerobic glycolysis. Clinicopathological evidence shows that transporters and pumps contribute to H+ secretion, such as the Na+/H+ exchanger, the H+-lactate co-transporter, monocarboxylate transporters, and the proton pump (H+-ATPase); these may also be associated with tumor metastasis. An acidic extracellular pH not only activates secreted lysosomal enzymes that have an optimal pH in the acidic range, but induces the expression of certain genes of pro-metastatic factors through an intracellular signaling cascade that is different from hypoxia. In addition to lactate, CO2 from the pentose phosphate pathway is an alternative source of acidity, showing that hypoxia and extracellular acidity are, while being independent from each other, deeply associated with the cellular microenvironment. In this article, the importance of an acidic extracellular pH as a microenvironmental factor participating in tumor progression is reviewed. PMID:24004445

  20. Genomic Analysis of Reactive Astrogliosis

    PubMed Central

    Zamanian, JL; Xu, L; Foo, LC; Nouri, N; Zhou, L; Giffard, RG; Barres, BA

    2012-01-01

    Reactive astrogliosis is characterized by a profound change in astrocyte phenotype in response to all CNS injuries and diseases. To better understand the reactive astrocyte state, we used Affymetrix GeneChip arrays to profile gene expression in populations of reactive astrocytes isolated at various time points after induction using two mouse injury models, ischemic stroke and neuroinflammation. We find reactive gliosis consists of a rapid, but quickly attenuated induction of gene expression after insult and identify two induced genes, Lcn2 and Serpina3n, as strong markers of reactive astrocytes. Strikingly, reactive astrocyte phenotype strongly depended on the type of inducing injury. Although there is a core set of genes that is up-regulated in reactive astrocytes from both injury models, at least 50% of the altered gene expression is specific to a given injury type. Reactive astrocytes in ischemia exhibited a molecular phenotype that suggests that they may be beneficial or protective, whereas reactive astrocytes induced by LPS exhibited a phenotype that suggests that they may be detrimental. These findings demonstrate that, despite well established commonalities, astrocyte reactive gliosis is a highly heterogeneous state in which astrocyte activities are altered to respond to the specific injury. This raises the question of how many subtypes of reactive astrocytes exist. Our findings provide transcriptome databases for two subtypes of reactive astrocytes that will be highly useful in generating new and testable hypotheses of their function, as well as for providing new markers to detect different types of reactive astrocytes in human neurological diseases. PMID:22553043

  1. Increased generation of intracellular reactive oxygen species initiates selective cytotoxicity against the MCF-7 cell line resultant from redox active combination therapy using copper-thiosemicarbazone complexes.

    PubMed

    Akladios, Fady N; Andrew, Scott D; Parkinson, Christopher J

    2016-06-01

    The combination of cytotoxic copper-thiosemicarbazone complexes with phenoxazines results in an up to 50-fold enhancement in the cytotoxic potential of the thiosemicarbazone against the MCF-7 human breast adenocarcinoma cell line over the effect attributable to drug additivity-allowing minimization of the more toxic copper-thiosemicarbazone component of the therapy. The combination of a benzophenoxazine with all classes of copper complex examined in this study proved more effective than combinations of the copper complexes with related isoelectronic azines. The combination approach results in rapid elevation of intracellular reactive oxygen levels followed by apoptotic cell death. Normal fibroblasts representative of non-cancerous cells (MRC-5) did not display a similar elevation of reactive oxygen levels when exposed to similar drug levels. The minimization of the copper-thiosemicarbazone component of the therapy results in an enhanced safety profile against normal fibroblasts. PMID:26951232

  2. Extracellular metabolic energetics can promote cancer progression.

    PubMed

    Loo, Jia Min; Scherl, Alexis; Nguyen, Alexander; Man, Fung Ying; Weinberg, Ethan; Zeng, Zhaoshi; Saltz, Leonard; Paty, Philip B; Tavazoie, Sohail F

    2015-01-29

    Colorectal cancer primarily metastasizes to the liver and globally kills over 600,000 people annually. By functionally screening 661 microRNAs (miRNAs) in parallel during liver colonization, we have identified miR-551a and miR-483 as robust endogenous suppressors of liver colonization and metastasis. These miRNAs convergently target creatine kinase, brain-type (CKB), which phosphorylates the metabolite creatine, to generate phosphocreatine. CKB is released into the extracellular space by metastatic cells encountering hepatic hypoxia and catalyzes production of phosphocreatine, which is imported through the SLC6A8 transporter and used to generate ATP—fueling metastatic survival. Combinatorial therapeutic viral delivery of miR-551a and miR-483-5p through single-dose adeno-associated viral (AAV) delivery significantly suppressed colon cancer metastasis, as did CKB inhibition with a small-molecule inhibitor. Importantly, human liver metastases express higher CKB and SLC6A8 levels and reduced miR-551a/miR-483 levels relative to primary tumors. We identify the extracellular space as an important compartment for malignant energetic catalysis and therapeutic targeting. PMID:25601461

  3. Systemic oxygenation weakens the hypoxia and Hypoxia Inducible Factor 1α-dependent and extracellular adenosine-mediated tumor protection

    PubMed Central

    Hatfield, Stephen M.; Kjaergaard, Jorgen; Lukashev, Dmitriy; Belikoff, Bryan; Schreiber, Taylor H.; Sethumadhavan, Shalini; Abbott, Robert; Philbrook, Phaethon; Thayer, Molly; Shujia, Dai; Rodig, Scott; Kutok, Jeffrey L.; Ren, Jin; Ohta, Akio; Podack, Eckhard R.; Karger, Barry; Jackson, Edwin K.; Sitkovsky, Michail

    2014-01-01

    Intratumoral hypoxia and Hypoxia Inducible Factor-1α (HIF-1α)-dependent CD39/CD73 ecto-enzymes may govern the accumulation of tumor-protecting extracellular adenosine and signaling through the A2A adenosine receptors (A2AR) in tumor microenvironments (TME). Here, we explored the conceptually novel motivation to use supplemental oxygen as a treatment to inhibit the hypoxia/HIF-1α-CD39/CD73-driven accumulation of extracellular adenosine in the TME in order to weaken the tumor protection. We report that hyperoxic breathing (60% O2) decreased the TME hypoxia, as well as levels of HIF-1α and downstream target proteins of HIF-1α in the TME according to proteomics studies in mice. Importantly, oxygenation also down-regulated the expression of adenosine-generating ecto-enzymes and significantly lowered levels of tumor-protecting extracellular adenosine in the TME. Using supplemental oxygen as a tool in studies of the TME, we also identified FHL-1 as a potentially useful marker for the conversion of hypoxic into normoxic TME. Hyperoxic breathing resulted in the up-regulation of antigen-presenting MHC-class I molecules on tumor cells and in the better recognition and increased susceptibility to killing by tumor-reactive cytotoxic T cells. Therapeutic breathing of 60% oxygen resulted in the significant inhibition of growth of established B16.F10 melanoma tumors and prolonged survival of mice. Taken together, the data presented here provide proof-of principle for the therapeutic potential of systemic oxygenation to convert the hypoxic, adenosine-rich and tumor-protecting TME into a normoxic and extracellular adenosine-poor TME that, in turn, may facilitate tumor regression. We propose to explore the combination of supplemental oxygen with existing immunotherapies of cancer. PMID:25120128

  4. Mutagenesis of the aquaporin 4 extracellular domains defines restricted binding patterns of pathogenic neuromyelitis optica IgG.

    PubMed

    Owens, Gregory P; Ritchie, Alanna; Rossi, Andrea; Schaller, Kristin; Wemlinger, Scott; Schumann, Hannah; Shearer, Andrew; Verkman, Alan S; Bennett, Jeffrey L

    2015-05-01

    Neuromyelitis optica-immunoglobulin G (NMO-IgG) binds to aquaporin-4 (AQP4) water channels in the central nervous system leading to immune-mediated injury. We have previously demonstrated that a high proportion of CSF plasma cells of NMO patients produce antibody to the extracellular domains of the AQP4 protein and that recombinant IgG (rAb) derived from these cells recapitulate pathogenic features of disease. We performed a comprehensive mutational analysis of the three extracellular loops of the M23 isoform of human AQP4 using both serial and single point mutations, and we evaluated the effects on binding of NMO AQP4-reactive rAbs by quantitative immunofluorescence. Whereas all NMO rAbs required conserved loop C ((137)TP(138) and Val(150)) and loop E ((230)HW(231)) amino acids for binding, two broad patterns of NMO-IgG recognition could be distinguished based on differential sensitivity to loop A amino acid changes. Pattern 1 NMO rAbs were insensitive to loop A mutations and could be further discriminated by differential sensitivity to amino acid changes in loop C ((148)TM(149) and His(151)) and loop E (Asn(226) and Glu(228)). Alternatively, pattern 2 NMO rAbs showed significantly reduced binding following amino acid changes in loop A ((63)EKP(65) and Asp(69)) and loop C (Val(141), His(151), and Leu(154)). Amino acid substitutions at (137)TP(138) altered loop C conformation and abolished the binding of all NMO rAbs and NMO-IgG, indicating the global importance of loop C conformation to the recognition of AQP4 by pathogenic NMO Abs. The generation of human NMO rAbs has allowed the first high resolution mapping of extracellular loop amino acids critical for NMO-IgG binding and identified regions of AQP4 extracellular structure that may represent prime targets for drug therapy. PMID:25792738

  5. An In Vitro HSV-1 Reactivation Model Containing Quiescently Infected PC12 Cells

    PubMed Central

    Hogk, Ina; Kaufmann, Michaela; Finkelmeier, Doris; Rupp, Steffen

    2013-01-01

    Abstract Advances in the understanding of the infection and reactivation process of herpes simplex type 1 (HSV-1) are generally gained by monolayer cultures or extensive and cost-intensive animal models. So far, no reliable in vitro skin model exists either to investigate the molecular mechanisms involved in controlling latency and virus reactivation or to test pharmaceuticals. Here we demonstrate the first in vitro HSV-1 reactivation model generated by using the human keratinocyte cell line HaCaT grown on a collagen substrate containing primary human fibroblasts. We integrated the unique feature of a quiescently infected neuronal cell line, the rat pheochromocytoma line PC12, within the dermal layer of the three-dimensional skin equivalent. Transmission electron microscopy, a cell-based TCID50 assay, and polymerase chain reaction analysis were used to verify cell latency. Thereby viral DNA could be detected, whereas extracellular as well as intracellular virus activity could not be found. Further, the infected PC12 cells show no spontaneous reactivation within the in vitro skin equivalent. In order to simulate a physiologically comparable HSV-1 infection, we achieved a specific and pointed reactivation of quiescently HSV-1 infected PC12 cells by UVB irradiation at 1000 mJ/cm2. PMID:23914331

  6. Modulation of macrophage-mediated cytotoxicity by kerosene soot: Possible role of reactive oxygen species

    SciTech Connect

    Arif, J.M.; Khan, S.G.; Ashquin, M.; Rahman, Q. )

    1993-05-01

    The involvement of reactive oxygen species (ROS) in the cytotoxicity of soot on rat alveolar macrophages has been postulated. A single intratracheal injection of soot (5 mg) in corn oil significantly induced the macrophage population, hydrogen peroxide (H[sub 2]O[sub 2]) generation, thiobarbituric acid (TBA)-reactive substanced of lipid peroxidation, and the activities of extracellular acid phosphatase (AP) and lactate dehydrogenase (LDH) at 1, 4, 8, and 16 days of postinoculation. The activities of glutathione peroxidase (GPX) and catalase (CAT) were significantly inhibited at all the stages, while glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) showed a different pattern. These results show that soot is cytotoxic to alveolar macrophages and suggest that ROS may play a primary role in the cytotoxic process. 28 refs., 4 figs., 1 tab.

  7. Pneumolysin activates neutrophil extracellular trap formation.

    PubMed

    G Nel, J; Theron, A J; Durandt, C; Tintinger, G R; Pool, R; Mitchell, T J; Feldman, C; Anderson, R

    2016-06-01

    The primary objective of the current study was to investigate the potential of the pneumococcal toxin, pneumolysin (Ply), to activate neutrophil extracellular trap (NET) formation in vitro. Isolated human blood neutrophils were exposed to recombinant Ply (5-20 ng ml(-1) ) for 30-90 min at 37°C and NET formation measured using the following procedures to detect extracellular DNA: (i) flow cytometry using Vybrant® DyeCycle™ Ruby; (ii) spectrofluorimetry using the fluorophore, Sytox(®) Orange (5 μM); and (iii) NanoDrop(®) technology. These procedures were complemented by fluorescence microscopy using 4', 6-diamino-2-phenylindole (DAPI) (nuclear stain) in combination with anti-citrullinated histone monoclonal antibodies to visualize nets. Exposure of neutrophils to Ply resulted in relatively rapid (detected within 30-60 min), statistically significant (P < 0·05) dose- and time-related increases in the release of cellular DNA impregnated with both citrullinated histone and myeloperoxidase. Microscopy revealed that NETosis appeared to be restricted to a subpopulation of neutrophils, the numbers of NET-forming cells in the control and Ply-treated systems (10 and 20 ng ml(-1) ) were 4·3 (4·2), 14.3 (9·9) and 16·5 (7·5), respectively (n = 4, P < 0·0001 for comparison of the control with both Ply-treated systems). Ply-induced NETosis occurred in the setting of retention of cell viability, and apparent lack of involvement of reactive oxygen species and Toll-like receptor 4. In conclusion, Ply induces vital NETosis in human neutrophils, a process which may either contribute to host defence or worsen disease severity, depending on the intensity of the inflammatory response during pneumococcal infection. PMID:26749379

  8. Structural homology between lymphocyte receptors for high endothelium and class III extracellular matrix receptor.

    PubMed Central

    Gallatin, W M; Wayner, E A; Hoffman, P A; St John, T; Butcher, E C; Carter, W G

    1989-01-01

    We have identified extensive structural homology between one type of heterotypic adhesion receptor (HAR) involved in lymphocyte interactions with high endothelium in lymphoid organs and a collagen-binding protein, termed class III extracellular matrix receptor (ECMRIII), expressed on most nucleated cell types. Both receptors have been described as heterogeneous 90-kDa transmembrane glycoproteins, referred to here as gp90. Monoclonal anti-HAR antibodies, Hermes-1 and Hutch-1, and monoclonal anti-ECMRIII antibodies, P1G12 and P3H9, were utilized to compare the two receptors. (i) All these monoclonal antibodies immunoprecipitated major gp90 components as well as uncharacterized additional higher molecular mass antigens of 120-200 kDa in human and macaque fibroblasts and peripheral blood mononuclear cells. (ii) Competitive binding analyses with the antibodies identified distinct epitopes present on gp90. (iii) Enzymatic and chemical digestions generated identical peptide fragments from all the antigens in human and macaque fibroblasts and peripheral blood mononuclear cells. (iv) Sequential immunoprecipitation with P1G12 followed by the other monoclonal antibodies indicated that all gp90 species reactive with Hermes-1 and Hutch-1 also expressed the P1G12 defined epitope. In reciprocal experiments, Hermes-1 and Hutch-1 immunoprecipitation did not completely remove all P1G12-reactive gp90 from cellular extracts. One inference from these data would be that gp90 is serologically heterogeneous, encompassing HARs as a major subset of this broadly expressed class of molecules. Images PMID:2471973

  9. Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar.

    PubMed

    Zhu, Zhongyu; Ramakrishnan, Boopathy; Li, Jinyu; Wang, Yanping; Feng, Yang; Prabakaran, Ponraj; Colantonio, Simona; Dyba, Marzena A; Qasba, Pradman K; Dimitrov, Dimiter S

    2014-01-01

    Conjugation of small molecule drugs to specific sites on the antibody molecule has been increasingly used for the generation of relatively homogenous preparations of antibody-drug conjugates (ADCs) with physicochemical properties similar or identical to those of the naked antibody. Previously a method for conjugation of small molecules to glycoproteins through existing glycans by using an engineered glycotransferase and a chemically reactive sugar as a handle was developed. Here, for the first time, we report the use of this method with some modifications to generate an ADC from a monoclonal antibody, m860, which we identified from a human naïve phage display Fab library by panning against the extracellular domain of human HER2. M860 bound to cell surface-associated HER2 with affinity comparable to that of Trastuzumab (Herceptin), but to a different epitope. The m860ADC was generated by enzymatically adding a reactive keto-galactose to m860 using an engineered glycotransferase and conjugating the reactive m860 to aminooxy auristatin F. It exhibited potent and specific cell-killing activity against HER2 positive cancer cells, including trastuzumab-resistant breast cancer cells. This unique ADC may have utility as a potential therapeutic for HER2 positive cancers alone or in combination with other drugs. Our results also validate the keto-galactose/engineered glycotransferase method for generation of functional ADCs, which could potentially also be used for preparation of ADCs targeting other disease markers. PMID:25517304

  10. In Chemico Evaluation of Tea Tree Essential Oils as Skin Sensitizers: Impact of the Chemical Composition on Aging and Generation of Reactive Species.

    PubMed

    Avonto, Cristina; Chittiboyina, Amar G; Wang, Mei; Vasquez, Yelkaira; Rua, Diego; Khan, Ikhlas A

    2016-07-18

    Tea tree oil (TTO) is an essential oil obtained from the leaves of Melaleuca alternifolia, M. linariifolia, or M. dissitiflora. Because of the commercial importance of TTO, substitution or adulteration with other tea tree species (such as cajeput, niaouli, manuka, or kanuka oils) is common and may pose significant risks along with perceived health benefits. The distinctive nature, qualitative and quantitative compositional variation of these oils, is responsible for the various pharmacological as well as adverse effects. Authentic TTOs (especially aged ones) have been identified as potential skin sensitizers, while reports of adverse allergic reactions to the other tea trees essential oils are less frequent. Chemical sensitizers are usually electrophilic compounds, and in chemico methods have been developed to identify skin allergens in terms of their ability to bind to biological nucleophiles. However, little information is available on the assessment of sensitization potential of mixtures, such as essential oils, due to their complexity. In the present study, 10 "tea tree" oils and six major TTO constituents have been investigated for their sensitization potential using a fluorescence in chemico method. The reactivity of authentic TTOs was found to correlate with the age of the oils, while the majority of nonauthentic TTOs were less reactive, even after aging. Further thio-trapping experiments with DCYA and characterization by UHPLC-DAD-MS led to the identification of several possible DCYA-adducts which can be used to deduce the structure of the candidate reactive species. The major TTO components, terpinolene, α-terpinene, and terpinene-4-ol, were unstable under accelerated aging conditions, which led to the formation of several DCYA-adducts. PMID:27286037

  11. Generation, Characterization, and Reactivity of a Cu(II)-Alkylperoxide/Anilino Radical Complex: Insight into the O-O Bond Cleavage Mechanism.

    PubMed

    Paria, Sayantan; Ohta, Takehiro; Morimoto, Yuma; Ogura, Takashi; Sugimoto, Hideki; Fujieda, Nobutaka; Goto, Kei; Asano, Kaori; Suzuki, Takeyuki; Itoh, Shinobu

    2015-09-01

    The reaction of [Cu(I)(TIPT3tren) (CH3CN)]ClO4 (1) and cumene hydroperoxide (C6H5C(CH3)2OOH, ROOH) at -60 °C in CH2Cl2 gave a Cu(II)-alkylperoxide/anilino radical complex 2, the formation of which was confirmed by UV-vis, resonance Raman, EPR, and CSI-mass spectroscopy. The mechanism of formation of 2, as well as its reactivity, has been explored. PMID:26291639

  12. A common theme in extracellular fluids of beetles: extracellular superoxide dismutases crucial for balancing ROS in response to microbial challenge

    PubMed Central

    Gretscher, René R.; Streicher, Priska E.; Strauß, Anja S.; Wielsch, Natalie; Stock, Magdalena; Wang, Ding; Boland, Wilhelm; Burse, Antje

    2016-01-01

    Extracellular Cu/Zn superoxide dismutases (SODs) are critical for balancing the level of reactive oxygen species in the extracellular matrix of eukaryotes. In the present study we have detected constitutive SOD activity in the haemolymph and defensive secretions of different leaf beetle species. Exemplarily, we have chosen the mustard leaf beetle, Phaedon cochleariae, as representative model organism to investigate the role of extracellular SODs in antimicrobial defence. Qualitative and quantitative proteome analyses resulted in the identification of two extracellular Cu/Zn SODs in the haemolymph and one in the defensive secretions of juvenile P. cochleariae. Furthermore, quantitative expression studies indicated fat body tissue and defensive glands as the main synthesis sites of these SODs. Silencing of the two SODs revealed one of them, PcSOD3.1, as the only relevant enzyme facilitating SOD activity in haemolymph and defensive secretions in vivo. Upon challenge with the entomopathogenic fungus, Metarhizium anisopliae, PcSOD3.1-deficient larvae exhibited a significantly higher mortality compared to other SOD-silenced groups. Hence, our results serve as a basis for further research on SOD regulated host-pathogen interactions. In defensive secretions PcSOD3.1-silencing affected neither deterrent production nor activity against fungal growth. Instead, we propose another antifungal mechanism based on MRJP/yellow proteins in the defensive exudates. PMID:27068683

  13. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease.

    PubMed

    Lood, Christian; Blanco, Luz P; Purmalek, Monica M; Carmona-Rivera, Carmelo; De Ravin, Suk S; Smith, Carolyne K; Malech, Harry L; Ledbetter, Jeffrey A; Elkon, Keith B; Kaplan, Mariana J

    2016-02-01

    Neutrophil extracellular traps (NETs) are implicated in autoimmunity, but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes (RNP ICs), inducers of NETosis, require mitochondrial reactive oxygen species (ROS) for maximal NET stimulation. After RNP IC stimulation of neutrophils, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro, and when this DNA is injected into mice, it stimulates type I interferon (IFN) signaling through a pathway dependent on the DNA sensor STING. Mitochondrial ROS are also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus. This was also observed in individuals with chronic granulomatous disease, who lack NADPH oxidase activity but still develop autoimmunity and type I IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type I IFN responses in a mouse model of lupus. Together, these findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases. PMID:26779811

  14. A Tariff for Reactive Power

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Li, Fangxing; Tufon, Christopher; Isemonger, Alan

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce

  15. The positive response of Ty1 retrotransposition test to carcinogens is due to increased levels of reactive oxygen species generated by the genotoxins.

    PubMed

    Dimitrov, Martin; Venkov, Pencho; Pesheva, Margarita

    2011-01-01

    In previous laboratory and environmental studies, the Ty1 short-term test showed positive responses (i.e. induced mobility of the Ty1 retrotransposon) to carcinogenic genotoxins. Here, we provide evidence for a causal relationship between increased level of reactive oxygen species and induction the mobility of the Ty1 retrotransposon. Results obtained in concentration and time-dependent experiments after treatment, the tester cells with carcinogenic genotoxins [benzo(a)pyrene, benzo(a)anthracene, ethylmethanesulfonate, formamide], free bile acids (chenodeoxycholic, lithocholic acids) and metals (arsenic, hexavelant chromium, lead) showed a simultaneous increase in both cellular level of the superoxide anions and Ty1 retrotransposition rates. Treatment with the noncarcinogenic genotoxins [benzo(e)pyrene, benzo(b)anthracen, anthracene], conjugated bile acids (taurodeoxycholic, glycodeoxycholic acids) and metals (zinc, trivalent chromium) did not change significantly superoxide anions level and Ty1 retrotransposition rate. The induction by carcinogens of the Ty1 mobility seems to depend on the accumulation of superoxide anions, since the addition of the scavenger N-acetylcysteine resulted in loss of both increased amount of superoxide anions and induced Ty1 retrotransposition. Increased hydrogen peroxide levels are also involved in the induction of Ty1 retrotransposition rates in response to treatment with carcinogenic genotoxins, as evidenced by disruption of YAP1 gene in the tester cells. It is concluded that the carcinogen-induced high level of reactive oxygen species play a primary and key role in determination the selective response of Ty1 test to carcinogenic genotoxins. PMID:20401468

  16. Determination of reactive oxygen species generated in laccase catalyzed oxidation of wood fibers from Chinese fir (Cunninghamia lanceolata) by electron spin resonance spectrometry.

    PubMed

    Zhou, Guanwu; Li, Jianing; Chen, Yongsheng; Zhao, Baolu; Cao, Yongjian; Duan, Xinfang; Cao, Yuanlin

    2009-01-01

    The aim of the present study was to determine whether the radical reaction intermediates--reactive oxygen species (ROS) were formed during the laccase-catalyzed oxidation of wood fibers from Chinese fir (Cunninghamia lanceolata) and to quantify tentatively its production with electron spin resonance (ESR) spectrometry. To investigate the activation pathways triggered by laccase, ESR spin-trapping techniques using N-tert-butyl-alpha-phenylnitrone (PBN) as spin trap followed by ethyl acetate extraction were employed to identify and quantify the free radical intermediates. ROS such as the superoxide and hydroxyl radical was detected and quantified in the laccase catalyzed oxidation of wood fibers, suggesting that ROS is the main free radical intermediates for laccase reaction. Based on the findings of the presence of ROS and previous literature on the free radical reaction of laccase oxidation of wood fibers, a possible reaction mechanism involving ROS-mediated attack on the domains of lignin which is not directly accessible for the enzyme and solubilized low-molecular mass lignins which function as reactive compounds like adhesives and may cling back to the fiber surface, could accordingly describe laccase-catalyzed oxidation of Chinese fir wood fibers. PMID:18650080

  17. What Is Reactive Arthritis?

    MedlinePlus

    ... Arthritis PDF Version Size: 69 KB November 2014 What is Reactive Arthritis? Fast Facts: An Easy-to- ... Information About Reactive Arthritis and Other Related Conditions What Causes Reactive Arthritis? Sometimes, reactive arthritis is set ...

  18. Extracellular enzyme kinetics scale with resource availability

    EPA Science Inventory

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  19. Multistability in a neuron model with extracellular potassium dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Xing; Shuai, J. W.

    2012-06-01

    Experiments show a primary role of extracellular potassium concentrations in neuronal hyperexcitability and in the generation of epileptiform bursting and depolarization blocks without synaptic mechanisms. We adopt a physiologically relevant hippocampal CA1 neuron model in a zero-calcium condition to better understand the function of extracellular potassium in neuronal seizurelike activities. The model neuron is surrounded by interstitial space in which potassium ions are able to accumulate. Potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion are regulatory mechanisms of extracellular potassium. We also consider a reduced model with a fixed potassium concentration. The bifurcation structure and spiking frequency of the two models are studied. We show that, besides hyperexcitability and bursting pattern modulation, the potassium dynamics can induce not only bistability but also tristability of different firing patterns. Our results reveal the emergence of the complex behavior of multistability due to the dynamical [K+]o modulation on neuronal activities.

  20. Functional Advantages Conferred by Extracellular Prokaryotic Membrane Vesicles

    PubMed Central

    Manning, Andrew J.; Kuehn, Meta J.

    2015-01-01

    The absence of subcellular organelles is a characteristic typically used to distinguish prokaryotic from eukaryotic cells. But recent discoveries do not support this dogma. Over the past 50 years, researchers have begun to appreciate and characterize Gram-negative bacterial outer membrane derived vesicles and Gram-positive and archaeal membrane vesicles. These extracellular, membrane-bound organelles can perform a variety of functions, including binding and delivery of DNA, transport of virulence factors, protection of the cell from outer membrane targeting antimicrobials, and ridding the cell of toxic envelope proteins. Here we review the contributions of these extracellular organelles to prokaryotic physiology and compare these with the contributions of the bacterial interior membrane bound organelles responsible for harvesting light energy and for generating magnetic crystals of heavy metals. Understanding the roles of these multifunctional extracellular vesicle organelles as microbial tools will help us to better realize the diverse interactions that occur in our polymicrobial world. PMID:23615201

  1. Extracellular metalloproteinases in Phytomonas serpens.

    PubMed

    Vermelho, Alane B; Almeida, Flávia V S; Bronzato, Leandro S; Branquinha, Marta H

    2003-03-01

    The detection of extracellular proteinases in Phytomonas serpens, a trypanosomatid isolated from tomato fruits, is demonstrated in this paper. Maximal production occurred at the end of the logarithmic phase of growth. These enzymes exhibited selective substrate utilization in SDS-PAGE, being more active with gelatin; hemoglobin and bovine serum albumin were not degraded. Three proteinases were detected in SDS-PAGE-gelatin, with apparent molecular masses between 94 and 70 kDa. The proteolytic activity was completely blocked by 1,10-phenanthroline and strongly inhibited by EDTA, whereas a partial inhibition was observed with trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E-64) and soybean trypsin inhibitor; phenylmethylsulfonyl fluoride weakly inhibited the enzymes. This inhibition profile indicated that these extracellular proteinases belong to the metalloproteinase class. PMID:12795409

  2. Extracellular matrix in ovarian follicles.

    PubMed

    Rodgers, R J; Irving-Rodgers, H F; van Wezel, I L

    2000-05-25

    A lot is known about the control of the development of ovarian follicles by growth factors and hormones, but less is known about the roles of extracellular matrix in the control of follicular growth and development. In this review we focus on the specialized extracellular matrix of the basal laminas that are present in ovarian follicles. These include the follicular basal lamina itself, the Call-Exner bodies of the membrana granulosa, the subendothelial and arteriole smooth muscle basal laminas in the theca, and the basal lamina-like material of the thecal matrix. We discuss the evidence that during follicle development the follicular basal lamina changes in composition, that many of its components are produced by the granulosa cells, and that the follicular basal laminas of different follicles have different ultrastructural appearances, linked to the shape of the aligning granulosa cells. All these studies suggest that the follicular basal lamina is extremely dynamic during follicular development. PMID:10963877

  3. Purification and determination of C-reactive protein and inter-α-trypsin inhibitor heavy chain 4 in dogs after major surgery through generation of specific antibodies.

    PubMed

    Soler, L; García, N; Unzueta, A; Piñeiro, M; Álava, M A; Lampreave, F

    2016-10-15

    Inter-α-trypsin inhibitor heavy chain 4 (ITIH4) and C-reactive protein (CRP) have been isolated from acute phase dog sera by affinity chromatography with insolubilized polyclonal antibodies anti pig Major Acute phase Protein (Pig-MAP) and with p-Aminophenyl Phosphoryl Choline, respectively. Isolated proteins were used to prepare specific polyclonal rabbit antisera that have allowed quantifying their concentration in serum samples by single radial immunodifussion. Both proteins were quantified in sera from female dogs that had undergone ovariohysterectomy (OVH, n=9) or mastectomy (n=10). The observed increases in CRP concentrations showed that surgical traumas induced an acute phase response of a great magnitude in the dogs. In both surgeries a four-fold increase of ITIH4 concentrations was detected. It can be concluded that ITIH4 is a new positive acute phase protein in dogs, as reported in other species. PMID:27590422

  4. Sodium nitrite enhances generation of reactive oxygen species that decrease antioxidant power and inhibit plasma membrane redox system of human erythrocytes.

    PubMed

    Ansari, Fariheen Aisha; Mahmood, Riaz

    2016-08-01

    Nitrite/nitrate salts are used in fertilizers and as food preservatives. Human exposure to high levels of nitrite results in its uptake and subsequent entry into blood where it can interact with erythrocytes. We show that treatment of human erythrocytes with sodium nitrite (NaNO2 ) results in a dose-dependent increase in the production of reactive oxygen species. This was accompanied by a decrease in the antioxidant power which lowered the free radical quenching and metal-reducing ability. NaNO2 treatment also inhibited plasma membrane redox system (PMRS) of erythrocytes. These changes increase the susceptibility of erythrocytes to oxidative damage, decrease the antioxidant power of whole blood, and can be a major cause of nitrite-induced cellular toxicity. PMID:27214747

  5. Generation of highly-reactive oxygen species is closely related to hair cell damage in rat organ of Corti treated with gentamicin.

    PubMed

    Choung, Y H; Taura, A; Pak, K; Choi, S J; Masuda, M; Ryan, A F

    2009-06-16

    Reactive oxygen species (ROS) have been suggested to play a major role in aminoglycoside-induced hair cell (HC) loss, but are difficult to detect. Moreover, ROS can occur normally in cells where they have roles in metabolism, cell signaling and other processes. Two new probes, aminophenyl fluorescein (APF) and hydroxyphenyl fluorescein (HPF) are dyes which selectively detect highly-reactive oxygen species (hROS), those most associated with cellular damage. We assessed the presence of hROS in the neonatal rat organ of Corti during chronic exposure to 50 microM gentamicin in vitro, to examine the relationship between cell damage and hROS across HC type and across the three cochlear turns. hROS were initially detected at 48 hours (h), with an increase at 72 h and persistence until at least 96 h. At 48 h, hROS were restricted to outer HCs and occurred prior to loss of stereocilia. At 72 h, outer HCs showed both hROS and stereocilia loss, and hROS were noted in a few inner HCs. Basal turn HCs showed more hROS than middle turn HCs. Very little hROS accumulation or stereocilia loss was observed in the apical turn, even at 72 h. First row outer HCs were most vulnerable to gentamicin-induced hROS, followed by second and then third row outer HCs. Inner HCs behaved similarly to third row outer HCs. By 96 h stereocilia damage was extensive, but surviving HCs showed persisting fluorescence. APF consistently showed more fluorescence than HPF. The results suggest that hROS accumulation is an important initial step in gentamicin-induced HC damage, and that the differential sensitivity of HCs in the organ of Corti is closely related to differences in hROS accumulation. PMID:19318119

  6. Diffusion in Brain Extracellular Space

    PubMed Central

    Syková, Eva; Nicholson, Charles

    2009-01-01

    Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is about 20% and the tortuosity about 1.6 (i.e. free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties are valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain. PMID:18923183

  7. Extracellular secretion of recombinant proteins

    SciTech Connect

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  8. Extracellular matrix motion and early morphogenesis.

    PubMed

    Loganathan, Rajprasad; Rongish, Brenda J; Smith, Christopher M; Filla, Michael B; Czirok, Andras; Bénazéraf, Bertrand; Little, Charles D

    2016-06-15

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. PMID:27302396

  9. CONVECTIVE-REACTIVE PROTON-{sup 12}C COMBUSTION IN SAKURAI'S OBJECT (V4334 SAGITTARII) AND IMPLICATIONS FOR THE EVOLUTION AND YIELDS FROM THE FIRST GENERATIONS OF STARS

    SciTech Connect

    Herwig, Falk; Pignatari, Marco; Woodward, Paul R.; Porter, David H.; Rockefeller, Gabriel; Fryer, Chris L.; Bennett, Michael; Hirschi, Raphael

    2011-02-01

    Depending on mass and metallicity as well as evolutionary phase, stars occasionally experience convective-reactive nucleosynthesis episodes. We specifically investigate the situation when nucleosynthetically unprocessed, H-rich material is convectively mixed with an He-burning zone, for example in a convectively unstable shell on top of electron-degenerate cores in asymptotic giant branch stars, young white dwarfs, or X-ray bursting neutron stars. Such episodes are frequently encountered in stellar evolution models of stars of extremely low or zero metal content, such as the first stars. We have carried out detailed nucleosynthesis simulations based on stellar evolution models and informed by hydrodynamic simulations. We focus on the convective-reactive episode in the very late thermal pulse star Sakurai's object (V4334 Sagittarii). Asplund et al. determined the abundances of 28 elements, many of which are highly non-solar, ranging from H, He, and Li all the way to Ba and La, plus the C isotopic ratio. Our simulations show that the mixing evolution according to standard, one-dimensional stellar evolution models implies neutron densities in the He intershell ({approx}< few 10{sup 11} cm{sup -3}) that are too low to obtain a significant neutron capture nucleosynthesis on the heavy elements. We have carried out three-dimensional hydrodynamic He-shell flash convection simulations in 4{pi} geometry to study the entrainment of H-rich material. Guided by these simulations we assume that the ingestion process of H into the He-shell convection zone leads only after some delay time to a sufficient entropy barrier that splits the convection zone into the original one driven by He burning and a new one driven by the rapid burning of ingested H. By making such mixing assumptions that are motivated by our hydrodynamic simulations we obtain significantly higher neutron densities ({approx} few 10{sup 15} cm{sup -3}) and reproduce the key observed abundance trends found in Sakurai

  10. Rhizome extracts of Curcuma zedoaria Rosc induce caspase dependant apoptosis via generation of reactive oxygen species in filarial parasite Setaria digitata in vitro.

    PubMed

    Senathilake, K S; Karunanayake, E H; Samarakoon, S R; Tennekoon, K H; de Silva, E D

    2016-08-01

    ), superoxide dismutase (SOD) and catalase activities, increased reactive oxygen levels (ROS) and lipid peroxidation were also observed indicating that an apoptotic event is induced by reactive oxygen species. PMID:27174667

  11. Extracellular electron transfer of a highly adhesive and metabolically versatile bacterium.

    PubMed

    Liu, Huan; Ishikawa, Masahito; Matsuda, Shoichi; Kimoto, Yuki; Hori, Katsutoshi; Hashimoto, Kazuhito; Nakanishi, Shuji

    2013-08-01

    Bacterial adhesion to a solid plays a predominant role in mediating the extracellular electron transfer for genus Acinetobactor, a metabolically versatile bacterium that can couple toluene degradation and electricity generation. PMID:23813865

  12. Herpes simplex virus type 1 and 2 intracellular p40: type-specific and cross-reactive antigenic determinants on peptides generated by partial proteolysis.

    PubMed Central

    Heilman, C J; Zweig, M; Hampar, B

    1981-01-01

    Intracellular p40 is a class of protein ranging in molecular weight from 39,000 to 45,000 that is immunoprecipitated from herpes simplex virus type 1 (HSV-1)- and HSV-2-infected cell extracts by mouse monoclonal antibodies or guinea pig antisera against HSV-1 and HSV-2 nucleocapsid p40. Analysis by a two-dimensional gel system showed that HSV-1 and HSV-2 intracellular p40 each consisted of three major components. However, these HSV-1 and HSV-2 proteins differed in charge and size. Analysis of Staphylococcus aureus V8 protease partial digests by two-dimensional gel electrophoresis indicated that none of the peptides of HSV-1 and HSV-2 intracellular p40 were identical. Immunoprecipitation of the partial digest products of intracellular p40-1 and p40-2 with homologous and heterologous guinea pig antisera resulted in the precipitation of various combinations of peptides indicating the presence of either type-specific or cross-reactive antigenic determinants. Images PMID:6172597

  13. Bamboo Vinegar Decreases Inflammatory Mediator Expression and NLRP3 Inflammasome Activation by Inhibiting Reactive Oxygen Species Generation and Protein Kinase C-α/δ Activation

    PubMed Central

    Ka, Shuk-Man; Chen, Ann; Tasi, Yu-Ling; Liu, May-Lan; Chiu, Yi-Chich; Hua, Kuo-Feng

    2013-01-01

    Bamboo vinegar (BV), a natural liquid derived from the condensation produced during bamboo charcoal production, has been used in agriculture and as a food additive, but its application to immune modulation has not been reported. Here, we demonstrated that BV has anti-inflammatory activities both in vitro and in vivo. BV reduced inducible nitric oxide synthase expression and nitric oxide levels in, and interleukin-6 secretion by, lipopolysaccharide-activated macrophages without affecting tumor necrosis factor-α secretion and cyclooxygenase-2 expression. The mechanism for the anti-inflammatory effect of BV involved decreased reactive oxygen species production and protein kinase C-α/δ activation. Furthermore, creosol (2-methoxy-4-methylphenol) was indentified as the major anti-inflammatory compound in BV. Impaired cytokine expression and NLR family, pyrin domain-containing 3 (NLRP3) inflammasome activation was seen in mice treated with creosol. These findings provide insights into how BV regulates inflammation and suggest that it may be a new source for the development of anti-inflammatory agents or a healthy supplement for preventing and ameliorating inflammation- and NLRP3 inflammasome-related diseases, including metabolic syndrome. PMID:24124509

  14. Efficient Generation and Increased Reactivity in Cationic Gold via Brønsted Acid or Lewis Acid Assisted Activation of an Imidogold Precatalyst

    PubMed Central

    2015-01-01

    Brønsted or Lewis acid assisted activation of an imidogold precatalyst (L-Au-Pht, Pht = phthalimide) offers a superior way to generate cationic gold compared with the commonly used silver-based system. It is also broadly applicable for most common gold-catalyzed reactions. For reactions that require milder conditions, milder acids can be used for optimized efficiency. PMID:24956218

  15. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution

    EPA Science Inventory

    The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiatio...

  16. Effects of the antioxidants Trolox, Tiron and Tempol on neutrophil extracellular trap formation.

    PubMed

    Vorobjeva, Nina V; Pinegin, Boris V

    2016-02-01

    Neutrophils can entrap and kill pathogens by releasing of neutrophil extracellular traps (NETs), in addition to their routine functions such as phagocytosis and degranulation. NETs consist of a DNA backbone supplemented by multiple bactericidal proteins from the nucleus, the cytoplasm and the granules. Neutrophils release NETs after their activation by a number of physiological and pharmacological stimuli. In addition to the antimicrobial function, NETs are involved in the pathogenesis of various autoimmune and inflammatory diseases. Since NET formation predominantly depends on the generation of reactive oxygen species (ROS), all substances that are capable of scavenging ROS or inhibiting the enzymes responsible for their synthesis should prevent ROS-associated NET release. The aim of this study was to test substances with an antioxidant activity, such as Trolox, Tiron, and Tempol, for their capacity to inhibit NET formation by primary human neutrophils in vitro. We revealed for the first time an inhibitory effect of Trolox on ROS-dependent NET release. We also established a suppressive effect of Tempol on NET formation that manifested itself in a wide range of concentrations. In this study, no inhibitory influence of Tiron on NET release was revealed. All tested substances exerted a significant dose-dependent antioxidative effect on ROS generation induced by phorbol 12-myristate 13-acetate (PMA). We suggest that the antioxidants Trolox and Tempol should be recommended for treating autoimmune and inflammatory diseases that implicate ROS-dependent NET release. PMID:26371849

  17. The NIH Extracellular RNA Communication Consortium

    PubMed Central

    Ainsztein, Alexandra M.; Brooks, Philip J.; Dugan, Vivien G.; Ganguly, Aniruddha; Guo, Max; Howcroft, T. Kevin; Kelley, Christine A.; Kuo, Lillian S.; Labosky, Patricia A.; Lenzi, Rebecca; McKie, George A.; Mohla, Suresh; Procaccini, Dena; Reilly, Matthew; Satterlee, John S.; Srinivas, Pothur R.; Church, Elizabeth Stansell; Sutherland, Margaret; Tagle, Danilo A.; Tucker, Jessica M.; Venkatachalam, Sundar

    2015-01-01

    The Extracellular RNA (exRNA) Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a) generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b) defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies, (c) identifying exRNA biomarkers of disease, (d) demonstrating clinical utility of exRNAs as therapeutic agents and developing scalable technologies required for these studies, and (e) developing a community resource, the exRNA Atlas, to provide the scientific community access to exRNA data, standardized exRNA protocols, and other useful tools and technologies generated by funded investigators. PMID:26320938

  18. Brain Extracellular Matrix in Neurodegeneration

    PubMed Central

    Bonneh-Barkay, Dafna; Wiley, Clayton A.

    2009-01-01

    The role of extracellular matrix (ECM) in neurological development, function and degeneration has evolved from a simplistic physical adhesion to a system of intricate cellular signaling. While most cells require ECM adhesion to survive, it is now clear that differentiated function is intimately dependent upon cellular interaction with the ECM. Therefore, it is not surprising that the ECM is increasingly found to be involved in the enigmatic process of neurodegeneration. Descriptive studies of human neurodegenerative disorders and experimental studies of animal models of neurodegeneration have begun to define potential mechanisms of ECM disruption that can lead to synaptic and neuronal loss. PMID:18662234

  19. Mechanotransduction and extracellular matrix homeostasis

    PubMed Central

    Humphrey, Jay D.; Dufresne, Eric R.; Schwartz, Martin A.

    2015-01-01

    Preface Soft connective tissues at steady state are yet dynamic; resident cells continually read environmental cues and respond to promote homeostasis, including maintenance of the mechanical properties of the extracellular matrix that are fundamental to cellular and tissue health. The mechanosensing process involves assessment of the mechanics of the matrix by the cells through integrins and the actomyosin cytoskeleton, and is followed by a mechano-regulation process that includes the deposition, rearrangement, or removal of matrix to maintain overall form and function. Progress toward understanding the molecular, cellular, and tissue scale effects that promote mechanical homeostasis has helped identify key questions for future research. PMID:25355505

  20. Increased Generation of HIV-1 gp120-Reactive CD8+ T Cells by a DNA Vaccine Construct Encoding the Chemokine CCL3

    PubMed Central

    Øynebråten, Inger; Hinkula, Jorma; Fredriksen, Agnete B.; Bogen, Bjarne

    2014-01-01

    DNA vaccines based on subunits from pathogens have several advantages over other vaccine strategies. DNA vaccines can easily be modified, they show good safety profiles, are stable and inexpensive to produce, and the immune response can be focused to the antigen of interest. However, the immunogenicity of DNA vaccines which is generally quite low needs to be improved. Electroporation and co-delivery of genetically encoded immune adjuvants are two strategies aiming at increasing the efficacy of DNA vaccines. Here, we have examined whether targeting to antigen-presenting cells (APC) could increase the immune response to surface envelope glycoprotein (Env) gp120 from Human Immunodeficiency Virus type 1 (HIV-1). To target APC, we utilized a homodimeric vaccine format denoted vaccibody, which enables covalent fusion of gp120 to molecules that can target APC. Two molecules were tested for their efficiency as targeting units: the antibody-derived single chain Fragment variable (scFv) specific for the major histocompatilibility complex (MHC) class II I-E molecules, and the CC chemokine ligand 3 (CCL3). The vaccines were delivered as DNA into muscle of mice with or without electroporation. Targeting of gp120 to MHC class II molecules induced antibodies that neutralized HIV-1 and that persisted for more than a year after one single immunization with electroporation. Targeting by CCL3 significantly increased the number of HIV-1 gp120-reactive CD8+ T cells compared to non-targeted vaccines and gp120 delivered alone in the absence of electroporation. The data suggest that chemokines are promising molecular adjuvants because small amounts can attract immune cells and promote immune responses without advanced equipment such as electroporation. PMID:25122197

  1. Novel HLA-B27-restricted Epitopes from Chlamydia trachomatis Generated upon Endogenous Processing of Bacterial Proteins Suggest a Role of Molecular Mimicry in Reactive Arthritis*

    PubMed Central

    Alvarez-Navarro, Carlos; Cragnolini, Juan J.; Dos Santos, Helena G.; Barnea, Eilon; Admon, Arie; Morreale, Antonio; López de Castro, José A.

    2013-01-01

    Reactive arthritis (ReA) is an HLA-B27-associated spondyloarthropathy that is triggered by diverse bacteria, including Chlamydia trachomatis, a frequent intracellular parasite. HLA-B27-restricted T-cell responses are elicited against this bacterium in ReA patients, but their pathogenetic significance, autoimmune potential, and relevant epitopes are unknown. High resolution and sensitivity mass spectrometry was used to identify HLA-B27 ligands endogenously processed and presented by HLA-B27 from three chlamydial proteins for which T-cell epitopes were predicted. Fusion protein constructs of ClpC, Na+-translocating NADH-quinone reductase subunit A, and DNA primase were expressed in HLA-B27+ cells, and their HLA-B27-bound peptidomes were searched for endogenous bacterial ligands. A non-predicted peptide, distinct from the predicted T-cell epitope, was identified from ClpC. A peptide recognized by T-cells in vitro, NQRA(330–338), was detected from the reductase subunit. This is the second HLA-B27-restricted T-cell epitope from C. trachomatis with relevance in ReA demonstrated to be processed and presented in live cells. A novel peptide from the DNA primase, DNAP(211–223), was also found. This was a larger variant of a known epitope and was highly homologous to a self-derived natural ligand of HLA-B27. All three bacterial peptides showed high homology with human sequences containing the binding motif of HLA-B27. Molecular dynamics simulations further showed a striking conformational similarity between DNAP(211–223) and its homologous and much more flexible human-derived HLA-B27 ligand. The results suggest that molecular mimicry between HLA-B27-restricted bacterial and self-derived epitopes is frequent and may play a role in ReA. PMID:23867464

  2. Folate Deficiency Triggered Apoptosis of Synoviocytes: Role of Overproduction of Reactive Oxygen Species Generated via NADPH Oxidase/Mitochondrial Complex II and Calcium Perturbation.

    PubMed

    Hsu, Hung-Chih; Chang, Wen-Ming; Wu, Jin-Yi; Huang, Chin-Chin; Lu, Fung-Jou; Chuang, Yi-Wen; Chang, Pey-Jium; Chen, Kai-Hua; Hong, Chang-Zern; Yeh, Rang-Hui; Liu, Tsan-Zon; Chen, Ching-Hsein

    2016-01-01

    Despite a plethora of literature has documented that osteoarthritis (OA) is veritably associated with oxidative stress-mediated chondrocyte death and matrix degradation, yet the possible involvement of synoviocyte abnormality as causative factor of OA has not been thoroughly investigated. For this reason, we conduct the current studies to insight into how synoviocytes could respond to an episode of folate-deprived (FD) condition. First, when HIG-82 synoviocytes were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature mediated through FD-evoked overproduction of reactive oxygen species (ROS) and drastically released of cytosolic calcium (Ca2+) concentrations. Next, we uncovered that FD-evoked ROS overproduction could only be strongly suppressed by either mitochondrial complex II inhibitors (TTFA and carboxin) or NADPH oxidase (NOX) inhibitors (AEBSF and apocynin), but not by mitochondrial complex I inhibitor (rotenone) and mitochondrial complex III inhibitor (antimycin A). Interestingly, this selective inhibition of FD-evoked ROS by mitochondrial complex II and NOX inhibitors was found to correlate excellently with the suppression of cytosolic Ca2+ release and reduced the magnitude of the apoptotic TUNEL-positive cells. Taken together, we present the first evidence here that FD-triggered ROS overproduction in synoviocytes is originated from mitochondrial complex II and NOX. Both elevated ROS in tandem with cytosolic Ca2+ overload serve as final arbitrators for apoptotic lethality of synoviocytes cultivated under FD condition. Thus, folate supplementation may be beneficial to patients with OA. PMID:26771387

  3. Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces.

    PubMed

    Yu, Ling; Shi, ZhuanZhuan; Gao, LiXia; Li, ChangMing

    2015-09-01

    In vitro cell-based analysis is strongly affected by material's surface chemical properties. The cell spreading, migration, and proliferation on a substrate surface are initiated and controlled by successful adhesion, particularly for anchor-dependent cells. Unfortunately, polydimethylsiloxane (PDMS), one of the most used polymeric materials for construction of microfluidic and miniaturized biomedical analytic devices, is not a cell-friendly surface because of its inherent hydrophobic property. Herein, a poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] (poly(GMA-co-pEGMA)) polymer brush was synthesized on a PDMS surface through a surface-initiated atom-transfer radical polymerization method. Contact angle and Fourier transform infrared characterization show that the poly (GMA-co-pEGMA) polymer brush functionalization can increase wettability of PDMS and introduce epoxy, hydroxyl, and ether groups into PDMS surface. In vitro cell growth assay demonstrates that cell adhesion and proliferation on poly(GMA-co-pEGMA) polymer brush-functionalized PDMS (poly(GMA-co-pEGMA)@PDMS) are better than on pristine PDMS. Additionally, immobilization of collagen type I (CI) and fibronectin (FN) on poly(GMA-co-pEGMA)@PDMS is better than direct coating of CI and FN on pristine PDMS to promote cell adhesion. Furthermore, increased intracellular reactive oxygen species and cell mitochondrial membrane depolarization, two indicators of cell oxidative stress, are observed from cells growing on pristine PDMS, but not from those on poly(GMA-co-pEGMA)@PDMS. Collectively, we demonstrate that poly(GMA-co-pEGMA) functionalization can enhance cell adhesion and proliferation on PDMS, and thus can be potentially used for microfluidic cell assay devices for cellular physiology study or drug screening. PMID:25711883

  4. Physalin F Induces Cell Apoptosis in Human Renal Carcinoma Cells by Targeting NF-kappaB and Generating Reactive Oxygen Species

    PubMed Central

    Wu, Szu-Ying; Leu, Yann-Lii; Chang, Ya-Ling; Wu, Tian-Shung; Kuo, Ping-Chung; Liao, Yu-Ren; Teng, Che-Ming; Pan, Shiow-Lin

    2012-01-01

    Background The aim of this study was to determine the molecular mechanisms of physalin F, an effective purified extract of Physalis angulata L. (Solanacae), in renal carcinoma A498 cells. Methodology/Principal Findings Physalin F was observed to significantly induce cytotoxicity of three human renal carcinoma A498, ACHN, and UO-31 cells in a concentration-dependent manner; this was especially potent in A498 cells. The physalin F-induced cell apoptosis of A498 cells was characterized by MTT assay, nuclear DNA fragmentation and chromatin condensation. Using flow cytometry analysis, physalin F induced A498 cell apoptosis as demonstrated by the accumulation of the sub-G1 phase in a concentration- and time-dependent manner. Moreover, physalin F-mediated accumulation of reactive oxygen species (ROS) caused Bcl-2 family proteins, Bcl-2, and Bcl-xL degradation, which led to disruption of mitochondrial membrane potential and release of cytochrome c from the mitochondria into the cytosol. These effects were associated with induction of caspase-3 and caspase-9 activity, which led to poly(ADP-ribose) polymerase cleavage. However, the antioxidant N-acetyl-L-cysteine (NAC) and glutathione (GSH) resulted in the inhibition of these events and reversed physalin F-induced cell apoptosis. In addition, physalin F suppressed NF-κB activity and nuclear translocation of p65 and p50, which was reversed by NAC and GSH. Conclusion Physalin F induced cell apoptosis through the ROS-mediated mitochondrial pathway and suppressed NF-κB activation in human renal cancer A498 cells. Thus, physalin F appears to be a promising anti-cancer agent worthy of further clinical development. PMID:22815798

  5. Folate Deficiency Triggered Apoptosis of Synoviocytes: Role of Overproduction of Reactive Oxygen Species Generated via NADPH Oxidase/Mitochondrial Complex II and Calcium Perturbation

    PubMed Central

    Wu, Jin-Yi; Huang, Chin-Chin; Lu, Fung-Jou; Chuang, Yi-Wen; Chang, Pey-Jium; Chen, Kai-Hua; Hong, Chang-Zern; Yeh, Rang-Hui; Liu, Tsan-Zon; Chen, Ching-Hsein

    2016-01-01

    Despite a plethora of literature has documented that osteoarthritis (OA) is veritably associated with oxidative stress-mediated chondrocyte death and matrix degradation, yet the possible involvement of synoviocyte abnormality as causative factor of OA has not been thoroughly investigated. For this reason, we conduct the current studies to insight into how synoviocytes could respond to an episode of folate-deprived (FD) condition. First, when HIG-82 synoviocytes were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature mediated through FD-evoked overproduction of reactive oxygen species (ROS) and drastically released of cytosolic calcium (Ca2+) concentrations. Next, we uncovered that FD-evoked ROS overproduction could only be strongly suppressed by either mitochondrial complex II inhibitors (TTFA and carboxin) or NADPH oxidase (NOX) inhibitors (AEBSF and apocynin), but not by mitochondrial complex I inhibitor (rotenone) and mitochondrial complex III inhibitor (antimycin A). Interestingly, this selective inhibition of FD-evoked ROS by mitochondrial complex II and NOX inhibitors was found to correlate excellently with the suppression of cytosolic Ca2+ release and reduced the magnitude of the apoptotic TUNEL-positive cells. Taken together, we present the first evidence here that FD-triggered ROS overproduction in synoviocytes is originated from mitochondrial complex II and NOX. Both elevated ROS in tandem with cytosolic Ca2+ overload serve as final arbitrators for apoptotic lethality of synoviocytes cultivated under FD condition. Thus, folate supplementation may be beneficial to patients with OA. PMID:26771387

  6. Binding of EBP50 to Nox organizing subunit p47phox is pivotal to cellular reactive species generation and altered vascular phenotype.

    PubMed

    Al Ghouleh, Imad; Meijles, Daniel N; Mutchler, Stephanie; Zhang, Qiangmin; Sahoo, Sanghamitra; Gorelova, Anastasia; Henrich Amaral, Jefferson; Rodríguez, Andrés I; Mamonova, Tatyana; Song, Gyun Jee; Bisello, Alessandro; Friedman, Peter A; Cifuentes-Pagano, M Eugenia; Pagano, Patrick J

    2016-09-01

    Despite numerous reports implicating NADPH oxidases (Nox) in the pathogenesis of many diseases, precise regulation of this family of professional reactive oxygen species (ROS) producers remains unclear. A unique member of this family, Nox1 oxidase, functions as either a canonical or hybrid system using Nox organizing subunit 1 (NoxO1) or p47(phox), respectively, the latter of which is functional in vascular smooth muscle cells (VSMC). In this manuscript, we identify critical requirement of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50; aka NHERF1) for Nox1 activation and downstream responses. Superoxide (O2 (•-)) production induced by angiotensin II (AngII) was absent in mouse EBP50 KO VSMC vs. WT. Moreover, ex vivo incubation of aortas with AngII showed a significant increase in O2 (•-) in WT but not EBP50 or Nox1 nulls. Similarly, lipopolysaccharide (LPS)-induced oxidative stress was attenuated in femoral arteries from EBP50 KO vs. WT. In silico analyses confirmed by confocal microscopy, immunoprecipitation, proximity ligation assay, FRET, and gain-/loss-of-function mutagenesis revealed binding of EBP50, via its PDZ domains, to a specific motif in p47(phox) Functional studies revealed AngII-induced hypertrophy was absent in EBP50 KOs, and in VSMC overexpressing EBP50, Nox1 gene silencing abolished VSMC hypertrophy. Finally, ex vivo measurement of lumen diameter in mouse resistance arteries exhibited attenuated AngII-induced vasoconstriction in EBP50 KO vs. WT. Taken together, our data identify EBP50 as a previously unidentified regulator of Nox1 and support that it promotes Nox1 activity by binding p47(phox) This interaction is pivotal for agonist-induced smooth muscle ROS, hypertrophy, and vasoconstriction and has implications for ROS-mediated physiological and pathophysiological processes. PMID:27540115

  7. The 'reactive

    NASA Astrophysics Data System (ADS)

    Battista Piccardo, Giovanni; Guarnieri, Luisa

    2010-05-01

    The Ligurian ophiolitic peridotites [South Lanzo, Erro-Tobbio, Internal Ligurides and Corsica] are characterized by the abundance of spinel(Sp) peridotites showing depleted compositions and ranging from Cpx-poor Sp lherzolites to Sp harzburgites. They were recognized in the last decades as refractory residua by MORB-forming partial melting of the asthenosphere, and were similar to abyssal peridotites. Recent structural and compositional studies promoted a better understanding of their structural and compositional features and their genetic processes. In the field these depleted peridotites replace with primary contacts pyroxenite-bearing fertile Sp lherzolites that have been recognized as sub-continental lithospheric mantle. Field relationships evidence that decametric-hectometric bodies of pristine pyroxenite-veined lithospheric Sp lherzolites are preserved as structural remnants within the km-scale masses of depleted peridotites. The depleted peridotites show coarse-grained recrystallized textures and reaction micro-structures indicating pyroxene dissolution and olivine precipitation that have been considered as records of melt/peridotite interaction during reactive diffuse porous flow of undersaturated melts. They show, moreover, contrasting bulk and mineral chemistries that cannot be produced by simple partial melting and melt extraction. In particular, their bulk compositions are depleted in SiO2 and enriched in FeO with respect to refractory residua after any kind of partial melting, as calculated by Niu (1997), indicating that they cannot be formed by simple partial melting and melt extraction processes. Moreover, TiO2 content in Sp is usually significantly higher (up to 0.8-1.0 wt%) than typical TiO2 contents of spinels (usually < 0.1-0.2 wt %) in fertile mantle peridotites and melting refractory residua, indicating that spinel attained element equilibration with a Ti-bearing basaltic melt. The depleted peridotites usually show strongly variable Cpx modal

  8. Reactive free radical generation in vivo in heart and liver of ethanol-fed rats: correlation with radical formation in vitro

    SciTech Connect

    Reinke, L.A.; Lai, E.K.; DuBose, C.M.; McCay, P.B.

    1987-12-01

    Rats fed a high-fat ethanol-containing diet for 2 weeks were found to generate free radicals in liver and heart in vivo. The radicals are believed to be carbon-centered radicals, were detected by administering spin-trapping agents to the rats, and were characterized by electron paramagnetic resonance spectroscopy. The radicals in the liver were demonstrated to be localized in the endoplasmic reticulum. Rats fed ethanol in a low-fat diet showed significantly less free radical generation. Control animals given isocaloric diets without ethanol showed no evidence of free radicals in liver and heart. When liver microsomes prepared from rats fed the high-fat ethanol diet were incubated in a system containing ethanol, NADPH, and a spin-trapping agent, the generation of 1-hydroxyethyl radicals was observed. The latter was verified by using /sup 13/C-substituted ethanol. Microsomes from animals fed the high-fat ethanol-containing diet had higher levels of cytochrome P-450 than microsomes from rats fed the low-fat ethanol-containing diet. The results suggest that the consumption of ethanol results in the production of free radicals in rat liver and heart in vivo that appear to initiate lipid peroxidation.

  9. Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite.

    PubMed

    Barchowsky, A; Klei, L R; Dudek, E J; Swartz, H M; James, P E

    1999-12-01

    Elevated levels of arsenite, the trivalent form of arsenic, in drinking water correlates with increased vascular disease and vessel remodeling. Previous studies from this laboratory demonstrated that environmentally relevant concentrations of arsenite caused oxidant-dependent increases in nuclear transcription factor levels in cultured porcine vascular endothelial cells. The current studies characterized the reactive species generated in these cells exposed to levels of arsenite that initiate cell signaling. These exposures did not deplete 5'-triphosphate, nor did they affect basal or bradykinin-stimulated intracellular free Ca2+ levels, indicating that they were not lethal. Electron paramagnetic resonance (EPR) spectroscopy, including spin trapping with carboxy-PTIO (cPTIO), demonstrated that 5 microM or less of arsenite did not increase *NO levels over a 30-min period relative to *NO release stimulated by bradykinin. However, these same levels of arsenite rapidly increased both oxygen consumption and superoxide formation, as measured by EPR oximetry and spin trapping with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), respectively. Pretreatment of the cells with DPI, apocynin, or superoxide dismutase abolished arsenite-stimulated DMPO-OH adduct formation. Finally arsenite increased extracellular accumulation of H2O2, measured as oxidation of homovanillic acid, with the same time and dose dependence, as seen for superoxide formation. These data suggest that superoxide and H2O2 are the predominant reactive species produced by endothelial cells after arsenite exposures that stimulate cell signaling and activate transcription factors. PMID:10641735

  10. Oxidatively Generated DNA Damage Following Cu(II)-Catalysis of Dopamine and Related Catecholamine Neurotransmitters and Neurotoxins: Role of Reactive Oxygen Species1

    PubMed Central

    Spencer, Wendy A.; Jeyabalan, Jeyaprakash; Kichambre, Sunita; Gupta, Ramesh C.

    2012-01-01

    There is increasing evidence supporting a causal role of oxidatively damaged DNA in neurodegeneration during the natural aging process and neurodegenerative diseases such as Parkinson’s and Alzheimer’s. The presence of redox-active catecholamine neurotransmitters coupled with the localization of catalytic copper to DNA suggests a plausible role for these agents in the induction of oxidatively generated DNA damage. In this study we have investigated the role of Cu(II)-catalyzed oxidation of several catecholamine neurotransmitters and related neurotoxins to induce oxidatively generated DNA damage. Auto-oxidation of all catechol neurotransmitters and related congeners tested resulted in the formation of nearly a dozen oxidation DNA products resulting in a decomposition pattern that was essentially identical for all agents tested. The presence of Cu(II), and to a lesser extent Fe(III), had no effect on the decomposition pattern but substantially enhanced the DNA product levels by up to 75 fold, with dopamine producing the highest levels of unidentified oxidation DNA products (383 ± 46 adducts/106 nucleotides), comparable to 8-oxo-7,8-dihydro-2′-deoxyguanosine levels under the same conditions (122 ± 19 adducts/106 nucleotides). The addition of sodium azide, 2,2,6,6-tetramethyl-4-piperidone, tiron, catalase, bathocuproine or methional to the dopamine/Cu(II) reaction mixture resulted in a substantial decrease (>90%) in oxidation DNA product levels, indicating a role of singlet oxygen, superoxide, H2O2, Cu(I) and Cu(I)OOH in their formation. While the addition of N-tert-butyl-α-phenylnitrone significantly decreased (67%) dopamine-mediated oxidatively damaged DNA, three other hydroxyl radical scavengers, ascorbic acid, sodium benzoate and mannitol, had little to no effect on these oxidation DNA product levels, suggesting that free hydroxyl radicals may have limited involvement in this dopamine/Cu(II)-mediated oxidatively generated DNA damage. These studies suggest

  11. Multiscale reactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-12-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system.

  12. Multiscale reactive molecular dynamics

    PubMed Central

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-01-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system. PMID:23249062

  13. Becoming Reactive by Concretization

    NASA Technical Reports Server (NTRS)

    Prieditis, Armand; Janakiraman, Bhaskar

    1992-01-01

    One way to build a reactive system is to construct an action table indexed by the current situation or stimulus. The action table describes what course of action to pursue for each situation or stimulus. This paper describes an incremental approach to constructing the action table through achieving goals with a hierarchical search system. These hierarchies are generated with transformations called concretizations, which add constraints to a problem and which can reduce the search space. The basic idea is that an action for a state is looked up in the action table and executed whenever the action table has an entry for that state; otherwise, a path is found to the nearest (cost-wise in a graph with costweighted arcs) state that has a mappring from a state in the next highest hierarchy. For each state along the solution path, the successor state in the path is cached in the action table entry for that state. Without caching, the hierarchical search system can logarithmically reduce search. When the table is complete the system no longer searches: it simply reacts by proceeding to the state listed in the table for each state. Since the cached information is specific only to the nearest state in the next highest hierarchy and not the goal, inter-goal transfer of reactivity is possible. To illustrate our approach, we show how an implemented hierarchical search system can completely reactive.

  14. The Evolution of Extracellular Matrix

    PubMed Central

    Özbek, Suat; Balasubramanian, Prakash G.; Chiquet-Ehrismann, Ruth; Tucker, Richard P.

    2010-01-01

    We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or “adhesome” also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology. PMID:21160071

  15. p-Cresol Affects Reactive Oxygen Species Generation, Cell Cycle Arrest, Cytotoxicity and Inflammation/Atherosclerosis-Related Modulators Production in Endothelial Cells and Mononuclear Cells

    PubMed Central

    Chan, Chiu-Po; Yeung, Sin-Yuet; Hsien, Hsiang-Chi; Lin, Bor-Ru; Yeh, Chien-Yang; Tseng, Wan-Yu; Tseng, Shui-Kuan; Jeng, Jiiang-Huei

    2014-01-01

    Aims Cresols are present in antiseptics, coal tar, some resins, pesticides, and industrial solvents. Cresol intoxication leads to hepatic injury due to coagulopathy as well as disturbance of hepatic circulation in fatal cases. Patients with uremia suffer from cardiovascular complications, such as atherosclerosis, thrombosis, hemolysis, and bleeding, which may be partly due to p-cresol toxicity and its effects on vascular endothelial and mononuclear cells. Given the role of reactive oxygen species (ROS) and inflammation in vascular thrombosis, the objective of this study was to evaluate the effect of p-cresol on endothelial and mononuclear cells. Methods EA.hy926 (EAHY) endothelial cells and U937 cells were exposed to different concentrations of p-cresol. Cytotoxicity was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5 -diphenyltetrazolium bromide (MTT) assay and trypan blue dye exclusion technique, respectively. Cell cycle distribution was analyzed by propidium iodide flow cytometry. Endothelial cell migration was studied by wound closure assay. ROS level was measured by 2′,7′-dichlorofluorescein diacetate (DCF) fluorescence flow cytometry. Prostaglandin F2α (PGF2α), plasminogen activator inhibitor-1 (PAI-1), soluble urokinase plasminogen activator receptor (suPAR), and uPA production were determined by Enzyme-linked immunosorbant assay (ELISA). Results Exposure to 100–500 µM p-cresol decreased EAHY cell number by 30–61%. P-cresol also decreased the viability of U937 mononuclear cells. The inhibition of EAHY and U937 cell growth by p-cresol was related to induction of S-phase cell cycle arrest. Closure of endothelial wounds was inhibited by p-cresol (>100 µM). P-cresol (>50 µM) also stimulated ROS production in U937 cells and EAHY cells but to a lesser extent. Moreover, p-cresol markedly stimulated PAI-1 and suPAR, but not PGF2α, and uPA production in EAHY cells. Conclusions p-Cresol may contribute to atherosclerosis and thrombosis in patients with

  16. Reactive oxygen species generated by a heat shock protein (Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios.

    PubMed

    Baruah, Kartik; Norouzitallab, Parisa; Linayati, Linayati; Sorgeloos, Patrick; Bossier, Peter

    2014-10-01

    The cytoprotective role of heat shock protein (Hsp70) described in a variety of animal disease models, including vibriosis in farmed aquatic animals, suggests that new protective strategies relying upon the use of compounds that selectively turn on Hsp genes could be developed. The product Tex-OE® (hereafter referred to as Hspi), an extract from the skin of the prickly pear fruit, Opuntia ficus indica, was previously shown to trigger Hsp70 synthesis in a non-stressful situation in a variety of animals, including in a gnotobiotically (germ-free) cultured brine shrimp Artemia franciscana model system. This model system offers great potential for carrying out high-throughput, live-animal screens of compounds that have health benefit effects. By using this model system, we aimed to disclose the underlying cause behind the induction of Hsp70 by Hspi in the shrimp host, and to determine whether the product affects the shrimp in inducing resistance towards pathogenic vibrios. We provide unequivocal evidences indicating that during the pretreatment period with Hspi, there is an initial release of reactive oxygen species (hydrogen peroxide and/or superoxide anion), generated by the added product, in the rearing water and associated with the host. The reactive molecules generated are the triggering factors responsible for causing Hsp70 induction within Artemia. We have also shown that Hspi acts prophylactically at an optimum dose regimen to confer protection against pathogenic vibrios. This salutary effect was associated with upregulation of two important immune genes, prophenoloxidase and transglutaminase of the innate immune system. These findings suggest that inducers of stress protein (e.g. Hsp70) are potentially important modulator of immune responses and might be exploited to confer protection to cultured shrimp against Vibrio infection. PMID:24950414

  17. Manganese Peroxidase-Dependent Oxidation of Glyoxylic and Oxalic Acids Synthesized by Ceriporiopsis subvermispora Produces Extracellular Hydrogen Peroxide

    PubMed Central

    Urzúa, Ulises; Kersten, Philip J.; Vicuña, Rafael

    1998-01-01

    The ligninolytic system of the basidiomycete Ceriporiopsis subvermispora is composed of manganese peroxidase (MnP) and laccase. In this work, the source of extracellular hydrogen peroxide required for MnP activity was investigated. Our attention was focused on the possibility that hydrogen peroxide might be generated by MnP itself through the oxidation of organic acids secreted by the fungus. Both oxalate and glyoxylate were found in the extracellular fluid of C. subvermispora cultures grown in chemically defined media, where MnP is also secreted. The in vivo oxidation of oxalate was measured; 14CO2 evolution was monitored after addition of exogenous [14C]oxalate to cultures at constant specific activity. In standard cultures, evolution of CO2 from oxalate was maximal at day 6, although the MnP titers were highest at day 12, the oxalate concentration was maximal (2.5 mM) at day 10, and the glyoxylate concentration was maximal (0.24 mM) at day 5. However, in cultures containing low nitrogen levels, in which the pH is more stable, a better correlation between MnP titers and mineralization of oxalate was observed. Both MnP activity and oxidation of [14C]oxalate were negligible in cultures lacking Mn(II). In vitro assays confirmed that Mn(II)-dependent oxidation of [14C]oxalate by MnP occurs and that this reaction is stimulated by glyoxylate at the concentrations found in cultures. In addition, both organic acids supported phenol red oxidation by MnP without added hydrogen peroxide, and glyoxylate was more reactive than oxalate in this reaction. Based on these results, a model is proposed for the extracellular production of hydrogen peroxide by C. subvermispora. PMID:16349495

  18. Protection of rat skeletal muscle fibers by either L-carnitine or coenzyme Q10 against statins toxicity mediated by mitochondrial reactive oxygen generation

    PubMed Central

    La Guardia, P. G.; Alberici, L. C.; Ravagnani, F. G.; Catharino, R. R.; Vercesi, A. E.

    2013-01-01

    Mitochondrial redox imbalance has been implicated in mechanisms of aging, various degenerative diseases and drug-induced toxicity. Statins are safe and well-tolerated therapeutic drugs that occasionally induce myotoxicity such as myopathy and rhabdomyolysis. Previous studies indicate that myotoxicity caused by statins may be linked to impairment of mitochondrial functions. Here, we report that 1-h incubation of permeabilized rat soleus muscle fiber biopsies with increasing concentrations of simvastatin (1–40 μM) slowed the rates of ADP-or FCCP-stimulated respiration supported by glutamate/malate in a dose-dependent manner, but caused no changes in resting respiration rates. Simvastatin (1 μM) also inhibited the ADP-stimulated mitochondrial respiration supported by succinate by 24% but not by TMPD/ascorbate. Compatible with inhibition of respiration, 1 μM simvastatin stimulated lactate release from soleus muscle samples by 26%. Co-incubation of muscle samples with 1 mM L-carnitine, 100 μM mevalonate or 10 μM coenzyme Q10 (Co-Q10) abolished simvastatin effects on both mitochondrial glutamate/malate-supported respiration and lactate release. Simvastatin (1 μM) also caused a 2-fold increase in the rate of hydrogen peroxide generation and a decrease in Co-Q10 content by 44%. Mevalonate, Co-Q10 or L-carnitine protected against stimulation of hydrogen peroxide generation but only mevalonate prevented the decrease in Co-Q10 content. Thus, independently of Co-Q10 levels, L-carnitine prevented the toxic effects of simvastatin. This suggests that mitochondrial respiratory dysfunction induced by simvastatin, is associated with increased generation of superoxide, at the levels of complexes-I and II of the respiratory chain. In all cases the damage to these complexes, presumably at the level of 4Fe-4S clusters, is prevented by L-carnitine. PMID:23720630

  19. Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species

    NASA Astrophysics Data System (ADS)

    Sheikh, Mariam; Abbas, Zaheer

    2015-12-01

    The effects of chemical reaction and heat generation/absorption on MHD flow over an oscillatory stretching surface in a viscous fluid have been studied in the presence of thermophoresis. The porous plate is oscillated back and forth in its own plane and suction/injection is also taking into account. The similarity solution of the developed non-linear governing partial differential equations is constructed in the form of series using homotopy analysis method. The convergence of the obtained series solutions is discussed in the whole domain (0 ≤ η ≤ ∞) . A parametric study of the all governing parameters is accomplished and the physical results are shown graphically.

  20. Rearrangement of the Extracellular Domain/Extracellular Loop 1 Interface Is Critical for Thyrotropin Receptor Activation.

    PubMed

    Schaarschmidt, Joerg; Nagel, Marcus B M; Huth, Sandra; Jaeschke, Holger; Moretti, Rocco; Hintze, Vera; von Bergen, Martin; Kalkhof, Stefan; Meiler, Jens; Paschke, Ralf

    2016-07-01

    The thyroid stimulating hormone receptor (TSHR) is a G protein-coupled receptor (GPCR) with a characteristic large extracellular domain (ECD). TSHR activation is initiated by binding of the hormone ligand TSH to the ECD. How the extracellular binding event triggers the conformational changes in the transmembrane domain (TMD) necessary for intracellular G protein activation is poorly understood. To gain insight in this process, the knowledge on the relative positioning of ECD and TMD and the conformation of the linker region at the interface of ECD and TMD are of particular importance. To generate a structural model for the TSHR we applied an integrated structural biology approach combining computational techniques with experimental data. Chemical cross-linking followed by mass spectrometry yielded 17 unique distance restraints within the ECD of the TSHR, its ligand TSH, and the hormone-receptor complex. These structural restraints generally confirm the expected binding mode of TSH to the ECD as well as the general fold of the domains and were used to guide homology modeling of the ECD. Functional characterization of TSHR mutants confirms the previously suggested close proximity of Ser-281 and Ile-486 within the TSHR. Rigidifying this contact permanently with a disulfide bridge disrupts ligand-induced receptor activation and indicates that rearrangement of the ECD/extracellular loop 1 (ECL1) interface is a critical step in receptor activation. The experimentally verified contact of Ser-281 (ECD) and Ile-486 (TMD) was subsequently utilized in docking homology models of the ECD and the TMD to create a full-length model of a glycoprotein hormone receptor. PMID:27129207

  1. Extracellular enzymes produced by marine eukaryotes, thraustochytrids.

    PubMed

    Taoka, Yousuke; Nagano, Naoki; Okita, Yuji; Izumida, Hitoshi; Sugimoto, Shinichi; Hayashi, Masahiro

    2009-01-01

    Extracellular enzymes produced by six strains of thraustochytrids, Thraustochytrium, Schizochytrium, and Aurantiochytrium, were investigated. These strains produced 5 to 8 kinds of the extracellular enzymes, depending on the species. Only the genus Thraustochytrium produced amylase. When insoluble cellulose was used as substrate, cellulase was not detected in the six strains of thraustochytrids. This study indicates that marine eukaryotes, thraustochytrids, produced a wide variety of extracellular enzymes. PMID:19129663

  2. Induction of cytotoxicity of Pelagia noctiluca venom causes reactive oxygen species generation, lipid peroxydation induction and DNA damage in human colon cancer cells

    PubMed Central

    2011-01-01

    Background The long-lasting and abundant blooming of Pelagia noctiluca in Tunisian coastal waters compromises both touristic and fishing activities and causes substantial economic losses. Determining their molecular mode of action is, important in order to limit or prevent the subsequent damages. Thus, the aim of the present study was to investigate the propensity of Pelagia noctiluca venom to cause oxidative damage in HCT 116 cells and its associated genotoxic effects. Results Our results indicated an overproduction of ROS, an induction of catalase activity and an increase of MDA generation. We looked for DNA fragmentation by means of the comet assay. Results indicated that venom of Pelagia noctiluca induced DNA fragmentation. SDS-PAGE analysis of Pelagia noctiluca venom revealed at least 15 protein bands of molecular weights ranging from 4 to 120 kDa. Conclusion Oxidative damage may be an initiating event and contributes, in part, to the mechanism of toxicity of Pelagia noctiluca venom. PMID:22151830

  3. Regulation of Osteoblast Survival by the Extracellular Matrix and Gravity

    NASA Technical Reports Server (NTRS)

    Globus. Ruth K.; Almeida, Eduardo A. C.; Searby, Nancy D.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    Spaceflight adversely affects the skeleton, posing a substantial risk to astronaut's health during long duration missions. The reduced bone mass observed in growing animals following spaceflight is due at least in part to inadequate bone formation by osteoblasts. Thus, it is of central importance to identify basic cellular mechanisms underlying normal bone formation. The fundamental ideas underlying our research are that interactions between extracellular matrix proteins, integrin adhesion receptors, cytoplasmic signaling and cytoskeletal proteins are key ingredients for the proper functioning of osteoblasts, and that gravity impacts these interactions. As an in vitro model system we used primary fetal rat calvarial cells which faithfully recapitulate osteoblast differentiation characteristically observed in vivo. We showed that specific integrin receptors ((alpha)3(beta)1), ((alpha)5(beta)1), ((alpha)8(betal)1) and extracellular matrix proteins (fibronectin, laminin) were needed for the differentiation of immature osteoblasts. In the course of maturation, cultured osteoblasts switched from depending on fibronectin and laminin for differentiation to depending on these proteins for their very survival. Furthermore, we found that manipulating the gravity vector using ground-based models resulted in activation of key intracellular survival signals generated by integrin/extracellular matrix interactions. We are currently testing the in vivo relevance of some of these observations using targeted transgenic technology. In conclusion, mechanical factors including gravity may participate in regulating survival via cellular interactions with the extracellular matrix. This leads us to speculate that microgravity adversely affects the survival of osteoblasts and contributes to spaceflight-induced osteoporosis.

  4. Classification of the extracellular fields produced by activated neural structures

    PubMed Central

    Richerson, Samantha; Ingram, Mark; Perry, Danielle; Stecker, Mark M

    2005-01-01

    Background Classifying the types of extracellular potentials recorded when neural structures are activated is an important component in understanding nerve pathophysiology. Varying definitions and approaches to understanding the factors that influence the potentials recorded during neural activity have made this issue complex. Methods In this article, many of the factors which influence the distribution of electric potential produced by a traveling action potential are discussed from a theoretical standpoint with illustrative simulations. Results For an axon of arbitrary shape, it is shown that a quadrupolar potential is generated by action potentials traveling along a straight axon. However, a dipole moment is generated at any point where an axon bends or its diameter changes. Next, it is shown how asymmetric disturbances in the conductivity of the medium surrounding an axon produce dipolar potentials, even during propagation along a straight axon. Next, by studying the electric fields generated by a dipole source in an insulating cylinder, it is shown that in finite volume conductors, the extracellular potentials can be very different from those in infinite volume conductors. Finally, the effects of impulses propagating along axons with inhomogeneous cable properties are analyzed. Conclusion Because of the well-defined factors affecting extracellular potentials, the vague terms far-field and near-field potentials should be abandoned in favor of more accurate descriptions of the potentials. PMID:16146569

  5. Extracellular modulators of Wnt signalling.

    PubMed

    Malinauskas, Tomas; Jones, E Yvonne

    2014-12-01

    Wnt morphogens are secreted signalling proteins that play leading roles in embryogenesis and tissue homeostasis throughout life. Wnt signalling is controlled by multiple mechanisms, including posttranslational modification of Wnts, antagonist binding (to Wnts or their receptors), and regulation of the availability of Wnt receptors. Recent crystallographic, structure-guided biophysical and cell-based studies have advanced our understanding of how Wnt signalling is regulated at the cell surface. Structures include Wnt in complex with the cysteine-rich domain (CRD) of Frizzled, extracellular fragments of Wnt co-receptor LRP6, LRP6-binding antagonists Dickkopf and Sclerostin, antagonists 5T4/WAIF1 and Wnt inhibitory factor 1 (WIF-1), as well as Frizzled-ubiquitin ligases ZNRF3/RNF43 (in isolation and in complexes with Wnt signalling promoters R-spondins and LGR5). We review recent discoveries and remaining questions. PMID:25460271

  6. The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts

    PubMed Central

    Linhart, Kirsten; Bartsch, Helmut; Seitz, Helmut K.

    2014-01-01

    Exocyclic etheno-DNA adducts are mutagenic and carcinogenic and are formed by the reaction of lipidperoxidation (LPO) products such as 4-hydoxynonenal or malondialdehyde with DNA bases. LPO products are generated either via inflammation driven oxidative stress or via the induction of cytochrome P-450 2E1 (CYP2E1). In the liver CYP2E1 is induced by various compounds including free fatty acids, acetone and ethanol. Increased levels of CYP2E1 and thus, oxidative stress are observed in the liver of patients with non-alcoholic steatohepatitis (NASH) as well as in the chronic alcoholic. In addition, chronic ethanol ingestion also increases CYP2E1 in the mucosa of the oesophagus and colon. In all these tissues CYP2E1 correlates significantly with the levels of carcinogenic etheno-DNA adducts. In contrast, in patients with non-alcoholic steatohepatitis (NASH) hepatic etheno-DNA adducts do not correlate with CYP2E1 indicating that in NASH etheno-DNA adducts formation is predominately driven by inflammation rather than by CYP2E1 induction. Since etheno-DNA adducts are strong mutagens producing various types of base pair substitution mutations as well as other types of genetic damage, it is strongly believed that they are involved in ethanol mediated carcinogenesis primarily driven by the induction of CYP2E1. PMID:25462066

  7. Substituted 3‑acyl‑2‑phenylamino‑1,4‑naphthoquinones intercalate into DNA and cause genotoxicity through the increased generation of reactive oxygen species culminating in cell death.

    PubMed

    Farias, Mirelle Sifroni; Pich, Claus Tröger; Kviecinski, Maicon Roberto; Bucker, Nádia Cristina Falcão; Felipe, Karina Bettega; Da Silva, Fabiana Ourique; Günther, Tânia Mara Fisher; Correia, João Francisco; Ríos, David; Benites, Julio; Valderrama, Jaime A; Calderon, Pedro Buc; Pedrosa, Rozangela Curi

    2014-07-01

    Naphthoquinones interact with biological systems by generating reactive oxygen species (ROS) that can damage cancer cells. The cytotoxicity and the antitumor activity of 3‑acyl‑2‑phenylamino‑1,4‑naphthoquinones (DPB1‑DPB9) were evaluated in the MCF7 human breast cancer cell line and in male Ehrlich tumor‑bearing Balb/c mice. DPB4 was the most cytotoxic derivative against MCF7 cells (EC50 15 µM) and DPB6 was the least cytotoxic one (EC50 56 µM). The 1,4‑naphthoquinone derivatives were able to cause DNA damage and promote DNA fragmentation as shown by the plasmid DNA cleavage assay (FII form). In addition, 1,4‑naphthoquinone derivatives possibly interacted with DNA as intercalating agents, which was demonstrated by the changes caused in the fluorescence of the DNA‑ethidium bromide complexes. Cell death of MCF7 cells induced by 3‑acyl‑2‑phenylamino‑1,4‑naphthoquinones was mostly due to apoptosis. The DNA fragmentation and subsequent apoptosis may be correlated to the redox potential of the 1,4‑naphthoquinone derivatives that, once present in the cell nucleus, led to the increased generation of ROS. Finally, certain 1,4‑naphthoquinone derivatives and particularly DPB4 significantly inhibited the growth of Ehrlich ascites tumors in mice (73%). PMID:24756411

  8. Tropospheric budget of reactive chlorine

    NASA Astrophysics Data System (ADS)

    Graedel, T. E.; Keene, W. C.

    1995-03-01

    Reactive chlorine in the lower atmosphere (as distinguished from chlorofluorocarbon-derived chlorine in the stratosphere) is important to considerations of precipitation acidity, corrosion, foliar damage, and chemistry of the marine boundary layer. Many of the chlorine-containing gases are difficult to measure, and natural sources appear to dominate anthropogenic sources for some chemical species. As a consequence, no satisfactory budget for reactive chlorine in the lower atmosphere is available. We have reviewed information on sources; source strengths; measurements in gas, aqueous, and aerosol phases; and chemical processes and from those data derive global budgets for nine reactive chlorine species and for reactive chlorine as a whole. The typical background abundance of reactive chlorine in the lower tropospheric is about 1.5 ppbv. The nine species, CH3 Cl, CH3 CCl3, HCl, CHClF2, Cl2* (thought to be HOCl and/or Cl2), CCl2 = CCl2, CH2 Cl2 , COCl2 , and CHCl3, each contribute at least a few percent to that total. The tropospheric reactive chlorine burden of approximately 8.3 Tg Cl is dominated by CH3 Cl (≈45 %) and CH3 CCl3 (≈25 %) and appears to be increasing by several percent per year. By far the most vigorous chlorine cycling appears to occur among seasalt aerosol, HCl, and Cl2*. The principal sources of reactive chlorine are volatilization from seasalt (enhanced by anthropogenically generated reactants), marine algae, volcanoes, and coal combustion (natural sources being thus quite important to the budget). It is anticipated that the concentrations of tropospheric reactive chlorine will continue to increase in the next several decades, particularly near urban areas in the rapidly developing countries.

  9. Degradation of extracellular matrix and its components by hypobromous acid

    PubMed Central

    Rees, Martin D.; McNiven, Tane N.; Davies, Michael J.

    2006-01-01

    EPO (eosinophil peroxidase) and MPO (myeloperoxidase) are highly basic haem enzymes that can catalyse the production of HOBr (hypobromous acid). They are released extracellularly by activated leucocytes and their binding to the polyanionic glycosa-minoglycan components of extracellular matrix (proteoglycans and hyaluronan) may localize the production of HOBr to these materials. It is shown in the present paper that the reaction of HOBr with glycosaminoglycans (heparan sulfate, heparin, chondroitin sulfate and hyaluronan) generates polymer-derived N-bromo derivatives (bromamines, dibromamines, N-bromosulfon-amides and bromamides). Decomposition of these species, which can occur spontaneously and/or via one-electron reduction by low-valent transition metal ions (Cu+ and Fe2+), results in polymer fragmentation and modification. One-electron reduction of the N-bromo derivatives generates radicals that have been detected by EPR spin trapping. The species detected are consistent with metal ion-dependent polymer fragmentation and modification being initiated by the formation of nitrogen-centred (aminyl, N-bromoaminyl, sulfonamidyl and amidyl) radicals. Previous studies have shown that the reaction of HOBr with proteins generates N-bromo derivatives and results in fragmentation of the polypeptide backbone. The reaction of HOBr with extracellular matrix synthesized by smooth muscle cells in vitro induces the release of carbohydrate and protein components in a time-dependent manner, which is consistent with fragmentation of these materials via the formation of N-bromo derivatives. The degradation of extracellular matrix glycosaminoglycans and proteins by HOBr may contribute to tissue damage associated with inflammatory diseases such as asthma. PMID:17014424

  10. Extracellular HSPs: The Complicated Roles of Extracellular HSPs in Immunity

    PubMed Central

    Calderwood, Stuart K.; Gong, Jianlin; Murshid, Ayesha

    2016-01-01

    Extracellular heat-shock proteins (HSPs) interact with the immune system in a very complex manner. Many such HSPs exert powerful effects on the immune response, playing both stimulatory and regulatory roles. However, the influence of the HSPs on immunity appears to be positive or negative in nature – rarely neutral. Thus, the HSPs can act as dominant antigens and can comprise key components of antitumor vaccines. They can also function as powerful immunoregulatory agents and, as such, are employed to treat inflammatory diseases or to extend the lifespan of tissue transplants. Small modifications in the cellular milieu have been shown to flip the allegiances of HSPs from immunoregulatory agents toward a potent inflammatory alignment. These mutable properties of HSPs may be related to the ability of these proteins to interact with multiple receptors often with mutually confounding properties in immune cells. Therefore, understanding the complex immune properties of HSPs may help us to harness their potential in treatment of a range of conditions. PMID:27199984

  11. Protein cross-linking by chlorinated polyamines and transglutamylation stabilizes neutrophil extracellular traps.

    PubMed

    Csomós, Krisztián; Kristóf, Endre; Jakob, Bernadett; Csomós, István; Kovács, György; Rotem, Omri; Hodrea, Judit; Bagoly, Zsuzsa; Muszbek, Laszlo; Balajthy, Zoltán; Csősz, Éva; Fésüs, László

    2016-01-01

    Neutrophil extracellular trap (NET) ejected from activated dying neutrophils is a highly ordered structure of DNA and selected proteins capable to eliminate pathogenic microorganisms. Biochemical determinants of the non-randomly formed stable NETs have not been revealed so far. Studying the formation of human NETs we have observed that polyamines were incorporated into the NET. Inhibition of myeloperoxidase, which is essential for NET formation and can generate reactive chlorinated polyamines through hypochlorous acid, decreased polyamine incorporation. Addition of exogenous primary amines that similarly to polyamines inhibit reactions catalyzed by the protein cross-linker transglutaminases (TGases) has similar effect. Proteomic analysis of the highly reproducible pattern of NET components revealed cross-linking of NET proteins through chlorinated polyamines and ɛ(γ-glutamyl)lysine as well as bis-γ-glutamyl polyamine bonds catalyzed by the TGases detected in neutrophils. Competitive inhibition of protein cross-linking by monoamines disturbed the cross-linking pattern of NET proteins, which resulted in the loss of the ordered structure of the NET and significantly reduced capacity to trap bacteria. Our findings provide explanation of how NETs are formed in a reproducible and ordered manner to efficiently neutralize microorganisms at the first defense line of the innate immune system. PMID:27512953

  12. A PPARγ AGONIST ENHANCES BACTERIAL CLEARANCE THROUGH NEUTROPHIL EXTRACELLULAR TRAP FORMATION AND IMPROVES SURVIVAL IN SEPSIS.

    PubMed

    Araújo, Cláudia V; Campbell, Clarissa; Gonçalves-de-Albuquerque, Cassiano F; Molinaro, Raphael; Cody, Mark J; Yost, Christian C; Bozza, Patricia T; Zimmerman, Guy A; Weyrich, Andrew S; Castro-Faria-Neto, Hugo C; Silva, Adriana R

    2016-04-01

    Dysregulation of the inflammatory response against infection contributes to mortality in sepsis. Inflammation provides critical host defense, but it can cause tissue damage, multiple organ failure, and death. Because the nuclear transcription factor peroxisome proliferator-activated receptor γ (PPARγ) exhibits therapeutic potential, we characterized the role of PPARγ in sepsis. We analyzed severity of clinical signs, survival rates, cytokine production, leukocyte influx, and bacterial clearance in a cecal ligation and puncture (CLP) model of sepsis in Swiss mice. The PPARγ agonist rosiglitazone treatment improved clinical status and mortality, while increasing IL-10 production and decreasing TNF-α and IL-6 levels, and peritoneal neutrophil accumulation 24 h after CLP. We noted increased bacterial killing in rosiglitazone treated mice, correlated with increased generation of reactive oxygen species. Polymorphonuclear leukocytes (PMN) incubated with LPS or Escherichia coli and rosiglitazone increased peritoneal neutrophil extracellular trap (NET)-mediated bacterial killing, an effect reversed by the PPARγ antagonist (GW 9662) treatment. Rosiglitazone also enhanced the release of histones by PMN, a surrogate marker of NET formation, effect abolished by GW 9662. Rosiglitazone modulated the inflammatory response and increased bacterial clearance through PPARγ activation and NET formation, combining immunomodulatory and host-dependent anti-bacterial effects and, therefore, warrants further study as a potential therapeutic agent in sepsis. PMID:26618986

  13. Up-regulation of an extracellular superoxide dismutase-like activity in hibernating hamsters subjected to oxidative stress in mid- to late arousal from torpor.

    PubMed

    Okamoto, Iwao; Kayano, Tohru; Hanaya, Toshiharu; Arai, Shigeyuki; Ikeda, Masao; Kurimoto, Masashi

    2006-09-01

    Torpor-arousal cycles, one of the inherent features in hibernators, are associated with a rapid increase in body temperature and respiration, and it would lead to elevation of reactive oxygen species (ROS) generation. However, hibernators apparently tolerate this oxidative stress. We have observed in Syrian hamsters (Mesocricetus auratus) a maximal temperature shift and respiratory rate in mid- to late arousal (16-33 degrees C rectal temperature) from torpor. To examine plasma antioxidant status during arousal, we studied total superoxide radical-scavenging activity in plasma by electron spin resonance. The superoxide radical-scavenging activity reached a maximum at 32 degrees C, coincident with a peak in plasma uric acid levels, a ROS generation indicator. The up-regulated activity at 32 degrees C was attributable to the peak of the activity eluted at 260-kDa on gel-filtration chromatography, but was not to small antioxidant molecules such as ascorbate and alpha-tocopherol. The activity eluted at 260-kDa increased 3-fold at 32 degrees C compared with that of the torpid state, and was not detected either at 6 h after the onset of arousal or in the euthermic state. Moreover, the activity exhibited extracellular SOD-like properties: its induction in plasma by heparin injection and its affinity for heparin. Our results suggest that the 260-kDa extracellular SOD-like activity plays a role in the tolerance for the oxidative stress during arousal from torpor. PMID:16807121

  14. myo-Inositol Oxygenase Overexpression Accentuates Generation of Reactive Oxygen Species and Exacerbates Cellular Injury following High Glucose Ambience: A NEW MECHANISM RELEVANT TO THE PATHOGENESIS OF DIABETIC NEPHROPATHY.

    PubMed

    Sun, Lin; Dutta, Rajesh K; Xie, Ping; Kanwar, Yashpal S

    2016-03-11

    Diabetic nephropathy (DN) is characterized by perturbations in metabolic/cellular signaling pathways with generation of reactive oxygen species (ROS). The ROS are regarded as a common denominator of various pathways, and they inflict injury on renal glomerular cells. Recent studies indicate that tubular pathobiology also plays a role in the progression of DN. However, the mechanism(s) for how high (25 mm) glucose (HG) ambience induces tubular damage remains enigmatic. myo-Inositol oxygenase (MIOX) is a tubular enzyme that catabolizes myo-inositol to d-glucuronate via the glucuronate-xylulose (G-X) pathway. In this study, we demonstrated that G-X pathway enzymes are expressed in the kidney, and MIOX expression/bioactivity was up-regulated under HG ambience in LLC-PK1 cells, a tubular cell line. We further investigated whether MIOX overexpression leads to accentuation of tubulo-interstitial injury, as gauged by some of the parameters relevant to the progression of DN. Under HG ambience, MIOX overexpression accentuated redox imbalance, perturbed NAD(+)/NADH ratios, increased ROS generation, depleted reduced glutathione, reduced GSH/GSSG ratio, and enhanced adaptive changes in the profile of the antioxidant defense system. These changes were also accompanied by mitochondrial dysfunctions, DNA damage and induction of apoptosis, accentuated activity of profibrogenic cytokine, and expression of fibronectin, the latter two being the major hallmarks of DN. These perturbations were largely blocked by various ROS inhibitors (Mito Q, diphenyleneiodonium chloride, and N-acetylcysteine) and MIOX/NOX4 siRNA. In conclusion, this study highlights a novel mechanism where MIOX under HG ambience exacerbates renal injury during the progression of diabetic nephropathy following the generation of excessive ROS via an unexplored G-X pathway. PMID:26792859

  15. Overexpression of stanniocalcin-1 inhibits reactive oxygen species and renal ischemia/reperfusion injury in mice.

    PubMed

    Huang, Luping; Belousova, Tatiana; Chen, Minyi; DiMattia, Gabriel; Liu, Dajun; Sheikh-Hamad, David

    2012-10-01

    Reactive oxygen species, endothelial dysfunction, inflammation, and mitogen-activated protein kinases have important roles in the pathogenesis of ischemia/reperfusion kidney injury. Stanniocalcin-1 (STC1) suppresses superoxide generation in many systems through the induction of mitochondrial uncoupling proteins and blocks the cytokine-induced rise in endothelial permeability. Here we tested whether transgenic overexpression of STC1 protects from bilateral ischemia/reperfusion kidney injury. This injury in wild-type mice caused a halving of the creatinine clearance; severe tubular vacuolization and cast formation; increased infiltration of macrophages and T cells; higher vascular permeability; greater production of superoxide and hydrogen peroxide; and higher ratio of activated extracellular regulated kinase/activated Jun-N-terminal kinase and p38, all compared to sham-treated controls. Mice transgenic for human STC1 expression, however, had resistance to equivalent ischemia/reperfusion injury indicated as no significant change from controls in any of these parameters. Tubular epithelial cells in transgenic mice expressed higher mitochondrial uncoupling protein 2 and lower superoxide generation. Pre-treatment of transgenic mice with paraquat, a generator of reactive oxygen species, before injury restored the susceptibility to ischemia/reperfusion kidney injury, suggesting that STC1 protects by an anti-oxidant mechanism. Thus, STC1 may be a therapeutic target for ischemia/reperfusion kidney injury. PMID:22695329

  16. Generation of high reactive fluids by rapid clinopyroxene-seawater interaction: An experimental study at 425 °C, 40 and 100 MPa

    NASA Astrophysics Data System (ADS)

    Beermann, Oliver; Garbe-Schönberg, Dieter; Schächinger, Steffen; Arzi, Lisa; Holzheid, Astrid

    2014-05-01

    experiments significant amounts (~10-20 rel. %) of secondary mineral phases, i.e. talc, the serpentine-group minerals lizardite, antigorite, and chrysotile, and minor abundances of pyrrhotite and pentlandite were formed primarily on Cpx even after short run durations of 3 hours. Our results show that intense leaching of Ca, REEs, transition and trace metals only occurred with Cpx and only in the seawater experiments. Leaching was caused by rapid precipitation of the intitial seawater Mg (1400 ppm) on Cpx, which generated HCl(aq) with pH (25 °C) < 2 prior to significant leaching. Because element exchange reactions between seawater and the other widespread abundant mineral olivine in the oceanic lithosphere are very sluggish at elevated pressure and temperature conditions [10], we conclude that in particular seawater interactions with un-leached pyroxenes creates high element fluxes during early-stage, high temperature MOR hydrothermalism, as it is evident from MAR 5° S fluids. This kind of hydrothermalism is expected to be not uncommon in particular at the slow-spreading MAR [9], and the high element fluxes here, most probably caused by seawater-pyroxene interactions, should be taken into account when modelling global chemical fluxes of MOR hydrothermalism. References: [1] German C. R., Thurnherr A. M., Knoery J., Charlou J.-L., Jean-Babtiste P., and Edmonds H. N. (2010) Deep Sea Res. 157, 518-527. [2] Schmidt K., Garbe-Schönberg D., Bau M., and Koschinsky A. (2010) Geochim. Cosmochim. Acta 74, 4058-4077. [3] Saito M. A., Noble A. E., Tagliabue A., Goepfert T. G., Lamborg C. H., and Jenkins W. J. (2013) Nat. Geosci. 5, 775-779. [4] German C. R., Bennett S. A., Connelly D. P., Evans A. J., Murton B. J., Parson L. M., Prien R. D., Ramirez-Llodra E., Jakuba M., Shank T. M., Yoerger D. R., Baker E. T., Walker S. L., and Nakamura K. (2008) Earth. Planet. Sci. Lett. 273, 332-344. [5] Haase K. M., Petersen S., Koschinsky A., and M64/1, M68/1 Scient. Parties (2007) Geochem. Geophys

  17. Extracellular Matrix Abnormalities in Schizophrenia

    PubMed Central

    Berretta, Sabina

    2011-01-01

    Emerging evidence points to the involvement of the brain extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Abnormalities affecting several ECM components, including Reelin and chondroitin sulfate proteoglycans (CSPGs), have been described in subjects with this disease. Solid evidence supports the involvement of Reelin, an ECM glycoprotein involved in corticogenesis, synaptic functions and glutamate NMDA receptor regulation, expressed prevalently in distinct populations of GABAergic neurons, which secrete it into the ECM. Marked changes of Reelin expression in SZ have typically been reported in association with GABA-related abnormalities in subjects with SZ and bipolar disorder. Recent findings from our group point to substantial abnormalities affecting CSPGs, a main ECM component, in the amygdala and entorhinal cortex of subjects with schizophrenia, but not bipolar disorder. Striking increases of glial cells expressing CSPGs were accompanied by reductions of perineuronal nets, CSPG- and Reelin-enriched ECM aggregates enveloping distinct neuronal populations. CSPGs developmental and adult functions, including neuronal migration, axon guidance, synaptic and neurotransmission regulation are highly relevant to the pathophysiology of SZ. Together with reports of anomalies affecting several other ECM components, these findings point to the ECM as a key component of the pathology of SZ. We propose that ECM abnormalities may contribute to several aspects of the pathophysiology of this disease, including disrupted connectivity and neuronal migration, synaptic anomalies and altered GABAergic, glutamatergic and dopaminergic neurotransmission. PMID:21856318

  18. Extracellular vesicles in parasitic diseases

    PubMed Central

    Marcilla, Antonio; Martin-Jaular, Lorena; Trelis, Maria; de Menezes-Neto, Armando; Osuna, Antonio; Bernal, Dolores; Fernandez-Becerra, Carmen; Almeida, Igor C.; del Portillo, Hernando A.

    2014-01-01

    Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens. PMID:25536932

  19. Getting to know the extracellular vesicle glycome.

    PubMed

    Gerlach, Jared Q; Griffin, Matthew D

    2016-04-22

    Extracellular vesicles (EVs) are a diverse population of complex biological particles with diameters ranging from approximately 20 to 1000 nm. Tremendous interest in EVs has been generated following a number of recent, high-profile reports describing their potential utility in diagnostic, prognostic, drug delivery, and therapeutic roles. Subpopulations, such as exosomes, are now known to directly participate in cell-cell communication and direct material transfer. Glycomics, the 'omic' portion of the glycobiology field, has only begun to catalog the surface oligosaccharide and polysaccharide structures and also the carbohydrate-binding proteins found on and inside EVs. The EV glycome undoubtedly contains vital clues essential to better understanding the function, biogenesis, release and transfer of vesicles, however getting at this information is technically challenging and made even more so because of the small physical size of the vesicles and the typically minute yield from physiological-scale biological samples. Vesicle micro-heterogeneity which may be related to specific vesicle origins and functions presents a further challenge. A number of primary studies carried out over the past decade have turned up specific and valuable clues regarding the composition and roles of glycan structures and also glycan binding proteins involved EV biogenesis and transfer. This review explores some of the major EV glycobiological research carried out to date and discusses the potential implications of these findings across the life sciences. PMID:26888195

  20. [The corneal wound healing and the extracellular matrix].

    PubMed

    Varkoly, Gréta; Bencze, János; Hortobágyi, Tibor; Módis, László

    2016-06-19

    The cornea is the first refractive element of the eye. The transparency of the cornea results from the regularly arranged collagen fibrils, forming lamellar structure and the leucin rich proteoglycans, which make interactions between the fibrils. The adult cornea consists mainly of fibril-forming collagens. The cornea has less amount of fibril associated and non-fibrillar collagens. The main proteoglycans of the cornea are keratan-sulfate proteoglycans and it also contains dermatan-sulfate proteoglycans. Disorders of the proteoglycan synthesis lead to the disruption of the unique pattern and result in thicker collagen fibrils. The abnormal structure of the extracellular matrix can generate corneal disorders and the loss of corneal transparency. Furthermore, proteoglycans and collagens have an important role in wound healing. In injury the keratocytes produce higher amounts of collagens and proteoglycans mediated by growth factors. Depending on the ratio of the cells and growth factors the extracellular matrix returns to normal or corneal scar tissue develops. PMID:27287839

  1. Challenges posed by extracellular vesicles from eukaryotic microbes

    PubMed Central

    Wolf, Julie M.; Casadevall, Arturo

    2014-01-01

    Extracellular vesicles (EV) produced by eukaryotic microbes play an important role during infection. EV release is thought to benefit microbial invasion by delivering a high concentration of virulence factors to distal host cells or to the cytoplasm of a host cell. EV can significantly impact the outcome of host-pathogen interaction in a cargo-dependent manner. Release of EV from eukaryotic microbes poses unique challenges when compared to their bacterial or archaeal counterparts. Firstly, the membrane-bound organelles within eukaryotes facilitate multiple mechanisms of vesicle generation. Secondly, the fungal cell wall poses a unique barrier between the vesicle release site at the plasma membrane and its destined extracellular environment. This review focuses on these eukaryotic-specific aspects of vesicle synthesis and release. PMID:25460799

  2. Optimizing analog-to-digital converters for sampling extracellular potentials.

    PubMed

    Artan, N Sertac; Xu, Xiaoxiang; Shi, Wei; Chao, H Jonathan

    2012-01-01

    In neural implants, an analog-to-digital converter (ADC) provides the delicate interface between the analog signals generated by neurological processes and the digital signal processor that is tasked to interpret these signals for instance for epileptic seizure detection or limb control. In this paper, we propose a low-power ADC architecture for neural implants that process extracellular potentials. The proposed architecture uses the spike detector that is readily available on most of these implants in a closed-loop with an ADC. The spike detector determines whether the current input signal is part of a spike or it is part of noise to adaptively determine the instantaneous sampling rate of the ADC. The proposed architecture can reduce the power consumption of a traditional ADC by 62% when sampling extracellular potentials without any significant impact on spike detection accuracy. PMID:23366227

  3. plasmatis Center for Innovation Competence: Controlling reactive component output of atmospheric pressure plasmas in plasma medicine

    NASA Astrophysics Data System (ADS)

    Reuter, Stephan

    2012-10-01

    The novel approach of using plasmas in order to alter the local chemistry of cells and cell environment presents a significant development in biomedical applications. The plasmatis center for innovation competence at the INP Greifswald e.V. performs fundamental research in plasma medicine in two interdisciplinary research groups. The aim of our plasma physics research group ``Extracellular Effects'' is (a) quantitative space and time resolved diagnostics and modelling of plasmas and liquids to determine distribution and composition of reactive species (b) to control the plasma and apply differing plasma source concepts in order to produce a tailored output of reactive components and design the chemical composition of the liquids/cellular environment and (c) to identify and understand the interaction mechanisms of plasmas with liquids and biological systems. Methods to characterize the plasma generated reactive species from plasma-, gas- and liquid phase and their biological effects will be presented. The diagnostic spectrum ranges from absorption/emission/laser spectroscopy and molecular beam mass spectrometry to electron paramagnetic resonance spectroscopy and cell biological diagnostic techniques. Concluding, a presentation will be given of the comprehensive approach to plasma medicine in Greifswald where the applied and clinical research of the Campus PlasmaMed association is combined with the fundamental research at plasmatis center.

  4. Extracellular vesicles as emerging intercellular communicasomes

    PubMed Central

    Yoon, Yae Jin; Kim, Oh Youn; Gho, Yong Song

    2014-01-01

    All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions. [BMB Reports 2014; 47(10): 531-539] PMID:25104400

  5. Proteomics of extracellular vesicles: Exosomes and ectosomes.

    PubMed

    Choi, Dong-Sic; Kim, Dae-Kyum; Kim, Yoon-Keun; Gho, Yong Song

    2015-01-01

    Almost all bacteria, archaea, and eukaryotic cells shed extracellular vesicles either constitutively or in a regulated manner. These nanosized membrane vesicles are spherical, bilayered proteolipids that harbor specific subsets of proteins, DNAs, RNAs, and lipids. Recent research has facilitated conceptual advancements in this emerging field that indicate that extracellular vesicles act as intercellular communicasomes by transferring signals to their target cell via surface ligands and delivering receptors and functional molecules. Recent progress in mass spectrometry-based proteomic analyses of mammalian extracellular vesicles derived from diverse cell types and body fluids has resulted in the identification of several thousand vesicular proteins that provide us with essential clues to the molecular mechanisms involved in vesicle cargo sorting and biogenesis. Furthermore, cell-type- or disease-specific vesicular proteins help us to understand the pathophysiological functions of extracellular vesicles and contribute to the discovery of diagnostic and therapeutic target proteins. This review focuses on the high-throughput mass spectrometry-based proteomic analyses of mammalian extracellular vesicles (i.e., exosomes and ectosomes), EVpedia (a free web-based integrated database of high-throughput data for systematic analyses of extracellular vesicles; http://evpedia.info), and the intravesicular protein-protein interaction network analyses of mammalian extracellular vesicles. The goal of this article is to encourage further studies to construct a comprehensive proteome database for extracellular vesicles that will help us to not only decode the biogenesis and cargo-sorting mechanisms during vesicle formation but also elucidate the pathophysiological roles of these complex extracellular organelles. PMID:24421117

  6. Widespread Production of Extracellular Superoxide by Heterotrophic Bacteria

    NASA Astrophysics Data System (ADS)

    Diaz, Julia M.; Hansel, Colleen M.; Voelker, Bettina M.; Mendes, Chantal M.; Andeer, Peter F.; Zhang, Tong

    2013-06-01

    Superoxide and other reactive oxygen species (ROS) originate from several natural sources and profoundly influence numerous elemental cycles, including carbon and trace metals. In the deep ocean, the permanent absence of light precludes currently known ROS sources, yet ROS production mysteriously occurs. Here, we show that taxonomically and ecologically diverse heterotrophic bacteria from aquatic and terrestrial environments are a vast, unrecognized, and light-independent source of superoxide, and perhaps other ROS derived from superoxide. Superoxide production by a model bacterium within the ubiquitous Roseobacter clade involves an extracellular oxidoreductase that is stimulated by the reduced form of nicotinamide adenine dinucleotide (NADH), suggesting a surprising homology with eukaryotic organisms. The consequences of ROS cycling in immense aphotic zones representing key sites of nutrient regeneration and carbon export must now be considered, including potential control of carbon remineralization and metal bioavailability.

  7. Reactive oxygen species and PI3K/Akt signaling in cancer.

    PubMed

    Jin, Seo Yeon; Lee, Hye Sun; Kim, Eun Kyoung; Ha, Jung Min; Kim, Young Whan; Bae, SunSik

    2014-10-01

    Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen and associates with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. In the present study, we showed that Insulin-like growth factor-1(IGF-1) modulates SKOV-3 ovarian cancer cell by regulation of generation of ROS. Akt mediates cellular signaling pathways in association with mammalian target of rapamycin complex (mTOR) and Rac small G protein. Insulin-like growth factor-1 (IGF-1)-induced generation of ROS was completely abolished by phosphatidylinositol 3-kinase (PI3K) (LY294002, 10?µM) or Akt inhibitors (SH-5, 50?µM), whereas inhibition of extracellular-regulated kinase by an ERK inhibitor (PD98059, 10?µM) or inhibition of mammalian target of rapamycin complex 1 (mTORC1) by an mTORC1 inhibitor (Rapamycin, 100?nM) did not affect IGF-1-induced generation of ROS. Inactivation of mTORC2 by silencing Rapamycin-insensitive companion of mTOR (Rictor), abolished IGF-1-induced SKOV-3 cell migration as well as activation of Akt. However, inactivation of mTORC1 by silencing of Raptor had no effect. Silencing of Akt1 but not Akt2 attenuated IGF-1-induced generation of ROS. Expression of PIP3-dependent Rac exchanger1 (P-Rex1), a Rac guanosine exchange factor and a component of the mTOR complex. Silencing of P-Rex1 abolished IGF-1-induced generation of ROS. Finally, inhibition of NADPH oxidase system completely blunted IGF-1-induced generation of ROS, whereas inhibition of xanthine oxiase,cyclooxygenase, and mitochondrial respiratory chain complex was not effective. Given these results, we suggest that IGF-1 induces ROS generation through the PI3K/Akt/ mTOR2/NADPH oxidase signaling axis. PMID:26461347

  8. Illuminating the physiology of extracellular vesicles.

    PubMed

    Choi, Hongyoon; Lee, Dong Soo

    2016-01-01

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for tracking and imaging extracellular vesicles in vivo and critically discuss their systemic distribution, targeting, and kinetics based on up-to-date evidence in the literature. PMID:27084088

  9. Metformin Protects H9C2 Cardiomyocytes from High-Glucose and Hypoxia/Reoxygenation Injury via Inhibition of Reactive Oxygen Species Generation and Inflammatory Responses: Role of AMPK and JNK

    PubMed Central

    Hu, Mingyan; Ye, Ping; Liao, Hua; Chen, Manhua

    2016-01-01

    Metformin is a first-line drug for the management of type 2 diabetes. Recent studies suggested cardioprotective effects of metformin against ischemia/reperfusion injury. However, it remains elusive whether metformin provides direct protection against hypoxia/reoxygenation (H/R) injury in cardiomyocytes under normal or hyperglycemic conditions. This study in H9C2 rat cardiomyoblasts was designed to determine cell viability under H/R and high-glucose (HG, 33 mM) conditions and the effects of cotreatment with various concentrations of metformin (0, 1, 5, and 10 mM). We further elucidated molecular mechanisms underlying metformin-induced cytoprotection, especially the possible involvement of AMP-activated protein kinase (AMPK) and Jun NH(2)-terminal kinase (JNK). Results indicated that 5 mM metformin improved cell viability, mitochondrial integrity, and respiratory chain activity under HG and/or H/R (P < 0.05). The beneficial effects were associated with reduced levels of reactive oxygen species generation and proinflammatory cytokines (TNF-α, IL-1α, and IL-6) (P < 0.05). Metformin enhanced phosphorylation level of AMPK and suppressed HG + H/R induced JNK activation. Inhibitor of AMPK (compound C) or activator of JNK (anisomycin) abolished the cytoprotective effects of metformin. In conclusion, our study demonstrated for the first time that metformin possessed direct cytoprotective effects against HG and H/R injury in cardiac cells via signaling mechanisms involving activation of AMPK and concomitant inhibition of JNK. PMID:27294149

  10. Time-course changes in muscle protein degradation in heat-stressed chickens: Possible involvement of corticosterone and mitochondrial reactive oxygen species generation in induction of the ubiquitin-proteasome system.

    PubMed

    Furukawa, Kyohei; Kikusato, Motoi; Kamizono, Tomomi; Toyomizu, Masaaki

    2016-03-01

    Heat stress (HS) induces muscle protein degradation as well as production of mitochondrial reactive oxygen species (ROS). In the present study, to improve our understanding of how protein degradation is induced by HS treatment in birds, a time course analysis of changes in the circulating levels of glucocorticoid and N(τ)-methylhistidine, muscle proteolysis-related gene expression, and mitochondrial ROS generation, was conducted. At 25days of age, chickens were exposed to HS conditions (33°C) for 0, 0.5, 1 or 3days. While no alteration in plasma N(τ)-methylhistidine concentration relative to that of the control group was observed in the 0.5day HS group, the concentration was significantly higher in the 3-d HS treatment group. Plasma corticosterone concentrations increased in response to 0.5-d HS treatment, but subsequently returned to near-normal values. HS treatment for 0.5days did not change the levels of μ-calpain, cathepsin B, or proteasome C2 subunit mRNA, but increased the levels of mRNA encoding atrogin-1 (P<0.05) and its transcription factor, forkhead box O3 (P=0.09). Under these hyperthermic conditions, mitochondrial superoxide production was significantly increased than that of thermoneutral control. Here, we show that HS-induced muscle protein degradation may be due to the activation of ubiquitination by atrogin-1, and that this process may involve mitochondrial ROS production as well as corticosterone secretion. PMID:26883687

  11. Hydroxylated Dimeric Naphthoquinones Increase the Generation of Reactive Oxygen Species, Induce Apoptosis of Acute Myeloid Leukemia Cells and Are Not Substrates of the Multidrug Resistance Proteins ABCB1 and ABCG2

    PubMed Central

    Lapidus, Rena G.; Carter-Cooper, Brandon A.; Sadowska, Mariola; Choi, Eun Yong; Wonodi, Omasiri; Muvarak, Nidal; Natarajan, Karthika; Pidugu, Lakshmi S.; Jaiswal, Anil; Toth, Eric A.; Rassool, Feyruz V.; Etemadi, Arash; Sausville, Edward A.; Baer, Maria R.; Emadi, Ashkan

    2016-01-01

    Selective targeting of the oxidative state, which is a tightly balanced fundamental cellular property, is an attractive strategy for developing novel anti-leukemic chemotherapeutics with potential applications in the treatment of acute myeloid leukemia (AML), a molecularly heterogeneous disease. Dimeric naphthoquinones (BiQs) with the ability to undergo redox cycling and to generate reactive oxygen species (ROS) in cancer cells are a novel class of compounds with unique characteristics that make them excellent candidates to be tested against AML cells. We evaluated the effect of two BiQ analogues and one monomeric naphthoquinone in AML cell lines and primary cells from patients. All compounds possess one halogen and one hydroxyl group on the quinone cores. Dimeric, but not monomeric, naphthoquinones demonstrated significant anti-AML activity in the cell lines and primary cells from patients with favorable therapeutic index compared to normal hematopoietic cells. BiQ-1 effectively inhibited clonogenicity and induced apoptosis as measured by Western blotting and Annexin V staining and mitochondrial membrane depolarization by flow cytometry. BiQ-1 significantly enhances intracellular ROS levels in AML cells and upregulates expression of key anti-oxidant protein, Nrf2. Notably, systemic exposure to BiQ-1 was well tolerated in mice. In conclusion, we propose that BiQ-induced therapeutic augmentation of ROS in AML cells with dysregulation of antioxidants kill leukemic cells while normal cells remain relatively intact. Further studies are warranted to better understand this class of potential chemotherapeutics. PMID:26797621

  12. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  13. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  14. A water soluble parthenolide analogue suppresses in vivo tumor growth of two tobacco associated cancers, lung and bladder cancer, by targeting NF-κB and generating reactive oxygen species

    PubMed Central

    Shanmugam, Rajasubramaniam; Kusumanchi, Praveen; Appaiah, Hitesh; Cheng, Liang; Crooks, Peter; Neelakantan, Sundar; Peat, Tyler; Klaunig, James; Matthews, William; Nakshatri, Harikrishna; Sweeney, Christopher J

    2010-01-01

    Dimethylaminoparthenolide (DMAPT) is a water soluble parthenolide analogue with preclinical activity in hematologic malignancies. Using NSCLC cell lines (A549, H522) and an immortalized human bronchial epithelial cell line (BEAS2B) and TCC cell lines (UMUC-3, HT-1197, HT-1376) and a bladder papilloma (RT-4), we aimed to characterize DMAPT's anti-cancer activity in tobacco associated neoplasms. Flow cytometric, electrophorectic mobility gel shift assays (EMSA), and western blot studies measured generation of reactive oxygen species (ROS), inhibition of NFκB DNA binding, and changes in cell cycle distribution and apoptotic proteins. DMAPT generated ROS with subsequent JNK activation and also decreased NFκB DNA binding and anti-apoptotic proteins, TRAF-2 and XIAP. DMAPT induced apoptotic cell death and altered cell cycle distribution with upregulation of p21 and p73 levels in a cell type dependent manner. DMAPT suppressed cyclin D1 in BEAS2B. DMAPT retained NFκB and cell cycle inhibitory activity in the presence of the tobacco carcinogen nitrosamine ketone, 4(methylnitrosamino)-1-(3–pyridyl)-1-butanone (NNK). Using a BrdU accumulation assay, 5 to 20μM of DMAPT was shown to inhibit cellular proliferation of all cell lines by more than 95%. Oral dosing of DMAPT suppressed in vivo A549 and UMUC-3 subcutaneous xenograft growth by 54% (p=0.015) and 63% (p<0.01) respectively and A549 lung metastatic volume by 28% (p=0.043). In total this data demonstrates DMAPT's novel anti-cancer properties in both early and late stage tobacco associated neoplasms as well as its significant in vivo activity. The data provides support for the conduct of clinical trials in TCC and NSCLC. PMID:20669221

  15. A water soluble parthenolide analog suppresses in vivo tumor growth of two tobacco-associated cancers, lung and bladder cancer, by targeting NF-κB and generating reactive oxygen species.

    PubMed

    Shanmugam, Rajasubramaniam; Kusumanchi, Praveen; Appaiah, Hitesh; Cheng, Liang; Crooks, Peter; Neelakantan, Sundar; Peat, Tyler; Klaunig, James; Matthews, William; Nakshatri, Harikrishna; Sweeney, Christopher J

    2011-05-15

    Dimethylaminoparthenolide (DMAPT) is a water soluble parthenolide analog with preclinical activity in hematologic malignancies. Using non-small lung cancer (NSCLC) cell lines (A549 and H522) and an immortalized human bronchial epithelial cell line (BEAS2B) and TCC cell lines (UMUC-3, HT-1197 and HT-1376) and a bladder papilloma (RT-4), we aimed to characterize DMAPT's anticancer activity in tobacco-associated neoplasms. Flow cytometric, electrophoretic mobility gel shift assays (EMSA), and Western blot studies measured generation of reactive oxygen species (ROS), inhibition of NFκB DNA binding, and changes in cell cycle distribution and apoptotic proteins. DMAPT generated ROS with subsequent JNK activation and also decreased NFκB DNA binding and antiapoptotic proteins, TRAF-2 and XIAP. DMAPT-induced apoptotic cell death and altered cell cycle distribution with upregulation of p21 and p73 levels in a cell type-dependent manner. DMAPT suppressed cyclin D1 in BEAS2B. DMAPT retained NFκB and cell cycle inhibitory activity in the presence of the tobacco carcinogen nitrosamine ketone, 4(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Using a BrdU accumulation assay, 5-20 μM of DMAPT was shown to inhibit cellular proliferation of all cell lines by more than 95%. Oral dosing of DMAPT suppressed in vivo A549 and UMUC-3 subcutaneous xenograft growth by 54% (p = 0.015) and 63% (p < 0.01), respectively, and A549 lung metastatic volume by 28% (p = 0.043). In total, this data demonstrates DMAPT's novel anticancer properties in both early and late stage tobacco-associated neoplasms as well as its significant in vivo activity. The data provides support for the conduct of clinical trials in TCC and NSCLC. PMID:20669221

  16. Selective Generation of the Radical Cation Isomers [CH3CN](•+) and [CH2CNH](•+) via VUV Photoionization of Different Neutral Precursors and Their Reactivity with C2H4.

    PubMed

    Polášek, Miroslav; Zins, Emilie-Laure; Alcaraz, Christian; Žabka, Ján; Křížová, Věra; Giacomozzi, Linda; Tosi, Paolo; Ascenzi, Daniela

    2016-07-14

    Experimental and theoretical studies have been carried out to demonstrate the selective generation of two different C2H3N(+) isomers, namely, the acetonitrile [CH3CN](•+) and the ketenimine [CH2CNH](•+) radical cations. Photoionization and dissociative photoionization experiments from different neutral precursors (acetonitrile and butanenitrile) have been performed using vacuum ultraviolet (VUV) synchrotron radiation in the 10-15 eV energy range, delivered by the DESIRS beamline at the SOLEIL storage ring. For butanenitrile (CH3CH2CH2CN) an experimental ionization threshold of 11.29 ± 0.05 eV is obtained, whereas the appearance energy for the formation of [CH2CNH](•+) fragments is 11.52 ± 0.05 eV. Experimental findings are fully supported by theoretical calculations at the G4 level of theory (ZPVE corrected energies at 0 K), giving a value of 11.33 eV for the adiabatic ionization energy of butanenitrile and an exothermicity of 0.49 for fragmentation into [CH2CNH](•+) plus C2H4, hampered by an energy barrier of 0.29 eV. The energy difference between [CH3CN](•+) and [CH2CNH](•+) is 2.28 eV (with the latter being the lowest energy isomer), and the isomerization barrier is 0.84 eV. Reactive monitoring experiments of the [CH3CN](•+) and [CH2CNH](•+) isomers with C2H4 have been performed using the CERISES guided ion beam tandem mass spectrometer and exploiting the selectivity of ethylene that gives exothermic charge exchange and proton transfer reactions with [CH3CN](•+) but not with [CH2CNH](•+) isomers. In addition, minor reactive channels are observed leading to the formation of new C-C bonds upon reaction of [CH3CN](•+) with C2H4, and their astrochemical implications are briefly discussed. PMID:26890990

  17. Characterization of Extracellular Chitinolytic Activity in Biofilms

    SciTech Connect

    Baty, Ace M.; Diwu, Zhenjun; Dunham, Glen C.; Eastburn, Callie; Geesey, Gill G.; Goodman, Amanda; Suci, Peter; Techkarnjanaruk, Somkiet

    2001-05-01

    It is common for bacteria to produce extracellular enzymes having some form of degradative activity. In some cases these enzymes serve to protect cells from antagonistic substances, or to convert a large and/or insoluble biopolymer to an assimilable nutrient source. In some cases the physiological benefit to the bacterium is not entirely evident. Extracellular enzymes may be membrane bound, but in many cases they are released into the surrounding medium. It has been shown that these relatively large molecules become immobilized in the extracellular polymeric matrix in which cells in flocs and biofilms are embedded. Most proteins adsorb irreversibly to substrata having a variety of surface chemistries, and transport by convection is reduced near any solid surface, regardless of the flow regimen in the bulk liquid. Thus, extracellular enzymes have a tendency to become an integral and significant component of the biofilm/substratum microenvironment, influencing cell physiology and biofilm ecology.

  18. Using Paraquat to Generate Anion Free Radicals and Hydrogen Peroxide in "In Vitro": Antioxidant Effect of Vitamin E--A Procedure to Teach Theoretical and Experimental Principles of Reactive Oxygen Species Biochemistry

    ERIC Educational Resources Information Center

    Jimenez-Del-Rio, Marlene; Suarez-Cedeno, Gerson; Velez-Pardo, Carlos

    2010-01-01

    The theoretical basis of reactive oxygen species and their impact on health issues are relatively easy to understand by biomedical students. The detection of reactive oxygen species requires expensive equipment, the procedures are time consuming and costly, and the results are hard to interpret. Moreover, cause-and-effect relationships in the…

  19. System for reactivating catalysts

    SciTech Connect

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  20. The extracellular RNA complement of Escherichia coli

    PubMed Central

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-01

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results s