Science.gov

Sample records for extreme relativistic region

  1. Upper Extremity Regional Anesthesia

    PubMed Central

    Neal, Joseph M.; Gerancher, J.C.; Hebl, James R.; Ilfeld, Brian M.; McCartney, Colin J.L.; Franco, Carlo D.; Hogan, Quinn H.

    2009-01-01

    Brachial plexus blockade is the cornerstone of the peripheral nerve regional anesthesia practice of most anesthesiologists. As part of the American Society of Regional Anesthesia and Pain Medicine’s commitment to providing intensive evidence-based education related to regional anesthesia and analgesia, this article is a complete update of our 2002 comprehensive review of upper extremity anesthesia. The text of the review focuses on (1) pertinent anatomy, (2) approaches to the brachial plexus and techniques that optimize block quality, (4) local anesthetic and adjuvant pharmacology, (5) complications, (6) perioperative issues, and (6) challenges for future research. PMID:19282714

  2. An extreme long-lived relativistic electron enhancement event

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochao

    2015-04-01

    An extreme long-lived intense relativistic electron enhancement event beginning in November 2004 is examined using data from Fengyun-1, POES, GOES, ACE, the Cluster Mission and geomagnetic indices. In this event, the flux of relativistic electrons (>1.6MeV) in the outer zone increased to a very high level in two days, this flux fashion had been running to the end of January 2005. It is an extreme long-lived event. We find that the high-speed solar wind and frequent impulses of solar wind dynamic pressure induced strong long-lasting ULF waves just before the enhancement, and the energetic electron flux enhanced simultaneously. Subsequently, the whistler mode chorus intensified obviously and the relativistic electron flux enhanced rapidly. We suggest that the drift-resonant acceleration by ULF waves enhanced the energetic electrons flux firstly, and local acceleration by chorus accelerated them to relativistic level sequentially.

  3. Nuclei at extreme conditions. A relativistic study

    SciTech Connect

    Afanasjev, Anatoli

    2014-11-14

    The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.

  4. Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet

    PubMed Central

    Kiefer, D.; Yeung, M.; Dzelzainis, T.; Foster, P.S.; Rykovanov, S.G.; Lewis, C.LS.; Marjoribanks, R.S.; Ruhl, H.; Habs, D.; Schreiber, J.; Zepf, M.; Dromey, B.

    2013-01-01

    Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein’s seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil. The mirror structures are shown to shift the frequency of a counter-propagating laser pulse coherently from the infrared to the extreme ultraviolet with an efficiency >104 times higher than in the case of incoherent scattering. Our results elucidate the reflection process of laser-generated electron mirrors and give clear guidance for future developments of a relativistic mirror structure. PMID:23612304

  5. Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet.

    PubMed

    Kiefer, D; Yeung, M; Dzelzainis, T; Foster, P S; Rykovanov, S G; Lewis, C Ls; Marjoribanks, R S; Ruhl, H; Habs, D; Schreiber, J; Zepf, M; Dromey, B

    2013-01-01

    Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil. The mirror structures are shown to shift the frequency of a counter-propagating laser pulse coherently from the infrared to the extreme ultraviolet with an efficiency >10(4) times higher than in the case of incoherent scattering. Our results elucidate the reflection process of laser-generated electron mirrors and give clear guidance for future developments of a relativistic mirror structure. PMID:23612304

  6. Bright subcycle extreme ultraviolet bursts from a single dense relativistic electron sheet.

    PubMed

    Ma, W J; Bin, J H; Wang, H Y; Yeung, M; Kreuzer, C; Streeter, M; Foster, P S; Cousens, S; Kiefer, D; Dromey, B; Yan, X Q; Meyer-ter-Vehn, J; Zepf, M; Schreiber, J

    2014-12-01

    Double-foil targets separated by a low density plasma and irradiated by a petawatt-class laser are shown to be a copious source of coherent broadband radiation. Simulations show that a dense sheet of relativistic electrons is formed during the interaction of the laser with the tenuous plasma between the two foils. The coherent motion of the electron sheet as it transits the second foil results in strong broadband emission in the extreme ultraviolet, consistent with our experimental observations. PMID:25526132

  7. Net Force of an Ideal Conductor on an Element of a Line of Charge Moving With Extreme Relativistic Speed

    ERIC Educational Resources Information Center

    Cawley, Robert

    1978-01-01

    Considers the problem of determining the force on an element of a finite length line of charge moving horizontally with extreme relativistic speed through an evacuated space above an infinite plane ideal conducting surface. (SL)

  8. Megaparsec relativistic jets launched from an accreting supermassive black hole in an extreme spiral galaxy

    SciTech Connect

    Bagchi, Joydeep; Vivek, M.; Srianand, Raghunathan; Gopal-Krishna; Vikram, Vinu; Hota, Ananda; Biju, K. G.; Sirothia, S. K.; Jacob, Joe

    2014-06-20

    The radio galaxy phenomenon is directly connected to mass-accreting, spinning supermassive black holes found in the active galactic nuclei. It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kiloparsec scales form and why they are nearly always launched from the nuclei of bulge-dominated elliptical galaxies and not flat spirals. Here we present the discovery of the giant radio source J2345–0449 (z = 0.0755), a clear and extremely rare counterexample where relativistic jets are ejected from a luminous and massive spiral galaxy on a scale of ∼1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infrared luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity, are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 × 10{sup 8} M {sub ☉}. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection-dominated, magnetized accretion flow at a low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast spinning central black hole. Therefore, J2345–0449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and the formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk-relativistic jet coupling processes.

  9. Towards Extreme Field Physics: Relativistic Optics and Particle Acceleration in the Transparent-Overdense Regime

    NASA Astrophysics Data System (ADS)

    Hegelich, B. Manuel

    2011-10-01

    A steady increase of on-target laser intensity with also increasing pulse contrast is leading to light-matter interactions of extreme laser fields with matter in new physics regimes which in turn enable a host of applications. A first example is the realization of interactions in the transperent-overdense regime (TOR), which is reached by interacting a highly relativistic (a0 >10), ultra high contrast laser pulse [1] with a solid density target, turning it transparent to the laser by the relativistic mass increase of the electrons. Thus, the interactions becomes volumetric, increasing the energy coupling from laser to plasma, facilitating a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration [3], highly efficient ion acceleration in the break-out afterburner regime [4], and the generation of relativistic and forward directed surface harmonics. Experiments at the LANL 130TW Trident laser facility successfully reached the TOR, and show relativistic pulse shaping beyond the Fourier limit, the acceleration of mono-energetic ~40 MeV electron bunches from solid targets, forward directed coherent relativistic high harmonic generation >1 keV Break-Out Afterburner (BOA) ion acceleration of Carbon to >1 GeV and Protons to >100 MeV. Carbon ions were accelerated with a conversion efficiency of >10% for ions >20 MeV and monoenergetic carbon ions with an energy spread of <20%, have been accelerated at up to ~500 MeV, demonstrating 3 out of 4 for key requirements for ion fast ignition. The shown results now approach or exceed the limits set by many applications from ICF diagnostics over ion fast ignition to medical physics. Furthermore, TOR targets traverse a wide range of HEDP parameter space during the interaction ranging from WDM conditions (e.g. brown dwarfs) to energy densities of ~1011 J/cm3 at peak, then dropping back to the underdense but extremely hot parameter range of gamma-ray bursts. Whereas today this regime can

  10. Regional frequency analysis of extreme groundwater levels.

    PubMed

    Fürst, Josef; Bichler, Andrea; Konecny, Franz

    2015-01-01

    Flood risk is generally perceived as being a consequence of surface water inundation. However, large damage is also caused by high groundwater levels. In surface hydrology, statistical frequency analysis is a standard tool to estimate discharge with a given return period or exceedance probability. First, a suitable probability distribution is fit to a series of annual maximum peaks. Second, this distribution is used to determine the discharge corresponding to the desired return period. Where only short series of recorded data are available, the estimates can often be improved by regional frequency analysis (RFA). Unfortunately, there is little information in the literature on analogous approaches for the estimation of extreme groundwater levels. In this contribution, the applicability of l-moments-based RFA for the estimation of extreme groundwater levels is investigated. The main issues specific to groundwater levels are (1) appropriate transformation of the data, (2) criteria for identification of statistically homogeneous regions, (3) consideration of correlation between sites, and (4) choice of distribution function. This study is based on data from more than 1100 observation sites in four shallow Austrian Aquifers with a record length of 10 to 50 years. Results show that homogeneous regions for l-moments-based RFA can be identified covering about one half of the total area of the aquifers. The confidence intervals for the 30- and 100-year return levels can be significantly reduced by RFA. Out of the four investigated distribution functions, none is to be preferred generally. PMID:24903411

  11. Regional Extreme Monthly Precipitation Simulated by NARCCAP RCMs

    SciTech Connect

    Gutowski, William; Arritt, R.; Kawazoe, Sho; Flory, Dave; Takle, Eugene S.; Biner, S.; Caya, Daniel; Jones, Richard; Laprise, Rene; Leung, Lai-Yung R.; Mearns, L. O.; Moufouma-Okia, Wilfran; Nunes, A.; Qian, Yun; Roads, John O.; Sloan, Lisa; Snyder, Mark A.

    2010-12-15

    We analyze the ability of the NARCCAP ensemble of regional climate models to simulate extreme monthly precipitation and its supporting circulation for regions of North America, comparing 18 years of simulations driven by the NCEP-DOE reanalysis with observations. Analysis focuses the wettest 10% of months during the cold half of the year (October-March), when we assume that resolved synoptic circulation governs precipitation. For a coastal California region, the models replicate well the monthly frequency of extremes, the amount of extreme precipitation and the 500 hPa circulation anomaly associated with the extremes. For an Upper Mississippi River Basin region, the models agree with observations in both monthly frequency and magnitude, though not as closely as for coastal California. In addition, simulated circulation anomalies for extreme months are similar to those in observations. Model success appears to result in part from the substantial seasonal variation of extremes, which the models capture well.

  12. Extreme Variables in Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Contreras Peña, Carlos Eduardo

    2015-01-01

    The notion that low- to intermediate-mass young stellar objects (YSOs) gain mass at a constant rate during the early stages of their evolution appears to be challenged by observations of YSOs suffering sudden increases of the rate at which they gain mass from their circumstellar discs. Also, this idea that stars spend most of their lifetime with a low accretion rate and gain most of their final mass during short-lived episodes of high accretion bursts, helps to solve some long-standing problems in stellar evolution. The original classification of eruptive variables divides them in two separate subclasses known as FU Orionis stars (FUors) and EX Lupi stars (EXors). In this classical view FUors are at an early evolutionary stage and are still gaining mass from their parent envelopes, whilst EXors are thought to be older objects only surrounded by an accretion disc. The problem with this classical view is that it excludes younger protostars which have higher accretion rates but are too deeply embedded in circumstellar matter to be observed at optical wavelengths. Optically invisible protostars have been observed to display large variability in the near-infrared. These and some recent discoveries of new eruptive variables, show characteristics that can be attributed to both of the optically-defined subclasses of eruptive variables. The new objects have been proposed to be part of a new class of eruptive variables. However, a more accepted scenario is that in fact the original classes only represent two extremes of the same phenomena. In this sense eruptive variability could be explained as arising from one physical mechanism, i.e. unsteady accretion, where a variation in the parameters of such mechanism can cause the different characteristics observed in the members of this class. With the aim of studying the incidence of episodic accretion among young stellar objects, and to characterize the nature of these eruptive variables we searched for high amplitude variability

  13. Relativistic Electron-Electron Bremsstrahlung in Fusion Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Jia; Kawai, Norio; Kawamura, Takaichi; Maegauchi, Tetsuo; Narumi, Hajime

    1982-05-01

    Transition matrices and differential cross sections for electron-electron bremsstrahlung in relativistic energy region are calculated by the lowest-order perturbation theory of quantum electrodynamics. The bremsstrahlung spectra and emission rates are evaluated for relativistic Maxwellian plasma. The results are discussed in comparison with those obtained by non-relativistic and extreme-relativistic approximations and it is noted that the relativistic effect becomes appreciable above the order of 10 keV for the electron temperature.

  14. Extreme storm activity in North Atlantic and European region

    NASA Astrophysics Data System (ADS)

    Vyazilova, N.

    2010-09-01

    The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.

  15. Near future changes of extremes and compound extremes on the regional scale

    NASA Astrophysics Data System (ADS)

    Sedlmeier, Katrin; Feldmann, Hendrik; Schädler, Gerd

    2013-04-01

    Reliable knowledge of near future changes of extreme and compound extreme events on the regional scale is of great importance for impact studies and planning of adaptation/mitigation strategies. Different types of extremes might intensify each other, e.g. heat waves and droughts via evapotranspiration and heat flux. Compared to projections for the end of the century, the climate change and variation signals for the near future are weaker and more contaminated by to natural variations. On the other hand several studies (e.g. Feldmann et al. [1]) have shown that extremes are likely to undergo more pronounced changes than mean values. To derive reliable estimates of these changes, ensembles of simulations are a useful method since the larger number of data allows for a better estimate of probability density function parameters and higher signal-to-noise ratios which are especially needed for the analysis of extreme events and compound extremes. Furthermore, using ensembles enables an assessment of the uncertainty of the deduced changes. Our work is based on an ensemble of high resolution regional climate simulations with a resolution of 7 km with the COSMO-CLM regional climate model using different global driving data. Our ensemble is enlarged by results from the ENSEMBLES project, thus also including different regional and global driving models. Changes between a control period (1971-200) and the near future (2011-2040) are assessed with a special focus on central Europe. The analysis focuses on extreme events related to temperature and precipitation such as heat and cold waves or dry spells with a subsequent examination of compound extreme events. Compound extreme events are defined as the simultaneous or successive occurrence of two or more extreme events (IPCC Special Report on extreme events, 2012), e.g. the simultaneous occurrence of dry periods and heat waves or cold spells and extreme precipitation. Extremes are expressed in terms of return values and

  16. Regional Scale Analysis of Extremes in an SRM Geoengineering Simulation

    NASA Astrophysics Data System (ADS)

    Muthyala, R.; Bala, G.

    2014-12-01

    Only a few studies in the past have investigated the statistics of extreme events under geoengineering. In this study, a global climate model is used to investigate the impact of solar radiation management on extreme precipitation events on regional scale. Solar constant was reduced by 2.25% to counteract the global mean surface temperature change caused by a doubling of CO2 (2XCO2) from its preindustrial control value. Using daily precipitation rates, extreme events are defined as those which exceed 99.9th percentile precipitation threshold. Extremes are substantially reduced in geoengineering simulation: the magnitude of change is much smaller than those that occur in a simulation with doubled CO2. Regional analysis over 22 Giorgi land regions is also performed. Doubling of CO2 leads to an increase in intensity of extreme (99.9th percentile) precipitation by 17.7% on global-mean basis with maximum increase in intensity over South Asian region by 37%. In the geoengineering simulation, there is a global-mean reduction in intensity of 3.8%, with a maximum reduction over Tropical Ocean by 8.9%. Further, we find that the doubled CO2 simulation shows an increase in the frequency of extremes (>50 mm/day) by 50-200% with a global mean increase of 80%. In contrast, in geo-engineering climate there is a decrease in frequency of extreme events by 20% globally with a larger decrease over Tropical Ocean by 30%. In both the climate states (2XCO2 and geo-engineering) change in "extremes" is always greater than change in "means" over large domains. We conclude that changes in precipitation extremes are larger in 2XCO2 scenario compared to preindustrial climate while extremes decline slightly in the geoengineered climate. We are also investigating the changes in extreme statistics for daily maximum and minimum temperature, evapotranspiration and vegetation productivity. Results will be presented at the meeting.

  17. Multi - Region Analysis of a New Climate Extremes Index

    NASA Astrophysics Data System (ADS)

    Dittus, A. J.; Karoly, D. J.; Lewis, S. C.; Alexander, L. V.

    2014-12-01

    In this study, a new Climate Extremes Index (CEI) is introduced, extending the earlier combined CEI proposed by Karl et al. (1996). It is based on the use of standard extreme indices derived from daily meteorological station data, facilitating the computation of this index and making use of two global gridded extreme indices datasets. The index combines the fraction of area experiencing extreme conditions in daily temperature and daily and annual precipitation, therefore representing a combined measure of extremes. The analysis of this index at the global scale is limited by data availability. In this study, the four continental-scale regions analysed are Europe, North America, Asia and Australia over the period from 1951 to 2010. Additionally, the index is also computed for the entire Northern Hemisphere, corresponding to the first CEI results at the hemispheric scale. Results show statistically significant increases in the percentage area experiencing much above average warm days and nights and much below average cool days and nights for all regions, with the exception of North America for maximum temperature extremes. Increases in the area affected by precipitation extremes are also found for the Northern Hemisphere regions, particularly Europe. This study shows the potential of this new index for climate monitoring and other applications by documenting large-scale changes in the areas experiencing climate extremes. Preliminary detection and attribution results will also be presented using extreme indices computed for the Coupled Model Intercomparison Project Phase 5 climate model simulations (Sillmann et al., 2013). Karl, T. R., R. W. Knight, D. R. Easterling, and R. G. Quayle, 1996: Indices of climate change for the United States. Bull. Amer. Meteor. Soc., 77, 279-292. Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh (2013), Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate, J. Geophys

  18. The Innermost Regions of Relativistic Jets: Wrapping Up the Enigma

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.

    2013-12-01

    What are relativistic jets like within a million Schwarzschild radii of the accreting black hole that powers them? A meeting in Granada, Spain in June 2013, organized by José L. Gómez and his conspirators brought together observers and theorists to survey the current state of observational data and efforts to interpret them. This conference summary reviews the results, insights, arguments, conflicts, and agreements that occurred during five sunny days spent in a windowless room in a hotel at the bottom of the hill that holds the heart of the beautiful city.

  19. Can quantile mapping improve precipitation extremes from regional climate models?

    NASA Astrophysics Data System (ADS)

    Tani, Satyanarayana; Gobiet, Andreas

    2015-04-01

    The ability of quantile mapping to accurately bias correct regard to precipitation extremes is investigated in this study. We developed new methods by extending standard quantile mapping (QMα) to improve the quality of bias corrected extreme precipitation events as simulated by regional climate model (RCM) output. The new QM version (QMβ) was developed by combining parametric and nonparametric bias correction methods. The new nonparametric method is tested with and without a controlling shape parameter (Qmβ1 and Qmβ0, respectively). Bias corrections are applied on hindcast simulations for a small ensemble of RCMs at six different locations over Europe. We examined the quality of the extremes through split sample and cross validation approaches of these three bias correction methods. This split-sample approach mimics the application to future climate scenarios. A cross validation framework with particular focus on new extremes was developed. Error characteristics, q-q plots and Mean Absolute Error (MAEx) skill scores are used for evaluation. We demonstrate the unstable behaviour of correction function at higher quantiles with QMα, whereas the correction functions with for QMβ0 and QMβ1 are smoother, with QMβ1 providing the most reasonable correction values. The result from q-q plots demonstrates that, all bias correction methods are capable of producing new extremes but QMβ1 reproduces new extremes with low biases in all seasons compared to QMα, QMβ0. Our results clearly demonstrate the inherent limitations of empirical bias correction methods employed for extremes, particularly new extremes, and our findings reveals that the new bias correction method (Qmß1) produces more reliable climate scenarios for new extremes. These findings present a methodology that can better capture future extreme precipitation events, which is necessary to improve regional climate change impact studies.

  20. Effect of Relativistic Plasma on Extreme-Ultraviolet Harmonic Emission from Intense Laser-Matter Interactions

    SciTech Connect

    Krushelnick, K.; Dangor, A. E.; Mangles, S. P. D.; Rozmus, W.; Wagner, U.; Habara, H.; Norreys, P. A.; Beg, F. N.; Wei, M. S.; Bochkarev, S. G.; Clark, E. L.; Gopal, A.; Evans, R. G.; Robinson, A. P. L.; Tatarakis, M.; Zepf, M.

    2008-03-28

    Experiments were performed in which intense laser pulses (up to 9x10{sup 19} W/cm{sup 2}) were used to irradiate very thin (submicron) mass-limited aluminum foil targets. Such interactions generated high-order harmonic radiation (greater than the 25th order) which was detected at the rear of the target and which was significantly broadened, modulated, and depolarized because of passage through the dense relativistic plasma. The spectral modifications are shown to be due to the laser absorption into hot electrons and the subsequent sharply increasing relativistic electron component within the dense plasma.

  1. Regional frequency analysis of extreme precipitation for Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Forestieri, Angelo; Blenkinsop, Stephen; Fowler, Hayley; Lo Conti, Francesco; Noto, Leonardo

    2016-04-01

    The analysis of extreme precipitation has always been included among most relevant hydrological applications because of the several important activities linked to the availability of tools for the estimation of extreme rainfall quantiles. These activities include the design of hydraulic civil structures and the evaluation and management of hydraulic and hydrological risk. In this study a frequency analysis of annual maxima precipitation measurements has been carried out for the area of Sicily (Italy). A typical hierarchical regional approach has been adopted for the parameter estimation procedure based on the L-moments method. The identification of homogeneous regions within the procedure has been pursued with a data driven procedure constituted by a principal component analysis of an ensemble of selected auxiliary variables, and a K-means cluster analysis algorithm. Auxiliary variables comprise meteo-climatic information and a representation of the average seasonal distribution of intense events. Results have been evaluated by means of a Monte Carlo experiment based on the comparison between at-site and regional fitted frequency distributions. Moreover, results have been compared with previous analyses performed for the same area. The study provides an updated tool for the modelling of extreme precipitation for the area of Sicily (Italy), with different features respect to previous tools both in terms of definition of homogeneous zones and in terms of parameters of the frequency distribution. Meteo-climatic information and the seasonality of extreme events retrieved from the dataset has been proficuously exploited in the analysis.

  2. Estimating temporal changes in extreme rainfall in Sicily Region (Italy)

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Brunella; Aronica, Giuseppe

    2016-04-01

    An intensification of extreme rainfall events have characterized several areas of peninsular and insular Italy since the early 2000s, suggesting an upward ongoing trend likely driven by climate change. In the present study temporal changes in 1-, 3-, 6-, 12- and 24-hour annual maxima rainfall series from more than 200 sites in Sicily region (Italy) are examined. A regional study is performed in order to reduce the uncertainty in change detection related to the limited length of the available records of extreme rainfall series. More specifically, annual maxima series are treated according to a regional flood index - type approach to frequency analysis, by assuming stationarity on a decadal time scale. First a cluster analysis using at-site characteristics is used to determine homogeneous rainfall regions. Then, potential changes in regional L-moment ratios are analyzed using a 10-year moving window. Furthermore, the shapes of regional growth curves, derived by splitting the records into separate decades, are compared. In addition, a jackknife procedure is used to assess uncertainty in the fitted growth curves and to identify significant trends in quantile estimates. Results reveal that, despite L-moment ratios show a general decreasing trend and that growth curves corresponding to the last decade (2000-2009) are usually less steep than the ones of the previous periods, rainfall quantile estimates have increased during the 2000s due to a large increase in regional average median, mainly in Western Sicily.

  3. Regional variability of extreme rainfall events in Romania

    NASA Astrophysics Data System (ADS)

    Breza, Traian; Cheval, Sorin; Baciu, Madalina; Dumitrescu, Alexandru; Antonescu, Bogdan; Burcea, Sorin

    2010-05-01

    Extreme rainfall events triggering flash floods occur quite often over the territory of Romania, leaving behind significant damages and casualties. This research is a contribution to the FP6 Project HYDRATE (Hydrometeorological data resources and technologies for effective flash flood forecasting). It aims at investigating the spatial patterns of the extreme rainfall events in Romania, based on the characteristics of their intensity-duration-frequency (IDF). The study uses the peak-over-threshold concept, which basically consists of analyzing all precipitation amounts above certain thresholds selected for different durations. The data come from 60 weather stations. They cover the warm interval (generally, April-October, but less extended for mountain stations), and at least 30 years-datasets have been used. The regional differences were retrieved from the IDF curves and they were also approached by GIS-based mapping the intensities corresponding to sub-daily durations (5 - 180 min.) and to different return periods (10,50, 100 years). The results highlight significant regional variations, that improve the understanding of the impact of the extreme rainfall events and the consequent flash floods on the natural and social environment. At the same time, overlapping the extreme rainfall data and land cover information, we have empahsized the hazard potential of the precipitation events.

  4. Peculiar pitch angle distribution of relativistic electrons in the inner radiation belt and slot region

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Li, X.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D. M.; Kanekal, S. G.

    2014-04-01

    The relativistic electrons in the inner radiation belt have received little attention in the past due to sparse measurements and unforgiving contamination from the inner belt protons. The high-quality measurements of the Magnetic Electron Ion Spectrometer instrument onboard Van Allen Probes provide a great opportunity to investigate the dynamics of relativistic electrons in the low L region. In this letter, we report the newly unveiled pitch angle distribution (PAD) of the energetic electrons with minima at 90° near the magnetic equator in the inner belt and slot region. Such a PAD is persistently present throughout the inner belt and appears in the slot region during storms. One hypothesis for 90° minimum PADs is that off 90° electrons are preferentially heated by chorus waves just outside the plasmapause (which can be at very low L during storms) and/or fast magnetosonic waves which exist both inside and outside the plasmasphere.

  5. Regional Frequency and Uncertainty Analysis of Extreme Precipitation in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mortuza, M. R.; Demissie, Y.; Li, H. Y.

    2014-12-01

    Increased frequency of extreme precipitations, especially those with multiday durations, are responsible for recent urban floods and associated significant losses of lives and infrastructures in Bangladesh. Reliable and routinely updated estimation of the frequency of occurrence of such extreme precipitation events are thus important for developing up-to-date hydraulic structures and stormwater drainage system that can effectively minimize future risk from similar events. In this study, we have updated the intensity-duration-frequency (IDF) curves for Bangladesh using daily precipitation data from 1961 to 2010 and quantified associated uncertainties. Regional frequency analysis based on L-moments is applied on 1-day, 2-day and 5-day annual maximum precipitation series due to its advantages over at-site estimation. The regional frequency approach pools the information from climatologically similar sites to make reliable estimates of quantiles given that the pooling group is homogeneous and of reasonable size. We have used Region of influence (ROI) approach along with homogeneity measure based on L-moments to identify the homogenous pooling groups for each site. Five 3-parameter distributions (i.e., Generalized Logistic, Generalized Extreme value, Generalized Normal, Pearson Type Three, and Generalized Pareto) are used for a thorough selection of appropriate models that fit the sample data. Uncertainties related to the selection of the distributions and historical data are quantified using the Bayesian Model Averaging and Balanced Bootstrap approaches respectively. The results from this study can be used to update the current design and management of hydraulic structures as well as in exploring spatio-temporal variations of extreme precipitation and associated risk.

  6. Regional Frequency Analysis of extreme rainfall events, Tuscany (Italy)

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Chiarello, V.; Rossi, G.

    2014-12-01

    The assessment of extreme hydrological events at sites characterized by short time series or where no data record exists has been mainly obtained by regional models. Regional frequency analysis based on the index variable procedure is implemented here to describe the annual maximum of rainfall depth of short durations in Tuscany region. The probability distribution TCEV - Two Component Extreme Value is used in the frame of the procedure for the parameters estimation based on a three levels hierarchical approach. The methodology deal with the delineation of homogeneous regions, the identification of a robust regional frequency distribution and the assessment of the scale factor, i.e. the index rainfall. The data set includes the annual maximum of daily rainfall of 351 gauge stations with at least 30 years of records, in the period 1916 - 2012, and the extreme rainfalls of short duration, 1 hour and 3, 6, 12, 24 hours. Different subdivisions hypotheses have been verified. A four regions subdivision, coincident with four subregions, which takes into account the orography, the geomorphological and climatic peculiarities of the Tuscany region, has been adopted. Particularly, for testing the regional homogeneity, the cumulate frequency distributions of the observed skewness and variation coefficients of the recorded times series, are compared with the theoretical frequency distribution obtained through a Monte Carlo technique. The related L-skewness and L-variation coefficients are also examined. The application of the Student t -test and the Wilcoxon test for the mean, as well as the χ2 was also performed. Further tests of subdivision hypotheses have been made through the application of discordancy D and heterogeneity H tests and the analysis of the observed and the theoretical TCEV model growth curves. For each region the daily rainfall growth curve has been estimated. The growth curves for the hourly duration have been estimated when the daily rainfall growth curve

  7. Detecting overlapping instances in microscopy images using extremal region trees.

    PubMed

    Arteta, Carlos; Lempitsky, Victor; Noble, J Alison; Zisserman, Andrew

    2016-01-01

    In many microscopy applications the images may contain both regions of low and high cell densities corresponding to different tissues or colonies at different stages of growth. This poses a challenge to most previously developed automated cell detection and counting methods, which are designed to handle either the low-density scenario (through cell detection) or the high-density scenario (through density estimation or texture analysis). The objective of this work is to detect all the instances of an object of interest in microscopy images. The instances may be partially overlapping and clustered. To this end we introduce a tree-structured discrete graphical model that is used to select and label a set of non-overlapping regions in the image by a global optimization of a classification score. Each region is labeled with the number of instances it contains - for example regions can be selected that contain two or three object instances, by defining separate classes for tuples of objects in the detection process. We show that this formulation can be learned within the structured output SVM framework and that the inference in such a model can be accomplished using dynamic programming on a tree structured region graph. Furthermore, the learning only requires weak annotations - a dot on each instance. The candidate regions for the selection are obtained as extremal region of a surface computed from the microscopy image, and we show that the performance of the model can be improved by considering a proxy problem for learning the surface that allows better selection of the extremal regions. Furthermore, we consider a number of variations for the loss function used in the structured output learning. The model is applied and evaluated over six quite disparate data sets of images covering: fluorescence microscopy, weak-fluorescence molecular images, phase contrast microscopy and histopathology images, and is shown to exceed the state of the art in performance. PMID:25980675

  8. Relating Regional Arctic Sea Ice and climate extremes over Europe

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick

    2016-04-01

    The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number

  9. Relativistic frequency upshift to the extreme ultraviolet regime using self-induced oscillatory flying mirrors.

    PubMed

    Kim, I Jong; Pae, Ki Hong; Kim, Chul Min; Kim, Hyung Taek; Yun, Hyeok; Yun, Sang Jae; Sung, Jae Hee; Lee, Seong Ku; Yoon, Jin Woo; Yu, Tae Jun; Jeong, Tae Moon; Nam, Chang Hee; Lee, Jongmin

    2012-01-01

    Coherent short-wavelength radiation from laser-plasma interactions is of increasing interest in disciplines including ultrafast biomolecular imaging and attosecond physics. Using solid targets instead of atomic gases could enable the generation of coherent extreme ultraviolet radiation with higher energy and more energetic photons. Here we present the generation of extreme ultraviolet radiation through coherent high-harmonic generation from self-induced oscillatory flying mirrors--a new-generation mechanism established in a long underdense plasma on a solid target. Using a 30-fs, 100-TW Ti:sapphire laser, we obtain wavelengths as short as 4.9 nm for an optimized level of amplified spontaneous emission. Particle-in-cell simulations show that oscillatory flying electron nanosheets form in a long underdense plasma, and suggest that the high-harmonic generation is caused by reflection of the laser pulse from electron nanosheets. We expect this extreme ultraviolet radiation to be valuable in realizing a compact X-ray instrument for research in biomolecular imaging and attosecond physics. PMID:23187631

  10. Relativistic frequency upshift to the extreme ultraviolet regime using self-induced oscillatory flying mirrors

    PubMed Central

    Kim, I Jong; Pae, Ki Hong; Kim, Chul Min; Kim, Hyung Taek; Yun, Hyeok; Yun, Sang Jae; Sung, Jae Hee; Lee, Seong Ku; Yoon, Jin Woo; Yu, Tae Jun; Jeong, Tae Moon; Nam, Chang Hee; Lee, Jongmin

    2012-01-01

    Coherent short-wavelength radiation from laser–plasma interactions is of increasing interest in disciplines including ultrafast biomolecular imaging and attosecond physics. Using solid targets instead of atomic gases could enable the generation of coherent extreme ultraviolet radiation with higher energy and more energetic photons. Here we present the generation of extreme ultraviolet radiation through coherent high-harmonic generation from self-induced oscillatory flying mirrors—a new-generation mechanism established in a long underdense plasma on a solid target. Using a 30-fs, 100-TW Ti:sapphire laser, we obtain wavelengths as short as 4.9 nm for an optimized level of amplified spontaneous emission. Particle-in-cell simulations show that oscillatory flying electron nanosheets form in a long underdense plasma, and suggest that the high-harmonic generation is caused by reflection of the laser pulse from electron nanosheets. We expect this extreme ultraviolet radiation to be valuable in realizing a compact X-ray instrument for research in biomolecular imaging and attosecond physics. PMID:23187631

  11. Early Benefits of Mitigation in Risk of Regional Climate Extremes

    NASA Astrophysics Data System (ADS)

    Ciavarella, Andrew; Stott, Peter; Lowe, Jason

    2015-04-01

    Large differences in climate outcomes are projected over the coming century depending on whether greenhouse gas emissions continue on a business as usual path or are substantially reduced following an aggressive mitigation strategy. However, it has previously been claimed that it will take many decades for there to be any significant difference between paths of aggressive mitigation and business as usual with the emergence of differences only seen towards the middle of the century. Here we show that important differences in our exposure to risk of climate extremes in many land regions emerges much more quickly. Without substantial mitigation, in many regions of the world, extreme (one in 20-year) seasonal, regional near surface air temperatures are found to have become more than twice as likely within only 15 years (i.e. by 2030). Therefore our exposure to climate risk is reduced substantially and rapidly with aggressive mitigation. This demonstrates that the benefits of mitigation are realised rapidly and it is not necessary to wait until the middle of the century as has previously been claimed.

  12. Projections of African drought extremes in CORDEX regional climate simulations

    NASA Astrophysics Data System (ADS)

    Gbobaniyi, Emiola; Nikulin, Grigory; Jones, Colin; Kjellström, Erik

    2013-04-01

    We investigate trends in drought extremes for different climate regions of the African continent over a combined historical and future period 1951-2100. Eight CMIP5 coupled atmospheric global climate models (CanESM2, CNRM-CM5, HadGEM2-ES, NorESM1-M, EC-EARTH, MIROC5, GFDL-ESM2M and MPI-ESM-LR) under two forcing scenarios, the relative concentration pathways (RCP) 4.5 and 8.5, with spatial resolution varying from about 1° to 3° are downscaled to 0.44° resolution by the Rossby Centre (SMHI) regional climate model RCA4. We use data from the ensuing ensembles of CORDEX-Africa regional climate simulations to explore three drought indices namely: standardized precipitation index (SPI), moisture index (MI) and difference in precipitation and evaporation (P-E). Meteorological and agricultural drought conditions are assessed in our analyses and a climate change signal is obtained for the SPI by calculating gamma functions for future SPI with respect to a baseline present climate. Results for the RCP4.5 and RCP8.5 scenarios are inter-compared to assess uncertainties in the future projections. We show that there is a pronounced sensitivity to the choice of forcing GCM which indicates that assessments of future drought conditions in Africa would benefit from large model ensembles. We also note that the results are sensitive to the choice of drought index. We discuss both spatial and temporal variability of drought extremes for different climate zones of Africa and the importance of the ensemble mean. Our study highlights the usefulness of CORDEX simulations in identifying possible future impacts of climate at local and regional scales.

  13. Regional interdisciplinary paleoflood approach to assess extreme flood potential

    USGS Publications Warehouse

    Jarrett, R.D.; Tomlinson, E.M.

    2000-01-01

    In the past decade, there has been a growing interest of dam safety officials to incorporate a risk-based analysis for design-flood hydrology. Extreme or rare floods, with probabilities in the range of about 10-3 to 10-7 chance of occurrence per year, are of continuing interest to the hydrologic and engineering communities for purposes of planning and design of structures such as dams [National Research Council, 1988]. The National Research Council stresses that as much information as possible about floods needs to be used for evaluation of the risk and consequences of any decision. A regional interdisciplinary paleoflood approach was developed to assist dam safety officials and floodplain managers in their assessments of the risk of large floods. The interdisciplinary components included documenting maximum paleofloods and a regional analyses of contemporary extreme rainfall and flood data to complement a site-specific probable maximum precipitation study [Tomlinson and Solak, 1997]. The cost-effective approach, which can be used in many other hydrometeorologic settings, was applied to Elkhead Reservoir in Elkhead Creek (531 km2) in northwestern Colorado; the regional study area was 10,900 km2. Paleoflood data using bouldery flood deposits and noninundation surfaces for 88 streams were used to document maximum flood discharges that have occurred during the Holocene. Several relative dating methods were used to determine the age of paleoflood deposits and noninundation surfaces. No evidence of substantial flooding was found in the study area. The maximum paleoflood of 135 m3 s-1 for Elkhead Creek is about 13% of the site-specific probable maximum flood of 1020 m3 s-1. Flood-frequency relations using the expected moments algorithm, which better incorporates paleoflood data, were developed to assess the risk of extreme floods. Envelope curves encompassing maximum rainfall (181 sites) and floods (218 sites) were developed for northwestern Colorado to help define

  14. Extreme events evaluation over African cities with regional climate simulations

    NASA Astrophysics Data System (ADS)

    Bucchignani, Edoardo; Mercogliano, Paola; Simonis, Ingo; Engelbrecht, Francois

    2013-04-01

    The warming of the climate system in recent decades is evident from observations and is mainly related to the increase of anthropogenic greenhouse gas concentrations (IPCC, 2012). Given the expected climate change conditions on the African continent, as underlined in different publications, and their associated socio-economic impacts, an evaluation of the specific effects on some strategic African cities on the medium and long-term is of crucial importance with regard to the development of adaptation strategies. Assessments usually focus on averages climate properties rather than on variability or extremes, but often these last ones have more impacts on the society than averages values. Global Coupled Models (GCM) are generally used to simulate future climate scenarios as they guarantee physical consistency between variables; however, due to the coarse spatial resolution, their output cannot be used for impact studies on local scales, which makes necessary the generation of higher resolution climate change data. Regional Climate Models (RCM) describe better the phenomena forced by orography or by coastal lines, or that are related to convection. Therefore they can provide more detailed information on climate extremes that are hard to study and even harder to predict because they are, by definition, rare and obey different statistical laws. The normal bias of the RCM to represent the local climatology is reduced using adequate statistical techniques based on the comparison of the simulated results with long observational time series. In the framework of the EU-FP7 CLUVA (Climate Change and Urban Vulnerability in Africa) project, regional projections of climate change at high resolution (about 8 km), have been performed for selected areas surrounding five African cities. At CMCC, the regional climate model COSMO-CLM has been employed: it is a non-hydrostatic model. For each domain, two simulations have been performed, considering the RCP4.5 and RCP8.5 emission

  15. Transitions between refrigeration regions in extremely short quantum cycles.

    PubMed

    Feldmann, Tova; Kosloff, Ronnie

    2016-05-01

    The relation between the geometry of refrigeration cycles and their performance is explored. The model studied is based on a coupled spin system. Small cycle times, termed sudden refrigerators, develop coherence and inner friction. We explore the interplay between coherence and energy of the working medium employing a family of sudden cycles with decreasing cycle times. At the point of maximum coherence the cycle changes geometry. This region of cycle times is characterized by a dissipative resonance where heat is dissipated both to the hot and cold baths. We rationalize the change of geometry of the cycle as a result of a half-integer quantization which maximizes coherence. From this point on, increasing or decreasing the cycle time, eventually leads to refrigeration cycles. The transition point between refrigerators and short circuit cycles is characterized by a transition from finite to singular dynamical temperature. Extremely short cycle times reach a universal limit where all cycles types are equivalent. PMID:27300872

  16. Transitions between refrigeration regions in extremely short quantum cycles

    NASA Astrophysics Data System (ADS)

    Feldmann, Tova; Kosloff, Ronnie

    2016-05-01

    The relation between the geometry of refrigeration cycles and their performance is explored. The model studied is based on a coupled spin system. Small cycle times, termed sudden refrigerators, develop coherence and inner friction. We explore the interplay between coherence and energy of the working medium employing a family of sudden cycles with decreasing cycle times. At the point of maximum coherence the cycle changes geometry. This region of cycle times is characterized by a dissipative resonance where heat is dissipated both to the hot and cold baths. We rationalize the change of geometry of the cycle as a result of a half-integer quantization which maximizes coherence. From this point on, increasing or decreasing the cycle time, eventually leads to refrigeration cycles. The transition point between refrigerators and short circuit cycles is characterized by a transition from finite to singular dynamical temperature. Extremely short cycle times reach a universal limit where all cycles types are equivalent.

  17. Ne-like ion lasers in the extreme ultraviolet region

    SciTech Connect

    Li, Y.; Pretzler, G.; Fill, E.E.

    1995-11-01

    We report strong {ital J}=0--1, 3{ital p}-3{ital s} lasing in Ne-like scandium, calcium, potassium, and chlorine at wavelengths ranging from 35.3 nm in scandium to 52.9 nm in chlorine. The experiments were carried out with the ASTERIX IV iodine laser using a 15% prepulse 5.2 ns before the main pulse. These results extend the range of laser plasma x-ray lasers into the extreme ultraviolet region. Gain lengths between 7 and 11 were measured for the different lines. The 38.3-nm laser in calcium lased at an intensity as low as 5{times}10{sup 12} W/cm{sup {minus}2}.

  18. Simulating an Extreme Wind Event in a Topographically Complex Region

    NASA Astrophysics Data System (ADS)

    Lennard, Christopher

    2014-07-01

    Complex topography modifies local weather characteristics such as air temperature, rainfall and airflow within a larger regional extent. The Cape Peninsula around Cape Town, South Africa, is a complex topographical feature responsible for the modification of rainfall and wind fields largely downstream of the Peninsula. During the passage of a cold front on 2 October 2002, an extreme wind event associated with tornado-like damage occurred in the suburb of Manenberg, however synoptic conditions did not indicate convective activity typically associated with a tornado. A numerical regional climate model was operated at very high horizontal resolution (500 m) to investigate the dynamics of the event. The model simulated an interaction between the topography of the peninsula and an airflow direction change associated with the passage of the cold front. A small region of cyclonic circulation was simulated over Manenberg that was embedded in an area of negative vorticity and a leeward gravity wave. The feature lasted 14 min and moved in a north to south direction. Vertically, it was not evident above 220 m. The model assessment describes this event as a shallow but intense cyclonic vortex generated in the lee of the peninsula through an interaction between the peninsula and a change in wind direction as the cold front made landfall. The model did not simulate wind speeds associated with the observed damage suggesting that the horizontal grid resolution ought to be at the scale of the event to more completely understand such microscale airflow phenomena.

  19. Regional Annual Extreme Precipitation Modeling: Choose Your Parents Wisely.

    NASA Astrophysics Data System (ADS)

    Fennessey, N. M.

    2001-05-01

    A great deal of research has been invested in developing a better understanding of the characteristics of and descriptive models of annual extreme precipitation. Some advocate the analysis of the annual maximum series (AMS) others advocate the analysis of partial duration series (PDS). The former is easy to generate, the latter provides more information, which is advantageous for better estimation. Both schools of thought seem to agree that the generalized extreme value (GEV) distribution is a good choice for the annual extreme precipitation event. Recently published work suggests that the generalized Pareto distribution (GPA) is a good choice for generating a PDS because of its analytical link with the GEV. There are, however, two well-recognized disadvantages to using the GPA for this purpose. The analyst must specify both a sampling threshold/lower-bound and a minimum time between peaks to create an acceptable PDS. Using L-moment diagrams and regional frequency analysis, a paper presented at the 1998 Spring AGU meeting suggests that daily precipitation observed in the northeast U.S. is much better described by a two parameter gamma distribution than the three parameter GPA. The 116 NOAA observatories used have periods-of-record which range from 15 to 60 complete years of no missing daily data. The observed AMS in this region is well described by a GEV. In the present work, using the L-moment estimators developed from these daily observations, serially independent gamma distributed, three parameter Pearson Type III (PE3) distributed and three parameter GPA distributed quantiles are generated for a daily period-of-record equal to that of each parent NOAA observatory. No efforts are made to specify a GPA lower bound, but many synthetic days of rainfall have negative values. The maximum value within each 365-day simulation year is retained to create three synthetic AMS, each with a different parent. L-moment diagrams of the observed, gamma day, PE3 day and GPA day

  20. Atmospheric Extreme Events in the North Atlantic Region

    NASA Astrophysics Data System (ADS)

    Franzke, C.

    2012-04-01

    An important part of European weather and climate are storms. European winter storms cause economic damage and insurance losses on the order of billions of Euro per year. European winter storms rank as the second highest cause of global natural catastrophe insurance loss. Many of these hazard events are not independent; for instance, severe storms can occur in trains of storms. Recent examples of such subsequently occurring storms include January 2008 (Paula and Resi) and March 2008 (Emma, Johanna and Kirsten). Each of these trains of storms caused damages on the order of ~€1bn. Extreme value statistics are based on the premise that extreme events are iid but this is rarely the case in natural systems where extreme events tend to cluster. Thus, no account is taken of memory and correlation that characterise many natural time series; this fundamentally limits our ability to forecast and to estimate return periods of extreme events. In my presentation I will discuss two possible causes of this clustering: (i) The propensity of extreme events to depend on large-scale circulation regimes and (ii) the long-range correlation properties of surface windspeeds enhances the likelihood of extreme events to cluster. These two characteristics affect the return periods of atmospheric extreme events and thus insurance pricing.

  1. Interference in multilayer relativistic mirrors

    NASA Astrophysics Data System (ADS)

    Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Babaei, Javad; Taghipour, Meisam; Mohammadzadeh, Zahra

    2015-10-01

    In this paper, reflection coefficient of a relativistic ultra-thin electron multilayer is calculated using electromagnetic interference procedures. The relativistic electron layers are assumed to be formed by nonlinear plasma wake waves that constitute the electron density cusps. It is shown that the interference between successive relativistic mirrors is restricted by the condition, τ p ≫ ( 2 γ 0 ) 5 / 2 / ω p 0 , where τp is the laser pulse duration. The results showed that tailoring the pulse amplitude, incident wave frequency value, incidence angle, and plasma density leads to increasing reflection coefficient a few orders of magnitudes. This constructive interference condition can be used for increasing conversion efficiency in the reflected energy from relativistic mirrors for the purpose of generating ultra-short coherence pulses in the extreme ultraviolet and x-ray regions. We also performed reflection from relativistic thin electron layers using relativistic 1D3V electromagnetic particle-in-cell (PIC) simulation. It was found that the results of PIC simulation are in agreement with analytical considerations.

  2. A Bayesian Hierarchical Approach to Regional Frequency Analysis of Extremes

    NASA Astrophysics Data System (ADS)

    Renard, B.

    2010-12-01

    Rainfall and runoff frequency analysis is a major issue for the hydrological community. The distribution of hydrological extremes varies in space and possibly in time. Describing and understanding this spatiotemporal variability are primary challenges to improve hazard quantification and risk assessment. This presentation proposes a general approach based on a Bayesian hierarchical model, following previous work by Cooley et al. [2007], Micevski [2007], Aryal et al. [2009] or Lima and Lall [2009; 2010]. Such a hierarchical model is made up of two levels: (1) a data level modeling the distribution of observations, and (2) a process level describing the fluctuation of the distribution parameters in space and possibly in time. At the first level of the model, at-site data (e.g., annual maxima series) are modeled with a chosen distribution (e.g., a GEV distribution). Since data from several sites are considered, the joint distribution of a vector of (spatial) observations needs to be derived. This is challenging because data are in general not spatially independent, especially for nearby sites. An elliptical copula is therefore used to formally account for spatial dependence between at-site data. This choice might be questionable in the context of extreme value distributions. However, it is motivated by its applicability in spatial highly dimensional problems, where the joint pdf of a vector of n observations is required to derive the likelihood function (with n possibly amounting to hundreds of sites). At the second level of the model, parameters of the chosen at-site distribution are then modeled by a Gaussian spatial process, whose mean may depend on covariates (e.g. elevation, distance to sea, weather pattern, time). In particular, this spatial process allows estimating parameters at ungauged sites, and deriving the predictive distribution of rainfall/runoff at every pixel/catchment of the studied domain. An application to extreme rainfall series from the French

  3. Does Nudging Squelch the Extremes in Regional Climate Modeling?

    EPA Science Inventory

    An important question in regional climate downscaling is whether to constrain (nudge) the interior of the limited-area domain toward the larger-scale driving fields. Prior research has demonstrated that interior nudging can increase the skill of regional climate predictions origin...

  4. Relativistic electron flux dropouts in the outer radiation belt associated with corotating interaction regions

    NASA Astrophysics Data System (ADS)

    Yuan, C.-J.; Zong, Q.-G.; Wan, W.-X.; Zhang, H.; Du, A.-M.

    2015-09-01

    Understanding how the relativistic electron fluxes drop out in the outer radiation belt under different conditions is of great importance. To investigate which mechanisms may affect the dropouts under different solar wind conditions, 1.5-6.0 MeV electron flux dropout events associated with 223 corotating interaction regions (CIRs) from 1994 to 2003 are studied using the observations of Solar, Anomalous, Magnetospheric Particle Explorer satellite. According to the superposed epoch analysis, it is found that high solar wind dynamic pressure with the peak median value of about 7 nPa is corresponding to the dropout of the median of the radiation belt content (RBC) index to 20% of the level before stream interface arrival, whereas low dynamic pressure with the peak median value of about 3 nPa is related to the dropout of the median of RBC index to 40% of the level before stream interface arrival. Furthermore, the influences of Russell-McPherron effect with respect to interplanetary magnetic field orientation on dropouts are considered. It is pointed out that under positive Russell-McPherron effect (+RM effect) condition, the median of RBC index can drop to 23% of the level before stream interface arrival, while for negative Russell-McPherron effect (-RM effect) events, the median of RBC index only drops to 37% of the level before stream interface arrival. From the evolution of phase space density profiles, the effect of +RM on dropouts can be through nonadiabatic loss.

  5. On the design of experiments for the study of extreme field limits in the ultra-relativistic interaction of electromagnetic waves with plasmas

    NASA Astrophysics Data System (ADS)

    Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg

    2011-06-01

    The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.

  6. Seasonal and regional variations in extreme precipitation event frequency using CMIP5

    NASA Astrophysics Data System (ADS)

    Janssen, E.; Sriver, R. L.; Wuebbles, D. J.; Kunkel, K. E.

    2016-05-01

    Understanding how the frequency and intensity of extreme precipitation events are changing is important for regional risk assessments and adaptation planning. Here we use observational data and an ensemble of climate change model experiments (from the Coupled Model Intercomparison Project Phase 5 (CMIP5)) to examine past and potential future seasonal changes in extreme precipitation event frequency over the United States. Using the extreme precipitation index as a metric for extreme precipitation change, we find key differences between models and observations. In particular, the CMIP5 models tend to overestimate the number of spring events and underestimate the number of summer events. This seasonal shift in the models is amplified in projections. These results provide a basis for evaluating climate model skill in simulating observed seasonality and changes in regional extreme precipitation. Additionally, we highlight key sources of variability and uncertainty that can potentially inform regional impact analyses and adaptation planning.

  7. The Climatology of Climate Extremes in the World's Major Growing Regions

    NASA Astrophysics Data System (ADS)

    Troy, T.; Zhu, X.

    2015-12-01

    A stable food supply is increasingly important as global populations grow and climate variability and extremes affect crop yields. It is therefore critical to quantify the occurrence of extremes in major growing regions globally to understand the vulnerability of the global food supply to climate. First, we grid the GHCN historical climate data and evaluate the effect of gridding on estimation of agriculturally relevant climate extremes, such as heat waves, consecutive dry days, and precipitation intensity. We find that the differences between gridded indices and the raw station indices are small, mostly less than 10%. We then evaluate the climatology of climate extremes and the probability of concurrent extremes, both within one growing region and across multiple regions globally. We find that the correlation of two precipitation or temperature related indices are quite strong, such that the probability of another extreme occurring increases given the occurrence of one extreme. These results provide estimations of the global food supply's vulnerability to climate variability and extremes, which is critical for planning in the coming decades with projections of more frequent and more intense climate extremes.

  8. Modeling intersite dependence for regional frequency analysis of extreme marine events

    NASA Astrophysics Data System (ADS)

    Weiss, Jérôme; Bernardara, Pietro; Benoit, Michel

    2014-07-01

    The duration of observation at a site of interest is generally too low to reliably estimate marine extremes. Regional frequency analysis (RFA), by exploiting the similarity between sites, can help to reduce uncertainties inherent to local analyses. Extreme observations in a homogeneous region are especially assumed to follow a common regional distribution, up to a local index. The regional pooling method, by gathering observations from different sites into a regional sample, can be employed to estimate the regional distribution. However, such a procedure may be highly affected by intersite dependence in the regional sample. This paper derives a theoretical model of intersite dependence, dedicated to the regional pooling method in a "peaks over threshold" framework. This model expresses the tendency of sites to display a similar behavior during a storm generating extreme observations, by describing both the storm propagation in the region and the storm intensity. The proposed model allows the assessment of (i) the regional effective duration of the regional sample and (ii) different regional hazards, e.g., return periods of storms. An application to the estimation of extreme significant wave heights from the numerical sea-state database ANEMOC-2 is provided, where different patterns of regional dependence are highlighted.

  9. Hyperdeformation in the cranked relativistic mean field theory: The Z=40-58 region of the nuclear chart

    SciTech Connect

    Afanasjev, A. V.; Abusara, H.

    2008-07-15

    The systematic investigation of hyperdeformation (HD) at high spin in the Z=40-58 region of the nuclear chart was performed in the framework of the cranked relativistic mean-field theory. The properties of the moments of inertia of the HD bands, the role of the single-particle and necking degrees of freedom at HD, the spins at which the HD bands become yrast, the possibility to observe discrete HD bands, and so on are discussed in detail.

  10. Precipitation extremes in the Yangtze River Basin, China: regional frequency and spatial-temporal patterns

    NASA Astrophysics Data System (ADS)

    Chen, Yongqin David; Zhang, Qiang; Xiao, Mingzhong; Singh, Vijay P.; Leung, Yee; Jiang, Luguang

    2014-05-01

    Regional frequency analysis and spatial-temporal patterns of precipitation extremes are investigated based on daily precipitation data covering 1960-2009 using the index-flood L-moments method together with some advanced statistical tests and spatial analysis techniques. The results indicate that: (1) the entire Yangtze River basin can be divided into six homogeneous regions in terms of extreme daily precipitation index. Goodness-of-fit test indicates that Pearson type III (PE3, three parameters), general extreme-value (GEV, three parameters), and general normal (GNO, three parameters) perform well in fitting regional precipitation extremes; (2) the regional growth curves for each homogeneous region with 99 % error bands show that the quantile estimates are reliable enough and can be used when return periods are less than 100 years, and the results indicate that extreme precipitation events are highly probable to occur in regions V and VI, and hence higher risk of floods and droughts; and (3) spatial patterns of annual extreme daily precipitation with return period of 20 years indicate that precipitation amount increases gradually from the upper to the lower Yangtze River basin, showing higher risks of floods and droughts in the middle and lower Yangtze River basin, and this result is in good agreement with those derived from regional growth curves.

  11. Regional extreme rainfalls observed globally with 17 years of the Tropical Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Takayabu, Yukari; Hamada, Atsushi; Mori, Yuki; Murayama, Yuki; Liu, Chuntao; Zipser, Edward

    2015-04-01

    While extreme rainfall has a huge impact upon human society, the characteristics of the extreme precipitation vary from region to region. Seventeen years of three dimensional precipitation measurements from the space-borne precipitation radar equipped with the Tropical Precipitation Measurement Mission satellite enabled us to describe the characteristics of regional extreme precipitation globally. Extreme rainfall statistics are based on rainfall events defined as a set of contiguous PR rainy pixels. Regional extreme rainfall events are defined as those in which maximum near-surface rainfall rates are higher than the corresponding 99.9th percentile in each 2.5degree x2.5degree horizontal resolution grid. First, regional extreme rainfall is characterized in terms of its intensity and event size. Regions of ''intense and extensive'' extreme rainfall are found mainly over oceans near coastal areas and are likely associated with tropical cyclones and convective systems associated with the establishment of monsoons. Regions of ''intense but less extensive'' extreme rainfall are distributed widely over land and maritime continents, probably related to afternoon showers and mesoscale convective systems. Regions of ''extensive but less intense'' extreme rainfall are found almost exclusively over oceans, likely associated with well-organized mesoscale convective systems and extratropical cyclones. Secondly, regional extremes in terms of surface rainfall intensity and those in terms of convection height are compared. Conventionally, extremely tall convection is considered to contribute the largest to the intense rainfall. Comparing probability density functions (PDFs) of 99th percentiles in terms of the near surface rainfall intensity in each regional grid and those in terms of the 40dBZ echo top heights, it is found that heaviest precipitation in the region is not associated with tallest systems, but rather with systems with moderate heights. Interestingly, this separation

  12. Controls on Extreme Droughts and Adaptation Strategies in Semiarid Regions

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Cook, C.; Fernando, D. N.; LeBlanc, M.

    2012-12-01

    Increasing vulnerability to droughts with reduced per capita water storage, particularly in semiarid regions, underscores the need for predictive understanding of drought controls and development of adaptation strategies for water resources management. In this study we evaluate causes of major droughts in southwest and southcentral US (California and Texas) and southeast Australia (Murray Darling Basin). Impacts of climate cycles (ENSO, PDO, AMO, NAO, IOD) and atmospheric circulation on drought initiation and persistence are examined. Effects of drought on surface water reservoir storage, groundwater storage, irrigation, and crop production are compared. Adaptation strategies being evaluated include water transfers among sectors, particularly from irrigated agriculture to other groups, increasing storage using managed aquifer recharge, water reuse, and development of new water sources (e.g. seawater desalination). It is critical to develop a broad portfolio of water sources to increase resilience to future droughts.

  13. Comparison of pointwise and regional statistical approaches to detect non stationarity in extreme rainfall events. Application to the Sahelian region

    NASA Astrophysics Data System (ADS)

    Panthou, G.; Vischel, T.; Lebel, T.; Quantin, G.; Favre, A.; Blanchet, J.; Ali, A.

    2012-12-01

    Studying trends in rainfall extremes at regional scale is required to provide reference climatology to evaluate General Circulation Model global predictions as well as to help managing and designing hydraulic works. The present study compares three methods to detect trends (linear and change-point) in series of daily rainfall annual maxima: (i) The first approach is widely used and consist in applying statistical stationarity tests (linear trend and change-point) on the point-wise maxima series; (ii) The second approach compares the performances of a constant and a time dependent Generalized Extreme Value (GEV) distribution fitted to the point-wise maxima series. (iii) The last method uses an original regional statistical model based on space-time GEV distribution which is used to detect changes in rainfall extremes directly at regional scale. The three methods are applied to detect trends in extreme daily rainfall over the Sahel during the period 1950-1990 for which a network of 128 daily rain gages is available. This region has experienced an intense drought since the end of the 1960s; it is thus an interesting case-study to illustrate how a regional climate change can affect the extreme rainfall distributions. One major result is that the statistical stationarity tests rarely detect non-stationarities in the series while the two GEV-based models converge to show that the extreme rainfall series have a negative break point around 1970. The study points out the limit of the widely used classical stationarity tests to detect trends in noisy series affected by sampling errors. The use of parametric time-dependent GEV seems to reduce this effect especially when a regional approach is used. From a climatological point of view, the results show that the great Sahelian drought has been accompanied by a decrease of extreme rainfall events, both in magnitude and occurence.

  14. Allowable CO2 emissions based on projected changes in regional extremes and related impacts

    NASA Astrophysics Data System (ADS)

    Seneviratne, Sonia I.; Donat, Markus; Pitman, Andy; Knutti, Reto; Wilby, Robert

    2016-04-01

    Global temperature targets, such as the widely accepted 2°C and 1.5° limits, may fail to communicate the urgency of reducing CO2 emissions. Translation of CO2 emissions into regional- and impact-related climate targets could be more powerful because they resonate better with national interests. We illustrate this approach using regional changes in extreme temperatures and precipitation. These scale robustly with global temperature across scenarios, and thus with cumulative CO2 emissions. This is particularly relevant for changes in regional extreme temperatures on land, which are much greater than changes in the associated global mean. Linking cumulative CO2 emission targets to regional consequences, such as changing climate extremes, would be of particular benefit for political decision making, both in the context of climate negotiations and adaptation.

  15. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    NASA Technical Reports Server (NTRS)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  16. An update around the evidence base for the lower extremity ultrasound regional block technique

    PubMed Central

    Fanelli, Andrea; Ghisi, Daniela; Melotti, Rita Maria

    2016-01-01

    Ultrasound guidance currently represents the gold standard for regional anesthesia. In particular for lower extremity blocks, despite the heterogeneity and the lack of large randomized controlled trials, current literature shows a modest improvement in block onset and quality compared with other localization techniques. This review aims to present the most recent findings on the application of ultrasound guidance for each single lower extremity approach. PMID:26918177

  17. Characterizing moisture delivery mechanisms for extreme precipitation in large geographic regions

    NASA Astrophysics Data System (ADS)

    Bracken, C.; Rajagopalan, B.; Gangopadhyay, S.

    2014-12-01

    Understanding dominant moisture delivery sources for extreme precipitation events is extremely important for characterizing their statistical behavior and behavior under specific climate regimes. Typically, for a given region, the largest extreme events occur in specific seasons but events occurring in off seasons can be just as socio-economically devastating. A complete picture of how and where events originate in all seasons paves the way for statistical forecasting and simulation of extreme precipitation. We present a data driven methodology applicable to large geographic regions that can partition heterogeneous areas into subregions and then characterize the moisture delivery mechanisms for each subregion under specific climate regimes (e.g., ENSO phases, PDO, etc.) and in each season. Extreme subregions are defined using a new nonparametric extreme value clustering method and moisture delivery characterization is done using the HYSPLIT storm backtracking algorithm. We apply this methodology to the Western United States where the nature of extreme events varies widely due to complex terrain, teleconnections and climate interactions.

  18. Projections of Extreme Precipitation Events in India from regional and global climate model

    NASA Astrophysics Data System (ADS)

    Modi, P. A.; Shah, R.; Mishra, V.

    2014-12-01

    Extreme precipitation events pose tremendous challenges for humans and infrastructure. Precipitation extremes are projected to increase under the future climate. We examined changes in extreme precipitation events under the projected future climate in India from regional and global climate models. We obtained CMIP5 projections for 32 general circulation models (GCMs), while data for regional climate models (RCMs) were obtained from the CORDEX South Asia program. The data were analyzed for the historic (1971-1999) and projected future climate (2006-2060) for annual maximum precipitation, frequency of extreme precipitation events, mean intensity of top five precipitation events, and ratio of heavy to non-heavy precipitation. Out of the 32 GCMs, we selected the four best GCMs (BEST-GCMs) that performed better for extreme precipitation events in India. Moreover, we selected the host GCMs (HOST-GCMs) that were used as a boundary condition for the CORDEX-RCMs. We finally compared projections of extreme precipitation events from the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs under the future climate. We find that the CORDEX-RCMs show a large inter-model variation leading to a high uncertainty in projections. Overall, most of the models indicate increases in extreme precipitation events under the projected future climate predominantly in the Southern peninsula.

  19. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    SciTech Connect

    Brunsell, Nathaniel; Mechem, David; Ma, Chunsheng

    2015-02-20

    Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive to alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the

  20. Formation of Continuous and Episodic Relativistic Outflows in Regions of Stability and Instability in Advection-Dominated Accretion Flows

    NASA Astrophysics Data System (ADS)

    Le, Truong V.; Wood, Kent S.; Wolff, Michael Thomas; Becker, Peter A.; Putney, Joy; Edge, Elizabeth

    2016-01-01

    Previously, we have demonstrated that particle acceleration in the vicinity of a shock in an advection-dominated accretion disk can extract enough energy to power a relativistic jet from a supermassive black hole at the center of a radio-loud active galaxy. However, to maintain a steady jet, a stable shock location is required. By employing the Chevalier & Imamura linearization method and the Nakayama instability boundary conditions, we have also shown that there is a region of the energy and angular momentum parameter space in which disk/shocks with outflows can be either stable or unstable. In a region of instability, the velocity profiles that exhibit pre-shock deceleration and pre-shock acceleration are always unstable to the zeroth mode with zero frequency of oscillation. However, in a region of stability, the zeroth mode, the fundamental, and the overtones are all stable for both pre-shock deceleration as well as pre-shock acceleration. Building on this new insight, in this paper, we explore new parameter values in the regions of stability and instability to explain the production of the observed continuous and episodic relativistic outflows (jets) in M87 and Sgr A*, respectively.

  1. Impacts of the Future Changes in Extreme Events on the Regional Crop Yield in Turkey

    NASA Astrophysics Data System (ADS)

    An, Nazan; Turp, M. Tufan; Ozturk, Tugba; Kurnaz, M. Levent

    2016-04-01

    The changes in extreme events caused by climate change have the greatest impact on agricultural sector specifically crop yield. Therefore, it requires a clear understanding of how extreme events affect the crop yield and how it causes high economic losses. In this research, we cover the relationship between extreme events and the crop yield in Turkey for the period of 2020 - 2045 with respect to 1980 - 2005. We focus on the role of those extreme event causing natural disasters on the regional crop yield. This research comprises 2 parts. In the first part, the projection is performed according to the business as usual scenario of IPCC, RCP8.5, via the RegCM4.4 in order to obtain extreme event indices required for the crop assessment. In the second part, the crop yield and the extreme event indices are combined by applying the econometric analysis in order to see the relationship between natural disasters and crop yield. The risks for crop yield caused by the extreme events are estimated and interpreted. This study aims to assess the effect of frequency of expected extreme events on the crop yield at the cropland of Turkey. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.

  2. More extreme precipitation in the world’s dry and wet regions

    NASA Astrophysics Data System (ADS)

    Donat, Markus G.; Lowry, Andrew L.; Alexander, Lisa V.; O’Gorman, Paul A.; Maher, Nicola

    2016-05-01

    Intensification of the hydrological cycle is expected to accompany a warming climate. It has been suggested that changes in the spatial distribution of precipitation will amplify differences between dry and wet regions, but this has been disputed for changes over land. Furthermore, precipitation changes may differ not only between regions but also between different aspects of precipitation, such as totals and extremes. Here we investigate changes in these two aspects in the world’s dry and wet regions using observations and global climate models. Despite uncertainties in total precipitation changes, extreme daily precipitation averaged over both dry and wet regimes shows robust increases in both observations and climate models over the past six decades. Climate projections for the rest of the century show continued intensification of daily precipitation extremes. Increases in total and extreme precipitation in dry regions are linearly related to the model-specific global temperature change, so that the spread in projected global warming partly explains the spread in precipitation intensification in these regions by the late twenty-first century. This intensification has implications for the risk of flooding as the climate warms, particularly for the world’s dry regions.

  3. Projected changes in regional climate extremes arising from Arctic sea ice loss

    NASA Astrophysics Data System (ADS)

    Screen, James A.; Deser, Clara; Sun, Lantao

    2015-08-01

    The decline in Arctic sea ice cover has been widely documented and it is clear that this change is having profound impacts locally. An emerging and highly uncertain area of scientific research, however, is whether such Arctic change has a tangible effect on weather and climate at lower latitudes. Of particular societal relevance is the open question: will continued Arctic sea ice loss make mid-latitude weather more extreme? Here we analyse idealized atmospheric general circulation model simulations, using two independent models, both forced by projected Arctic sea ice loss in the late twenty-first century. We identify robust projected changes in regional temperature and precipitation extremes arising solely due to Arctic sea ice loss. The likelihood and duration of cold extremes are projected to decrease over high latitudes and over central and eastern North America, but to increase over central Asia. Hot extremes are projected to increase in frequency and duration over high latitudes. The likelihood and severity of wet extremes are projected to increase over high latitudes, the Mediterranean and central Asia; and their intensity is projected to increase over high latitudes and central and eastern Asia. The number of dry days over mid-latitude Eurasia and dry spell duration over high latitudes are both projected to decrease. There is closer model agreement for projected changes in temperature extremes than for precipitation extremes. Overall, we find that extreme weather over central and eastern North America is more sensitive to Arctic sea ice loss than over other mid-latitude regions. Our results are useful for constraining the role of Arctic sea ice loss in shifting the odds of extreme weather, but must not be viewed as deterministic projections, as they do not account for drivers other than Arctic sea ice loss.

  4. Evaluation of multiple regional climate models for summer climate extremes over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Min, Seung-Ki; Lee, Donghyun; Cha, Dong-Hyun; Suh, Myoung-Seok; Kang, Hyun-Suk; Hong, Song-You; Lee, Dong-Kyou; Baek, Hee-Jeong; Boo, Kyung-On; Kwon, Won-Tae

    2016-04-01

    In this study, five regional climate models (RCMs) participating in the CORDEX-East Asia project (HadGEM3-RA, RegCM4, SNU-MM5, SNU-WRF, and YSU-RSM) are evaluated in terms of their performances in simulating the climatology of summer extremes in East Asia. Seasonal maxima of daily mean temperature and precipitation are analyzed using the generalized extreme value method. RCMs show systematic bias patterns in both seasonal means and extremes. A cold bias is located along the coast, whereas a warm bias occurs in northern China. Overall, wet bias occurs in East Asia, but with a substantial dry bias centered in South Korea. This dry bias appears to be related to the colder ocean surface around South Korea, positioning the monsoonal front further south compared to observations. Taylor diagram analyses reveal that the models simulate temperature means more accurately compared to extremes because of the higher spatial correlation, whereas precipitation extremes are simulated better than their means because of the higher spatial variability. The latter implies that extreme rainfall events can be captured more accurately by RCMs compared to the driving GCM despite poorer simulation of mean rainfall. Inter-RCM analysis indicates a close relationship between the means and extremes in terms of model skills, but it does not show a clear relationship between temperature and precipitation. Sub-regional analysis largely supports the mean-extreme skill relationship. Analyses of frequency and intensity distributions of daily data for three selected sub-regions suggest that overall shifts of temperature distribution and biases in moderate-heavy precipitations contribute importantly to the seasonal mean biases.

  5. Comment on "Electrostatic compressive and rarefactive shocks and solitons in relativistic plasmas occurring in polar regions of pulsar"

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2016-05-01

    The aim of this comment is to show the solution of the KdVB equation used by Shah et al. (Astrophys. Space Sci. 335:529-537, 2011, doi: 10.1007/s10509-011-0766-y) is not correct. So, the numerical results that are predicted in this manuscript should not be helpful for further investigations in a plasma laboratory. For this reason, we have employed the Bernoulli's equation method to obtain the correct form of analytical solution to this equation, which is appropriate for the study of electrostatic compressive and rarefactive shocks and solitons in relativistic plasmas occurring in polar regions of pulsar.

  6. Evaluating regional climate models for simulating sub-daily rainfall extremes

    NASA Astrophysics Data System (ADS)

    Cortés-Hernández, Virginia Edith; Zheng, Feifei; Evans, Jason; Lambert, Martin; Sharma, Ashish; Westra, Seth

    2015-11-01

    Sub-daily rainfall extremes are of significant societal interest, with implications for flash flooding and the design of urban stormwater systems. It is increasingly recognised that extreme subdaily rainfall will intensify as a result of global temperature increases, with regional climate models (RCMs) representing one of the principal lines of evidence on the likely magnitude and spatiotemporal characteristics of these changes. To evaluate the ability of RCMs to simulate subdaily extremes, it is common to compare the simulated statistical characteristics of the extreme rainfall events with those from observational records. While such analyses are important, they provide insufficient insight into whether the RCM reproduces the correct underlying physical processes; in other words, whether the model "gets the right answers for the right reasons". This paper develops a range of metrics to assess the performance of RCMs in capturing the physical mechanisms that produce extreme rainfall. These metrics include the diurnal and seasonal cycles, relationship between rainfall intensity and temperature, temporal scaling, and the spatial structure of extreme rainfall events. We evaluate a high resolution RCM—the Weather Research Forecasting model—over the Greater Sydney region, using three alternative parametrization schemes. The model shows consistency with the observations for most of the proposed metrics. Where differences exist, these are dependent on both the rainfall duration and model parameterization strategy. The use of physically meaningful performance metrics not only enhances the confidence in model simulations, but also provides better diagnostic power to assist with future model improvement.

  7. Projected changes of extreme precipitation over Contiguous United States with Nested regional climate model (NRCM)

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2013-12-01

    Extreme weather events have already significantly influenced North America. During 2005-2011, the extreme events have increased by 250 %, from four or fewer events occurring in 2005, while 14 events occurring in 2011 (www.ncdc.noaa.gov/billions/). In addition, extreme rainfall amounts, frequency, and intensity were all expected to increase under greenhouse warming scenarios (Wehner 2005; Kharin et al. 2007; Tebaldi et al. 2006). Global models are powerful tools to investigate the climate and climate change on large scales. However, such models do not represent local terrain and mesoscale weather systems well owing to their coarse horizontal resolution (150-300 km). To capture the fine-scale features of extreme weather events, regional climate models (RCMs) with a more realistic representation of the complex terrain and heterogeneous land surfaces are needed (Mass et al. 2002). This study uses the Nested Regional Climate model (NRCM) to perform regional scale climate simulations on a 12-km × 12-km high resolution scale over North America (including Alaska; with 600 × 515 grid cells at longitude and latitude), known as CORDEX_North America, instead of small regions as studied previously (eg., Dominguez et al. 2012; Gao et al. 2012). The performance and the biases of the NRCM extreme precipitation calculations (2000-2010) have been evaluated with PRISM precipitation (Daly et al. 1997) by Wang and Kotamarthi (2013): the NRCM replicated very well the monthly amount of extreme precipitation with less than 3% overestimation over East CONUS, and the frequency of extremes over West CONUS and upper Mississippi River Basin. The Representative Concentration Pathway (RCP) 8.5 and RCP 4.5 from the new Community Earth System Model version 1.0 (CESM v1.0) are dynamically downscaled to predict the extreme rainfall events at the end-of-century (2085-2095) and to explore the uncertainties of future extreme precipitation induced by different scenarios over distinct regions. We have

  8. Individual and coupled influences of AMO and ENSO on regional precipitation characteristics and extremes

    NASA Astrophysics Data System (ADS)

    Goly, Aneesh; Teegavarapu, Ramesh S. V.

    2014-06-01

    Understanding the influences of Atlantic multidecadal oscillation (AMO) and El Niño southern oscillation (ENSO) on regional precipitation extremes and characteristics in the state of Florida is the focus of this study. Exhaustive evaluations of individual and combined influences of these oscillations using, descriptive indices-based assessment of statistically significant changes in rainfall characteristics, identification of spatially varying influences of oscillations on dry and wet spell transition states, antecedent precipitation prior to extreme events, intraevent temporal distribution of precipitation and changes in temporal occurrences of extremes including dry/wet cycles are carried out. Rain gage and gridded precipitation data analysis using parametric hypothesis tests confirm statistically significant changes in the precipitation characteristics from one phase to another of each oscillation and also in coupled phases. Spatially nonuniform and uniform influences of AMO and ENSO, respectively, on precipitation are evident. AMO influences vary in peninsular and continental parts of Florida and the warm (cool) phase of AMO contributes to increased precipitation extremes during wet (dry) season. The influence of ENSO is confined to dry season with El Niño (La Niña) contributing to increase (decrease) in extremes and total precipitation. Wetter antecedent conditions preceding daily extremes are dominant in AMO warm phase compared to the cool and are likely to impact design floods in the region. AMO influence on dry season precipitation extremes is noted for ENSO neutral years. The two oscillations in different phases modulate each other with seasonal and spatially varying impacts and implications on flood control and water supply in the region.

  9. Comparing Regional Climate Model output to observational data sets for extreme rainfall

    NASA Astrophysics Data System (ADS)

    Sunyer, M. A.; Sørup, H. J. D.; Madsen, H.; Rosbjerg, D.; Arnbjerg-Nielsen, K.

    2012-04-01

    Climate model projections of changes in extreme rainfall are highly uncertain. In general, the analysis of model performance is the first step in studies that attempt to deal with this uncertainty. Model performance is often measured by comparing statistical properties of climate model output with observational data. However, in the assessment of model performance regarding extreme rainfall use of different observational datasets might lead to different conclusions. Rainfall data are often available either as point measurements or interpolated gridded data. Point measurements result in an unevenly spatially distributed dataset while gridded data obtained from the interpolation of point measurements provide data on an evenly distributed grid. Measurements of extreme rainfall events may be highly uncertain and underestimation is generally expected; furthermore, in gridded data extreme rainfall events tend to be smoothed due to the interpolation process. In addition, small variations in space and time of observed and modelled extremes may have a large impact on the assessment. The present study assesses the effect of the choice and interpretation of observation datasets on the conclusions drawn regarding the ability of Regional Climate Models (RCMs) to reproduce extreme events. Daily extreme rainfall over Denmark from an ensemble of RCMs is compared to three different observational datasets. The observational data considered are a point measurement dataset (ECA&D), a gridded dataset (E-Obs) and a re-analysis dataset (ERA-Interim). The results are compared with other recent studies considering climate model rainfall extremes. The study shows that in climate change studies dealing with extreme rainfall one must be aware of the effect and uncertainties from the use of different sources of observations to avoid overconfident and misleading conclusions.

  10. An improvement of extremality regions for Gibbs measures of the Potts model on a Cayley tree

    NASA Astrophysics Data System (ADS)

    Haydarov, Farhod; Khakimov, Rustam

    2016-03-01

    We give a condition of extemelity for translation-invariant Gibbs measures of q—state Potts model on a Cayley tree. We'll improve the regions of extremality for some measures considered in [14]. Moreover, some results in [14] are generalized.

  11. Optical constants in the extreme ultraviolet and soft X-ray region

    NASA Technical Reports Server (NTRS)

    Rife, J. C.; Osantowski, J. F.

    1982-01-01

    The nature of optical constants and their measurement by reflection or absorption techniques in the extreme ultraviolet and soft X-ray spectral region from 30 to 3000 eV is discussed with emphasis on mirror design. Sources of optical constant data are mentioned and reflectance measurements for SiC and Kanigen between 40 and 200 eV are reported.

  12. Modulation of extremes in the Atlantic region by modes of climate variability/change: A mechanistic coupled regional model study

    SciTech Connect

    Saravanan, Ramalingam

    2015-01-09

    During the course of this project, we have accomplished the following: 1) Explored the parameter space of component models to minimize regional model bias 2) Assessed the impact of air-sea interaction on hurricanes, focusing in particular on the role of the oceanic barrier layer 3) Contributed to the activities of the U.S. CLIVAR Hurricane Working Group 4) Assessed the impact of lateral and lower boundary conditions on extreme flooding events in the U.S. Midwest in regional model simulations 5) Analyzed the concurrent impact of El Niño-Southern Oscillation and Atlantic Meridional Mode on Atlantic Hurricane activity using observations and regional model simulations

  13. The role of regional climate model setup in simulating two extreme precipitation events in the European Alpine region

    NASA Astrophysics Data System (ADS)

    Awan, Nauman Khurshid; Gobiet, Andreas; Suklitsch, Martin

    2015-01-01

    In this study we have investigated the role of domain settings and model's physics in simulating two extreme precipitation events. Four regional climate models, all driven with a re-analysis dataset were used to create an ensemble of 61 high-resolution simulations by varying physical parameterization schemes, domain sizes, nudging and nesting techniques. The two discussed events are three-day time slices taken from approximately 15-months long climate simulations. The results show that dynamical downscaling significantly improves the spatial characteristics such as correlation, variability as well as location and intensity of maximum precipitation. Spatial variability, which is underestimated by most of the simulations can be improved by choosing suitable vertical resolution, convective and microphysics scheme. The results further suggest that for studies focusing on extreme precipitation events relatively small domains or nudging could be advantageous. However, a final conclusion on this issue would be premature, since only two extreme precipitation events are considered.

  14. The role of regional climate model setup in simulating two extreme precipitation events in the European Alpine region

    NASA Astrophysics Data System (ADS)

    Awan, Nauman Khurshid; Gobiet, Andreas; Suklitsch, Martin

    2014-09-01

    In this study we have investigated the role of domain settings and model's physics in simulating two extreme precipitation events. Four regional climate models, all driven with a re-analysis dataset were used to create an ensemble of 61 high-resolution simulations by varying physical parameterization schemes, domain sizes, nudging and nesting techniques. The two discussed events are three-day time slices taken from approximately 15-months long climate simulations. The results show that dynamical downscaling significantly improves the spatial characteristics such as correlation, variability as well as location and intensity of maximum precipitation. Spatial variability, which is underestimated by most of the simulations can be improved by choosing suitable vertical resolution, convective and microphysics scheme. The results further suggest that for studies focusing on extreme precipitation events relatively small domains or nudging could be advantageous. However, a final conclusion on this issue would be premature, since only two extreme precipitation events are considered.

  15. Projected changes in climate extremes over Qatar and the Arabian Gulf region

    NASA Astrophysics Data System (ADS)

    Kundeti, K.; Kanikicharla, K. K.; Al sulaiti, M.; Khulaifi, M.; Alboinin, N.; Kito, A.

    2015-12-01

    The climate of the State of Qatar and the adjacent region is dominated by subtropical dry, hot desert climate with low annual rainfall, very high temperatures in summer and a big difference between maximum and minimum temperatures, especially in the inland areas. The coastal areas are influenced by the Arabian Gulf, and have lower maximum, but higher minimum temperatures and a higher moisture percentage in the air. The global warming can have profound impact on the mean climate as well as extreme weather events over the Arabian Peninsula that may affect both natural and human systems significantly. Therefore, it is important to assess the future changes in the seasonal/annual mean of temperature and precipitation and also the extremes in temperature and wind events for a country like Qatar. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in present and develops future climate scenarios. The changes in climate extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCPs (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. We analyzed the projected changes in temperature and precipitation extremes using several indices including those that capture heat stress. The observations show an increase in warm extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of both temperature and precipitation extremes over many parts of this region which may have serious implications on human health, water resources and the onshore/offshore infrastructure in this region. Data from a high-resolution (20km) AGCM simulation from Meteorological Research Institute of Japan Meteorological Agency for the present (1979-2003) and a future time slice (2075-2099) corresponding to RCP8.5 have also been utilized to assess the impact of climate change on

  16. Wave-mixing with high-order harmonics in extreme ultraviolet region

    SciTech Connect

    Dao, Lap Van; Dinh, Khuong Ba; Le, Hoang Vu; Gaffney, Naylyn; Hannaford, Peter

    2015-01-12

    We report studies of the wave-mixing process in the extreme ultraviolet region with two near-infrared driving and controlling pulses with incommensurate frequencies (at 1400 nm and 800 nm). A non-collinear scheme for the two beams is used in order to spatially separate and to characterise the properties of the high-order wave-mixing field. We show that the extreme ultraviolet frequency mixing can be treated by perturbative, very high-order nonlinear optics; the modification of the wave-packet of the free electron needs to be considered in this process.

  17. Reliability of regional and global climate models to simulate precipitation extremes over India

    NASA Astrophysics Data System (ADS)

    Mishra, Vimal; Kumar, Devashish; Ganguly, Auroop R.; Sanjay, J.; Mujumdar, Milind; Krishnan, R.; Shah, Reepal D.

    2014-08-01

    Extreme precipitation events over India have resulted in loss of human lives and damaged infrastructures, food crops, and lifelines. The inability of climate models to credibly project precipitation extremes in India has not been helpful to longer-term hazards resilience policy. However, there have been claims that finer-resolution and regional climate models may improve projections. The claims are examined as hypotheses by comparing models with observations from 1951-2005. This paper evaluates the reliability of the latest generation of general circulation models (GCMs), Coupled Model Intercomparison Project Phase 5 (CMIP5), specifically a subset of the better performing CMIP5 models (called "BEST-GCM"). The relative value of finer-resolution regional climate models (RCMs) is examined by comparing Coordinated Regional Climate Downscaling Experiment (CORDEX) South Asia RCMs ("CORDEX-RCMs") versus the GCMs used by those RCMs to provide boundary conditions, or the host GCMs ("HOST-GCMs"). Ensemble mean of BEST-GCMs performed better for most of the extreme precipitation indices than the CORDEX-RCMs or their HOST-GCMs. Weaker performance shown by ensemble mean of CORDEX-RCMs is largely associated with their high intermodel variation. The CORDEX-RCMs occasionally exhibited slightly superior skills compared to BEST-GCMs; on the whole RCMs failed to significantly outperform GCMs. Observed trends in the extremes were not adequately captured by any of the model ensembles, while neither the GCMs nor the RCMs were determined to be adequate to inform hydrologic design.

  18. Trends in temperature extremes over nine integrated agricultural regions in China, 1961-2011

    NASA Astrophysics Data System (ADS)

    Wu, Xushu; Wang, Zhaoli; Zhou, Xiaowen; Lai, Chengguang; Chen, Xiaohong

    2016-06-01

    By characterizing the patterns of temperature extremes over nine integrated agricultural regions (IARs) in China from 1961 to 2011, this study performed trend analyses on 16 extreme temperature indices using a high-resolution (0.5° × 0.5°) daily gridded dataset and the Mann-Kendall method. The results show that annually, at both daytime and nighttime, cold extremes significantly decreased but warm extremes significantly increased across all IARs. Overall, nighttimes tended to warm faster than daytimes. Diurnal temperature ranges (DTR) diminished, apart from the mid-northern Southwest China Region and the mid-Loess Plateau Region. Seasonally, DTR widely diminished across all IARs during the four seasons except for spring. Higher minimum daily minimum temperature (TNn) and maximum daily maximum temperature (TXx), in both summer and winter, were recorded for most IARs except for the Huang-Huai-Hai Region; in autumn, all IARs generally encountered higher TNn and TXx. In all seasons, warming was observed at daytime and nighttime but, again, nighttimes warmed faster than daytimes. The results also indicate a more rapid warming trend in Northern and Western China than in Southern and Eastern China, with accelerated warming at high elevations. The increases in TNn and TXx might cause a reduction in agriculture yield in spring over Northern China, while such negative impact might occur in Southern China during summer. In autumn and winter, however, the negative impact possibly occurred in most of the IARs. Moreover, increased TXx in the Pearl River Delta and Yangtze River Delta is possibly related to rapid local urbanization. Climatically, the general increase in temperature extremes across Chinese IARs may be induced by strengthened Northern Hemisphere Subtropical High or weakened Northern Hemisphere Polar Vortex.

  19. Evaluation of Multiple Regional Climate Models for Summer Extremes of Temperature and Precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Min, Seung-Ki

    2014-05-01

    The regional climate models (RCMs) have been widely used to generate more detailed information in space and time of climate patterns produced by the global climate models (GCMs). Recently the international collaborative effort has been set up as the CORDEX (Coordinated Regional Climate Downscaling Experiment) project which covers several regional domains including East Asia. In this study, five RCMs (HadGEM3-RA, RegCM4, SNU-MM5, SNU-WRF, and YSU-RSM) participating in the CORDEX-East Asia project are evaluated in terms of their skills at simulating climatology of summer extremes. We examine bias and RMSE and conduct a Taylor diagram analysis using seasonal maxima of daily mean temperature and daily precipitation amount over the East Asia land area from 'historical' experiments of individual RCMs and their multi-model ensemble means (MME). The APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Toward Evaluation) datasets on 0.5° x 0.5° grids are used as observations. Results show similar systematic bias patterns between seasonal means and extremes. A cold bias is found along the coast while a warm bias occurs in the northern China. Overall wet bias appears in East Asia but there is a substantial dry bias in South Korea. This dry bias appears related to be a cold SST (sea surface temperature) around South Korea, positioning the monsoonal front (Changma) further south than observations. Taylor diagram analyses show that temperature has better skill in means than in extremes because of higher spatial correlation whereas precipitation exhibits better skill in extremes than in means due to better spatial variability. The latter implies that extreme rainfall events may be better captured although seasonal mean precipitation tends to be overestimated by RCMs. The model performances between mean and extreme are found to be closely related, but not clearly between temperature and precipitation. Temperatures are always better simulated than

  20. Attributing extreme precipitation in the Black Sea region to sea surface warming

    NASA Astrophysics Data System (ADS)

    Meredith, Edmund; Semenov, Vladimir; Maraun, Douglas; Park, Wonsun; Chernokulsky, Alexander

    2016-04-01

    Higher sea surface temperatures (SSTs) warm and moisten the overlying atmosphere, increasing the low-level atmospheric instability, the moisture available to precipitating systems and, hence, the potential for intense convective systems. Both the Mediterranean and Black Sea regions have seen a steady increase in summertime SSTs since the early 1980s, by over 2 K in places. This raises the question of how this SST increase has affected convective precipitation extremes in the region, and through which mechanisms any effects are manifested. In particular, the Black Sea town of Krymsk suffered an unprecedented precipitation extreme in July 2012, which may have been influenced by Black Sea warming, causing over 170 deaths. To address this question, we adopt two distinct modelling approaches to event attribution and compare their relative merits. In the first, we use the traditional probabilistic event attribution approach involving global climate model ensembles representative of the present and a counterfactual past climate where regional SSTs have not increased. In the second, we use the conditional event attribution approach, taking the 2012 Krymsk precipitation extreme as a showcase example. Under the second approach, we carry out ensemble sensitivity experiments of the Krymsk event at convection-permitting resolution with the WRF regional model, and test the sensitivity of the event to a range of SST forcings. Both experiments show the crucial role of recent Black Sea warming in amplifying the 2012 Krymsk precipitation extreme. In the conditional event attribution approach, though, the explicit simulation of convective processes provides detailed insight into the physical mechanisms behind the extremeness of the event, revealing the dominant role of dynamical (i.e. static stability and vertical motions) over thermodynamical (i.e. increased atmospheric moisture) changes. Additionally, the wide range of SST states tested in the regional setup, which would be

  1. Estimation of extreme daily precipitation: comparison between regional and geostatistical approaches.

    NASA Astrophysics Data System (ADS)

    Hellies, Matteo; Deidda, Roberto; Langousis, Andreas

    2016-04-01

    We study the extreme rainfall regime of the Island of Sardinia in Italy, based on annual maxima of daily precipitation. The statistical analysis is conducted using 229 daily rainfall records with at least 50 complete years of observations, collected at different sites by the Hydrological Survey of the Sardinia Region. Preliminary analysis, and the L-skewness and L-kurtosis diagrams, show that the Generalized Extreme Value (GEV) distribution model performs best in describing daily rainfall extremes. The GEV distribution parameters are estimated using the method of Probability Weighted Moments (PWM). To obtain extreme rainfall estimates at ungauged sites, while minimizing uncertainties due to sampling variability, a regional and a geostatistical approach are compared. The regional approach merges information from different gauged sites, within homogeneous regions, to obtain GEV parameter estimates at ungauged locations. The geostatistical approach infers the parameters of the GEV distribution model at locations where measurements are available, and then spatially interpolates them over the study region. In both approaches we use local rainfall means as index-rainfall. In the regional approach we define homogeneous regions by applying a hierarchical cluster analysis based on Ward's method, with L-moment ratios (i.e. L-CV and L-Skewness) as metrics. The analysis results in four contiguous regions, which satisfy the Hosking and Wallis (1997) homogeneity tests. The latter have been conducted using a Monte-Carlo approach based on a 4-parameter Kappa distribution model, fitted to each station cluster. Note that the 4-parameter Kappa model includes the GEV distribution as a sub-case, when the fourth parameter h is set to 0. In the geostatistical approach we apply kriging for uncertain data (KUD), which accounts for the error variance in local parameter estimation and, therefore, may serve as a useful tool for spatial interpolation of metrics affected by high uncertainty. In

  2. Spectrum of Relativistic and Subrelativistic Cosmic Rays in the 100 pc Central Region

    NASA Astrophysics Data System (ADS)

    Dogiel, V. A.; Chernyshov, D. O.; Kiselev, A. M.; Nobukawa, M.; Cheng, K. S.; Hui, C. Y.; Ko, C. M.; Nobukawa, K. K.; Tsuru, T. G.

    2015-08-01

    From the rate of hydrogen ionization and the gamma-ray flux, we derived the spectrum of relativistic and subrelativistic cosmic rays (CRs) nearby and inside the molecular cloud Sgr B2 near the Galactic Center. We studied two cases of CR propagation in molecular clouds: free propagation and scattering of particles by magnetic fluctuations excited by the neutral gas turbulence. We showed that in the latter case CR propagation inside the cloud can be described as diffusion with a coefficient of ˜ 3× {10}27 cm2 s-1. For the case of hydrogen ionization by subrelativistic protons, we showed that their spectrum outside the cloud is quite hard with a spectral index of δ \\gt -1. The energy density of subrelativistic protons (\\gt 50 eV cm-3) is one order of magnitude higher than that of relativistic CRs. These protons generate the 6.4 keV emission from Sgr B2, which was about 30% of the flux observed by Suzaku in 2013. Future observations for the period after 2013 may discover the background flux generated by subrelativistic CRs in Sgr B2. Alternatively, hydrogen ionization of the molecular gas in Sgr B2 may be caused by high energy electrons. We showed that the spectrum of electron bremsstrahlung is harder than the observed continuum from Sgr B2, and in principle, this X-ray component provided by electrons could be seen from the INTEGRAL data as a stationary high energy excess above the observed spectrum {E}{{x}}-2.

  3. Extreme precipitation and beach closures in the great lakes region: evaluating risk among the elderly.

    PubMed

    Bush, Kathleen F; Fossani, Cheryl L; Li, Shi; Mukherjee, Bhramar; Gronlund, Carina J; O'Neill, Marie S

    2014-02-01

    As a result of climate change, extreme precipitation events are expected to increase in frequency and intensity. Runoff from these extreme events poses threats to water quality and human health. We investigated the impact of extreme precipitation and beach closings on the risk of gastrointestinal illness (GI)-related hospital admissions among individuals 65 and older in 12 Great Lakes cities from 2000 to 2006. Poisson regression models were fit in each city, controlling for temperature and long-term time trends. City-specific estimates were combined to form an overall regional risk estimate. Approximately 40,000 GI-related hospital admissions and over 100 beach closure days were recorded from May through September during the study period. Extreme precipitation (≥90th percentile) occurring the previous day (lag 1) is significantly associated with beach closures in 8 of the 12 cities (p < 0.05). However, no association was observed between beach closures and GI-related hospital admissions. These results support previous work linking extreme precipitation to compromised recreational water quality. PMID:24534768

  4. The roles of bias-correction and resolution in regional climate simulations of summer extremes

    NASA Astrophysics Data System (ADS)

    PaiMazumder, Debasish; Done, James M.

    2015-09-01

    The suitability of dynamical downscaling in producing high-resolution climate scenarios for impact assessments is limited by the quality of the driving data and regional climate model (RCM) error. Multiple RCMs driven by a single global climate model simulation of current climate show a reduction in bias compared to the driving data, and the remaining bias motivates exploration of bias correction and higher RCM resolution. The merits of bias correcting the mean climate of the driving data (boundary bias correction) versus bias correcting the mean of the RCM output data are explored and compared to model resolution sensitivity. This analysis focuses on the simulation of summer temperature and precipitation extremes using a single RCM, the Nested Regional Climate Model (NRCM). The NRCM has a general cool bias for hot and cold extremes, a wet bias for wet extremes and a dry bias for dry extremes. Both bias corrections generally reduced the bias and overall error with some indication that boundary bias correction provided greater benefits than bias correcting the mean of the RCM output data, particularly for precipitation. High resolution tended not to lead to further improvements, though further work is needed using multiple resolution evaluation datasets and convection permitting resolution simulations to comprehensively assess the value of high resolution.

  5. Climate Change, Extreme Weather Events, and Human Health Implications in the Asia Pacific Region.

    PubMed

    Hashim, Jamal Hisham; Hashim, Zailina

    2016-03-01

    The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter weather patterns on the regional scale, giving rise to extreme weather events. The impacts from extreme weather events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme weather events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. Globally, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme weather events, with losses of more than US$2.5 trillion in purchasing power parity. PMID:26377857

  6. Exploring regional stakeholder needs and requirements in terms of Extreme Weather Event Attribution

    NASA Astrophysics Data System (ADS)

    Schwab, M.; Meinke, I.; Vanderlinden, J. P.; Touili, N.; Von Storch, H.

    2015-12-01

    Extreme event attribution has increasingly received attention in the scientific community. It may also serve decision-making at the regional level where much of the climate change impact mitigation takes place. Nevertheless, there is, to date, little known about the requirements of regional actors in terms of extreme event attribution. We have therefore analysed these at the example of regional decision-makers for climate change-related activities and/or concerned with storm surge risks at the German Baltic Sea and heat wave risks in the Greater Paris area. In order to explore if stakeholders find scientific knowledge from extreme event attribution useful and how this information might be relevant to their decision-making, we consulted a diverse set of actors engaged in the assessment, mitigation and communication of storm surge, heat wave, and climate change-related risks. Extreme event attribution knowledge was perceived to be most useful to public and political awareness-raising, but was of little or no relevance for the consulted stakeholders themselves. It was not acknowledged that it would support adaptation planning as sometimes argued in the literature. The consulted coastal protection, health, and urban adaptation planners rather needed reliable statements about possible future changes in extreme events than causal statements about past events. To enhance salience, a suitable product of event attribution should be linked to regional problems, vulnerabilities, and impacts of climate change. Given that the tolerance of uncertainty is rather low, most of the stakeholders also claimed that a suitable product of event attribution is to be received from a trusted "honest broker" and published rather later, but with smaller uncertainties than vice versa. Institutional mechanisms, like regional climate services, which enable and foster communication, translation and mediation across the boundaries between knowledge and action can help fulfill such requirements

  7. On the interaction of solar near-relativistic electrons with back-scatter regions beyond 1 AU

    NASA Astrophysics Data System (ADS)

    Agueda, N.; Vainio, R.; Lario, D.; Sanahuja, B.

    2010-03-01

    We study the near-relativistic (NR >30 keV) electron event observed on 2000 February 18 by the Advanced Composition Explorer spacecraft. Highly collimated pitch-angle distributions were observed during the first ~2 h of the event. Roel of (2008) explained this event by assuming that the propagation of NR electrons is essentially ``scatter-free'' in the inner heliosphere and that beyond 1 AU, particles are ``back-scattered'' by magnetic field compressions and irregularities. We use Monte Carlo simulations to explore this approach. We fit observational sectored intensities to assure that the directional information contained in the data is used in full. We conclude that the event cannot be explained without assuming a back-scatter region beyond 1 AU and that NR electrons propagated under weak-scattering conditions in the inner heliosphere.

  8. An analysis of ENSO impact on global extreme rainfall using a Bayesian regional model

    NASA Astrophysics Data System (ADS)

    Sun, Xun; Renard, Benjamin; Thyer, Mark; Westra, Seth; Lang, Michel

    2013-04-01

    El Niño Southern Oscillation (ENSO) effects on rainfall and streamflow have been extensively reported in the Pacific region, but also in Europe and Africa. In this study, we apply a non-stationary regional extreme value model to a new global database of 11,588 high-quality sites worldwide to describe the global pattern of ENSO impact on extreme rainfall. The data are available at monthly intervals, and we focus on approximately 7000 observation sites which have series longer than 40 years. The Southern Oscillation Index (SOI), a measure of ENSO, is used as a covariate. Parameters are estimated with an MCMC method under the Bayesian framework, which allows quantifying the ENSO impact and estimating the associated credibility intervals. Three aspects are mainly considered in this study. One is to identify the regions where extreme rainfall is significantly influenced by ENSO. Another is to evaluate the extent to which ENSO exhibits asymmetric impacts between the El Niño and La Niña phases. The third aspect is to describe the spatial pattern of the impact intensity.

  9. Complex active regions as the main source of extreme and large solar proton events

    NASA Astrophysics Data System (ADS)

    Ishkov, V. N.

    2013-12-01

    A study of solar proton sources indicated that solar flare events responsible for ≥2000 pfu proton fluxes mostly occur in complex active regions (CARs), i.e., in transition structures between active regions and activity complexes. Different classes of similar structures and their relation to solar proton events (SPEs) and evolution, depending on the origination conditions, are considered. Arguments in favor of the fact that sunspot groups with extreme dimensions are CARs are presented. An analysis of the flare activity in a CAR resulted in the detection of "physical" boundaries, which separate magnetic structures of the same polarity and are responsible for the independent development of each structure.

  10. Improving Ramsey spectroscopy in the extreme-ultraviolet region with a random-sampling approach

    SciTech Connect

    Eramo, R.; Bellini, M.; Corsi, C.; Liontos, I.; Cavalieri, S.

    2011-04-15

    Ramsey-like techniques, based on the coherent excitation of a sample by delayed and phase-correlated pulses, are promising tools for high-precision spectroscopic tests of QED in the extreme-ultraviolet (xuv) spectral region, but currently suffer experimental limitations related to long acquisition times and critical stability issues. Here we propose a random subsampling approach to Ramsey spectroscopy that, by allowing experimentalists to reach a given spectral resolution goal in a fraction of the usual acquisition time, leads to substantial improvements in high-resolution spectroscopy and may open the way to a widespread application of Ramsey-like techniques to precision measurements in the xuv spectral region.

  11. Cyclones and extreme windstorm events over Europe under climate change: Global and regional climate model diagnostics

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Ulbrich, U.

    2003-04-01

    More than any changes of the climate system mean state conditions, the development of extreme events may influence social, economic and legal aspects of our society. This linkage results from the impact of extreme climate events (natural hazards) on environmental systems which again are directly linked to human activities. Prominent examples from the recent past are the record breaking rainfall amounts of August 2002 in central Europe which produced widespread floodings or the wind storm Lothar of December 1999. Within the MICE (Modelling the Impact of Climate Extremes) project framework an assessment of the impact of changes in extremes will be done. The investigation is carried out for several different impact categories as agriculture, energy use and property damage. Focus is laid on the diagnostics of GCM and RCM simulations under different climate change scenarios. In this study we concentrate on extreme windstorms and their relationship to cyclone activity in the global HADCM3 as well as in the regional HADRM3 model under two climate change scenarios (SRESA2a, B2a). In order to identify cyclones we used an objective algorithm from Murry and Simmonds which was widely tested under several different conditions. A slight increase in the occurrence of systems is identified above northern parts of central Europe for both scenarios. For more severe systems (core pressure < 990 hPa) we find an increase for western Europe. Strong wind events can be defined via different percentile values of the windspeed (e.g. above the 95 percentile). By this means the relationship between strong wind events and cyclones is also investigated. For several regions (e.g. Germany, France, Spain) a shift to more deep cyclones connected with an increasing number of strong wind events is found.

  12. Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape?

    NASA Astrophysics Data System (ADS)

    Drobinski, P.; Alonzo, B.; Bastin, S.; Silva, N. Da; Muller, C.

    2016-04-01

    Expected changes to future extreme precipitation remain a key uncertainty associated with anthropogenic climate change. Extreme precipitation has been proposed to scale with the precipitable water content in the atmosphere. Assuming constant relative humidity, this implies an increase of precipitation extremes at a rate of about 7% °C-1 globally as indicated by the Clausius-Clapeyron relationship. Increases faster and slower than Clausius-Clapeyron have also been reported. In this work, we examine the scaling between precipitation extremes and temperature in the present climate using simulations and measurements from surface weather stations collected in the frame of the HyMeX and MED-CORDEX programs in Southern France. Of particular interest are departures from the Clausius-Clapeyron thermodynamic expectation, their spatial and temporal distribution, and their origin. Looking at the scaling of precipitation extreme with temperature, two regimes emerge which form a hook shape: one at low temperatures (cooler than around 15°C) with rates of increase close to the Clausius-Clapeyron rate and one at high temperatures (warmer than about 15°C) with sub-Clausius-Clapeyron rates and most often negative rates. On average, the region of focus does not seem to exhibit super Clausius-Clapeyron behavior except at some stations, in contrast to earlier studies. Many factors can contribute to departure from Clausius-Clapeyron scaling: time and spatial averaging, choice of scaling temperature (surface versus condensation level), and precipitation efficiency and vertical velocity in updrafts that are not necessarily constant with temperature. But most importantly, the dynamical contribution of orography to precipitation in the fall over this area during the so-called "Cevenoles" events, explains the hook shape of the scaling of precipitation extremes.

  13. Trends of temperature and precipitation extremes in the Loess Plateau Region of China, 1961-2010

    NASA Astrophysics Data System (ADS)

    Wang, Qi-xiang; Wang, Meng-ben; Fan, Xiao-hui; Zhang, Feng; Zhu, Shi-zhong; Zhao, Tian-liang

    2016-05-01

    The spatial and temporal trends of 11 (7) temperature (precipitation) extreme indices are examined for the Loess Plateau Region (LPR) and its southeast and northwest sub-regions based on daily observations at 214 meteorological stations. Results show widespread significant warming trends for all the temperature extremes except for the diurnal temperature range (DTR) and the lowest daily maximum temperature in each year (TXn) during 1961-2010. When regionally averaged, a significant warming trend is detected for all the indices except for DTR and TXn in the past 50 years. Compared with the entire LPR, a significant warming trend is detected for all the indices except for DTR and TXn over the southeast sub-region of LPR; while it is observed for all the indices over the northwest. The trends for these indices are generally stronger in the northwest than in the southeast in the past 50 years. In contrast, for precipitation indices, only a small percentage of areas show significant drying or wetting trends and, when regionally averaged, none of them displays significant trends during the past 50 years. On the sub-regional scale, however, a larger percentage of areas show significant drying trends for precipitation indices generally over the southeast relative to the entire LPR, and noticeably, the sub-regional average heavy precipitation (R10mm) and wet day precipitation (PRCPTOT) display significant decreasing trends during the past 50 years; whereas only a slightly larger percentage of areas show significant wetting trends for these indices over the northwest compared with the entire LPR, and when sub-regionally averaged, none of the indices have significant trends during the past 50 years.

  14. Formation of Overheated Regions and Truncated Disks around Black Holes: Three-dimensional General Relativistic Radiation-magnetohydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroyuki R.; Ohsuga, Ken; Kawashima, Tomohisa; Sekiguchi, Yuichiro

    2016-07-01

    Using three-dimensional general relativistic radiation-magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk (≳ {10}7 {{K}}) is truncated near the black hole. Hot and less dense regions, of which the gas temperature is ≳ {10}9 {{K}} and more than 10 times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, sandwiching the cold disk, leading to the effective Compton upscattering. The truncation radius is ˜ 30{r}{{g}} for \\dot{M}˜ {L}{{Edd}}/{c}2, where {r}{{g}},\\dot{M},{L}{Edd},c are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed, respectively. Our results are consistent with observations of a very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to ˜ 10{r}{{g}} with increasing mass accretion rate \\dot{M}˜ 100{L}{{Edd}}/{c}2, which is very close to an innermost stable circular orbit. This model corresponds to the slim disk state observed in ultraluminous X-ray sources. Although the overheated regions shrink if the Compton cooling effectively reduces the gas temperature, the sandwich structure does not disappear at the range of \\dot{M}≲ 100{L}{{Edd}}/{c}2. Our simulations also reveal that the gas temperature in the overheated regions depends on black hole spin, which would be due to efficient energy transport from black hole to disks through the Poynting flux, resulting in gas heating.

  15. Formation of Overheated Regions and Truncated Disks around Black Holes: Three-dimensional General Relativistic Radiation-magnetohydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroyuki R.; Ohsuga, Ken; Kawashima, Tomohisa; Sekiguchi, Yuichiro

    2016-07-01

    Using three-dimensional general relativistic radiation-magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk (≳ {10}7 {{K}}) is truncated near the black hole. Hot and less dense regions, of which the gas temperature is ≳ {10}9 {{K}} and more than 10 times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, sandwiching the cold disk, leading to the effective Compton upscattering. The truncation radius is ∼ 30{r}{{g}} for \\dot{M}∼ {L}{{Edd}}/{c}2, where {r}{{g}},\\dot{M},{L}{Edd},c are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed, respectively. Our results are consistent with observations of a very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to ∼ 10{r}{{g}} with increasing mass accretion rate \\dot{M}∼ 100{L}{{Edd}}/{c}2, which is very close to an innermost stable circular orbit. This model corresponds to the slim disk state observed in ultraluminous X-ray sources. Although the overheated regions shrink if the Compton cooling effectively reduces the gas temperature, the sandwich structure does not disappear at the range of \\dot{M}≲ 100{L}{{Edd}}/{c}2. Our simulations also reveal that the gas temperature in the overheated regions depends on black hole spin, which would be due to efficient energy transport from black hole to disks through the Poynting flux, resulting in gas heating.

  16. Amplified subtropical stationary waves in boreal summer and their implications for regional water extremes

    NASA Astrophysics Data System (ADS)

    Yuan, J.; Li, W.; Deng, Y.

    2015-12-01

    The linkage between climate change and increased frequency/magnitude of weather extremes remains an open question in the scientific field. Here we investigate such a dynamical linkage by focusing on an amplification trend of the northern subtropical stationary waves found in recent decades. Specifically, we show that in multiple modern reanalysis products, a robust positive trend exists in a wave amplitude index defined through summer-mean tropospheric stream function field. Pronounced changes in the subtropical atmospheric circulation accompany this wave amplification, including intensified South Asian monsoon and strengthened subtropical highs over the North Pacific and North Atlantic oceans. Through modifying characteristics of large-scale moisture transport, these circulation changes are in turn coupled with changes in regional precipitation amount and the occurrence of water extremes including both droughts and heavy rainfall events. Given this connection, the amplified stationary waves have likely contributed to the elevated occurrence probabilities of droughts in the central United States, Mexico, Japan and northern China as well as those of heavy rainfall events in South Asia, southeastern China and eastern United States. Since the amplifying stationary waves are a robust feature in models' projection of future climate, our results suggest an increased risk of water extremes over the above-mentioned regions in the near future.

  17. Amplified subtropical stationary waves in boreal summer and their implications for regional water extremes

    NASA Astrophysics Data System (ADS)

    Yuan, Jiacan; Li, Wenhong; Deng, Yi

    2015-10-01

    The linkage between climate change and increased frequency/magnitude of weather extremes remains an open question in the scientific field. Here we investigate such a dynamical linkage by focusing on an amplification trend of the northern subtropical stationary waves found in recent decades. Specifically, we show that in multiple modern reanalysis products, a robust positive trend exists in a wave amplitude index defined through the summer-mean tropospheric stream function field. Pronounced changes in the subtropical atmospheric circulation accompany this wave amplification, including an intensified South Asian monsoon and strengthened subtropical highs over the North Pacific and North Atlantic oceans. Through modifying the characteristics of large-scale moisture transport, these circulation changes are coupled to changes in the regional precipitation amount and the occurrence of water extremes including both droughts and heavy rainfall events. Given this connection, amplified stationary waves have likely contributed to the elevated occurrence probabilities of droughts in the central United States, Mexico, Japan, and northern China, as well as those of heavy rainfall events in South Asia, southeastern China, and the eastern United States. These results suggest that as climate warming continues, the amplification of subtropical stationary waves will increase the risk of water extremes over the above-mentioned regions.

  18. Identification of extreme precipitation threat across midlatitude regions based on short-wave circulations

    NASA Astrophysics Data System (ADS)

    Wang, Shih-Yu; Davies, Robert E.; Gillies, Robert R.

    2013-10-01

    most severe thunderstorms, producing extreme precipitation, occur over subtropical and midlatitude regions. Atmospheric conditions conducive to organized, intense thunderstorms commonly involve the coupling of a low-level jet (LLJ) with a synoptic short wave. The midlatitude synoptic activity is frequently modulated by the circumglobal teleconnection (CGT), in which meridional gradients of the jet stream act as a guide for short Rossby waves. Previous research has linked extreme precipitation events with either the CGT or the LLJ but has not linked the two circulation features together. In this study, a circulation-based index was developed by combining (a) the degree of the CGT and LLJ coupling, (b) the extent to which this CGT-LLJ coupling connects to regional precipitation and (c) the spatial correspondence with the CGT (short wave) trending pattern over the recent 32 years (1979-2010). Four modern-era global reanalyses, in conjunction with four gridded precipitation data sets, were utilized to minimize spurious trends. The results are suggestive of a link between the CGT/LLJ trends and several recent extreme precipitation events, including those leading to the 2008 Midwest flood in U.S., the 2011 tornado outbreaks in southeastern U.S., the 2010 Queensland flood in northeastern Australia, and to the opposite side the 2012 central U.S. drought. Moreover, an analysis of three Coupled Model Intercomparison Project Phase 5 models from the historical experiments points to the role of greenhouse gases in forming the CGT trends during the warm season.

  19. Climate change and probabilistic scenario of streamflow extremes in a cryospheric alpine region

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Gao, Cheng

    2015-04-01

    Future projections of streamflow extremes are of paramount significance in assessing the climate impacts on social and natural systems, particularly for the Himalayan alpine region in the Tibetan Plateau known as the Asian Water Tower. This study strives to quantify the uncertainties from different sources in simulating future extreme flows and seeks to construct reliable scenarios of future extreme flows for the headwater catchment of the Yellow River Basin in the 21st century. The results can be formulated as follows: (1) The revised snow model based on a daily active temperature method is superior to the commonly used degree-day method in simulating snowmelt processes. (2) In general, hydrological models contribute more uncertainties than the downscaling methods in high flow and low flow over the cryospheric alpine regions characterized by the snow-rainfall induced runoff processes under most scenarios. Meanwhile, impacts to uncertainty vary with time. (3) The ultimate probability of high-flow exhibits a downward trend in future by using an unconditional method, whereas positive changes in probability of low-flow are projected. The method in the work includes a variety of influence from different contributing factors (e.g. downscaling models, hydrological models, model parameters, and their simulation skills) on streamflow projection, therefore can offer more information (i.e. different percentiles of flow and uncertainty ranges) for future water resources planning compared with the purely deterministic approaches. Hence, the results are beneficial to boost our current methodologies of climate impact research in the Himalayan alpine zone.

  20. Spatiotemporal distribution characteristics and attribution of extreme regional low temperature event

    NASA Astrophysics Data System (ADS)

    Feng, Tai-Chen; Zhang, Ke-Quan; Su, Hai-Jing; Wang, Xiao-Juan; Gong, Zhi-Qiang; Zhang, Wen-Yu

    2015-10-01

    Based on an objective identification technique for regional low temperature event (OITRLTE), the daily minimum temperature in China has been detected from 1960 to 2013. During this period, there were 60 regional extreme low temperature events (ERLTEs), which are included in the 690 regional low temperature events (RLTEs). The 60 ERLTEs are analyzed in this paper. The results show that in the last 50 years, the intensity of the ERLTEs has become weak; the number of lasted days has decreased; and, the affected area has become small. However, that situation has changed in this century. In terms of spatial distribution, the high intensity regions are mainly in Northern China while the high frequency regions concentrate in Central and Eastern China. According to the affected area of each event, the 60 ERLTEs are classified into six types. The atmospheric circulation background fields which correspond to these types are also analyzed. The results show that, influenced by stronger blocking highs of Ural and Lake Baikal, as well as stronger southward polar vortex and East Asia major trough at 500-hPa geopotential height, cold air from high latitudes is guided to move southward and abnormal northerly winds at 850 hPa makes the cold air blow into China along diverse paths, thereby forming different types of regional extreme low temperatures in winter. Project supported by the National Natural Science Foundation of China (Grant No. 41305075), the National Basic Research Program of China (Grant Nos. 2012CB955203 and 2012CB955902), and the Special Scientific Research on Public Welfare Industry, China (Grant No. GYHY201306049).

  1. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    NASA Astrophysics Data System (ADS)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  2. Evaluating daily and extreme seasonal precipitations over continental Africa from a Regional Climate Model Simulation

    NASA Astrophysics Data System (ADS)

    Bamba Sylla, Mouhamadou; Mariotti, Laura; Coppola, Erika; Giorgi, Filippo

    2010-05-01

    Spatial and temporal variability of rainfall over Africa offers considerable challenges on climate change over the region. This is because of the complexity of regional climates in Africa and their associated geographic features. Adding to that complexity are deserts, vegetation variations, numerous mountain chains that can alter regional climate and weather patterns, the influence of the land-sea contrast due to the presence of several large lakes and the surrounding Indian and Atlantic Oceans. This leads to strong fluctuations of rainfall that may cause drought and flood in the region. Therefore, being able to simulate the spatial distribution of mean precipitation is quite important but also capturing their occurrences and intensities is critical for Africa whose economy relies on rain-fed agriculture. The International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3), driven by the newly produced ERA-Interim reanalysis, is used to investigate this issue. Several indices, such as the number of wet days and their intensity, maximum dry and wet spells length and the frequency of heavy precipitation days, are used to characterize the spatial variability of seasonal extreme rainfall over continental Africa. Model results are compared to both TRMM and FEWS rainfall data. They indicate that although the model captures the location of longest and shortest wet and dry spells, it tends to extend slightly the wet spell length around mountainous regions and along the ITCZ and the dry spell length over northern and southern Africa during austral and boreal summer respectively. This is mainly visible when compared to FEWS. Extension of the wet spell length may be partly related to the overestimation of the number of wet days. As a result, the intensity due to the wet days only is slightly overpredicted in these regions. This is, in turn, linked to the tendency of the RegCM3 to produce more intense and convective rainfall events in the ITCZ and the ZAB as

  3. A multivariate regional test for trend detection in extreme rainfall: the case of extreme daily rainfall in the French Mediterranean area.

    NASA Astrophysics Data System (ADS)

    Pujol, N.; Neppel, L.; Sabatier, R.

    2009-09-01

    A multivariate regional test for trend detection in extreme rainfall: the case of extreme daily rainfall in the French Mediterranean area. N. Pujol, L. Neppel, R. Sabatier The effect of human activity on the climate and on the earth global warming is now accepted by all the scientific community. In the context of a global warming one can ask for the consequences on the extreme events: in several regions their frequencies and/or their magnitude are expected to increase in the future. As the global warming starts in the beginning of the XXe century, can we already find some signal of any changes affecting the extreme events in the long series of observations? We try to bring some answer focusing on the extreme daily rainfalls in the French Mediterranean area. A set of 92 series of annual maxima daily rainfall has been sampled during at least 56 years. Those gauges have been gathered in seven homogeneous climatic regions with regard to extreme rainfall. A regional multivariate parametric test of trend detection has been developed, based on recent improvements in trend detection (Renard et al., 2008). The regional consistency is taken into account considering a common climatic trend for all the series of the same homogeneous region. The test consists of the following four steps: i) The marginal distribution of each extreme rainfall series has been modelled with the generalized extreme value (GEV) distribution function and the spatial dependence between the time series of a given region has been modelled with copulas function. ii) Two models have been defined: the stationary one (M0) and the non stationary one, where the GEV position parameters are supposed to be time dependant (M1). iii) The maximization of the likelihood function with genetic algorithm has lead to the parameters estimation. iv) The likelihood ratio test has been applied to select the "best" model between M0 and M1. From a theoretical point of view, the present work underlines i) the necessity of

  4. Mapping extreme rainfall in a mountainous region using geostatistical techniques: a case study in Scotland

    NASA Astrophysics Data System (ADS)

    Prudhomme, Christel; Reed, Duncan W.

    1999-10-01

    The spatial pattern of precipitation is known to be highly dependent on meteorological conditions and relief. However, the relationships between precipitation and topography in mountainous areas are not very well known, partly because of the complex topography in these regions, and partly because of the sparsity of information available to study such relationships in high elevation areas. The purpose of the investigation was to find a method of mapping extreme rainfall in the mountainous region of Scotland, which was easy to use and to understand, and which gave satisfactory results both in terms of statistical performance and consistency with meteorological mechanisms.Among the interpolation methods described in the literature, ordinary kriging and modified residual kriging have been found attractive by reason of their simplicity and ease of use. Both methods have been applied to map an index of extreme rainfall, the median of the annual maximum daily rainfall (RMED), in the mountainous region of Scotland. Rainfall records from a network of 1003 raingauges are used, covering Scotland with uneven density. A 4-parameter regression equation developed in a previous study, relating a transformed variable of RMED to topographical variables, is used in the modified residual kriging method. Comparing the relative performances of ordinary kriging and modified residual kriging shows that the use of topographical information helps to compensate for the lack of local data from which any interpolation method, such as ordinary kriging, might suffer, thus improving the final mapping.

  5. Regional frequency analysis of extreme rainfalls using partial L moments method

    NASA Astrophysics Data System (ADS)

    Zakaria, Zahrahtul Amani; Shabri, Ani

    2013-07-01

    An approach based on regional frequency analysis using L moments and LH moments are revisited in this study. Subsequently, an alternative regional frequency analysis using the partial L moments (PL moments) method is employed, and a new relationship for homogeneity analysis is developed. The results were then compared with those obtained using the method of L moments and LH moments of order two. The Selangor catchment, consisting of 37 sites and located on the west coast of Peninsular Malaysia, is chosen as a case study. PL moments for the generalized extreme value (GEV), generalized logistic (GLO), and generalized Pareto distributions were derived and used to develop the regional frequency analysis procedure. PL moment ratio diagram and Z test were employed in determining the best-fit distribution. Comparison between the three approaches showed that GLO and GEV distributions were identified as the suitable distributions for representing the statistical properties of extreme rainfall in Selangor. Monte Carlo simulation used for performance evaluation shows that the method of PL moments would outperform L and LH moments methods for estimation of large return period events.

  6. Attributing regional effects of the 2014 Jordanian extreme drought to external climate drivers

    NASA Astrophysics Data System (ADS)

    Bergaoui, Karim; Mitchell, Dann; Zaaboul, Rashyd; Otto, Friederike; McDonnell, Rachael; Dadson, Simon; Allen, Myles

    2015-04-01

    Throughout 2014, the regions of Jordan, Israel, Lebanon and Syria have experienced a persistent draught with clear impacts on the local populations. In this study we perform an extreme event attribution analysis of how such a draught has changed under climate change, with a specific focus on the flow rate of the Upper Jordan river and the water level of Lake Tiberious (AKA the Sea of Galilee). Both of which hold major societal, political and religious importance. To perform the analysis we make use of distributed computing power to run thousands of modelled years of 2014 with slightly different initial conditions. We use an atmosphere only model (HadAM3p) with a nested 50 km regional model covering Africa and the Middle East. The 50 km model atmospheric variables will be used directly to force offline our 1 km LIS surface model. Two separate experiments and simulations are performed, 1. for all known climate forcings that are present in 2014, and 2. for a naturalised 2014 scenario where we assume humans never impacted the climate. We perform sensitivity analyses on the observed precipitation over the regions of interest, and determine that the TRMM data is in good agreement with station data obtained from the Jordanian Ministry of Water. Using a combination of the TRMM and model data we are able to make clear statements on the attribution of a 2014-like extreme draught event to human causal factors.

  7. Detailed investigations on radiative opacity and emissivity of tin plasmas in the extreme-ultraviolet region.

    PubMed

    Zeng, Jiaolong; Gao, Cheng; Yuan, Jianmin

    2010-08-01

    Radiative opacity and emissivity of tin plasmas at average ionization degree of about 10 was investigated in detail by using a fully relativistic detailed level accounting approach, in which main physical effects on the opacity were carefully taken into account. Among these physical effects, configuration interaction, in particular core-valence electron correlations, plays an important role on the determination of accurate atomic data required in the calculation of opacity. It results in a strong narrowing of lines from all transition arrays and strong absorption is located in a narrow wavelength region of 12.5-14 nm for Sn plasmas. Using a complete accurate atomic data, we investigated the opacity of Sn plasmas at a variety of physical condition. Among the respective ions of Xe6+-Xe15+ , Xe10+ has the largest absorption cross section at 13.5 nm, while the favorable physical condition for maximal absorption at 13.5 nm do not mean that Xe10+ has the largest fraction. Comparison with other theoretical results showed that a complete set of consistent accurate atomic data, which lacks very much, is essential to predict accurate opacity. Our atomic model is useful and can be applied to interpret opacity experiments. Further benchmark experiments are urgently needed to clarify the physical effects on the opacity of Sn plasmas. PMID:20866928

  8. Seismic hazard assessment in the Tibet-Himalayan region based on observed and modeled extreme earthquakes

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Sokolov, V. Y.

    2013-12-01

    Ground shaking due to recent catastrophic earthquakes are estimated to be significantly higher than that predicted by a probabilistic seismic hazard analysis (PSHA). A reason is that extreme (large magnitude and rare) seismic events are not accounted in PSHA in the most cases due to the lack of information and unknown reoccurrence time of the extremes. We present a new approach to assessment of regional seismic hazard, which incorporates observed (recorded and historic) seismicity and modeled extreme events. We apply this approach to PSHA of the Tibet-Himalayan region. The large magnitude events simulated for several thousand years in models of lithospheric block-and-fault dynamics and consistent with the regional geophysical and geodetic data are employed together with the observed earthquakes for the Monte-Carlo PSHA. Earthquake scenarios are generated stochastically to sample the magnitude and spatial distribution of seismicity (observed and modeled) as well as the distribution of ground motion for each seismic event. The peak ground acceleration (PGA) values (that is, ground shaking at a site), which are expected to be exceeded at least once in 50 years with a probability of 10%, are mapped and compared to those PGA values observed and predicted earlier. The results show that the PGA values predicted by our assessment fit much better the observed ground shaking due to the 2008 Wenchuan earthquake than those predicted by conventional PSHA. Our approach to seismic hazard assessment provides a better understanding of ground shaking due to possible large-magnitude events and could be useful for risk assessment, earthquake engineering purposes, and emergency planning.

  9. Multi-Scale Statistical Properties of Rainfall for Extreme Hydrometeorological Events in Mountainous Regions

    NASA Astrophysics Data System (ADS)

    Nykanen, D. K.

    2006-12-01

    Hydrometeorological events that produce heavy rainfall and catastrophic flooding in mountainous regions present a great challenge for forecasters. Accurate predictions of flooding resulting from this type of storm require high resolution rainfall data. In a forecast mode, output from Numerical Weather Prediction (NWP) models must be used to drive the hydrologic models. Although much progress has been made in the past decade, the output from NWP models remains at a coarser resolution than what is needed for hydrologic predictions. Bridging the scale gap between precipitation forecasts from NWP models and the resolution needs of hydrologic models for streamflow prediction requires alternative methods such as statistical downscaling of the rainfall fields. This study quantifies the multi-scale statistical properties of rainfall for extreme hydrometeorological events in mountainous regions across scales of 1~20 km. The Buffalo Creek flood of 1996, Fort Collins flood of 1997, and several other extreme hydrometerological events in the Appalachian region and Front Range of the Rocky Mountains are included in the analysis. The following questions will be investigated: (1) does spatial scaling exist as a common feature in convective rainfall events in mountainous regions?, (2) at what spatial scales do meteorological and topographic controls manifest themselves in the space-time variability of the rainfall fields?, and (3) how does meteorological forcings and geographic location impact trends in topographic influences on the multi-scale statistical properties of rainfall? Focus is placed on linking changes in the multi-scale statistical properties with orographic influences on the rainfall and developing predictive relationships between multi-scale parameters and meteorological and topographic forcings. Differences in geographic region and predominant orographic controls (e.g., windward versus leeward forcing) on trends in multi-scale properties of rainfall is investigated

  10. Multi-model analysis of precipitation-related climatological extremes for the Carpathian Region

    NASA Astrophysics Data System (ADS)

    Kis, Anna; Pongracz, Rita; Bartholy, Judit

    2015-04-01

    As a consequence of global climate change, both frequency and intensity of climatological and meteorological extremes are likely to change. These will certainly further induce various effects on hydrological extremes. Although more frequent hot weather in summer and overall warmer climatic conditions compared to the past decades are quite straightforward direct consequences of global warming, the effects on precipitation might be less clear because the higher spatial and temporal variabilities might hide robust changing signals. Nevertheless, precipitation is one of the most important meteorological variables since it considerably affects natural ecosystems and cultivated vegetation as well, as most of human activities. Extreme precipitation events - both excessive, intense rainfalls and severe droughts - may result in severe environmental, agricultural, and economical disasters. For instance, excessive precipitation may induce floods, flash-floods, landslides, traffic accidents. On the other hand, the lack of precipitation for extended period and coincidental intense heat wave often lead to severe drought events, which certainly affect agricultural production negatively, and hence, food safety might also be threatened. In order to avoid or at least reduce the effects of these precipitation-related hazards, national and local communities need to develop regional adaptation strategies, and then, act according to them. For this purpose, climatological projections are needed as a scientific basis. Coarse resolution results of global climate model (GCM) simulations must be downscaled to regional and local scales, hence better serving decision-makers' and end-users' needs. Dynamical downscaling technique applies regional climate model (RCM) to provide fine resolution climatological estimations for the future. Thus, in this study 11 completed RCM simulations with 25 km horizontal resolution are used from the ENSEMBLES database taking into account SRES A1B scenario for

  11. High-altitude cusp: The tremendous large and extremely dynamic region in geospace

    NASA Astrophysics Data System (ADS)

    Chen, J.; Fritz, T. A.

    2003-04-01

    High-altitude dayside cusps (both northern and southern) are the tremendous large and extremely dynamic regions in geospace. They have a size of as large as 6 Re and are always there day after day. Turbulent diamagnetic cavities have been observed there. Associated with these cavities are charged particles with energies from 20 keV up to 10 MeV. The intensities of the cusp energetic ions are observed to increase by as large as four orders of the magnitude when compared to regions adjacent to the cusp which includes the magnetosheath. Their seed populations is a mixture of ionospheric and solar wind particles. Some of the diamagnetic cavities were independent of the IMF directions, suggesting that the cusp diamagnetic cavities are different from the magnetospheric sash predicted by MHD simulations. Turbulent electrical field with an amplitude of about 10 mV/m also presents in the cusp, and a cusp resonant acceleration mechanism is suggested.

  12. Extremely Low Ionospheric Peak Altitudes in the Polar-Hole Region

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Grebowsky, Joseph M.

    1999-01-01

    Vertical electron-density (N (sub e)) profiles, deduced from newly-available ISIS-II digital ionospheric topside-sounder data, are used to investigate the "polar-hole" region within the winter, nighttime polar cap ionosphere during solar minimum. The hole region is located around 0200 MLT near the poleward side of the auroral oval. Earlier investigations had revealed very low N (sub e) values in this region (down to 200/cu cm near 300 km). In the present study, such low N, values (approx. 100/cu cm) were only found near the ISIS (International Satellite for Ionospheric Study)-II altitude of 1400 km. The peak ionospheric concentration below the spacecraft remained fairly constant (approx. 10 (exp 5)/cu cm across the hole region but the altitude of the peak dropped dramatically. This peak dropped, surprisingly, to the vicinity of 100 km. These observations suggest that the earlier satellite in situ measurements, interpreted as deep holes in the ionospheric F-region concentration, could have been made during conditions of an extreme decrease in the altitude of the ionospheric N (sub e) peak. The observations, in combination with other data, indicate that the absence of an F-layer peak may be a frequent occurrence at high latitudes.

  13. Simulation of Extreme Surface Winds by Regional Climate Models in the NARCCAP Archive

    NASA Astrophysics Data System (ADS)

    Hatteberg, R.; Takle, E. S.

    2011-12-01

    Surface winds play a significant role in many natural processes as well as providing a very important ecological service for many human activities. Surface winds ventilate pollutants and heat from our cities, contribute to pollination for our crops, and regulate the fluxes of heat, moisture, and carbon dioxide from the earth's surface. Many environmental models such as biogeochemical models, crop models, lake models, pollutant transport models, etc., use surface winds as a key variable. Studies of the impacts of climate change and climate variability on a wide range of natural systems and coupled human-natural systems frequently need information on how surface wind speeds will change as greenhouse gas concentrations in the earth's atmosphere change. We have studied the characteristics of extreme winds - both high winds and low winds - created by regional climate models (RCMs) in the NARCCAP archives. We evaluated the capabilities of five RCMs forced by NCEP reanalysis data as well as global climate model (GCM) data for contemporary and future scenario climates to capture the observed statistical distribution of surface winds, both high-wind events and low-wind conditions. Our domain is limited to the Midwest (37°N to 49°N, -82°W to -101°W) with the Great Lakes masked out, which eliminates orographic effects that may contribute to regional circulations. The majority of this study focuses on the warm seasonal in order to examine derechos on the extreme high end and air pollution and plant processes on the low wind speed end. To examine extreme high winds we focus on derechos, which are long-lasting convectively driven extreme wind events that frequently leave a swath of damage extending across multiple states. These events are unusual in that, despite their relatively small spatial scale, they can persist for hours or even days, drawing energy from well-organized larger mesoscale or synoptic scale processes. We examine the ability of NARCCAP RCMs to reproduce

  14. Variability of Winter Extreme Heat Flux Events in Kuroshio Extension and Gulf Stream Extension Regions

    NASA Astrophysics Data System (ADS)

    Ma, X.; Chang, P.; Wu, D.; Lin, X.

    2012-12-01

    We analyzed extreme surface heat flux events, defined by daily sensible (latent) heat flux greater than 80 percentile value (hereafter referred to as high-flux events) associated with boreal winter (NDJFM) cold-air outbreaks (CAOs) in the Kuroshio Extension Region (KER) of the Northwestern Pacific, using the high-resolution NCEP-CFSR (1979-2009) and NCEP-NCAR (1948-2009) reanalysis, and compared the results to those in the Gulf Stream Region (GSR) of the Northwestern Atlantic. The average accumulated number of days of the Pacific high-flux events, which typically last fewer than 3 days, is only less than 20% of the winter period but contributes significantly (>30%) to the total sensible and latent heat fluxes during the entire winter season in the KER. These high flux events are characterized by "cold storms" with a positive geopotential height anomaly (anti-cyclone) over Japan and a negative geopotential height anomaly (cyclone) further downstream, in between which there is an anomalous northerly wind that brings cold and dry air from the Eurasian continent to the KER. In contrast, non-event days are characterized by "warm storms" that have a cyclone (an anti-cyclone) to the west (east) of the KER, bringing warm and moist air from the subtropics to the KER. There are important differences between the Pacific and Atlantic CAOs. Generally, the Atlantic CAOs occur more frequently with stronger intensity and shorter duration than those in the Pacific. The "cold storms" in the KER also differ from those in the GSR in terms of their detailed structure and orientation relative to geographic location. However, in both the Pacific and Atlantic, interannual and longer term variations of sensible and latent heat flux are determined by the high flux events, suggesting that extreme winter storm events play an important role in the mid-latitude climate system. In the Pacific basin, decadal variability dominates the low-frequency variability of total and event-day sensible and

  15. Analysis of Extreme Events in Regional Climate Model Simulations for the Pacific Northwest using weatherathome

    NASA Astrophysics Data System (ADS)

    Mera, R. J.; Mote, P.; Weber, J.

    2011-12-01

    One of the most prominent impacts of climate change over the Pacific Northwest is the potential for an elevated number of extreme precipitation events over the region. Planning for natural hazards such as increasing number of floods related to high-precipitation events have, in general, focused on avoiding development in floodplains and conditioning development to withstand inundation with a minimum of losses. Nationwide, the Federal Emergency Management Agency (FEMA) estimates that about one quarter of its payments cover damage that has occurred outside mapped floodplains. It is clear that traditional flood-based planning will not be sufficient to predict and avoid future losses resulting from climate-related hazards such as high-precipitation events. In order to address this problem, the present study employs regional climate model output for future climate change scenarios to aid with the development of a map-based inventory of future hazard risks that can contribute to the development of a "planning-scale" decision support system for the Oregon Department of Land Conservation and Development (DLCD). Climate model output is derived from the climateprediction.net (CPDN) weatherathome project, an innovative climate science experiment that utilizes volunteer computers from users worldwide to produce hundreds of thousands superensembles of regional climate simulations of the Western United States climate from 1950 to 2050. The spatial and temporal distribution of extreme weather events are analyzed for the Pacific Northwest to diagnose the model's capabilities as an input for map products such as impacts on hydrology. Special attention is given to intensity and frequency of Atmospheric River events in historical and future climate contexts.

  16. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    SciTech Connect

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

  17. A hierarchical Bayesian regional model for nonstationary precipitation extremes in Northern California conditioned on tropical moisture exports

    NASA Astrophysics Data System (ADS)

    Steinschneider, Scott; Lall, Upmanu

    2015-03-01

    Warm, moist, and longitudinally confined tropical air masses are being linked to some of the most extreme precipitation and flooding events in the midlatitudes. The interannual frequency and intensity of such atmospheric rivers (ARs), or tropical moisture exports (TMEs), are connected to the risk of extreme precipitation events in areas where moisture convergence occurs. This study presents a nonstationary, regional frequency analysis of precipitation extremes in Northern California that is conditioned on the interannual variability of TMEs entering the region. Parameters of a multisite peaks-over-threshold model are allowed to vary conditional on the integrated moisture delivery from TMEs over the area. Parameters are also related to time-invariant, local characteristics to facilitate regionalization to ungaged sites. The model is developed and calibrated in a hierarchical Bayesian framework to support partial pooling and enhance regionalization skill. The model is cross validated along with two alternative, increasingly parsimonious formulations to assess the additional skill provided by the covariates. Climate diagnostics are also used to better understand the instances where TMEs fail to explain variations in rainfall extremes to provide a path forward for further model improvement. The modeling structure is designed to link seasonal forecasting and long-term projections of TMEs directly to regional models of extremes used for risk estimation. Results suggest that the inclusion of TME-based information greatly improves the characterization of extremes, particularly for their frequency of occurrence. Diagnostics indicate that the model could be further improved by considering an index for frontal systems as an additional covariate.

  18. Analysis and Modelling of Extreme Wind Speed Distributions in Complex Mountainous Regions

    NASA Astrophysics Data System (ADS)

    Laib, Mohamed; Kanevski, Mikhail

    2016-04-01

    Modelling of wind speed distributions in complex mountainous regions is an important and challenging problem which interests many scientists from several fields. In the present research, high frequency (10 min) Swiss wind speed monitoring data (IDAWEB service, Meteosuisse) are analysed and modelled with different parametric distributions (Weibull, GEV, Gamma, etc.) using maximum likelihood method. In total, 111 stations placed in different geomorphological units and at different altitude (from 203 to 3580 meters) are studied. Then, this information is used for training machine learning algorithms (Extreme Learning Machines, Support vector machine) to predict the distribution at new places, potentially useful for aeolian energy generation. An important part of the research deals with the construction and application of a high dimensional input feature space, generated from digital elevation model. A comprehensive study was carried out using feature selection approach to get the best model for the prediction. The main results are presented as spatial patterns of distributions' parameters.

  19. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.

    PubMed

    Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J

    2015-08-15

    Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. PMID:25889542

  20. The solar extreme ultra-violet corona: Resolved loops and the unresolved active region corona

    NASA Astrophysics Data System (ADS)

    Cirtain, Jonathan Wesley

    In this work, physical characteristics of the solar corona as observed in the Extreme Ultra-Violet (EUV) regime are investigated. The focus will be the regions of intense EUV radiation generally found near the locations of sunspots. These regions are commonly called active regions. Multiple space- based observing platforms have been deployed in the last decade; it is possible to use several of these observatories in combination to develop a more complete picture of the solar corona. Joint Observing Program 146 was created to collect spectroscopic intensities using the Coronal Diagnostic Spectrometer on Solar and Heliospheric Observatory and EUV images using NASA's Transition Region and Coronal Explorer. The emission line intensities are analyzed to develop an understanding of the temperature and density of the active region coronal plasma. However, the performance of the CDS instrument in the spatial and temporal domains is limited and to compensate for these limitations, data collected by the TRACE instrument provide a high spatial and temporal resolution set of observations. One of the most exciting unsolved problems in solar astrophysics is to understand why the corona maintains a temperature roughly two orders of magnitude higher than the underlying material. A detailed investigation of the coronal emission has provided constraints on models of the heating mechanism, since the temperature, density and evolution of emission rates for multiple ionic species are indicative of the mechanism(s) working to heat the corona. The corona appears to consist of multiple unresolved structures as well as resolved active region structures, called coronal loops. The purpose of the present work is to determine the characteristics of the unresolved background corona. Using the characterizations of the coronal unresolved background, results for loops after background subtraction are also presented. This work demonstrates the magnitude of the unresolved coronal emission with

  1. The Mass and Spin of The Extreme Narrow Line Seyfert 1 Galaxy 1H 0707-495 and Its Implications for The Trigger for Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Done, Chris; Jin, Chichuan

    2016-05-01

    Relativistic reflection models of the X-ray spectrum of the `complex' Narrow Line Seyfert 1 (NLS1) 1H 0707-495 require a high spin, moderate inclination, low mass black hole. With these parameters fixed, the observed optical/UV emission directly determines the mass accretion rate through the outer disc and hence predicts the bolometric luminosity. This is 140 - 260 × the Eddington limit. Such a disc should power a strong wind, and winds are generically expected to be clumpy. Changing inclination angle with respect to a clumpy wind structure gives a possible explanation for the otherwise puzzling difference between `complex' NLS1 such as 1H 0707-495 and `simple' ones like PG 1244+026. Lines of sight which intercept the wind show deep absorption features at iron from the hot phase of the wind, together with stochastic dips and complex absorption when the clumps occult the X-ray source (complex NLS1), whereas both these features are absent for more face-on inclination (simple NLS1). This geometry is quite different to the clean view of a flat disc which is assumed for the spin measurements in relativistic reflection models, so it is possible that even 1H 0707-495 has low spin. If so, this re-opens the simplest and hence very attractive possibility that high black hole spin is a necessary and sufficient condition to trigger highly relativistic (bulk Lorentz factor ˜10 - 15) jets.

  2. The mass and spin of the extreme Narrow Line Seyfert 1 Galaxy 1H 0707-495 and its implications for the trigger for relativistic jets

    NASA Astrophysics Data System (ADS)

    Done, Chris; Jin, Chichuan

    2016-08-01

    Relativistic reflection models of the X-ray spectrum of the `complex' Narrow Line Seyfert 1 (NLS1) 1H 0707-495 require a high-spin, moderate-inclination, low-mass black hole. With these parameters fixed, the observed optical/UV emission directly determines the mass accretion rate through the outer disc and hence predicts the bolometric luminosity. This is 140-260 times the Eddington limit. Such a disc should power a strong wind, and winds are generically expected to be clumpy. Changing inclination angle with respect to a clumpy wind structure gives a possible explanation for the otherwise puzzling difference between `complex' NLS1 such as 1H 0707-495 and `simple' ones like PG 1244+026. Lines of sight which intercept the wind show deep absorption features at iron from the hot phase of the wind, together with stochastic dips and complex absorption when the clumps occult the X-ray source (complex NLS1), whereas both these features are absent for more face-on inclination (simple NLS1). This geometry is quite different from the clean view of a flat disc which is assumed for the spin measurements in relativistic reflection models, so it is possible that even 1H 0707-495 has low spin. If so, this re-opens the simplest and hence very attractive possibility that high black hole spin is a necessary and sufficient condition to trigger highly relativistic (bulk Lorentz factor ˜10-15) jets.

  3. Scintigraphic Evaluation of the Stump Region After Extremity Amputation and the Effect of Scintigraphy on Treatment

    PubMed Central

    Sadic, Murat; Atilgan, Hasan Ikbal; Baskin, Aylin; Cinar, Alev; Koca, Gokhan; Demirel, Koray; Comak, Aylin; Ozyurt, Sinem; Yildirim, Sule; Korkmaz, Meliha

    2016-01-01

    Background We evaluated the stump region with scintigraphy and compared the correlation of treatment modalities and scintigraphic results. Methods Sixty-eight cases with extremity amputation were included in the study. Amputation applied cases underwent four-phase Tc-99m hydroxymethylene diphosphonate scintigraphy. Groups were performed according to the scanning time after amputation and amputation regions. After scintigraphic evaluation, results were recorded into five groups: osteomyelitis, soft-tissue infection, reactive changes secondary to surgery, chronic osteomyelitis, and normal. Post-surgical treatment modalities of the patients were determined and compared with scintigraphic results. Results In the scintigraphic evaluation of stump regions of the 68 amputated cases, 34 patients had acute osteomyelitis, one had chronic osteomyelitis, 16 had soft-tissue infection, and eight had changes secondary to the surgery. Nine of 68 cases had normal scintigraphic features. In the scintigraphic evaluation, 43 patients took antibiotic treatment and 16 had surgery. There was a strong correlation between scintigraphic results and treatment approach (P < 0.0001, r = 0.803) by means of preferred therapy and effectiveness of the therapy according to the scintigraphic results. Scintigraphy need increases with age after amputation and a negative correlation between patient age and scintigraphic need was found (P < 0.02, r = -0.339). There was no pathology in the follow-up in the cases that were scintigraphically normal. Conclusion Bone scintigraphy is a cost-effective, non-invasive, and efficient method that directs treatment in the evaluation of the stump region after amputation. PMID:26858796

  4. Climate extremes and the carbon cycle - a review using an integrated approach with regional examples for forests & native ecosystems -

    NASA Astrophysics Data System (ADS)

    Frank, D.; Reichstein, M.; Bahn, M.; Beer, C.; Ciais, P.; Mahecha, M.; Seneviratne, S. I.; Smith, P.; van Oijen, M.; Walz, A.

    2012-04-01

    The terrestrial carbon cycle provides an important biogeochemical feedback to climate and is itself particularly susceptible to extreme climate events. Climate extremes can override any (positive) effects of mean climate change as shown in European and recent US-American heat waves and dry spells. They can impact the structure, composition, and functioning of terrestrial ecosystems and have the potential to cause rapid carbon losses from accumulated stocks. We review how climate extremes like severe droughts, heat waves, extreme precipitation or storms can cause direct impacts on the CO2 fluxes [e.g. due to extreme temperature and/ or drought events] as well as lagged impacts on the carbon cycle [e.g. via an increased fire risk, or disease outbreaks and pest invasions]. The relative impact of the different climate extremes varies according to climate region and vegetation type. We present lagged effects on plant growth (and mortality) in the year(s) following an extreme event and their impacts on the carbon sequestration of forests and natural ecosystems. Comprehensive regional or even continental quantification with regard to extreme events is missing, and especially compound extreme events, the role of lagged effects and aspects of the return frequency are not studied enough. In a case study of a Mediterranean ecosystem we illustrate that the response of the net carbon balance at ecosystem level to regional climate change is hard to predict as interacting and partly compensating processes are affected and several processes which have the ability to substantially alter the carbon balance are not or not sufficiently represented in state-of-the-art biogeochemical models.

  5. Bacterial Diversity within the Extreme Arid Atacama Desert Soils of the Yungay Region, Chile

    NASA Astrophysics Data System (ADS)

    Connon, S. A.; Lester, E. D.; Shafaat, H. S.; Obenhuber, D. C.; Ponce, A.

    2006-12-01

    Surface and subsurface soil samples analyzed for this study were collected from the hyper-arid Yungay region of the Atacama Desert, Chile. This is the first report of microbial diversity from DNA extracted directly from these extremely desiccated soils. Our data shows that 94% of the 16S rRNA genes cloned from these soils belong to the Actinobacteria phylum. A 24-hour time course series showed a diurnal water activity (aw) cycle that peaked at 0.52 in the early predawn hours, and ranged from 0.08 0.01 during the day. All measured water activity values were below the level required for microbial growth or enzyme activity. Total organic carbon (TOC) levels in this region were just above the limits of detection and ranged from 220 660 μg/g of soil. Phospholipid fatty acid (PLFA) levels indicated cellular biomass ranging from 2 ×105 to 7 ×106 cell equivalents per gram of soil. The culturable counts were low with most samples showing no growth on standard plates of R2A medium; the highest single count was 47 colony forming units (CFU) per gram.

  6. Impact of an extreme dry and hot summer on water supply security in an alpine region.

    PubMed

    Vanham, D; Fleischhacker, E; Rauch, W

    2009-01-01

    Climate change will induce an increasing drought risk in western and southern Europe and a resulting increase in water stress. This paper investigates the impact of both the extreme hot and dry summer of 2003 and the PRUDENCE CHRM climate change scenario summer for 2071-2100 on the monthly water balance (available water resources versus water demand) within the Kitzbueheler Region in the Austrian Alps. As a baseline period the climate normal period from 1961 to 1990 was chosen. In both summer scenarios total flow and ground water recharge decrease substantially, due to the decrease in precipitation and increase in evapotranspiration However, regional water availability is still sufficient to serve all water demand stakeholders. As a result of decreased snow cover duration, flow seasonality changes within the CHRM scenario. Especially springs are very vulnerable to these climatological conditions; average local groundwater recharge is reduced by 20% up to 70% within both scenarios. Due to the hydrogeological characteristics of the case study area and the typical small structured alpine water supply infrastructure, local deficits can occur. But also groundwater aquifers in the valleys show a decrease in water availability. These results are supported by observations made in 2003 throughout Austria and Switzerland. PMID:19214001

  7. Generating extreme weather event sets from very large ensembles of regional climate models

    NASA Astrophysics Data System (ADS)

    Massey, Neil; Guillod, Benoit; Otto, Friederike; Allen, Myles; Jones, Richard; Hall, Jim

    2015-04-01

    Generating extreme weather event sets from very large ensembles of regional climate models Neil Massey, Benoit P. Guillod, Friederike E. L. Otto, Myles R. Allen, Richard Jones, Jim W. Hall Environmental Change Institute, University of Oxford, Oxford, UK Extreme events can have large impacts on societies and are therefore being increasingly studied. In particular, climate change is expected to impact the frequency and intensity of these events. However, a major limitation when investigating extreme weather events is that, by definition, only few events are present in observations. A way to overcome this issue it to use large ensembles of model simulations. Using the volunteer distributed computing (VDC) infrastructure of weather@home [1], we run a very large number (10'000s) of RCM simulations over the European domain at a resolution of 25km, with an improved land-surface scheme, nested within a free-running GCM. Using VDC allows many thousands of climate model runs to be computed. Using observations for the GCM boundary forcings we can run historical "hindcast" simulations over the past 100 to 150 years. This allows us, due to the chaotic variability of the atmosphere, to ascertain how likely an extreme event was, given the boundary forcings, and to derive synthetic event sets. The events in these sets did not actually occur in the observed record but could have occurred given the boundary forcings, with an associated probability. The event sets contain time-series of fields of meteorological variables that allow impact modellers to assess the loss the event would incur. Projections of events into the future are achieved by modelling projections of the sea-surface temperature (SST) and sea-ice boundary forcings, by combining the variability of the SST in the observed record with a range of warming signals derived from the varying responses of SSTs in the CMIP5 ensemble to elevated greenhouse gas (GHG) emissions in three RCP scenarios. Simulating the future with a

  8. Long tails in regional surface temperature probability distributions with implications for extremes under global warming

    NASA Astrophysics Data System (ADS)

    Ruff, Tyler W.; Neelin, J. David

    2012-02-01

    Prior work has shown that probability distributions of column water vapor and several passive tropospheric chemical tracers exhibit longer-than-Gaussian (approximately exponential) tails. The tracer-advection prototypes explaining the formation of these long-tailed distributions motivate exploration of observed surface temperature distributions for non-Gaussian tails. Stations with long records in various climate regimes in National Climatic Data Center Global Surface Summary of Day observations are used to examine tail characteristics for daily average, maximum and minimum surface temperature probability distributions. Each is examined for departures from a Gaussian fit to the core (here approximated as the portion of the distribution exceeding 30% of the maximum). While the core conforms to Gaussian for most distributions, roughly half the cases exhibit non-Gaussian tails in both winter and summer seasons. Most of these are asymmetric, with a long, roughly exponential, tail on only one side. The shape of the tail has substantial implications for potential changes in extreme event occurrences under global warming. Here the change in the probability of exceeding a given threshold temperature is quantified in the simplest case of a shift in the present-day observed distribution. Surface temperature distributions with long tails have a much smaller change in threshold exceedances (smaller increases for high-side and smaller decreases for low-side exceedances relative to exceedances in current climate) under a given warming than do near-Gaussian distributions. This implies that models used to estimate changes in extreme event occurrences due to global warming should be verified regionally for accuracy of simulations of probability distribution tails.

  9. Empirical evidence of direct impact of extreme temperatures on wheat yield in major wheat growing region of India.

    NASA Astrophysics Data System (ADS)

    Murari, K. K.; Mahato, S.; Jayaraman, T.

    2014-12-01

    Exposure to extreme temperatures during the grain filling stage of winter wheat may lead to reduction in the yield. Over the last decade, there has been an increasing trend of exposure to extreme temperature conditions, particularly during crop growing season. The Indo Gangetic plain (IGP) is a particular concern since an optimal temperature for wheat production already exists in the region. This is also a major concern for global wheat production since the region accounts for about 15% of the global wheat production. Previous studies conducted in this region have found a strong impact of extreme temperatures causing an early occurrence of senescence, defined as the last developmental stage of the plant. The early occurrence of senescence period induces shortening of growing season length, which is a critical grain filling stage. However, the direct effect of extreme temperatures on the yield data has not yet been looked at, which reflects the impact of extreme temperature at different growth stages including anthesis (flowering) and the grain-filling stage. Here in this study, we explore the relationship of extreme heat conditions on the yield using fixed-effect panel data model for the districts in the IGP region. The first result indicates approximately 16% reduction in wheat yield with 1˚C rise in mean growing season temperature. There is a significant negative trend between the yield and the fourth quartile of extreme temperature (>34˚C) days. Furthermore, we establish a scope of existence of a nonlinear relationship between temperature and yield, which needs to be further examined.

  10. Weak Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M.; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.

    2010-10-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91+0.24 -0.22, which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  11. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    SciTech Connect

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-10-20

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad H{beta} line and place tight upper limits on the strengths of their [O III] lines. Virial, H{beta}-based black hole mass determinations indicate normalized accretion rates of L/L {sub Edd}=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of {Gamma} = 1.91{sup +0.24} {sub -0.22}, which supports the virial L/L {sub Edd} determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  12. Regional Nodal Involvement and Patterns of Spread Along In-Transit Pathways in Children With Rhabdomyosarcoma of the Extremity: A Report From the Children's Oncology Group;Rhabdomyosarcoma; Regional failure; In-transit nodes; Radiotherapy; Extremity

    SciTech Connect

    La, Trang H.; Wolden, Suzanne L.; Rodeberg, David A.; Hawkins, Douglas S.; Anderson, James R.; Donaldson, Sarah S.

    2011-07-15

    Purpose: To evaluate the incidence and prognostic factors for regional failure, with attention to the in-transit pathways of spread, in children with nonmetastatic rhabdomyosarcoma of the extremity. Methods and Materials: The Intergroup rhabdomyosarcoma studies III, IV-Pilot, and IV enrolled 226 children with rhabdomyosarcoma of the extremity. Failure at the in-transit (epitrochlear/brachial and popliteal) and proximal (axillary/infraclavicular and inguinal/femoral) lymph nodes was evaluated. The median follow-up for the surviving patients was 10.4 years. Results: Of the 226 children, 55 (24%) had clinical or pathologic evidence of either in-transit and/or proximal lymph node involvement at diagnosis. The actuarial 5-year risk of regional failure was 12%. The prognostic factors for poor regional control were female gender and lymph node involvement at diagnosis. In the 116 patients with a distal extremity primary tumor, 5% had in-transit lymph node involvement at diagnosis. The estimated 5-year incidences of in-transit and proximal nodal failure was 12% and 8%, respectively. The in-transit failure rate was 0% for patients who underwent radiotherapy and/or underwent lymph node sampling of the in-transit nodal site but was 15% for those who did not (p = .07). However, the 5-year event-free survival rate did not differ between these two groups (64% vs. 55%, respectively, p = .47). Conclusion: The high incidence of regional involvement necessitates aggressive identification and treatment of regional lymph nodes in patients with rhabdomyosarcoma of the extremity. In patients with distal extremity tumors, in-transit failures were as common as failures in more proximal regional sites. Patients who underwent complete lymph node staging with appropriate radiotherapy to the in-transit nodal site, if indicated, were at a slightly lower risk of in-transit failure.

  13. The impact of ENSO and the NAO on extreme winter precipitation in North America in observations and regional climate models

    NASA Astrophysics Data System (ADS)

    Whan, Kirien; Zwiers, Francis

    2016-05-01

    The relationship between winter precipitation in North America and indices of the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO) is evaluated using non-stationary generalized extreme value distributions with the indices as covariates. Both covariates have a statistically significant influence on precipitation that is well simulated by two regional climate models (RCMs), CanRCM4 and CRCM5. The observed influence of the NAO on extreme precipitation is largest in eastern North America, with the likelihood of a negative phase extreme rainfall event decreased in the north and increased in the south under the positive phase of the NAO. This pattern is generally well simulated by the RCMs although there are some differences in the extent of influence, particularly south of the Great Lakes. A La Niña-magnitude extreme event is more likely to occur under El Niño conditions in California and the southern United States, and less likely in most of Canada and a region south of the Great Lakes. This broad pattern is also simulated well by the RCMs but they do not capture the increased likelihood in California. In some places the extreme precipitation response in the RCMs to external forcing from a covariate is of the opposite sign, despite use of the same lateral boundary conditions and dynamical core. This demonstrates the importance of model physics for teleconnections to extreme precipitation.

  14. Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers

    USGS Publications Warehouse

    Ralph, F.M.; Sukovich, E.; Reynolds, D.; Dettinger, M.; Weagle, S.; Clark, W.; Neiman, P.J.

    2010-01-01

    Extreme precipitation events, and the quantitative precipitation forecasts (QPFs) associated with them, are examined. The study uses data from the Hydrometeorology Testbed (HMT), which conducted its first field study in California during the 2005/06 cool season. National Weather Service River Forecast Center (NWS RFC) gridded QPFs for 24-h periods at 24-h (day 1), 48-h (day 2), and 72-h (day 3) forecast lead times plus 24-h quantitative precipitation estimates (QPEs) fromsites in California (CA) and Oregon-Washington (OR-WA) are used. During the 172-day period studied, some sites received more than 254 cm (100 in.) of precipitation. The winter season produced many extreme precipitation events, including 90 instances when a site received more than 7.6 cm (3.0 in.) of precipitation in 24 h (i.e., an "event") and 17 events that exceeded 12.7 cm (24 h)-1 [5.0 in. (24 h)-1]. For the 90 extreme events f.7.6 cm (24 h)-1 [3.0 in. (24 h)-1]g, almost 90% of all the 270 QPFs (days 1-3) were biased low, increasingly so with greater lead time. Of the 17 observed events exceeding 12.7 cm (24 h)-1 [5.0 in. (24 h)-1], only 1 of those events was predicted to be that extreme. Almost all of the extreme events correlated with the presence of atmospheric river conditions. Total seasonal QPF biases for all events fi.e., $0.025 cm (24 h)-1 [0.01 in. (24 h)-1]g were sensitive to local geography and were generally biased low in the California-Nevada River Forecast Center (CNRFC) region and high in the Northwest River Forecast Center(NWRFC) domain. The low bias in CA QPFs improved with shorter forecast lead time and worsened for extreme events. Differences were also noted between the CNRFC and NWRFC in terms of QPF and the frequency of extreme events. A key finding from this study is that there were more precipitation events .7.6 cm (24 h)-1 [3.0 in. (24 h)21] in CA than in OR-WA. Examination of 422 Cooperative Observer Program (COOP) sites in the NWRFC domain and 400 in the CNRFC domain

  15. Projection of extreme precipitation in the context of climate change in Huang-Huai-Hai region, China

    NASA Astrophysics Data System (ADS)

    Yin, Jun; Yan, Denghua; Yang, Zhiyong; Yuan, Zhe; Yuan, Yong; Zhang, Cheng

    2016-03-01

    Based on the national precipitation dataset (0.5∘×0.5∘) 1961-2011, published by the National Meteorological Information Center of China and the five Global Climate Models provided by ISI-MIP, annual maximum precipitation for 1 day, 3 days and 7 days could be calculated. Extreme precipitation was fitted via Generalized Extreme Value (GEV) distribution to explore the changes of extreme precipitation with the return period of 20 years and 50 years during 1961-2000 and 2001-2050. Based on this, extreme precipitation projection in Huang-Huai-Hai region was done. The results showed that the five Global Climate Models could simulate the statistical features of extreme precipitation quite well, in which IPSL-CM5A-LR has the highest precision. Simulation of IPSL-CM5A-LR indicates that precipitation with the return period of 20 years and 50 years in the middle reaches of the Yellow River, middle and lower reaches of Huaihe River and plain area of the southern Haihe River will increase considerably in the future. Extreme precipitation in some of the places will even increase by more than 30%, which means that these places will face larger flood risk and their capacity to respond to flood disasters should be improved.

  16. Evaluation of large-scale meteorological patterns associated with temperature extremes in the NARCCAP regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Loikith, Paul C.; Waliser, Duane E.; Lee, Huikyo; Neelin, J. David; Lintner, Benjamin R.; McGinnis, Seth; Mearns, Linda O.; Kim, Jinwon

    2015-12-01

    Large-scale meteorological patterns (LSMPs) associated with temperature extremes are evaluated in a suite of regional climate model (RCM) simulations contributing to the North American Regional Climate Change Assessment Program. LSMPs are characterized through composites of surface air temperature, sea level pressure, and 500 hPa geopotential height anomalies concurrent with extreme temperature days. Six of the seventeen RCM simulations are driven by boundary conditions from reanalysis while the other eleven are driven by one of four global climate models (GCMs). Four illustrative case studies are analyzed in detail. Model fidelity in LSMP spatial representation is high for cold winter extremes near Chicago. Winter warm extremes are captured by most RCMs in northern California, with some notable exceptions. Model fidelity is lower for cool summer days near Houston and extreme summer heat events in the Ohio Valley. Physical interpretation of these patterns and identification of well-simulated cases, such as for Chicago, boosts confidence in the ability of these models to simulate days in the tails of the temperature distribution. Results appear consistent with the expectation that the ability of an RCM to reproduce a realistically shaped frequency distribution for temperature, especially at the tails, is related to its fidelity in simulating LMSPs. Each ensemble member is ranked for its ability to reproduce LSMPs associated with observed warm and cold extremes, identifying systematically high performing RCMs and the GCMs that provide superior boundary forcing. The methodology developed here provides a framework for identifying regions where further process-based evaluation would improve the understanding of simulation error and help guide future model improvement and downscaling efforts.

  17. Storms or cold fronts: what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region?

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2016-02-01

    The aim of this study is to determine the contribution and importance of cold fronts and storms to extreme waves in different areas of the Colombian Caribbean in an attempt to determine the extent of the threat posed by the flood processes to which these coastal populations are exposed. Furthermore, the study wishes to establish the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the height of the wave. For this reason, it is necessary to establish the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. The significant height values for the areas focused on in the study were calculated in accordance with Gumbel's extreme value methodology. The methodology was evaluated using data from the reanalysis of the spectral National Oceanic and Atmospheric Administration (NOAA) WAVEWATCH III® (WW3) model for 15 points along the 1600 km of the Colombian Caribbean coastline (continental and insular) between the years 1979 and 2009. The results demonstrated that the extreme waves caused by tropical cyclones and those caused by cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area (consisting of Baja Guajira, and the cities of Santa Marta, Barranquilla, and Cartagena), the strong impact of cold fronts on extreme waves is evident. However, in the southern region of the Colombian Caribbean coast (ranging from the Gulf of Morrosquillo to the Gulf of Urabá), the extreme values of wave heights are lower than in the previously mentioned regions, despite being dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from

  18. An evaluation of a coupled atmosphere-ocean modelling system for regional climate studies: extreme events in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Mooney, Priscilla A.; Mulligan, Frank J.

    2013-04-01

    We investigate the ability of a coupled regional atmosphere-ocean modelling system to simulate two extreme events in the North Atlantic. In this study we use the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner et al.) modelling system with only the atmosphere and ocean models activated. COAWST couples the atmosphere model (Weather Research and Forecasting model; WRF) to the ocean model (Regional Ocean Modelling System; ROMS) with the Model Coupling Toolkit. Results from the coupled system are compared with atmosphere only simulations of North Atlantic storms to evaluate the performance of the coupled modelling system. Two extreme events (Hurricane Katia and Hurricane Irene) were chosen to assess the level of improvement (or otherwise) arising from coupling WRF with ROMS. These two hurricanes involve different dynamics and present different challenges to the modeling system. This provides a robust assessment of the advantages or disadvantages of coupling WRF with ROMS for regional climate modelling studies of extreme events in the North Atlantic. We examine the ability of the coupled modelling system to simulate these two extreme events by comparing modelled storm tracks, storm intensities, wind speeds and sea surface temperatures with observations in all cases. The effect of domain size, and two different planetary boundary layers used in WRF are also reported.

  19. Validation of EURO-CORDEX regional climate models in reproducing the variability of precipitation extremes in Romania

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Alexandru; Busuioc, Aristita

    2016-04-01

    EURO-CORDEX is the European branch of the international CORDEX initiative that aims to provide improved regional climate change projections for Europe. The main objective of this paper is to document the performance of the individual models in reproducing the variability of precipitation extremes in Romania. Here three EURO-CORDEX regional climate models (RCMs) ensemble (scenario RCP4.5) are analysed and inter-compared: DMI-HIRHAM5, KNMI-RACMO2.2 and MPI-REMO. Compared to previous studies, when the RCM validation regarding the Romanian climate has mainly been made on mean state and at station scale, a more quantitative approach of precipitation extremes is proposed. In this respect, to have a more reliable comparison with observation, a high resolution daily precipitation gridded data set was used as observational reference (CLIMHYDEX project). The comparison between the RCM outputs and observed grid point values has been made by calculating three extremes precipitation indices, recommended by the Expert Team on Climate Change Detection Indices (ETCCDI), for the 1976-2005 period: R10MM, annual count of days when precipitation ≥10mm; RX5DAY, annual maximum 5-day precipitation and R95P%, precipitation fraction of annual total precipitation due to daily precipitation > 95th percentile. The RCMs capability to reproduce the mean state for these variables, as well as the main modes of their spatial variability (given by the first three EOF patterns), are analysed. The investigation confirms the ability of RCMs to simulate the main features of the precipitation extreme variability over Romania, but some deficiencies in reproducing of their regional characteristics were found (for example, overestimation of the mea state, especially over the extra Carpathian regions). This work has been realised within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian

  20. Regional impacts of global change: seasonal trends in extreme rainfall, run-off and temperature in two contrasting regions of Morocco

    NASA Astrophysics Data System (ADS)

    Khomsi, Kenza; Mahe, Gil; Tramblay, Yves; Sinan, Mohamed; Snoussi, Maria

    2016-05-01

    In Morocco, socio-economic activities are highly vulnerable to extreme weather events. This study investigates trends in mean and extreme rainfall, run-off and temperature, as well as their relationship with large-scale atmospheric circulation. It focuses on two Moroccan watersheds: the subhumid climate region of Bouregreg in the north and the semi-arid region of Tensift in the south, using data from 1977 to 2003. The study is based on a set of daily temperature, precipitation and run-off time series retrieved from weather stations in the two regions. Results do not show a homogeneous behaviour in the two catchments; the influence of the large-scale atmospheric circulation is different and a clear spatial dependence of the trend analysis linked to the distance from the coast and the mountains can be observed. Overall, temperature trends are mostly positive in the studied area, while weak statistically significant trends can be identified in seasonal rainfall, extreme rainfall events, average run-off and extreme run-off events.

  1. Resilience of coral calcification to extreme temperature variations in the Kimberley region, northwest Australia

    NASA Astrophysics Data System (ADS)

    Dandan, S. S.; Falter, J. L.; Lowe, R. J.; McCulloch, M. T.

    2015-12-01

    We report seasonal changes in coral calcification within the highly dynamic intertidal and subtidal zones of Cygnet Bay (16.5°S, 123.0°E) in the Kimberley region of northwest Australia, where the tidal range can reach nearly 8 m and the temperature of nearshore waters ranges seasonally by ~9 °C from a minimum monthly mean of ~22 °C to a maximum of over 31 °C. Corals growing within the more isolated intertidal sites experienced maximum temperatures of up to ~35 °C during spring low tides in addition to being routinely subjected to high levels of irradiance (>1500 µmol m-2 s-1) under near stagnant conditions. Mixed model analysis revealed a significant effect of tidal exposure on the growth of Acropora aspera, Dipsastraea favus, and Trachyphyllia geoffroyi ( p ≤ 0.04), as well as a significant effect of season on A. aspera and T. geoffroyi ( p ≤ 0.01, no effect on D. favus); however, the growth of both D. favus and T. geoffroyi appeared to be better suited to the warm summer conditions of the intertidal compared to A. aspera. Through an additional comparative study, we found that Acropora from Cygnet Bay calcified at a rate 69 % faster than a species from the same genus living in a backreef environment of a more typical tropical reef located 1200 km southwest of Cygnet Bay (0.59 ± 0.02 vs. 0.34 ± 0.02 g cm-2 yr-1 for A. muricata from Coral Bay, Ningaloo Reef; p < 0.001, df = 28.9). The opposite behaviour was found for D. favus from the same environments, with colonies from Cygnet Bay calcifying at rates that were 33 % slower than the same species from Ningaloo Reef (0.29 ± 0.02 vs. 0.44 ± 0.03 g cm-2 yr-1, p < 0.001, df = 37.9). Our findings suggest that adaption and/or acclimatization of coral to the more thermally extreme environments at Cygnet Bay is strongly taxon dependent.

  2. Evolution in Intensity and Frequency of Extreme Events of Precipitation in Northeast Region and Brazilian Amazon in XXI Century

    NASA Astrophysics Data System (ADS)

    Fonseca, P. M.; Veiga, J. A.; Correia, F. S.; Brito, A. L.

    2013-05-01

    The aim of this research was evaluate changes in frequency and intensity of extreme events of precipitation in Brazilian Amazon and Northeast Region, doubling CO2 concentration in agreement of IPCC A2 emissions scenarios (Nakicenovic et al., 2001). For this evaluation was used ETA model (Chou et al., 2011), forced with CCSM3 Global model data (Meehl, 2006) to run 4 experiments, only for January, February and March: 1980-1990, 2000-2010, 2040-2050 and 2090-2100. Using the first decade as reference (1980-1990), was evaluated changes occurred in following decades, with a methodology to classify extremes events adapted from Frich (2002) and Gao (2006). Higher was the class, more intense is the event. An increase of 25% was observed in total precipitation in Brazilian Amazon for the end of XXI century and 12% for extreme events type 1, 9% for events type 2 and 10% for type 3. By the other hand, a 17% decrease of precipitation in Brazilian Northeast was observed, and a pronounced decay of 24% and 15% in extreme events contribution type 1 and 2 to total amount of precipitation, respectively. The difference between total normal type events was positive in this three decades compared with reference decade 1980-1990, varying positively from 4 to 6 thousand events included in normality by decade, these events was decreased in your majority of Class 1 events, which presented a decay of at least 3.500 events by each decade. This suggests an intensification of extreme events, considering that the amount of precipitation by class increased, and the number of events by class decreased. To Northeast region, an increasing in 9% of contribution to events type 3 class was observed, as well as in the frequency of this type of events (about of 700 more events). Major decreasing in number of classes extreme events occur in 2000-2010, to classes 1 and 3, with 7,2 and 5,6%, and by the end of century in class 3, with 4,5%. For the three analyzed decades a total decrease of 8.400 events was

  3. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin

    NASA Astrophysics Data System (ADS)

    Taye, M. T.; Ntegeka, V.; Ogiramoi, N. P.; Willems, P.

    2011-01-01

    The potential impact of climate change was investigated on the hydrological extremes of Nyando River and Lake Tana catchments, which are located in two source regions of the Nile River basin. Climate change scenarios were developed for rainfall and potential evapotranspiration (ETo), considering 17 General Circulation Model (GCM) simulations to better understand the range of possible future change. They were constructed by transferring the extracted climate change signals to the observed series using a frequency perturbation downscaling approach, which accounts for the changes in rainfall extremes. Projected changes under two future SRES emission scenarios A1B and B1 for the 2050s were considered. Two conceptual hydrological models were calibrated and used for the impact assessment. Their difference in simulating the flows under future climate scenarios was also investigated. The results reveal increasing mean runoff and extreme peak flows for Nyando catchment for the 2050s while unclear trend is observed for Lake Tana catchment for mean volumes and high/low flows. The hydrological models for Lake Tana catchment, however, performed better in simulating the hydrological regimes than for Nyando, which obviously also induces a difference in the reliability of the extreme future projections for both catchments. The unclear impact result for Lake Tana catchment implies that the GCM uncertainty is more important for explaining the unclear trend than the hydrological models uncertainty. Nevertheless, to have a better understanding of future impact, hydrological models need to be verified for their credibility of simulating extreme flows.

  4. Hydrologic Extremes in a changing climate: how much information can regional climate models provide?

    SciTech Connect

    Lettenmaier, Dennis P.

    2012-08-14

    We proposed to identify a set of about 10 urban areas across the western U.S., and hourly precipitation data within each of these areas, which were extracted from the NCDC TD 3240. We also proposed to analyze the annual maximum series of precipitation extremes simulated for NARCCAP (using Reanalysis boundary forcing) for the grid cells close to station data, and to compare the distributions of annual maximum precipitation for accumulation intervals ranging from one to 28 hours. Recognizing that there may inevitably be differences between the station data and RCM grid cell values, we proposed to examine the scale dependence in the distributions of extremes.

  5. Ultra-Hot Plasma in Active Regions Observed by the Extreme-ultraviolet Imaging Spectrometer on Hinode

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.; Warren, H. P.; Feldman, U.

    2008-05-01

    The Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft obtains high resolution spectra of the solar atmosphere in two wavelength ranges: 170 - 210 and 250 — 290 Angstroms. These wavelength regions contain a wealth of emission lines covering temperature regions from the chromosphere/transition region (e.g., He II, Si VII) up to soft X-ray flare temperatures (Fe XXIII, Fe XXIV). EIS can obtain line profiles and intensities for the spectral lines in these wavelength regions. Of particular interest for understanding coronal heating is a line of Ca XVII, formed near a temperature of 6 MK. This line is blended with lines of Fe XI and O V. However, by using unblended lines of these ions, the Ca XVII line can be deconvolved from the blended emission. EIS has obtained many raster observations of active regions by stepping the slit in small increments across the active region, producing monochromatic images of the active region. The Ca XVII blend has been included in many of these rasters. In this paper we discuss the appearance and frequency of 6 MK plasma in active regions in the absence of strong flaring activity. This temperature region is not well-observed by normal incidence imaging spectrometers and therefore the EIS data shed light on higher temperature areas of active regions than normally available from imaging instruments alone. We discuss how to deconvolve the blend and show examples of 6 MK plasma emission in several active regions.

  6. Regional Therapy for Recurrent Metastatic Melanoma Confined to the Extremity: Hyperthermic Isolated Limb Perfusion vs. Isolated Limb Infusion

    PubMed Central

    Reintgen, Michael; Reintgen, Christian; Nobo, Christopher; Giuliano, Rosemary; Shivers, Steven; Reintgen, Douglas

    2010-01-01

    Melanoma patients with recurrent disease confined to an extremity can be offered one of two regional therapies that both give high complete response rates. Isolated limb infusion (ILI) is a newer technique performed with catheters and tourniquets that has a reduced potential morbidity, decreased efficacy and does not treat the regional nodal basin. Hyperthermic Isolated Limb Perfusion (HILP) is an open surgical technique that includes removal of the regional nodal basin as part of the surgical procedure. An analysis was performed of the rates of regional nodal disease in this patient population to determine the percentage of patients with stage III metastatic disease to the lymph nodes that would be under treated with the ILI technique. A total of 229 patients underwent a HILP for melanoma with regional lymph node dissection as is our standard between July 1987 and December 2009. Ninty-two of the 229 patients (40%) had metastatic regional nodal disease documented at the time of the HILP procedure. HILP is the only technique that addresses all micrometastatic disease on the extremity. PMID:24281032

  7. Regional lidocaine anesthesia without exsanguination for outpatient management of upper extremity fractures.

    PubMed Central

    Brown, G. A.; Hayes, W. M.; Cornwal, R.

    1995-01-01

    The use of small dose intravenous lidocaine without exsanguination for upper extremity fractures in children and adults is described. A twenty-plus year experience with this technique in the outpatient setting has shown it to be effective and safe. Attention to detail is essential and inadvertent tourniquet release must be avoided. Images Figure 1 PMID:7634037

  8. Quantifying enhancement in aerosol radiative forcing during 'extreme aerosol days' in summer at Delhi National Capital Region, India.

    PubMed

    Kumar, Sumant; Dey, Sagnik; Srivastava, Arun

    2016-04-15

    Changes in aerosol characteristics (spectral aerosol optical depth, AOD and composition) are examined during the transition from 'relatively clean' to 'extreme' aerosol days in the summer of 2012 at Delhi National Capital Region (NCR), India. AOD smaller than 0.54 (i.e. 12-year mean AOD-1σ) represents 'relatively clean' days in Delhi during the summer. 'Extreme' days are defined by the condition when AOD0.5 exceeds 12-year mean AOD+1 standard deviation (σ). Mean (±1σ) AOD increases to 1.2±0.12 along with a decrease of Angstrom Exponent from 0.54±0.09 to 0.22±0.12 during the 'extreme' days. Aerosol composition is inferred by fixing the number concentrations of various individual species through iterative tweaking when simulated (following Mie theory) AOD spectrum matches with the measured one. Contribution of coarse mode dust to aerosol mass increased from 76.8% (relatively clean) to 96.8% (extreme events), while the corresponding contributions to AOD0.5 increased from 35.0% to 70.8%. Spectrally increasing single scattering albedo (SSA) and CALIPSO aerosol sub-type information support the dominant presence of dust during the 'extreme' aerosol days. Aerosol direct radiative forcing (ADRF) at the top-of-the-atmosphere increases from 21.2Wm(-2) (relatively clean) to 56.6Wm(-2) (extreme), while the corresponding change in surface ADRF is from -99.5Wm(-2) to -153.5Wm(-2). Coarse mode dust contributes 60.3% of the observed surface ADRF during the 'extreme' days. On the contrary, 0.4% mass fraction of black carbon (BC) translates into 13.1% contribution to AOD0.5 and 33.5% to surface ADRF during the 'extreme' days. The atmospheric heating rate increased by 75.1% from 1.7K/day to 2.96K/day during the 'extreme' days. PMID:26855352

  9. Extreme regimes of atmospheric circulation and their role in the formation of temperature and precipitation fields in the Arctic region

    NASA Astrophysics Data System (ADS)

    Irina, Kulikova; Ekaterina, Kruglova; Dmitry, Kiktev; Vladimir, Tischenco; Valentina, Khan

    2016-04-01

    In the present study, the extreme regimes of atmospheric circulation in the Northern Hemisphere as well as their role in the formation of monthly and seasonal anomalies of temperature and precipitation fields over Arctic region were examined using NCEP / NCAR-2 reanalysis data. To identify extreme modes, climate indexes were quantitatively assessed. The mapping of monthly and seasonal temperature and precipitation fields for the different phases of indices using composite analysis was developed. It is allowed to identify allocated geographic areas in which the influence of modes of circulation for temperature and precipitation fields in Arctic is statistically significant. Quantitative estimations of contingency of atmospheric circulation modes in the Northern Hemisphere were analyzed. Special attention has been paid to the extreme episodes of the climate circulation indices, associated with formation of significant anomalies of air temperature and precipitation. The results of numerical experiments to reproduce the extreme events on monthly and seasonal time scale on the basis of the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia, have been discussed. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).

  10. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  11. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed. PMID:19391727

  12. Bidirectional iterative parcellation of diffusion weighted imaging data: Separating cortical regions connected by the arcuate fasciculus and extreme capsule

    PubMed Central

    Patterson, Dianne K.; Van Petten, Cyma; Beeson, Pélagie M.; Rapcsak, Steven Z.; Plante, Elena

    2014-01-01

    This paper introduces a Bidirectional Iterative Parcellation (BIP) procedure designed to identify the location and size of connected cortical regions (parcellations) at both ends of a white matter tract in diffusion weighted images. The procedure applies the FSL option “probabilistic tracking with classification targets” in a bidirectional and iterative manner. To assess the utility of BIP, we applied the procedure to the problem of parcellating a limited set of well-established gray matter seed regions associated with the dorsal (arcuate fasciculus/superior longitudinal fasciculus) and ventral (extreme capsule fiber system) white matter tracts in the language networks of 97 participants. These left hemisphere seed regions and the two white matter tracts, along with their right hemisphere homologues, provided an excellent test case for BIP because the resulting parcellations overlap and their connectivity via the arcuate fasciculi and extreme capsule fiber systems are well studied. The procedure yielded both confirmatory and novel findings. Specifically, BIP confirmed that each tract connects within the seed regions in unique, but expected ways. Novel findings included increasingly left-lateralized parcellations associated with the arcuate fasciculus/superior longitudinal fasciculus as a function of age and education. These results demonstrate that BIP is an easily implemented technique that successfully confirmed cortical connectivity patterns predicted in the literature, and has the potential to provide new insights regarding the architecture of the brain. PMID:25173414

  13. Trends and variability of daily and extreme temperature and precipitation in the Caribbean region, 1961-2010

    NASA Astrophysics Data System (ADS)

    Allen, T. L.; Stephenson, T. S.; Vincent, L.; Van Meerbeeck, C.; McLean, N.

    2013-05-01

    A workshop was held at the University of the West Indies, Jamaica, in May 2012 to build capacity in climate data rescue and to enhance knowledge about climate change in the Caribbean region. Scientists brought their daily surface temperature and precipitation data for an assessment of quality and homogeneity and for the preparation of climate change indices helpful for studying climate change in their region. This study presents the trends in daily and extreme temperature and precipitation indices in the Caribbean region for records spanning the 1961-2010 and 1986-2010 intervals. Overall, the results show a warming of the surface air temperature at land stations. Region-wide, annual means of the daily minimum temperatures (+1.4°C) have increased more than the annual means of the daily maximum temperatures (+0.9°C) leading to significant decrease in the diurnal temperature range. The frequency of warm days and warm nights has increased by more than 15% while 9% fewer cool days and 13% fewer cool night were found over the 50-year interval. These frequency trends are further reflected in a rise of the annual extreme high and low temperatures by ~1°C. Changes in precipitation indices are less consistent and the trends are generally weak. Small positive trends were found in annual total precipitation, daily intensity, maximum number of consecutive dry days and heavy rainfall events particularly during the period 1986- 2010. Finally, aside from the observed climate trends, correlations between these indices and the Atlantic Multidecadal Oscillation (AMO) annual index suggest a coupling between land temperature variability and, to a lesser extent, precipitation extremes on the one hand, and the AMO signal of the North Atlantic surface sea temperatures.

  14. Trends and variability of daily and extreme temperature and precipitation in the Caribbean region, 1961-2010

    NASA Astrophysics Data System (ADS)

    Stephenson, Tannecia; Vincent, Lucie; Allen, Theodore; Van Meerbeeck, Cedric; McLean, Natalie

    2013-04-01

    A workshop was held at the University of the West Indies, Jamaica, in May 2012 to build capacity in climate data rescue and to enhance knowledge about climate change in the Caribbean region. Scientists brought their daily surface temperature and precipitation data for an assessment of quality and homogeneity and for the preparation of climate change indices helpful for studying climate change in their region. This study presents the trends in daily and extreme temperature and precipitation indices in the Caribbean region for records spanning the 1961-2010 and 1986-2010 intervals. Overall, the results show a warming of the surface air temperature at land stations. Region-wide, annual means of the daily minimum temperatures (+1.4°C) have increased more than the annual means of the daily maximum temperatures (+0.95°C) leading to significant decrease in the diurnal temperature range. The frequency of warm days and warm nights has increased by more than 15% while 7% fewer cool days and 10% fewer cool night were found over the 50-year interval. These frequency trends are further reflected in a rise of the annual extreme high and low temperatures by ~1°C. Changes in precipitation indices are less consistent and the trends are generally weak. Small positive trends were found in annual total precipitation, daily intensity, maximum number of consecutive dry days and heavy rainfall events particularly during the period 1986-2010. Finally, aside from the observed climate trends, correlations between these indices and the Atlantic Multidecadal Oscillation (AMO) annual index suggest a coupling between land temperature variability and, to a lesser extent, precipitation extremes on the one hand, and the AMO signal of the North Atlantic surface sea temperatures.

  15. Some problems in relativistic thermodynamics

    SciTech Connect

    Veitsman, E. V.

    2007-11-15

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T{sub 0}/{radical}1 - v{sup 2}/c{sup 2}. Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived.

  16. A radar-based regional extreme rainfall analysis to derive the thresholds for a novel automatic alert system in Switzerland

    NASA Astrophysics Data System (ADS)

    Panziera, Luca; Gabella, Marco; Zanini, Stefano; Hering, Alessandro; Germann, Urs; Berne, Alexis

    2016-06-01

    This paper presents a regional extreme rainfall analysis based on 10 years of radar data for the 159 regions adopted for official natural hazard warnings in Switzerland. Moreover, a nowcasting tool aimed at issuing heavy precipitation regional alerts is introduced. The two topics are closely related, since the extreme rainfall analysis provides the thresholds used by the nowcasting system for the alerts. Warm and cold seasons' monthly maxima of several statistical quantities describing regional rainfall are fitted to a generalized extreme value distribution in order to derive the precipitation amounts corresponding to sub-annual return periods for durations of 1, 3, 6, 12, 24 and 48 h. It is shown that regional return levels exhibit a large spatial variability in Switzerland, and that their spatial distribution strongly depends on the duration of the aggregation period: for accumulations of 3 h and shorter, the largest return levels are found over the northerly alpine slopes, whereas for longer durations the southern Alps exhibit the largest values. The inner alpine chain shows the lowest values, in agreement with previous rainfall climatologies. The nowcasting system presented here is aimed to issue heavy rainfall alerts for a large variety of end users, who are interested in different precipitation characteristics and regions, such as, for example, small urban areas, remote alpine catchments or administrative districts. The alerts are issued not only if the rainfall measured in the immediate past or forecast in the near future exceeds some predefined thresholds but also as soon as the sum of past and forecast precipitation is larger than threshold values. This precipitation total, in fact, has primary importance in applications for which antecedent rainfall is as important as predicted one, such as urban floods early warning systems. The rainfall fields, the statistical quantity representing regional rainfall and the frequency of alerts issued in case of

  17. Can Regional Climate Models be used in the assessment of vulnerability and risk caused by extreme events?

    NASA Astrophysics Data System (ADS)

    Nunes, Ana

    2015-04-01

    Extreme meteorological events played an important role in catastrophic occurrences observed in the past over densely populated areas in Brazil. This motived the proposal of an integrated system for analysis and assessment of vulnerability and risk caused by extreme events in urban areas that are particularly affected by complex topography. That requires a multi-scale approach, which is centered on a regional modeling system, consisting of a regional (spectral) climate model coupled to a land-surface scheme. This regional modeling system employs a boundary forcing method based on scale-selective bias correction and assimilation of satellite-based precipitation estimates. Scale-selective bias correction is a method similar to the spectral nudging technique for dynamical downscaling that allows internal modes to develop in agreement with the large-scale features, while the precipitation assimilation procedure improves the modeled deep-convection and drives the land-surface scheme variables. Here, the scale-selective bias correction acts only on the rotational part of the wind field, letting the precipitation assimilation procedure to correct moisture convergence, in order to reconstruct South American current climate within the South American Hydroclimate Reconstruction Project. The hydroclimate reconstruction outputs might eventually produce improved initial conditions for high-resolution numerical integrations in metropolitan regions, generating more reliable short-term precipitation predictions, and providing accurate hidrometeorological variables to higher resolution geomorphological models. Better representation of deep-convection from intermediate scales is relevant when the resolution of the regional modeling system is refined by any method to meet the scale of geomorphological dynamic models of stability and mass movement, assisting in the assessment of risk areas and estimation of terrain stability over complex topography. The reconstruction of past extreme

  18. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  19. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    SciTech Connect

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-25

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution ({lambda}/{Delta}{lambda} >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  20. Influence of Large-scale Climate Modes on Atmospheric Rivers That Drive Regional Precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Guan, B.; Molotch, N. P.; Waliser, D. E.; Fetzer, E. J.; Neiman, P. J.

    2014-12-01

    Atmospheric rivers (ARs) are narrow channels of enhanced meridional water vapor transport between the tropics and extratropics that drive precipitation extremes in the west coast areas of North America and other continents. The influence of large-scale climate modes on ARs is analyzed in terms of modulation on AR frequency and AR-related snow water equivalent (SWE) anomalies, with a focus on understanding the causes of the anomalously snowy winter season of 2010/2011 in California's Sierra Nevada. Mean SWE on 1 April 2011 was ~70% above normal averaged over 100 snow sensors. AR occurrence was anomalously high during the season, with 20 AR dates from November to March and 14 dates in the month of December 2010, compared to the mean occurrence of 9 dates per season. Most of the season's ARs occurred during negative phases of the Arctic Oscillation (AO) and the Pacific-North American (PNA) teleconnection pattern. Analysis of all winter ARs in California during water years 1998-2011 indicates more ARs occur during the negative phase of AO and PNA, with the increase between positive and negative phases being ~90% for AO, and ~50% for PNA. The circulation pattern associated with concurrent negative phases of AO and PNA, characterized by cyclonic anomalies centered northwest of California, provides a favorable dynamical condition for ARs. The analysis suggests that the massive Sierra Nevada snowpack during the 2010/2011 winter season is primarily related to anomalously high frequency of ARs favored by the joint phasing of -AO and -PNA, and that a secondary contribution is from increased snow accumulation during these ARs favored by colder air temperatures associated with -AO, -PNA and La Niña. The results have implications for subseasonal-to-seasonal predictability of AR activities and related weather and water extremes.

  1. Relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  2. Relativistic klystrons

    SciTech Connect

    Allen, M.A.; Azuma, O.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs.

  3. Solar near-relativistic electron observations as a proof of a back-scatter region beyond 1 AU during the 2000 February 18 event

    NASA Astrophysics Data System (ADS)

    Agueda, N.; Vainio, R.; Lario, D.; Sanahuja, B.

    2010-09-01

    Aims: We study the near-relativistic (NR; >30 keV) electron event observed on 2000 February 18 by near-Earth spacecraft. Previous works have explained this event by assuming that the propagation of NR electrons is essentially “scatter-free” at heliocentric radial distances r < 1 AU, and that beyond 1 AU particles are “back-scattered” by magnetic field irregularities. Methods: Our aim is to re-visit this interplanetary propagation scenario and infer the injection profile at the Sun by fitting the electron directional intensities observed by the Advanced Composition Explorer. Results: We use a Monte Carlo transport model to explore this approach. We assume that the interplanetary magnetic field is an Archimedean spiral and that the interplanetary transport of NR electrons is characterized by a large radial mean free path (λ_r > 0.5 AU) and anisotropic pitch-angle scattering for r <1 AU, and a small radial mean free path (λ_r < 0.5 AU) and isotropic scattering in the back-scatter region. Conclusions: The event cannot be explained without assuming a back-scatter region beyond 1 AU. The best fit is obtained by assuming λ_r = 3.2 AU in the inner heliosphere and a back-scatter region characterized by a small mean free path λr = 0.2 AU located beyond 1.2 AU.

  4. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  5. Simulating Extreme Summer Precipitation Patterns in the North American Monsoon Region using the CCM3/HRBATS Model

    NASA Astrophysics Data System (ADS)

    Hahmann, A. N.

    2001-12-01

    Current climate integrations with the National Center for Atmospheric Research Community Climate Model (CCM3) show a very pronounced dry bias in summer precipitation over the North American Monsoon System (NAMS) region. Additionally, summer precipitation totals in this region show a smaller than observed interannual variability and a weak response to changes in SSTs. To understand the reasons behind the CCM3 misrepresentation of monsoonal processes in the NAMS region, we have chosen to examine model simulation during two extreme years: 1984 (wet) and 1993 (dry). These two years were selected according to observed precipitation totals in the northernmost portion, i.e. Arizona and New Mexico, of the NAMS region. Ensemble AMIP-type simulations with CCM3 in its standard configuration (i.e., at T42 resolution and coupled to its standard land surface model; LSM) show only small differences in precipitation over the NAMS region between the two chosen extreme years. When CCM3 is coupled to BATS and integrated over several years with SSTs for the two contrasting years, the differences in summer precipitation remain much smaller than the observed differences. In a final experiment, CCM3 is coupled to the fine-mesh version of BATS (named HRBATS), which is described in Hahmann and Dickinson (2001). This model allows for explicit representation of sub-grid variations in vegetation and soils and the inclusion of fractional ocean areas. In these simulations, a very pronounced difference in precipitation, comparable to the observed precipitation differences, is seen between the two contrasting years. The possible physical mechanisms that might explain these differences are explored in this talk. Possible reasons include the presence of the waters of the Gulf of California, which might provide a moisture source, and the better representation of snow cover over the prior winter and spring seasons.

  6. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  7. Interannual variability of regional evapotranspiration under precipitation extremes: A case study of the Youngsan River basin in Korea

    NASA Astrophysics Data System (ADS)

    Song, Youngkeun; Ryu, Youngryel; Jeon, Soohyun

    2014-11-01

    Understanding basin-scale evapotranspiration (ET) is an important issue for the management of regional water resources, especially with the recent trend of intensified precipitation (P). This study assessed the spatial and temporal variations of regional ET in response to P extremes, for various types of land-cover across the Youngsan River basin in Korea. The spatial distribution of monthly P and ET from 2001 to 2009 were estimated using rainfall records from 40 weather stations located across the basin and a satellite-derived, process-based ET model Breathing Earth System Simulator (BESS) (Ryu et al., 2011), respectively. The study periods were focused on the recent years with abnormally large, small and normal P, which were identified from anomalies in the z-sores of long-term (1973-2011) rainfall records. The variation of regional ET was assessed in terms of: (1) the controlling factors, using the statistics of related meteorological and geographical data, (2) a water-energy balance, using Budyko's framework, and (3) the water balance of four selected watersheds in the region, using the partitioning of annual P into ET and riverflow discharge (Q). The total annual ET of this region decreased in abnormally large-P year and increased in small-P year, because the ET in July to August (which accounts for more than 36% of annual ET) was limited by the available energy rather than available water due to the summer monsoon. In terms of land cover types, forests showed larger interannual variability in ET than paddy fields or cropland, with the differences in ET between large and small-P years being 108 and 82 mm yr-1, respectively. The sensitivity of annual ET to P extremes was significantly related to the leaf area index (LAI), rather than soil properties, topography, or specific land-cover type (p < 0.05, generalized linear model). However, the interannual variations of ET were not large (15-18%) compared to those of annual P (51-62%) and Q (108-232%) during 2002

  8. Signature of Nonstationarity in Precipitation Extremes over Urbanizing Regions in India Identified through a Multivariate Frequency Analyses

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra; Hari, Vittal; Sharma, Tarul; Karmakar, Subhankar; Ghosh, Subimal

    2016-04-01

    The statistical assumption of stationarity in hydrologic extreme time/event series has been relied heavily in frequency analysis. However, due to the analytically perceivable impacts of climate change, urbanization and concomitant land use pattern, assumption of stationarity in hydrologic time series will draw erroneous results, which in turn may affect the policy and decision-making. Past studies provided sufficient evidences on changes in the characteristics of Indian monsoon precipitation extremes and further it has been attributed to climate change and urbanization, which shows need of nonstationary analysis on the Indian monsoon extremes. Therefore, a comprehensive multivariate nonstationary frequency analysis has been conducted for the entire India to identify the precipitation characteristics (intensity, duration and depth) responsible for significant nonstationarity in the Indian monsoon. We use 1o resolution of precipitation data for a period of 1901-2004, in a Generalized Additive Model for Location, Scale and Shape (GAMLSS) framework. A cluster of GAMLSS models has been developed by considering nonstationarity in different combinations of distribution parameters through different regression techniques, and the best-fit model is further applied for bivariate analysis. A population density data has been utilized to identify the urban, urbanizing and rural regions. The results showed significant differences in the stationary and nonstationary bivariate return periods for the urbanizing grids, when compared to urbanized and rural grids. A comprehensive multivariate analysis has also been conducted to identify the precipitation characteristics particularly responsible for imprinting signature of nonstationarity.

  9. Extreme cosmic ray dominated regions: a new paradigm for high star formation density events in the Universe

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padeli P.; Thi, Wing-Fai; Miniati, Francesco; Viti, Serena

    2011-06-01

    We examine in detail the recent proposal that extreme cosmic ray dominated regions (CRDRs) characterize the interstellar medium of galaxies during events of high-density star formation, fundamentally altering its initial conditions (Papadopoulos 2010). Solving the coupled chemical and thermal state equations for dense UV-shielded gas reveals that the large CR energy densities in such systems [UCR ˜ few × (103-104) UCR, Gal] will indeed raise the minimum temperature of this phase (where the initial conditions of star formation are set) from ˜10 K (as in the Milky Way) to ˜50-100 K. Moreover in such extreme CRDRs the gas temperature remains fully decoupled from that of the dust, with Tkin≫Tdust, even at high densities [n(H2) ˜ 105-106 cm-3], quite unlike CRDRs in the Milky Way where Tk˜Tdust when n(H2) ≳ 105 cm-3. These dramatically different star formation initial conditions will (i) boost the Jeans mass of UV-shielded gas regions by factors of ˜10-100 with respect to those in quiescent or less extreme star-forming systems and (ii) 'erase' the so-called inflection point of the effective equation of state of molecular gas. Both these effects occur across the entire density range of typical molecular clouds, and may represent a new paradigm for all high-density star formation in the Universe, with CRs as the key driving mechanism, operating efficiently even in the high dust extinction environments of compact extreme starbursts. The characteristic mass of young stars will be boosted as a result, naturally yielding a top-heavy stellar initial mass function (IMF) and a bimodal star formation mode (with the occurrence of extreme CRDRs setting the branching point). Such CRDRs will be present in Ultra-Luminous Infrared Galaxies (ULIRGs) and merger-driven gas-rich starbursts across the Universe where large amounts of molecular gas rapidly dissipate towards compact disc configurations where they fuel intense starbursts. In hierarchical galaxy formation models, CR

  10. Spatio-temporal characteristics of the extreme precipitation by L-moment-based index-flood method in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Yin, Yixing; Chen, Haishan; Xu, Chong-Yu; Xu, Wucheng; Chen, Changchun; Sun, Shanlei

    2016-05-01

    The regionalization methods, which "trade space for time" by pooling information from different locations in the frequency analysis, are efficient tools to enhance the reliability of extreme quantile estimates. This paper aims at improving the understanding of the regional frequency of extreme precipitation by using regionalization methods, and providing scientific background and practical assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region. To achieve the main goals, L-moment-based index-flood (LMIF) method, one of the most popular regionalization methods, is used in the regional frequency analysis of extreme precipitation with special attention paid to inter-site dependence and its influence on the accuracy of quantile estimates, which has not been considered by most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence, and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, generalized extreme-value (GEV) and generalized normal (GNO) distributions were identified as the best fitted distributions for most of the sub-regions, and estimated quantiles for each region were obtained. Monte Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root-mean-square errors (RMSEs) were bigger and the 90 % error bounds were wider with inter-site dependence than those without inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with a return period of 100 years were finally obtained which indicated that there are two regions with highest precipitation

  11. Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method.

    PubMed

    Kara, Fatih; Yucel, Ismail

    2015-09-01

    This study investigates the climate change impact on the changes of mean and extreme flows under current and future climate conditions in the Omerli Basin of Istanbul, Turkey. The 15 regional climate model output from the EU-ENSEMBLES project and a downscaling method based on local implications from geophysical variables were used for the comparative analyses. Automated calibration algorithm is used to optimize the parameters of Hydrologiska Byråns Vattenbalansavdel-ning (HBV) model for the study catchment using observed daily temperature and precipitation. The calibrated HBV model was implemented to simulate daily flows using precipitation and temperature data from climate models with and without downscaling method for reference (1960-1990) and scenario (2071-2100) periods. Flood indices were derived from daily flows, and their changes throughout the four seasons and year were evaluated by comparing their values derived from simulations corresponding to the current and future climate. All climate models strongly underestimate precipitation while downscaling improves their underestimation feature particularly for extreme events. Depending on precipitation input from climate models with and without downscaling the HBV also significantly underestimates daily mean and extreme flows through all seasons. However, this underestimation feature is importantly improved for all seasons especially for spring and winter through the use of downscaled inputs. Changes in extreme flows from reference to future increased for the winter and spring and decreased for the fall and summer seasons. These changes were more significant with downscaling inputs. With respect to current time, higher flow magnitudes for given return periods will be experienced in the future and hence, in the planning of the Omerli reservoir, the effective storage and water use should be sustained. PMID:26293893

  12. Climatology of Extreme Winds in the Chukchi/Beaufort Seas/Alaska Region Using the North American Regional Reanalysis

    NASA Astrophysics Data System (ADS)

    Stegall, S. T.; Zhang, J.

    2009-12-01

    The high-resolution (32km, 3-hourly) North American Regional Reanalysis (NARR) surface winds were used to examine the detailed structures of the distribution and evolution of the surface wind across the Chukchi/Beaufort Seas/Alaska region. First the NARR surface winds were verified against the station observations over the study area and the comparisons indicate that NARR essentially captures the distribution of the observed winds in summer. However, an obvious bias exists in winter, when the easterly component of the bimodal pattern is overestimated, while the westerly component is underestimated, particularly in January. Then we used the NARR surface wind data to examine the wind field climatological features, interannual variability and long-term change over the study area by analyzing the monthly maximums, 99th, 95th, 90th, and 50th percentile wind speeds (m/s) for each month of the year from 1979-2006. Decadal differences (i.e. the difference from 2000-2006 and 1990-1999 and 1990-1999 and 1980-1989) were also investigated to understand the long-term change in the area's surface winds. The results indicated that the maximum wind speeds in the Chukchi/Beaufort Seas have lower values from January through May. Then there is a progression northward of the higher wind speeds beginning in the Bering Strait in June and continuing into the Chukchi/Beaufort Seas during July-October; in November and December the maximum winds in the area start to decrease with a southward migration into the Chukchi Sea and eventually back through the Bering Strait into the Bering Sea, which is coincident with the sea ice retreat and advance in the area. The yearly variance of the wind speeds follow a similar northward and southward migration while the highest variance happened in October. The decadal differences mainly show a large increase in the maximum winds speeds in September and October in the Chukchi Sea.

  13. Recent Advances in Regional Climate System Modeling and ClimateChange Analyses of Extreme Heat

    SciTech Connect

    Miller, Norman L.

    2004-09-24

    During the period May 2003 to May 2004, there were two CEC/PIER funded primary research activities by the Atmosphere and Ocean Sciences Group/Earth Science Division at LBNL. These activities are the implementation and testing of the National Center for Atmospheric Research Community Land Model (CLM) into MM5, and the analysis of extreme heat days under a new set of climate simulations. The new version of MM5,MM5-CLM, has been tested for a 90 day snowmelt period in the northwestern U.S. Results show that this new code upgrade, as compared to the MM5-NOAH, has improved snowmelt, temperature, and precipitation when compared to observations. These are due in part to a subgrid scheme,advanced snow processes, and advanced vegetation. The climate change analysis is the upper and lower IPCC Special Report on Emission Scenarios, representing fossil fuel intensive and energy conserving future emission scenarios, and medium and low sensitivity Global Climate Models. Results indicate that California cities will see increases in the number of heat wave and temperature threshold days from two to six times.These results may be viewed as potential outcomes based on today's decisions on emissions.

  14. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    SciTech Connect

    Shen Yuandeng; Liu Yu; Zhao Ruijuan; Tian Zhanjun; Su Jiangtao; Li Hui; Ichimoto, Kiyoshi; Shibata, Kazunari

    2013-08-20

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, it transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.

  15. Embedded star formation in the extended narrow line region of Centaurus A: Extreme mixing observed by MUSE

    NASA Astrophysics Data System (ADS)

    Santoro, F.; Oonk, J. B. R.; Morganti, R.; Oosterloo, T. A.; Tadhunter, C.

    2016-05-01

    We present a detailed study of the complex ionization structure in a small (~250 pc) extended narrow line region (ENLR) cloud near Centaurus A using the Multi Unit Spectroscopic Explorer. This cloud is located in the so-called outer filament of ionized gas (about 15 kpc from the nucleus) where jet-induced star formation has been suggested to occur by different studies. We find that, despite the small size, a mixture of ionization mechanisms is operating, resulting in considerable complexity in the spatial ionization structure. The area includes two H ii regions where star formation is occurring and another location where star formation must have ceased very recently. Interestingly, the extreme Balmer decrement of one of the star forming regions (Hα/Hβobs ~ 6) indicates that it is still heavily embedded in its natal cocoon of gas and dust. At all three locations a continuum counterpart is found with spectra matching those of O/B stars local to Centaurus A. The H ii regions are embedded in a larger gas complex which is photoionized by the radiation of the central active galactic nucleus (AGN), but the O/B stars affect the spatial ionization pattern in the ENLR cloud very locally. In particular, in the surroundings of the youngest star forming region, we can isolate a tight mixing sequence in the diagnostic diagram going from gas with ionization due to a pure stellar continuum to gas only photoionized by the AGN. These results emphasize the complexity and the mixture of processes occurring in star forming regions under the influence of an AGN radiation. This is relevant for our understanding of AGN-induced star formation suggested to occur in a number of objects, including this region of Centaurus A. They also illustrate that these young stars influence the gas over only a limited region.

  16. The impact of changing ocean eddies pathways on regional sea surface height extremes in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Brunnabend, Sandra-Esther; Dijkstra, Henk A.; Kliphuis, Michael A.; van Werkhoven, Ben; Bal, Henri E.; Seinstra, Frank; Maassen, Jason; van Meersbergen, Maarten

    2015-04-01

    Ocean eddies strongly influences short-term variations in sea surface height (SSH). Changing ocean circulation can lead to shifting eddy pathways, which may cause an additional contribution to sea level extremes in different regions. Therefore, dynamic sea surface height (SSH) changes that occur in the North Atlantic due to an abrupt weakening of the Atlantic Meridional Overturning Circulation (AMOC) are simulated using the Parallel Ocean Program (POP). The weakening of the AMOC is introduced by applying strong freshwater perturbations around Greenland. To study the effect of ocean model resolution, simulations are performed using a high-resolution (HR) strongly eddying model version and a low-resolution model (LR) version in which the effect of eddies is parameterized. Results show that a rapid decrease of the AMOC in the HR version leads to a change in the main eddy pathways in the North Atlantic associated with a change in the separation latitude of the Gulf Stream. This induces shorter return times of different regional and coastal extremes in North Atlantic SSH than in the LR version. This effect causes an additional short-term SSH change of several centimeters, which may occur during an already high background sea level.

  17. Snow-atmosphere coupling and extremes over North America in the Canadian Regional Climate Model (CRCM5)

    NASA Astrophysics Data System (ADS)

    Diro, G. T.; Sushama, L.; Huziy, O.

    2015-12-01

    Given the importance of land in the climate system, we investigate the influence of land surface, in particular the variation in snow characteristics, on climate variability and extremes over North America using the fifth generation of Canadian Regional Climate Model (CRCM5). To this end, we carried out two CRCM5 simulations driven by ERA-Interim reanalysis, where snow is either prescribed (uncoupled) or evolves interactively (coupled) during the model integration. Results indicate a systematic influence of snow on the inter-annual variability of air and surface temperature throughout the winter and spring seasons. In the coupled simulations, where the snow depth and snow cover were allowed to evolve freely, the inter-annual variability of surface and near surface air temperatures were found to be larger. Comparison with the uncoupled simulation suggests that snow depth/cover variability accounts for about 70% of the total surface temperature variability over the northern Great Plains and Canadian Prairies for the winter and spring seasons. The snow-atmosphere coupling is stronger in spring than in winter, since in spring season both the albedo and the latent heat flux contribute to the variability in temperature. Snow is also found to modulate extreme temperature events such as the number of cold days over Prairies during weak La-Nina episodes. These results suggest that initializing forecast models with realistic snow condition could potentially help to improve seasonal/sub-seasonal prediction skill over these snow-atmosphere coupling hotspot regions.

  18. Charge Exchange Produced Emission of Carbon in the Iron M-shell Dominated 150-200 Å Extreme Ultraviolet Region

    NASA Astrophysics Data System (ADS)

    Lepson, Jaan K.; Beiersdorfer, Peter; Bitter, Manfred; Roquemore, A. Lane; Kaita, Robert

    2015-08-01

    We report on emission spectra in the extreme ultraviolet region 150-200 Å recorded at the National Spherical Torus Experiment (NSTX). This region is typically dominated by M-shell iron emission that is used extensively for solar observations, e.g. Hinode and the Solar Dynamics Observatory, and stellar atmospheres, e.g., the Extreme Ultraviolet Explorer (EUVE). We find that significant emission occurs from several heretofore unmeasured lines, which can persist throughout the plasma duration. We attribute these lines to emission from K-shell carbon ions (C V and C VI). Spectral modeling of collisional excitation fails to account for these lines, but modeling of charge exchange provides a good match with the observation. Our spectral model shows that the lines are formed by charge exchange of bare and hydrogenlike carbon with neutral hydrogen. The high abundance of bare and hydrogenlike carbon in the solar wind suggests that these lines may be formed in the heliosphere and may be part of the soft X-ray background. They may thus be observed by energy dispersive instruments, such as microcalorimeters.This work was supported by the DOE General Plasma Science program. Work was performed by Lawrence Livermore National Laboratory and Princeton Plasma Physics Laboratory under the auspices of the U. S. Department of Energy under Contracts DEAC52-07NA27344 and DE-AC02-09CH11466.

  19. Laboratory Measurements for Developing Reliable Diagnostics of Stellar Coronae in the Extreme Ultraviolet and Soft X-ray Spectral Regions

    NASA Astrophysics Data System (ADS)

    Lepson, J. K.

    2004-05-01

    Chandra and XMM-Newton observations have greatly expanded our knowledge of the spectral emission of stellar coronae, revealing a complexity in the extreme ultraviolet and soft x-ray bands that complements past solar observations. The new observations have highlighted various shortcomings in our understanding of the spectral emission. For example, spectra in this region have many unidentified or possibly misidentified lines. Therefore, established spectral diagnostics can be impaired by previously unrecognized line blends. We are using the Livermore electron beam ion traps to simulate this emission in the laboratory. We are producing a complete catalogue of astrophysically relevant emission lines in the extreme ultraviolet and soft x-ray regions. From this catalogue we identify lines, reassess spectral diagnostics, and develop new diagnostics. Our measurements, for example, have increased the number of lines for \\ion{S}{8}--\\ion{S}{13} from 29 to 109. Measurements of iron, argon, sulfur, silicon, and magnesium are allowing us to identify previously unassigned lines in solar and stellar spectra. Moreover, we have identified a novel magnetic field diagnostic in neon-like ions. We have also reevaluated the diagnostic utility of the \\ion{Fe}{17} 3C and 3D lines, previously considered to be a prime diagnostic of opacity, instead showing them to be of use as a diagnostic of electron temperature. Research at the University of California Lawrence Livermore National Laboratory conducted under the auspices of the Department of Energy and supported by a NASA SARA grant.

  20. Extreme rainfall in South East France: added value of a convection-permitting regional climate model

    NASA Astrophysics Data System (ADS)

    Alias, Antoinette; Déqué, Michel; Somot, Samuel

    2016-04-01

    EURO-CORDEX simulations are based on 12 km numerical model. They represent with some accuracy, compared to global coupled models used in CMIP, the surface elevation in mountainous regions. As a consequence, the geographical distribution of precipitation is better at regional scale, and the frequency of high precipitation is more realistic. However these models do not explicitly resolve the convective phenomena which are responsible for the heavy accumulated rainfall. Arome model is derived from Aladin model (used in EURO-CORDEX) but uses non-hydrostatic equations, 2.5 km horizontal resolution, and a dedicated set of physical parameterizations. Its domain covers South-East France, a region which undergoes severe rainfall events in autumn. We present ERA-interim driven simulations with Aladin (12 km) driving Arome (2.5 km). The analysis is focussed on daily and hourly precipitation in extended autumn (ASOND) in the central part of the domain. We compare Aladin (i.e. EURO-CORDEX) and Arome simulations in their ability to simulate observed data.

  1. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation

    SciTech Connect

    Wanotayan, Rujira; Fukuchi, Mikoto; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa

    2015-02-20

    XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species. To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4{sup N326L}) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4{sup N326L} in the nucleus but only partially rescued radiosensitivity of M10-XRCC4{sup N326L}. These results collectively indicated that the functional defects of XRCC4{sup N326L} might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein. - Highlights: • Extremely C-terminal region of XRCC4 is highly conserved among vertebrate species. • XRCC4 C-terminal point mutants, R325F and N326L, are functionally deficient in terms of survival after irradiation. • N326L localizes to the cytoplasm because of synthetic nuclear export signal. • Leptomycin B restores the

  2. Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase

    NASA Astrophysics Data System (ADS)

    Butler, Ethan E.; Huybers, Peter

    2015-03-01

    Maize yield is sensitive to high temperatures, and most large scale analyses have used a single, fixed sensitivity to represent this vulnerability over the course of a growing season. Field scale studies, in contrast, highlight how temperature sensitivity varies over the course of development. Here we couple United States Department of Agriculture yield and development data from 1981-2012 with weather station data to resolve temperature sensitivity according to both region and growth interval. On average, temperature sensitivity peaks during silking and grain filling, but there are major regional variations. In Northern states grain filling phases are shorter when temperatures are higher, whereas Southern states show little yield sensitivity and have longer grain filling phases during hotter seasons. This pattern of grain filling sensitivity and duration accords with the whole-season temperature sensitivity in US maize identified in recent studies. Further exploration of grain filling duration and its response to high temperatures may be useful in determining the degree to which maize agriculture can be adapted to a hotter climate.

  3. Analysis of extreme climatic features over South America from CLARIS-LPB ensemble of regional climate models for future conditions

    NASA Astrophysics Data System (ADS)

    Sanchez, E.; Zaninelli, P.; Carril, A.; Menendez, C.; Dominguez, M.

    2012-04-01

    An ensemble of seven regional climate models (RCM) included in the European CLARIS-LPB project (A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin) are used to study how some features related to climatic extremes are projected to be changed by the end of XXIst century. These RCMs are forced by different IPCC-AR4 global climate models (IPSL, ECHAM5 and HadCM3), covering three different 30-year periods: present (1960-1990), near future (2010-2040) and distant future (2070-2100), with 50km of horizontal resolution. These regional climate models have previously been forced with ERA-Interim reanalysis, in a consistent procedure with CORDEX (A COordinated Regional climate Downscaling EXperiment) initiative for the South-America domain. The analysis shows a good agreement among them and the available observational databases to describe the main features of the mean climate of the continent. Here we focus our analysis on some topics of interest related to extreme events, such as the development of diagnostics related to dry-spells length, the structure of the frequency distribution functions over several subregions defined by more or less homogeneous climatic conditions (four sub-basins over the La Plata Basin, the southern part of the Amazon basin, Northeast Brazil, and the South Atlantic Convergence Zone (SACZ)), the structure of the annual cycle and their main features and relation with the length of the seasons, or the frequency of anomalous hot or cold events. One shortcoming that must be considered is the lack of observational databases with both time and spatial frequency to validate model outputs. At the same time, one challenging issue of this study is the regional modelling description of a continent where a huge variety of climates are present, from desert to mountain conditions, and from tropical to subtropical regimes. Another basic objective of this preliminary work is also to obtain a measure of the spread among

  4. Risk prediction of Critical Infrastructures against extreme natural hazards: local and regional scale analysis

    NASA Astrophysics Data System (ADS)

    Rosato, Vittorio; Hounjet, Micheline; Burzel, Andreas; Di Pietro, Antonio; Tofani, Alberto; Pollino, Maurizio; Giovinazzi, Sonia

    2016-04-01

    Natural hazard events can induce severe impacts on the built environment; they can hit wide and densely populated areas, where there is a large number of (inter)dependent technological systems whose damages could cause the failure or malfunctioning of further different services, spreading the impacts on wider geographical areas. The EU project CIPRNet (Critical Infrastructures Preparedness and Resilience Research Network) is realizing an unprecedented Decision Support System (DSS) which enables to operationally perform risk prediction on Critical Infrastructures (CI) by predicting the occurrence of natural events (from long term weather to short nowcast predictions, correlating intrinsic vulnerabilities of CI elements with the different events' manifestation strengths, and analysing the resulting Damage Scenario. The Damage Scenario is then transformed into an Impact Scenario, where punctual CI element damages are transformed into micro (local area) or meso (regional) scale Services Outages. At the smaller scale, the DSS simulates detailed city models (where CI dependencies are explicitly accounted for) that are of important input for crisis management organizations whereas, at the regional scale by using approximate System-of-Systems model describing systemic interactions, the focus is on raising awareness. The DSS has allowed to develop a novel simulation framework for predicting earthquakes shake maps originating from a given seismic event, considering the shock wave propagation in inhomogeneous media and the subsequent produced damages by estimating building vulnerabilities on the basis of a phenomenological model [1, 2]. Moreover, in presence of areas containing river basins, when abundant precipitations are expected, the DSS solves the hydrodynamic 1D/2D models of the river basins for predicting the flux runoff and the corresponding flood dynamics. This calculation allows the estimation of the Damage Scenario and triggers the evaluation of the Impact Scenario

  5. Extreme Ground Motion Recorded in the Near-Source Region of Underground Nuclear Explosions

    SciTech Connect

    Foxall, W

    2005-01-04

    Free-field recordings of underground nuclear explosions constitute a unique data set within the near-source region of seismic events ranging in magnitude from M3 to M6.5. The term ''free-field'' in this context refers to recordings from instruments emplaced in boreholes or tunnel walls such that the initial portions of the records ({approx}0.1 to 1 second) do not contain effects resulting from reflections at the free surface. In addition to the free-field instruments deployed to record ground motions from selected underground nuclear explosions at the Nevada Test Site (NTS) and elsewhere, surface arrays were routinely deployed to record surface accelerations and velocities from underground nuclear tests conducted at NTS.

  6. The infrared emission of G333.6-0.2 - An extremely nonspherical H II region

    NASA Technical Reports Server (NTRS)

    Hyland, A. R.; Mcgregor, P. J.; Robinson, G.; Thomas, J. A.; Becklin, E. E.; Gatley, I.; Werner, M. W.

    1980-01-01

    The southern H II region G333.6-0.2, which has a total luminosity of 3.3 million solar luminosities (for an assumed distance of 4 kpc) was mapped at 2.2, 10, 30, 50, and 100 microns. At all wavelengths, the surface brightness of the infrared radiation is unusually high and the structure of the source is compact and symmetrical. The present observations, along with previous data, suggest that G333.6-0.2 is excited by a single luminous object or a very compact cluster, which has formed on the front surface of a dense molecular cloud as seen from the earth. It is shown that the spectral and spatial characteristics of the infrared radiation can be understood in terms of this blister model.

  7. Spatio-temporal analysis of the extreme precipitation by the L-moment-based index-flood method in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Yin, Yixing; Chen, Haishan; Xu, Chongyu; Xu, Wucheng; Chen, Changchun

    2014-05-01

    The regionalization methods which 'trade space for time' by including several at-site data records in the frequency analysis are an efficient tool to improve the reliability of extreme quantile estimates. With the main aims of improving the understanding of the regional frequency of extreme precipitation and providing scientific and practical background and assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region, in this paper, L-moment-based index-flood (LMIF) method, one of the popular regionalization methods, is used in the regional frequency analysis of extreme precipitation; attention was paid to inter-site dependence and its influence on the accuracy of quantile estimates, which hasn't been considered for most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, Generalized extreme-value (GEV) and Generalized Normal (GNO) distributions were identified as the best-fit distributions for most of the sub regions. Estimated quantiles for each region were further obtained. Monte-Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root mean square errors (RMSEs) were bigger and the 90% error bounds were wider with inter-site dependence than those with no inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with return period of 100 years were obtained which indicated that there are two regions with the highest precipitation extremes (southeastern coastal area of Zhejiang Province and the

  8. Extremely Bright Submillimeter Galaxies beyond the Lupus-I Star-forming Region

    NASA Astrophysics Data System (ADS)

    Tamura, Y.; Kawabe, R.; Shimajiri, Y.; Tsukagoshi, T.; Nakajima, Y.; Oasa, Y.; Wilner, D. J.; Chandler, C. J.; Saigo, K.; Tomida, K.; Yun, M. S.; Taniguchi, A.; Kohno, K.; Hatsukade, B.; Aretxaga, I.; Austermann, J. E.; Dickman, R.; Ezawa, H.; Goss, W. M.; Hayashi, M.; Hughes, D. H.; Hiramatsu, M.; Inutsuka, S.; Ogasawara, R.; Ohashi, N.; Oshima, T.; Scott, K. S.; Wilson, G. W.

    2015-08-01

    We report detections of two candidate distant submillimeter galaxies (SMGs), MM J154506.4‑344318 and MM J154132.7‑350320, which are discovered in the AzTEC/ASTE 1.1 mm survey toward the Lupus-I star-forming region. The two objects have 1.1 mm flux densities of 43.9 and 27.1 mJy, and have Herschel/SPIRE counterparts as well. The Submillimeter Array counterpart to the former SMG is identified at 890 μm and 1.3 mm. Photometric redshift estimates using all available data from the mid-infrared to the radio suggest that the redshifts of the two SMGs are {z}{photo}≃ 4–5 and 3, respectively. Near-infrared objects are found very close to the SMGs and they are consistent with low-z ellipticals, suggesting that the high apparent luminosities can be attributed to gravitational magnification. The cumulative number counts at {S}1.1{mm}≥slant 25 mJy, combined with the other two 1.1 mm brightest sources, are {0.70}-0.34+0.56 deg‑2, which is consistent with a model prediction that accounts for flux magnification due to strong gravitational lensing. Unexpectedly, a z\\gt 3 SMG and a Galactic dense starless core (e.g., a first hydrostatic core) could be similar in the mid-infrared to millimeter spectral energy distributions and spatial structures at least at ≳ 1\\prime\\prime . This indicates that it is necessary to distinguish the two possibilities by means of broadband photometry from the optical to centimeter and spectroscopy to determine the redshift, when a compact object is identified toward Galactic star-forming regions.

  9. Revisiting Cholera-Climate Teleconnections in the Native Homeland: ENSO and other Extremes through the Regional Hydroclimatic Drivers

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A.; Huq, A.; Colwell, R. R.

    2014-12-01

    Cholera is a global disease, with significantly large outbreaks occurring since the 1990s, notably in Sub-Saharan Africa and South Asia and recently in Haiti, in the Caribbean. Critical knowledge gaps remain in the understanding of the annual recurrence in endemic areas and the nature of epidemic outbreaks, especially those that follow extreme hydroclimatic events. Teleconnections with large-scale climate phenomena affecting regional scale hydroclimatic drivers of cholera dynamics remain largely unexplained. For centuries, the Bengal delta region has been strongly influenced by the asymmetric availability of water in the rivers Ganges and the Brahmaputra. As these two major rivers are known to have strong contrasting affects on local cholera dynamics in the region, we argue that the role of El Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), or other phenomena needs to be interpreted in the context of the seasonal role of individual rivers and subsequent impact on local environmental processes, not as a teleconnection having a remote and unified effect. We present a modified hypothesis that the influences of large-scale climate phenomena such as ENSO and IOD on Bengal cholera can be explicitly identified and incorporated through regional scale hydroclimatic drivers. Here, we provide an analytical review of the literature addressing cholera and climate linkages and present hypotheses, based on recent evidence, and quantification on the role of regional scale hydroclimatic drivers of cholera. We argue that the seasonal changes in precipitation and temperature, and resulting river discharge in the GBM basin region during ENSO and IOD events have a dominant combined effect on the endemic persistence and the epidemic vulnerability to cholera outbreaks in spring and fall seasons, respectively, that is stronger than the effect of localized hydrological and socio-economic sensitivities in Bangladesh. In addition, systematic identification of underlying seasonal

  10. Hydrometeorological extremes reconstructed from documentary evidence for the Jihlava region in the 17th-19th centuries

    NASA Astrophysics Data System (ADS)

    Dolak, Lukas; Brazdil, Rudolf; Chroma, Katerina; Valasek, Hubert; Belinova, Monika; Reznickova, Ladislava

    2016-04-01

    Different documentary evidence (taxation records, chronicles, insurance reports etc.) is used for reconstruction of hydrometeorological extremes (HMEs) in the Jihlava region (central part of the recent Czech Republic) in the 17th-19th centuries. The aim of the study is description of the system of tax alleviation in Moravia, presentation of utilization of early fire and hail damage insurance claims and application of the new methodological approaches for the analysis of HMEs impacts. During the period studied more than 400 HMEs were analysed for the 16 estates (past basic economic units). Late frost on 16 May 1662 on the Nove Mesto na Morave estate, which destroyed whole cereals and caused damage in the forests, is the first recorded extreme event. Downpours causing flash floods and hailstorms are the most frequently recorded natural disasters. Moreover, floods, droughts, windstorms, blizzards, late frosts and lightning strikes starting fires caused enormous damage as well. The impacts of HMEs are classified into three categories: impacts on agricultural production, material property and the socio-economic impacts. Natural disasters became the reasons of losses of human lives, property, supplies and farming equipment. HMEs caused damage to fields and meadows, depletion of livestock and triggered the secondary consequences as lack of seeds and finance, high prices, indebtedness, poverty and deterioration in field fertility. The results are discussed with respect to uncertainties associated with documentary evidences and their spatiotemporal distribution. Archival records, preserved in the Moravian Land Archives in Brno and other district archives, create a unique source of data contributing to the better understanding of extreme events and their impacts.

  11. Relativistic causality

    NASA Astrophysics Data System (ADS)

    Valente, Giovanni; Owen Weatherall, James

    2014-11-01

    Relativity theory is often taken to include, or to imply, a prohibition on superluminal propagation of causal processes. Yet, what exactly the prohibition on superluminal propagation amounts to and how one should deal with its possible violation have remained open philosophical problems, both in the context of the metaphysics of causation and the foundations of physics. In particular, recent work in philosophy of physics has focused on the causal structure of spacetime in relativity theory and on how this causal structure manifests itself in our most fundamental theories of matter. These topics were the subject of a workshop on "Relativistic Causality in Quantum Field Theory and General Relativity" that we organized (along with John Earman) at the Center for Philosophy of Science in Pittsburgh on April 5-7, 2013. The present Special Issue comprises contributions by speakers in that workshop as well as several other experts exploring different aspects of relativistic causality. We are grateful to the journal for hosting this Special Issue, to the journal's managing editor, Femke Kuiling, for her help and support in putting the issue together, and to the authors and the referees for their excellent work.

  12. Risk-based consequences of extreme natural hazard processes in mountain regions - Multi-hazard analysis in Tyrol (Austria)

    NASA Astrophysics Data System (ADS)

    Huttenlau, Matthias; Stötter, Johann

    2010-05-01

    weighting within the risk concept, this has sufficient implications on the results of risk analyses. Thus, an equal and scale appropriated balance of those risk components is a fundamental key factor for effective natural hazard risk analyses. The results of such analyses inform especially decision makers in the insurance industry, the administration, and politicians on potential consequences and are the basis for appropriate risk management strategies. Thereby, results (i) on an annual or probabilistic risk comprehension have to be distinguished from (ii) scenario-based analyses. The first analyses are based on statistics of periodically or episodically occurring events whereas the latter approach is especially applied for extreme, non-linear, stochastic events. Focusing on the needs especially of insurance companies, the first approaches are appropriate for premium pricing and reinsurance strategies with an annual perspective, whereas the latter is focusing on events with extreme loss burdens under worst-case criteria to guarantee accordant reinsurance coverage. Moreover, the demand of adequate loss model approaches and methods is strengthened by the risk-based requirements of the upcoming capital requirement directive Solvency II. The present study estimates the potential elements at risk, their corresponding damage potentials and the Probable Maximum Losses (PMLs) of extreme natural hazards events in Tyrol (Austria) and considers adequatly the scale dependency and balanced application of the introduced risk components. Beside the introduced analysis an additionally portfolio analysis of a regional insurance company was executed. The geocoded insurance contracts of this portfolio analysis were the basis to estimate spatial, socio-economical and functional differentiated mean insurance values for the different risk categories of (i) buildings, (ii) contents or inventory, (iii) vehicles, and (iv) persons in the study area. The estimated mean insurance values were

  13. Chromospheric and photospheric evolution of an extremely active solar region in solar cycle 19

    NASA Technical Reports Server (NTRS)

    Mckenna-Lawlor, S. M. P.

    1981-01-01

    a comprehensive investigation was made of phenomena attending the disk passage, July 7 to 21, 1959, of active solar center HAO-59Q. At the photospheric level that comprised an aggregate of groups of sunspots of which one group, Mt. Wilson 14284, showed all the attributes deemed typical of solar regions associated with the production of major flares. A special characteristic of 59Q was its capability to eject dark material. Part of this material remained trapped in the strong magnetic fields above group 14284 where it formed a system of interrelated arches, the legs of which passed through components of the bright chromospheric network of the plage and were rooted in various underlying umbrae. Two apparently diffeent kinds of flare were identified in 59Q; namely, prominence flares (which comprised brightenings within part of the suspended dark prominence) and plage flares (which comprised brightenings within part of the chromospheric network). Prominence flares were of three varieties described as 'impact', 'stationary' and 'moving' prominence flares. Plage flares were accompanied in 3 percent of cases by Type III bursts. These latter radio events indicate the associated passage through the corona of energetic electrons in the approximate energy range 10 to 100 keV. At least 87.5 percent, and probably all, impulsive brightenings in 59Q began directly above minor spots, many of which satellites to major umbrae. Stationary and moving prominence flares were individually triggered at sites beneath which magnetic changes occurred within intervals which included each flare's flash phase.

  14. Chromospheric and photospheric evolution of an extremely active solar region in solar cycle 19

    SciTech Connect

    Mckenna-Lawlor, S.M.P.

    1981-08-01

    a comprehensive investigation was made of phenomena attending the disk passage, July 7 to 21, 1959, of active solar center HAO-59Q. At the photospheric level that comprised an aggregate of groups of sunspots of which one group, Mt. Wilson 14284, showed all the attributes deemed typical of solar regions associated with the production of major flares. A special characteristic of 59Q was its capability to eject dark material. Part of this material remained trapped in the strong magnetic fields above group 14284 where it formed a system of interrelated arches, the legs of which passed through components of the bright chromospheric network of the plage and were rooted in various underlying umbrae. Two apparently diffeent kinds of flare were identified in 59Q namely, prominence flares (which comprised brightenings within part of the suspended dark prominence) and plage flares (which comprised brightenings within part of the chromospheric network). Prominence flares were of three varieties described as 'impact', 'stationary' and 'moving' prominence flares. Plage flares were accompanied in 3 percent of cases by Type III bursts. These latter radio events indicate the associated passage through the corona of energetic electrons in the approximate energy range 10 to 100 keV. At least 87.5 percent, and probably all, impulsive brightenings in 59Q began directly above minor spots, many of which satellites to major umbrae. Stationary and moving prominence flares were individually triggered at sites beneath which magnetic changes occurred within intervals which included each flare's flash phase.

  15. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    NASA Astrophysics Data System (ADS)

    Hirano, Y.; Kiyama, S.; Fujiwara, Y.; Koguchi, H.; Sakakita, H.

    2015-11-01

    A high current density (≈3 mA/cm2) hydrogen ion beam source operating in an extremely low-energy region (Eib ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when Eib is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  16. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    PubMed

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge. PMID:26628125

  17. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    SciTech Connect

    Hirano, Y. E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; Kiyama, S.; Koguchi, H.; Fujiwara, Y.; Sakakita, H.

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  18. Regional modeling sensitivity experiments for interpreting the UK Winter 2013-2014 extreme rain

    NASA Astrophysics Data System (ADS)

    Omrani, H.; Vautard, R.; Schaller, N.; Allen, M. R.

    2015-12-01

    During the winter 2013/2014, the UK saw heavy rainfalls associated with a succession of storms reaching Southern England causing widespread flooding, power cuts and major disruptions to transport. The January precipitation set a record for several rain gauge stations in Southern England. The aim of this study is to evaluate the contribution of the anthropogenic climate change, represented by a modification of the sea surface temperature (SST) on the January precipitation. For that, we conducted a sensitivity experiment by running a set of 108 four-months simulations using WRF model with 9 different physics and 12 different SST fields; 9 for the factual world and 99 for the counter-factual world. A spectral nudging technique was used here to ensure a same atmospheric circulation patterns for all the simulations. Therefore, only the thermodynamic effect is considered here. The analysis is focused on January precipitation over the southern England. Results show for 0,5°C SST difference over the Northern Atlantic, the precipitation in the factual simulations is between 0,4 and 8% higher than the precipitation in the counter-factual simulations depending on the physic. A validation test shows that this value is closer to 8% for the "best physic" simulation. It also show a strong spatial variability where in some region the precipitation is higher in the counter-factual world compared the factual world. Finally, a backward trajectories were calculated to evaluate the sensitivity of the moisture sources and air mass trajectories to the SST in the factual and the counter-factual world.

  19. To the Extremes! A Teacher Research Experience Program in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Bartholow, S.

    2014-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating, a teacher professional development program, began with the International Polar Year in 2004 and continues today in the United States. In 2007, the National Science Foundation designated PolarTREC as potentially transformative, meaning that the "research results often do not fit within established models or theories and may initially be unexpected or difficult to interpret; their transformative nature and utility might not be recognized until years later." PolarTREC brings U.S. K-12 educators and polar researchers together through an innovative teacher research experience model. Teachers spend three to six weeks in remote arctic and Antarctic field camps. Since 2007, over 100 teachers have been placed in field experiences throughout the Arctic and Antarctic and with half of them participating in field experiences in Antarctica. During their experience, teachers become research team members filling a variety of roles on the team. They also fulfil a unique role of public outreach officer, conducting live presentations about their field site and research as well as journaling, answering questions, and posting photos. Evaluation data collected over the past eight years on program participants shows that PolarTREC has clearly achieved it goals and strongly suggests programs that link teachers and researchers can have the potential to transform the nature of science education. By giving teachers the content knowledge, pedagogical tools, confidence, understanding of science in the broader society, and experiences with scientific inquiry, participating teachers are using authentic scientific research in their classrooms. Not surprisingly this has also led to increases in student interest and knowledge about the Polar Regions. In this presentation, we will highlight the best practices of teacher research experiences as well as discuss why it is vital to have teachers and researchers work together to communicate

  20. Response of the low-latitude D region ionosphere to extreme space weather event of 14-16 December 2006

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Kumar, Abhikesh; Menk, Frederick; Maurya, Ajeet K.; Singh, Rajesh; Veenadhari, B.

    2015-01-01

    response of the D region low-latitude ionosphere has been examined for extreme space weather event of 14-16 December 2006 associated with a X1.5 solar flare and an intense geomagnetic storm (Dst = -146 nT) using VLF signals from Northwest Cape, Australia (NWC) (19.8 kHz) and Lualualei, Hawaii (callsign NPM) (21.4 kHz) transmitters monitored at Suva (Geographic Coordinates, 18.10°S, 178.40°E), Fiji. Modeling of flare associated amplitude and phase enhancements of NWC (3.6 dB, 223°) and NPM (5 dB, 153°) using Long-Wave Propagation Capability code shows reduction in the D region reflection height (H') by 11.1 km and 9.4 km, and enhancement in ionization gradients described by increases in the exponential sharpness factor (β) by 0.122 and 0.126 km-1, for the NWC and NPM paths, respectively. During the storm the daytime signal strengths of the NWC and NPM signals were reduced by 3.2 dB on 15 and 16 December (for about 46 h) and recovered by 17 December. Modeling for the NWC path shows that storm time values of H' and β were reduced by 1.2 km and 0.06 km-1, respectively. Morlet wavelet analysis of signal amplitudes shows no clearly strong signatures of gravity wave propagation to low latitudes during the main and recovery phases. The reduction in VLF signal strength is due to increased signal attenuation and absorption by the Earth-ionosphere waveguide due to storm-induced D region ionization changes and hence changes in D region parameters. The long duration of the storm effect results from the slow diffusion of changed composition/ionization at D region altitudes compared with higher altitudes in the ionosphere.

  1. Flood risk under future climate in data sparse regions: Linking extreme value models and flood generating processes

    NASA Astrophysics Data System (ADS)

    Tramblay, Yves; Amoussou, Ernest; Dorigo, Wouter; Mahé, Gil

    2014-11-01

    For many areas in the world, there is a need for future projections of flood risk in order to improve the possible mitigation actions. However, such an exercise is often made difficult in data-sparse regions, where the limited access to hydrometric data does not allow calibrating hydrological models in a robust way under non-stationary conditions. In this study we present an approach to estimate possible changes in flood risks, which incorporates flood generating processes into statistical models for extreme values. This approach is illustrated for a West African catchment, the Mono River (12,900 km2), with discharge, precipitation and temperature data available between 1988 and 2010 and where the dominant flood generating process is soil saturation. A soil moisture accounting (SMA) model, calibrated against a merged surface soil moisture microwave satellite dataset, is used to estimate the annual maximum soil saturation level that is related to the location parameter of a generalized extreme value model of annual maximum discharge. With such a model, it is possible to estimate the changes in flood quantiles from the changes in the annual maximum soil saturation level. An ensemble of regional climate models from the ENSEMBLES-AMMA project are then considered to estimate the potential future changes in soil saturation and subsequently the changes in flood risks for the period 2028-2050. A sensitivity analysis of the non-stationary flood quantiles has shown that with the projected changes on precipitation (-2%) and temperature (+1.22°) under the scenario A1B, the projected flood quantiles would stay in the range of the observed variability during 1988-2010. The proposed approach, relying on low data requirements, could be useful to estimate the projected changes in flood risks for other data-sparse catchments where the dominant flood-generating process is soil saturation.

  2. Sensitivity of seasonal precipitation extremes to model configuration of the Canadian Regional Climate Model over eastern Canada using historical simulations

    NASA Astrophysics Data System (ADS)

    Roy, Philippe; Gachon, Philippe; Laprise, René

    2014-11-01

    This study analyzes the uncertainty of seasonal (winter and summer) precipitation extremes as simulated by a recent version of the Canadian Regional Climate Model (CRCM) using 16 simulations (1961-1990), considering four sources of uncertainty from: (a) the domain size, (b) the driving Atmosphere-Ocean Global Climate Models (AOGCM), (c) the ensemble member for a given AOGCM and (d) the internal variability of the CRCM. These 16 simulations are driven by 2 AOGCMs (i.e. CGCM3, members 4 and 5, and ECHAM5, members 1 and 2), and one set of re-analysis products (i.e. ERA40), using two domain sizes (AMNO, covering all North America and QC, a smaller domain centred over the Province of Québec). In addition to the mean seasonal precipitation, three seasonal indices are used to characterize different types of variability and extremes of precipitation: the number of wet days, the maximum number of consecutive dry days, and the 95th percentile of daily precipitation. Results show that largest source of uncertainty in summer comes from the AOGCM selection and the choice of domain size, followed by the choice of the member for a given AOGCM. In winter, the choice of the member becomes more important than the choice of the domain size. Simulated variance sensitivity is greater in winter than in summer, highlighting the importance of the large-scale circulation from the boundary conditions. The study confirms a higher uncertainty in the simulated heavy rainfall than the one in the mean precipitation, with some regions along the Great Lakes—St-Lawrence Valley exhibiting a systematic higher uncertainty value.

  3. Risk-based consequences of extreme natural hazard processes in mountain regions - Multi-hazard analysis in Tyrol (Austria)

    NASA Astrophysics Data System (ADS)

    Huttenlau, Matthias; Stötter, Johann

    2010-05-01

    weighting within the risk concept, this has sufficient implications on the results of risk analyses. Thus, an equal and scale appropriated balance of those risk components is a fundamental key factor for effective natural hazard risk analyses. The results of such analyses inform especially decision makers in the insurance industry, the administration, and politicians on potential consequences and are the basis for appropriate risk management strategies. Thereby, results (i) on an annual or probabilistic risk comprehension have to be distinguished from (ii) scenario-based analyses. The first analyses are based on statistics of periodically or episodically occurring events whereas the latter approach is especially applied for extreme, non-linear, stochastic events. Focusing on the needs especially of insurance companies, the first approaches are appropriate for premium pricing and reinsurance strategies with an annual perspective, whereas the latter is focusing on events with extreme loss burdens under worst-case criteria to guarantee accordant reinsurance coverage. Moreover, the demand of adequate loss model approaches and methods is strengthened by the risk-based requirements of the upcoming capital requirement directive Solvency II. The present study estimates the potential elements at risk, their corresponding damage potentials and the Probable Maximum Losses (PMLs) of extreme natural hazards events in Tyrol (Austria) and considers adequatly the scale dependency and balanced application of the introduced risk components. Beside the introduced analysis an additionally portfolio analysis of a regional insurance company was executed. The geocoded insurance contracts of this portfolio analysis were the basis to estimate spatial, socio-economical and functional differentiated mean insurance values for the different risk categories of (i) buildings, (ii) contents or inventory, (iii) vehicles, and (iv) persons in the study area. The estimated mean insurance values were

  4. Transmission filter for the extreme ultraviolet spectral region composed of a thin Saran (C/sub 2/H/sub 2/Cl/sub 2/) foil

    SciTech Connect

    Seely, J. F.; Shirey, L.; Kingman, A.

    1989-05-15

    Saran foils of 4000-A thickness have been fabricated and used astransmission filters in the extreme ultraviolet spectral region. Thetransmittances of the Saran foils were determined for the 20--620-Awavelength region. The foils transmitted radiation with wavelengths between the/ital L/ absorption edge of chlorine at 61.4 and /similar to/120 A.

  5. Analysis of Extreme Heat in Historical and Projected Climate Simulations for Regional Climate Planning Purposes in the U.S.

    NASA Astrophysics Data System (ADS)

    Geil, K.; Zeng, X.; McMahan, B.; Ferguson, D. B.

    2015-12-01

    The U.S. National Climate Assessment (NCA) states that global climate models predict more extreme temperatures and more frequent, intense, and longer heat waves on a regional basis as global temperatures rise throughout the 21st century, but a thorough test of whether these models can simulate observed heat metrics and trends over the historical period was not included in the assessment. Understanding the capabilities of climate models over the historical period is crucial to assessing our confidence in their predictive ability at regional scales. Our work fills this research gap by evaluating the performance of Coupled Model Intercomparison Phase 5 (CMIP5) models as compared to observational data using multiple heat metrics. Our metrics are targeted for the southwest United States, but our regional analysis covers the entire continental U.S. and Alaska using 7 of the regions delineated by the NCA. The heat metrics include heat wave and cold wave frequency, intensity, and duration, overnight low temperatures, onset and length of the hot season, and human heat stress. For the best performing models, we compute the same heat metrics for the RCP scenarios. In addition to presenting the results of our CMIP5 historical and RCP analyses, we also describe how our results may be applied to the benefit of our community in Southern Arizona as a case study. Our research will be used by NOAA's Climate Assessment for the Southwest (CLIMAS) and by an interdisciplinary collaborative team of researchers from the University of Arizona working with an electric utility to integrate climate information into their strategic planning.

  6. Homogeneous regions in Italy: an analysis of the mean and extreme climate characteristics and their impact on agriculture.

    NASA Astrophysics Data System (ADS)

    Baldi, M.; Coccimiglio, P.

    2009-09-01

    Adverse environmental conditions, lasting for several days in a row, can cause stress over ecosystems, humans and animals with a negative impact on crop yield, human health, and on animal production and reproduction, to name few aspects, and therefore leading to severe economic losses. Namely, in the last decades, the enhanced frequency and intensity of summer heat waves in Italy have increased the importance of assessing the damages they cause. Another example is the occurrence of late spring frost causing damages not only to subsistence crops, but moreover for the so-called cash-crops. An example is the kiwifruit production in Italy specifically grown to fulfil the global demand, more than the national market, being the Italian production out of phase with the other major producers, such as New Zealand and South America. Using a Principal Component Analysis (PCA) applied to daily maximum and minimum temperature and precipitation and then a hierarchical cluster analysis, based on Ward's method, on a set of 100 stations covering the period 1971-2006, we divided the 100 sites into 8 homogeneous classes. For each cluster the climate characteristics have been analyzed, in order to have a description of the mean climate of the cluster. In addition, we analyzed the occurrence of the extreme events in each cluster, their duration and intensity, and their trend over the last decades. Focusing on the kiwifruit production regions in Italy a first attempt is presented to compare actual/suitable production regions in Italy and similar regions in New Zealand from the point of view of their respective climate trends and variability. Long term trends in agroclimatic indices and results of comparison analysis will be discussed for regions in the two Countries. The study has been partly supported by the Short term mobility programme of the Italian National Research Council, under the sponsorship of the CNR-Agrofood Department.

  7. Relativistic fluid dynamics. Proceedings.

    NASA Astrophysics Data System (ADS)

    Anile, A. M.; Choquet-Bruhat, Y.

    Contents: 1. Covariant theory of conductivity in ideal fluid or solid media (B. Carter). 2. Hamiltonian techniques for relativistic fluid dynamics and stability theory (D. D. Holm). 3. Covariant fluid mechanics and thermodynamics: an introduction (W. Israel). 4. Relativistic plasmas (H. Weitzner). 5. An improved relativistic warm plasma model (A. M. Anile, S. Pennisi). 6. Relativistic extended thermodynamics II (I. Müller). 7. Relativistic extended thermodynamics: general assumptions and mathematical procedure (T. Ruggeri). 8. Relativistic hydrodynamics and heavy ion reactions (D. Strottman). 9. Some problems in relativistic hydrodynamics (C. G. van Weert).

  8. Relativistic jets in astrophysics

    NASA Astrophysics Data System (ADS)

    Derishev, E. V.; Zheleznyakov, V. V.; Koryagin, S. A.; Kocharovsky, Vl. V.

    The properties of the plasma state of matter are determined by the motion and the electromagnetic emission of the non-bound electrically charged particles --- electrons, positrons, protons and ions. It is not easy to create plasma in a laboratory. However this state is typical for the cosmic conditions --- at the stars and in the interstellar space. The properties of the laboratory as well as the space plasma are investigated at the Institute of Applied Physics of the Russian Academy of Sciences. The research is focused on the mechanisms of generation and propagation of the electromagnetic radiation --- from the radio waves to the gamma-rays --- in the planetary and stellar atmospheres and at the other astrophysical objects. The extreme physical conditions for a plasma are realized near the compact objects like black holes, neutron stars and collapsing nuclei of the massive stars. The plasma could be strongly non-equlibrium and can produce strong electromagnetic fields. Its bulk motion as well as the chaotic motion of the constituting particles can be relativistic, i. e. the motion can achieve velocities close to the speed of light. The relativistic plasma is frequently observed in the form of jets.

  9. Two millennia of torrential activity reconstructed from alpine lake sediments: towards regional patterns of extreme precipitation changes

    NASA Astrophysics Data System (ADS)

    Wilhelm, B.; Arnaud, F.; Giguet-Covex, C.; Sabatier, P.; Crouzet, C.; Delannoy, J. J.

    2012-04-01

    In mountain areas extreme precipitation events trigger torrential floods, characterized by a sudden and intense rise of discharge causing large human and economic losses. Their frequency and/or intensity are expected to increase in the context of global warming. However, the relationship between such events and climate changes remains difficult to assess. Long-term geological records of intense events could enable to extend documented records beyond the observational data for a better understanding of local to regional flood hazard patterns in relation to past climatic changes and hence improving predictive models. In this context, lake sediment records appear a relevant archive as they are continuous records in which the identification of high-energy sediment layers allows to reconstruct flood calendar. In addition, the flood intensity can be reconstructed from the coarse fraction of each flood layer. Frequency and intensity of past torrential floods were thus reconstructed from four high-elevation lake records of the French Alps, in the framework of Pygmalion research program. Studied sites were selected along a north-south transect over this region to investigate the flooding responses to different climatic influences (westerlies in the north and Mediterranean influences in the south). High-resolution geochemical and sedimentological analyses were undertaken for an exhaustive identification of flood layers and several dating methods (short-lived radionuclides, 14C, correlation with historic events, paleomagnetism) were combined to reduce age uncertainties as much as possible. Over the entire French Alps, the torrential-flood frequency increases at a secular timescale during the cold period of the Little Ice Age (LIA; 1300-1900 AD). This increase seems in agreement with a regional high wetness, already described in the literature, possibly related to an increase in cyclonic activity. Superimposed to this secular trend, a pluri-decadal variability appears at

  10. Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    NASA Astrophysics Data System (ADS)

    Brüggen, Marcus; Bykov, Andrei; Ryu, Dongsu; Röttgering, Huub

    2012-05-01

    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and γ-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zel'dovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of μG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.

  11. Extreme solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Vainio, Rami; Afanasiev, Alexandr; Battarbee, Markus

    2016-04-01

    Properties of extreme solar energetic particle (SEP) events, here defined as those leading to ground level enhancements (GLEs) of cosmic rays, are reviewed. We review recent efforts on modeling SEP acceleration to relativistic energies and present simulation results on particle acceleration at shocks driven by fast coronal mass ejections (CMEs) in different types of coronal magnetic structures and turbulent downstream compression regions. Based on these modeling results, we discuss the possible role of solar and CME parameters in the lack of GLEs during the present sunspot cycle. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support.

  12. Regional Aerosol Optical Properties and Radiative Impact of the Extreme Smoke Event in the European Arctic in Spring 2006

    NASA Technical Reports Server (NTRS)

    Lund Myhre, C.; Toledano, C.; Myhre, G.; Stebel, K.; Yttri, K.; Aaltonen, V.; Johnsrud, M.; Frioud, M.; Cachorro, V.; deFrutos, A.; Lihavainen, H.; Campbell, J.; Chaikovsky, A.; Shiobara, M.; Welton, E.; Torseth, K.

    2007-01-01

    In spring 2006 a special meteorological situation occurred in the European Arctic region giving record high levels of air pollution. The synoptic situation resulted in extensive transport of pollution predominantly from agricultural fires in Eastern Europe into the Arctic region and record high air-pollution levels were measured at the Zeppelin observatory at Ni-Alesun(78deg 54'N, 11deg 53'E) in the period from 25 April to 12 May. In the present study we investigate the optical properties of the aerosols from this extreme event and we estimate the radiative forcing of this episode. We examine the aerosol optical properties from the source region and into the European Arctic and explore the evolution of the episode and the changes in the optical properties. A number of sites in Eastern Europe, Northern Scandinavia and Svalbard are included in the study. In addition to AOD measurements, we explored lidar measurements from Minsk, ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research at Andenes) and Ny-Alesund. For the AERONET sites included (Minsk, Toravere, Hornsund) we have further studied the evolution of the aerosol size. Importantly, at Svalbard it is consistency between the AERONET measurements and calculations of single scattering albedo based on aerosol chemical composition. We have found strong agreement between the satellite dally MODIS AOD and the ground-based AOD observations. This agreement is crucial for the radiative forcing calculations. We calculate a strong negative radiative forcing for the most polluted days employing the analysed ground based data, MODIS AOD and a multi-stream model for radiative transfer of solar radiation.

  13. Precipitation extremes over Amazonia - atmospheric and oceanic associated features observed and simulated by HADGEM2-ES, CPTEC/INPE AGCM and Eta/CPTEC regional model

    NASA Astrophysics Data System (ADS)

    Cavalcanti, I. F.

    2013-05-01

    Extreme monthly cases of precipitation (positive and negative anomalies) over Amazonia are analyzed to show the atmospheric and oceanic related features and the ability of CPTEC AGCM and HADGEM2-ES in simulating them. Humidity flux variability over the Tropical Atlantic region is analyzed related to the precipitation variability over Amazonia. Besides the Pacific Ocean influence, the Amazonia precipitation is affected by the Tropical Atlantic Ocean, both by the SST and atmospheric flux humidity. Correlations between Atlantic SST and Amazonia precipitation show that there are specific months and areas that are affected by SST anomalies. The extreme cases are obtained from the Standardized Precipitation Index (SPI) applied to monthly data in four areas of Amazonia: northwest, northeast, west and east areas. The period of analysis is 1981 to 2010 to GPCP observed precipitation and CPTEC/INPE AGCM. As this AGCM is the base of the Brazilian Model of Earth System, its behavior on the mechanisms leading to extremes over Amazonia, compared to observations is discussed. Projections of extremes over the region are analyzed with results from CMIP5 HADGEM2-ES during 2073-2099 compared to 1979-2005. The regional Eta CPTEC model is also analyzed in two periods: 1960 to 1990 and 2040 to 2070, with boundary conditions of CMIP3 HADCM3 A1B scenario. The relevance of this analysis is to identify changes in frequency and intensity of extremes in the Amazon region in a higher resolution than the global models.

  14. Impact of Climate Change on Heavy Precipitation Events : Application of Extreme Value Theory to a Future Climate Simulation over the Colorado Headwaters Region

    NASA Astrophysics Data System (ADS)

    Ikeda, K.; Prein, A.; Rasmussen, R.; Liu, C.; Holland, G. J.

    2012-12-01

    Heavy precipitation cause devastating warm-season floods and cool-season snow and icing hazards that impact socio-economic communities of various scales. The frequency and severity of extreme precipitation events potentially are likely to be impacted by climate change. In this study we will investigate potential change in extreme precipitation intensity in a future climate over the Colorado headwaters region based on an extreme value approach ("peak-over-threshold" approach). The data come from Weather Research and Forecasting (WRF) model simulations of current and future climate conducted by the Colorado Headwaters Project (e.g., Rasmussen et al. 2011). The simulations were performed over eight years with 4, 12, and 36 km horizontal grid spacing. In the current study, we first evaluate the model ability to properly represent extreme precipitation events from the current climate simulation. Then we present changes in extreme precipitation intensity in the future climate for different seasons and over eight mountain ranges of the Colorado headwaters region. Our analyses so far have shown that the 4-km model outperformed coarser grid resolution models in representing extreme precipitation compared to Snowpack Telemetry (SNOTEL) surface observations. Overall, the 10-year return level in the future climate increased (more intense extreme precipitation) for all mountain ranges in the cool season. There was a general decrease in the 10-year return level (less intense extreme precipitation) in the warm season. The sign and magnitude of the change shows regional differences possibly related to seasonal storm tracks and characteristics. Detailed analysis from case studies will be presented to illustrate the impacts of a warmer and moister atmosphere on the microphysical structure of storm clouds and surface precipitation distribution.

  15. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, B.; Anderson, S. F.; Brandt, W. N.; Diamond-Stanic, A. M.; Fan, X.; Lira, P.; Netzer, H.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Strauss, M. A.

    2011-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad Hβ line and we place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black-hole mass determinations indicate normalized accretion rates of L/LEdd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ=1.91+0.24-0.22which supports the virial L/LEdd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.

  16. Investigating the Influence of Anthropogenic Forcing on Observed Mean and Extreme Sea Level Pressure Trends over the Mediterranean Region

    DOE PAGESBeta

    Barkhordarian, Armineh

    2012-01-01

    We investigate whether the observed mean sea level pressure (SLP) trends over the Mediterranean region in the period from 1975 to 2004 are significantly consistent with what 17 models projected as response of SLP to anthropogenic forcing (greenhouse gases and sulphate aerosols, GS). Obtained results indicate that the observed trends in mean SLP cannot be explained by natural (internal) variability. Externally forced changes are detectable in all seasons, except spring. The large-scale component (spatial mean) of the GS signal is detectable in all the 17 models in winter and in 12 of the 17 models in summer. However, the small-scalemore » component (spatial anomalies about the spatial mean) of GS signal is only detectable in winter within 11 of the 17 models. We also show that GS signal has a detectable influence on observed decreasing (increasing) tendency in the frequencies of extremely low (high) SLP days in winter and that these changes cannot be explained by internal climate variability. While the detection of GS forcing is robust in winter and summer, there are striking inconsistencies in autumn, where analysis points to the presence of an external forcing, which is not GS forcing.« less

  17. Investigating the Influence of Anthropogenic Forcing on Observed Mean and Extreme Sea Level Pressure Trends over the Mediterranean Region

    PubMed Central

    Barkhordarian, Armineh

    2012-01-01

    We investigate whether the observed mean sea level pressure (SLP) trends over the Mediterranean region in the period from 1975 to 2004 are significantly consistent with what 17 models projected as response of SLP to anthropogenic forcing (greenhouse gases and sulphate aerosols, GS). Obtained results indicate that the observed trends in mean SLP cannot be explained by natural (internal) variability. Externally forced changes are detectable in all seasons, except spring. The large-scale component (spatial mean) of the GS signal is detectable in all the 17 models in winter and in 12 of the 17 models in summer. However, the small-scale component (spatial anomalies about the spatial mean) of GS signal is only detectable in winter within 11 of the 17 models. We also show that GS signal has a detectable influence on observed decreasing (increasing) tendency in the frequencies of extremely low (high) SLP days in winter and that these changes cannot be explained by internal climate variability. While the detection of GS forcing is robust in winter and summer, there are striking inconsistencies in autumn, where analysis points to the presence of an external forcing, which is not GS forcing. PMID:22654622

  18. Is it possible to draw conclusions from mean wind statistics on extreme wind statistics?: A wind direction analysis for the Baltic Sea region.

    NASA Astrophysics Data System (ADS)

    Bierstedt, Svenja; Zorita, Eduardo; Hünicke, Birgit

    2014-05-01

    We investigate whether direction-related statistics of extreme wind events follow statistics of mean wind and thus whether changes in mean wind statistics can be used to approximate extreme wind changes. This study shows that this hypothesis is not valid over the Baltic Sea region. Furthermore, the predominant extreme wind direction and its temporal changes are analyzed. Differences between both mean and extreme wind direction distributions are detected. Main direction for extremes is wind from South-West (SW) whereas for the mean wind all directions can be found. The distribution of extreme wind directions shows a limited spread around SW. These distributions are not just different for annual statistics for mean and extreme, but additionally across seasons. The main direction remains SW but deviations from this mean winds in springtime occur as often from SW as from NE. Extreme winds are clearly focused from W, with a stronger influence of SW. Easterly wind seems to play a minor role in extreme wind statistics. The spatially covariance of wind statistics is further investigated by an EOF- analysis, which shows seasonally independent patterns of wind direction variability. Extreme winds are mainly westerlies, thus their variability is limited to north-south directions. These variability patterns show no trends in time and are quite homogeneous over the whole region. The results show that mean wind is not a good indicator for the main direction of extreme wind. As these first results showed a limited distribution for extreme wind directions for SW we continued analyzing changes of wind extremes from W and SW in the Baltic Sea region during winter (DJF) based on regional reanalysis data (coastdat2) over the period from 1948 to 2012. Extreme winds occur mostly and are strongest in winter season. Although on average all wind directions are quite frequent over the Baltic Sea, extremes are very focused on W and SW directions. Trends in the frequencies of extremes from SW

  19. An integrated approach for identifying homogeneous regions of extreme rainfall events and estimating IDF curves in Southern Ontario, Canada: Incorporating radar observations

    NASA Astrophysics Data System (ADS)

    Paixao, Edson; Mirza, M. Monirul Qader; Shephard, Mark W.; Auld, Heather; Klaassen, Joan; Smith, Graham

    2015-09-01

    Reliable extreme rainfall information is required for many applications including infrastructure design, management of water resources, and planning for weather-related emergencies in urban and rural areas. In this study, in situ TBRG sub-daily rainfall rate observations have been supplemented with weather radar information to better capture the spatial and temporal variability of heavy rainfall events regionally. Comparison of extreme rainfall events show that the absolute differences between the rain gauge and radar generally increase with increasing rainfall. Better agreement between the two observations is found when comparing the collocated radar and TBRG annual maximum values. The median difference is <18% for the annual maximum rainfall values ⩽50 mm. The median of difference of IDF estimates obtained through the Gumbel distribution for 10-year return period values computed from TBRG and radar are also found to be 4%. The overall results of this analysis demonstrates the potential value of incorporating remotely sensed radar with traditional point source TBRG network observations to provide additional insight on extreme rainfall events regionally, especially in terms of identifying homogeneous regions of extreme rainfall. The radar observations are particularly useful in areas where there is insufficient TBRG station density to statistically capture the extreme rainfall events.

  20. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Aditi; Attar, Andrew R.; Leone, Stephen R.

    2016-03-01

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH2 =CHCH2I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground (2P3/2, I) and spin-orbit excited (2P1/2, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N4/5 edge (45-60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region of the repulsive nIσ∗C—I excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ∗ states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ∗(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs-65 fs and decay completely by 145 fs-185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic structure in the transition state region. The results provide a benchmark for

  1. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  2. How well can change diagnose the effects of coupling of the Regional Atmosphere on ET of an Irrigated Surface Under Extreme Advection of Heat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of imported heat and saturation deficit versus available energy on the energy balance of a cotton field is investigated in a semi-arid region under a range of conditions, including extreme horizontal advection of heat. Using eddy covariance measurements of water vapor fluxes, a modified Pen...

  3. Relativistic blast waves in two dimensions. I - The adiabatic case

    NASA Technical Reports Server (NTRS)

    Shapiro, P. R.

    1979-01-01

    Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.

  4. Response of precipitation extremes to global warming in an aqua-planet climate model: towards robust projection from regional to global scales

    NASA Astrophysics Data System (ADS)

    Li, F.; Collins, W.; Wehner, M. F.; Williamson, D.; Olson, J.

    2010-12-01

    Robust projection of precipitation extremes is essential for human society to prepare for future climate change. To understand the inconsistencies of the projections across the climate models, a series of idealized “aquaplanet” AGCM runs have been performed with CAM3 to investigate the effects of horizontal resolution on precipitation extreme projections under two simple global warming scenarios. The absence of orography helps diagnose the response of the physics responsible for extreme rainfall to change with resolution. Results show that a uniform increase of sea surface temperature (SST) and an increase of low-to-high latitude SST gradient both lead to increase of precipitation and precipitation extremes for most latitudes. The perturbed SSTs generally have stronger impacts on precipitation extremes compared with mean precipitation. Model horizontal-resolution strongly affects the global warming signals in the extreme precipitation in the low-mid latitudes, but not in high latitude regions. This study illustrates the need for resolution-invariant treatment of atmospheric processes.

  5. How extreme are extremes?

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  6. The relativistic equation of state in accretion and wind flows

    NASA Astrophysics Data System (ADS)

    Basu, Prasad; Mondal, Soumen

    2014-01-01

    In the present study we derive a 4-velocity distribution function for the relativistic ideal gas following the original approach of Maxwell-Boltzmann (MB). Using this distribution function, the relativistic equation of state (EOS): ρ-ρ0=(p, is expressed in the parametric form: ρ=ρ0f(λ), and p=ρ0g(λ), where λ is a parameter related to the kinetic energy, and hence, to the temperature of the gas. In the nonrelativistic limit, this distribution function perfectly reduces to original MB distribution and the EOS reduces to ρ-ρ0=3/2 p, whereas in the extreme ultra-relativistic limit, the EOS becomes ρ=3p correctly. Using these parametric equations the adiabatic index γ=cp/cv and the sound speed as are calculated as a function of λ. They also satisfy the inequalities: 4/3 ⩽γ⩽ 5/3 and as⩽ 1/√{3} perfectly. The computed distribution function, adiabatic index γ, and the sound speed as are compared with the results obtained from the canonical ensemble theory which nicely match with the standard results (Synge, 1957 and Chandrasekhar, 1939). The main advantage in using the EOS is that the probability distribution function can be factorized and therefore, may be helpful to solve complex dynamics of the astrophysical system. Interestingly, in one of the astrophysical application revels that shocks in accretion flows become unlikely and except for the region very nearby the compact object, the EOS remains non-relativistic (Mondal and Basu, 2011). We therefore, conclude that the new form of EOS will be helpful to verify many conventional ideas in many astrophysical problems.

  7. Changes of precipitation and extremes and the possible effect of urbanization in the Beijing metropolitan region during 1960-2012 based on homogenized observations

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Yan, Zhongwei; Tu, Kai; Wu, Hongyi

    2015-09-01

    Daily precipitation series at 15 stations in the Beijing metropolitan region (BMR) during 1960-2012 were homogenized using the multiple analysis of series for homogenization method, with additional adjustments based on analysis of empirical cumulative density function (ECDF) regarding climate extremes. The cumulative density functions of daily precipitation series, the trends of annual and seasonal precipitation, and summer extreme events during 1960-2012 in the original and final adjusted series at Beijing station were comparatively analyzed to show the necessity and efficiency of the new method. Results indicate that the ECDF adjustments can improve the homogeneity of high-order moments of daily series and the estimation of climate trends in extremes. The linear trends of the regional-mean annual and seasonal (spring, summer, autumn, and winter) precipitation series are -10.16, 4.97, -20.04, 5.02, and -0.11 mm (10 yr)-1, respectively. The trends over the BMR increase consistently for spring/autumn and decrease for the whole year/summer; however, the trends for winter decrease in southern parts and increase in northern parts. Urbanization affects local trends of precipitation amount, frequency, and intensity and their geographical patterns. For the urban-influenced sites, urbanization tends to slow down the magnitude of decrease in the precipitation and extreme amount series by approximately -10.4% and -6.0%, respectively; enhance the magnitude of decrease in precipitation frequency series by approximately 5.7%; reduce that of extremes by approximately -8.9%; and promote the decreasing trends in the summer intensity series of both precipitation and extremes by approximately 6.8% and 51.5%, respectively.

  8. Precipitation and temperature space-time variability and extremes in the Mediterranean region: evaluation of dynamical and statistical downscaling methods

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Drobinski, Philippe; Vrac, Mathieu; Bastin, Sophie; Lebeaupin-Brossier, Cindy; Stéfanon, Marc; Borga, Marco; Calvet, Jean-Christophe

    2013-06-01

    This study evaluates how statistical and dynamical downscaling models as well as combined approach perform in retrieving the space-time variability of near-surface temperature and rainfall, as well as their extremes, over the whole Mediterranean region. The dynamical downscaling model used in this study is the Weather Research and Forecasting (WRF) model with varying land-surface models and resolutions (20 and 50 km) and the statistical tool is the Cumulative Distribution Function-transform (CDF-t). To achieve a spatially resolved downscaling over the Mediterranean basin, the European Climate Assessment and Dataset (ECA&D) gridded dataset is used for calibration and evaluation of the downscaling models. In the frame of HyMeX and MED-CORDEX international programs, the downscaling is performed on ERA-I reanalysis over the 1989-2008 period. The results show that despite local calibration, CDF-t produces more accurate spatial variability of near-surface temperature and rainfall with respect to ECA&D than WRF which solves the three-dimensional equation of conservation. This first suggests that at 20-50 km resolutions, these three-dimensional processes only weakly contribute to the local value of temperature and precipitation with respect to local one-dimensional processes. Calibration of CDF-t at each individual grid point is thus sufficient to reproduce accurately the spatial pattern. A second explanation is the use of gridded data such as ECA&D which smoothes in part the horizontal variability after data interpolation and damps the added value of dynamical downscaling. This explains partly the absence of added-value of the 2-stage downscaling approach which combines statistical and dynamical downscaling models. The temporal variability of statistically downscaled temperature and rainfall is finally strongly driven by the temporal variability of its forcing (here ERA-Interim or WRF simulations). CDF-t is thus efficient as a bias correction tool but does not show any

  9. Large scale and sub-regional connections in the lead up to summer heat wave and extreme rainfall events in eastern Australia

    NASA Astrophysics Data System (ADS)

    Boschat, Ghyslaine; Pezza, Alexandre; Simmonds, Ian; Perkins, Sarah; Cowan, Tim; Purich, Ariaan

    2015-04-01

    Australia has been exposed to a vast array of extreme weather regimes over the past few years, and the frequency and intensity of these events are expected to increase as a result of anthropogenic climate change. However, the predictability of extreme droughts, heat waves (HWs), bushfires and floods, is still hampered by our inability to fully understand how these weather systems interact with each other and with the climate system. This study brings new insight into the regional and large scale dynamics of some extreme events in Australia, by describing and comparing the climate signature of summer HWs and extreme rainfall events which have occurred in the states of Victoria and Queensland respectively, during 1979-2013. Our analyses highlight the importance of mid-latitude dynamics operating during HWs, in contrast with more tropical interactions at play during extreme rainfall events. A `common' blocking high pressure system is observed over the Tasman Sea during the two types of extreme events, and may explain why some southeastern HWs (only about 25 %) occur in close succession with floods in Queensland. However, our results suggest that there is no dynamical link between these two types of events, since the HW-related anticyclone evolves as part of a baroclinic wave train, whereas in the case of rainfall events, this structure emerges as an equivalent barotropic response to tropical convection. Sub-regional surface temperatures and air-sea fluxes also suggest that distinct processes may be operating in the lead up to these two events. Indeed, HWs tend to occur when the wave train propagates from the south Indian to the Pacific Ocean, inducing a quasi-stationary blocking high system over the Tasman Sea. This anticyclonic anomaly can then advect hot dry air towards the southern Victorian coast, where it produces HW conditions. On the other hand, extreme rainfall events mostly occur when the background conditions correspond to a La Niña state. The convection

  10. Are regional projections of extreme sea levels based on uncertain future MSL scenarios reliable? A case study for the south-eastern North Sea

    NASA Astrophysics Data System (ADS)

    Dangendorf, S.; Mudersbach, C.; Jensen, J.

    2012-12-01

    Recently a number of authors applied a method (offset method) to combine observations of present sea level extremes with projections of future sea level rise during the 21st century. The method provides a technique for estimating potential future exceedence probabilities based on the assumption that both variability and trends of extreme sea levels have been and will be driven by changes in MSL. This assumption has been confirmed for quasi-global (Woodworth et al. 2011) and regional data-sets (Marcos et al. 2009). However, if the assumption fails, the application of the method will result in large inaccuracies. In the present study, records from 13 tide gauges located in the German Bight, a part of the south-eastern North Sea, are investigated. Time series of extreme high sea levels, covering a period from 1900 to 2008, are analyzed relative to simultaneous changes in MSL. For that purpose in a first step only extreme sea levels have been analyzed, while in a second step MSL time series have been subtracted from the extremes to prove the evidence of trend and variability differences. The results point to a significantly stronger increase in extreme sea levels during the second half of the 20th century. While in the first half of the 20th century the evolution of extreme sea levels follows changes in MSL, in the second half a significant rise with values between 10 and 60 cm per century relative to the MSL has been observed. The divergent development varies seasonally. The largest deviations between extreme sea levels and the MSL have been detected during Season 1 [January to March], while considerably smaller but statistically significant changes have been observed during the remaining seasons. An investigation of reanalyzed datasets from the 20th century reanalysis project (20thCR) shows that large parts of the observed deviations are in phase with simultaneous changes in the local zonal extreme wind conditions and only small deviations remain. Using the above

  11. Dominant modes of blocking variability in the North Atlantic region and their relationship with extreme temperature and precipitation events over Europe

    NASA Astrophysics Data System (ADS)

    Rimbu, Norel; Lohmann, Gerrit; Ionita, Monica

    2013-04-01

    A two-dimensional blocking index for the winter atmospheric circulation in the Euro- Atlantic region for the last 140 years is calculated using the 500-hPa geopotential field extracted from the 20th Century Reanalysis Project database (http://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2.html). Based on Empirical Orthogonal Functions (EOFs) analysis three patterns of interannual to multidecadal blocking variability in the Euro-Atlantic region have been identified. The first pattern captures an out-of-phase relationship between the anomaly of blocking frequency over the southern Greenland to northern Scandinavia region and the western part of Europe. The corresponding principal component time series (PC1) is significantly negatively correlated with the North Atlantic (NAO) index (r=-0.75) for the period 1899 to 2010. The second pattern of blocking variability captures an in-phase blocking variability which extends from the western part of Europe to the southeastern part of Greenland. The associated time coefficients (PC2) show strong multidecadal variations over the last 140 years. These multidecadal variations are related to the amplitude and phase of the Atlantic Multidecadal Oscillation (AMO). The third pattern of blocking variability captures an out-of-phase variation between the southern part of Greenland and Scandinavian blocking. The associated time coefficients (PC3) show pronounced interannual variations which are significantly correlated with the Scandinavian pattern index. Using the E-OBS gridded high resolution data set (http://eca.knmi.nl/download/ensembles/download.php), we calculate the fields of the frequency of the extreme high and extreme low temperature events as well as the field of the frequency of the extreme high precipitation events over Europe during the period 1951 to 2010. The frequency of the extreme high temperature and precipitation events is defined as the number of days in a winter when maximum daily temperature and daily

  12. Relativistic Guiding Center Equations

    SciTech Connect

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  13. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  14. Identification of Extreme Events Under Climate Change Conditions Over Europe and The Northwest-atlantic Region: Spatial Patterns and Time Series Characteristics

    NASA Astrophysics Data System (ADS)

    Leckebusch, G.; Ulbrich, U.; Speth, P.

    In the context of climate change and the resulting possible impacts on socio-economic conditions for human activities it seems that due to a changed occurrence of extreme events more severe consequences have to be expected than from changes in the mean climate. These extreme events like floods, excessive heats and droughts or windstorms possess impacts on human social and economic life in different categories such as forestry, agriculture, energy use, tourism and the reinsurance business. Reinsurances are affected by nearly 70% of all insured damages over Europe in the case of wind- storms. Especially the December 1999 French windstorms caused damages about 10 billion. A new EU-founded project (MICE = Modelling the Impact of Climate Ex- tremes) will focus on these impacts caused by changed occurrences of extreme events over Europe. Based upon the output of general circulation models as well as regional climate models, investigations are carried out with regard to time series characteristics as well as the spatial patterns of extremes under climate changed conditions. After the definition of specific thresholds for climate extremes, in this talk we will focus on the results of the analysis for the different data sets (HadCM3 and CGCMII GCM's and RCM's, re-analyses, observations) with regard to windstorm events. At first the results of model outputs are validated against re-analyses and observations. Especially a comparison of the stormtrack (2.5 to 8 day bandpass filtered 500 hPa geopotential height), cyclone track, cyclone frequency and intensity is presented. Highly relevant to damages is the extreme wind near the ground level, so the 10 m wind speed will be investigated additionally. of special interest to possible impacts is the changed spatial occurrence of windspeed maxima under 2xCO2-induced climate change.

  15. Formation process of the widespread extreme haze pollution over northern China in January 2013: Implications for regional air quality and climate

    NASA Astrophysics Data System (ADS)

    Tao, Minghui; Chen, Liangfu; Xiong, Xiaozhen; Zhang, Meigen; Ma, Pengfei; Tao, Jinhua; Wang, Zifeng

    2014-12-01

    In this study, we present a regional insight into characteristics and formation process of the widespread extreme haze pollution in northern China during January of 2013 using integrated satellite observations and ground measurements. Different from common regional pollution, dense haze clouds during the most polluted period not only wandered over northern China for more than one week, but also exhibited large spatial variations with some abrupt peak values in Beijing. High UV Aerosol Index (UVAI) values >2.5 indicate prevalent absorbing aerosols in upper part of the haze clouds. CALIPSO vertical detection shows that the haze layers were more than 3 km thick, with strong extinction within 1 km near surface and elevated dust layers above. Top of the more than 2 km thick dust plumes can reach 5 km, having a substantial contribution to the haze clouds. Movement of high aerosol loading regions with aerosol optical depth (AOD) exceeding 2.0 shows a notable superposition of different pollution processes within boundary layer, which largely enhanced the haze pollution. Peak value of PM10 in industrial cities of Hebei was around 1000 μg/m3, almost twice of that in usual pollution. Subsequent peak values of PM10 from south to north confirm the intense regional transport, which could be the main cause of sudden record-breaking particle concentration in Beijing. Anomalous weather conditions facilitated the unusual heavy pollution became extremely severe. Our results indicate close connections between variation of atmospheric circulation and the regional heavy pollution over northern China.

  16. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    NASA Astrophysics Data System (ADS)

    da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-04-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.

  17. Spatiotemporal changes in extreme ground surface temperatures and the relationship with air temperatures in the Three-River Source Regions during 1980-2013

    NASA Astrophysics Data System (ADS)

    Luo, Dongliang; Jin, Huijun; Lü, Lanzhi; Zhou, Jian

    2016-02-01

    Climate changes are affecting plant growth, ecosystem evolution, hydrological processes, and water resources in the Three-River Source Regions (TRSR). Daily ground surface temperature (GST) and air temperature (Ta) recordings from 12 meteorological stations illustrated trends and characteristics of extreme GST and Ta in the TRSR during 1980-2013. We used the Mann-Kendall test and Sen's slope estimate to analyze 12 temperature extreme indices as recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The mean annual ground surface temperatures (MAGST) are 2.4-4.3 °C higher than the mean annual air temperatures (MAAT) in the TRSR. The increasing trends of the MAGST are all higher than those of the MAAT. The multi-year average maximum GST (28.1 °C) is much higher than that of the Ta (7.6 °C), while the minimum GST (-8.7 °C) is similar to that of the minimum Ta (-6.9 °C). The minimum temperature trends are more significant than those of the maximum temperature and are consistent with temperature trends in other regions of China. Different spatiotemporal patterns of GST extremes compared to those of Ta may result from greater warming of the ground surface. Consequently, the difference between the GST and Ta increased. These findings have implications for variations of surface energy balance, sensible heat flux, ecology, hydrology, and permafrost.

  18. Combining regional climate and national human development scenarios to estimate future vulnerability to extreme climate and weather events

    NASA Astrophysics Data System (ADS)

    Patt, A.; Nussbaumer, P.

    2009-04-01

    Extreme climate and weather events such as droughts, floods, and tropical cyclones account for over 60% of the loss of life, and over 90% of total impacts, from natural disasters. Both observed trends and global climate models (GCMs) suggest that the frequency and intensity of extreme events is increasing, and will continue to increase as a result of climate change. Among planners and policy-makers at both national and international levels there is thus concern that this rise in extreme events will lead to greater losses in the future. Since low levels of development are associated with greater numbers of people killed and needing emergency assistance from natural disasters, the concern is most pronounced for least developed countries. If, however, these countries make substantial improvements in their levels of human development, as leading forecasters suggest may be the case over the coming decades, then their vulnerability to extreme events may fall. In this study, we examine the potential combined effects of increased extreme event frequency and improved levels of human development, to generate scenarios of risk levels into the second half of the century. It is the African continent for which these results may be the most relevant, since it is widely viewed as most vulnerable to increased risks from climate change; we focus on the particular country of Mozambique, which has experienced high losses from droughts, floods, and tropical cyclones in recent decades, and stands out as being among the most vulnerable in Africa. To assess the change in risk levels from the present until 2060, we pull together three pieces of analysis. The first is a statistical analysis of the losses from 1990-2007 from climate-related disasters, using national level data from the Centre for Research on the Epidemiology of Disasters (CRED) and the United Nations. From this analysis, we establish statistical relationships between several drivers of vulnerability—including country size

  19. Solution of relativistic quantum optics problems using clusters of graphical processing units

    SciTech Connect

    Gordon, D.F. Hafizi, B.; Helle, M.H.

    2014-06-15

    Numerical solution of relativistic quantum optics problems requires high performance computing due to the rapid oscillations in a relativistic wavefunction. Clusters of graphical processing units are used to accelerate the computation of a time dependent relativistic wavefunction in an arbitrary external potential. The stationary states in a Coulomb potential and uniform magnetic field are determined analytically and numerically, so that they can used as initial conditions in fully time dependent calculations. Relativistic energy levels in extreme magnetic fields are recovered as a means of validation. The relativistic ionization rate is computed for an ion illuminated by a laser field near the usual barrier suppression threshold, and the ionizing wavefunction is displayed.

  20. A Very-High-Specific-Impulse Relativistic Laser Thruster

    SciTech Connect

    Horisawa, Hideyuki; Kimura, Itsuro

    2008-04-28

    Characteristics of compact laser plasma accelerators utilizing high-power laser and thin-target interaction were reviewed as a potential candidate of future spacecraft thrusters capable of generating relativistic plasma beams for interstellar missions. Based on the special theory of relativity, motion of the relativistic plasma beam exhausted from the thruster was formulated. Relationships of thrust, specific impulse, input power and momentum coupling coefficient for the relativistic plasma thruster were derived. It was shown that under relativistic conditions, the thrust could be extremely large even with a small amount of propellant flow rate. Moreover, it was shown that for a given value of input power thrust tended to approach the value of the photon rocket under the relativistic conditions regardless of the propellant flow rate.

  1. Non-relativistic leptogenesis

    NASA Astrophysics Data System (ADS)

    Bödeker, Dietrich; Wörmann, Mirco

    2014-02-01

    In many phenomenologically interesting models of thermal leptogenesis the heavy neutrinos are non-relativistic when they decay and produce the baryon asymmetry of the Universe. We propose a non-relativistic approximation for the corresponding rate equations in the non-resonant case, and a systematic way for computing relativistic corrections. We determine the leading order coefficients in these equations, and the first relativistic corrections. The non-relativistic approximation works remarkably well. It appears to be consistent with results obtained using a Boltzmann equation taking into account the momentum distribution of the heavy neutrinos, while being much simpler. We also compute radiative corrections to some of the coefficients in the rate equations. Their effect is of order 1% in the regime favored by neutrino oscillation data. We obtain the correct leading order lepton number washout rate in this regime, which leads to large ( ~ 20%) effects compared to previous computations.

  2. Query and Visualization of extremely large network datasets over the web using Quadtree based KML Regional Network Links

    SciTech Connect

    Dadi, Upendra; Liu, Cheng; Vatsavai, Raju

    2009-01-01

    Geographic data sets are often very large in size. Interactive visualization of such data at all scales is not easy because of the limited resolution of the monitors and inability of visualization applications to handle the volume of data. This is especially true for large vector datasets. The end user s experience is frequently unsatisfactory when exploring such data over the web using a naive application. Network bandwidth is another contributing factor to the low performance. In this paper, a Quadtree based technique to visualize extremely large spatial network datasets over the web is described. It involves using custom developed algorithms leveraging a PostGIS database as the data source and Google Earth as the visualization client. This methodology supports both point and range queries along with non-spatial queries. This methodology is demonstrated using a network dataset consisting of several million links. The methodology is based on using some of the powerful features of KML (Keyhole Markup Language). Keyhole Markup Language (KML) is an Open Geospatial Consortium (OGC) standard for displaying geospatial data on Earth browsers. One of the features of KML is the notion of Network Links. Using network links, a wide range of geospatial data sources such as geodatabases, static files and geospatial data services can be simultaneously accessed and visualized seamlessly. Using the network links combined with Level of Detail principle, view based rendering and intelligent server and client-side caching, scalability in visualizing extremely large spatial datasets can be achieved.

  3. Regional Risk Assessment for the analysis of the risks related to storm surge extreme events in the coastal area of the North Adriatic Sea.

    NASA Astrophysics Data System (ADS)

    Rizzi, Jonathan; Torresan, Silvia; Gallina, Valentina; Critto, Andrea; Marcomini, Antonio

    2013-04-01

    Europe's coast faces a variety of climate change threats from extreme high tides, storm surges and rising sea levels. In particular, it is very likely that mean sea level rise will contribute to upward trends in extreme coastal high water levels, thus posing higher risks to coastal locations currently experiencing coastal erosion and inundation processes. In 2007 the European Commission approved the Flood Directive (2007/60/EC), which has the main purpose to establish a framework for the assessment and management of flood risks for inland and coastal areas, thus reducing the adverse consequences for human health, the environment, cultural heritage and economic activities. Improvements in scientific understanding are thus needed to inform decision-making about the best strategies for mitigating and managing storm surge risks in coastal areas. The CLIMDAT project is aimed at improving the understanding of the risks related to extreme storm surge events in the coastal area of the North Adriatic Sea (Italy), considering potential climate change scenarios. The project implements a Regional Risk Assessment (RRA) methodology developed in the FP7 KULTURisk project for the assessment of physical/environmental impacts posed by flood hazards and employs the DEcision support SYstem for Coastal climate change impact assessment (DESYCO) for the application of the methodology to the case study area. The proposed RRA methodology is aimed at the identification and prioritization of targets and areas at risk from water-related natural hazards in the considered region at the meso-scale. To this aim, it integrates information about extreme storm surges with bio-geophysical and socio-economic information (e.g. vegetation cover, slope, soil type, population density) of the analyzed receptors (i.e. people, economic activities, cultural heritages, natural and semi-natural systems). Extreme storm surge hazard scenarios are defined using tide gauge time series coming from 28 tide gauge

  4. SPECTROSCOPIC ANALYSIS OF INTERACTION BETWEEN AN EXTREME-ULTRAVIOLET IMAGING TELESCOPE WAVE AND A CORONAL UPFLOW REGION

    SciTech Connect

    Chen, F.; Ding, M. D.; Chen, P. F.; Harra, L. K.

    2011-10-20

    We report a spectroscopic analysis of an EUV Imaging Telescope (EIT) wave event that occurred in active region 11081 on 2010 June 12 and was associated with an M2.0 class flare. The wave propagated nearly circularly. The southeastern part of the wave front passed over an upflow region near a magnetic bipole. Using EUV Imaging Spectrometer raster observations for this region, we studied the properties of plasma dynamics in the wave front, as well as the interaction between the wave and the upflow region. We found a weak blueshift for the Fe XII {lambda}195.12 and Fe XIII {lambda}202.04 lines in the wave front. The local velocity along the solar surface, which is deduced from the line-of-sight velocity in the wave front and the projection effect, is much lower than the typical propagation speed of the wave. A more interesting finding is that the upflow and non-thermal velocities in the upflow region are suddenly diminished after the transit of the wave front. This implies a significant change of magnetic field orientation when the wave passed. As the lines in the upflow region are redirected, the velocity along the line of sight is diminished as a result. We suggest that this scenario is more in accordance with what was proposed in the field-line stretching model of EIT waves.

  5. Double-sided Relativistic Magnetron

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Krastelev, E. G.

    1997-05-01

    A new scheme of a symmetricaly powered relativistic magnetron and several methods of localised electron flow forming in an interaction region are proposed to increase an efficiency of relativistic magnetrons. As will be shown, a very important reason is the effect of nonsymmetric feeding of power from one side of a magnetron, which is typical for experiments. One-sided powering leads to the axial drift of electrons, to the transformation of transverse velocities of electrons to longitudinal one and to the generation of a parasitic e-beam which does not take part in energy exchange between electrons and waves at all. A special driver was designed for double-sided powering of relativistic magnetrons. The proposed system is compact, rigid and capable of reliable operation at high repetition rates, which is advantageous for many applications. Several smooth-bore magnetrons were tested by means of computer simulations using PIC code KARAT. The results showed a dramatical difference between the dynamics of electron flow for one- and two-sided power feeding of a structure under test. Design of a driver and computer simulation results are presented.

  6. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  7. Modeling changes in extreme snowfall events in the Central Rocky Mountains Region with the Fully-Coupled WRF-Hydro Modeling System

    NASA Astrophysics Data System (ADS)

    gochis, David; rasmussen, Roy; Yu, Wei; Ikeda, Kyoko

    2014-05-01

    Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize large magnitudes of moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of landform can significantly influence vertical velocity profiles and cloud moisture entrainment rates. In this work we report on recent progress in high resolution regional climate modeling of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF-Hydro modeling system forced by high resolution WRF model output can produce credible depictions of winter orographic precipitation and resultant monthly and annual river flows. Here we present results from a detailed study of an extreme springtime snowfall event that occurred along the Colorado Front Range in March of 2003. First an analysis of the simulated streamflows resulting from the melt out of that event are presented followed by an analysis of projected streamflows from the event where the atmospheric forcing in the WRF model is perturbed using the Psuedo-Global-Warming (PGW) perturbation methodology. Results from the impact of warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. It is shown that under the assumptions of the PGW method, intense precipitation rates increase during the event and, more importantly, that more precipitation falls as rain versus snow which significantly amplifies the runoff response from one where runoff is produced gradually to where runoff is more

  8. Extreme values of snow-related variables in Mediterranean regions: trends and long-term forecasting in Sierra Nevada (Spain)

    NASA Astrophysics Data System (ADS)

    Pérez-Palazón, M. J.; Pimentel, R.; Herrero, J.; Aguilar, C.; Perales, J. M.; Polo, M. J.

    2015-06-01

    Mountain areas in Mediterranean regions constitute key monitoring points for climate variability and its impacts, but long time datasets are not always available due to the difficult access to high areas, relevant for capturing temperature and precipitation regimes, and the predominance of cloudy remote sensing images during the snow season. Sierra Nevada National Park (South Spain), with altitudes higher than 3500 m a.s.l., is part of the Global Change in Mountain Regions network. Snow occurrence just 40 km from the seaside determines a wide range of biodiversity, a snowmelt fluvial regime, and the associated ecosystem services. This work presents the local trend analysis of weather variables at this area together with additional snow-related variables. For this, long term point and distributed observations from weather stations and remote sensing sources were studied and used as input and calibration datasets of a physically based snow model to derive long term series of mean and maximum daily fraction of snow covered area, annual number of days with snow, annual number of days with precipitation, mean and maximum mean daily snow water equivalent, and snowmelt and evaporation volumes. The joint analysis of weather and snow variables showed a decrease trend in the persistence and extent of the snow cover area. The precipitation regime, rather than the temperature trend, seems to be the most relevant driver on the snow regime forcing in Mediterranean areas. This poses a constraint for rigorous scenario analysis in these regions, since the precipitation pattern is poorly approximated by climatic models in these regions.

  9. Relativistic Hall effect.

    PubMed

    Bliokh, Konstantin Y; Nori, Franco

    2012-03-23

    We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin-Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices and mechanical flywheels and also discuss various fundamental aspects of this phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales, from elementary spinning particles, through classical light, to rotating black holes. PMID:22540559

  10. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.