Sample records for extremely high current

  1. Extreme geomagnetically induced currents

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Ngwira, Chigomezyo

    2016-12-01

    We propose an emergency alert framework for geomagnetically induced currents (GICs), based on the empirically extreme values and theoretical upper limits of the solar wind parameters and of d B/d t, the time derivative of magnetic field variations at ground. We expect this framework to be useful for preparing against extreme events. Our analysis is based on a review of various papers, including those presented during Extreme Space Weather Workshops held in Japan in 2011, 2012, 2013, and 2014. Large-amplitude d B/d t values are the major cause of hazards associated with three different types of GICs: (1) slow d B/d t with ring current evolution (RC-type), (2) fast d B/d t associated with auroral electrojet activity (AE-type), and (3) transient d B/d t of sudden commencements (SC-type). We set "caution," "warning," and "emergency" alert levels during the main phase of superstorms with the peak Dst index of less than -300 nT (once per 10 years), -600 nT (once per 60 years), or -900 nT (once per 100 years), respectively. The extreme d B/d t values of the AE-type GICs are 2000, 4000, and 6000 nT/min at caution, warning, and emergency levels, respectively. For the SC-type GICs, a "transient alert" is also proposed for d B/d t values of 40 nT/s at low latitudes and 110 nT/s at high latitudes, especially when the solar energetic particle flux is unusually high.

  2. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    PubMed

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  3. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897; Kiyama, S.

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current densitymore » can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.« less

  4. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    NASA Technical Reports Server (NTRS)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  5. Extreme Consumption Drinking Gaming and Prepartying among High School Students

    ERIC Educational Resources Information Center

    Tomaso, Cara C.; Zamboanga, Byron L.; Haas, Amie L.; Kenney, Shannon R.; Ham, Lindsay S.; Borsari, Brian

    2016-01-01

    Drinking games and prepartying (i.e., drinking before going to a social gathering/event) have emerged as high-risk drinking behaviors in high school students. The present study examines the current prepartying behaviors of high school students who report current participation in extreme-consumption games (e.g., chugging) with those who do not.…

  6. Extremely high frequency RF effects on electronics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit boardmore » traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.« less

  7. Survival in extreme environments - on the current knowledge of adaptations in tardigrades.

    PubMed

    Møbjerg, N; Halberg, K A; Jørgensen, A; Persson, D; Bjørn, M; Ramløv, H; Kristensen, R M

    2011-07-01

    Tardigrades are microscopic animals found worldwide in aquatic as well as terrestrial ecosystems. They belong to the invertebrate superclade Ecdysozoa, as do the two major invertebrate model organisms: Caenorhabditis elegans and Drosophila melanogaster. We present a brief description of the tardigrades and highlight species that are currently used as models for physiological and molecular investigations. Tardigrades are uniquely adapted to a range of environmental extremes. Cryptobiosis, currently referred to as a reversible ametabolic state induced by e.g. desiccation, is common especially among limno-terrestrial species. It has been shown that the entry and exit of cryptobiosis may involve synthesis of bioprotectants in the form of selective carbohydrates and proteins as well as high levels of antioxidant enzymes and other free radical scavengers. However, at present a general scheme of mechanisms explaining this phenomenon is lacking. Importantly, recent research has shown that tardigrades even in their active states may be extremely tolerant to environmental stress, handling extreme levels of ionizing radiation, large fluctuation in external salinity and avoiding freezing by supercooling to below -20 °C, presumably relying on efficient DNA repair mechanisms and osmoregulation. This review summarizes the current knowledge on adaptations found among tardigrades, and presents new data on tardigrade cell numbers and osmoregulation. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  8. High Resolution Simulation of a Colorado Rockies Extreme Snow and Rain Event in both a Current and Future Climate

    NASA Astrophysics Data System (ADS)

    Rasmussen, Roy; Ikeda, Kyoko; Liu, Changhai; Gutmann, Ethan; Gochis, David

    2016-04-01

    Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize the large moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of the landform can significantly impact vertical velocity profiles and cloud moisture entrainment rates. This study presents results for high resolution regional climate modeling study of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model run at 4 km horizontal resolution and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF modeling system can produce credible depictions of winter orographic precipitation over the Colorado Rockies if run at horizontal resolutions < 6 km. Here we present results from a detailed study of an extreme springtime snowfall event that occurred along the Colorado Front Range in March 2003. Results from the impact of warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. The results show using the Pseudo Global Warming technique that intense precipitation rates significantly increased during the event and a significant fraction of the snowfall converts to rain which significantly amplifies the runoff response from one where runoff is produced gradually to one in which runoff is rapidly translated into streamflow values that approach significant flooding risks. Results from a new, CONUS scale high resolution climate simulation of extreme events in a current and future climate will be presented as time permits.

  9. Current thinking about acute compartment syndrome of the lower extremity

    PubMed Central

    Shadgan, Babak; Menon, Matthew; Sanders, David; Berry, Gregg; Martin, Claude; Duffy, Paul; Stephen, David; O’Brien, Peter J.

    2010-01-01

    Acute compartment syndrome of the lower extremity is a clinical condition that, although uncommon, is seen fairly regularly in modern orthopedic practice. The pathophysiology of the disorder has been extensively described and is well known to physicians who care for patients with musculoskeletal injuries. The diagnosis, however, is often difficult to make. In this article, we review the clinical risk factors of acute compartment syndrome of the lower extremity, identify the current concepts of diagnosis and discuss appropriate treatment plans. We also describe the Canadian medicolegal environment in regard to compartment syndrome of the lower extremity. PMID:20858378

  10. Long-Term Geomagnetically Induced Current Observations From New Zealand: Peak Current Estimates for Extreme Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Rodger, Craig J.; Mac Manus, Daniel H.; Dalzell, Michael; Thomson, Alan W. P.; Clarke, Ellen; Petersen, Tanja; Clilverd, Mark A.; Divett, Tim

    2017-11-01

    Geomagnetically induced current (GIC) observations made in New Zealand over 14 years show induction effects associated with a rapidly varying horizontal magnetic field (dBH/dt) during geomagnetic storms. This study analyzes the GIC observations in order to estimate the impact of extreme storms as a hazard to the power system in New Zealand. Analysis is undertaken of GIC in transformer number six in Islington, Christchurch (ISL M6), which had the highest observed currents during the 6 November 2001 storm. Using previously published values of 3,000 nT/min as a representation of an extreme storm with 100 year return period, induced currents of 455 A were estimated for Islington (with the 95% confidence interval range being 155-605 A). For 200 year return periods using 5,000 nT/min, current estimates reach 755 A (confidence interval range 155-910 A). GIC measurements from the much shorter data set collected at transformer number 4 in Halfway Bush, Dunedin, (HWB T4), found induced currents to be consistently a factor of 3 higher than at Islington, suggesting equivalent extreme storm effects of 460-1,815 A (100 year return) and 460-2,720 A (200 year return). An estimate was undertaken of likely failure levels for single-phase transformers, such as HWB T4 when it failed during the 6 November 2001 geomagnetic storm, identifying that induced currents of 100 A can put such transformer types at risk of damage. Detailed modeling of the New Zealand power system is therefore required to put this regional analysis into a global context.

  11. Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5 kA cm-2

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran

    2016-04-01

    The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.

  12. Extreme current fluctuations in lattice gases: Beyond nonequilibrium steady states

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch; Sasorov, Pavel V.

    2014-01-01

    We use the macroscopic fluctuation theory (MFT) to study large current fluctuations in nonstationary diffusive lattice gases. We identify two universality classes of these fluctuations, which we call elliptic and hyperbolic. They emerge in the limit when the deterministic mass flux is small compared to the mass flux due to the shot noise. The two classes are determined by the sign of compressibility of effective fluid, obtained by mapping the MFT into an inviscid hydrodynamics. An example of the elliptic class is the symmetric simple exclusion process, where, for some initial conditions, we can solve the effective hydrodynamics exactly. This leads to a super-Gaussian extreme current statistics conjectured by Derrida and Gerschenfeld [J. Stat. Phys. 137, 978 (2009), 10.1007/s10955-009-9830-1] and yields the optimal path of the system. For models of the hyperbolic class, the deterministic mass flux cannot be neglected, leading to a different extreme current statistics.

  13. An Overview of Science Challenges Pertaining to our Understanding of Extreme Geomagnetically Induced Currents. Chapter 8

    NASA Technical Reports Server (NTRS)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti A.

    2018-01-01

    Vulnerability of man-made infrastructure to Earth-directed space weather events is a serious concern for today's technology-dependent society. Space weather-driven geomagnetically induced currents (GICs) can disrupt operation of extended electrically conducting technological systems. The threat of adverse impacts on critical technological infrastructure, like power grids, oil and gas pipelines, and communication networks, has sparked renewed interest in extreme space weather. Because extreme space weather events have low occurrence rate but potentially high impact, this presents a major challenge for our understanding of extreme GIC activity. In this chapter, we discuss some of the key science challenges pertaining to our understanding of extreme events. In addition, we present an overview of GICs including highlights of severe impacts over the last 80 years and recent U.S. Federal actions relevant to this community.

  14. Upper extremity transplantation: current concepts and challenges in an emerging field.

    PubMed

    Elliott, River M; Tintle, Scott M; Levin, L Scott

    2014-03-01

    Loss of an isolated upper limb is an emotionally and physically devastating event that results in significant impairment. Patients who lose both upper extremities experience profound disability that affects nearly every aspect of their lives. While prosthetics and surgery can eventually provide the single limb amputee with a suitable assisting hand, limited utility, minimal haptic feedback, weight, and discomfort are persistent problems with these techniques that contribute to high rates of prosthetic rejection. Moreover, despite ongoing advances in prosthetic technology, bilateral amputees continue to experience high levels of dependency, disability, and distress. Hand and upper extremity transplantation holds several advantages over prosthetic rehabilitation. The missing limb is replaced with one of similar skin color and size. Sensibility, voluntary motor control, and proprioception are restored to a greater degree, and afford better dexterity and function than prosthetics. The main shortcomings of transplantation include the hazards of immunosuppression, the complications of rejection and its treatment, and high cost. Hand and upper limb transplantation represents the most commonly performed surgery in the growing field of Vascularized Composite Allotransplantation (VCA). As upper limb transplantation and VCA have become more widespread, several important challenges and controversies have emerged. These include: refining indications for transplantation, optimizing immunosuppression, establishing reliable criteria for monitoring, diagnosing, and treating rejection, and standardizing outcome measures. This article will summarize the historical background of hand transplantation and review the current literature and concepts surrounding it.

  15. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface

    NASA Astrophysics Data System (ADS)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.; Rathje, Christopher; Hornig, Graham J.; Sharum, Haille M.; Hoffman, James R.; Freeman, Mark R.; Hegmann, Frank A.

    2017-06-01

    Ultrafast control of current on the atomic scale is essential for future innovations in nanoelectronics. Extremely localized transient electric fields on the nanoscale can be achieved by coupling picosecond duration terahertz pulses to metallic nanostructures. Here, we demonstrate terahertz scanning tunnelling microscopy (THz-STM) in ultrahigh vacuum as a new platform for exploring ultrafast non-equilibrium tunnelling dynamics with atomic precision. Extreme terahertz-pulse-driven tunnel currents up to 107 times larger than steady-state currents in conventional STM are used to image individual atoms on a silicon surface with 0.3 nm spatial resolution. At terahertz frequencies, the metallic-like Si(111)-(7 × 7) surface is unable to screen the electric field from the bulk, resulting in a terahertz tunnel conductance that is fundamentally different than that of the steady state. Ultrafast terahertz-induced band bending and non-equilibrium charging of surface states opens new conduction pathways to the bulk, enabling extreme transient tunnel currents to flow between the tip and sample.

  16. Left-Wing Extremism: The Current Threat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders frommore » that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.« less

  17. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support

    USDA-ARS?s Scientific Manuscript database

    Osteopenia and rickets are common among extremely low birth weight infants (ELBW, <1000 g birth weight) despite current practices of vitamin and mineral supplementation. Few data are available evaluating the usual course of markers of mineral status in this population. Our objectives in this study w...

  18. Scale dependency of regional climate modeling of current and future climate extremes in Germany

    NASA Astrophysics Data System (ADS)

    Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver

    2017-11-01

    A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.

  19. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  20. Extremely Low Operating Current Resistive Memory Based on Exfoliated 2D Perovskite Single Crystals for Neuromorphic Computing.

    PubMed

    Tian, He; Zhao, Lianfeng; Wang, Xuefeng; Yeh, Yao-Wen; Yao, Nan; Rand, Barry P; Ren, Tian-Ling

    2017-12-26

    Extremely low energy consumption neuromorphic computing is required to achieve massively parallel information processing on par with the human brain. To achieve this goal, resistive memories based on materials with ionic transport and extremely low operating current are required. Extremely low operating current allows for low power operation by minimizing the program, erase, and read currents. However, materials currently used in resistive memories, such as defective HfO x , AlO x , TaO x , etc., cannot suppress electronic transport (i.e., leakage current) while allowing good ionic transport. Here, we show that 2D Ruddlesden-Popper phase hybrid lead bromide perovskite single crystals are promising materials for low operating current nanodevice applications because of their mixed electronic and ionic transport and ease of fabrication. Ionic transport in the exfoliated 2D perovskite layer is evident via the migration of bromide ions. Filaments with a diameter of approximately 20 nm are visualized, and resistive memories with extremely low program current down to 10 pA are achieved, a value at least 1 order of magnitude lower than conventional materials. The ionic migration and diffusion as an artificial synapse is realized in the 2D layered perovskites at the pA level, which can enable extremely low energy neuromorphic computing.

  1. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  2. Laser waveform control of extreme ultraviolet high harmonics from solids.

    PubMed

    You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu

    2017-05-01

    Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

  3. Extreme bottom velocities induced by wind wave and currents in the Gulf of Gdańsk

    NASA Astrophysics Data System (ADS)

    Cieślikiewicz, Witold; Dudkowska, Aleksandra; Gic-Grusza, Gabriela; Jędrasik, Jan

    2017-11-01

    The principal goal of this study is to get some preliminary insights about the intensity of water movement generated by wind waves, and due to the currents in the bottom waters of Gulf of Gdańsk, during severe storms. The Gulf of Gdańsk is located in the southern Baltic Sea. This paper presents the results of analysis of wave and current-induced velocities during extreme wind conditions, which are determined based on long-term historical records. The bottom velocity fields originated from wind wave and wind currents, during analysed extreme wind events, are computed independently of each other. The long-term wind wave parameters for the Baltic Sea region are derived from the 44-year hindcast wave database generated in the framework of the project HIPOCAS funded by the European Union. The output from the numerical wave model WAM provides the boundary conditions for the model SWAN operating in high-resolution grid covering the area of the Gulf of Gdańsk. Wind current velocities are calculated with the M3D hydrodynamic model developed in the Institute of Oceanography of the University of Gdańsk based on the POM model. The three dimensional current fields together with trajectories of particle tracers spreading out of bottom boundary layer are modelled, and the calculated fields of bottom velocities are presented in the form of 2D maps. During northerly winds, causing in the Gulf of Gdańsk extreme waves and most significant wind-driven circulation, the wave-induced bottom velocities are greater than velocities due to currents. The current velocities in the bottom layer appeared to be smaller by an order of magnitude than the wave-induced bottom orbital velocities. Namely, during most severe northerly storms analysed, current bottom velocities ranged about 0.1-0.15 m/s, while the root mean square of wave-induced near-seabed velocities reached maximum values of up to 1.4 m/s in the southern part of Gulf of Gdańsk.

  4. Generation of high-density biskyrmions by electric current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Licong; Zhang, Ying; He, Min

    Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less

  5. Generation of high-density biskyrmions by electric current

    DOE PAGES

    Peng, Licong; Zhang, Ying; He, Min; ...

    2017-06-16

    Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less

  6. A high-sensitivity current sensor utilizing CrNi wire and microfiber coils.

    PubMed

    Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou

    2014-05-12

    We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications.

  7. Doing Solar Science With Extreme-ultraviolet and X-ray High Resolution Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.

    2005-12-01

    In this talk I will demonstrate how high resolution extreme-ultraviolet (EUV) and/or X-ray imaging spectroscopy can be used to provide unique information for solving several current key problems of the solar atmosphere, e.g., the morphology and reconnection site of solar flares, the structure of the transition region, and coronal heating. I will describe the spectra that already exist relevant to these problems and what the shortcomings of the data are, and how an instrument such as the Extreme-ultraviolet Imaging Spectrometer (EIS) on Solar-B as well as other proposed spectroscopy missions such as NEXUS and RAM will improve on the existing observations. I will discuss a few particularly interesting properties of the spectra and atomic data for highly ionized atoms that are important for the science problems.

  8. Extremely Severe Space Weather and Geomagnetically Induced Currents in Regions with Locally Heterogeneous Ground Resistivity

    NASA Technical Reports Server (NTRS)

    Fujita, Shigeru; Kataoka, Ryuho; Pulkkinen, Antti; Watari, Shinichi

    2016-01-01

    Large geomagnetically induced currents (GICs) triggered by extreme space weather events are now regarded as one of the serious natural threats to the modern electrified society. The risk is described in detail in High-Impact, Low-Frequency Event Risk, A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the US Department of Energy's November 2009 Workshop, June 2010. For example, the March 13-14,1989 storm caused a large-scale blackout affecting about 6 million people in Quebec, Canada, and resulting in substantial economic losses in Canada and the USA (Bolduc 2002). Therefore, European and North American nations have invested in GIC research such as the Solar Shield project in the USA (Pulkkinen et al. 2009, 2015a). In 2015, the Japanese government (Ministry of Economy, Trade and Industry, METI) acknowledged the importance of GIC research in Japan. After reviewing the serious damages caused by the 2011 Tohoku-Oki earthquake, METI recognized the potential risk to the electric power grid posed by extreme space weather. During extreme events, GICs can be concerning even in mid- and low-latitude countries and have become a global issue.

  9. High Temperature Extremes - Will They Transform Structure of Avian Assemblages in the Desert Southwest?

    NASA Astrophysics Data System (ADS)

    Mutiibwa, D.; Albright, T. P.; Wolf, B. O.; Mckechnie, A. E.; Gerson, A. R.; Talbot, W. A.; Sadoti, G.; O'Neill, J.; Smith, E.

    2014-12-01

    Extreme weather events can alter ecosystem structure and function and have caused mass mortality events in animals. With climate change, high temperature extremes are increasing in frequency and magnitude. To better understand the consequences of climate change, scientists have frequently employed correlative models based on species occurrence records. However, these approaches may be of limited utility in the context of extremes, as these are often outside historical ranges and may involve strong non-linear responses. Here we describe work linking physiological response informed by experimental data to geospatial climate datasets in order to mechanistically model the dynamics of dehydration risk to dessert passerine birds. Specifically, we modeled and mapped the occurrence of current (1980-2013) high temperature extremes and evaporative water loss rates for eight species of passerine birds ranging in size from 6.5-75g in the US Southwest portion of their range. We then explored the implications of a 4° C warming scenario. Evaporative water loss (EWL) across a range of high temperatures was measured in heat-acclimated birds captured in the field. We used the North American Land Data Assimilation System 2 dataset to obtain hourly estimates of EWL with a 14-km spatial grain. Assuming lethal dehydration occurs when water loss reaches 15% of body weight, we then produced maps of total daily EWL and time to lethal dehydration based on both current data and future scenarios. We found that milder events capable of producing dehydration in passerine birds over four or more hours were not uncommon over the Southwest, but rapid dehydration conditions (<3 hours) were rare. Under the warming scenario, the frequency and extent of dehydration events expanded greatly, often affecting areas several times larger than in present-day climate. Dehydration risk was especially high among smaller bodied passerines due to their higher mass-specific rates of water loss. Even after

  10. Trends in body mass index and prevalence of extreme high obesity among Pennsylvania children and adolescents, 2007-2011: promising but cautionary.

    PubMed

    Lohrmann, David; YoussefAgha, Ahmed; Jayawardene, Wasantha

    2014-04-01

    We determined current trends and patterns in overweight, obesity, and extreme high obesity among Pennsylvania pre-kindergarten (pre-K) to 12th grade students and simulated future trends. We analyzed body mass index (BMI) of pre-K to 12th grade students from 43 of 67 Pennsylvania counties in 2007 to 2011 to determine trends and to discern transition patterns among BMI status categories for 2009 to 2011. Vinsem simulation, confirmed by Markov chain modeling, generated future prevalence trends. Combined rates of overweight, obesity, and extreme high obesity decreased among secondary school students across the 5 years, and among elementary students, first increased and then markedly decreased. BMI status remained constant for approximately 80% of normal and extreme high obese students, but both decreased and increased among students who initially were overweight and obese; the increase in BMI remained significant. Overall trends in child and adolescent BMI status seemed positive. BMI transition patterns indicated that although overweight and obesity prevalence leveled off, extreme high obesity, especially among elementary students, is projected to increase substantially over time. If current transition patterns continue, the prevalence of overweight, obesity, and extreme high obesity among Pennsylvania students in 2031 is projected to be 16.0%, 6.6%, and 23.2%, respectively.

  11. Extreme Environment Simulation - Current and New Capabilities to Simulate Venus and Other Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Vento, Dan; Lalli, Nick; Palinski, Timothy

    2014-01-01

    Science, technology, and planetary mission communities have a growing interest in components and systems that are capable of working in extreme (high) temperature and pressure conditions. Terrestrial applications range from scientific research, aerospace, defense, automotive systems, energy storage and power distribution, deep mining and others. As the target environments get increasingly extreme, capabilities to develop and test the sensors and systems designed to operate in such environments will be required. An application of particular importance to the planetary science community is the ability for a robotic lander to survive on the Venus surface where pressures are nearly 100 times that of Earth and temperatures approach 500C. The scientific importance and relevance of Venus missions are stated in the current Planetary Decadal Survey. Further, several missions to Venus were proposed in the most recent Discovery call. Despite this interest, the ability to accurately simulate Venus conditions at a scale that can test and validate instruments and spacecraft systems and accurately simulate the Venus atmosphere has been lacking. This paper discusses and compares the capabilities that are known to exist within and outside the United States to simulate the extreme environmental conditions found in terrestrial or planetary surfaces including the Venus atmosphere and surface. The paper then focuses on discussing the recent additional capability found in the NASA Glenn Extreme Environment Rig (GEER). The GEER, located at the NASA Glenn Research Center in Cleveland, Ohio, is designed to simulate not only the temperature and pressure extremes described, but can also accurately reproduce the atmospheric compositions of bodies in the solar system including those with acidic and hazardous elements. GEER capabilities and characteristics are described along with operational considerations relevant to potential users. The paper presents initial operating results and concludes

  12. Opportunities for nonvolatile memory systems in extreme-scale high-performance computing

    DOE PAGES

    Vetter, Jeffrey S.; Mittal, Sparsh

    2015-01-12

    For extreme-scale high-performance computing systems, system-wide power consumption has been identified as one of the key constraints moving forward, where DRAM main memory systems account for about 30 to 50 percent of a node's overall power consumption. As the benefits of device scaling for DRAM memory slow, it will become increasingly difficult to keep memory capacities balanced with increasing computational rates offered by next-generation processors. However, several emerging memory technologies related to nonvolatile memory (NVM) devices are being investigated as an alternative for DRAM. Moving forward, NVM devices could offer solutions for HPC architectures. Researchers are investigating how to integratemore » these emerging technologies into future extreme-scale HPC systems and how to expose these capabilities in the software stack and applications. In addition, current results show several of these strategies could offer high-bandwidth I/O, larger main memory capacities, persistent data structures, and new approaches for application resilience and output postprocessing, such as transaction-based incremental checkpointing and in situ visualization, respectively.« less

  13. A High-Sensitivity Current Sensor Utilizing CrNi Wire and Microfiber Coils

    PubMed Central

    Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou

    2014-01-01

    We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications. PMID:24824372

  14. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  15. Current concepts in repair of extremity venous injury.

    PubMed

    Williams, Timothy K; Clouse, W Darrin

    2016-04-01

    Extremity venous injury management remains controversial. The purpose of this communication is to offer perspective as well as experiential and technical insight into extremity venous injury repair. Available literature is reviewed and discussed. Historical context is provided. Indication, the decision process for repair, including technical conduct, is delineated. In particular, the authors' experiences in both civilian and wartime injury are used for perspective. Extremity venous injury repair was championed within data from the Vietnam Vascular Registry. However, patterns of extremity venous injury differ between combat and civilian settings. Since Vietnam, civilian descriptive series opine the benefits and potential complications associated with both venous injury repair and ligation. These surround extremity edema, chronic venous insufficiency, thromboembolism, and limb loss. Whereas no clear superiority in either approach has been identified to date, there appears to be no increased risk of pulmonary embolism or chronic venous changes with repair. Newer data from the wars in Iraq and Afghanistan and meta-analysis have reinforced this and also have suggested limb salvage benefit for extremity venous repair in combined arterial and venous injuries in modern settings. The patient's physiologic state and associated injury drive five triage categories suggesting vein injury management. Vein repair thrombosis occurs in a significant proportion, yet many recanalize and possibly have a positive impact on limb venous return. Further, early decompression favors reduced blood loss, acute edema, and inflammation, supporting collateral development. Large soft tissue injury minimizing collateral capacity increases the importance of repair. Constructs of repair are varied with modest differences in patency. Venous shunting is feasible, but specific roles remain nebulous. An aggressive posture toward extremity venous injury repair seems justified today because of the likely

  16. [Extreme (complicated, ultra-high) refractive errors: terminological misconceptions!?

    PubMed

    Avetisov, S E

    2018-01-01

    The article reviews development mechanisms of different refractive errors accompanied by marked defocus of light rays reaching the retina. Terminology used for such ametropias includes terms extreme, ultra-high and complicated. Justification of their usage for primary ametropias, whose symptom complex is based on changes in axial eye length, is an ongoing discussion. To comply with thesaurus definitions of 'diagnosis' and 'pathogenesis', to characterize refractive and anatomical-functional disorders in patients with primary ametropias it is proposed to use the terms 'hyperaxial and hypoaxial syndromes' with elaboration of specific symptoms instead of such expressions as extreme (ultra-high) myopia and hypermetropia.

  17. Extremely preterm infants who are small for gestational age have a high risk of early hypophosphatemia and hypokalemia.

    PubMed

    Boubred, F; Herlenius, E; Bartocci, M; Jonsson, B; Vanpée, M

    2015-11-01

    Electrolyte balances have not been sufficiently evaluated in extremely preterm infants after early parenteral nutrition. We investigated the risk of early hypophosphatemia and hypokalemia in extremely preterm infants born small for gestational age (SGA) who received nutrition as currently recommended. This prospective, observational cohort study included all consecutive extremely preterm infants born at 24-27 weeks who received high amino acids and lipid perfusion from birth. We evaluated the electrolyte levels of SGA infants and infants born appropriate for gestational age (AGA) during the first five days of life. The 12 SGA infants had lower plasma potassium levels from Day One compared to the 36 AGA infants and were more likely to have hypokalemia (58% vs 17%, p = 0.001) and hypophosphatemia (40% vs 9%, p < 0.01) during the five-day observation period. After adjusting for perinatal factors, SGA remained significantly associated with hypophosphatemia (odds ratio 1.39, confidence intervals 1.07-1.81, p = 0.01). Extremely preterm infants born SGA who were managed with currently recommended early parenteral nutrition had a high risk of early hypokalemia and hypophosphatemia. Potassium and phosphorus intakes should be set at sufficient levels from birth onwards, especially in SGA infants. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  18. Polygenic determinants in extremes of high-density lipoprotein cholesterol.

    PubMed

    Dron, Jacqueline S; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A; Robinson, John F; McIntyre, Adam D; Ban, Matthew R; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J; Lettre, Guillaume; Tardif, Jean-Claude; Hegele, Robert A

    2017-11-01

    HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Nitrogen Accumulation and Partitioning in High Arctic Tundra from Extreme Atmospheric N Deposition Events

    NASA Astrophysics Data System (ADS)

    Phoenix, G. K.; Osborn, A.; Blaud, A.; Press, M. C.; Choudhary, S.

    2013-12-01

    Arctic ecosystems are threatened by pollution from extreme atmospheric nitrogen (N) deposition events. These events occur from the long-range transport of reactive N from pollution sources at lower latitudes and can deposit up to 80% of the annual N deposition in just a few days. To date, the fate and impacts of these extreme pollutant events has remained unknown. Using a field simulation study, we undertook the first assessment of the fate of acutely deposited N on arctic tundra. Extreme N deposition events were simulated on field plots at Ny-Ålesund, Svalbard (79oN) at rates of 0, 0.04, 0.4 and 1.2 g N m-2 yr-1 applied as NH4NO3 solution over 4 days, with 15N tracers used in the second year to quantify the fate of the deposited N in the plant, soil, microbial and leachate pools. Separate applications of 15NO3- and 15NH4+ were also made to determine the importance of N form in the fate of N. Recovery of the 15N tracer at the end of the first growing season approached 100% of the 15N applied irrespective of treatment level, demonstrating the considerable capacity of High Arctic tundra to capture pollutant N from extreme deposition events. Most incorporation of the 15N was found in bryophytes, followed by the dominant vascular plant (Salix polaris) and the microbial biomass of the soil organic layer. Total recovery remained high in the second growing season (average of 90%), indicating highly conservative N retention. Between the two N forms, recovery of 15NO3- and 15NH4+ were equal in the non-vascular plants, whereas in the vascular plants (particularly Salix polaris) recovery of 15NO3- was four times higher than of 15NH4+. Overall, these findings show that High Arctic tundra has considerable capacity to capture and retain the pollutant N deposited in acute extreme deposition events. Given they can represent much of the annual N deposition, extreme deposition events may be more important than increased chronic N deposition as a pollution source. Furthermore

  20. Extremely high concentration of folates in premature newborns.

    PubMed

    Zikavska, T; Brucknerova, I

    2014-01-01

    Extremely high concentration of folates in premature newborns: case reports. Folates are a group of water soluble compounds, which are important for metabolic processes in human body. These are important during periods of rapid cell growth. The most accurate indicator of long-term folate level status in the body is the determination of red blood cell (RBC) folate concentrations. The optimal level of RBC folate is not known in neonatal period. Authors discuss the reasons for extremely high level of RBC folate concentrations. In our work we present the cases of two premature newborns with extremely high level of RBC folate concentrations, which were analyzed immunochemically on the first day of life and after six weeks of life. In both cases we measured RBC folate concentrations on the 1st day of life. After 6 weeks we found extremely high RBC folate concentration level (5516.67 ng/ml) in the first case after RBC transfusions. In second case after two months of life the RBC folate concentration level was doubled (2335.1 ng/ml) until 24 hours after RBC transfusion compared to levels after birth. The normal range of RBC folate values vary in newborns. The upper limit of daily dose of folic acid in pregnancy and neonatal period is not known. On the other hand it is an easily excreted water-soluble vitamin but in premature newborn it can lead to the disruption of metabolic balance and slow its degradation. Some factors can have an impact on RBC folate concentration. Blood transfusion can be one of the main influences on RBC folate concentration. To clarify these mechanisms further studies are required (Ref. 29).

  1. Extreme Events: low and high total ozone over Arosa, Switzerland

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Stübi, R.; Weihs, P.; Holawe, F.; Peter, T.; Davison, A. C.

    2009-04-01

    The frequency distribution of days with extreme low (termed ELOs) and high (termed EHOs) total ozone is analyzed for the world's longest total ozone record (Arosa, Switzerland - for details see Staehelin et al.,1998a,b), with new tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007). A heavy-tail focused approach is used through the fitting of the Generalized Pareto Distribution (GPD) to the Arosa time series. Asymptotic arguments (Pickands, 1975) justify the use of the GPD for modeling exceedances over a high (or below a low) enough threshold (Coles, 2001). The analysis shows that the GPD is appropriate for modeling the frequency distribution in total ozone above or below a mathematically well-defined threshold. While previous studies focused on so termed ozone mini-holes and mini-highs (e.g. Bojkov and Balis, 2001, Koch et al., 2005), this study is the first to present a mathematical description of extreme events in low and high total ozone for a northern mid-latitudes site (Rieder et al., 2009). The results show (a) an increase in days with extreme low (ELOs) and (b) a decrease in days with extreme high total ozone (EHOs) during the last decades, (c) that the general trend in total ozone is strongly determined by these extreme events and (d) that fitting the GPD is an appropriate method for the estimation of the frequency distribution of so-called ozone mini-holes. Furthermore, this concept allows one to separate the effect of Arctic ozone depletion from that of in situ mid-latitude ozone loss. As shown by this study, ELOs and EHOs have a strong influence on mean values in total ozone and the "extremes concept" could be further used also for validation of Chemistry-Climate-Models (CCMs) within the scientific community. References: Bojkov, R. D., and Balis, D.S.: Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1975-2000, Ann. Geophys., 19, 797-807, 2001. Coles, S.: An Introduction to Statistical Modeling of

  2. Polygenic determinants in extremes of high-density lipoprotein cholesterol[S

    PubMed Central

    Dron, Jacqueline S.; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A.; Robinson, John F.; McIntyre, Adam D.; Ban, Matthew R.; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J.; Lettre, Guillaume; Tardif, Jean-Claude

    2017-01-01

    HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. PMID:28870971

  3. Quantitative Sensory Testing and Current Perception Threshold Testing in Patients With Chronic Pain Following Lower Extremity Fracture.

    PubMed

    Griffioen, Mari A; Greenspan, Joel D; Johantgen, Meg; Von Rueden, Kathryn; O'Toole, Robert V; Dorsey, Susan G; Renn, Cynthia L

    2018-01-01

    Chronic pain is a significant problem for patients with lower extremity injuries. While pain hypersensitivity has been identified in many chronic pain conditions, it is not known whether patients with chronic pain following lower extremity fracture report pain hypersensitivity in the injured leg. To quantify and compare peripheral somatosensory function and sensory nerve activation thresholds in persons with chronic pain following lower extremity fractures with a cohort of persons with no history of lower extremity fractures. This was a cross-sectional study where quantitative sensory testing and current perception threshold testing were conducted on the injured and noninjured legs of cases and both legs of controls. A total of 14 cases and 28 controls participated in the study. Mean time since injury at the time of testing for cases was 22.3 (standard deviation = 12.1) months. The warmth detection threshold ( p = .024) and nerve activation thresholds at 2,000 Hz ( p < .001) and 250 Hz ( p = .002), respectively, were significantly higher in cases compared to controls. This study suggests that patients with chronic pain following lower extremity fractures may experience hypoesthesia in the injured leg, which contrasts with the finding of hyperesthesia previously observed in other chronic pain conditions but is in accord with patients with nerve injuries and surgeries. This is the first study to examine peripheral sensory nerve function at the site of injury in patients with chronic pain following lower extremity fractures using quantitative sensory testing and current perception threshold testing.

  4. High resolution spectroscopy of six new extreme helium stars

    NASA Technical Reports Server (NTRS)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  5. High-temperature performance of MoS2 thin-film transistors: Direct current and pulse current-voltage characteristics

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Rumyantsev, S. L.; Samnakay, R.; Shur, M. S.; Balandin, A. A.

    2015-02-01

    We report on fabrication of MoS2 thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS2 devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS2 thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a "memory step," was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS2 thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS2 thin-film transistors in extreme-temperature electronics and sensors.

  6. Association of extremely high levels of high-density lipoprotein cholesterol with cardiovascular mortality in a pooled analysis of 9 cohort studies including 43,407 individuals: The EPOCH-JAPAN study.

    PubMed

    Hirata, Aya; Sugiyama, Daisuke; Watanabe, Makoto; Tamakoshi, Akiko; Iso, Hiroyasu; Kotani, Kazuhiko; Kiyama, Masahiko; Yamada, Michiko; Ishikawa, Shizukiyo; Murakami, Yoshitaka; Miura, Katsuyuki; Ueshima, Hirotsugu; Okamura, Tomonori

    2018-02-08

    The effect of very high or extremely high levels of high-density lipoprotein cholesterol (HDL-C) on cardiovascular disease (CVD) is not well described. Although a few recent studies have reported the adverse effects of extremely high levels of HDL-C on CVD events, these did not show a statistically significant association between extremely high levels of HDL-C and cause-specific CVD mortality. In addition, Asian populations have not been studied. We examine the impact of extremely high levels of HDL-C on cause-specific CVD mortality using pooled data of Japanese cohort studies. We performed a large-scale pooled analysis of 9 Japanese cohorts including 43,407 participants aged 40-89 years, dividing the participants into 5 groups by HDL-C levels, including extremely high levels of HDL-C ≥2.33 mmol/L (≥90 mg/dL). We estimated the adjusted hazard ratio of each HDL-C category for all-cause death and cause-specific deaths compared with HDL-C 1.04-1.55 mmol/L (40-59 mg/dL) using a cohort-stratified Cox proportional hazards model. During a 12.1-year follow-up, 4995 all-cause deaths and 1280 deaths due to overall CVD were identified. Extremely high levels of HDL-C were significantly associated with increased risk of atherosclerotic CVD mortality (hazard ratio = 2.37, 95% confidence interval: 1.37-4.09 for total) and increased risk for coronary heart disease and ischemic stroke. In addition, the risk for extremely high HDL-C was more evident among current drinkers. We showed extremely high levels of HDL-C had an adverse effect on atherosclerotic CVD mortality in a pooled analysis of Japanese cohorts. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  7. [Injury mechanisms in extreme violence settings].

    PubMed

    Arcaute-Velazquez, Fernando Federico; García-Núñez, Luis Manuel; Noyola-Vilallobos, Héctor Faustino; Espinoza-Mercado, Fernando; Rodríguez-Vega, Carlos Eynar

    2016-01-01

    Extreme violence events are consequence of current world-wide economic, political and social conditions. Injury patterns found among victims of extreme violence events are very complex, obeying several high-energy injury mechanisms. In this article, we present the basic concepts of trauma kinematics that regulate the clinical approach to victims of extreme violence events, in the hope that clinicians increase their theoretical armamentarium, and reflecting on obtaining better outcomes. Copyright © 2016. Published by Masson Doyma México S.A.

  8. Physical Exam Risk Factors for Lower Extremity Injury in High School Athletes: A Systematic Review

    PubMed Central

    Onate, James A.; Everhart, Joshua S.; Clifton, Daniel R.; Best, Thomas M.; Borchers, James R.; Chaudhari, Ajit M.W.

    2016-01-01

    Objective A stated goal of the preparticipation physical evaluation (PPE) is to reduce musculoskeletal injury, yet the musculoskeletal portion of the PPE is reportedly of questionable use in assessing lower extremity injury risk in high school-aged athletes. The objectives of this study are: (1) identify clinical assessment tools demonstrated to effectively determine lower extremity injury risk in a prospective setting, and (2) critically assess the methodological quality of prospective lower extremity risk assessment studies that use these tools. Data Sources A systematic search was performed in PubMed, CINAHL, UptoDate, Google Scholar, Cochrane Reviews, and SportDiscus. Inclusion criteria were prospective injury risk assessment studies involving athletes primarily ages 13 to 19 that used screening methods that did not require highly specialized equipment. Methodological quality was evaluated with a modified physiotherapy evidence database (PEDro) scale. Main Results Nine studies were included. The mean modified PEDro score was 6.0/10 (SD, 1.5). Multidirectional balance (odds ratio [OR], 3.0; CI, 1.5–6.1; P < 0.05) and physical maturation status (P < 0.05) were predictive of overall injury risk, knee hyperextension was predictive of anterior cruciate ligament injury (OR, 5.0; CI, 1.2–18.4; P < 0.05), hip external: internal rotator strength ratio of patellofemoral pain syndrome (P = 0.02), and foot posture index of ankle sprain (r = −0.339, P = 0.008). Conclusions Minimal prospective evidence supports or refutes the use of the functional musculoskeletal exam portion of the current PPE to assess lower extremity injury risk in high school athletes. Limited evidence does support inclusion of multidirectional balance assessment and physical maturation status in a musculoskeletal exam as both are generalizable risk factors for lower extremity injury. PMID:26978166

  9. Mitochondrial function at extreme high altitude.

    PubMed

    Murray, Andrew J; Horscroft, James A

    2016-03-01

    At high altitude, barometric pressure falls and with it inspired P(O2), potentially compromising O2 delivery to the tissues. With sufficient acclimatisation, the erythropoietic response increases red cell mass such that arterial O2 content (C(aO2)) is restored; however arterial P(O2)(P(aO2)) remains low, and the diffusion of O2 from capillary to mitochondrion is impaired. Mitochondrial respiration and aerobic capacity are thus limited, whilst reactive oxygen species (ROS) production increases. Restoration of P(aO2) with supplementary O2 does not fully restore aerobic capacity in acclimatised individuals, possibly indicating a peripheral impairment. With prolonged exposure to extreme high altitude (>5500 m), muscle mitochondrial volume density falls, with a particular loss of the subsarcolemmal population. It is not clear whether this represents acclimatisation or deterioration, but it does appear to be regulated, with levels of the mitochondrial biogenesis factor PGC-1α falling, and shows similarities to adapted Tibetan highlanders. Qualitative changes in mitochondrial function also occur, and do so at more moderate high altitudes with shorter periods of exposure. Electron transport chain complexes are downregulated, possibly mitigating the increase in ROS production. Fatty acid oxidation capacity is decreased and there may be improvements in biochemical coupling at the mitochondrial inner membrane that enhance O2 efficiency. Creatine kinase expression falls, possibly impairing high-energy phosphate transfer from the mitochondria to myofibrils. In climbers returning from the summit of Everest, cardiac energetic reserve (phosphocreatine/ATP) falls, but skeletal muscle energetics are well preserved, possibly supporting the notion that mitochondrial remodelling is a core feature of acclimatisation to extreme high altitude. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  10. Extreme Transients in the High Energy Universe

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  11. High resolution modelling of extreme precipitation events in urban areas

    NASA Astrophysics Data System (ADS)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  12. Hierarchically Self-Assembled Block Copolymer Blends for Templating Hollow Phase-Change Nanostructures with an Extremely Low Switching Current

    DOE PAGES

    Park, Woon Ik; Kim, Jong Min; Jeong, Jae Won; ...

    2015-03-17

    Phase change memory (PCM) is one of the most promising candidates for next-generation nonvolatile memory devices because of its high speed, excellent reliability, and outstanding scalability. But, the high switching current of PCM devices has been a critical hurdle to realize low-power operation. Although one solution is to reduce the switching volume of the memory, the resolution limit of photolithography hinders further miniaturization of device dimensions. Here, we employed unconventional self-assembly geometries obtained from blends of block copolymers (BCPs) to form ring-shaped hollow PCM nanostructures with an ultrasmall contact area between a phase-change material (Ge 2Sb 2Te 5) and amore » heater (TiN) electrode. The high-density (approximately 0.1 terabits per square inch) PCM nanoring arrays showed extremely small switching current of 2-3 mu A. Furthermore, the relatively small reset current of the ring-shaped PCM compared to the pillar-shaped devices is attributed to smaller switching volume, which is well supported by electro-thermal simulation results. Our approach may also be extended to other nonvolatile memory device applications such as resistive switching memory and magnetic storage devices, where the control of nanoscale geometry can significantly affect device performances.« less

  13. Innovations in prosthetic interfaces for the upper extremity.

    PubMed

    Kung, Theodore A; Bueno, Reuben A; Alkhalefah, Ghadah K; Langhals, Nicholas B; Urbanchek, Melanie G; Cederna, Paul S

    2013-12-01

    Advancements in modern robotic technology have led to the development of highly sophisticated upper extremity prosthetic limbs. High-fidelity volitional control of these devices is dependent on the critical interface between the patient and the mechanical prosthesis. Recent innovations in prosthetic interfaces have focused on several control strategies. Targeted muscle reinnervation is currently the most immediately applicable prosthetic control strategy and is particularly indicated in proximal upper extremity amputations. Investigation into various brain interfaces has allowed acquisition of neuroelectric signals directly or indirectly from the central nervous system for prosthetic control. Peripheral nerve interfaces permit signal transduction from both motor and sensory nerves with a higher degree of selectivity. This article reviews the current developments in each of these interface systems and discusses the potential of these approaches to facilitate motor control and sensory feedback in upper extremity neuroprosthetic devices.

  14. Extreme Precipitation and High-Impact Landslides

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing

  15. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  16. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes.

    PubMed

    Zhou, Ruifeng; Meng, Chuizhou; Zhu, Feng; Li, Qunqing; Liu, Changhong; Fan, Shoushan; Jiang, Kaili

    2010-08-27

    Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 microg cm(-2)), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co(3)O(4) or Mn(2)O(3) nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance (approximately 500 F g(-1), including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g(-1) at 155 A g(-1)).

  17. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Ruifeng; Meng, Chuizhou; Zhu, Feng; Li, Qunqing; Liu, Changhong; Fan, Shoushan; Jiang, Kaili

    2010-08-01

    Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 µg cm - 2), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co3O4 or Mn2O3 nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance (~500 F g - 1, including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g - 1 at 155 A g - 1).

  18. Is Extremely High Life Satisfaction during Adolescence Advantageous?

    ERIC Educational Resources Information Center

    Suldo, Shannon M.; Huebner, E. Scott

    2006-01-01

    This study examined whether extremely high life satisfaction was associated with adaptive functioning or maladaptive functioning. Six hundred ninety-eight secondary level students completed the Students' Life Satisfaction Scale [Huebner, 1991a, School Psychology International, 12, pp. 231-240], Youth Self-Report of the Child Behavior Checklist…

  19. High northern latitude temperature extremes, 1400-1999

    NASA Astrophysics Data System (ADS)

    Tingley, M. P.; Huybers, P.; Hughen, K. A.

    2009-12-01

    There is often an interest in determining which interval features the most extreme value of a reconstructed climate field, such as the warmest year or decade in a temperature reconstruction. Previous approaches to this type of question have not fully accounted for the spatial and temporal covariance in the climate field when assessing the significance of extreme values. Here we present results from applying BARSAT, a new, Bayesian approach to reconstructing climate fields, to a 600 year multiproxy temperature data set that covers land areas between 45N and 85N. The end result of the analysis is an ensemble of spatially and temporally complete realizations of the temperature field, each of which is consistent with the observations and the estimated values of the parameters that define the assumed spatial and temporal covariance functions. In terms of the spatial average temperature, 1990-1999 was the warmest decade in the 1400-1999 interval in each of 2000 ensemble members, while 1995 was the warmest year in 98% of the ensemble members. A similar analysis at each node of a regular 5 degree grid gives insight into the spatial distribution of warm temperatures, and reveals that 1995 was anomalously warm in Eurasia, whereas 1998 featured extreme warmth in North America. In 70% of the ensemble members, 1601 featured the coldest spatial average, indicating that the eruption of Huaynaputina in Peru in 1600 (with a volcanic explosivity index of 6) had a major cooling impact on the high northern latitudes. Repeating this analysis at each node reveals the varying impacts of major volcanic eruptions on the distribution of extreme cooling. Finally, we use the ensemble to investigate extremes in the time evolution of centennial temperature trends, and find that in more than half the ensemble members, the greatest rate of change in the spatial mean time series was a cooling centered at 1600. The largest rate of centennial scale warming, however, occurred in the 20th Century in

  20. High current, high bandwidth laser diode current driver

    NASA Technical Reports Server (NTRS)

    Copeland, David J.; Zimmerman, Robert K., Jr.

    1991-01-01

    A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.

  1. Optimized photonic gauge of extreme high vacuum with Petawatt lasers

    NASA Astrophysics Data System (ADS)

    Paredes, Ángel; Novoa, David; Tommasini, Daniele; Mas, Héctor

    2014-03-01

    One of the latest proposed applications of ultra-intense laser pulses is their possible use to gauge extreme high vacuum by measuring the photon radiation resulting from nonlinear Thomson scattering within a vacuum tube. Here, we provide a complete analysis of the process, computing the expected rates and spectra, both for linear and circular polarizations of the laser pulses, taking into account the effect of the time envelope in a slowly varying envelope approximation. We also design a realistic experimental configuration allowing for the implementation of the idea and compute the corresponding geometric efficiencies. Finally, we develop an optimization procedure for this photonic gauge of extreme high vacuum at high repetition rate Petawatt and multi-Petawatt laser facilities, such as VEGA, JuSPARC and ELI.

  2. Extreme energetic particle decreases near geostationary orbit - A manifestation of current diversion within the inner plasma sheet

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Mcpherron, R. L.

    1990-01-01

    A qualitative model of cross-tail current flow is considered. It is suggested that when magnetic reconnection begins, the current effectively flows across the plasma sheet both earthward and tailward of the disruption region near the neutral line. It is shown that an enhanced cross-tail current earthward of this region would thin the plasma sheet substantially due to the magnetic pinch effect. The results explain the very taillike field and extreme particle dropouts often seen late in substorm growth phases.

  3. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  4. Method for synthesizing extremely high-temperature melting materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2007-11-06

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  5. How extreme are extremes?

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  6. Adaptation potential of naturally ventilated barns to high temperature extremes: The OptiBarn project

    NASA Astrophysics Data System (ADS)

    Menz, Christoph

    2016-04-01

    Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.

  7. Nitrogen-enriched carbon with extremely high mesoporosity and tunable mesopore size for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqing; Li, Chengfei; Fu, Ruowen

    2016-07-01

    As one of the most potential electrode materials for supercapacitors, nitrogen-enriched nanocarbons are still facing challenge of constructing developed mesoporosity for rapid mass transportation and tailoring their pore size for performance optimization and expanding their application scopes. Herein we develop a series of nitrogen-enriched mesoporous carbon (NMC) with extremely high mesoporosity and tunable mesopore size by a two-step method using silica gel as template. In our approach, mesopore size can be easily tailored from 4.7 to 35 nm by increasing the HF/TEOS volume ratio from 1/100 to 1/4. The NMC with mesopores of 6.2 nm presents the largest mesopore volume, surface area and mesopore ratio of 2.56 cm3 g-1, 1003 m2 g-1 and 97.7%, respectively. As a result, the highest specific capacitance of 325 F g-1 can be obtained at the current density of 0.1 A g-1, which can stay over 88% (286 F g-1) as the current density increases by 100 times (10 A g-1). This approach may open the doors for preparation of nitrogen-enriched nanocarbons with desired nanostructure for numerous applications.

  8. Questioning the current public health approach to countering violent extremism.

    PubMed

    Aggarwal, Neil Krishan

    2018-05-11

    Since the start of the global War on Terror, governments have used the mental health system for counterintelligence purposes. A recent manifestation of this trend is the call from policymakers and mental health researchers to screen individuals at risk for violent extremism through the public health system. Civil rights organisations have raised alarms that Muslims are being disproportionately referred to law enforcement agencies and that Muslim communities are being selected for surveillance despite government assurances that violent extremism is not exclusive to any ideology. This commentary critically analyzes American policies and calls from mental health professionals to use the public health system for implementing initiatives that counter violent extremism. A close reading of such texts demonstrates a persistent concern with treating communities as vulnerable to extremism, prioritising law enforcement over scientific evidence in crafting policies, and breaking medical confidentiality of patients while not assuring immunity for mental health professionals involved in screening. A genuine engagement with public health provides alternatives that question the assumptions of such policies.

  9. From ozone mini-holes and mini-highs towards extreme value theory: New insights from extreme events and non-stationarity

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Stübi, R.; Weihs, P.; Holawe, F.; Peter, T.; Davison, A. C.

    2009-04-01

    Over the last few decades negative trends in stratospheric ozone have been studied because of the direct link between decreasing stratospheric ozone and increasing surface UV-radiation. Recently a discussion on ozone recovery has begun. Long-term measurements of total ozone extending back earlier than 1958 are limited and only available from a few stations in the northern hemisphere. The world's longest total ozone record is available from Arosa, Switzerland (Staehelin et al., 1998a,b). At this site total ozone measurements have been made since late 1926 through the present day. Within this study (Rieder et al., 2009) new tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) are applied to select mathematically well-defined thresholds for extreme low and extreme high total ozone. A heavy-tail focused approach is used by fitting the Generalized Pareto Distribution (GPD) to the Arosa time series. Asymptotic arguments (Pickands, 1975) justify the use of the GPD for modeling exceedances over a sufficiently high (or below a sufficiently low) threshold (Coles, 2001). More precisely, the GPD is the limiting distribution of normalized excesses over a threshold, as the threshold approaches the endpoint of the distribution. In practice, GPD parameters are fitted, to exceedances by maximum likelihood or other methods - such as the probability weighted moments. A preliminary step consists in defining an appropriate threshold for which the asymptotic GPD approximation holds. Suitable tools for threshold selection as the MRL-plot (mean residual life plot) and TC-plot (stability plot) from the POT-package (Ribatet, 2007) are presented. The frequency distribution of extremes in low (termed ELOs) and high (termed EHOs) total ozone and their influence on the long-term changes in total ozone are analyzed. Further it is shown that from the GPD-model the distribution of so-called ozone mini holes (e.g. Bojkov and Balis, 2001) can be precisely estimated and that the

  10. [Multi-temporal scale analysis of impacts of extreme high temperature on net carbon uptake in subtropical coniferous plantation.

    PubMed

    Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui

    2018-02-01

    Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal

  11. Electronics for Extreme Environments

    NASA Astrophysics Data System (ADS)

    Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.

    2001-01-01

    Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space

  12. Impact of urban WWTP and CSO fluxes on river peak flow extremes under current and future climate conditions.

    PubMed

    Keupers, Ingrid; Willems, Patrick

    2013-01-01

    The impact of urban water fluxes on the river system outflow of the Grote Nete catchment (Belgium) was studied. First the impact of the Waste Water Treatment Plant (WWTP) and the Combined Sewer Overflow (CSO) outflows on the river system for the current climatic conditions was determined by simulating the urban fluxes as point sources in a detailed, hydrodynamic river model. Comparison was made of the simulation results on peak flow extremes with and without the urban point sources. In a second step, the impact of climate change scenarios on the urban fluxes and the consequent impacts on the river flow extremes were studied. It is shown that the change in the 10-year return period hourly peak flow discharge due to climate change (-14% to +45%) was in the same order of magnitude as the change due to the urban fluxes (+5%) in current climate conditions. Different climate change scenarios do not change the impact of the urban fluxes much except for the climate scenario that involves a strong increase in rainfall extremes in summer. This scenario leads to a strong increase of the impact of the urban fluxes on the river system.

  13. Measurement technology of RF interference current in high current system

    NASA Astrophysics Data System (ADS)

    Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei

    2018-06-01

    Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.

  14. High-voltage, high-current, solid-state closing switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Focia, Ronald Jeffrey

    2017-08-22

    A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.

  15. High resolution extremity CT for biomechanics modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashby, A.E.; Brand, H.; Hollerbach, K.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  16. The Current State of Head and Neck Injuries in Extreme Sports

    PubMed Central

    Sharma, Vinay K.; Rango, Juan; Connaughton, Alexander J.; Lombardo, Daniel J.; Sabesan, Vani J.

    2015-01-01

    Background: Since their conception during the mid-1970s, international participation in extreme sports has grown rapidly. The recent death of extreme snowmobiler Caleb Moore at the 2013 Winter X Games has demonstrated the serious risks associated with these sports. Purpose: To examine the incidence and prevalence of head and neck injuries (HNIs) in extreme sports. Study Design: Descriptive epidemiological study. Methods: The National Electronic Injury Surveillance System (NEISS) was used to acquire data from 7 sports (2000-2011) that were included in the Winter and Summer X Games. Data from the NEISS database were collected for each individual sport per year and type of HNI. Cumulative data for overall incidence and injuries over the entire 11-year period were calculated. National estimates were determined using NEISS-weighted calculations. Incidence rates were calculated for extreme sports using data from Outdoor Foundation Participation Reports. Results: Over 4 million injuries were reported between 2000 and 2011, of which 11.3% were HNIs. Of all HNIs, 83% were head injuries and 17% neck injuries. The 4 sports with the highest total incidence of HNI were skateboarding (129,600), snowboarding (97,527), skiing (83,313), and motocross (78,236). Severe HNI (cervical or skull fracture) accounted for 2.5% of extreme sports HNIs. Of these, skateboarding had the highest percentage of severe HNIs. Conclusion: The number of serious injuries suffered in extreme sports has increased as participation in the sports continues to grow. A greater awareness of the dangers associated with these sports offers an opportunity for sports medicine and orthopaedic physicians to advocate for safer equipment, improved on-site medical care, and further research regarding extreme sports injuries. PMID:26535369

  17. Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: A review and meta-analysis.

    PubMed

    Tedesco Triccas, L; Burridge, J H; Hughes, A M; Pickering, R M; Desikan, M; Rothwell, J C; Verheyden, G

    2016-01-01

    To systematically review the methodology in particular treatment options and outcomes and the effect of multiple sessions of transcranial direct current stimulation (tDCS) with rehabilitation programmes for upper extremity recovery post stroke. A search was conducted for randomised controlled trials involving tDCS and rehabilitation for the upper extremity in stroke. Quality of included studies was analysed using the Modified Downs and Black form. The extent of, and effect of variation in treatment parameters such as anodal, cathodal and bi-hemispheric tDCS on upper extremity outcome measures of impairment and activity were analysed using meta-analysis. Nine studies (371 participants with acute, sub-acute and chronic stroke) were included. Different methodologies of tDCS and upper extremity intervention, outcome measures and timing of assessments were identified. Real tDCS combined with rehabilitation had a small non-significant effect of +0.11 (p=0.44) and +0.24 (p=0.11) on upper extremity impairments and activities at post-intervention respectively. Various tDCS methods have been used in stroke rehabilitation. The evidence so far is not statistically significant, but is suggestive of, at best, a small beneficial effect on upper extremity impairment. Future research should focus on which patients and rehabilitation programmes are likely to respond to different tDCS regimes. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. [Evidence of work-related musculo-skeletal disorders of the upper extremities and current methods of risk assessment: can Charlie Chaplin give us any suggestions in "modern times"].

    PubMed

    Apostoli, P; Sala, Emma

    2009-01-01

    in some sequences of the film "Modern Times" Chaplin is clearly involved in activities at high risk for work-related musculo-skeletal disorders of the upper extremities (UEWMSDs), but evidence and perception of any complaint are not evident. To evaluate the extent of the biomechanical risk using current risk assessment methods and discuss the possible reasons for lack of complaints. we made an analysis using six of the current methods for ergonomic risk assessment (State of Washington, check list OCRA, HAL by ACGIH, RULA Strain Index, OREGE). All the methods applied demonstrated high-to-very high levels of biomechanical risk for the upper extremities, with evident psychic effects but without apparent musculo-skeletal disorders. The discrepancy between evident psychological disorders ad apparent absence of UEWMSDs are discussed as being due to either: an artistic choice by Charlie Chaplin who focused on the aspects thought to be more immediately and easily comic; the short duration of the physical load exertion; or because of a different perception of muscular work and fatigue that was also typical until the 1970's and 1980's, which also confirmed the principles and practices of our preventive and medical disciplines at that time.

  19. Number of Black Children in Extreme Poverty Hits Record High. Analysis Background.

    ERIC Educational Resources Information Center

    Children's Defense Fund, Washington, DC.

    To examine the experiences of black children and poverty, researchers conducted a computer analysis of data from the U.S. Census Bureau's Current Population Survey, the source of official government poverty statistics. The data are through 2001. Results indicated that nearly 1 million black children were living in extreme poverty, with after-tax…

  20. Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.

    2006-08-01

    It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.

  1. Curious Case of Positive Current Collectors: Corrosion and Passivation at High Temperature.

    PubMed

    Sayed, Farheen N; Rodrigues, Marco-Tulio F; Kalaga, Kaushik; Gullapalli, Hemtej; Ajayan, P M

    2017-12-20

    In the evaluation of compatibility of different components of cell for high-energy and extreme-conditions applications, the highly focused are positive and negative electrodes and their interaction with electrolyte. However, for high-temperature application, the other components are also of significant influence and contribute toward the total health of battery. In present study, we have investigated the behavior of aluminum, the most common current collector for positive electrode materials for its electrochemical and temperature stability. For electrochemical stability, different electrolytes, organic and room temperature ionic liquids with varying Li salts (LiTFSI, LiFSI), are investigated. The combination of electrochemical and spectroscopic investigations reflects the varying mechanism of passivation at room and high temperature, as different compositions of decomposed complexes are found at the surface of metals.

  2. Extreme High and Low Temperature Operation of the Silicon-On-Insulator Type CHT-OPA Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    A new operational amplifier chip based on silicon-on-insulator technology was evaluated for potential use in extreme temperature environments. The CHT-OPA device is a low power, precision operational amplifier with rail-to-rail output swing capability, and it is rated for operation between -55 C and +225 C. A unity gain inverting circuit was constructed utilizing the CHT-OPA chip and a few passive components. The circuit was evaluated in the temperature range from -190 C to +200 C in terms of signal gain and phase shift, and supply current. The investigations were carried out to determine suitability of this device for use in space exploration missions and aeronautic applications under wide temperature incursion. Re-restart capability at extreme temperatures, i.e. power switched on while the device was soaked at extreme temperatures, was also investigated. In addition, the effects of thermal cycling under a wide temperature range on the operation of this high performance amplifier were determined. The results from this work indicate that this silicon-on-insulator amplifier chip maintained very good operation between +200 C and -190 C. The limited thermal cycling had no effect on the performance of the amplifier, and it was able to re-start at both -190 C and +200 C. In addition, no physical degradation or packaging damage was introduced due to either extreme temperature exposure or thermal cycling. The good performance demonstrated by this silicon-on-insulator operational amplifier renders it a potential candidate for use in space exploration missions or other environments under extreme temperatures. Additional and more comprehensive characterization is, however, required to establish the reliability and suitability of such devices for long term use in extreme temperature applications.

  3. Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures.

    PubMed

    Kim, Sung-Kon; Kim, Hae Jin; Lee, Jong-Chan; Braun, Paul V; Park, Ho Seok

    2015-08-25

    The reliability and durability of energy storage devices are as important as their essential characteristics (e.g., energy and power density) for stable power output and long lifespan and thus much more crucial under harsh conditions. However, energy storage under extreme conditions is still a big challenge because of unavoidable performance decays and the inevitable damage of components. Here, we report high-temperature operating, flexible supercapacitors (f-SCs) that can provide reliable power output and extreme durability under severe electrochemical, mechanical, and thermal conditions. The outstanding capacitive features (e.g., ∼40% enhancement of the rate capability and a maximum capacitances of 170 F g(-1) and 18.7 mF cm(-2) at 160 °C) are attributed to facilitated ion transport at elevated temperatures. Under high-temperature operation and/or a flexibility test in both static and dynamic modes at elevated temperatures >100 °C, the f-SCs showed extreme long-term stability of 100000 cycles (>93% of initial capacitance value) and mechanical durability after hundreds of bending cycles (at bend angles of 60-180°). Even at 120 °C, the versatile design of tandem serial and parallel f-SCs was demonstrated to provide both desirable energy and power requirements at high temperatures.

  4. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  5. High speed, high current pulsed driver circuit

    DOEpatents

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  6. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali

    Heat and drought stresses are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO2 concentration. Here we present a study that quantified the current and future yield responses of US rainfed maize and soybean to climate extremes, and for the first time characterized spatial shifts in the relative importance of temperature, heat and drought stress. Crop yields are simulated using the Agricultural Production Systems sIMulator (APSIM), driven by the high-resolution (12 km) Weather Research and Forecasting (WRF) Model downscaled futuremore » climate scenarios at two time slices (1995-2005 and 2085-2094). Our results show that climatic yield gaps and interannual variability are greater in the core production area than in the remaining US by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of change is highly dependent on the current climate sensitivity and vulnerability. Elevated CO2 partially offsets the climatic yield gaps and reduces interannual yield variability, and effect is more prominent in soybean than in maize. We demonstrate that drought will continue to be the largest threat to US rainfed maize and soybean production, although its dominant role gradually gives way to other impacts of heat extremes. We also reveal that shifts in the geographic distributions of dominant stressors are characterized by increases in the concurrent stress, especially for the US Midwest. These findings imply the importance of considering drought and extreme heat simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management.« less

  7. High PRF high current switch

    DOEpatents

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  8. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    DTIC Science & Technology

    2017-03-14

    and was published in Nuclear Instruments and Methods A [11]. For similar targets, it was found that by monitoring the divergence of a low- energy ...AFRL-AFOSR-UK-TR-2017-0015 High energy ion acceleration by extreme laser radiation pressure Paul McKenna UNIVERSITY OF STRATHCLYDE VIZ ROYAL COLLEGE...MM-YYYY)   14-03-2017 2. REPORT TYPE  Final 3. DATES COVERED (From - To)  01 May 2013 to 31 Dec 2016 4. TITLE AND SUBTITLE High energy ion acceleration

  9. Feasibility of High-Repetition, Task-Specific Training for Individuals With Upper-Extremity Paresis

    PubMed Central

    Waddell, Kimberly J.; Birkenmeier, Rebecca L.; Moore, Jennifer L.; Hornby, T. George

    2014-01-01

    OBJECTIVE. We investigated the feasibility of delivering an individualized, progressive, high-repetition upper-extremity (UE) task-specific training protocol for people with stroke in the inpatient rehabilitation setting. METHOD. Fifteen patients with UE paresis participated in this study. Task-specific UE training was scheduled for 60 min/day, 4 days/wk, during occupational therapy for the duration of a participant’s inpatient stay. During each session, participants were challenged to complete ≥300 repetitions of various tasks. RESULTS. Participants averaged 289 repetitions/session, spending 47 of 60 min in active training. Participants improved on impairment and activity level outcome measures. CONCLUSION. People with stroke in an inpatient setting can achieve hundreds of repetitions of task-specific training in 1-hr sessions. As expected, all participants improved on functional outcome measures. Future studies are needed to determine whether this high-repetition training program results in better outcomes than current UE interventions. PMID:25005508

  10. Global Weirding? - Using Very Large Ensembles and Extreme Value Theory to assess Changes in Extreme Weather Events Today

    NASA Astrophysics Data System (ADS)

    Otto, F. E. L.; Mitchell, D.; Sippel, S.; Black, M. T.; Dittus, A. J.; Harrington, L. J.; Mohd Saleh, N. H.

    2014-12-01

    A shift in the distribution of socially-relevant climate variables such as daily minimum winter temperatures and daily precipitation extremes, has been attributed to anthropogenic climate change for various mid-latitude regions. However, while there are many process-based arguments suggesting also a change in the shape of these distributions, attribution studies demonstrating this have not currently been undertaken. Here we use a very large initial condition ensemble of ~40,000 members simulating the European winter 2013/2014 using the distributed computing infrastructure under the weather@home project. Two separate scenarios are used:1. current climate conditions, and 2. a counterfactual scenario of "world that might have been" without anthropogenic forcing. Specifically focusing on extreme events, we assess how the estimated parameters of the Generalized Extreme Value (GEV) distribution vary depending on variable-type, sampling frequency (daily, monthly, …) and geographical region. We find that the location parameter changes for most variables but, depending on the region and variables, we also find significant changes in scale and shape parameters. The very large ensemble allows, furthermore, to assess whether such findings in the fitted GEV distributions are consistent with an empirical analysis of the model data, and whether the most extreme data still follow a known underlying distribution that in a small sample size might otherwise be thought of as an out-lier. The ~40,000 member ensemble is simulated using 12 different SST patterns (1 'observed', and 11 best guesses of SSTs with no anthropogenic warming). The range in SSTs, along with the corresponding changings in the NAO and high-latitude blocking inform on the dynamics governing some of these extreme events. While strong tele-connection patterns are not found in this particular experiment, the high number of simulated extreme events allows for a more thorough analysis of the dynamics than has been

  11. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  12. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  13. Extremely High Resolution Spectroscopy of Oxide Electronic Systems

    DTIC Science & Technology

    2013-01-29

    about 0.3-0.4 Bohr Magnetons per unit sell – extremely strong, and it may be indicative of an unusual order parameter in the superconductor . Each of...Publication [1]), and the fact that the enhancement exists in a highly disordered sample. While the origin of the effect may lie in the same exchange...order  parameter  in  the   superconductor .   Each of these results has lead to interesting questions (detailed below) that we would like to

  14. Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population.

    PubMed

    Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr

    2005-10-01

    Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events.

  15. Characteristics of extreme ultraviolet emission from high-Z plasmas

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  16. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    NASA Astrophysics Data System (ADS)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  17. High current plasma electron emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiksel, G.; Almagri, A.F.; Craig, D.

    1995-07-01

    A high current plasma electron emitter based on a miniature plasma source has been developed. The emitting plasma is created by a pulsed high current gas discharge. The electron emission current is 1 kA at 300 V at the pulse duration of 10 ms. The prototype injector described in this paper will be used for a 20 kA electrostatic current injection experiment in the Madison Symmetric Torus (MST) reversed-field pinch. The source will be replicated in order to attain this total current requirement. The source has a simple design and has proven very reliable in operation. A high emission current,more » small size (3.7 cm in diameter), and low impurity generation make the source suitable for a variety of fusion and technological applications.« less

  18. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  19. Probabilistic forecasting of extreme weather events based on extreme value theory

    NASA Astrophysics Data System (ADS)

    Van De Vyver, Hans; Van Schaeybroeck, Bert

    2016-04-01

    Extreme events in weather and climate such as high wind gusts, heavy precipitation or extreme temperatures are commonly associated with high impacts on both environment and society. Forecasting extreme weather events is difficult, and very high-resolution models are needed to describe explicitly extreme weather phenomena. A prediction system for such events should therefore preferably be probabilistic in nature. Probabilistic forecasts and state estimations are nowadays common in the numerical weather prediction community. In this work, we develop a new probabilistic framework based on extreme value theory that aims to provide early warnings up to several days in advance. We consider the combined events when an observation variable Y (for instance wind speed) exceeds a high threshold y and its corresponding deterministic forecasts X also exceeds a high forecast threshold y. More specifically two problems are addressed:} We consider pairs (X,Y) of extreme events where X represents a deterministic forecast, and Y the observation variable (for instance wind speed). More specifically two problems are addressed: Given a high forecast X=x_0, what is the probability that Y>y? In other words: provide inference on the conditional probability: [ Pr{Y>y|X=x_0}. ] Given a probabilistic model for Problem 1, what is the impact on the verification analysis of extreme events. These problems can be solved with bivariate extremes (Coles, 2001), and the verification analysis in (Ferro, 2007). We apply the Ramos and Ledford (2009) parametric model for bivariate tail estimation of the pair (X,Y). The model accommodates different types of extremal dependence and asymmetry within a parsimonious representation. Results are presented using the ensemble reforecast system of the European Centre of Weather Forecasts (Hagedorn, 2008). Coles, S. (2001) An Introduction to Statistical modelling of Extreme Values. Springer-Verlag.Ferro, C.A.T. (2007) A probability model for verifying deterministic

  20. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2.

    PubMed

    Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali; Archontoulis, Sotirios V; Zobel, Zachary; Kotamarthi, Veerabhadra R

    2017-07-01

    Heat and drought are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO 2 concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and future US rainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high-resolution (12 km) dynamically downscaled climate projections for 1995-2004 and 2085-2094. Results show that maize and soybean yield losses are prominent in the US Midwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmospheric CO 2 partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat to US rainfed maize production under RCP4.5 and soybean production under both RCP scenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize under RCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for the US Midwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems. © 2017 John Wiley & Sons Ltd.

  1. [Membranotropic effects of electromagnetic radiation of extremely high frequency on Escherichia coli].

    PubMed

    Trchunian, A; Ogandzhanian, E; Sarkisian, E; Gonian, S; Oganesian, A; Oganesian, S

    2001-01-01

    It was found that "sound" electromagnetic radiations of extremely high frequencies (53.5-68 GHz) or millimeter waves (wavelength range of 4.2-5.6 mm) of low intensity (power density 0.01 mW) have a bactericidal effect on Escherichia coli bacteria. It was shown that exposure to irradiation of extremely high frequencies increases the electrokinetic potential and surface change density of bacteria and decreases of membrane potential. The total secretion of hydrogen ions was suppressed, the H+ flux from the cytoplasm to medium decreased, and the flux of N,N'-dicyclohexylcarbodiimide-sensitive potassium ions increased, which was accompanied by changes in the stoichiometry of these fluxes and an increase in the sensitivity of H+ ions to N,N'-dicyclohexylcarbodiimide. The effects depended on duration of exposure: as the time of exposure increased, the bactericidal effect increased, whereas the membranotropic effects decreased. The effects also depended on growth phase of bacteria: the irradiation affected the cells in the stationary but not in the logarithmic phase. It is assumed that the H(+)-ATPase complex F0F1 is involved in membranotropic effects of electromagnetic radiation of extremely high frequencies. Presumably, there are some compensatory mechanisms that eliminate the membranotropic effects.

  2. Heat waves in Portugal: Current regime, changes in future climate and impacts on extreme wildfires.

    PubMed

    Parente, J; Pereira, M G; Amraoui, M; Fischer, E M

    2018-08-01

    Heat waves (HW) can have devastating social, economic and environmental impacts. Together with long-term drought, they are the main factors contributing to wildfires. Surprisingly, the quantitative and objective analysis leading to the identification and characterization of HW in current and future climate conditions as well as its influence on the occurrence of extreme wildfires (EW) has never been performed for Portugal and are the main objectives of this study. For this reason, we assess HW in recent past and future climate based on a consistent high resolution meteorological database and have compared their occurrence with long and reliable, precise and detailed information about Portuguese fire events. Results include the characterization of HW frequency, duration, seasonality and intensity for current and different future climate conditions and their relationship with EW occurrence. We detected 130 HW between 1981 and 2010, concentrated between May and October and highest values in July and August. The highest HW number and duration is found over the Northeast corner and the south of the country while highest amplitudes are typically located in central area. HW characteristics present high inter-annual variability but are clearly associated to the temporal and spatial distribution of EW: 97% of total number of EW were active during an HW, 90% of total EW days were also HW days; 82% of the EW had duration completely contained in the duration of an HW; and, 83% of EW occurred during and in the area affected by HW. Our results also show that HW should increase in number, duration and amplitude, more significantly for RCP 8.5, and for the 30-year periods near the end of the 21st century. Findings of this study will support the definition of climate change adaptation strategies for fire danger and risk management. Copyright © 2018. Published by Elsevier B.V.

  3. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  4. A web-based study of bipolarity and impulsivity in athletes engaging in extreme and high-risk sports.

    PubMed

    Dudek, Dominika; Siwek, Marcin; Jaeschke, Rafał; Drozdowicz, Katarzyna; Styczeń, Krzysztof; Arciszewska, Aleksandra; Chrobak, Adrian A; Rybakowski, Janusz K

    2016-06-01

    We hypothesised that men and women who engage in extreme or high-risk sports would score higher on standardised measures of bipolarity and impulsivity compared to age and gender matched controls. Four-hundred and eighty extreme or high-risk athletes (255 males and 225 females) and 235 age-matched control persons (107 males and 128 females) were enrolled into the web-based case-control study. The Mood Disorder Questionnaire (MDQ) and Barratt Impulsiveness Scale (BIS-11) were administered to screen for bipolarity and impulsive behaviours, respectively. Results indicated that extreme or high-risk athletes had significantly higher scores of bipolarity and impulsivity, and lower scores on cognitive complexity of the BIS-11, compared to controls. Further, there were positive correlations between the MDQ and BIS-11 scores. These results showed greater rates of bipolarity and impulsivity, in the extreme or high-risk athletes, suggesting these measures are sensitive to high-risk behaviours.

  5. Quantifying the relationship between extreme air pollution events and extreme weather events

    NASA Astrophysics Data System (ADS)

    Zhang, Henian; Wang, Yuhang; Park, Tae-Won; Deng, Yi

    2017-05-01

    Extreme weather events can strongly affect surface air quality, which has become a major environmental factor to affect human health. Here, we examined the relationship between extreme ozone and PM2.5 (particular matter with an aerodynamic diameter less than 2.5 μm) events and the representative meteorological parameters such as daily maximum temperature (Tmax), minimum relative humidity (RHmin), and minimum wind speed (Vmin), using the location-specific 95th or 5th percentile threshold derived from historical reanalysis data (30 years for ozone and 10 years for PM2.5). We found that ozone and PM2.5 extremes were decreasing over the years, reflecting EPA's tightened standards and effort on reducing the corresponding precursor's emissions. Annual ozone and PM2.5 extreme days were highly correlated with Tmax and RHmin, especially in the eastern U.S. They were positively (negatively) correlated with Vmin in urban (rural and suburban) stations. The overlapping ratios of ozone extreme days with Tmax were fairly constant, about 32%, and tended to be high in fall and low in winter. Ozone extreme days were most sensitive to Tmax, then RHmin, and least sensitive to Vmin. The majority of ozone extremes occurred when Tmax was between 300 K and 320 K, RHmin was less than 40%, and Vmin was less than 3 m/s. The number of annual extreme PM2.5 days was highly positively correlated with the extreme RHmin/Tmax days, with correlation coefficient between PM2.5/RHmin highest in urban and suburban regions and the correlation coefficient between PM2.5/Tmax highest in rural area. Tmax has more impact on PM2.5 extreme over the eastern U.S. Extreme PM2.5 days were more likely to occur at low RH conditions in the central and southeastern U.S., especially during spring time, and at high RH conditions in the northern U.S. and the Great Plains. Most extreme PM2.5 events occurred when Tmax was between 300 K and 320 K and RHmin was between 10% and 50%. Extreme PM2.5 days usually occurred when

  6. Extreme energetic particle decreases near geostationary orbit - A manifestation of current diversion within the inner plasma sheet

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Mcpherron, R. L.

    1990-01-01

    A qualitative model of magnetic field reconfiguration as might result from neutral line formation in the central plasma sheet late in a substorm growth phase is considered. It is suggested that magnetic reconnection probably begins before the substorm expansion phase and that cross-tail current is enhanced across the plasma sheet both earthward and tailward of a limited region near the neutral line. Such an enhanced cross-tail current earthward of the original X line region may contribute to thinning the plasma sheet substantially, and this would in turn affect the drift currents in that location, thus enhancing the current even closer toward the earth. In this way a redistribution and progressive diversion of normal cross-tail current throughout much of the inner portion of the plasma sheet could occur. The resulting intensified current, localized at the inner edge of the plasma sheet, would lead to a very thin plasma confinement region. This would explain the very taillike field and extreme particle dropouts often seen late in substorm growth phases.

  7. Treatment strategy for metastatic prostate cancer with extremely high PSA level: reconsidering the value of vintage therapy.

    PubMed

    Yamada, Yasutaka; Sakamoto, Shinichi; Amiya, Yoshiyasu; Sasaki, Makoto; Shima, Takayuki; Komiya, Akira; Suzuki, Noriyuki; Akakura, Koichiro; Ichikawa, Tomohiko; Nakatsu, Hiroomi

    2018-05-04

    The prognostic significance of initial prostate-specific antigen (PSA) level for metastatic prostate cancer remains uncertain. We investigated the differences in prognosis and response to hormonal therapies of metastatic prostate cancer patients according to initial PSA levels. We analyzed 184 patients diagnosed with metastatic prostate cancer and divided them into three PSA level groups as follows: low (<100 ng ml -1 ), intermediate (100-999 ng ml -1 ), and high (≥1000 ng ml -1 ). All patients received androgen deprivation therapy (ADT) immediately. We investigated PSA progression-free survival (PFS) for first-line ADT and overall survival (OS) within each of the three groups. Furthermore, we analyzed response to antiandrogen withdrawal (AW) and alternative antiandrogen (AA) therapies after development of castration-resistant prostate cancer (CRPC). No significant differences in OS were observed among the three groups (P = 0.654). Patients with high PSA levels had significantly short PFS for first-line ADT (P = 0.037). Conversely, patients in the high PSA level group had significantly longer PFS when treated with AW than those in the low PSA level group (P = 0.047). Furthermore, patients with high PSA levels had significantly longer PFS when provided with AA therapy (P = 0.049). PSA responders to AW and AA therapies had significantly longer survival after CRPC development than nonresponders (P = 0.011 and P < 0.001, respectively). Thus, extremely high PSA level predicted favorable response to vintage sequential ADT and AW. The current data suggest a novel aspect of extremely high PSA value as a favorable prognostic marker after development of CRPC.

  8. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence

    PubMed Central

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Smith, G D; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-01-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case–control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence. PMID:26239293

  9. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    PubMed

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Davey Smith, G; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  10. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  11. Weather extremes in very large, high-resolution ensembles: the weatherathome experiment

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Rosier, S.; Massey, N.; Rye, C.; Bowery, A.; Miller, J.; Otto, F.; Jones, R.; Wilson, S.; Mote, P.; Stone, D. A.; Yamazaki, Y. H.; Carrington, D.

    2011-12-01

    Resolution and ensemble size are often seen as alternatives in climate modelling. Models with sufficient resolution to simulate many classes of extreme weather cannot normally be run often enough to assess the statistics of rare events, still less how these statistics may be changing. As a result, assessments of the impact of external forcing on regional climate extremes must be based either on statistical downscaling from relatively coarse-resolution models, or statistical extrapolation from 10-year to 100-year events. Under the weatherathome experiment, part of the climateprediction.net initiative, we have compiled the Met Office Regional Climate Model HadRM3P to run on personal computer volunteered by the general public at 25 and 50km resolution, embedded within the HadAM3P global atmosphere model. With a global network of about 50,000 volunteers, this allows us to run time-slice ensembles of essentially unlimited size, exploring the statistics of extreme weather under a range of scenarios for surface forcing and atmospheric composition, allowing for uncertainty in both boundary conditions and model parameters. Current experiments, developed with the support of Microsoft Research, focus on three regions, the Western USA, Europe and Southern Africa. We initially simulate the period 1959-2010 to establish which variables are realistically simulated by the model and on what scales. Our next experiments are focussing on the Event Attribution problem, exploring how the probability of various types of extreme weather would have been different over the recent past in a world unaffected by human influence, following the design of Pall et al (2011), but extended to a longer period and higher spatial resolution. We will present the first results of the unique, global, participatory experiment and discuss the implications for the attribution of recent weather events to anthropogenic influence on climate.

  12. Quantitative methods for stochastic high frequency spatio-temporal and non-linear analysis: Assessing health effects of exposure to extreme ambient temperature

    NASA Astrophysics Data System (ADS)

    Liss, Alexander

    Extreme weather events, such as heat waves and cold spells, cause substantial excess mortality and morbidity in the vulnerable elderly population, and cost billions of dollars. The accurate and reliable assessment of adverse effects of extreme weather events on human health is crucial for environmental scientists, economists, and public health officials to ensure proper protection of vulnerable populations and efficient allocation of scarce resources. However, the methodology for the analysis of large national databases is yet to be developed. The overarching objective of this dissertation is to examine the effect of extreme weather on the elderly population of the Conterminous US (ConUS) with respect to seasonality in temperature in different climatic regions by utilizing heterogeneous high frequency and spatio-temporal resolution data. To achieve these goals the author: 1) incorporated dissimilar stochastic high frequency big data streams and distinct data types into the integrated data base for use in analytical and decision support frameworks; 2) created an automated climate regionalization system based on remote sensing and machine learning to define climate regions for the Conterminous US; 3) systematically surveyed the current state of the art and identified existing gaps in the scientific knowledge; 4) assessed the dose-response relationship of exposure to temperature extremes on human health in relatively homogeneous climate regions using different statistical models, such as parametric and non-parametric, contemporaneous and asynchronous, applied to the same data; 5) assessed seasonal peak timing and synchronization delay of the exposure and the disease within the framework of contemporaneous high frequency harmonic time series analysis and modification of the effect by the regional climate; 6) modeled using hyperbolic functional form non-linear properties of the effect of exposure to extreme temperature on human health. The proposed climate

  13. Rainfall variability and extremes over southern Africa: Assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will

  14. Rainfall variability and extremes over southern Africa: assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will

  15. Extreme Rainfall Events Over Southern Africa: Assessment of a Climate Model to Reproduce Daily Extremes

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2007-12-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable extreme events, due to a number of factors including extensive poverty, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of a state-of-the-art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of SST anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the UK Meteorological Office Hadley Centre's climate model's domain size are firstly presented. Then simulations of current climate from the model, operating in both regional and global mode, are compared to the MIRA dataset at daily timescales. Thirdly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. Finally, the results from the idealised SST experiments are briefly presented, suggesting associations between rainfall extremes and both local and remote SST anomalies.

  16. The evolution of extreme precipitations in high resolution scenarios over France

    NASA Astrophysics Data System (ADS)

    Colin, J.; Déqué, M.; Somot, S.

    2009-09-01

    Over the past years, improving the modelling of extreme events and their variability at climatic time scales has become one of the challenging issue raised in the regional climate research field. This study shows the results of a high resolution (12 km) scenario run over France with the limited area model (LAM) ALADIN-Climat, regarding the representation of extreme precipitations. The runs were conducted in the framework of the ANR-SCAMPEI national project on high resolution scenarios over French mountains. As a first step, we attempt to quantify one of the uncertainties implied by the use of LAM : the size of the area on which the model is run. In particular, we address the issue of whether a relatively small domain allows the model to create its small scale process. Indeed, high resolution scenarios cannot be run on large domains because of the computation time. Therefore one needs to answer this preliminary question before producing and analyzing such scenarios. To do so, we worked in the framework of a « big brother » experiment. We performed a 23-year long global simulation in present-day climate (1979-2001) with the ARPEGE-Climat GCM, at a resolution of approximately 50 km over Europe (stretched grid). This first simulation, named ARP50, constitutes the « big brother » reference of our experiment. It has been validated in comparison with the CRU climatology. Then we filtered the short waves (up to 200 km) from ARP50 in order to obtain the equivalent of coarse resolution lateral boundary conditions (LBC). We have carried out three ALADIN-Climat simulations at a 50 km resolution with these LBC, using different configurations of the model : * FRA50, run over a small domain (2000 x 2000 km, centered over France), * EUR50, run over a larger domain (5000 x 5000 km, centered over France as well), * EUR50-SN, run over the large domain (using spectral nudging). Considering the facts that ARPEGE-Climat and ALADIN-Climat models share the same physics and dynamics

  17. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    PubMed

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis. © 2011 American Chemical Society

  18. High-pressure injection injuries to the upper extremity: a review of the literature.

    PubMed

    Hogan, Christopher J; Ruland, Robert T

    2006-07-01

    The purpose of this review was to identify the relative impact of injected material, location of injury, time to debridement, injection pressure, infection, and the use of adjuvant steroid medication upon the need for amputation after high-pressure injection injuries to the upper extremity. A Medline literature search extending from 1966 to December 2003 was performed, referencing the key words "high-pressure injection injury," "grease gun injury," "paint gun injury," "pressure gun injury," and "high-pressure injection." The results were limited to the English language and to reports involving human subjects. Each abstract was reviewed to confirm that the described injury had occurred in the upper extremity and that it had truly been a high-pressure injection. The reference pages from each of the papers were reviewed to identify additional reports of high-pressure injection injury. Manuscripts describing injuries resulting from hand held syringes or other low-pressure mechanisms were excluded. All of the manuscripts were analyzed to identify the clinical outcome, age, hand dominance, site of injection, substance injected, injection pressure, elapsed time to wide debridement, use of steroids, and incidence of infection. These variables were subjected to a Pearson chi test to determine their impact upon the need for amputation. Four hundred thirty-five cases of high-pressure injection injury to the upper extremity were identified. The amputation rate after these injuries was 30%. The location of the injury and the material injected contributed significantly to the need for amputation. For injections of paint, paint thinner, gasoline, oil, or jet fuel (organic solvents), the amputation risk was lower if wide surgical debridement occurred within 6 hours of injury. Steroids did not impact the amputation rate or incidence of infection. The presence of infection did not affect the incidence of amputation. The risk of amputation after high-pressure injection injury to the

  19. Magnetoresistive Current Sensors for High Accuracy, High Bandwidth Current Measurement in Spacecraft Power Electronics

    NASA Astrophysics Data System (ADS)

    Slatter, Rolf; Goffin, Benoit

    2014-08-01

    The usage of magnetoresistive (MR) current sensors is increasing steadily in the field of power electronics. Current sensors must not only be accurate and dynamic, but must also be compact and robust. The MR effect is the basis for current sensors with a unique combination of precision and bandwidth in a compact package. A space-qualifiable magnetoresistive current sensor with high accuracy and high bandwidth is being jointly developed by the sensor manufacturer Sensitec and the spacecraft power electronics supplier Thales Alenia Space (T AS) Belgium. Test results for breadboards incorporating commercial-off-the-shelf (COTS) sensors are presented as well as an application example in the electronic control and power unit for the thrust vector actuators of the Ariane5-ME launcher.

  20. Reliability of high I/O high density CCGA interconnect electronic packages under extreme thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2012-03-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surfacemount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions.

  1. Floridian heatwaves and extreme precipitation: future climate projections

    NASA Astrophysics Data System (ADS)

    Raghavendra, Ajay; Dai, Aiguo; Milrad, Shawn M.; Cloutier-Bisbee, Shealynn R.

    2018-02-01

    Observational analysis and climate modeling efforts concur that the frequency, intensity, and duration of heatwaves will increase as the Earth's mean climate shifts towards warmer temperatures. While the impacts and mechanisms of heatwaves have been well explored, extreme temperatures over Florida are generally understudied. This paper sheds light on Floridian heatwaves by exploring 13 years of daily data from surface observations and high-resolution WRF climate simulations for the same timeframe. The characteristics of the current and future heatwaves under the RCP8.5 high emissions scenario for 2070-2099 were then investigated. Results show a tripling in the frequency, and greater than a sixfold increase in the mean duration of heatwaves over Florida when the current standard of heatwaves was used. The intensity of heatwaves also increased by 4-6 °C due to the combined effects of rising mean temperatures and a 1-2 °C increase attributed to the flattening of the temperature distribution. Since Florida's atmospheric boundary layer is rich in moisture and heatwaves could further increase the moisture content in the lower troposphere, the relationship between heatwaves and extreme precipitation was also explored in both the current and future climate. As expected, rainfall during a heatwave event was anomalously low, but it quickly recovered to normal within 3 days after the passage of a heatwave. Finally, the late 21st-century climate could witness a slight decrease in the mean precipitation over Florida, accompanied by heavier heatwave-associated extreme precipitation events over central and southern Florida.

  2. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature

    NASA Astrophysics Data System (ADS)

    Kizilel, R.; Lateef, A.; Sabbah, R.; Farid, M. M.; Selman, J. R.; Al-Hallaj, S.

    A strategy for portable high-power applications with a controlled thermal environment has been developed and has demonstrated the advantage of using the novel phase change material (PCM) thermal management systems over conventional active cooling systems. A passive thermal management system using PCM for Li-ion batteries is tested for extreme conditions, such as ambient temperature of 45 °C and discharge rate of 2.08 C-rate (10 A). Contrary to Li-ion packs without thermal management system, high-energy packs with PCM are discharged safely at high currents and degrading rate of capacity of the Li-ion packs lowered by half. Moreover, the compactness of the packs not only decreases the volume occupied by the packs and its associated complex cooling system, but also decreases the total weight for large power application.

  3. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    PubMed

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  4. Hybrid high direct current circuit interrupter

    DOEpatents

    Rockot, Joseph H.; Mikesell, Harvey E.; Jha, Kamal N.

    1998-01-01

    A device and a method for interrupting very high direct currents (greater than 100,000 amperes) and simultaneously blocking high voltages (greater than 600 volts). The device utilizes a mechanical switch to carry very high currents continuously with low loss and a silicon controlled rectifier (SCR) to bypass the current around the mechanical switch while its contacts are separating. A commutation circuit, connected in parallel with the SCR, turns off the SCR by utilizing a resonant circuit to divert the SCR current after the switch opens.

  5. Soft-Tissue Injuries Associated With High-Energy Extremity Trauma: Principles of Management.

    PubMed

    Norris; Kellam

    1997-01-01

    The management of high-energy extremity trauma has evolved over the past several decades, and appropriate treatment of associated soft-tissue injuries has proved to be an important factor in achieving a satisfactory outcome. Early evaluation of the severely injured extremity is crucial. Severe closed injuries require serial observation of the soft tissues and early skeletal stabilization. Open injuries require early aggressive debridement of the soft tissues followed by skeletal stabilization. Temporary wound dressings should remain in place until definitive soft-tissue coverage has been obtained. Definitive soft-tissue closure will be expedited by serial debridements performed every 48 to 72 hours in a sterile environment. Skeletal union is facilitated by early bone grafting and/or modification of the stabilizing device. Aggressive rehabilitation, includ-ing early social reintegration, are crucial for a good functional outcome. Adherence to protocols is especially beneficial in the management of salvageable severely injured extremities.

  6. High altitude observations of Birkeland currents

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1977-01-01

    Several models of field-aligned currents (Birkeland currents) in the magnetosphere are discussed, and high altitude observations of these currents, carried out with the aid of highly eccentric earth-orbiting spacecraft of the OGO and IMP series, are reviewed. The essential roles of Birkeland currents are identified: they relieve charge imbalances, transmit stresses, and lead to particle acceleration anomalous resistivity.

  7. Extreme-ultraviolet-initiated high-order harmonic generation in Ar+

    NASA Astrophysics Data System (ADS)

    Clarke, D. D. A.; van der Hart, H. W.; Brown, A. C.

    2018-02-01

    We employ the R matrix with time dependence method to investigate extreme-ultraviolet-initiated high-order harmonic generation (XIHHG) in Ar+. Using a combination of extreme-ultraviolet (XUV, 92 nm, 3 ×1012W cm-2 ) and time-delayed, infrared (IR, 800 nm, 3 ×1014W cm-2 ) laser pulses, we demonstrate that control over both the mechanism and timing of ionization can afford significant enhancements in the yield of plateau and subthreshold harmonics alike. The presence of the XUV pulse is also shown to alter the relative contribution of different electron emission pathways. Manifestation of the Ar+ electronic structure is found in the appearance of a pronounced Cooper minimum. Interferences among the outer-valence 3 p and inner-valence 3 s electrons are found to incur only a minor suppression of the harmonic intensities, at least for the present combination of XUV and IR laser light. Additionally, the dependence of the XIHHG efficiency on time delay is discussed and rationalized with the aid of classical trajectory simulations.

  8. The extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart; Malina, Roger F.

    1990-01-01

    The Extreme Ultraviolet Explorer (EUVE) mission, currently scheduled for launch in September 1991, is described. The primary purpose of the mission is to survey the celestial sphere for astronomical sources of Extreme Ultraviolet (EUV) radiation. The survey will be accomplished with the use of three EUV telescopes, each sensitive to a different segment of the EUV band. A fourth telescope will perform a high sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all sky survey will be carried out in the first six months of the mission and will be made in four bands, or colors. The second phase of the mission, conducted entirely by guest observers selected by NASA, will be devoted to spectroscopic observations of EUV sources. The performance of the instrument components is described. An end to end model of the mission, from a stellar source to the resulting scientific data, was constructed. Hypothetical data from astronomical sources processed through this model are shown.

  9. Hybrid high direct current circuit interrupter

    DOEpatents

    Rockot, J.H.; Mikesell, H.E.; Jha, K.N.

    1998-08-11

    A device and a method are disclosed for interrupting very high direct currents (greater than 100,000 amperes) and simultaneously blocking high voltages (greater than 600 volts). The device utilizes a mechanical switch to carry very high currents continuously with low loss and a silicon controlled rectifier (SCR) to bypass the current around the mechanical switch while its contacts are separating. A commutation circuit, connected in parallel with the SCR, turns off the SCR by utilizing a resonant circuit to divert the SCR current after the switch opens. 7 figs.

  10. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    PubMed Central

    Shin, Sera; Seo, Jungmok; Han, Heetak; Kang, Subin; Kim, Hyunchul; Lee, Taeyoon

    2016-01-01

    Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed. PMID:28787916

  11. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  12. High-numerical aperture extreme ultraviolet scanner for 8-nm lithography and beyond

    NASA Astrophysics Data System (ADS)

    Schoot, Jan van; Setten, Eelco van; Rispens, Gijsbert; Troost, Kars Z.; Kneer, Bernhard; Migura, Sascha; Neumann, Jens Timo; Kaiser, Winfried

    2017-10-01

    Current extreme ultraviolet (EUV) projection lithography systems exploit a projection lens with a numerical aperture (NA) of 0.33. It is expected that these will be used in mass production in the 2018/2019 timeframe. By then, the most difficult layers at the 7-nm logic and the mid-10-nm DRAM nodes will be exposed. These systems are a more economical alternative to multiple-exposure by 193 argon fluoride immersion scanners. To enable cost-effective shrink by EUV lithography down to 8-nm half pitch, a considerably larger NA is needed. As a result of the increased NA, the incidence angles of the light rays at the mask increase significantly. Consequently, the shadowing and the variation of the multilayer reflectivity deteriorate the aerial image contrast to unacceptably low values at the current 4× magnification. The only solution to reduce the angular range at the mask is to increase the magnification. Simulations show that the magnification has to be doubled to 8× to overcome the shadowing effects. Assuming that the mask infrastructure will not change the mask form factor, this would inevitably lead to a field size that is a quarter of the field size of the current 0.33-NA step and scan systems and reduce the throughput (TPT) of the high-NA scanner to a value below 100 wafers per hour unless additional measures are taken. This paper presents an anamorphic step and scan system capable of printing fields that are half the field size of the current full field. The anamorphic system has the potential to achieve a TPT in excess of 150 wafers per hour by increasing the transmission of the optics, as well as increasing the acceleration of the wafer stage and mask stage. This makes it an economically viable lithography solution.

  13. The Extreme Ultraviolet Explorer Mission

    NASA Technical Reports Server (NTRS)

    Bowyer, S.; Malina, R. F.

    1991-01-01

    The Extreme Ultraviolet Explorer (EUVE) mission, currently scheduled from launch in September 1991, is described. The primary purpose of the mission is to survey the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation with the use of three EUV telescope, each sensitive to a different segment of the EUV band. A fourth telescope is planned to perform a high-sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all-sky survey is planned to be carried out in the first six months of the mission in four bands, or colors, 70-180 A, 170-250 A, 400-600 A, and 500-700 A. The second phase of the mission is devoted to spectroscopic observations of EUV sources. A high-efficiency grazing-incidence spectrometer using variable line-space gratings is planned to provide spectral data with about 1-A resolution. An end-to-end model of the mission, from a stellar source to the resulting scientific data, is presented. Hypothetical data from astronomical sources were processed through this model and are shown.

  14. Current data on extremities chronic osteomyelitis in southwest China: epidemiology, microbiology and therapeutic consequences.

    PubMed

    Wang, Xiaohua; Yu, Shengpeng; Sun, Dong; Fu, Jingshu; Wang, Shulin; Huang, Ke; Xie, Zhao

    2017-11-24

    The current study was designed to explore the epidemiology of extremities chronic osteomyelitis, its prognosis and the complications of the treatment methods being used in southwest China. The data from osteomyelitis patients treated at the Department of Orthopaedics, Southwest Hospital, China between May 2011 and September 2016 were collected and analysed. The study comprised 503 admitted patients, of which 416 males and 87 were females, with an average age of 40.15 ± 5.64 years. Approximately 356 cases were followed for more than 18 months; the average bone union time was 6.24 ± 0.76 months in 94.1% (335) patients, and infections were almost controlled in 93.8% patients. The rate of infection control with the induced membrane technique was higher than with the I-stage free bone graft. Iliac infection was the main complication of the induced membrane technique, and impaired joint activity was the main complication of I-stage free bone grafts. In southwest China, the incidence of haematogenous osteomyelitis, caused mainly by Staphylococcus aureus, remains very high. The speed of bone defect repair and the rate of infection control with the induced membrane technique were superior to those of I-stage free bone grafts. Internal fixation should be given priority because it offers reduced complications with no increase in the recurrence of infection.

  15. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  16. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity

    NASA Astrophysics Data System (ADS)

    Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng

    2016-12-01

    A ZnO quantum dot photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W-1 and detectivity of more than 1.02 × 1013 Jones (Jones = cm Hz1/2 W-1) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W-1 to 1915 A W-1 and the detectivity is improved from 5.8 × 1012 to 1.0 × 1013 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.

  17. Magnetic ordering at anomalously high temperatures in Dy at extreme pressures

    DOE PAGES

    Lim, J.; Fabbris, G.; Haskel, D.; ...

    2015-01-15

    In an attempt to destabilize the magnetic state of the heavy lanthanide Dy, extreme pressures were applied in an electrical resistivity measurement to 157 GPa over the temperature range 1.3 - 295 K. The magnetic ordering temperature T o and spin-disorder resistance R sd of Dy, as well as the superconducting pair-breaking effect ΔT c in Y(1 at.% Dy), are found to track each other in a highly non-monotonic fashion as a function of pressure. Above 73 GPa, the critical pressure for a 6% volume collapse in Dy, all three quantities increase sharply (dT o=dP≃5.3 K/GPa), T o appearing tomore » rise above ambient temperature for P > 107 GPa. In contrast, T o and ΔT c for Gd and Y(0.5 at.% Gd), respectively, show no such sharp increase with pressure (dT o=dP≃ 0.73 K/GPa). Altogether, these results suggest that extreme pressure transports Dy into an unconventional magnetic state with an anomalously high magnetic ordering temperature.« less

  18. Diagnostic performance and radiation dose of lower extremity CT angiography using a 128-slice dual source CT at 80 kVp and high pitch.

    PubMed

    Kim, Jin Woo; Choo, Ki Seok; Jeon, Ung Bae; Kim, Tae Un; Hwang, Jae Yeon; Yeom, Jeong A; Jeong, Hee Seok; Choi, Yoon Young; Nam, Kyung Jin; Kim, Chang Won; Jeong, Dong Wook; Lim, Soo Jin

    2016-07-01

    Multi-detector computed tomography (MDCT) angiography is now used for the diagnosing patients with peripheral arterial disease. The dose of radiation is related to variable factors, such as tube current, tube voltage, and helical pitch. To assess the diagnostic performance and radiation dose of lower extremity CT angiography (CTA) using a 128-slice dual source CT at 80 kVp and high pitch in patients with critical limb ischemia (CLI). Twenty-eight patients (mean, 64.1 years; range, 39-80 years) with CLI were enrolled in this retrospective study and underwent CTA using a 128-slice dual source CT at 80 kVp and high pitch and subsequent intra-arterial digital subtraction angiography (DSA), which was used as a reference standard for assessing diagnostic performance. For arterial segments with significant disease (>50% stenosis), overall sensitivity, specificity, and accuracy of lower extremity CTA were 94.8% (95% CI, 91.7-98.0%), 91.5% (95% CI, 87.7-95.2%), and 93.1% (95% CI, 90.6-95.6%), respectively, and its positive and negative predictive values were 91.0% (95% CI, 87.1-95.0%), and 95.1% (95% CI, 92.1-98.1%), respectively. Mean radiation dose delivered to lower extremities was 266.6 mGy.cm. Lower extremity CTA using a 128-slice dual source CT at 80 kVp and high pitch was found to have good diagnostic performance for the assessment of patients with CLI using an extremely low radiation dose. © The Foundation Acta Radiologica 2015.

  19. Extreme Material Physical Properties and Measurements above 100 tesla

    NASA Astrophysics Data System (ADS)

    Mielke, Charles

    2011-03-01

    The National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility (PFF) at Los Alamos National Laboratory (LANL) offers extreme environments of ultra high magnetic fields above 100 tesla by use of the Single Turn method as well as fields approaching 100 tesla with more complex methods. The challenge of metrology in the extreme magnetic field generating devices is complicated by the millions of amperes of current and tens of thousands of volts that are required to deliver the pulsed power needed for field generation. Methods of detecting physical properties of materials are essential parts of the science that seeks to understand and eventually control the fundamental functionality of materials in extreme environments. De-coupling the signal of the sample from the electro-magnetic interference associated with the magnet system is required to make these state-of-the-art magnetic fields useful to scientists studying materials in high magnetic fields. The cutting edge methods that are being used as well as methods in development will be presented with recent results in Graphene and High-Tc superconductors along with the methods and challenges. National Science Foundation DMR-Award 0654118.

  20. An Extreme Degree of Difficulty: The Educational Demographics of Urban Neighborhood High Schools

    ERIC Educational Resources Information Center

    Neild, Ruth Curran; Balfanz, Robert

    2006-01-01

    Despite the growth of a variety of alternatives to the neighborhood high school, most students in big-city school systems still attend large comprehensive high schools that serve a particular residential area. The authors contend that the extreme concentration of educational need at these schools is often overlooked by policymakers, school reform…

  1. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs

    PubMed Central

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10−13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs. PMID:27355212

  2. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs.

    PubMed

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10-13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs.

  3. Spatial extreme value analysis to project extremes of large-scale indicators for severe weather

    PubMed Central

    Gilleland, Eric; Brown, Barbara G; Ammann, Caspar M

    2013-01-01

    Concurrently high values of the maximum potential wind speed of updrafts (Wmax) and 0–6 km wind shear (Shear) have been found to represent conducive environments for severe weather, which subsequently provides a way to study severe weather in future climates. Here, we employ a model for the product of these variables (WmSh) from the National Center for Atmospheric Research/United States National Center for Environmental Prediction reanalysis over North America conditioned on their having extreme energy in the spatial field in order to project the predominant spatial patterns of WmSh. The approach is based on the Heffernan and Tawn conditional extreme value model. Results suggest that this technique estimates the spatial behavior of WmSh well, which allows for exploring possible changes in the patterns over time. While the model enables a method for inferring the uncertainty in the patterns, such analysis is difficult with the currently available inference approach. A variation of the method is also explored to investigate how this type of model might be used to qualitatively understand how the spatial patterns of WmSh correspond to extreme river flow events. A case study for river flows from three rivers in northwestern Tennessee is studied, and it is found that advection of WmSh from the Gulf of Mexico prevails while elsewhere, WmSh is generally very low during such extreme events. © 2013 The Authors. Environmetrics published by JohnWiley & Sons, Ltd. PMID:24223482

  4. A compact submicrosecond, high current generator

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Zorin, V. B.; Zherlitsyn, A. A.

    2009-08-01

    Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 Ω damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (˜0.08 Ω). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24×1.2×0.18 m3 and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.

  5. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity.

    PubMed

    Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng

    2016-12-02

    A ZnO quantum dot  photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W -1 and detectivity of more than 1.02 × 10 13 Jones (Jones = cm Hz 1/2 W -1 ) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W -1 to 1915 A W -1 and the detectivity is improved from 5.8 × 10 12 to 1.0 × 10 13 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.

  6. Biological Extreme Events - Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Gutschick, V. P.

    2010-12-01

    Biological extreme events span wide ranges temporally and spatially and in type - population dieoffs, extinctions, ecological reorganizations, changes in biogeochemical fluxes, and more. Driving variables consist in meteorology, tectonics, orbital changes, anthropogenic changes (land-use change, species introductions, reactive N injection into the biosphere), and evolution (esp. of diseases). However, the mapping of extremes in the drivers onto biological extremes as organismal responses is complex, as laid out originally in the theoretical framework of Gutschick and BassiriRad (New Phytologist [2003] 100:21-42). Responses are nonlinear and dependent on (mostly unknown and) complex temporal sequences - often of multiple environmental variables. The responses are species- and genotype specific. I review extreme events over from past to present over wide temporal scales, while noting that they are not wholly informative of responses to the current and near-future drivers for at least two reasons: 1) the current combination of numerous environmental extremes - changes in CO2, temperature, precipitation, reactive N, land fragmentation, O3, etc. -is unprecedented in scope, and 2) adaptive genetic variation for organismal responses is constrained by poorly-characterized genetic structures (in organisms and populations) and by loss of genetic variation by genetic drift over long periods. We may expect radical reorganizations of ecosystem and biogeochemical functions. These changes include many ecosystem services in flood control, crop pollination and insect/disease control, C-water-mineral cycling, and more, as well as direct effects on human health. Predictions of such changes will necessarily be very weak in the critical next few decades, given the great deal of observation, experimentation, and theory construction that will be necessary, on both organisms and drivers. To make the research efforts most effective will require extensive, insightful planning, beginning

  7. The Imprint of Extreme Climate Events in Century-Long Time Series of Wood Anatomical Traits in High-Elevation Conifers

    PubMed Central

    Carrer, Marco; Brunetti, Michele; Castagneri, Daniele

    2016-01-01

    Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800–2011 at monthly resolution and for 1926–2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0–34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on

  8. Multiresolution Iterative Reconstruction in High-Resolution Extremity Cone-Beam CT

    PubMed Central

    Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H; Stayman, J Webster

    2016-01-01

    Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution Penalized-Weighted Least Squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10× can be used without introducing artifacts, yielding a ~50× speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of MBIR where

  9. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins

    PubMed Central

    Lutz, Arthur F.; Nepal, Santosh; Khanal, Sonu; Pradhananga, Saurav; Shrestha, Arun B.; Immerzeel, Walter W.

    2017-01-01

    Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush–Himalayan region. PMID:29287098

  10. The Subaru Coronagraphic Extreme AO Project: Progress and Upgrades

    NASA Astrophysics Data System (ADS)

    Jovanovic, Nemanja; Martinache, F.; Guyon, O.; Clergeon, C.; Garrel, V.

    2013-01-01

    The Subaru Coronagraphic Extreme AO (SCExAO) instrument consists of a high performance Phase Induced Amplitude Apodisation (PIAA) coronagraph combined with an extreme Adaptive Optics (AO) system operating in the near-infrared (H band). The extreme AO system driven by the 2000 element deformable mirror will allow for Strehl ratios>90% to be achieved in the H-band when it goes closed loop. This makes the SCExAO instrument a powerful platform for high contrast imaging down to angular separations of the order of 1 λ/D. In this paper we report on the recent progress in regards to the development of the instrument, which includes the addition of a visible bench that makes use of the light at shorter wavelengths not currently utilized by SCExAO and closing the loop on the tip/tilt wavefront sensor. We will also discuss two exciting guest instruments which will expand the capabilities of SCExAO over the next few years; namely CHARIS which is a integral field spectrograph as well as VAMPIRES, a visible aperture masking experiment based on polarimetric analysis of circumstellar disks.

  11. Impact of the extreme 2009 wildfire Victoria the wettability of naturally highly water repellent soils

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan H.; Shakesby, Richard A.; Sheridan, Gary J.; Lane, Patrick Nj; Smith, Hugh G.; Bell, Tina; Blake, William H.

    2010-05-01

    The recent catastrophic wildfires near Melbourne, which peaked on Feb. 7 2009, burned ca 400,000 ha and caused the tragic loss of 173 people. They occurred during unprecedented extreme fire weather where dry northerly winds gusting up to 100 km/h coincided with the highest temperatures ever recorded in this region. These conditions, combined with the very high biomass of mature eucalypt forests, very low fuel moisture conditions and steep slopes, generated extreme burning conditions. A rapid response project was launched under the NERC Urgency Scheme aimed at determining the effects of this extreme event on soil properties. Three replicate sites each were sampled for extremely high burn severity, high burn severity and unburnt control terrain, within mature mixed-species eucalypt forests near Marysville in April 2009. Ash and surface soil (0-2.5 cm and 2.5-5 cm) were collected at 20 sample grid points at each site. Here we report on outcomes from Water Drop Penetration Time (WDPT) tests carried out on soil samples to determine the impact of this extreme event on the wettability of a naturally highly water repellent soil. Field assessment suggested that the impact of this extreme wildfire on the soil was less than might be supposed given the extreme burn severity (indicated by the complete elimination of the ground vegetation). This was confirmed by the laboratory results. No major difference in WDPT was detected between (i) burned and control samples, and (ii) between surface and subsurface WDPT patterns, indicating that soil temperatures in the top 0-2.5 cm did not exceed ~200° C. Seedling germination in burned soil was reduced by at least 2/3 compared to the control samples, however, this reduction is indicative an only modest heat input into the soil. The limited heat input into the soil stands in stark contrast to the extreme burn severity (based on vegetation destruction parameters). We speculate that limited soil heating resulted perhaps from the unusually

  12. Extreme triple asymmetric (ETAS) epitaxial designs for increased efficiency at high powers in 9xx-nm diode lasers

    NASA Astrophysics Data System (ADS)

    Kaul, T.; Erbert, G.; Maaßdorf, A.; Martin, D.; Crump, P.

    2018-02-01

    Broad area lasers that are tailored to be most efficient at the highest achievable optical output power are sought by industry to decrease operation costs and improve system performance. Devices using Extreme-Double-ASymmetric (EDAS) epitaxial designs are promising candidates for improved efficiency at high optical output powers due to low series resistance, low optical loss and low carrier leakage. However, EDAS designs leverage ultra-thin p-side waveguides, meaning that the optical mode is shifted into the n-side waveguide, resulting in a low optical confinement in the active region, low gain and hence high threshold current, limiting peak performance. We introduce here explicit design considerations that enable EDAS-based devices to be developed with increased optical confinement in the active layer without changing the p-side layer thicknesses. Specifically, this is realized by introducing a third asymmetric component in the vicinity of the quantum well. We call this approach Extreme-Triple-ASymmetric (ETAS) design. A series of ETAS-based vertical designs were fabricated into broad area lasers that deliver up to 63% power conversion efficiency at 14 W CW optical output power from a 100 μm stripe laser, which corresponds to the operation point of a kW optical output power in a laser bar. The design process, the impact of structural changes on power saturation mechanisms and finally devices with improved performance will be presented.

  13. High-Flow Arteriovenous Malformation of the Lower Extremity: Ethanolamine Oleate Sclerotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyodoh, Hideki; Fujita, Akifumi; Hyodoh, Kazusa

    2001-09-15

    We report the case of a young man presenting with high-flow arteriovenous malformation (AVM), in whom percutaneous direct nidus puncture ethanolamine oleate (EO) sclerotherapy was useful in the management of the AVM. To our knowledge, this is the first report of percutaneous trans-nidus EO sclerotherapy for AVM in the extremities. Percutaneous trans-nidus sclerotherapy should be considered as an alternative choice for the management of symptomatic AVM.

  14. Electropneumatic rheostat regulates high current

    NASA Technical Reports Server (NTRS)

    Haacker, J. F.; Jedlicka, J. R.; Wagoner, C. B.

    1965-01-01

    Electropneumatic rheostat maintains a constant direct current in each of several high-power parallel loads, of variable resistance, across a single source. It provides current regulation at any preset value by dissipating the proper amount of energy thermally, and uses a column of mercury to vary the effective length of a resistance element.

  15. High sensitivity microchannel plate detectors for space extreme ultraviolet missions.

    PubMed

    Yoshioka, K; Homma, T; Murakami, G; Yoshikawa, I

    2012-08-01

    Microchannel plate (MCP) detectors have been widely used as two-dimensional photon counting devices on numerous space EUV (extreme ultraviolet) missions. Although there are other choices for EUV photon detectors, the characteristic features of MCP detectors such as their light weight, low dark current, and high spatial resolution make them more desirable for space applications than any other detector. In addition, it is known that the photocathode can be tailored to increase the quantum detection efficiency (QDE) especially for longer UV wavelengths (100-150 nm). There are many types of photocathode materials available, typically alkali halides. In this study, we report on the EUV (50-150 nm) QDE evaluations for MCPs that were coated with Au, MgF(2), CsI, and KBr. We confirmed that CsI and KBr show 2-100 times higher QDEs than the bare photocathode MCPs, while Au and MgF(2) show reduced QDEs. In addition, the optimal geometrical parameters for the CsI deposition were also studied experimentally. The best CsI thickness was found to be 150 nm, and it should be deposited on the inner wall of the channels only where the EUV photons initially impinge. We will also discuss the techniques and procedures for reducing the degradation of the photocathode while it is being prepared on the ground before being deployed in space, as adopted by JAXA's EXCEED mission which will be launched in 2013.

  16. High current polarized electron source

    NASA Astrophysics Data System (ADS)

    Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.

    2018-05-01

    Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.

  17. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support

    PubMed Central

    Mitchell, Shannon M; Rogers, Stefanie P; Hicks, Penni D; Hawthorne, Keli M; Parker, Bruce R; Abrams, Steven A

    2009-01-01

    Background Osteopenia and rickets are common among extremely low birth weight infants (ELBW, <1000 g birth weight) despite current practices of vitamin and mineral supplementation. Few data are available evaluating the usual course of markers of mineral status in this population. Our objectives in this study were to determine the relationship between birth weight (BW) and peak serum alkaline phosphatase activity (P-APA) in ELBW infants and evaluate our experience with the diagnosis of rickets in these infants. Methods We evaluated all ELBW infants admitted to Texas Children's Hospital NICU in 2006 and 2007. Of 211 admissions, we excluded 98 patients who were admitted at >30 days of age or did not survive/stay for >6 weeks. Bone radiographs obtained in 32 infants were reviewed by a radiologist masked to laboratory values. Results In this cohort of 113 infants, P-APA was found to have a significant inverse relationship with BW, gestational age and serum phosphorus. In paired comparisons, P-APA of infants <600 g (957 ± 346 IU/L, n = 20) and infants 600–800 g (808 ± 323 IU/L, n = 43) were both significantly higher than P-APA of infants 800–1000 g (615 ± 252 IU/L, n = 50), p < 0.01. Thirty-two patients had radiographic evaluation for evidence of rickets, based on P-APA greater than 800 IU/L, parenteral nutrition greater than 3 to 4 weeks, or clinical suspicion. Of these, 18 showed radiologic rickets and 14 showed osteopenia without rickets. Infants with BW <600 g were more likely to have radiologic rickets (10/20 infants) compared to those with BW 600–800 g (6/43 infants) and BW 800–1000 g (2/50 infants), p < 0.01 for each. P-APA was not significantly higher in infants with radiologic rickets (1078 ± 356 IU/L) compared to those without radiologic evidence of rickets (943 ± 346, p = 0.18). Conclusion Elevation of P-APA >600 IU/L was very common in ELBW infants. BW was significantly inversely related to both P-APA and radiologic rickets. No single value of P

  18. Controlling extreme events on complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-08-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

  19. Exploring high power, extreme wavelength operating potential of rare-earth-doped silica fiber

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Li, Ruixian; Xiao, Hu; Huang, Long; Zhang, Hanwei; Leng, Jinyong; Chen, Zilun; Xu, Jiangmin; Wu, Jian; Wang, Xiong

    2017-08-01

    Ytterbium-doped fiber laser (YDFL) and Thulium doped fiber laser (TDFL) have been two kinds of the most widely studied fiber laser in recent years. Although both silica-based Ytterbium-doped fiber and Thulium doped fiber have wide emission spectrum band (more than 200 nm and 400 nm, respectively), the operation spectrum region of previously demonstrated high power YDFL and TDFL fall into 1060-1100 nm and 1900-2050nm. Power scaling of YDFL and TDFL operates at short-wavelength or long-wavelength band, especially for extreme wavelength operation, although is highly required in a large variety of application fields, is quite challenging due to small net gain and strong amplified spontaneous emission (ASE). In this paper, we will present study on extreme wavelength operation of high power YDFL and TDFL in our group. Comprehensive mathematical models are built to investigate the feasibility of high power operation and propose effective technical methods to achieve high power operation. We have achieved (1) Diodepumped 1150nm long wavelength YDFL with 120-watt level output power (2) Diode-pumped 1178nm long wavelength YDFL operates at high temperature with 30-watt level output power (3) Random laser pumped 2153nm long wavelength TDFL with 20-watt level output power (4) Diode-pumped 1018nm short wavelength YDFL with a record 2 kilowatt output power is achieved by using home-made fiber combiner.

  20. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  1. Diffractive shear interferometry for extreme ultraviolet high-resolution lensless imaging

    NASA Astrophysics Data System (ADS)

    Jansen, G. S. M.; de Beurs, A.; Liu, X.; Eikema, K. S. E.; Witte, S.

    2018-05-01

    We demonstrate a novel imaging approach and associated reconstruction algorithm for far-field coherent diffractive imaging, based on the measurement of a pair of laterally sheared diffraction patterns. The differential phase profile retrieved from such a measurement leads to improved reconstruction accuracy, increased robustness against noise, and faster convergence compared to traditional coherent diffractive imaging methods. We measure laterally sheared diffraction patterns using Fourier-transform spectroscopy with two phase-locked pulse pairs from a high harmonic source. Using this approach, we demonstrate spectrally resolved imaging at extreme ultraviolet wavelengths between 28 and 35 nm.

  2. Australia's Unprecedented Future Temperature Extremes Under Paris Limits to Warming

    NASA Astrophysics Data System (ADS)

    Lewis, Sophie C.; King, Andrew D.; Mitchell, Daniel M.

    2017-10-01

    Record-breaking temperatures can detrimentally impact ecosystems, infrastructure, and human health. Previous studies show that climate change has influenced some observed extremes, which are expected to become more frequent under enhanced future warming. Understanding the magnitude, as a well as frequency, of such future extremes is critical for limiting detrimental impacts. We focus on temperature changes in Australian regions, including over a major coral reef-building area, and assess the potential magnitude of future extreme temperatures under Paris Agreement global warming targets (1.5°C and 2°C). Under these limits to global mean warming, we determine a set of projected high-magnitude unprecedented Australian temperature extremes. These include extremes unexpected based on observational temperatures, including current record-breaking events. For example, while the difference in global-average warming during the hottest Australian summer and the 2°C Paris target is 1.1°C, extremes of 2.4°C above the observed summer record are simulated. This example represents a more than doubling of the magnitude of extremes, compared with global mean change, and such temperatures are unexpected based on the observed record alone. Projected extremes do not necessarily scale linearly with mean global warming, and this effect demonstrates the significant potential benefits of limiting warming to 1.5°C, compared to 2°C or warmer.

  3. [Indirect and repeated electromagnetic irradiation of extremely high freguency of bacteria Escherichia coli].

    PubMed

    Isakhanian, V; Trchunian, A

    2005-01-01

    It has been shown that separate irradiation of distilled water and tris-phosphate buffer containing some inorganic ions, with Escherichia coli K12 grown in anaerobic conditions upon fermentation of sugar (glucose) with "noise" electromagnetic radiation of extremely high frequencies (53.5-68 gHz) or millimeter waves (wavelength of 3 to 8 mm) with low flux capacity (0.01 mW) for 10, 30 and 60 min caused opposite effects, changing the growth of these bacteria. The irradiation of water has a bactericide effect, whereas the irradiation of the buffer stimulates bacterial growth although the buffer itself inhibits the growth. These results point out the role of water in the bactericide action of "noise" electromagnetic radiation of extremely high frequencies, and confirm the significance of membranotropic effects. The bactericide action disappeared after repeated irradiation for 10 and 30 min with 2-h intervals. This indicates the operation of some compensatory mechanisms in bacteria.

  4. Extreme Events in Urban Streams Leading to Extreme Temperatures in Birmingham, UK

    NASA Astrophysics Data System (ADS)

    Rangecroft, S.; Croghan, D.; Van Loon, A.; Sadler, J. P.; Hannah, D. M.

    2016-12-01

    Extreme flows and high water temperature events act as critical stressors on the ecological health of rivers. Urban headwater streams are considered particularly vulnerable to the effects of these extreme events. Despite this, such catchments remain poorly characterised and the effect of differences in land use is rarely quantified, especially in relation to water temperature. Thus a key research gap has emerged in understanding the patterns of water temperature during extreme events within contrasting urban, headwater catchments. We studied the headwaters of two bordering urban catchments of contrasting land use within Birmingham, UK. To characterise response to extreme events, precipitation and flow were analysed for the period of 1970-2016. To analyse the effects of extreme events on water temperature, 10 temperature loggers recording at 15 minute intervals were placed within each catchment covering a range of land use for the period May 2016 - present. During peak over threshold flood events higher average peaks were observed in the less urbanised catchment; however highest maximum flow peaks took place in the more densely urbanised catchment. Very similar average drought durations were observed between the two catchments with average flow drought durations of 27 days in the most urbanised catchment, and 29 in the less urbanised catchment. Flashier water temperature regimes were observed within the more urbanised catchment and increases of up to 5 degrees were apparent within 30 minutes during certain storms at the most upstream sites. Only in the most extreme events did the more densely urban stream appear more susceptible to both extreme high flows and extreme water temperature events, possibly resultant from overland flow emerging as the dominant flow pathway during intense precipitation events. Water temperature surges tended to be highly spatially variable indicating the importance of local land use. During smaller events, water temperature was less

  5. Alumina Concentration Detection Based on the Kernel Extreme Learning Machine.

    PubMed

    Zhang, Sen; Zhang, Tao; Yin, Yixin; Xiao, Wendong

    2017-09-01

    The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM.

  6. Recent and future warm extreme events and high-mountain slope stability.

    PubMed

    Huggel, C; Salzmann, N; Allen, S; Caplan-Auerbach, J; Fischer, L; Haeberli, W; Larsen, C; Schneider, D; Wessels, R

    2010-05-28

    The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.

  7. High-grade extremity soft tissue sarcomas: factors predictive of local recurrence and its effect on morbidity and mortality.

    PubMed

    Eilber, Fritz C; Rosen, Gerald; Nelson, Scott D; Selch, Michael; Dorey, Frederick; Eckardt, Jeffery; Eilber, Frederick R

    2003-02-01

    To identify patient characteristics associated with the development of local recurrence and the effect of local recurrence on subsequent morbidity and mortality in patients with intermediate- to high-grade extremity soft tissue sarcomas. Numerous studies on extremity soft tissue sarcomas have consistently shown that presentation with locally recurrent disease is associated with the development of subsequent local recurrences and that large tumor size and high histologic grade are significant factors associated with decreased survival. However, the effect of local recurrence on patient survival remains unclear. From 1975 to 1997, 753 patients with intermediate- to high-grade extremity soft tissue sarcomas were treated at UCLA. Treatment outcomes and patient characteristics were analyzed to identify factors associated with both local recurrence and survival. Patients with locally recurrent disease were at a significantly increased risk of developing a subsequent local recurrence. Local recurrence was a morbid event requiring amputation in 38% of the cases. The development of a local recurrence was the most significant factor associated with decreased survival. Once a patient developed a local recurrence, he or she was about three times more likely to die of disease compared to similar patients who had not developed a local recurrence. Local recurrence in patients with intermediate- to high-grade extremity soft tissue sarcomas is associated with the development of subsequent local recurrences, a morbid event decreasing functional outcomes and the most significant factor associated with decreased survival. Although 85% to 90% of patients with high-grade extremity soft tissue sarcomas are treatable with a limb salvage approach, patients who develop a local recurrence need aggressive treatment and should be considered for trials of adjuvant systemic therapy.

  8. Nonevaporable getter coating chambers for extreme high vacuum

    DOE PAGES

    Stutzman, Marcy L.; Adderley, Philip A.; Mamun, Md Abdullah Al; ...

    2018-03-01

    Techniques for NEG coating a large diameter chamber are presented along with vacuum measurements in the chamber using several pumping configurations, with base pressure as low as 1.56x10^-12 Torr (N2 equivalent) with only a NEG coating and small ion pump. We then describe modifications to the NEG coating process to coat complex geometry chambers for ultra-cold atom trap experiments. Surface analysis of NEG coated samples are used to measure composition and morphology of the thin films. Finally, pressure measurements are compared for two NEG coated polarized electron source chambers: the 130 kV polarized electron source at Jefferson Lab and themore » upgraded 350 kV polarized 2 electron source, both of which are approaching or within the extreme high vacuum (XHV) range, defined as P<7.5x10^-13 Torr.« less

  9. Nonevaporable getter coating chambers for extreme high vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutzman, Marcy L.; Adderley, Philip A.; Mamun, Md Abdullah Al

    Techniques for NEG coating a large diameter chamber are presented along with vacuum measurements in the chamber using several pumping configurations, with base pressure as low as 1.56x10^-12 Torr (N2 equivalent) with only a NEG coating and small ion pump. We then describe modifications to the NEG coating process to coat complex geometry chambers for ultra-cold atom trap experiments. Surface analysis of NEG coated samples are used to measure composition and morphology of the thin films. Finally, pressure measurements are compared for two NEG coated polarized electron source chambers: the 130 kV polarized electron source at Jefferson Lab and themore » upgraded 350 kV polarized 2 electron source, both of which are approaching or within the extreme high vacuum (XHV) range, defined as P<7.5x10^-13 Torr.« less

  10. SOI N-Channel Field Effect Transistors, CHT-NMOS80, for Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Almad

    2009-01-01

    Extreme temperatures, both hot and cold, are anticipated in many of NASA space exploration missions as well as in terrestrial applications. One can seldom find electronics that are capable of operation under both regimes. Even for operation under one (hot or cold) temperature extreme, some thermal controls need to be introduced to provide appropriate ambient temperatures so that spacecraft on-board or field on-site electronic systems work properly. The inclusion of these controls, which comprise of heating elements and radiators along with their associated structures, adds to the complexity in the design of the system, increases cost and weight, and affects overall reliability. Thus, it would be highly desirable and very beneficial to eliminate these thermal measures in order to simplify system's design, improve efficiency, reduce development and launch costs, and improve reliability. These requirements can only be met through the development of electronic parts that are designed for proper and efficient operation under extreme temperature conditions. Silicon-on-insulator (SOI) based devices are finding more use in harsh environments due to the benefits that their inherent design offers in terms of reduced leakage currents, less power consumption, faster switching speeds, good radiation tolerance, and extreme temperature operability. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. The objective of this work was to evaluate the performance of a new commercial-off-the-shelf (COTS) SOI parts over an extended temperature range and to determine the effects of thermal cycling on their performance. The results will establish a baseline on the suitability of such devices for use in space exploration missions under extreme temperatures, and will aid mission planners and circuit designers in the proper selection of electronic parts and circuits. The electronic part investigated in this work comprised of a CHT-NMOS80

  11. A Double-Pole High Voltage High Current Switch

    DTIC Science & Technology

    2005-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited A DOUBLE- POLE HIGH...December 2005 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: A Double- Pole High Voltage High Current Switch 6. AUTHOR(S...to divert heavy charged particles, e.g. Cu+. 15. NUMBER OF PAGES 68 14. SUBJECT TERMS Double- Pole , Pulse Forming Inductive Network, PFIN

  12. Mesoscale high-resolution modeling of extreme wind speeds over western water areas of the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Platonov, Vladimir S.; Kislov, Alexander V.

    2016-11-01

    A statistical analysis of extreme weather events over coastal areas of the Russian Arctic based on observational data has revealed many interesting features of wind velocity distributions. It has been shown that the extremes contain data belonging to two different statistical populations. Each of them is reliably described by a Weibull distribution. According to the standard terminology, these sets of extremes are named ‘black swans’ and ‘dragons’. The ‘dragons’ are responsible for most extremes, surpassing the ‘black swans’ by 10 - 30 %. Since the data of the global climate model INM-CM4 do not contain ‘dragons’, the wind speed extremes are investigated on the mesoscale using the COSMO-CLM model. The modelling results reveal no differences between the ‘swans’ and ‘dragons’ situations. It could be associated with the poor sample data used. However, according to many case studies and modeling results we assume that it is caused by a rare superposition of large-scale synoptic factors and many local meso- and microscale factors (surface, coastline configuration, etc.). Further studies of extreme wind speeds in the Arctic, such as ‘black swans’ and ‘dragons’, are necessary to focus on non-hydrostatic high-resolution atmospheric modelling using downscaling techniques.

  13. Modeling high-efficiency extreme ultraviolet etched multilayer phase-shift masks

    NASA Astrophysics Data System (ADS)

    Sherwin, Stuart; Neureuther, Andrew; Naulleau, Patrick

    2017-10-01

    Achieving high-throughput extreme ultraviolet (EUV) patterning remains a major challenge due to low source power; phase-shift masks can help solve this challenge for dense features near the resolution limit by creating brighter images than traditional absorber masks when illuminated with the same source power. We explore applications of etched multilayer phase-shift masks for EUV lithography, both in the current-generation 0.33 NA and next-generation 0.55 NA systems. We derive analytic formulas for the thin-mask throughput gains, which are 2.42× for lines and spaces and 5.86× for contacts compared with an absorber mask with dipole and quadrupole illumination, respectively. Using rigorous finite-difference time-domain simulations, we quantify variations in these gains by pitch and orientation, finding 87% to 113% of the thin-mask value for lines and spaces and a 91% to 99% for contacts. We introduce an edge placement error metric, which accounts for CD errors, relative feature motion, and telecentricity errors, and use this metric both to optimize mask designs for individual features and to explore which features can be printed on the same mask. Furthermore, we find that although partial coherence shrinks the process window, at an achievable sigma of 0.2 we obtain a depth of focus of 340 nm and an exposure latitude of 39.2%, suggesting that partial coherence will not limit the feasibility of this technology. Finally, we show that many problems such as sensitivity to etch uniformity can be greatly mitigated using a central obscuration in the imaging pupil.

  14. Extreme events in total ozone over Arosa - Part 1: Application of extreme value theory

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.

    2010-10-01

    In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland) total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs) and high (termed EHOs) total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD) provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima), and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds). Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO) and chemical features (e.g. strong polar vortex ozone loss), and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.

  15. Extreme events in total ozone over Arosa - Part 1: Application of extreme value theory

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.

    2010-05-01

    In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland) total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs) and high (termed EHOs) total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD) provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima), and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds). Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO) and chemical features (e.g. strong polar vortex ozone loss), and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.

  16. High-Pressure Transvenous Perfusion of the Upper Extremity in Human Muscular Dystrophy: A Safety Study with 0.9% Saline.

    PubMed

    Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; Chen, Yasheng; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William

    2015-09-01

    We evaluated safety and feasibility of high-pressure transvenous limb perfusion in an upper extremity of adult patients with muscular dystrophy, after completing a similar study in a lower extremity. A dose escalation study of single-limb perfusion with 0.9% saline was carried out in nine adults with muscular dystrophies under intravenous analgesia. Our study demonstrates that it is feasible and definitely safe to perform high-pressure transvenous perfusion with 0.9% saline up to 35% of limb volume in the upper extremities of young adults with muscular dystrophy. Perfusion at 40% limb volume is associated with short-lived physiological changes in peripheral nerves without clinical correlates in one subject. This study provides the basis for a phase 1/2 clinical trial using pressurized transvenous delivery into upper limbs of nonambulatory patients with Duchenne muscular dystrophy. Furthermore, our results are applicable to other conditions such as limb girdle muscular dystrophy as a method for delivering regional macromolecular therapeutics in high dose to skeletal muscles of the upper extremity.

  17. Effects of elevated mean and extremely high temperatures on the physio-ecological characteristics of geographically distinctive populations of Cunninghamia lanceolata

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Jia, Xiaorong; Liao, Huixuan; Peng, Shijia; Peng, Shaolin

    2016-12-01

    Conventional models for predicting species distribution under global warming scenarios often treat one species as a homogeneous whole. In the present study, we selected Cunninghamia lanceolata (C. lanceolata), a widely distributed species in China, to investigate the physio-ecological responses of five populations under different temperature regimes. The results demonstrate that increased mean temperatures induce increased growth performance among northern populations, which exhibited the greatest germination capacity and largest increase in the overlap between the growth curve and the monthly average temperature. However,tolerance of the southern population to extremely high temperatures was stronger than among the population from the northern region,shown by the best growth and the most stable photosynthetic system of the southern population under extremely high temperature. This result indicates that the growth advantage among northern populations due to increased mean temperatures may be weakened by lower tolerance to extremely high temperatures. This finding is antithetical to the predicted results. The theoretical coupling model constructed here illustrates that the difference in growth between populations at high and low latitudes and altitudes under global warming will decrease because of the frequent occurrence of extremely high temperatures.

  18. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  19. Cardiovascular consequences of extreme prematurity: the EPICure study.

    PubMed

    McEniery, Carmel M; Bolton, Charlotte E; Fawke, Joseph; Hennessy, Enid; Stocks, Janet; Wilkinson, Ian B; Cockcroft, John R; Marlow, Neil

    2011-07-01

    The long-term consequences of extreme prematurity are becoming increasingly important, given recent improvements in neonatal intensive care. The aim of the current study was to examine the cardiovascular consequences of extreme prematurity in 11-year-olds born at or before 25 completed weeks of gestation. Age and sex-matched classmates were recruited as controls. Information concerning perinatal and maternal history was collected, and current anthropometric characteristics were measured in 219 children born extremely preterm and 153 classmates. A subset of the extremely preterm children (n = 68) and classmates (n = 90) then underwent detailed haemodynamic investigations, including measurement of supine blood pressure (BP), aortic pulse wave velocity (aPWV, a measure of aortic stiffness) and augmentation index (AIx, a measure of arterial pressure wave reflections). Seated brachial systolic and diastolic BP were not different between extremely preterm children and classmates (P = 0.3 for both), although there was a small, significant elevation in supine mean and diastolic BP in the extremely preterm children (P < 0.05 for both). Arterial pressure wave reflections were significantly elevated in the extremely preterm children (P < 0.001) and this persisted after adjusting for confounding variables. However, aortic stiffness was not different between the groups (P = 0.1). These data suggest that extreme prematurity is associated with altered arterial haemodynamics in children, not evident from the examination of brachial BP alone. Moreover, the smaller, preresistance and resistance vessels rather than large elastic arteries appear to be most affected. Children born extremely preterm may be at increased future cardiovascular risk.

  20. Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements.

    PubMed

    Ferrari, Giorgio; Sampietro, Marco

    2007-09-01

    This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6 Hz to 1.4 MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.

  1. Probabilistic attribution of individual unprecedented extreme events

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.

    2016-12-01

    The last decade has seen a rapid increase in efforts to understand the influence of global warming on individual extreme climate events. Although trends in the distributions of climate observations have been thoroughly analyzed, rigorously quantifying the contribution of global-scale warming to individual events that are unprecedented in the observed record presents a particular challenge. This paper describes a method for leveraging observations and climate model ensembles to quantify the influence of historical global warming on the severity and probability of unprecedented events. This approach uses formal inferential techniques to quantify four metrics: (1) the contribution of the observed trend to the event magnitude, (2) the contribution of the observed trend to the event probability, (3) the probability of the observed trend in the current climate and a climate without human influence, and (4) the probability of the event magnitude in the current climate and a climate without human influence. Illustrative examples are presented, spanning a range of climate variables, timescales, and regions. These examples illustrate that global warming can influence the severity and probability of unprecedented extremes. In some cases - particularly high temperatures - this change is indicated by changes in the mean. However, changes in probability do not always arise from changes in the mean, suggesting that global warming can alter the frequency with which complex physical conditions co-occur. Because our framework is transparent and highly generalized, it can be readily applied to a range of climate events, regions, and levels of climate forcing.

  2. High numerical aperture projection system for extreme ultraviolet projection lithography

    DOEpatents

    Hudyma, Russell M.

    2000-01-01

    An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.

  3. An extremely high-altitude plume seen at Mars' morning terminator.

    PubMed

    Sánchez-Lavega, A; Muñoz, A García; García-Melendo, E; Pérez-Hoyos, S; Gómez-Forrellad, J M; Pellier, C; Delcroix, M; López-Valverde, M A; González-Galindo, F; Jaeschke, W; Parker, D; Phillips, J; Peach, D

    2015-02-26

    The Martian limb (that is, the observed 'edge' of the planet) represents a unique window into the complex atmospheric phenomena occurring there. Clouds of ice crystals (CO2 ice or H2O ice) have been observed numerous times by spacecraft and ground-based telescopes, showing that clouds are typically layered and always confined below an altitude of 100 kilometres; suspended dust has also been detected at altitudes up to 60 kilometres during major dust storms. Highly concentrated and localized patches of auroral emission controlled by magnetic field anomalies in the crust have been observed at an altitude of 130 kilometres. Here we report the occurrence in March and April 2012 of two bright, extremely high-altitude plumes at the Martian terminator (the day-night boundary) at 200 to 250 kilometres or more above the surface, and thus well into the ionosphere and the exosphere. They were spotted at a longitude of about 195° west, a latitude of about -45° (at Terra Cimmeria), extended about 500 to 1,000 kilometres in both the north-south and east-west directions, and lasted for about 10 days. The features exhibited day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behaviour. We used photometric measurements to explore two possible scenarios and investigate their nature. For particles reflecting solar radiation, clouds of CO2-ice or H2O-ice particles with an effective radius of 0.1 micrometres are favoured over dust. Alternatively, the plume could arise from auroral emission, of a brightness more than 1,000 times that of the Earth's aurora, over a region with a strong magnetic anomaly where aurorae have previously been detected. Importantly, both explanations defy our current understanding of Mars' upper atmosphere.

  4. High-resolution extremity cone-beam CT with a CMOS detector: Task-based optimization of scintillator thickness.

    PubMed

    Cao, Q; Brehler, M; Sisniega, A; Stayman, J W; Yorkston, J; Siewerdsen, J H; Zbijewski, W

    2017-03-01

    the CMOS detector with 400 μ m scinitllator. Applications on CMOS detectors in high resolution CBCT imaging of trabecular bone will benefit from using a thinner scintillator than the current standard in general radiography. The results support the translation of the CMOS sensor with 400 μ m CsI onto the clinical prototype of CMOS-based extremity CBCT.

  5. High-resolution extremity cone-beam CT with a CMOS detector: Task-based optimization of scintillator thickness

    PubMed Central

    Cao, Q.; Brehler, M.; Sisniega, A.; Stayman, J. W.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2017-01-01

    structures with the CMOS detector with 400 μm scinitllator. Conclusion Applications on CMOS detectors in high resolution CBCT imaging of trabecular bone will benefit from using a thinner scintillator than the current standard in general radiography. The results support the translation of the CMOS sensor with 400 μm CsI onto the clinical prototype of CMOS-based extremity CBCT. PMID:28989220

  6. Current halo structures in high-current plasma experiments: θ-pinch

    NASA Astrophysics Data System (ADS)

    Matveev, Yu. V.

    2007-03-01

    Experimental data elucidating mechanisms for halo formation in θ-pinch discharges are presented and discussed. The experiments were performed with different gases (H2, D2, He, and Ar) in a theta-pinch device with a porcelain vacuum chamber and an excitation coil 15 cm in diameter and 30 cm in length. The stored energy, the current in the excitation coil, and the current half-period were W = 10 kJ, I = 400 kA, and T/2 = 14 μs, respectively. It is found that the plasma rings (halos) surrounding the pinch core arise as a result of coaxial pinch stratification due to both the excitation of closed currents (inductons) inside the pinch and the radial convergence of the plasma current sheaths produced after the explosion of T-layers formed near the wall in the initial stage of the discharge. It is concluded that halo structures observed in pinches, tokamaks, and other high-current devices used in controlled fusion research have the same nature.

  7. Outcomes for extremely premature infants.

    PubMed

    Glass, Hannah C; Costarino, Andrew T; Stayer, Stephen A; Brett, Claire M; Cladis, Franklyn; Davis, Peter J

    2015-06-01

    Premature birth is a significant cause of infant and child morbidity and mortality. In the United States, the premature birth rate, which had steadily increased during the 1990s and early 2000s, has decreased annually for 7 years and is now approximately 11.39%. Human viability, defined as gestational age at which the chance of survival is 50%, is currently approximately 23 to 24 weeks in developed countries. Infant girls, on average, have better outcomes than infant boys. A relatively uncomplicated course in the intensive care nursery for an extremely premature infant results in a discharge date close to the prenatal estimated date of confinement. Despite technological advances and efforts of child health experts during the last generation, the extremely premature infant (less than 28 weeks gestation) and extremely low birth weight infant (<1000 g) remain at high risk for death and disability with 30% to 50% mortality and, in survivors, at least 20% to 50% risk of morbidity. The introduction of continuous positive airway pressure, mechanical ventilation, and exogenous surfactant increased survival and spurred the development of neonatal intensive care in the 1970s through the early 1990s. Routine administration of antenatal steroids during premature labor improved neonatal mortality and morbidity in the late 1990s. The recognition that chronic postnatal administration of steroids to infants should be avoided may have improved outcomes in the early 2000s. Evidence from recent trials attempting to define the appropriate target for oxygen saturation in preterm infants suggests arterial oxygen saturation between 91% and 95% (compared with 85%-89%) avoids excess mortality; however, final analyses of data from these trials have not been published, so definitive recommendations are still pending. The development of neonatal neurocritical intensive care units may improve neurocognitive outcomes in this high-risk group. Long-term follow-up to detect and address

  8. Violent Extremism, National Security and Prevention. Institutional Discourses and Their Implications for Schooling

    ERIC Educational Resources Information Center

    Mattsson, Christer; Säljö, Roger

    2018-01-01

    Currently, threats to societal security from extremist groups are high on the political agenda in many countries. Politicians, policymakers at various levels and communities are searching for methods to counteract recruitment to violent organizations. These efforts are often referred to as Prevention of Violent Extremism (PVE-programmes). One of…

  9. Factors affecting the 7Be surface concentration and its extremely high occurrences over the Scandinavian Peninsula during autumn and winter.

    PubMed

    Ajtić, J; Brattich, E; Sarvan, D; Djurdjevic, V; Hernández-Ceballos, M A

    2018-05-01

    Relationships between the beryllium-7 activity concentrations in surface air and meteorological parameters (temperature, atmospheric pressure, and precipitation), teleconnection indices (Arctic Oscillation, North Atlantic Oscillation, and Scandinavian pattern) and number of sunspots are investigated using two multivariate statistical techniques: hierarchical cluster and factor analysis. The beryllium-7 surface measurements over 1995-2011, at four sampling sites located in the Scandinavian Peninsula, are obtained from the Radioactivity Environmental Monitoring Database. In all sites, the statistical analyses show that the beryllium-7 concentrations are strongly linked to temperature. Although the beryllium-7 surface concentration exhibits the well-characterised spring/summer maximum, our study shows that extremely high beryllium-7 concentrations, defined as the values exceeding the 90 th percentile in the data records for each site, also occur over the October-March period. Two types of autumn/winter extremes are distinguished: type-1 when the number of extremes in a given month is less than three, and type-2 when at least three extremes occur in a month. Factor analysis performed for these autumn/winter events shows a weaker effect of temperature and a stronger impact of the transport and production signal on the beryllium-7 concentrations. Further, the majority of the type-2 extremes are associated with a very high monthly Scandinavian teleconnection index. The type-2 extremes that occurred in January, February and March are also linked to sudden stratospheric warmings of the Arctic vortex. Our results indicate that the Scandinavian teleconnection index might be a good indicator of the meteorological conditions facilitating extremely high beryllium-7 surface concentrations over Scandinavia during autumn and winter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-framemore » [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.« less

  11. Radiography Capabilities for Matter-Radiation Interactions in Extremes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell; Garnett, Robert William; Chapman, Catherine A. B

    The Matter-Radiation Interactions in Extremes (MaRIE) experimental facility will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. This new facility will provide the new tools scientists need to develop next-generation materials that will perform predictably and on-demand for currently unattainable lifetimes in extreme environments. The MaRIE facility is based on upgrades to the existing LANSCE 800-MeV proton linac and a new 12-GeV electron linac and associated X-ray FEL to provide simultaneous multiple probe beams, and new experimental areas. In addition to the high-energy photon probe beam, both electronmore » and proton radiography capabilities will be available at the MaRIE facility. Recently, detailed radiography system studies have been performed to develop conceptual layouts of high-magnification electron and proton radiography systems that can meet the experimental requirements for the expected first experiments to be performed at the facility. A description of the radiography systems, their performance requirements, and a proposed facility layout are presented.« less

  12. Extreme Conditions Modeling Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, R. G.; Neary, V. S.; Lawson, M. J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

  13. A Framework to Understand Extreme Space Weather Event Probability.

    PubMed

    Jonas, Seth; Fronczyk, Kassandra; Pratt, Lucas M

    2018-03-12

    An extreme space weather event has the potential to disrupt or damage infrastructure systems and technologies that many societies rely on for economic and social well-being. Space weather events occur regularly, but extreme events are less frequent, with a small number of historical examples over the last 160 years. During the past decade, published works have (1) examined the physical characteristics of the extreme historical events and (2) discussed the probability or return rate of select extreme geomagnetic disturbances, including the 1859 Carrington event. Here we present initial findings on a unified framework approach to visualize space weather event probability, using a Bayesian model average, in the context of historical extreme events. We present disturbance storm time (Dst) probability (a proxy for geomagnetic disturbance intensity) across multiple return periods and discuss parameters of interest to policymakers and planners in the context of past extreme space weather events. We discuss the current state of these analyses, their utility to policymakers and planners, the current limitations when compared to other hazards, and several gaps that need to be filled to enhance space weather risk assessments. © 2018 Society for Risk Analysis.

  14. Extreme Value Analysis of hydro meteorological extremes in the ClimEx Large-Ensemble

    NASA Astrophysics Data System (ADS)

    Wood, R. R.; Martel, J. L.; Willkofer, F.; von Trentini, F.; Schmid, F. J.; Leduc, M.; Frigon, A.; Ludwig, R.

    2017-12-01

    Many studies show an increase in the magnitude and frequency of hydrological extreme events in the course of climate change. However the contribution of natural variability to the magnitude and frequency of hydrological extreme events is not yet settled. A reliable estimate of extreme events is from great interest for water management and public safety. In the course of the ClimEx Project (www.climex-project.org) a new single-model large-ensemble was created by dynamically downscaling the CanESM2 large-ensemble with the Canadian Regional Climate Model version 5 (CRCM5) for an European Domain and a Northeastern North-American domain. By utilizing the ClimEx 50-Member Large-Ensemble (CRCM5 driven by CanESM2 Large-Ensemble) a thorough analysis of natural variability in extreme events is possible. Are the current extreme value statistical methods able to account for natural variability? How large is the natural variability for e.g. a 1/100 year return period derived from a 50-Member Large-Ensemble for Europe and Northeastern North-America? These questions should be answered by applying various generalized extreme value distributions (GEV) to the ClimEx Large-Ensemble. Hereby various return levels (5-, 10-, 20-, 30-, 60- and 100-years) based on various lengths of time series (20-, 30-, 50-, 100- and 1500-years) should be analyzed for the maximum one day precipitation (RX1d), the maximum three hourly precipitation (RX3h) and the streamflow for selected catchments in Europe. The long time series of the ClimEx Ensemble (7500 years) allows us to give a first reliable estimate of the magnitude and frequency of certain extreme events.

  15. Extremely large magnetoresistance and high-density Dirac-like fermions in ZrB2

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Guo, Peng-Jie; Sun, Shanshan; Li, Chenghe; Liu, Kai; Lu, Zhong-Yi; Lei, Hechang

    2018-05-01

    We report the detailed study on transport properties of ZrB2 single crystal, a predicted topological nodal-line semimetal. ZrB2 exhibits extremely large magnetoresistance as well as field-induced resistivity upturn and plateau. These behaviors can be well understood by the two-band model with the perfect electron-hole compensation and high carrier mobilities. More importantly, the electrons with small effective masses and nontrivial Berry phase have significantly high density when compared to those in known topological semimetals. It strongly suggests that ZrB2 hosts Dirac-like nodal-line fermions.

  16. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    PubMed Central

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  17. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment.

    PubMed

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T

    2015-12-02

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  18. MAIMIK: A high current electron beam experiment on a sounding rocket from Andoya rocket range (Norway)

    NASA Astrophysics Data System (ADS)

    Maehlum, B. N.; Denig, W. F.; Egeland, A. A.; Friedrich, M.; Hansen, T.; Holmgren, G. K.; Maaseide, K.; Maynard, N. C.; Narheim, B. T.; Svenes, K.

    1987-08-01

    Two payloads (mother-daughter) connected by a tether were launched by sounding rocket to study the interactions between the electron beam and the environment for various boundary conditions and to study the physical processes associated with the neutralization of electrically charged vehicles in an ionospheric plasma. The daughter payload carried an accelerator which emitted pulses of electrons of 8 keV energies. The rocket instruments and results related to vehicle charging and neutralization are summarized. Results indicate extremely high charging of the daughter (several kV) for beam current greater than or = 80 mA. The reason may be the low plasma density (10 billion/cu m) in the F region during the experiment.

  19. Technology perspectives in the future exploration of extreme environments

    NASA Astrophysics Data System (ADS)

    Cutts, J.; Balint, T.; Kolawa, El.; Peterson, C.

    2007-08-01

    Solar System exploration is driven by high priority science goals and objectives at diverse destinations, as described in the NRC Decadal Survey and in NASA's 2006 Solar System Exploration (SSE) Roadmap. Proposed missions to these targets encounter extreme environments, including high or low temperatures, high pressure, corrosion, high heat flux, radiation and thermal cycling. These conditions are often coupled, such as low temperature and high radiation at Europa; and high temperature and high pressure near the surface of Venus. Mitigation of these environmental conditions frequently reaches beyond technologies developed for terrestrial applications, for example, by the automotive and oil industries. Therefore, space agencies require dedicated technology developments to enable these future missions. Within NASA, proposed missions are divided into three categories. Competed small (Discovery class) and medium (New Frontiers class) missions are cost capped, thus limiting significant technology developments. Therefore, large (Flagship class) missions are required not only to tackle key science questions which can't be addressed by smaller missions, but also to develop mission enabling technologies that can feed forward to smaller missions as well. In a newly completed extreme environment technology assessment at NASA, we evaluated technologies from the current State of Practice (SoP) to advanced concepts for proposed missions over the next decades. Highlights of this report are discussed here, including systems architectures, such as hybrid systems; protection systems; high temperature electronics; power generation and storage; mobility technologies; sample acquisition and mechanisms; and the need to test these technologies in relevant environments. It is expected that the findings - documented in detail in NASA's Extreme Environments Technologies report - would help identifying future technology investment areas, and in turn enable or enhance planned SSE missions

  20. Acute Effects of Static Stretching, Dynamic Exercises, and High Volume Upper Extremity Plyometric Activity on Tennis Serve Performance

    PubMed Central

    Gelen, Ertugrul; Dede, Muhittin; Bingul, Bergun Meric; Bulgan, Cigdem; Aydin, Mensure

    2012-01-01

    The purpose of this study was to compare the acute effects of static stretching; dynamic exercises and high volume upper extremity plyometric activity on tennis serve performance. Twenty-six elite young tennis players (15.1 ± 4.2 years, 167.9 ± 5.8 cm and 61.6 ± 8.1 kg) performed 4 different warm-up (WU) routines in a random order on non-consecutive days. The WU methods consisted of traditional WU (jogging, rally and serve practice) (TRAD); traditional WU and static stretching (TRSS); traditional WU and dynamic exercise (TRDE); and traditional WU and high volume upper extremity plyometric activity (TRPLYP). Following each WU session, subjects were tested on a tennis serve ball speed test. TRAD, TRSS, TRDE and TRPLYO were compared by repeated measurement analyses of variance and post-hoc comparisons. In this study a 1 to 3 percent increase in tennis serve ball speed was recorded in TRDE and TRPLYO when compared to TRAD (p< 0.05). However, no significant change in ball speed performance between TRSS and TRAD. (p> 0.05). ICCs for ball speed showed strong reliability (0.82 to 0.93) for the ball speed measurements.The results of this study indicate that dynamic and high volume upper extremity plyometric WU activities are likely beneficial to serve speed of elite junior tennis players. Key points After the traditional warm up in tennis, static stretching has no effect on serve speed. Tennis players should perform dynamic exercises and/or high volume upper extremity plyometric activities to improve their athletic performance. PMID:24150068

  1. Irrigation mitigates against heat extremes

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Fischer, Erich; Visser, Auke; Hirsch, Annette L.; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.

    2017-04-01

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use gridded observations and ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on hot extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Finally we find that present-day irrigation is partly masking GHG-induced warming of extreme temperatures, with particularly strong effects in South Asia. Our results overall underline that irrigation substantially reduces our exposure to hot temperature extremes and highlight the need to account for irrigation in future climate projections.

  2. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  3. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction

    NASA Astrophysics Data System (ADS)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.

    2015-12-01

    Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of

  4. WE-AB-207A-01: BEST IN PHYSICS (IMAGING): High-Resolution Cone-Beam CT of the Extremities and Cancellous Bone Architecture with a CMOS Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Q; Brehler, M; Sisniega, A

    Purpose: Extremity cone-beam CT (CBCT) with an amorphous silicon (aSi) flat-panel detector (FPD) provides low-dose volumetric imaging with high spatial resolution. We investigate the performance of the newer complementary metal-oxide semiconductor (CMOS) detectors to enhance resolution of extremities CBCT to ∼0.1 mm, enabling morphological analysis of trabecular bone. Quantitative in-vivo imaging of bone microarchitecture could present an important advance for osteoporosis and osteoarthritis diagnosis and therapy assessment. Methods: Cascaded systems models of CMOS- and FPD-based extremities CBCT were implemented. Performance was compared for a range of pixel sizes (0.05–0.4 mm), focal spot sizes (0.3–0.6 FS), and x-ray techniques (0.05–0.8 mAs/projection)more » using detectability of high-, low-, and all-frequency tasks for a nonprewhitening observer. Test-bench implementation of CMOS-based extremity CBCT involved a Teledyne DALSA Xineos3030HR detector with 0.099 mm pixels and a compact rotating anode x-ray source with 0.3 FS (IMD RTM37). Metrics of bone morphology obtained using CMOS-based CBCT were compared in cadaveric specimens to FPD-based system using a Varian PaxScan4030 (0.194 mm pixels). Results: Finer pixel size and reduced electronic noise for CMOS (136 e compared to 2000 e for FPD) resulted in ∼1.9× increase in detectability for high-frequency tasks and ∼1.1× increase for all-frequency tasks. Incorporation of the new x-ray source with reduced focal spot size (0.3 FS vs. 0.5 FS used on current extremities CBCT) improved detectability for CMOS-based CBCT by ∼1.7× for high-frequency tasks. Compared to FPD CBCT, the CMOS detector yielded improved agreement with micro-CT in measurements of trabecular thickness (∼1.7× reduction in relative error), bone volume (∼1.5× reduction), and trabecular spacing (∼3.5× reduction). Conclusion: Imaging performance modelling and experimentation indicate substantial improvements for high

  5. [Antitumor effect of low-intensity extremely high-frequency electromagnetic radiation on a model of solid Ehrlich carcinoma].

    PubMed

    Gapeev, A B; Shved, D M; Mikhaĭlik, E N; Korystov, Iu N; Levitman, M Kh; Shaposhnikova, V V; Sadovnikov, V B; Alekhin, A I; Goncharov, N G; Chemeris, N K

    2009-01-01

    The influence of different exposure regimes of low-intensity extremely high-frequency electromagnetic radiation on the growth rate of solid Ehrlich carcinoma in mice has been studied. It was shown that, at an optimum repetition factor of exposure (20 min daily for five consecutive days after the tumor inoculation), there is a clearly pronounced frequency dependence of the antitumor effect. The analysis of experimental data indicates that the mechanisms of antitumor effects of the radiation may be related to the modification of the immune status of the organism. The results obtained show that extremely high-frequency electromagnetic radiation at a proper selection of exposure regimes can result in distinct and stable antitumor effects.

  6. Extreme alien light allows survival of terrestrial bacteria

    NASA Astrophysics Data System (ADS)

    Johnson, Neil; Zhao, Guannan; Caycedo, Felipe; Manrique, Pedro; Qi, Hong; Rodriguez, Ferney; Quiroga, Luis

    2013-07-01

    Photosynthetic organisms provide a crucial coupling between the Sun's energy and metabolic processes supporting life on Earth. Searches for extraterrestrial life focus on seeking planets with similar incident light intensities and environments. However the impact of abnormal photon arrival times has not been considered. Here we present the counterintuitive result that broad classes of extreme alien light could support terrestrial bacterial life whereas sources more similar to our Sun might not. Our detailed microscopic model uses state-of-the-art empirical inputs including Atomic Force Microscopy (AFM) images. It predicts a highly nonlinear survivability for the basic lifeform Rsp. Photometricum whereby toxic photon feeds get converted into a benign metabolic energy supply by an interplay between the membrane's spatial structure and temporal excitation processes. More generally, our work suggests a new handle for manipulating terrestrial photosynthesis using currently-available extreme value statistics photon sources.

  7. Structural Extremes in a Cretaceous Dinosaur

    PubMed Central

    Sereno, Paul C.; Wilson, Jeffrey A.; Witmer, Lawrence M.; Whitlock, John A.; Maga, Abdoulaye; Ide, Oumarou; Rowe, Timothy A.

    2007-01-01

    Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic. PMID:18030355

  8. High-energy roller injuries to the upper extremity.

    PubMed

    Askins, G; Finley, R; Parenti, J; Bush, D; Brotman, S

    1986-12-01

    Eleven cases of high-energy industrial roller injuries treated between 1980 and 1984 were retrospectively reviewed. The dominant extremity was affected in nine. Six patients sustained fractures and/or dislocations, and three of these patients required fasciotomies for clinical signs of impending compartment syndromes. All fracture/dislocations, with the exception of a scapula fracture, anterior dislocation of a thumb interphalangeal joint, and a fractured coronoid process of the ulna, required open reduction with internal fixation. Three patients required split-thickness skin grafting for extensive skin degloving. Two patients required immediate amputation. Late sequelae included prolonged edema, nutritional depletion, neuroma formation of the superficial branch of the radial nerve, late carpal tunnel syndrome, and partial brachial plexus palsy. Industrial roller injuries continue to be an occupational hazard associated with more severe crushing trauma than the low-energy wringer washer injuries first described by MacCollum (11). Attention must be paid to the treatment of crushed skin, muscle, and nerves, fracture stabilization, nutritional support, and occupational therapy. Concurrent monitoring for signs of a developing compartment syndrome and complications of rhabdomyolysis is essential.

  9. High current ion source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  10. The Rogowski Coil Sensor in High Current Application: A Review

    NASA Astrophysics Data System (ADS)

    Nazmy Nanyan, Ayob; Isa, Muzamir; Hamid, Haziah Abdul; Nur Khairul Hafizi Rohani, Mohamad; Ismail, Baharuddin

    2018-03-01

    Rogowski coil is used for measuring the alternating current (AC) and high-speed current pulses. However, the technology makes the Rogowski coil (RC) come out with more improvement, modification and until today it’s still being studied for the new application. The Rogowski coil has a few advantages compared to the high frequency current transformer (HFCT). A brief review on the basic theory and the application of Rogowski coil as a current sensor measurement that been done by previous researchers are presented and discussed in this paper. Additionally, the review also focused on the capability of Rogowski coil for high current sensor measurement and their application for fault detection, over voltage current sensor, lightning current sensor and high impulse current detection. The experimental set up, techniques and measurement parameters in models also been discussed. Finally, a brief review on the performance analysis of current sensor measurement of Rogowski coil likes sensitivity, the maximum and current detection which could be used as a guideline to another researcher in order to develop an advanced RC as high current sensor in future is presented. This review reveal that the RC has a very good performance in high current sensor detection in term of sensitivity which is up to a few nanosecond, higher bandwidth, excellent in detection of high fault and also could measuring lightning current up to 400kA and has many advantages compare to conventional current transformer(CT).

  11. Climate projection of synoptic patterns forming extremely high wind speed over the Barents Sea

    NASA Astrophysics Data System (ADS)

    Surkova, Galina; Krylov, Aleksey

    2017-04-01

    Frequency of extreme weather events is not very high, but their consequences for the human well-being may be hazardous. These seldom events are not always well simulated by climate models directly. Sometimes it is more effective to analyze numerical projection of large-scale synoptic event generating extreme weather. For example, in mid-latitude surface wind speed depends mainly on the sea level pressure (SLP) field - its configuration and horizontal pressure gradient. This idea was implemented for analysis of extreme wind speed events over the Barents Sea. The calendar of high surface wind speed V (10 m above the surface) was prepared for events with V exceeding 99th percentile value in the central part of the Barents Sea. Analysis of probability distribution function of V was carried out on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude) for the period 1981-2010. Storm wind events number was found to be 240 days. Sea level pressure field over the sea and surrounding area was selected for each storm wind event. For the climate of the future (scenario RCP8.5), projections of SLP from CMIP5 numerical experiments were used. More than 20 climate models results of projected SLP (2006-2100) over the Barents Sea were correlated with modern storm wind SLP fields. Our calculations showed the positive tendency of annual frequency of storm SLP patterns over the Barents Sea by the end of 21st century.

  12. Observation of extreme ultraviolet transitions in highly charged Ba{sup 16+} to Ba{sup 23+} ions with electron beam ion trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, S.; Shimizu, E.; Nakamura, N.

    2016-03-15

    We have investigated extreme ultraviolet emission from highly charged barium using a compact electron beam ion trap at the Tokyo EBIT laboratory. The spectra were recorded for several beam energies ranging from 440 to 740 eV, while keeping the electron beam current constant at 10 mA. Radiation from charge states Zr-like Ba{sup 16+} to As-like Ba{sup 23+} were recorded and identified by varying the electron beam energy across the ionization thresholds and comparing with calculated results. The calculations were performed with a detailed relativistic configuration interaction approach using the Flexible Atomic Code. Several new lines belonging to electric dipole transitions were observedmore » and identified.« less

  13. Reaction of Basaltic Materials under High-Fidelity Venus Surface Conditions using the Glenn Extreme Environment Rig: First Results

    NASA Technical Reports Server (NTRS)

    Radoman-Shaw, Brandon; Harvey, Ralph; Costa, Gustavo; Nakley, Leah Michelle; Jacobson, Nathan S.

    2016-01-01

    Both historical and current investigations of Venus suggest that atmosphererock interactions play a critical role in the evolution of its atmosphere and crust. We have begun a series of systematic experiments designed to further our understanding of atmosphere-driven weathering and secondary mineralization of basaltic materials that may be occurring on Venus today. Our experiments expose representative igneous phases (mineral, glasses and rocks) to a high-fidelity simulation of Venus surface conditions using the NASA Glenn Extreme Environment Rig (GEER) located at the NASA Glenn Research Center in Cleveland, Ohio. GEER is a very large (800L) vessel capable of producing a long-term, high fidelity simulation of both the physical conditions (750 K and 92 bar) and atmospheric chemistry (down to the ppb-level) asso-ciated with the Venusian surface. As of this writing we have just finished the first of several planned experiments: a 42-day exposure of selected mineral, rocks and volcanic glasses. Our goal is to identify and prioritize the reactions taking place and better our understanding of their importance in Venus' climate history.

  14. Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes.

    PubMed

    Oyola, Samuel O; Otto, Thomas D; Gu, Yong; Maslen, Gareth; Manske, Magnus; Campino, Susana; Turner, Daniel J; Macinnis, Bronwyn; Kwiatkowski, Dominic P; Swerdlow, Harold P; Quail, Michael A

    2012-01-03

    Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences. We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates. We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of

  15. Growth of high-elevation Cryptococcus sp. during extreme freeze-thaw cycles.

    PubMed

    Vimercati, L; Hamsher, S; Schubert, Z; Schmidt, S K

    2016-09-01

    Soils above 6000 m.a.s.l. are among the most extreme environments on Earth, especially on high, dry volcanoes where soil temperatures cycle between -10 and 30 °C on a typical summer day. Previous studies have shown that such sites are dominated by yeast in the cryophilic Cryptococcus group, but it is unclear if they can actually grow (or are just surviving) under extreme freeze-thaw conditions. We carried out a series of experiments to determine if Cryptococcus could grow during freeze-thaw cycles similar to those measured under field conditions. We found that Cryptococcus phylotypes increased in relative abundance in soils subjected to 48 days of freeze-thaw cycles, becoming the dominant organisms in the soil. In addition, pure cultures of Cryptococcus isolated from these same soils were able to grow in liquid cultures subjected to daily freeze-thaw cycles, despite the fact that the culture medium froze solid every night. Furthermore, we showed that this organism is metabolically versatile and phylogenetically almost identical to strains from Antarctic Dry Valley soils. Taken together these results indicate that this organism has unique metabolic and temperature adaptations that make it able to thrive in one of the harshest and climatically volatile places on Earth.

  16. Transcranial Direct Current Stimulation Post-Stroke Upper Extremity Motor Recovery Studies Exhibit a Dose–Response Relationship

    PubMed Central

    Chhatbar, Pratik Y.; Ramakrishnan, Viswanathan; Kautz, Steven; George, Mark S.; Adams, Robert J.; Feng, Wuwei

    2015-01-01

    Background and purpose Transcranial direct current stimulation (tDCS) has shown mixed results in post-stroke motor recovery, possibly because of tDCS dose differences. The purpose of this meta-analysis was to explore whether the outcome has a dose–response relationship with various dose-related parameters. Methods The literature was searched for double-blind, randomized, sham-controlled clinical trials investigating the role of tDCS (≥5 sessions) in post-stroke motor recovery as measured by the Fugl-Meyer Upper Extremity (FM-UE) scale. Improvements in FM-UE scores were compared between active and sham groups by calculating standardized mean differences (Hedge’s g) to derive a summary effect size. Inverse-variance-weighted linear meta-regression across individual studies was performed between various tDCS parameters and Hedge’s g to test for dose–response relationships. Results Eight studies with total of 213 stroke subjects were included. Summary Hedge’s g was statistically significant in favor of the active group (Hedge’s g = 0.61, p = 0.02) suggesting moderate effect. Specifically, studies that used bihemispheric tDCS montage (Hedge’s g = 1.30, p = 0.08) or that recruited chronic stroke patients (Hedge’s g = 1.23, p = 0.02) showed large improvements in the active group. A positive dose–response relationship was found with current density (p = 0.017) and charge density (p = 0.004), but not with current amplitude. Moreover, a negative dose–response relationship was found with electrode size (p < 0.001, smaller electrodes were more effective). Conclusions Our meta-analysis and meta-regression results suggest superior motor recovery in the active group when compared to the sham group and dose–response relationships relating to electrode size, charge density and current density. These results need to be confirmed in future dedicated studies. PMID:26433609

  17. Extremely high efficiency phosphorescent organic light-emitting diodes with horizontal emitting dipoles

    NASA Astrophysics Data System (ADS)

    Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo

    2014-10-01

    We present the factors influencing the orientation of the phosphorescent dyes in phosphorescent OLEDs. And, we report that an OLED containing a phosphorescent emitter with horizontally oriented dipoles in an exciplex-forming co-host that exhibits an extremely high EQE of 32.3% and power efficiency of 142 lm/W, the highest values ever reported in literature. Furthermore, we experimentally and theoretically correlated the EQE of OLEDs to the PL quantum yield and the horizontal dipole ratio of phosphorescent dyes using three different dyes.

  18. An Extracorporeal Artificial Placenta Supports Extremely Premature Lambs for One Week

    PubMed Central

    Bryner, Benjamin; Gray, Brian; Perkins, Elena; Davis, Ryan; Hoffman, Hayley; Barks, John; Owens, Gabe; Bocks, Martin; Rojas-Peña, Alvaro; Hirschl, Ronald; Bartlett, Robert; Mychaliska, George

    2015-01-01

    Purpose The treatment of extreme prematurity remains an unsolved problem. We developed an artificial placenta (AP) based on extracorporeal life support (ECLS) that simulates the intrauterine environment and provides gas exchange without mechanical ventilation (MV), and compared it to the current standard of neonatal care. Methods Extremely premature lambs (110-120d; term=145d) were used. AP lambs (n=9) were cannulated (jugular drainage, umbilical vein reinfusion) for ECLS .Control lambs (n=7) were intubated, ventilated, given surfactant, and transitioned to high-frequency oscillatory ventilation. All lambs received parenteral nutrition, antibiotics, and steroids. Hemodynamics, blood gases, hemoglobin, and circuit flows were measured. Results Four premature lambs survived for 1 week on the AP; one survived 6 days. Adequate oxygenation and ventilation were provided by the AP. The MV lambs survived 2-8 hours. Each of these lambs experienced a transient improvement with surfactant, but developed progressive hypercapnea and hypoxia despite high airway pressures and HFOV. Conclusions Extremely premature lambs were supported for 1 week with the AP with hemodynamic stability and adequate gas exchange; mechanically ventilated lambs succumbed within 8 hours. Further studies will assess control of fetal circulation and organ maturation on the AP. PMID:25598091

  19. A High Peak Current Source for the CEBAF Injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunn, Byung; Sinclair, Charles; Krafft, Geoffrey

    1992-07-01

    The CEBAF accelerator can drive high power IR and UV FELs, if a high peak current source is added to the existing front end. We present a design for a high peak current injector which is compatible with simultaneous operation of the accelerator for cw nulear physics (NP) beam. The high peak current injector provides 60 A peak current in 2 psec long bunches carrying 120 pC charge at 7.485 MHz. At 10 MeV that beam is combined with 5 MeV NP beam (0.13pC, 2 psec long bunches at 1497 MHz) in an energy combination chicane for simultaneous acceleration inmore » the injector linac. The modifications to the low-energy NP transport are described. Results of optical and beam dynamics calculations for both high peak current and NP beams in combined operation are presented.« less

  20. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming.

    PubMed

    Cai, Wenju; Santoso, Agus; Wang, Guojian; Weller, Evan; Wu, Lixin; Ashok, Karumuri; Masumoto, Yukio; Yamagata, Toshio

    2014-06-12

    The Indian Ocean dipole is a prominent mode of coupled ocean-atmosphere variability, affecting the lives of millions of people in Indian Ocean rim countries. In its positive phase, sea surface temperatures are lower than normal off the Sumatra-Java coast, but higher in the western tropical Indian Ocean. During the extreme positive-IOD (pIOD) events of 1961, 1994 and 1997, the eastern cooling strengthened and extended westward along the equatorial Indian Ocean through strong reversal of both the mean westerly winds and the associated eastward-flowing upper ocean currents. This created anomalously dry conditions from the eastern to the central Indian Ocean along the Equator and atmospheric convergence farther west, leading to catastrophic floods in eastern tropical African countries but devastating droughts in eastern Indian Ocean rim countries. Despite these serious consequences, the response of pIOD events to greenhouse warming is unknown. Here, using an ensemble of climate models forced by a scenario of high greenhouse gas emissions (Representative Concentration Pathway 8.5), we project that the frequency of extreme pIOD events will increase by almost a factor of three, from one event every 17.3 years over the twentieth century to one event every 6.3 years over the twenty-first century. We find that a mean state change--with weakening of both equatorial westerly winds and eastward oceanic currents in association with a faster warming in the western than the eastern equatorial Indian Ocean--facilitates more frequent occurrences of wind and oceanic current reversal. This leads to more frequent extreme pIOD events, suggesting an increasing frequency of extreme climate and weather events in regions affected by the pIOD.

  1. Extreme-volatility dynamics in crude oil markets

    NASA Astrophysics Data System (ADS)

    Jiang, Xiong-Fei; Zheng, Bo; Qiu, Tian; Ren, Fei

    2017-02-01

    Based on concepts and methods from statistical physics, we investigate extreme-volatility dynamics in the crude oil markets, using the high-frequency data from 2006 to 2010 and the daily data from 1986 to 2016. The dynamic relaxation of extreme volatilities is described by a power law, whose exponents usually depend on the magnitude of extreme volatilities. In particular, the relaxation before and after extreme volatilities is time-reversal symmetric at the high-frequency time scale, but time-reversal asymmetric at the daily time scale. This time-reversal asymmetry is mainly induced by exogenous events. However, the dynamic relaxation after exogenous events exhibits the same characteristics as that after endogenous events. An interacting herding model both with and without exogenous driving forces could qualitatively describe the extreme-volatility dynamics.

  2. Stable superconducting magnet. [high current levels below critical temperature

    NASA Technical Reports Server (NTRS)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  3. Imaging performance improvement of coherent extreme-ultraviolet scatterometry microscope with high-harmonic-generation extreme-ultraviolet source

    NASA Astrophysics Data System (ADS)

    Mamezaki, Daiki; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo

    2017-06-01

    In extreme-ultraviolet (EUV) lithography, the development of a review apparatus for the EUV mask pattern at an exposure wavelength of 13.5 nm is required. The EUV mask is composed of an absorber pattern and a Mo/Si multilayer on a glass substrate. This mask pattern has a three-dimensional (3D) structure. The 3D structure would modulate the EUV reflection phase, which would cause focus and pattern shifts. Thus, the review of the EUV phase image is also important. We have developed a coherent EUV scatterometry microscope (CSM), which is a simple microscope without objective optics. The EUV phase and intensity images were reconstructed with diffraction images by ptychography. For a standalone mask review, the high-harmonic-generation (HHG) EUV source was employed. In this study, we updated the sample stage, pump-laser reduction system, and gas-pressure control system to reconstruct the image. As a result, an 88 nm line-and-space pattern and a cross-line pattern were reconstructed. In addition, a particle defect of 2 µm diameter was well reconstructed. This demonstrated the high capability of the standalone CSM, which can hence be used in factories, such as mask shops and semiconductor fabrication plants.

  4. High-current discharge channel contraction in high density gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.

    Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of {approx}10{sup 10} A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 {mu}s. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where themore » channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.« less

  5. Chest Ultrasonography in Modern Day Extreme Settings: From Military Setting and Natural Disasters to Space Flights and Extreme Sports

    PubMed Central

    Mucci, Viviana

    2018-01-01

    Chest ultrasonography (CU) is a noninvasive imaging technique able to provide an immediate diagnosis of the underlying aetiology of acute respiratory failure and traumatic chest injuries. Given the great technologies, it is now possible to perform accurate CU in remote and adverse environments including the combat field, extreme sport settings, and environmental disasters, as well as during space missions. Today, the usage of CU in the extreme emergency setting is more likely to occur, as this technique proved to be a fast diagnostic tool to assist resuscitation manoeuvres and interventional procedures in many cases. A scientific literature review is presented here. This was based on a systematic search of published literature, on the following online databases: PubMed and Scopus. The following words were used: “chest sonography,” “ thoracic ultrasound,” and “lung sonography,” in different combinations with “extreme sport,” “extreme environment,” “wilderness,” “catastrophe,” and “extreme conditions.” This manuscript reports the most relevant usages of CU in the extreme setting as well as technological improvements and current limitations. CU application in the extreme setting is further encouraged here. PMID:29736195

  6. Extremely large magnetoresistance in a high-quality WTe2 grown by flux method

    NASA Astrophysics Data System (ADS)

    Tsumura, K.; Yano, R.; Kashiwaya, H.; Koyanagi, M.; Masubuchi, S.; Machida, T.; Namiki, H.; Sasagawa, T.; Kashiwaya, S.

    2018-03-01

    We have grown single crystals of WTe2 by a self-flux method and evaluated the quality of the crystals. A Hall bar-type device was fabricated from an as-exfoliated film on a Si substrate and longitudinal resistance Rxx was measured. Rxx increased with an applied perpendicular magnetic field without saturation and an extremely large magnetoresistance as high as 376,059 % was observed at 8.27 T and 1.7 K.

  7. Microbial diversity of extreme habitats in human homes.

    PubMed

    Savage, Amy M; Hills, Justin; Driscoll, Katherine; Fergus, Daniel J; Grunden, Amy M; Dunn, Robert R

    2016-01-01

    High-throughput sequencing techniques have opened up the world of microbial diversity to scientists, and a flurry of studies in the most remote and extreme habitats on earth have begun to elucidate the key roles of microbes in ecosystems with extreme conditions. These same environmental extremes can also be found closer to humans, even in our homes. Here, we used high-throughput sequencing techniques to assess bacterial and archaeal diversity in the extreme environments inside human homes (e.g., dishwashers, hot water heaters, washing machine bleach reservoirs, etc.). We focused on habitats in the home with extreme temperature, pH, and chemical environmental conditions. We found a lower diversity of microbes in these extreme home environments compared to less extreme habitats in the home. However, we were nonetheless able to detect sequences from a relatively diverse array of bacteria and archaea. Habitats with extreme temperatures alone appeared to be able to support a greater diversity of microbes than habitats with extreme pH or extreme chemical environments alone. Microbial diversity was lowest when habitats had both extreme temperature and one of these other extremes. In habitats with both extreme temperatures and extreme pH, taxa with known associations with extreme conditions dominated. Our findings highlight the importance of examining interactive effects of multiple environmental extremes on microbial communities. Inasmuch as taxa from extreme environments can be both beneficial and harmful to humans, our findings also suggest future work to understand both the threats and opportunities posed by the life in these habitats.

  8. Lower extremity muscle activation during baseball pitching.

    PubMed

    Campbell, Brian M; Stodden, David F; Nixon, Megan K

    2010-04-01

    The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.

  9. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOEpatents

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  10. Impact of extreme high temperature on mortality and regional level definition of heat wave: a multi-city study in China.

    PubMed

    Gao, Jinghong; Sun, Yunzong; Liu, Qiyong; Zhou, Maigeng; Lu, Yaogui; Li, Liping

    2015-02-01

    Few multi-city studies have been conducted to explore the regional level definition of heat wave and examine the association between extreme high temperature and mortality in developing countries. The purpose of the present study was to investigate the impact of extreme high temperature on mortality and to explore the local definition of heat wave in five Chinese cities. We first used a distributed lag non-linear model to characterize the effects of daily mean temperature on non-accidental mortality. We then employed a generalized additive model to explore the city-specific definition of heat wave. Finally, we performed a comparative analysis to evaluate the effectiveness of the definition. For each city, we found a positive non-linear association between extreme high temperature and mortality, with the highest effects appearing within 3 days of extreme heat event onset. Specifically, we defined individual heat waves of Beijing and Tianjin as being two or more consecutive days with daily mean temperatures exceeding 30.2 °C and 29.5 °C, respectively, and Nanjing, Shanghai and Changsha heat waves as ≥3 consecutive days with daily mean temperatures higher than 32.9 °C, 32.3 °C and 34.5 °C, respectively. Comparative analysis generally supported the definition. We found extreme high temperatures were associated with increased mortality, after a short lag period, when temperatures exceeded obvious threshold levels. The city-specific definition of heat wave developed in our study may provide guidance for the establishment and implementation of early heat-health response systems for local government to deal with the projected negative health outcomes due to heat waves. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to themore » identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  12. EEE - Extreme Energy Events: an astroparticle physics experiment in Italian High Schools

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferrarov, A.; Forster, R.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Maggiora, A.; Maron, G.; Mazziotta, M. N.; Miozzi, S.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Rodriguez Rodriguez, A.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Taiuti, M.; Terreni, G.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2016-05-01

    The Extreme Energy Events project (EEE) is aimed to study Extensive Air Showers (EAS) from primary cosmic rays of more than 1018 eV energy detecting the ground secondary muon component using an array of telescopes with high spatial and time resolution. The second goal of the EEE project is to involve High School teachers and students in this advanced research work and to initiate them in scientific culture: to reach both purposes the telescopes are located inside High School buildings and the detector construction, assembling and monitoring - together with data taking and analysis - are done by researchers from scientific institutions in close collaboration with them. At present there are 42 telescopes in just as many High Schools scattered all over Italy, islands included, plus two at CERN and three in INFN units. We report here some preliminary physics results from the first two common data taking periods together with the outreach impact of the project.

  13. Extreme Weather and Climate: Workshop Report

    NASA Technical Reports Server (NTRS)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; hide

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  14. Extreme geomagnetic storms: Probabilistic forecasts and their uncertainties

    USGS Publications Warehouse

    Riley, Pete; Love, Jeffrey J.

    2017-01-01

    Extreme space weather events are low-frequency, high-risk phenomena. Estimating their rates of occurrence, as well as their associated uncertainties, is difficult. In this study, we derive statistical estimates and uncertainties for the occurrence rate of an extreme geomagnetic storm on the scale of the Carrington event (or worse) occurring within the next decade. We model the distribution of events as either a power law or lognormal distribution and use (1) Kolmogorov-Smirnov statistic to estimate goodness of fit, (2) bootstrapping to quantify the uncertainty in the estimates, and (3) likelihood ratio tests to assess whether one distribution is preferred over another. Our best estimate for the probability of another extreme geomagnetic event comparable to the Carrington event occurring within the next 10 years is 10.3% 95%  confidence interval (CI) [0.9,18.7] for a power law distribution but only 3.0% 95% CI [0.6,9.0] for a lognormal distribution. However, our results depend crucially on (1) how we define an extreme event, (2) the statistical model used to describe how the events are distributed in intensity, (3) the techniques used to infer the model parameters, and (4) the data and duration used for the analysis. We test a major assumption that the data represent time stationary processes and discuss the implications. If the current trends persist, suggesting that we are entering a period of lower activity, our forecasts may represent upper limits rather than best estimates.

  15. High temporal resolution of extreme rainfall rate variability and the acoustic classification of rainfall

    NASA Astrophysics Data System (ADS)

    Nystuen, Jeffrey A.; Amitai, Eyal

    2003-04-01

    The underwater sound generated by raindrop splashes on a water surface is loud and unique allowing detection, classification and quantification of rainfall. One of the advantages of the acoustic measurement is that the listening area, an effective catchment area, is proportional to the depth of the hydrophone and can be orders of magnitude greater than other in situ rain gauges. This feature allows high temporal resolution of the rainfall measurement. A series of rain events with extremely high rainfall rates, over 100 mm/hr, is examined acoustically. Rapid onset and cessation of rainfall intensity are detected within the convective cells of these storms with maximum 5-s resolution values exceeding 1000 mm/hr. The probability distribution functions (pdf) for rainfall rate occurrence and water volume using the longer temporal resolutions typical of other instruments do not include these extreme values. The variance of sound intensity within different acoustic frequency bands can be used as an aid to classify rainfall type. Objective acoustic classification algorithms are proposed. Within each rainfall classification the relationship between sound intensity and rainfall rate is nearly linear. The reflectivity factor, Z, also has a linear relationship with rainfall rate, R, for each rainfall classification.

  16. Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging

    PubMed Central

    Raval, Shailesh B.; Britton, Cynthia A.; Zhao, Tiejun; Krishnamurthy, Narayanan; Santini, Tales; Gorantla, Vijay S.; Ibrahim, Tamer S.

    2017-01-01

    Objective The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity]. Materials and method A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization]. Results High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]—images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by

  17. High-resolution projections of mean and extreme precipitations over China through PRECIS under RCPs

    NASA Astrophysics Data System (ADS)

    Zhu, Jinxin; Huang, Gordon; Wang, Xiuquan; Cheng, Guanhui; Wu, Yinghui

    2018-06-01

    The impact of global warming on the characteristics of mean and extreme precipitations over China is investigated by using the Providing REgional Climate Impacts for Studies (PRECIS) model. The PRECIS model was driven by the Hadley Centre Global Environment Model version 2 with Earth System components and coupling (HadGEM2-ES). The results of both models are analyzed in terms of mean precipitation and indices of precipitation extremes (R95p, R99p, SDII, WDF, and CWD) over China at the resolution of 25 km under the Representative Concentration Pathways 4.5 and 8.5 (RCP4.5 and RCP8.5) scenarios for the baseline period (1976-2005) and two future periods (2036-2065 and 2070-2099). With improved resolution, the PRECIS model is able to better represent the fine-scale physical process than HadGEM2-ES. It can provide reliable spatial patterns of precipitation and its related extremes with high correlations to observations. Moreover, there is a notable improvement in temporal patterns simulation through the PRECIS model. The PRECIS model better reproduces the regional annual cycle and frequencies of daily precipitation intensity than its driving GCM. Under RCP4.5 and RCP8.5, both the HadGEM2-ES and the precis project increasing annual precipitation over the entire country for two future periods. Precipitation increase in winter is greater than the increase in summer. The results suggest that increased radiative forcing from RCP4.5 to RCP8.5 would further intensify the magnitude of projected precipitation changes by both PRECIS and HadGEM2-ES. For example, some parts of south China with decreased precipitation under RCP4.5 would expect even less precipitation under RCP8.5; regions (northwest, northcentral and northeast China) with increased precipitation under RCP4.5 would expect more precipitation under RCP8.5. Apart from the projected increase in annual total precipitation, the results also suggest that there will be an increase in the days with precipitation higher than

  18. High resolution eddy current microscopy

    NASA Astrophysics Data System (ADS)

    Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.

    2001-01-01

    We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.

  19. Compact submicrosecond, high current generator for wire explosion experiments

    NASA Astrophysics Data System (ADS)

    Aranchuk, L. E.; Chuvatin, A. S.; Larour, J.

    2004-01-01

    The PIAF generator was designed for low total energy and high energy density experiments with liners, X-pinch or fiber Z-pinch loads. These studies are of interest for such applications as surface and material science, microscopy of biological specimens, lithography of x-ray sensitive resists, and x-ray backlighting of pulsed-power plasmas. The generator is based on an RLC circuit that includes six NWL 180 nF-50 kV capacitors that store up to 1.3 kJ. The capacitors are connected in parallel to a single multispark switch designed to operate at atmospheric pressure. The switch allows reaching a time delay between the trigger pulse and the current pulse of less than 80 ns and has jitter of 6 ns. The total inductance without a load compartment was optimized to be as low as 16 nH, which leads to extremely low impedance of ˜0.12 Ω. A 40 kV initial voltage provides 250 kA maximum current in a 6 nH inductive load with a 180 ns current rise time. PIAF has dimensions of 660×660×490 mm and weight of less than 100 kg, thus manifesting itself as robust, simple to operate, and cost effective. A description of the PIAF generator and the initial experimental results on PIAF with an X-pinch type load are reported. The generator was demonstrated to operate successfully with an X-pinch type load. The experiments first started with investigation of the previously unexplored X-pinch conduction time range, 100 ns-1 μs. A single short radiation pulse was obtained that came from a small, point-like plasma. The following x-ray source characteristics were achieved: typical hot spot size of 50-100 μm, radiation pulse duration of 1.5-2 ns, and radiation yield of about 250-500 mJ in the softer spectral range (hν⩾700 eV) and 50-100 mJ in the harder one (hν⩾1 keV). These results provide the potential for further application of this source, such as use as a backlight diagnostic tool.

  20. Extreme Unconditional Dependence Vs. Multivariate GARCH Effect in the Analysis of Dependence Between High Losses on Polish and German Stock Indexes

    NASA Astrophysics Data System (ADS)

    Rokita, Pawel

    Classical portfolio diversification methods do not take account of any dependence between extreme returns (losses). Many researchers provide, however, some empirical evidence for various assets that extreme-losses co-occur. If the co-occurrence is frequent enough to be statistically significant, it may seriously influence portfolio risk. Such effects may result from a few different properties of financial time series, like for instance: (1) extreme dependence in a (long-term) unconditional distribution, (2) extreme dependence in subsequent conditional distributions, (3) time-varying conditional covariance, (4) time-varying (long-term) unconditional covariance, (5) market contagion. Moreover, a mix of these properties may be present in return time series. Modeling each of them requires different approaches. It seams reasonable to investigate whether distinguishing between the properties is highly significant for portfolio risk measurement. If it is, identifying the effect responsible for high loss co-occurrence would be of a great importance. If it is not, the best solution would be selecting the easiest-to-apply model. This article concentrates on two of the aforementioned properties: extreme dependence (in a long-term unconditional distribution) and time-varying conditional covariance.

  1. Exploration of the aftermath of a large collision in an extreme debris disk

    NASA Astrophysics Data System (ADS)

    Moor, Attila; Abraham, Peter; Cataldi, Gianni; Kospal, Agnes; Pal, Andras; Vida, Krisztian

    2018-05-01

    Warm debris disks with extremely high fractional luminosities are exceptional, rare systems. Not explainable by steady-state evolutionary models, these extreme debris disks are believed to stem from a recent large collision of planetary embryos in the terrestrial zone. Our team recently discovered a new extreme debris disk around TYC 4209-1322-1, whose WISE W1/W2 band photometry showed a significant brightening probably related to a giant collision in the inner disk. In Cycle 13 we monitor the system by Spitzer, revealing a fading trend with an e-folding time of 1500 days with hints for a quasi-periodic modulation and a possible second smaller amplitude collision event. Here we propose to continue the monitoring campaign until the end of Cycle 14 to explore the evolution of the current long fading trend and of the second collision, and characterize the hinted modulation. Thanks to a better sampled Spitzer light curve and the unique opportunity that NASA's TESS satellite will obtain high-precision optical photometry in the same period, a new dimension will be opened in Cycle 14 in the study of one of the most spectacular extreme debris disk, scrutinizing for the first time the possible influence of stellar activity on a debris disk.

  2. The Extreme Universe Space Observatory

    NASA Technical Reports Server (NTRS)

    Adams, Jim; Six, N. Frank (Technical Monitor)

    2002-01-01

    This talk will describe the Extreme Universe Space Observatory (EUSO) mission. EUSO is an ESA mission to explore the most powerful energy sources in the universe. The mission objectives of EUSO are to investigate EECRs, those with energies above 3x10(exp 19) eV, and very high-energy cosmic neutrinos. These objectives are directly related to extreme conditions in the physical world and possibly involve the early history of the big bang and the framework of GUTs. EUSO tackles the basic problem posed by the existence of these extreme-energy events. The solution could have a unique impact on fundamental physics, cosmology, and/or astrophysics. At these energies, magnetic deflection is thought to be so small that the EECR component would serve as the particle channel for astronomy. EUSO will make the first measurements of EAS from space by observing atmospheric fluorescence in the Earth's night sky. With measurements of the airshower track, EUSO will determine the energy and arrival direction of these extreme-energy events. EUSO will make high statistics observations of CRs beyond the predicted GZK cutoff energy and widen the channel for high-energy neutrino astronomy. The energy spectra, arrival directions, and shower profiles will be analyzed to distinguish the nature of these events and search for their sources. With EUSO data, we will have the possibility to discover a local EECR source, test Z-burst scenarios and other theories, and look for evidence of the breakdown of the relativity principle at extreme Lorentz factors.

  3. Springtime extreme moisture transport into the Arctic and its impact on sea ice concentration

    NASA Astrophysics Data System (ADS)

    Yang, Wenchang; Magnusdottir, Gudrun

    2017-05-01

    Recent studies suggest that springtime moisture transport into the Arctic can initiate sea ice melt that extends to a large area in the following summer and fall, which can help explain Arctic sea ice interannual variability. Yet the impact from an individual moisture transport event, especially the extreme ones, is unclear on synoptic to intraseasonal time scales and this is the focus of the current study. Springtime extreme moisture transport into the Arctic from a daily data set is found to be dominant over Atlantic longitudes. Lag composite analysis shows that these extreme events are accompanied by a substantial sea ice concentration reduction over the Greenland-Barents-Kara Seas that lasts around a week. Surface air temperature also becomes anomalously high over these seas and cold to the west of Greenland as well as over the interior Eurasian continent. The blocking weather regime over the North Atlantic is mainly responsible for the extreme moisture transport, occupying more than 60% of the total extreme days, while the negative North Atlantic Oscillation regime is hardly observed at all during the extreme transport days. These extreme moisture transport events appear to be preceded by eastward propagating large-scale tropical convective forcing by as long as 2 weeks but with great uncertainty due to lack of statistical significance.

  4. Extreme Weather Events and Climate Change Attribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Katherine

    A report from the National Academies of Sciences, Engineering, and Medicine concludes it is now possible to estimate the influence of climate change on some types of extreme events. The science of extreme event attribution has advanced rapidly in recent years, giving new insight to the ways that human-caused climate change can influence the magnitude or frequency of some extreme weather events. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities. Confidence is strongest in attributing types of extreme events that are influenced by climatemore » change through a well-understood physical mechanism, such as, the more frequent heat waves that are closely connected to human-caused global temperature increases, the report finds. Confidence is lower for other types of events, such as hurricanes, whose relationship to climate change is more complex and less understood at present. For any extreme event, the results of attribution studies hinge on how questions about the event's causes are posed, and on the data, modeling approaches, and statistical tools chosen for the analysis.« less

  5. Overview of the biology of extreme events

    NASA Astrophysics Data System (ADS)

    Gutschick, V. P.; Bassirirad, H.

    2008-12-01

    Extreme events have, variously, meteorological origins as in heat waves or precipitation extremes, or biological origins as in pest and disease eruptions (or tectonic, earth-orbital, or impact-body origins). Despite growing recognition that these events are changing in frequency and intensity, a universal model of ecological responses to these events is slow to emerge. Extreme events, negative and positive, contrast with normal events in terms of their effects on the physiology, ecology, and evolution of organisms, hence also on water, carbon, and nutrient cycles. They structure biogeographic ranges and biomes, almost surely more than mean values often used to define biogeography. They are challenging to study for obvious reasons of field-readiness but also because they are defined by sequences of driving variables such as temperature, not point events. As sequences, their statistics (return times, for example) are challenging to develop, as also from the involvement of multiple environmental variables. These statistics are not captured well by climate models. They are expected to change with climate and land-use change but our predictive capacity is currently limited. A number of tools for description and analysis of extreme events are available, if not widely applied to date. Extremes for organisms are defined by their fitness effects on those organisms, and are specific to genotypes, making them major agents of natural selection. There is evidence that effects of extreme events may be concentrated in an extended recovery phase. We review selected events covering ranges of time and magnitude, from Snowball Earth to leaf functional loss in weather events. A number of events, such as the 2003 European heat wave, evidence effects on water and carbon cycles over large regions. Rising CO2 is the recent extreme of note, for its climatic effects and consequences for growing seasons, transpiration, etc., but also directly in its action as a substrate of photosynthesis

  6. Variability of hydrological extreme events in East Asia and their dynamical control: a comparison between observations and two high-resolution global climate models

    NASA Astrophysics Data System (ADS)

    Freychet, N.; Duchez, A.; Wu, C.-H.; Chen, C.-A.; Hsu, H.-H.; Hirschi, J.; Forryan, A.; Sinha, B.; New, A. L.; Graham, T.; Andrews, M. B.; Tu, C.-Y.; Lin, S.-J.

    2017-02-01

    This work investigates the variability of extreme weather events (drought spells, DS15, and daily heavy rainfall, PR99) over East Asia. It particularly focuses on the large scale atmospheric circulation associated with high levels of the occurrence of these extreme events. Two observational datasets (APHRODITE and PERSIANN) are compared with two high-resolution global climate models (HiRAM and HadGEM3-GC2) and an ensemble of other lower resolution climate models from CMIP5. We first evaluate the performance of the high resolution models. They both exhibit good skill in reproducing extreme events, especially when compared with CMIP5 results. Significant differences exist between the two observational datasets, highlighting the difficulty of having a clear estimate of extreme events. The link between the variability of the extremes and the large scale circulation is investigated, on monthly and interannual timescales, using composite and correlation analyses. Both extreme indices DS15 and PR99 are significantly linked to the low level wind intensity over East Asia, i.e. the monsoon circulation. It is also found that DS15 events are strongly linked to the surface temperature over the Siberian region and to the land-sea pressure contrast, while PR99 events are linked to the sea surface temperature anomalies over the West North Pacific. These results illustrate the importance of the monsoon circulation on extremes over East Asia. The dependencies on of the surface temperature over the continent and the sea surface temperature raise the question as to what extent they could affect the occurrence of extremes over tropical regions in future projections.

  7. Intensification of hot extremes in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diffenbaugh, Noah; Ashfaq, Moetasim

    Governments are currently considering policies that will limit greenhouse gas concentrations, including negotiation of an international treaty to replace the expiring Kyoto Protocol. Existing mitigation targets have arisen primarily from political negotiations, and the ability of such policies to avoid dangerous impacts is still uncertain. Using a large suite of climate model experiments, we find that substantial intensification of hot extremes could occur within the next 3 decades, below the 2 C global warming target currently being considered by policy makers. We also find that the intensification of hot extremes is associated with a shift towards more anticyclonic atmospheric circulationmore » during the warm season, along with warm-season drying over much of the U.S. The possibility that intensification of hot extremes could result from relatively small increases in greenhouse gas concentrations suggests that constraining global warming to 2 C may not be sufficient to avoid dangerous climate change.« less

  8. Geomagnetically Induced Currents: Principles

    NASA Astrophysics Data System (ADS)

    Oliveira, Denny M.; Ngwira, Chigomezyo M.

    2017-10-01

    The geospace, or the space environment near Earth, is constantly subjected to changes in the solar wind flow generated at the Sun. The study of this environment variability is called Space Weather. Examples of effects resulting from this variability are the occurrence of powerful solar disturbances, such as coronal mass ejections (CMEs). The impact of CMEs on the Earth's magnetosphere very often greatly perturbs the geomagnetic field causing the occurrence of geomagnetic storms. Such extremely variable geomagnetic fields trigger geomagnetic effects measurable not only in the geospace but also in the ionosphere, upper atmosphere, and on and in the ground. For example, during extreme cases, rapidly changing geomagnetic fields generate intense geomagnetically induced currents (GICs). Intense GICs can cause dramatic effects on man-made technological systems, such as damage to high-voltage power transmission transformers leading to interruption of power supply, and/or corrosion of oil and gas pipelines. These space weather effects can in turn lead to severe economic losses. In this paper, we supply the reader with theoretical concepts related to GICs as well as their general consequences. As an example, we discuss the GIC effects on a North American power grid located in mid-latitude regions during the 13-14 March 1989 extreme geomagnetic storm. That was the most extreme storm that occurred in the space era age.

  9. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore,more » the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  10. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    PubMed Central

    Géneaux, R.; Camper, A.; Auguste, T.; Gobert, O.; Caillat, J.; Taïeb, R.; Ruchon, T.

    2016-01-01

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterize helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. These breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices. PMID:27573787

  11. Outcomes for Extremely Premature Infants

    PubMed Central

    Glass, Hannah C.; Costarino, Andrew T.; Stayer, Stephen A.; Brett, Claire; Cladis, Franklyn; Davis, Peter J.

    2015-01-01

    Premature birth is a significant cause of infant and child morbidity and mortality. In the United States, the premature birth rate, which had steadily increased during the 1990s and early 2000s, has decreased annually for four years and is now approximately 11.5%. Human viability, defined as gestational age at which the chance of survival is 50%, is currently approximately 23–24 weeks in developed countries. Infant girls, on average, have better outcomes than infant boys. A relatively uncomplicated course in the intensive care nursery for an extremely premature infant results in a discharge date close to the prenatal EDC. Despite technological advances and efforts of child health experts during the last generation, the extremely premature infant (less than 28 weeks gestation) and extremely low birth weight infant (ELBW) (< 1000 grams) remain at high risk for death and disability with 30–50% mortality and, in survivors, at least 20–50% risk of morbidity. The introduction of CPAP, mechanical ventilation, and exogenous surfactant increased survival and spurred the development of neonatal intensive care in the 1970s through the early 1990s. Routine administration of antenatal steroids during premature labor improved neonatal mortality and morbidity in the late 1990s. The recognition that chronic postnatal administration of steroids to infants should be avoided may have improved outcomes in the early 2000s. Evidence from recent trials attempting to define the appropriate target for oxygen saturation in preterm infants suggests arterial oxygen saturation between 91–95% (compared to 85–89%) avoids excess mortality. However, final analyses of data from these trials have not been published, so definitive recommendations are still pending The development of neonatal neurocognitive care visits may improve neurocognitive outcomes in this high-risk group. Long-term follow up to detect and address developmental, learning, behavioral, and social problems is critical for

  12. The high energy demand of neuronal cells caused by passive leak currents is not a waste of energy.

    PubMed

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2013-11-01

    It is estimated that maintenance of the resting potential of neurons consumes between 15% (in gray matter) and 44% (in fully myelinated white matter) of the brain's total energy budget [1]. This poses the intriguing question why evolution has not strived to lower the permeability of passive ion channels to cut the high resting-state energy budget of the brain. Based on a conceptual mathematical model of neuronal ion currents and action potential (AP) firing we demonstrate that a neuron endowed with small leak currents and correspondingly low energy consumption by the Na(+)/K(+)-ATPase in the resting state may indeed recapitulate all features of normal AP firing. However, the activation and inactivation of such a "low-energy-cost neuron" turns out to be extremely sensitive to small fluctuation of Na(+) currents associated with Na(+)-dependent secondary-active transport that is indispensable for the metabolic integrity of the cell and neurotransmitter recycling. We provide evidence that sufficiently large leak currents function as important stabilizers of the membrane potential and thus are required to allow robust AP firing. Our simulations suggest that the energy demand of the Na(+)/K(+)-ATPase needed to counterbalance passive leak currents cannot be significantly dropped below observed values.

  13. Single Mode, Extreme Precision Doppler Spectrographs

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2014-04-01

    The `holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a limiting factor in current multimode fiber fed instruments (Baudrand & Walker 2001), can be eliminated by proper design, and the diffraction limited input to the spectrograph allows for very compact instrument designs, which provide excellent optomechanical stability. A SMF is the ideal interface for new, very precise wavelength calibrators, like laser frequency combs (Steinmetz et al. 2008, Osterman et al. 2012), or SMF based Fabry-Perot Etalons (Halverson et al. 2013). At near infrared wavelengths, these technologies are ready to be implemented in on-sky instruments, or already in use. We discuss a novel concept for such a spectrograph.

  14. Intensification of seasonal temperature extremes prior to the 2°C global warming target

    NASA Astrophysics Data System (ADS)

    Anderson, B. T.

    2011-12-01

    Given current international efforts to limit human-induced global-mean near-surface temperature increases to 2°C, relative to the pre-industrial era, there is an interest in determining what unavoidable impacts to physical, biological, and socio-economic systems might occur even if this target were met. In our research we show that substantial fractions of the globe could experience seasonal-mean temperature extremes with unprecedented regularity, even if the global-mean temperature remains below the 2°C target currently envisioned. These results have significant implications for agriculture and crop yield; disease and human health; and ecosystems and biodiversity. To obtain these results, we first develop a novel method for combining numerical-model estimates of near-term increases in grid-point temperatures with stochastically generated anomalies derived from high-resolution observations during the last half of the 20th century. This method has practical advantages because it generates results at fine spatial resolution without relying on computationally-intensive regional-model experiments; it explicitly incorporates information derived from the observations regarding interannual-to-decadal variations in seasonal-mean temperatures; and it includes the generation of thousands of realizations of the possible impacts of a global mean temperature increase on local occurrences of hot extremes. Using this method we find that even given the "committed" future global-mean temperature increase of 0.6°C (1.4°C relative to the pre-industrial era) historical seasonal-mean temperature extremes will be exceeded in at least half of all years-equivalently, the historical extreme values will become the norm-for much of Africa, the southeastern and central portions of Asia, Indonesia, and the Amazon. Should the global-mean temperature increase reach 2°C (relative to the pre-industrial era), it is more likely than not that these same regions, along with large portions of

  15. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    NASA Astrophysics Data System (ADS)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  16. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  17. Embedded I&C for Extreme Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, Roger A.

    2016-04-01

    This project uses embedded instrumentation and control (I&C) technologies to demonstrate potential performance gains of nuclear power plant components in extreme environments. Extreme environments include high temperature, radiation, high pressure, high vibration, and high EMI conditions. For extreme environments, performance gains arise from moment-to-moment sensing of local variables and immediate application of local feedback control. Planning for embedding I&C during early system design phases contrasts with the traditional, serial design approach that incorporates minimal I&C after mechanical and electrical design is complete. The demonstration application involves the development and control of a novel, proof-of-concept motor/pump design. The motor and pumpmore » combination operate within the fluid environment, eliminating the need for rotating seals. Actively controlled magnetic bearings also replace failure-prone mechanical contact bearings that typically suspend rotating components. Such as design has the potential to significantly enhance the reliability and life of the pumping system and would not be possible without embedded I&C.« less

  18. Water Cycle Extremes: from Observations to Decisions

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.; Unninayar, S.; Berod, D.

    2015-12-01

    Extremes in the water cycle (droughts and floods) pose major challenges for water resource managers and emergency services. These challenges arise from observational and prediction systems, advisory services, impact reduction strategies, and cleanup and recovery operations. The Group on Earth Observations (GEO) through its Water Strategy ("GEOSS Water Strategy: from observations to decisions") is seeking to provide systems that will enable its members to more effectively meet their information needs prior to and during an extreme event. This presentation reviews the wide range of impacts that arise from extremes in the water cycle and the types of data and information needed to plan for and respond to these extreme events. It identifies the capabilities and limitations of current observational and analysis systems in defining the scale, timing, intensity and impacts of water cycle extremes and in directing society's response to them. This summary represents an early preliminary assessment of the global and regional information needs of water resource managers and begins to outline a strategy within GEO for using Earth Observations and ancillary information to address these needs.

  19. Characterization of Low Noise, Precision Voltage Reference REF5025-HT Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    The performance of Texas Instruments precision voltage reference REF5025-HT was assessed under extreme temperatures. This low noise, 2.5 V output chip is suitable for use in high temperature down-hole drilling applications, but no data existed on its performance at cryogenic temperatures. The device was characterized in terms of output voltage and supply current at different input voltage levels as a function of temperature between +210 C and -190 C. Line and load regulation characteristics were also established at six load levels and at different temperatures. Restart capability at extreme temperatures and the effects of thermal cycling, covering the test temperature range, on its operation and stability were also investigated. Under no load condition, the voltage reference chip exhibited good stability in its output over the temperature range of -50 C to +200 C. Outside that temperature range, output voltage did change as temperature was changed. For example, at the extreme temperatures of +210 C and - 190 C, the output level dropped to 2.43 V and 2.32 V, respectively as compared to the nominal value of 2.5 V. At cryogenic test temperatures of -100 C and -150 C the output voltage dropped by about 20%. The quiescent supply current of the voltage reference varied slightly with temperature but remained close to its specified value. In terms of line regulation, the device exhibited excellent stability between -50 C and +150 C over the entire input voltage range and load levels. At the other test temperatures, however, while line regulation became poor at cryogenic temperatures of -100 C and below, it suffered slight degradation at the extreme high temperature but only at the high load level of 10 mA. The voltage reference also exhibited very good load regulation with temperature down to -100 C, but its output dropped sharply at +210 C only at the heavy load of 10 mA. The semiconductor chip was able restart at the extreme temperatures of -190 C and +210 C, and the

  20. Advanced electrical current measurements of microdischarges: evidence of sub-critical pulses and ion currents in barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Synek, Petr; Zemánek, Miroslav; Kudrle, Vít; Hoder, Tomáš

    2018-04-01

    Electrical current measurements in corona or barrier microdischarges are a challenge as they require both high temporal resolution and a large dynamic range of the current probe used. In this article, we apply a simple self-assembled current probe and compare it to commercial ones. An analysis in the time and frequency domain is carried out. Moreover, an improved methodology is presented, enabling both temporal resolution in sub-nanosecond times and current sensitivity in the order of tens of micro-amperes. Combining this methodology with a high-tech oscilloscope and self-developed software, a unique statistical analysis of currents in volume barrier discharge driven in atmospheric-pressure air is made for over 80 consecutive periods of a 15 kHz applied voltage. We reveal the presence of repetitive sub-critical current pulses and conclude that these can be identified with the discharging of surface charge microdomains. Moreover, extremely low, long-lasting microsecond currents were detected which are caused by ion flow, and are analysed in detail. The statistical behaviour presented gives deeper insight into the discharge physics of these usually undetectable current signals.

  1. A European Flagship Programme on Extreme Computing and Climate

    NASA Astrophysics Data System (ADS)

    Palmer, Tim

    2017-04-01

    In 2016, an outline proposal co-authored by a number of leading climate modelling scientists from around Europe for a (c. 1 billion euro) flagship project on exascale computing and high-resolution global climate modelling was sent to the EU via its Future and Emerging Flagship Technologies Programme. The project is formally entitled "A Flagship European Programme on Extreme Computing and Climate (EPECC)"? In this talk I will outline the reasons why I believe such a project is needed and describe the current status of the project. I will leave time for some discussion.

  2. Predictions of extreme precipitation and sea-level rise under climate change.

    PubMed

    Senior, C A; Jones, R G; Lowe, J A; Durman, C F; Hudson, D

    2002-07-15

    Two aspects of global climate change are particularly relevant to river and coastal flooding: changes in extreme precipitation and changes in sea level. In this paper we summarize the relevant findings of the IPCC Third Assessment Report and illustrate some of the common results found by the current generation of coupled atmosphere-ocean general circulation models (AOGCMs), using the Hadley Centre models. Projections of changes in extreme precipitation, sea-level rise and storm surges affecting the UK will be shown from the Hadley Centre regional models and the Proudman Oceanographic Laboratory storm-surge model. A common finding from AOGCMs is that in a warmer climate the intensity of precipitation will increase due to a more intense hydrological cycle. This leads to reduced return periods (i.e. more frequent occurrences) of extreme precipitation in many locations. The Hadley Centre regional model simulates reduced return periods of extreme precipitation in a number of flood-sensitive areas of the UK. In addition, simulated changes in storminess and a rise in average sea level around the UK lead to reduced return periods of extreme high coastal water events. The confidence in all these results is limited by poor spatial resolution in global coupled models and by uncertainties in the physical processes in both global and regional models, and is specific to the climate change scenario used.

  3. Significant mobility enhancement in extremely thin highly doped ZnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Look, David C., E-mail: david.look@wright.edu; Wyle Laboratories, Inc., 2601 Mission Point Blvd., Dayton, Ohio 45431; Air Force Research Laboratory Sensors Directorate, 2241 Avionics Circle, Wright-Patterson AFB, Ohio 45433

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H}more » vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.« less

  4. Extreme Ultraviolet Fractional Orbital Angular Momentum Beams from High Harmonic Generation

    PubMed Central

    Turpin, Alex; Rego, Laura; Picón, Antonio; San Román, Julio; Hernández-García, Carlos

    2017-01-01

    We investigate theoretically the generation of extreme-ultraviolet (EUV) beams carrying fractional orbital angular momentum. To this end, we drive high-order harmonic generation with infrared conical refraction (CR) beams. We show that the high-order harmonic beams emitted in the EUV/soft x-ray regime preserve the characteristic signatures of the driving beam, namely ringlike transverse intensity profile and CR-like polarization distribution. As a result, through orbital and spin angular momentum conservation, harmonic beams are emitted with fractional orbital angular momentum, and they can be synthesized into structured attosecond helical beams –or “structured attosecond light springs”– with rotating linear polarization along the azimuth. Our proposal overcomes the state of the art limitations for the generation of light beams far from the visible domain carrying non-integer orbital angular momentum and could be applied in fields such as diffraction imaging, EUV lithography, particle trapping, and super-resolution imaging. PMID:28281655

  5. The opposite end of the attention deficit hyperactivity disorder continuum: genetic and environmental aetiologies of extremely low ADHD traits.

    PubMed

    Greven, Corina U; Merwood, Andrew; van der Meer, Jolanda M J; Haworth, Claire M A; Rommelse, Nanda; Buitelaar, Jan K

    2016-04-01

    Although attention deficit hyperactivity disorder (ADHD) is thought to reflect a continuously distributed quantitative trait, it is assessed through binary diagnosis or skewed measures biased towards its high, symptomatic extreme. A growing trend is to study the positive tail of normally distributed traits, a promising avenue, for example, to study high intelligence to increase power for gene-hunting for intelligence. However, the emergence of such a 'positive genetics' model has been tempered for ADHD due to poor phenotypic resolution at the low extreme. Overcoming this methodological limitation, we conduct the first study to assess the aetiologies of low extreme ADHD traits. In a population-representative sample of 2,143 twins, the Strength and Weaknesses of ADHD Symptoms and Normal behaviour (SWAN) questionnaire was used to assess ADHD traits on a continuum from low to high. Aetiological influences on extreme ADHD traits were estimated using DeFries-Fulker extremes analysis. ADHD traits were related to behavioural, cognitive and home environmental outcomes using regression. Low extreme ADHD traits were significantly influenced by shared environmental factors (23-35%) but were not significantly heritable. In contrast, high-extreme ADHD traits showed significant heritability (39-51%) but no shared environmental influences. Compared to individuals with high extreme or with average levels of ADHD traits, individuals with low extreme ADHD traits showed fewer internalizing and externalizing behaviour problems, better cognitive performance and more positive behaviours and positive home environmental outcomes. Shared environmental influences on low extreme ADHD traits may reflect passive gene-environment correlation, which arises because parents provide environments as well as passing on genes. Studying the low extreme opens new avenues to study mechanisms underlying previously neglected positive behaviours. This is different from the current deficit-based model of

  6. Neoadjuvant Interdigitated Chemoradiotherapy Using Mesna, Doxorubicin, and Ifosfamide for Large, High-grade, Soft Tissue Sarcomas of the Extremity: Improved Efficacy and Reduced Toxicity.

    PubMed

    Chowdhary, Mudit; Sen, Neilayan; Jeans, Elizabeth B; Miller, Luke; Batus, Marta; Gitelis, Steven; Wang, Dian; Abrams, Ross A

    2018-05-18

    Patients with large, high-grade extremity soft tissue sarcoma (STS) are at high risk for both local and distant recurrence. RTOG 95-14, using a regimen of neoadjuvant interdigitated chemoradiotherapy with mesna, doxorubicin, ifosfamide, and dacarbazine followed by surgery and 3 cycles of adjuvant mesna, doxorubicin, ifosfamide, and dacarbazine, demonstrated high rates of disease control at the cost of significant toxicity (83% grade 4, 5% grade 5). As such, this regimen has not been widely adopted. Herein, we report our institutional outcomes utilizing a modified interdigitated chemoradiotherapy regimen, without dacarbazine, and current radiotherapy planning and delivery techniques for high-risk STS. Adults with large (≥5 cm; median, 12.9 cm), grade 3 extremity STS who were prospectively treated as part of our institutional standard of care from 2008 to 2016 are included. Neoadjuvant chemoradiotherapy consisted of 3 cycles of mesna, doxorubicin, and ifosfamide (MAI) and 44 Gy (22 Gy in 11 fractions between cycles of MAI) after which patients underwent surgical resection and received 3 additional cycles of MAI. Twenty-six patients received the MAI treatment protocol. At a median follow-up of 47.3 months, 23 (88.5%) patients are still alive. Three year locoregional recurrence-free survival, disease-free survival, and overall survival are 95.0%, 64.0%, and 95.0%, respectively. There have been no therapy-related deaths or secondary malignancies. The nonhematologic grade 4 toxicity rate was 7.7%. Neoadjuvant interdigitated MAI radiotherapy followed by resection and 3 cycles of adjuvant MAI has resulted in acceptable and manageable toxicity and highly favorable survival in patients at greatest risk for treatment failure.

  7. Joint probabilities of extreme precipitation and wind gusts in Germany

    NASA Astrophysics Data System (ADS)

    von Waldow, H.; Martius, O.

    2012-04-01

    Extreme meteorological events such as storms, heavy rain, floods, droughts and heat waves can have devastating consequences for human health, infrastructure and ecosystems. Concomitantly occurring extreme events might interact synergistically to produce a particularly hazardous impact. The joint occurrence of droughts and heat waves, for example, can have a very different impact on human health and ecosystems both in quantity and quality, than just one of the two extreme events. The co-occurrence of certain types of extreme events is plausible from physical and dynamical considerations, for example heavy precipitation and high wind speeds in the pathway of strong extratropical cyclones. The winter storm Kyrill not only caused wind gust speeds well in excess of 30 m/s across Europe, but also brought 24 h precipitation sums greater than the mean January accumulations in some regions. However, the existence of such compound risks is currently not accounted for by insurance companies, who assume independence of extreme weather events to calculate their premiums. While there are established statistical methods to model the extremes of univariate meteorological variables, the modelling of multidimensional extremes calls for an approach that is tailored to the specific problem at hand. A first step involves defining extreme bivariate wind/precipitation events. Because precipitation and wind gusts caused by the same cyclone or convective cell do not occur at exactly the same location and at the same time, it is necessary to find a sound definition of "extreme compound event" for this case. We present a data driven method to choose appropriate time and space intervals that define "concomitance" for wind and precipitation extremes. Based on station data of wind speed and gridded precipitation data, we arrive at time and space intervals that compare well with the typical time and space scales of extratropical cyclones, i.e. a maximum time lag of 1 day and a maximum distance

  8. Vulnerability of global food production to extreme climatic events.

    PubMed

    Yeni, F; Alpas, H

    2017-06-01

    It is known that the frequency, intensity or duration of the extreme climatic events have been changing substantially. The ultimate goal of this study was to identify current vulnerabilities of global primary food production against extreme climatic events, and to discuss potential entry points for adaptation planning by means of an explorative vulnerability analysis. Outcomes of this analysis were demonstrated as a composite index where 118 country performances in maintaining safety of food production were compared and ranked against climate change. In order to better interpret the results, cluster analysis technique was used as a tool to group the countries based on their vulnerability index (VI) scores. Results suggested that one sixth of the countries analyzed were subject to high level of exposure (0.45-1), one third to high to very high level of sensitivity (0.41-1) and low to moderate level of adaptive capacity (0-0.59). Proper adaptation strategies for reducing the microbial and chemical contamination of food products, soil and waters on the field were proposed. Finally, availability of data on food safety management systems and occurrence of foodborne outbreaks with global coverage were proposed as key factors for improving the robustness of future vulnerability assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Highly stable, extremely high-temperature, nonvolatile memory based on resistance switching in polycrystalline Pt nanogaps

    PubMed Central

    Suga, Hiroshi; Suzuki, Hiroya; Shinomura, Yuma; Kashiwabara, Shota; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa

    2016-01-01

    Highly stable, nonvolatile, high-temperature memory based on resistance switching was realized using a polycrystalline platinum (Pt) nanogap. The operating temperature of the memory can be drastically increased by the presence of a sharp-edged Pt crystal facet in the nanogap. A short distance between the facet edges maintains the nanogap shape at high temperature, and the sharp shape of the nanogap densifies the electric field to maintain a stable current flow due to field migration. Even at 873 K, which is a significantly higher temperature than feasible for conventional semiconductor memory, the nonvolatility of the proposed memory allows stable ON and OFF currents, with fluctuations of less than or equal to 10%, to be maintained for longer than eight hours. An advantage of this nanogap scheme for high-temperature memory is its secure operation achieved through the assembly and disassembly of a Pt needle in a high electric field. PMID:27725705

  10. Silicon-On-Insulator (SOI) Devices and Mixed-Signal Circuits for Extreme Temperature Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems in planetary exploration missions and in aerospace applications are expected to encounter extreme temperatures and wide thermal swings in their operational environments. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of the missions. Electronic parts based on silicon-on-insulator (SOI) technology are known, based on device structure, to provide faster switching, consume less power, and offer better radiation-tolerance compared to their silicon counterparts. They also exhibit reduced current leakage and are often tailored for high temperature operation. However, little is known about their performance at low temperature. The performance of several SOI devices and mixed-signal circuits was determined under extreme temperatures, cold-restart, and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these devices for use in space exploration missions under extreme temperatures. The experimental results obtained on selected SOI devices are presented and discussed in this paper.

  11. The effects of extracorporeal shockwave on acute high-energy long bone fractures of the lower extremity.

    PubMed

    Wang, Ching-Jen; Liu, Hao-Chen; Fu, Te-Hu

    2007-02-01

    High-energy long bone fractures of the lower extremity are at risk of poor fracture healing and high rate of non-union. Extracorporeal shockwave was shown effective to heal non-union of long bone fracture. However, the effect of shockwave on acute fractures is unknown. The purpose of this study was to investigate the effects of shockwave on acute high-energy fractures of the lower extremity. Between January and October 2004, 56 patients with 59 acute high-energy fractures were enrolled in this study. Patients were randomly divided into two groups with 28 patients with 28 fractures in the study group and 28 patients with 31 fractures in the control group. Both groups showed similar age, gender, type of fracture and follow-up time. Patients in the study group received open reduction and internal fixation and shockwave treatment immediately after surgery on odd-numbered days of the week, whereas, patients in the control group received open reduction and internal fixation without shockwave treatment on even-numbered days of the week. Postoperative managements were similarly performed in both groups including crutch walking with non-weight bearing on the affected limb until fracture healing shown on radiographs. The evaluation parameters included clinical assessments of pain score and weight bearing status of the affected leg and serial radiographs at 3, 6 and 12 months. The primary end-point is the rate of non-union at 12 months, and the secondary end point is the rate of fracture healing at 3, 6 and 12 months. At 12 months, the rate of non-union was 11% for the study group versus 20% for the control group (P < 0.001). Significantly, better rate of fracture healing was noted in the study group than the control group at 3, 6 and 12 months (P < 0.001). Extracorporeal shockwave is effective on promoting fracture healing and decreasing the rate of non-union in acute high-energy fractures of the lower extremity.

  12. Disaster Risks Reduction for Extreme Natural Hazards

    NASA Astrophysics Data System (ADS)

    Plag, H.; Jules-Plag, S.

    2013-12-01

    . Integration of these low-probability, high-impact events in DRR requires an approach focused on resilience and antifragility, as well as the ability to cope with, and recover from failure of infrastructure and social systems. Resilience does not primarily result from the robustness of infrastructure but mainly is a function of the social capital. While it is important to understand the hazards (the contribution of geosciences), it is equally important to understand the processes that let us cope with the hazards, or lead to failure (the contribution of social sciences and engineering). For the latter, we need a joint effort of social sciences and engineering and a revised science-policy relationship. Democratizing knowledge about extreme geohazards is very important in order to inform deliberations of DRR through increased resilience and reduced fragility. The current science-society dialog is not fully capable of supporting deliberative governance. Most scientific knowledge is created independent of those who could put it to use, and a transition to co-design and co-development of knowledge involving a broad stakeholder base is necessary for DRR, particularly for extreme events. This transition may have the consequence of more responsibility and even liability for science.

  13. An extremely high stability cooling system for planet hunter

    NASA Astrophysics Data System (ADS)

    l'Allemand, J. L. Lizon a.; Becerril, S.; Mirabet, E.

    2017-12-01

    The detection of exoplanets is done by measuring very tiny periodical variations of the radial velocity of the parent star. Extremely stable spectrographs are required in order to enhance the wavelength variations of the spectral lines due to Doppler effect. CARMENES is the new high-resolution, high-stability spectrograph built for the 3.5 m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed of two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950-1700 nm). The NIR-channel spectrograph’s has been built under the responsibility of the Instituto de Astrofísica de Andalucía (IAA-CSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. Beside the various opto-mechanical challenges, the cooling system was one of the most demanding sub-systems of the NIR channel. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel at an operating temperature finally fixed at 140 K. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass (˜1 Ton) better thermal stability than few hundredths of a degree over 24 hours (goal: 0.01K/day). The present paper describes the main technical approach, which has been taken in order to reach this very ambitious performance.

  14. PHASE QUANTIZATION STUDY OF SPATIAL LIGHT MODULATOR FOR EXTREME HIGH-CONTRAST IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Jiangpei; Ren, Deqing, E-mail: jpdou@niaot.ac.cn, E-mail: jiangpeidou@gmail.com

    2016-11-20

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave-front control is a critical technique to attenuate the speckle noise in order to achieve an extremely high contrast. We present a phase quantization study of a spatial light modulator (SLM) for wave-front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimizationmore » algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask. The simulation result has constrained the specification for SLM phase accuracy in the above two optical configurations, which gives us a phase accuracy of 0.4/1000 and 1/1000 waves to achieve a contrast of 10{sup -10}. Finally, we have demonstrated that an SLM with more actuators can deliver a competitive contrast performance on the order of 10{sup -10} in comparison to that by using a deformable mirror.« less

  15. Phase Quantization Study of Spatial Light Modulator for Extreme High-contrast Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Jiangpei; Ren, Deqing

    2016-11-01

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave-front control is a critical technique to attenuate the speckle noise in order to achieve an extremely high contrast. We present a phase quantization study of a spatial light modulator (SLM) for wave-front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask. The simulation result has constrained the specification for SLM phase accuracy in the above two optical configurations, which gives us a phase accuracy of 0.4/1000 and 1/1000 waves to achieve a contrast of 10-10. Finally, we have demonstrated that an SLM with more actuators can deliver a competitive contrast performance on the order of 10-10 in comparison to that by using a deformable mirror.

  16. High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IR/Optical Colors

    NASA Astrophysics Data System (ADS)

    Piconcelli, E.; Lanzuisi, G.; Fiore, F.; Feruglio, C.; Vignali, C.; Salvato, M.; Grappioni, C.

    2009-05-01

    Extreme Optical/Mid-IR color cuts have been used to uncover a population of dust-enshrouded, mid-IR luminous galaxies at high redshifts. Several lines of evidence point towards the presence of an heavily absorbed, possibly Compton-thick quasar at the heart of these systems. Nonetheless, the X-ray spectral properties of these intriguing sources still remain largely unexplored. Here we present an X-ray spectroscopic study of a large sample of 44 extreme dust-obscured galaxies (EDOGs) with F24 μm/FR>2000 and F24 μm>1.3 mJy selected from a 6 deg2 region in the SWIRE fields. The application of our selection criteria to a wide area survey has been capable of unveiling a population of X-ray luminous, absorbed z>1 quasars which is mostly missed in the traditional optical/X-ray surveys performed so far. Advances in the understanding of the X-ray properties of these recently-discovered sources by Simbol-X observations will be also discussed.

  17. A Window on the Earliest Star Formation: Extreme Photoionization Conditions of a High-ionization, Low-metallicity Lensed Galaxy at z ∼ 2*

    NASA Astrophysics Data System (ADS)

    Berg, Danielle A.; Erb, Dawn K.; Auger, Matthew W.; Pettini, Max; Brammer, Gabriel B.

    2018-06-01

    We report new observations of SL2S J021737–051329, a lens system consisting of a bright arc at z = 1.84435, magnified ∼17× by a massive galaxy at z = 0.65. SL2S0217 is a low-mass (M < 109 M ⊙), low-metallicity (Z ∼ 1/20 Z ⊙) galaxy, with extreme star-forming conditions that produce strong nebular UV emission lines in the absence of any apparent outflows. Here we present several notable features from rest-frame UV Keck/LRIS spectroscopy: (1) Very strong narrow emission lines are measured for C IV λλ1548, 1550, He II λ1640, O III] λλ1661, 1666, Si III] λλ1883, 1892, and C III] λλ1907, 1909. (2) Double-peaked Lyα emission is observed with a dominant blue peak and centered near the systemic velocity. (3) The low- and high-ionization absorption features indicate very little or no outflowing gas along the sight line to the lensed galaxy. The relative emission-line strengths can be reproduced with a very high ionization, low-metallicity starburst with binaries, with the exception of He II, which indicates that an additional ionization source is needed. We rule out large contributions from active galactic nuclei and shocks to the photoionization budget, suggesting that the emission features requiring the hardest radiation field likely result from extreme stellar populations that are beyond the capabilities of current models. Therefore, SL2S0217 serves as a template for the extreme conditions that are important for reionization and thought to be more common in the early universe.

  18. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    NASA Astrophysics Data System (ADS)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2017-12-01

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.

  19. Evaluation of pediatric upper extremity peripheral nerve injuries.

    PubMed

    Ho, Emily S

    2015-01-01

    The evaluation of motor and sensory function of the upper extremity after a peripheral nerve injury is critical to diagnose the location and extent of nerve injury as well as document functional recovery in children. The purpose of this paper is to describe an approach to the evaluation of the pediatric upper extremity peripheral nerve injuries through a critical review of currently used tests of sensory and motor function. Outcome studies on pediatric upper extremity peripheral nerve injuries in the Medline database were reviewed. The evaluation of the outcome in children less than 10 years of age with an upper extremity peripheral nerve injury includes careful observation of preferred prehension patterns, examination of muscle atrophy and sudomotor function, provocative tests, manual muscle testing and tests of sensory threshold and tactile gnosis. The evaluation of outcome in children with upper extremity peripheral nerve injuries warrants a unique approach. Copyright © 2015 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  20. The mirrors for the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Green, James C.; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    Flight mirrors for the Extreme Ultraviolet Explorer satellite are currently under fabrication. The grazing incidence metal mirrors are Wolter-Schwarzschild Type I and II and are figured by diamond turning. Imaging performance is excellent, with the figure after polishing for the best mirror being such that the full width-half maximum is 1.0 arc seconds and the half energy width is 8 arc seconds measured at visible wavelengths. Surface finish, as determined from scattering measurements in the extreme ultraviolet, is about 20 A rms.

  1. A large, benign prostatic cyst presented with an extremely high serum prostate-specific antigen level.

    PubMed

    Chen, Han-Kuang; Pemberton, Richard

    2016-01-08

    We report a case of a patient who presented with an extremely high serum prostate specific antigen (PSA) level and underwent radical prostatectomy for presumed prostate cancer. Surprisingly, the whole mount prostatectomy specimen showed only small volume, organ-confined prostate adenocarcinoma and a large, benign intraprostatic cyst, which was thought to be responsible for the PSA elevation. 2016 BMJ Publishing Group Ltd.

  2. Extremely Low Roll-Off and High Efficiency Achieved by Strategic Exciton Management in Organic Light-Emitting Diodes with Simple Ultrathin Emitting Layer Structure.

    PubMed

    Zhang, Tianmu; Shi, Changsheng; Zhao, Chenyang; Wu, Zhongbin; Chen, Jiangshan; Xie, Zhiyuan; Ma, Dongge

    2018-03-07

    Phosphorescent organic light-emitting diodes (OLEDs) possess the property of high efficiency but have serious efficiency roll-off at high luminance. Herein, we manufactured high-efficiency phosphorescent OLEDs with extremely low roll-off by effectively locating the ultrathin emitting layer (UEML) away from the high-concentration exciton formation region. The strategic exciton management in this simple UEML architecture greatly suppressed the exciton annihilation due to the expansion of the exciton diffusion region; thus, this efficiency roll-off at high luminance was significantly improved. The resulting green phosphorescent OLEDs exhibited the maximum external quantum efficiency of 25.5%, current efficiency of 98.0 cd A -1 , and power efficiency of 85.4 lm W -1 and still had 25.1%, 94.9 cd A -1 , and 55.5 lm W -1 at 5000 cd m -2 luminance, and retained 24.3%, 92.7 cd A -1 , and 49.3 lm W -1 at 10 000 cd m -2 luminance, respectively. Compared with the usual structures, the improvement demonstrated in this work displays potential value in applications.

  3. Phase transformation in tantalum under extreme laser deformation

    DOE PAGES

    Lu, C. -H.; Hahn, E. N.; Remington, B. A.; ...

    2015-10-19

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centeredmore » cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. In conclusion, molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).« less

  4. Phase Transformation in Tantalum under Extreme Laser Deformation

    PubMed Central

    Lu, C.-H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.

    2015-01-01

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear). PMID:26478106

  5. Extreme High-Temperature Events Over East Asia in 1.5°C and 2°C Warmer Futures: Analysis of NCAR CESM Low-Warming Experiments

    NASA Astrophysics Data System (ADS)

    Li, Donghuan; Zhou, Tianjun; Zou, Liwei; Zhang, Wenxia; Zhang, Lixia

    2018-02-01

    Extreme high-temperature events have large socioeconomic and human health impacts. East Asia (EA) is a populous region, and it is crucial to assess the changes in extreme high-temperature events in this region under different climate change scenarios. The Community Earth System Model low-warming experiment data were applied to investigate the changes in the mean and extreme high temperatures in EA under 1.5°C and 2°C warming conditions above preindustrial levels. The results show that the magnitude of warming in EA is approximately 0.2°C higher than the global mean. Most populous subregions, including eastern China, the Korean Peninsula, and Japan, will see more intense, more frequent, and longer-lasting extreme temperature events under 1.5°C and 2°C warming. The 0.5°C lower warming will help avoid 35%-46% of the increases in extreme high-temperature events in terms of intensity, frequency, and duration in EA with maximal avoidance values (37%-49%) occurring in Mongolia. Thus, it is beneficial for EA to limit the warming target to 1.5°C rather than 2°C.

  6. Enhancing protein to extremely high content in photosynthetic bacteria during biogas slurry treatment.

    PubMed

    Yang, Anqi; Zhang, Guangming; Meng, Fan; Lu, Pei; Wang, Xintian; Peng, Meng

    2017-12-01

    This work proposed a novel approach to achieve an extremely high protein content in photosynthetic bacteria (PSB) using biogas slurry as a culturing medium. The results showed the protein content of PSB could be enhanced strongly to 90% in the biogas slurry, which was much higher than reported microbial protein contents. The slurry was partially purified at the same time. Dark-aerobic was more beneficial than light-anaerobic condition for protein accumulation. High salinity and high ammonia of the biogas slurry were the main causes for protein enhancement. In addition, the biogas slurry provided a good buffer system for PSB to grow. The biosynthesis mechanism of protein in PSB was explored according to theoretical analysis. During biogas slurry treatment, the activities of glutamate synthase and glutamine synthetase were increased by 26.55%, 46.95% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Streamflow response to increasing precipitation extremes altered by forest management

    Treesearch

    Charlene N. Kelly; Kevin J. McGuire; Chelcy Ford Miniat; James M. Vose

    2016-01-01

    Increases in extreme precipitation events of floods and droughts are expected to occur worldwide. The increase in extreme events will result in changes in streamflow that are expected to affect water availability for human consumption and aquatic ecosystem function. We present an analysis that may greatly improve current streamflow models by quantifying the...

  8. Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy.

    PubMed

    Drung, D; Krause, C; Becker, U; Scherer, H; Ahlers, F J

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  9. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drung, D.; Krause, C.; Becker, U.

    2015-02-15

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA’s transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibratemore » both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.« less

  10. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    NASA Astrophysics Data System (ADS)

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  11. Dynamics of laser-guided alternating current high voltage discharges

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Théberge, F.; Lassonde, P.; Kieffer, J.-C.; Fujii, T.; Fortin, J.; Châteauneuf, M.; Dubois, J.

    2013-10-01

    The dynamics of laser-guided alternating current high voltage discharges are characterized using a streak camera. Laser filaments were used to trigger and guide the discharges produced by a commercial Tesla coil. The streaking images revealed that the dynamics of the guided alternating current high voltage corona are different from that of a direct current source. The measured effective corona velocity and the absence of leader streamers confirmed that it evolves in a pure leader regime.

  12. High pressure, high current, low inductance, high reliability sealed terminals

    DOEpatents

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  13. A global analysis of the asymmetric effect of ENSO on extreme precipitation

    NASA Astrophysics Data System (ADS)

    Sun, Xun; Renard, Benjamin; Thyer, Mark; Westra, Seth; Lang, Michel

    2015-11-01

    The global and regional influence of the El Niño-Southern Oscillation (ENSO) phenomenon on extreme precipitation was analyzed using a global database comprising over 7000 high quality observation sites. To better quantify possible changes in relatively rare design-relevant precipitation quantiles (e.g. the 1 in 10 year event), a Bayesian regional extreme value model was used, which employed the Southern Oscillation Index (SOI) - a measure of ENSO - as a covariate. Regions found to be influenced by ENSO include parts of North and South America, southern and eastern Asia, South Africa, Australia and Europe. The season experiencing the greatest ENSO effect varies regionally, but in most of the ENSO-affected regions the strongest effect happens in boreal winter, during which time the 10-year precipitation for |SOI| = 20 (corresponding to either a strong El Niño or La Niña episode) can be up to 50% higher or lower than for SOI = 0 (a neutral phase). Importantly, the effect of ENSO on extreme precipitation is asymmetric, with most parts of the world experiencing a significant effect only for a single ENSO phase. This finding has important implications on the current understanding of how ENSO influences extreme precipitation, and will enable a more rigorous theoretical foundation for providing quantitative extreme precipitation intensity predictions at seasonal timescales. We anticipate that incorporating asymmetric impacts of ENSO on extreme precipitation will help lead to better-informed climate-adaptive design of flood-sensitive infrastructure.

  14. Current medical staff governance and physician sensemaking: a formula for resistance to high reliability.

    PubMed

    Flitter, Marc A; Riesenmy, Kelly Rouse; van Stralen, Daved

    2012-01-01

    To offer a theoretical explanation for observed physician resistance and rejection of high reliability patient safety initiatives. A grounded theoretical qualitative approach, utilizing the organizational theory of sensemaking, provided the foundation for inductive and deductive reasoning employed to analyze medical staff rejection of two successfully performing high reliability programs at separate hospitals. Physician behaviors resistant to patient-centric high reliability processes were traced to provider-centric physician sensemaking. Research, conducted with the advantage that prospective studies have over the limitations of this retrospective investigation, is needed to evaluate the potential for overcoming physician resistance to innovation implementation, employing strategies based upon these findings and sensemaking theory in general. If hospitals are to emulate high reliability industries that do successfully manage environments of extreme hazard, physicians must be fully integrated into the complex teams required to accomplish this goal. Reforming health care, through high reliability organizing, with its attendant continuous focus on patient-centric processes, offers a distinct alternative to efforts directed primarily at reforming health care insurance. It is by changing how health care is provided that true cost efficiencies can be achieved. Technology and the insights of organizational science present the opportunity of replacing the current emphasis on privileged information with collective tools capable of providing quality and safety in health care. The fictions that have sustained a provider-centric health care system have been challenged. The benefits of patient-centric care should be obtainable.

  15. Modeling and evaluation of a high-resolution CMOS detector for cone-beam CT of the extremities.

    PubMed

    Cao, Qian; Sisniega, Alejandro; Brehler, Michael; Stayman, J Webster; Yorkston, John; Siewerdsen, Jeffrey H; Zbijewski, Wojciech

    2018-01-01

    Quantitative assessment of trabecular bone microarchitecture in extremity cone-beam CT (CBCT) would benefit from the high spatial resolution, low electronic noise, and fast scan time provided by complementary metal-oxide semiconductor (CMOS) x-ray detectors. We investigate the performance of CMOS sensors in extremity CBCT, in particular with respect to potential advantages of thin (<0.7 mm) scintillators offering higher spatial resolution. A cascaded systems model of a CMOS x-ray detector incorporating the effects of CsI:Tl scintillator thickness was developed. Simulation studies were performed using nominal extremity CBCT acquisition protocols (90 kVp, 0.126 mAs/projection). A range of scintillator thickness (0.35-0.75 mm), pixel size (0.05-0.4 mm), focal spot size (0.05-0.7 mm), magnification (1.1-2.1), and dose (15-40 mGy) was considered. The detectability index was evaluated for both CMOS and a-Si:H flat-panel detector (FPD) configurations for a range of imaging tasks emphasizing spatial frequencies associated with feature size aobj. Experimental validation was performed on a CBCT test bench in the geometry of a compact orthopedic CBCT system (SAD = 43.1 cm, SDD = 56.0 cm, matching that of the Carestream OnSight 3D system). The test-bench studies involved a 0.3 mm focal spot x-ray source and two CMOS detectors (Dalsa Xineos-3030HR, 0.099 mm pixel pitch) - one with the standard CsI:Tl thickness of 0.7 mm (C700) and one with a custom 0.4 mm thick scintillator (C400). Measurements of modulation transfer function (MTF), detective quantum efficiency (DQE), and CBCT scans of a cadaveric knee (15 mGy) were obtained for each detector. Optimal detectability for high-frequency tasks (feature size of ~0.06 mm, consistent with the size of trabeculae) was ~4× for the C700 CMOS detector compared to the a-Si:H FPD at nominal system geometry of extremity CBCT. This is due to ~5× lower electronic noise of a CMOS sensor, which enables input quantum

  16. High-capacity high-speed recording

    NASA Astrophysics Data System (ADS)

    Jamberdino, A. A.

    1981-06-01

    Continuing advances in wideband communications and information handling are leading to extremely large volume digital data systems for which conventional data storage techniques are becoming inadequate. The paper presents an assessment of alternative recording technologies for the extremely wideband, high capacity storage and retrieval systems currently under development. Attention is given to longitudinal and rotary head high density magnetic recording, laser holography in human readable/machine readable devices and a wideband recorder, digital optical disks, and spot recording in microfiche formats. The electro-optical technologies considered are noted to be capable of providing data bandwidths up to 1000 megabits/sec and total data storage capacities in the 10 to the 11th to 10 to the 12th bit range, an order of magnitude improvement over conventional technologies.

  17. High Current Systems for HyperV and PLX Plasma Railguns

    NASA Astrophysics Data System (ADS)

    Brockington, S.; Case, A.; Messer, S.; Elton, R.; Witherspoon, F. D.

    2011-10-01

    HyperV is developing gas fed, pulsed, plasma railgun accelerators for PLX and other high momentum plasma applications. The present 2.5 cm square-bore plasma railgun forms plasma armatures from high density neutral gas (argon), preionizes it electrothermally, and accelerates the armature with 30 cm long parallel-plate railgun electrodes driven by a pulse forming network (PFN). Recent experiments have successfully formed and accelerated plasma armatures of ~4 mg at 40 km/s, with PFN currents of ~400 kA. In order to further increase railgun performance to the PLX design goal of 8 mg at 50 km/s, the PFN was upgraded to support currents of up to ~750 kA. A high voltage, high current linear array spark-gap switch and flexible, low-inductance transmission line were designed and constructed to handle the increased current load. We will describe these systems and present initial performance data from high current operation of the plasma rail gun from spectroscopy, interferometry, and imaging systems as well as pressure, magnetic field, and optical diagnostics. High current performance of railgun bore materials for electrodes and insulators will also be discussed as well as plans for upcoming experimentation with advanced materials. Supported by the U.S. DOE Joint Program in HEDLP.

  18. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature

    PubMed Central

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-01-01

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures. PMID:28772520

  19. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature.

    PubMed

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-02-10

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures.

  20. Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime

    NASA Astrophysics Data System (ADS)

    Ren, Q.

    2015-11-01

    Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA

  1. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, G.F.

    1992-04-21

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time. 6 figs.

  2. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, George F.

    1992-01-01

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time.

  3. Extreme value analysis of the time derivative of the horizontal magnetic field and computed electric field

    NASA Astrophysics Data System (ADS)

    Wintoft, Peter; Viljanen, Ari; Wik, Magnus

    2016-05-01

    High-frequency ( ≈ minutes) variability of ground magnetic fields is caused by ionospheric and magnetospheric processes driven by the changing solar wind. The varying magnetic fields induce electrical fields that cause currents to flow in man-made conductors like power grids and pipelines. Under extreme conditions the geomagnetically induced currents (GIC) may be harmful to the power grids. Increasing our understanding of the extreme events is thus important for solar-terrestrial science and space weather. In this work 1-min resolution of the time derivative of measured local magnetic fields (|dBh/dt|) and computed electrical fields (Eh), for locations in Europe, have been analysed with extreme value analysis (EVA). The EVA results in an estimate of the generalized extreme value probability distribution that is described by three parameters: location, width, and shape. The shape parameter controls the extreme behaviour. The stations cover geomagnetic latitudes from 40 to 70° N. All stations included in the study have contiguous coverage of 18 years or more with 1-min resolution data. As expected, the EVA shows that the higher latitude stations have higher probability of large |dBh/dt| and |Eh| compared to stations further south. However, the EVA also shows that the shape of the distribution changes with magnetic latitude. The high latitudes have distributions that fall off faster to zero than the low latitudes, and upward bounded distributions can not be ruled out. The transition occurs around 59-61° N magnetic latitudes. Thus, the EVA shows that the observed series north of ≈ 60° N have already measured values that are close to the expected maxima values, while stations south of ≈ ° N will measure larger values in the future.

  4. Impact of climate change on European weather extremes

    NASA Astrophysics Data System (ADS)

    Duchez, Aurelie; Forryan, Alex; Hirschi, Joel; Sinha, Bablu; New, Adrian; Freychet, Nicolas; Scaife, Adam; Graham, Tim

    2015-04-01

    An emerging science consensus is that global climate change will result in more extreme weather events with concomitant increasing financial losses. Key questions that arise are: Can an upward trend in natural extreme events be recognised and predicted at the European scale? What are the key drivers within the climate system that are changing and making extreme weather events more frequent, more intense, or both? Using state-of-the-art coupled climate simulations from the UK Met Office (HadGEM3-GC2, historical and future scenario runs) as well as reanalysis data, we highlight the potential of the currently most advanced forecasting systems to progress understanding of the causative drivers of European weather extremes, and assess future frequency and intensity of extreme weather under various climate change scenarios. We characterize European extremes in these simulations using a subset of the 27 core indices for temperature and precipitation from The Expert Team on Climate Change Detection and Indices (Tank et al., 2009). We focus on temperature and precipitation extremes (e.g. extremes in daily and monthly precipitation and temperatures) and relate them to the atmospheric modes of variability over Europe in order to establish the large-scale atmospheric circulation patterns that are conducive to the occurrence of extreme precipitation and temperature events. Klein Tank, Albert M.G., and Francis W. Zwiers. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation. WMO-TD No. 1500. Climate Data and Monitoring. World Meteorological Organization, 2009.

  5. Complex Socio-Ecological Dynamics driven by extreme events in the Amazon

    NASA Astrophysics Data System (ADS)

    Pinho, P. F.

    2015-12-01

    Several years with extreme floods or droughts in the past decade have caused human suffering in remote communities of the Brazilian Amazon. Despite documented local knowledge and practices for coping with the high seasonal variability characteristic of the region's hydrology (e.g. 10m change in river levels between dry and flood seasons), and despite 'civil Defense' interventions by various levels of government, the more extreme years seem to have exceeded the coping capacity of the community. In this paper, we explore whether there is a real increase in variability, whether the community perceives that recent extreme events are outside the experience which shapes their responses to 'normal' levels of variability, and what science-based policy could contribute to greater local resilience. Hydrological analyses suggest that variability is indeed increasing, in line with expectations from future climate change. However, current measures of hydrological regimes do not predict years with social hardship very well. Interviewees in two regions are able to express their strategies for dealing with 'normal' variability very well, but also identify ways in which abnormal years exceed their ability to cope. Current Civil Defense arrangements struggle to deliver emergency assistance in a sufficiently timely and locally appropriate fashion. Combining these insights in the context of social-ecological change, we suggest how better integration of science, policy and local knowledge could improve resilience to future trends, and identify some contributions science could make into such an arrangement.

  6. EXTREME INTENSITY INCREASES OF HIGH-ENERGY PARTICLE RADIATION IN THE EXOSPHERE AS OBSERVED BY SPUTNIK III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knuth, R.

    1962-09-01

    Two channels in the telemetered data from Sputnik III investigated the intensity of high-energy photons over 35 kilo-electron-volt. The data from the period between May 15 and Aug. 16, 1958 (corresponding to flight altitudes between 220 and 950 kilometers) were analyzed. The extreme intensity increases observed were illustrated and are discussed. (OTS)

  7. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary con- ditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045–2054 and 2085–2094) are compared with a historical decade (1995–2004). Probabilitymore » density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Finally, using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5–10 times per year in most CONUS and ≥ 95°F days will increase by 1–2 months by the end of the century.« less

  8. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    DOE PAGES

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; ...

    2017-11-20

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary con- ditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045–2054 and 2085–2094) are compared with a historical decade (1995–2004). Probabilitymore » density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Finally, using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5–10 times per year in most CONUS and ≥ 95°F days will increase by 1–2 months by the end of the century.« less

  9. Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Arguelles, C.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Kelley, J. L.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Macías, O.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.

    2013-12-01

    We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino-induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model-independent quasidifferential 90% C.L. upper limit, which amounts to E2ϕνe+νμ+ντ=1.2×10-7GeVcm-2s-1sr-1 at 1 EeV, provides the most stringent constraint in the energy range from 10 PeV to 10 EeV. Our observation disfavors strong cosmological evolution of the highest energy cosmic-ray sources such as the Fanaroff-Riley type II class of radio galaxies.

  10. The Relationship between the Current Waveform just before the Current Zero and the Interruption Ability in the High-speed VCB

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshimitsu; Matsuzaki, Jun; Yokokura, Kunio

    The high-speed vacuum circuit breaker, which forced the fault current to zero was investigated. The test circuit breaker consisted of a vacuum interrupter and a high frequency current source. The vacuum interrupter, which had the axial magnetic field electrode and the disk shape electrode, was tested. The arcing period of the high-speed vacuum circuit breaker is much shorter than that of conventional circuit breaker. The arc behavior of the test electrodes immediately after the contact separation was observed by a high-speed video camcorder. The relation between the current waveform just before the current zero and the interruption ability by varying the high frequency current source was investigated experimentally. The results demonstrate the interruption ability and the arc behavior of the high-speed vacuum circuit breaker. The high current interruption was made possible by the low current period just before the current zero, although the arcing time is short and the arc is concentrated.

  11. Superconducting current injection transistor with very high critical-current-density edge-junctions

    NASA Astrophysics Data System (ADS)

    van Zeghbroeck, B. J.

    1985-03-01

    A Superconducting Current Injection Transistor (Super-CIT) was fabricated with very high critical current-density edge-junctions. The junctions have a niobium base electrode and a lead-alloy counter electrode. The length of the junctions is 30 microns and the critical-current density is 190KA/sq cm. The Super-CIT has a current gain of 2, a large signal transresistance of 100 mV/A, and the turn-on delay, inferred from the junction resonance, is 7ps. The power dissipation is 3.5 microwatts and the power-delay product is 24.5aJ. Gap reduction due to heating was observed, limiting the maximum power dissipation per unit length to 1.1 microwatt/micron. Compared to lead-alloy Super-CITs, the device is five times smaller, three times faster, and has a three times larger output voltage. The damping resistor and the contact junction could also be eliminated.

  12. Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences

    PubMed Central

    Dowdy, Andrew J.; Catto, Jennifer L.

    2017-01-01

    Phenomena such as cyclones, fronts and thunderstorms can cause extreme weather in various regions throughout the world. Although these phenomena have been examined in numerous studies, they have not all been systematically examined in combination with each other, including in relation to extreme precipitation and extreme winds throughout the world. Consequently, the combined influence of these phenomena represents a substantial gap in the current understanding of the causes of extreme weather events. Here we present a systematic analysis of cyclones, fronts and thunderstorms in combination with each other, as represented by seven different types of storm combinations. Our results highlight the storm combinations that most frequently cause extreme weather in various regions of the world. The highest risk of extreme precipitation and extreme wind speeds is found to be associated with a triple storm type characterized by concurrent cyclone, front and thunderstorm occurrences. Our findings reveal new insight on the relationships between cyclones, fronts and thunderstorms and clearly demonstrate the importance of concurrent phenomena in causing extreme weather. PMID:28074909

  13. Gunshot-induced fractures of the extremities: a review of antibiotic and debridement practices.

    PubMed

    Sathiyakumar, Vasanth; Thakore, Rachel V; Stinner, Daniel J; Obremskey, William T; Ficke, James R; Sethi, Manish K

    2015-09-01

    The use of antibiotic prophylaxis and debridement is controversial when treating low- and high-velocity gunshot-induced fractures, and established treatment guidelines are currently unavailable. The purpose of this review was to evaluate the literature for the prophylactic antibiotic and debridement policies for (1) low-velocity gunshot fractures of the extremities, joints, and pelvis and (2) high-velocity gunshot fractures of the extremities. Low-velocity gunshot fractures of the extremities were subcategorized into operative and non-operative cases, whereas low-velocity gunshot fractures of the joints and pelvis were evaluated based on the presence or absence of concomitant bowel injury. In the absence of surgical necessity for fracture care such as concomitant absence of gross wound contamination, vascular injury, large soft-tissue defect, or associated compartment syndrome, the literature suggests that superficial debridement for low-velocity ballistic fractures with administration of antibiotics is a satisfactory alternative to extensive operative irrigation and debridement. In operative cases or those involving bowel injuries secondary to pelvic fractures, the literature provides support for and against extensive debridement but does suggest the use of intravenous antibiotics. For high-velocity ballistic injuries, the literature points towards the practice of extensive immediate debridement with prophylactic intravenous antibiotics. Our systematic review demonstrates weak evidence for superficial debridement of low-velocity ballistic fractures, extensive debridement for high-velocity ballistic injuries, and antibiotic use for both types of injury. Intra-articular fractures seem to warrant debridement, while pelvic fractures with bowel injury have conflicting evidence for debridement but stronger evidence for antibiotic use. Given a relatively low number of studies on this subject, we recommend that further high-quality research on the debridement and

  14. Present-day irrigation mitigates heat extremes

    DOE PAGES

    Thiery, Wim; Davin, Edouard L.; Lawrence, David M.; ...

    2017-02-16

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. An evaluation of the model performance reveals that irrigation has a small yet overall beneficial effect on the representation of present-day near-surface climate. While the influence of irrigation on annual mean temperatures is limited, we find a large impactmore » on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. In conclusion, our results underline that irrigation has substantially reduced our exposure to hot temperature extremes in the past and highlight the need to account for irrigation in future climate projections.« less

  15. Present-day irrigation mitigates heat extremes

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard L.; Lawrence, David M.; Hirsch, Annette L.; Hauser, Mathias; Seneviratne, Sonia I.

    2017-02-01

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. An evaluation of the model performance reveals that irrigation has a small yet overall beneficial effect on the representation of present-day near-surface climate. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Our results underline that irrigation has substantially reduced our exposure to hot temperature extremes in the past and highlight the need to account for irrigation in future climate projections.

  16. Variations in extreme precipitation on the Loess Plateau using a high-resolution dataset and their linkages with atmospheric circulation indices

    NASA Astrophysics Data System (ADS)

    Zhao, Guangju; Zhai, Jianqing; Tian, Peng; Zhang, Limei; Mu, Xingmin; An, Zhengfeng; Han, Mengwei

    2017-08-01

    Assessing regional patterns and trends in extreme precipitation is crucial for facilitating flood control and drought adaptation because extreme climate events have more damaging impacts on society and ecosystems than simple shifts in the mean values. In this study, we employed daily precipitation data from 231 climate stations spanning 1961 to 2014 to explore the changes in precipitation extremes on the Loess Plateau, China. Nine of the 12 extreme precipitation indices suggested decreasing trends, and only the annual total wet-day precipitation (PRCPTOT) and R10 declined significantly: - 0.69 mm/a and - 0.023 days/a at the 95% confidence level. The spatial patterns in all of the extreme precipitation indices indicated mixed trends on the Loess Plateau, with decreasing trends in the precipitation extremes at the majority of the stations examined in the Fen-Wei River valley and high-plain plateau. Most of extreme precipitation indices suggested apparent regional differences, whereas R25 and R20 had spatially similar patterns on the Loess Plateau, with many stations revealing no trends. In addition, we found a potential decreasing trend in rainfall amounts and rainy days and increasing trends in rainfall intensities and storm frequencies in some regions due to increasing precipitation events in recent years. The relationships between extreme rainfall events and atmospheric circulation indices suggest that the weakening trend in the East Asia summer monsoon has limited the northward extension of the rainfall belt to northern China, thereby leading to a decrease in rainfall on the Loess Plateau.

  17. High voltage and high current density vertical GaN power diodes

    DOE PAGES

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; ...

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm 2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm 2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  18. Extreme sea levels on the rise along Europe's coasts

    NASA Astrophysics Data System (ADS)

    Vousdoukas, Michalis I.; Mentaschi, Lorenzo; Voukouvalas, Evangelos; Verlaan, Martin; Feyen, Luc

    2017-03-01

    Future extreme sea levels (ESLs) and flood risk along European coasts will be strongly impacted by global warming. Yet, comprehensive projections of ESL that include mean sea level (MSL), tides, waves, and storm surges do not exist. Here, we show changes in all components of ESLs until 2100 in view of climate change. We find that by the end of this century, the 100-year ESL along Europe's coastlines is on average projected to increase by 57 cm for Representative Concentration Pathways (RCP)4.5 and 81 cm for RCP8.5. The North Sea region is projected to face the highest increase in ESLs, amounting to nearly 1 m under RCP8.5 by 2100, followed by the Baltic Sea and Atlantic coasts of the UK and Ireland. Relative sea level rise (RSLR) is shown to be the main driver of the projected rise in ESL, with increasing dominance toward the end of the century and for the high-concentration pathway. Changes in storm surges and waves enhance the effects of RSLR along the majority of northern European coasts, locally with contributions up to 40%. In southern Europe, episodic extreme events tend to stay stable, except along the Portuguese coast and the Gulf of Cadiz where reductions in surge and wave extremes offset RSLR by 20-30%. By the end of this century, 5 million Europeans currently under threat of a 100-year ESL could be annually at risk from coastal flooding under high-end warming. The presented dataset is available through this link: http://data.jrc.ec.europa.eu/collection/LISCOAST.

  19. Synthetic generation of spatially high resolution extreme rainfall in Japan using Monte Carlo simulation with AMeDAS analyzed rainfall data sets

    NASA Astrophysics Data System (ADS)

    Haruki, W.; Iseri, Y.; Takegawa, S.; Sasaki, O.; Yoshikawa, S.; Kanae, S.

    2016-12-01

    Natural disasters caused by heavy rainfall occur every year in Japan. Effective countermeasures against such events are important. In 2015, a catastrophic flood occurred in Kinu river basin, which locates in the northern part of Kanto region. The remarkable feature of this flood event was not only in the intensity of rainfall but also in the spatial characteristics of heavy rainfall area. The flood was caused by continuous overlapping of heavy rainfall area over the Kinu river basin, suggesting consideration of spatial extent is quite important to assess impacts of heavy rainfall events. However, the spatial extent of heavy rainfall events cannot be properly measured through rainfall measurement by rain gauges at observation points. On the other hand, rainfall measurements by radar observations provide spatially and temporarily high resolution rainfall data which would be useful to catch the characteristics of heavy rainfall events. For long term effective countermeasure, extreme heavy rainfall scenario considering rainfall area and distribution is required. In this study, a new method for generating extreme heavy rainfall events using Monte Carlo Simulation has been developed in order to produce extreme heavy rainfall scenario. This study used AMeDAS analyzed precipitation data which is high resolution grid precipitation data made by Japan Meteorological Agency. Depth area duration (DAD) analysis has been conducted to extract extreme rainfall events in the past, considering time and spatial scale. In the Monte Carlo Simulation, extreme rainfall event is generated based on events extracted by DAD analysis. Extreme heavy rainfall events are generated in specific region in Japan and the types of generated extreme heavy rainfall events can be changed by varying the parameter. For application of this method, we focused on Kanto region in Japan. As a result, 3000 years rainfall data are generated. 100 -year probable rainfall and return period of flood in Kinu River

  20. Violent Extremism, Community-Based Violence Prevention, and Mental Health Professionals.

    PubMed

    Weine, Stevan M; Stone, Andrew; Saeed, Aliya; Shanfield, Stephen; Beahrs, John; Gutman, Alisa; Mihajlovic, Aida

    2017-01-01

    New community-based initiatives being developed to address violent extremism in the United States are utilizing mental health services and leadership. This article reviews current approaches to preventing violent extremism, the contribution that mental illness and psychosocial problems can make to violent extremism, and the rationale for integrating mental health strategies into preventing violent extremism. The authors describe a community-based targeted violence prevention model and the potential roles of mental health professionals. This model consists of a multidisciplinary team that assesses at-risk individuals with comprehensive threat and behavioral evaluations, arranges for ongoing support and treatment, conducts follow-up evaluations, and offers outreach, education, and resources for communities. This model would enable mental health professionals in local communities to play key roles in preventing violent extremism through their practice and leadership.

  1. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    DOE PAGES

    Géneaux, R.; Camper, A.; Auguste, T.; ...

    2016-08-30

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterizemore » helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. Furthermore, these breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices.« less

  2. Temporal and spatial scaling impacts on extreme precipitation

    NASA Astrophysics Data System (ADS)

    Eggert, B.; Berg, P.; Haerter, J. O.; Jacob, D.; Moseley, C.

    2015-01-01

    Both in the current climate and in the light of climate change, understanding of the causes and risk of precipitation extremes is essential for protection of human life and adequate design of infrastructure. Precipitation extreme events depend qualitatively on the temporal and spatial scales at which they are measured, in part due to the distinct types of rain formation processes that dominate extremes at different scales. To capture these differences, we first filter large datasets of high-resolution radar measurements over Germany (5 min temporally and 1 km spatially) using synoptic cloud observations, to distinguish convective and stratiform rain events. In a second step, for each precipitation type, the observed data are aggregated over a sequence of time intervals and spatial areas. The resulting matrix allows a detailed investigation of the resolutions at which convective or stratiform events are expected to contribute most to the extremes. We analyze where the statistics of the two types differ and discuss at which resolutions transitions occur between dominance of either of the two precipitation types. We characterize the scales at which the convective or stratiform events will dominate the statistics. For both types, we further develop a mapping between pairs of spatially and temporally aggregated statistics. The resulting curve is relevant when deciding on data resolutions where statistical information in space and time is balanced. Our study may hence also serve as a practical guide for modelers, and for planning the space-time layout of measurement campaigns. We also describe a mapping between different pairs of resolutions, possibly relevant when working with mismatched model and observational resolutions, such as in statistical bias correction.

  3. High current polarized electron source for future eRHIC

    NASA Astrophysics Data System (ADS)

    Wang, Erdong

    2018-05-01

    The high current and high bunch charge polarized electron source is essential for cost reduction of Linac-Ring (L-R) eRHIC. In the baseline design, electron beam from multiple guns (probably 4-8) will be combined using deflection plates or accumulate ring. Each gun aims to deliver electron beam with 10 mA average current and 5.3 nC bunch charge. With total 50 mA and 5.3 nC electron beam, this beam combining design could use for generating positron too. The gun has been designed, fabricated and expected to start commissioning by the mid of this year. In this paper, we will present the DC gun design parameters and beam combine schemes. Also, we will describe the details of gun design and the strategies to demonstrate high current high charge polarized electron beam from this source.

  4. Future Projection of Summer Extreme Precipitation from High Resolution Multi-RCMs over East Asia

    NASA Astrophysics Data System (ADS)

    Kim, Gayoung; Park, Changyong; Cha, Dong-Hyun; Lee, Dong-Kyou; Suh, Myoung-Seok; Ahn, Joong-Bae; Min, Seung-Ki; Hong, Song-You; Kang, Hyun-Suk

    2017-04-01

    Recently, the frequency and intensity of natural hazards have been increasing due to human-induced climate change. Because most damages of natural hazards over East Asia have been related to extreme precipitation events, it is important to estimate future change in extreme precipitation characteristics caused by climate change. We investigate future changes in extremal values of summer precipitation simulated by five regional climate models participating in the CORDEX-East Asia project (i.e., HadGEM3-RA, RegCM4, MM5, WRF, and GRIMs) over East Asia. 100-year return value calculated from the generalized extreme value (GEV) parameters is analysed as an indicator of extreme intensity. In the future climate, the mean values as well as the extreme values of daily precipitation tend to increase over land region. The increase of 100-year return value can be significantly associated with the changes in the location (intensity) and scale (variability) GEV parameters for extreme precipitation. It is expected that the results of this study can be used as fruitful references when making the policy of disaster management. Acknowledgements The research was supported by the Ministry of Public Safety and Security of Korean government and Development program under grant MPSS-NH-2013-63 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.

  5. Investigating NARCCAP Precipitation Extremes via Bivariate Extreme Value Theory (Invited)

    NASA Astrophysics Data System (ADS)

    Weller, G. B.; Cooley, D. S.; Sain, S. R.; Bukovsky, M. S.; Mearns, L. O.

    2013-12-01

    We introduce methodology from statistical extreme value theory to examine the ability of reanalysis-drive regional climate models to simulate past daily precipitation extremes. Going beyond a comparison of summary statistics such as 20-year return values, we study whether the most extreme precipitation events produced by climate model simulations exhibit correspondence to the most extreme events seen in observational records. The extent of this correspondence is formulated via the statistical concept of tail dependence. We examine several case studies of extreme precipitation events simulated by the six models of the North American Regional Climate Change Assessment Program (NARCCAP) driven by NCEP reanalysis. It is found that the NARCCAP models generally reproduce daily winter precipitation extremes along the Pacific coast quite well; in contrast, simulation of past daily summer precipitation extremes in a central US region is poor. Some differences in the strength of extremal correspondence are seen in the central region between models which employ spectral nudging and those which do not. We demonstrate how these techniques may be used to draw a link between extreme precipitation events and large-scale atmospheric drivers, as well as to downscale extreme precipitation simulated by a future run of a regional climate model. Specifically, we examine potential future changes in the nature of extreme precipitation along the Pacific coast produced by the pineapple express (PE) phenomenon. A link between extreme precipitation events and a "PE Index" derived from North Pacific sea-surface pressure fields is found. This link is used to study PE-influenced extreme precipitation produced by a future-scenario climate model run.

  6. Self-Recovery Experiments in Extreme Environments Using a Field Programmable Transistor Array

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Keymeulen, Didier; Arslan, Tughrul; Duong, Vu; Zebulum, Ricardo; Ferguson, Ian; Guo, Xin

    2004-01-01

    Temperature and radiation tolerant electronics, as well as long life survivability are key capabilities required for future NASA missions. Current approaches to electronics for extreme environments focus on component level robustness and hardening. However, current technology can only ensure very limited lifetime in extreme environments. This paper describes novel experiments that allow adaptive in-situ circuit redesign/reconfiguration during operation in extreme temperature and radiation environments. This technology would complement material/device advancements and increase the mission capability to survive harsh environments. The approach is demonstrated on a mixed-signal programmable chip (FPTA-2), which recovers functionality for temperatures until 28 C and with total radiation dose up to 250kRad.

  7. High spatial resolution time-resolved magnetic resonance angiography of lower extremity tumors at 3T

    PubMed Central

    Wu, Gang; Jin, Teng; Li, Ting; Morelli, John; Li, Xiaoming

    2016-01-01

    Abstract The aim of this study was to compare diagnostic value of high spatial resolution time-resolved magnetic resonance angiography with interleaved stochastic trajectory (TWIST) using Gadobutrol to Computed tomography angiography (CTA) for preoperative evaluation of lower extremity tumors. This prospective study was approved by the institutional review board. Fifty consecutive patients (31 men, 19 women, age range 18–80 years, average age 42.7 years) with lower extremity tumors underwent TWIST magnetic resonance angiography (MRA) and CTA. Digital subtraction angiography was available for 8 patients. Image quality of MRA was compared with CTA by 2 radiologists according to a 4-point Likert scale. Arterial involvement by tumor was compared using kappa test between MRA and CTA. The ability to identify feeding arteries and arterio-venous fistulae (AVF) was compared using Wilcoxon signed rank test and McNemar test, respectively. Image quality of MRA and CTA was rated without a statistically significant difference (3.88 ± 0.37 vs. 3.97 ± 0.16, P = 0.135). Intramodality agreement was high for the identification of arterial invasion (kappa = 0.806 ± 0.073 for Reader 1, kappa = 0.805 ± 0.073 for Reader 2). Readers found AVF in 27 of 50 MRA cases and 14 of 50 CTA cases (P < 0.001). Mean feeding arteries identified with MRA were significantly more than that with CTA (2.08 ± 1.72 vs. 1.62 ± 1.52, P = .02). TWIST MRA is a reliable imaging modality for the assessment of lower extremity tumors. TWIST MRA is comparable to CTA for the identification of AVF and feeding arteries. PMID:27631262

  8. EPS-LASSO: Test for High-Dimensional Regression Under Extreme Phenotype Sampling of Continuous Traits.

    PubMed

    Xu, Chao; Fang, Jian; Shen, Hui; Wang, Yu-Ping; Deng, Hong-Wen

    2018-01-25

    Extreme phenotype sampling (EPS) is a broadly-used design to identify candidate genetic factors contributing to the variation of quantitative traits. By enriching the signals in extreme phenotypic samples, EPS can boost the association power compared to random sampling. Most existing statistical methods for EPS examine the genetic factors individually, despite many quantitative traits have multiple genetic factors underlying their variation. It is desirable to model the joint effects of genetic factors, which may increase the power and identify novel quantitative trait loci under EPS. The joint analysis of genetic data in high-dimensional situations requires specialized techniques, e.g., the least absolute shrinkage and selection operator (LASSO). Although there are extensive research and application related to LASSO, the statistical inference and testing for the sparse model under EPS remain unknown. We propose a novel sparse model (EPS-LASSO) with hypothesis test for high-dimensional regression under EPS based on a decorrelated score function. The comprehensive simulation shows EPS-LASSO outperforms existing methods with stable type I error and FDR control. EPS-LASSO can provide a consistent power for both low- and high-dimensional situations compared with the other methods dealing with high-dimensional situations. The power of EPS-LASSO is close to other low-dimensional methods when the causal effect sizes are small and is superior when the effects are large. Applying EPS-LASSO to a transcriptome-wide gene expression study for obesity reveals 10 significant body mass index associated genes. Our results indicate that EPS-LASSO is an effective method for EPS data analysis, which can account for correlated predictors. The source code is available at https://github.com/xu1912/EPSLASSO. hdeng2@tulane.edu. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please

  9. High-voltage electrical burn injuries: functional upper extremity assessment.

    PubMed

    Mazzetto-Betti, K C; Amâncio, A C G; Farina, J A; Barros, M E P M; Fonseca, M C R

    2009-08-01

    High-voltage electric injuries have many manifestations, and an important complication is the damage of the central/peripheral nervous system. The purpose of this work was to assess the upper limb dysfunction in patients injured by high-voltage current. The evaluation consisted of analysis of patients' records, cutaneous-sensibility threshold, handgrip and pinch strength and a specific questionnaire about upper limb dysfunctions (DASH) in 18 subjects. All subjects were men; the average age at the time of the injury was 38 years. Of these, 72% changed job/retired after the injury. The current entrance was the hand in 94% and grounding in the lower limb in 78%. The average burned surface area (BSA) was 8.6%. The handgrip strength of the injured limb was reduced (p<0.05) and so also that of the three pinch types. The relationship between the handgrip strength and the DASH was statistically significant (p<0.001) as well as the relationship between the three pinch types (phigh-voltage electrical shock.

  10. High-temperature superconducting current leads

    NASA Astrophysics Data System (ADS)

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  11. High-redshift Extremely Red Quasars in X-Rays

    NASA Astrophysics Data System (ADS)

    Goulding, Andy D.; Zakamska, Nadia L.; Alexandroff, Rachael M.; Assef, Roberto J.; Banerji, Manda; Hamann, Fred; Wylezalek, Dominika; Brandt, William N.; Greene, Jenny E.; Lansbury, George B.; Pâris, Isabelle; Richards, Gordon; Stern, Daniel; Strauss, Michael A.

    2018-03-01

    Quasars may have played a key role in limiting the stellar mass of massive galaxies. Identifying those quasars in the process of removing star formation fuel from their hosts is an exciting ongoing challenge in extragalactic astronomy. In this paper, we present X-ray observations of 11 extremely red quasars (ERQs) with L bol ∼ 1047 erg s‑1 at z = 1.5–3.2 with evidence for high-velocity (v ≥slant 1000 km s‑1) [O III] λ5007 outflows. X-rays allow us to directly probe circumnuclear obscuration and to measure the instantaneous accretion luminosity. We detect 10 out of 11 ERQs available in targeted and archival data. Using a combination of X-ray spectral fitting and hardness ratios, we find that all of the ERQs show signs of absorption in the X-rays with inferred column densities of N H ≈ 1023 cm‑2, including four Compton-thick candidates (N H ≥slant 1024 cm‑2). We stack the X-ray emission of the seven weakly detected sources, measuring an average column density of N H ∼ 8 × 1023 cm‑2. The absorption-corrected (intrinsic) 2–10 keV X-ray luminosity of the stack is 2.7 × 1045 erg s‑1, consistent with X-ray luminosities of type 1 quasars of the same infrared luminosity. Thus, we find that ERQs are a highly obscured, borderline Compton-thick population, and based on optical and infrared data we suggest that these objects are partially hidden by their own equatorial outflows. However, unlike some quasars with known outflows, ERQs do not appear to be intrinsically underluminous in X-rays for their bolometric luminosity. Our observations indicate that low X-rays are not necessary to enable some types of radiatively driven winds.

  12. Moving in extreme environments: what's extreme and who decides?

    PubMed

    Cotter, James David; Tipton, Michael J

    2014-01-01

    , extreme loading, chronic unloading and high altitude. Ramifications include factors such as health and safety, productivity, enjoyment and autonomy, acute and chronic protection and optimising adaptation.

  13. Climate signature of Northwest U.S. precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Kushnir, Y.; Nakamura, J.

    2017-12-01

    The climate signature of precipitation extremes in the Northwest U.S. - the region that includes Oregon, Washington, Idaho, Montana and Wyoming - is studied using composite analysis of atmospheric fields leading to and associated with extreme rainfall events. A K-Medoids cluster analysis is applied to winter (November-February) months, maximum 5-day precipitation amounts calculated from 1-degree gridded daily rainfall between 1950/51 and 2013/14. The clustering divides the region into three sub-regions: one over the far eastern part of the analysis domain, includeing most of Montana and Wyoming. Two other sub-regions are in the west, lying north and south of the latitude of 45N. Using the time series corresponding to the Medoid centers, we extract the largest (top 5%) monthly extreme events to form the basis for the composite analysis. The main circulation feature distinguishing a 5-day extreme precipitation event in the two western sub-regions of the Northwest is the presence of a large, blocking, high pressure anomaly over the Gulf of Alaska about a week before the beginning of the 5-day intense precipitation event. The high pressure center intensifies considerably with time, drifting slowly westward, up to a day before the extreme event. During that time, a weak low pressure centers appears at 30N, to the southwest of the high, deepening as it moves east. As the extreme rainfall event is about to begin, the now deep low is encroaching on the Northwest coast while its southern flank taps well south into the subtropical Pacific, drawing moisture from as south as 15N. During the 5-day extreme precipitation event the high pressure center moves west and weakens while the now intense low converges large amounts of subtropical moisture to precipitate over the western Northwest. The implication of this analysis for extended range prediction is assessed.

  14. Extreme Conditions Modeling Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Ryan Geoffrey; Neary, Vincent Sinclair; Lawon, Michael J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, New Mexico on May 13–14, 2014. The objective of the workshop was to review the current state of knowledge on how to numerically and experimentally model WECs in extreme conditions (e.g. large ocean storms) and to suggest how national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry. More than 30 U.S. and European WEC experts from industry, academia, and national research institutes attended the workshop, which consistedmore » of presentations from W EC developers, invited keynote presentations from subject matter experts, breakout sessions, and a final plenary session .« less

  15. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  16. All-carbon sp-sp2 hybrid structures: Geometrical properties, current rectification, and current amplification

    PubMed Central

    Zhang, Zhenhua; Zhang, Junjun; Kwong, Gordon; Li, Ji; Fan, Zhiqiang; Deng, Xiaoqing; Tang, Guiping

    2013-01-01

    All-carbon sp-sp2 hybrid structures comprised of a zigzag-edged trigonal graphene (ZTG)and carbon chains are proposed and constructed as nanojunctions. It has been found that such simple hybrid structures possess very intriguing propertiesapp:addword:intriguing. The high-performance rectifying behaviors similar to macroscopic p-n junction diodes, such as a nearly linear positive-bias I-V curve (metallic behavior), a very small leakage current under negative bias (insulating behavior), a rather low threshold voltage, and a large bias region contributed to a rectification, can be predicted. And also, a transistor can be built by such a hybrid structure, which can show an extremely high current amplification. This is because a sp-hybrid carbon chain has a special electronic structure which can limit the electronic resonant tunneling of the ZTG to a unique and favorable situation. These results suggest that these hybrid structures might promise importantly potential applications for developing nano-scale integrated circuits. PMID:23999318

  17. Precipitation extremes and their relation to climatic indices in the Pacific Northwest USA

    NASA Astrophysics Data System (ADS)

    Zarekarizi, Mahkameh; Rana, Arun; Moradkhani, Hamid

    2018-06-01

    There has been focus on the influence of climate indices on precipitation extremes in the literature. Current study presents the evaluation of the precipitation-based extremes in Columbia River Basin (CRB) in the Pacific Northwest USA. We first analyzed the precipitation-based extremes using statistically (ten GCMs) and dynamically downscaled (three GCMs) past and future climate projections. Seven precipitation-based indices that help inform about the flood duration/intensity are used. These indices help in attaining first-hand information on spatial and temporal scales for different service sectors including energy, agriculture, forestry etc. Evaluation of these indices is first performed in historical period (1971-2000) followed by analysis of their relation to large scale tele-connections. Further we mapped these indices over the area to evaluate the spatial variation of past and future extremes in downscaled and observational data. The analysis shows that high values of extreme indices are clustered in either western or northern parts of the basin for historical period whereas the northern part is experiencing higher degree of change in the indices for future scenario. The focus is also on evaluating the relation of these extreme indices to climate tele-connections in historical period to understand their relationship with extremes over CRB. Various climate indices are evaluated for their relationship using Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). Results indicated that, out of 13 climate tele-connections used in the study, CRB is being most affected inversely by East Pacific (EP), Western Pacific (WP), East Atlantic (EA) and North Atlaentic Oscillation (NAO).

  18. Surgical timing of treating injured extremities: an evolving concept of urgency.

    PubMed

    Crist, Brett D; Ferguson, Tania; Murtha, Yvonne M; Lee, Mark A

    2013-01-01

    The management of some orthopaedic extremity injuries has changed over the past decade because of changing resource availability and the risks of complications. It is helpful to review the current literature regarding orthopaedic extremity emergencies and urgencies. The effects of the techniques of damage control orthopaedic techniques and the concept of the orthopaedic trauma room have also affected the management of these injuries. The available literature indicates that the remaining true orthopaedic extremity emergencies include compartment syndrome and vascular injuries associated with fractures and dislocations. Orthopaedic urgencies include open fracture management, femoral neck fractures in young patients treated with open reduction and internal fixation, and talus fractures that are open or those with impending skin compromise. Deciding when the definitive management of orthopaedic extremity injuries will occur has evolved as the concept of damage control orthopaedics has become more commonly accepted. Patient survival rates have improved with current resuscitative protocols. Definitive fixation of extremity injuries should be delayed until the patient's physiologic and extremity soft-tissue status allows for appropriate definitive management while minimizing the risks of complications. In patients with semiurgent orthopaedic injuries, the use of an orthopaedic trauma room has led to more efficient care of patients, fewer complications, and better time management for surgeons who perform on-call service for patients with traumatic orthopaedic injuries.

  19. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    NASA Astrophysics Data System (ADS)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  20. Extremely Preterm Infant Skin Care: A Transformation of Practice Aimed to Prevent Harm.

    PubMed

    Johnson, Deanna E

    2016-10-01

    The skin of extremely preterm infants is underdeveloped and has poor barrier function. Skin maintenance interventions initiated in the neonatal intensive care unit (NICU) have immediate and lifelong implications when the potential for infection, allergen sensitization, and altered aesthetic outcomes are considered. In addition, the high-level medical needs of extremely preterm infants demand skin-level medical interventions that too often result in unintended skin harm. We describe the use of a harm prevention, or consequence-centered, approach to skin care, which facilitates safer practice for extremely premature infants. Neonatal and pediatric Advanced Practice Registered Nurses (APRN) came together for monthly meetings to review the evidence around best skin care practices for extremely preterm infants, with an emphasis on reduction of skin harm. Findings were focused on the population of interest and clinical implementation strategies. Skin care for extremely preterm infants remains overlooked by current literature. However, clinical practice pearls were extracted and applied in a manner that promotes safer skin care practices in the NICU. Gentle adhesives, such as silicone tapes and hydrogel-backed electrodes, can help to reduce medical adhesive-related skin injuries. Diaper wipes are not appropriate for use among extremely preterm infants, as many ingredients may contain potential allergens. Skin cleansers should be pH neutral to the skin and the prophylactic use of petrolatum-based emollients should be avoided. Further exploration and understanding of skin care practices that examine issues of true risk versus hypothetical risk of harm.

  1. Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base Superalloy IN100 (Preprint)

    DTIC Science & Technology

    2009-03-01

    transition fatigue regimes; however, microplasticity (i.e., heterogeneous plasticity at the scale of microstructure) is relevant to understanding fatigue...and Socie [57] considered the affect of microplastic 14 Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base...considers the local stress state as affected by intergranular interactions and microplasticity . For the calculations given below, the volumes over which

  2. Graphene electron cannon: High-current edge emission from aligned graphene sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jianlong; Li, Nannan; Guo, Jing

    2014-01-13

    High-current field emitters are made by graphene paper consist of aligned graphene sheets. Field emission luminance pattern shows that their electron beams can be controlled by rolling the graphene paper from sheet to cylinder. These specific electron beams would be useful to vacuum devices and electron beam lithograph. To get high-current emission, the graphene paper is rolled to array and form graphene cannon. Due to aligned emission array, graphene cannon have high emission current. Besides high emission current, the graphene cannon is also tolerable with excellent emission stability. With good field emission properties, these aligned graphene emitters bring application insight.

  3. Global predictability of temperature extremes

    NASA Astrophysics Data System (ADS)

    Coughlan de Perez, Erin; van Aalst, Maarten; Bischiniotis, Konstantinos; Mason, Simon; Nissan, Hannah; Pappenberger, Florian; Stephens, Elisabeth; Zsoter, Ervin; van den Hurk, Bart

    2018-05-01

    Extreme temperatures are one of the leading causes of death and disease in both developed and developing countries, and heat extremes are projected to rise in many regions. To reduce risk, heatwave plans and cold weather plans have been effectively implemented around the world. However, much of the world’s population is not yet protected by such systems, including many data-scarce but also highly vulnerable regions. In this study, we assess at a global level where such systems have the potential to be effective at reducing risk from temperature extremes, characterizing (1) long-term average occurrence of heatwaves and coldwaves, (2) seasonality of these extremes, and (3) short-term predictability of these extreme events three to ten days in advance. Using both the NOAA and ECMWF weather forecast models, we develop global maps indicating a first approximation of the locations that are likely to benefit from the development of seasonal preparedness plans and/or short-term early warning systems for extreme temperature. The extratropics generally show both short-term skill as well as strong seasonality; in the tropics, most locations do also demonstrate one or both. In fact, almost 5 billion people live in regions that have seasonality and predictability of heatwaves and/or coldwaves. Climate adaptation investments in these regions can take advantage of seasonality and predictability to reduce risks to vulnerable populations.

  4. Sarcoidosis with high serum levels of vascular endothelial growth factor (VEGF), showing RS3PE-like symptoms in extremities.

    PubMed

    Matsuda, Masayuki; Sakurai, Kumi; Fushimi, Tomohisa; Yamamoto, Kanji; Rokuhara, Shiho; Hosaka, Naritoshi; Ikeda, Shu-ichi

    2004-06-01

    We report a patient with sarcoidosis who showed edema in the distal portion of all extremities, particularly the legs, as seen in remitting seronegative symmetrical synovitis with pitting edema (RS3PE). Magnetic resonance imaging demonstrated diffuse abnormal intensity in subcutaneous tissues of both legs, and skin biopsy led to a diagnosis of sarcoidosis. Vascular endothelial growth factor (VEGF) showed a high serum level, which decreased soon after starting oral prednisolone, in parallel with an improvement in the limb edema. In this patient VEGF as well as infiltration by sarcoid granuloma in the skin might have played an important role in the pathogenesis of RS3PE-like symptoms in the extremities. When painful pitting edema is seen predominantly in the distal portion of all extremities, sarcoidosis as well as RS3PE should be considered as a possible diagnosis.

  5. Extreme ultraviolet probing of nonequilibrium dynamics in high energy density germanium

    NASA Astrophysics Data System (ADS)

    Principi, E.; Giangrisostomi, E.; Mincigrucci, R.; Beye, M.; Kurdi, G.; Cucini, R.; Gessini, A.; Bencivenga, F.; Masciovecchio, C.

    2018-05-01

    Intense femtosecond infrared laser pulses induce a nonequilibrium between thousands of Kelvin hot valence electrons and room-temperature ions in a germanium sample foil. The evolution of this exotic state of matter is monitored with time-resolved extreme ultraviolet absorption spectroscopy across the Ge M2 ,3 edge (≃30 eV ) using the FERMI free-electron laser. We analyze two distinct regimes in the ultrafast dynamics in laser-excited Ge: First, on a subpicosecond time scale, the electron energy distribution thermalizes to an extreme temperature unreachable in equilibrium solid germanium; then, during the following picoseconds, the lattice reacts strongly altering the electronic structure and resulting in melting to a metallic state alongside a breakdown of the local atomic order. Data analysis, based on a hybrid approach including both numerical and analytical calculations, provides an estimation of the electron and ion temperatures, the electron density of states, the carrier-phonon relaxation time, as well as the carrier density and lattice heat capacity under those extreme nonequilibrium conditions. Related structural anomalies, such as the occurrence of a transient low-density liquid phase and the possible drop in lattice heat capacity are discussed.

  6. Extreme Geohazards: Reducing Disaster Risk and Increasing Resilience

    NASA Astrophysics Data System (ADS)

    Plag, Hans-Peter; Stein, Seth; Brocklebank, Sean; Jules-Plag, Shelley; Campus, Paola

    2014-05-01

    damage on a global scale for a globally connected and stressed society. In particular, large volcanic eruptions could impact climate, damage anthropogenic infrastructure and interrupt resource supplies on a global scale. The occurrence of one or more of the largest volcanic eruptions that took place during the last 2,000 years under today's conditions would likely cause global disasters or catastrophes challenging civilization. Integration of these low-probability, high-impact events in DRR requires an approach focused on resilience and antifragility, as well as the ability to cope with, and recover from failure of infrastructures and social systems. Resilience results from social capital even more than from the robustness of infrastructure. While it is important to understand the hazards through the contribution of geosciences, it is equally important to understand through the contribution of social sciences and engineering the societal processes involved with coping with hazards or leading to failure. For comprehensive development of resilience to natural hazards and, in particular, extreme geohazards, synergy between geosciences, engineering and social sciences, jointed to an improved science-policy relationship is key to success. For example, a simple cost-benefit analysis shows that a comprehensive monitoring system that could identify the onset of an extreme volcanic eruption with sufficient lead time to allow for a globally coordinated preparation makes economic sense. The WP recommends implementation of such a monitoring system with global coverage, assesses the existing assets in current monitoring systems, and illustrates many benefits, besides providing early warning for extreme volcanic eruptions. However, such a monitoring system can provide resilience only via the capability of the global community to react to early warnings. The WP recommends achieving this through the establishment of a global coordination platform comparable to IPCC's role in addressing

  7. Digital High-Current Monitor

    NASA Technical Reports Server (NTRS)

    Cash, B.

    1985-01-01

    Simple technique developed for monitoring direct currents up to several hundred amperes and digitally displaying values directly in current units. Used to monitor current magnitudes beyond range of standard laboratory ammeters, which typically measure 10 to 20 amperes maximum. Technique applicable to any current-monitoring situation.

  8. Plant volatiles in extreme terrestrial and marine environments.

    PubMed

    Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco

    2014-08-01

    This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation. © 2014 John Wiley & Sons Ltd.

  9. Inter-annual Variability of Temperature and Extreme Heat Events during the Nairobi Warm Season

    NASA Astrophysics Data System (ADS)

    Scott, A.; Misiani, H. O.; Zaitchik, B. F.; Ouma, G. O.; Anyah, R. O.; Jordan, A.

    2016-12-01

    Extreme heat events significantly stress all organisms in the ecosystem, and are likely to be amplified in peri-urban and urban areas. Understanding the variability and drivers behind these events is key to generating early warnings, yet in Equatorial East Africa, this information is currently unavailable. This study uses daily maximum and minimum temperature records from weather stations within Nairobi and its surroundings to characterize variability in daily minimum temperatures and the number of extreme heat events. ERA-Interim reanalysis is applied to assess the drivers of these events at event and seasonal time scales. At seasonal time scales, high temperatures in Nairobi are a function of large scale climate variability associated with the Atlantic Multi-decadal Oscillation (AMO) and Global Mean Sea Surface Temperature (GMSST). Extreme heat events, however, are more strongly associated with the El Nino Southern Oscillation (ENSO). For instance, the persistence of AMO and ENSO, in particular, provide a basis for seasonal prediction of extreme heat events/days in Nairobi. It is also apparent that the temporal signal from extreme heat events in tropics differs from classic heat wave definitions developed in the mid-latitudes, which suggests that a new approach for defining these events is necessary for tropical regions.

  10. A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.

    PubMed

    Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan

    2017-07-04

    A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pK a of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pK a 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    NASA Astrophysics Data System (ADS)

    Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.

    2015-11-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.

  12. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  13. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  14. Ongoing climatic extreme dynamics in Siberia

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Shulgina, T. M.; Okladnikov, I. G.; Titov, A. G.

    2013-12-01

    Ongoing global climate changes accompanied by the restructuring of global processes in the atmosphere and biosphere are strongly pronounced in the Northern Eurasia regions, especially in Siberia. Recent investigations indicate not only large changes in averaged climatic characteristics (Kabanov and Lykosov, 2006, IPCC, 2007; Groisman and Gutman, 2012), but more frequent occurrence and stronger impacts of climatic extremes are reported as well (Bulygina et al., 2007; IPCC, 2012: Climate Extremes, 2012; Oldenborh et al., 2013). This paper provides the results of daily temperature and precipitation extreme dynamics in Siberia for the last three decades (1979 - 2012). Their seasonal dynamics is assessed using 10th and 90th percentile-based threshold indices that characterize frequency, intensity and duration of climatic extremes. To obtain the geographical pattern of these variations with high spatial resolution, the sub-daily temperature data from ECMWF ERA-Interim reanalysis and daily precipitation amounts from APHRODITE JMA dataset were used. All extreme indices and linear trend coefficients have been calculated using web-GIS information-computational platform Climate (http://climate.scert.ru/) developed to support collaborative multidisciplinary investigations of regional climatic changes and their impacts (Gordov et al., 2012). Obtained results show that seasonal dynamics of daily temperature extremes is asymmetric for tails of cold and warm temperature extreme distributions. Namely, the intensity of warming during cold nights is higher than during warm nights, especially at high latitudes of Siberia. The similar dynamics is observed for cold and warm day-time temperatures. Slight summer cooling was observed in the central part of Siberia. It is associated with decrease in warm temperature extremes. In the southern Siberia in winter, we also observe some cooling mostly due to strengthening of the cold temperature extremes. Changes in daily precipitation extremes

  15. Effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players.

    PubMed

    Ko, Kwang-Jun; Ha, Gi-Chul; Kim, Dong-Woo; Kang, Seol-Jung

    2017-10-01

    [Purpose] The study investigated the effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players. [Subjects and Methods] The study assessed U High School soccer players (n=40) in S area, South Korea, divided into 2 groups: a lower extremity injury group (n=16) comprising those with knee and ankle injuries and a control group (n=24) without injury. Aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function were compared and analyzed. [Results] Regarding the aerobic exercise capacity test, significant differences were observed in maximal oxygen uptake and anaerobic threshold between both groups. For the anaerobic power test, no significant difference was observed in peak power and average power between the groups; however, a significant difference in fatigue index was noted. Regarding the knee isokinetic muscular test, no significant difference was noted in knee flexion, extension, and flexion/extension ratio between both groups. [Conclusion] Lower extremity injury was associated with reduced aerobic exercise capacity and a higher fatigue index with respect to anaerobic exercise capacity. Therefore, it seems necessary to establish post-injury training programs that improve aerobic and anaerobic exercise capacity for soccer players who experience lower extremity injury.

  16. Exposure of US Adolescents to Extremely Violent Movies

    PubMed Central

    Worth, Keilah A.; Chambers, Jennifer Gibson; Nassau, Daniel H.; Rakhra, Balvinder K.; Sargent, James D.

    2009-01-01

    Objective Despite concerns about exposure to violent media, there are few data on youth exposure to violent movies. In this study we examined such exposure among young US adolescents. Methods We used a random-digit-dial survey of 6522 US adolescents aged 10 to 14 years fielded in 2003. Using previously validated methods, we determined the percentage and number of US adolescents who had seen each of 534 recently released movies. We report results for the 40 that were rated R for violence by the Motion Picture Association of America, UK 18 by the British Board of Film Classification and coded for extreme violence by trained content coders. Results The 40 violent movies were seen by a median of 12.5% of an estimated 22 million US adolescents aged 10 to 14 years. The most popular violent movie, Scary Movie, was seen by >10 million (48.1%) children, 1 million of whom were 10 years of age. Watching extremely violent movies was associated with being male, older, nonwhite, having less-educated parents, and doing poorly in school. Black male adolescents were at particularly high risk for seeing these movies; for example Blade, Training Day, and Scary Movie were seen, respectively, by 37.4%, 27.3%, and 48.1% of the sample overall versus 82.0%, 81.0%, and 80.8% of black male adolescents. Violent movie exposure was also associated with measures of media parenting, with high-exposure adolescents being significantly more likely to have a television in their bedroom and to report that their parents allowed them to watch R-rated movies. Conclusions This study documents widespread exposure of young US adolescents to movies with extreme graphic violence from movies rated R for violence and raises important questions about the effectiveness of the current movie-rating system. PMID:18676548

  17. Exposure of US adolescents to extremely violent movies.

    PubMed

    Worth, Keilah A; Gibson Chambers, Jennifer; Nassau, Daniel H; Rakhra, Balvinder K; Sargent, James D

    2008-08-01

    Despite concerns about exposure to violent media, there are few data on youth exposure to violent movies. In this study we examined such exposure among young US adolescents. We used a random-digit-dial survey of 6522 US adolescents aged 10 to 14 years fielded in 2003. Using previously validated methods, we determined the percentage and number of US adolescents who had seen each of 534 recently released movies. We report results for the 40 that were rated R for violence by the Motion Picture Association of America, UK 18 by the British Board of Film Classification and coded for extreme violence by trained content coders. The 40 violent movies were seen by a median of 12.5% of an estimated 22 million US adolescents aged 10 to 14 years. The most popular violent movie, Scary Movie, was seen by >10 million (48.1%) children, 1 million of whom were 10 years of age. Watching extremely violent movies was associated with being male, older, nonwhite, having less-educated parents, and doing poorly in school. Black male adolescents were at particularly high risk for seeing these movies; for example Blade, Training Day, and Scary Movie were seen, respectively, by 37.4%, 27.3%, and 48.1% of the sample overall versus 82.0%, 81.0%, and 80.8% of black male adolescents. Violent movie exposure was also associated with measures of media parenting, with high-exposure adolescents being significantly more likely to have a television in their bedroom and to report that their parents allowed them to watch R-rated movies. This study documents widespread exposure of young US adolescents to movies with extreme graphic violence from movies rated R for violence and raises important questions about the effectiveness of the current movie-rating system.

  18. Clinical Considerations for the Use Lower Extremity Arthroplasty in the Elderly.

    PubMed

    Otero-López, Antonio; Beaton-Comulada, David

    2017-11-01

    There is an increase in the aging population that has led to a surge of reported cases of osteoarthritis and a greater demand for lower extremity arthroplasty. This article aims to review the current treatment options and expectations when considering lower extremity arthroplasty in the elderly patient with an emphasis on the following subjects: (1) updated clinical guidelines for the management of osteoarthritis in the lower extremity, (2) comorbidities and risk factors in the surgical patient, (3) preoperative evaluation and optimization of the surgical patient, (4) surgical approach and implant selection, and (5) rehabilitation and life after lower extremity arthroplasty. Published by Elsevier Inc.

  19. Operational early warning platform for extreme meteorological events

    NASA Astrophysics Data System (ADS)

    Mühr, Bernhard; Kunz, Michael

    2015-04-01

    Operational early warning platform for extreme meteorological events Most natural disasters are related to extreme weather events (e.g. typhoons); weather conditions, however, are also highly relevant for humanitarian and disaster relief operations during and after other natural disaster like earthquakes. The internet service "Wettergefahren-Frühwarnung" (WF) provides various information on extreme weather events, especially when these events are associated with a high potential for large damage. The main focus of the platform is on Central Europe, but major events are also monitored worldwide on a daily routine. WF provides high-resolution forecast maps for many weather parameters which allow detailed and reliable predictions about weather conditions during the next days in the affected areas. The WF service became operational in February 2004 and is part of the Center for Disaster Management and Risk Reduction Technology (CEDIM) since 2007. At the end of 2011, CEDIM embarked a new type of interdisciplinary disaster research termed as forensic disaster analysis (FDA) in near real time. In case of an imminent extreme weather event WF plays an important role in CEDIM's FDA group. It provides early and precise information which are always available and updated several times during a day and gives advice and assists with articles and reports on extreme events.

  20. Simulated Extreme Prepitation Indices over Northeast Brasil in Current Climate and Future Scenarios RCP4.5 and RCP8.5

    NASA Astrophysics Data System (ADS)

    Wender Santiago Marinho, Marcos; Araújo Costa, Alexandre; Cassain Sales, Domingo; Oliveira Guimarães, Sullyandro; Mariano da Silva, Emerson; das Chagas Vasconcelos Júnior, Francisco

    2013-04-01

    In this study, we analyzed extreme precipitation indices, for present and future modeled climates over Northeast of Brazil (NEB), from CORDEX simulations over the domain of Tropical Americas. The period for the model validation was from 1989-2007, using data from the European Center (ECWMF) Reanalysis, ERA-INTERIM, as input to drive the regional model (RAMS 6.0). Reanalysis data were assimilated via both lateral boundaries and the entire domain (a much weaker "central nudging"). Six indices of extreme precipitation were calculated over NEB: the average number of days above 10, 20 and 30 mm in one year (R10, R20, R30), the number of consecutive dry days (CDD), the number of consecutive wet days (CWD) and the maximum rainfall in five consecutive days (RX5). Those indices were compared against two independent databases: MERRA (Modern Era Retrospective analysis for Research and Applications) and TRMM (Tropical Rainfall Measuring Mission). After validation, climate simulations were performed for the present climate (1985-2005) and short-term (2015-2035), mid-term (2045-2065) and long-term (2079 to 2099) future climates for two scenarios: RCP 4.5 and RCP 8.5, nesting RAMS into HadGEM2-ES global model (a participant of CMIP5). Along with the indices, we also calculated Probability Distribution Functions (PDFs) to study the behavior of daily precipitation in the present and by the end of the 21st century (2079 to 2099) to assess possible changes under RCPs 4.5 and 8.5. The regional model is capable of representing relatively well the extreme precipitation indices for current climate, but there is some difficulties in performing a proper validation since the observed databases disagree significantly. Future projections show significant changes in most extreme indices. Rnn generally tend to increase, especially under RCP8.5. More significant changes are projected for the long-term period, under RCP8.5, which shows a pronounced R30 enhancement over northern states. CDD tends

  1. I-Love-Q to the extreme

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Yunes, Nicolás

    2018-01-01

    Certain bulk properties of neutron stars, in particular their moment of inertia, rotational quadrupole moment and tidal Love number, when properly normalized, are related to one another in a nearly equation of state independent way. The goal of this paper is to test these relations with extreme equations of state at supranuclear densities constrained to satisfy only a handful of generic, physically sensible conditions. By requiring that the equation of state be (i) barotropic and (ii) its associated speed of sound be real, we construct a piecewise function that matches a tabulated equation of state at low densities, while matching a stiff equation of state parametrized by its sound speed in the high-density region. We show that the I-Love-Q relations hold to 1 percent with this class of equations of state, even in the extreme case where the speed of sound becomes superluminal and independently of the transition density. We also find further support for the interpretation of the I-Love-Q relations as an emergent symmetry due to the nearly constant eccentricity of isodensity contours inside the star. These results reinforce the robustness of the I-Love-Q relations against our current incomplete picture of physics at supranuclear densities, while strengthening our confidence in the applicability of these relations in neutron star astrophysics.

  2. Prevention of Lower Extremity Injuries in Basketball

    PubMed Central

    Taylor, Jeffrey B.; Ford, Kevin R.; Nguyen, Anh-Dung; Terry, Lauren N.; Hegedus, Eric J.

    2015-01-01

    Context: Lower extremity injuries are common in basketball, yet it is unclear how prophylactic interventions affect lower extremity injury incidence rates. Objective: To analyze the effectiveness of current lower extremity injury prevention programs in basketball athletes, focusing on injury rates of (1) general lower extremity injuries, (2) ankle sprains, and (3) anterior cruciate ligament (ACL) tears. Data Sources: PubMed, MEDLINE, CINAHL, SPORTDiscus, and the Cochrane Register of Controlled Trials were searched in January 2015. Study Selection: Studies were included if they were randomized controlled or prospective cohort trials, contained a population of competitive basketball athletes, and reported lower extremity injury incidence rates specific to basketball players. In total, 426 individual studies were identified. Of these, 9 met the inclusion criteria. One other study was found during a hand search of the literature, resulting in 10 total studies included in this meta-analysis. Study Design: Systematic review and meta-analysis. Level of Evidence: Level 2. Data Extraction: Details of the intervention (eg, neuromuscular vs external support), size of control and intervention groups, and number of injuries in each group were extracted from each study. Injury data were classified into 3 groups based on the anatomic diagnosis reported (general lower extremity injury, ankle sprain, ACL rupture). Results: Meta-analyses were performed independently for each injury classification. Results indicate that prophylactic programs significantly reduced the incidence of general lower extremity injuries (odds ratio [OR], 0.69; 95% CI, 0.57-0.85; P < 0.001) and ankle sprains (OR, 0.45; 95% CI, 0.29-0.69; P < 0.001), yet not ACL ruptures (OR, 1.09; 95% CI, 0.36-3.29; P = 0.87) in basketball athletes. Conclusion: In basketball players, prophylactic programs may be effective in reducing the risk of general lower extremity injuries and ankle sprains, yet not ACL injuries. PMID

  3. Projections of extreme water level events for atolls in the western Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-12-01

    Conditions that lead to extreme water levels and coastal flooding are examined for atolls in the Republic of the Marshall Islands based on a recent field study of wave transformations over fringing reefs, tide gauge observations, and wave model hindcasts. Wave-driven water level extremes pose the largest threat to atoll shorelines, with coastal levels scaling as approximately one-third of the incident breaking wave height. The wave-driven coastal water level is partitioned into a mean setup, low frequency oscillations associated with cross-reef quasi-standing modes, and wind waves that reach the shore after undergoing high dissipation due to breaking and bottom friction. All three components depend on the water level over the reef; however, the sum of the components is independent of water level due to cancelling effects. Wave hindcasts suggest that wave-driven water level extremes capable of coastal flooding are infrequent events that require a peak wave event to coincide with mid- to high-tide conditions. Interannual and decadal variations in sea level do not change the frequency of these events appreciably. Future sea-level rise scenarios significantly increase the flooding threat associated with wave events, with a nearly exponential increase in flooding days per year as sea level exceeds 0.3 to 1.0 m above current levels.

  4. The Subaru Coronagraphic Extreme AO Project

    NASA Astrophysics Data System (ADS)

    Martinache, Frantz; Guyon, O.; Lozi, J.; Tamura, M.; Hodapp, K.; Suzuki, R.; Hayano, Y.; McElwain, M. W.

    2009-01-01

    While the existence of large numbers of extrasolar planets around solar type stars has been unambiguously demonstrated by radial velocity, transit and microlensing surveys, attempts at direct imaging with AO-equipped large telescopes remain unsuccessful. Because they supposedly offer more favorable contrast ratios, young systems consitute prime targets for imaging. Such observations will provide key insights on the formation and early evolution of planets and disks. Current surveys are limited by modest AO performance which limits inner working angle to 0.2", and only reach maximum sensitivity outside 1". This translates into orbital distances greater than 10 AU even on most nearby systems, while only 5 % of the known exoplanets have a semimajor axis greater than 10 AU. This calls for a major change of approach in the techniques used for direct imaging of the direct vicinity of stars. A sensible way to do the job is to combine coronagraphy and Extreme AO. Only accurate and fast control of the wavefront will permit the detection of high contrast planetary companions within 10 AU. The SCExAO system, currently under assembly, is an upgrade of the HiCIAO coronagraphic differential imaging camera, mounted behind the 188-actuator curvature AO system on Subaru Telescope. This platform includes a 1000-actuator MEMS deformable mirror for high accuracy wavefront correction and a PIAA coronagraph which delivers high contrast at 0.05" from the star (5 AU at 100 pc). Key technologies have been validated in the laboratory: high performance wavefront sensing schemes, spider vanes and central obstruction removal, and lossless beam apodization. The project is designed to be highly flexible to continuously integrate new technologies with high scientific payoff. Planned upgrades include an integral field unit for spectral characterization of planets/disks and a non-redundant aperture mask to push the performance of the system toward separations less than lambda/D.

  5. Extreme sub-threshold swing in tunnelling relays

    NASA Astrophysics Data System (ADS)

    AbdelGhany, M.; Szkopek, T.

    2014-01-01

    We propose and analyze the theory of the tunnelling relay, a nanoscale active device in which tunnelling current is modulated by electromechanical actuation of a suspended membrane above a fixed electrode. The tunnelling current is modulated exponentially with vacuum gap length, permitting an extreme sub-threshold swing of ˜10 mV/decade breaking the thermionic limit. The predicted performance suggests that a significant reduction in dynamic energy consumption over conventional field effect transistors is physically achievable.

  6. Base Oil-Extreme Pressure Additive Synergy in Lubricants

    USDA-ARS?s Scientific Manuscript database

    Extreme pressure (EP) additives are those containing reactive elements such as sulfur, phosphorus, and chlorine. In lubrication processes that occur under extremely severe conditions (e.g., high pressure and/or slow speed), these elements undergo chemical reactions generating new materials (tribofi...

  7. [The action of low-intensity extremely high-freguency electromagnetic radiation on growth parameters for bacteria Enterococcus hirae].

    PubMed

    Oganian, V; Sarkisian, A; Tadevosian, A; Torchunian, A

    2008-01-01

    It has been found that the exposure of Enterococcus hirae ATCC9790, grown under anaerobic conditions for 30 min or 1 h, to low-intensity (flux capacity 0.06 mW/sm2) coherent electromagnetic radiation (EMI) of extremely high-frequency 45 - 53 GHz), or millimeter waves causes a marked prolongation of the lag-growth phase and a decrease in their specific growth rate, the inhibitory effect increasing in the frequency range from 49 to 53 GHz. The effect enhanced as duration of expocure was encreased from 30 min to 1 h; however, further increase in exposure duration to 2 h did not cause an enhancement of the effect. It has been shown that the action of extremely high-frequency EMI on these bacteria does not depend on medium pH (pH 8.0 or pH 6.0). It is proposed that these bacteria have defensive or reparation mechanisms which compensate for the action of radiation; the occurrence of different mechanisms for pH regulation is not ruled out.

  8. Extremity War Injuries: Current Management and Research Priorities

    DTIC Science & Technology

    2012-01-01

    sal- vage and amputation. The 13 articles generated from this symposium ad- dress these topics as well as multi- modal strategies for pain control...reconstruction, and reha- bilitation. The last seven articles of this supplement address lessons learned, outcomes measures, current strategies, and knowledge... bioburden , which has resulted in im- proved patient care. At the EWI VII Symposium, sev- eral research priorities were outlined in the areas of acute care

  9. The Extreme Climate Index: a novel and multi-hazard index for extreme weather events.

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2017-04-01

    In this presentation we introduce the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events in African countries, thus indicating that a shift to a new climate regime is underway in a particular area. This index has been developed in the context of XCF (eXtreme Climate Facilities) project lead by ARC (African Risk Capacity, specialised agency of the African Union), and will be used in the payouts triggering mechanism of an insurance programme against risks related to the increase of frequency and magnitude of extreme weather events due to climate regimes' changes. The main hazards covered by ECI will be extreme dry, wet and heat events, with the possibility of adding region-specific risk events such as tropical cyclones for the most vulnerable areas. It will be based on data coming from consistent, sufficiently long, high quality historical records and will be standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be comparable. The first step to construct such an index is to define single hazard indicators. In this first study we focused on extreme dry/wet and heat events, using for their description respectively the well-known SPI (Standardized Precipitation Index) and an index developed by us, called SHI (Standardized Heat-waves Index). The second step consists in the development of a computational strategy to combine these, and possibly other indices, so that the ECI can describe, by means of a single indicator, different types of climatic extremes. According to the methodology proposed in this paper, the ECI is defined by two statistical components: the ECI intensity, which indicates whether an event is extreme or not; the angular component, which represent the contribution of each hazard to the overall intensity of the index. The ECI can thus be used to identify "extremes" after defining a

  10. Adventure and Extreme Sports.

    PubMed

    Gomez, Andrew Thomas; Rao, Ashwin

    2016-03-01

    Adventure and extreme sports often involve unpredictable and inhospitable environments, high velocities, and stunts. These activities vary widely and include sports like BASE jumping, snowboarding, kayaking, and surfing. Increasing interest and participation in adventure and extreme sports warrants understanding by clinicians to facilitate prevention, identification, and treatment of injuries unique to each sport. This article covers alpine skiing and snowboarding, skateboarding, surfing, bungee jumping, BASE jumping, and whitewater sports with emphasis on epidemiology, demographics, general injury mechanisms, specific injuries, chronic injuries, fatality data, and prevention. Overall, most injuries are related to overuse, trauma, and environmental or microbial exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Subtropical air masses over eastern Canada: Their links to extreme precipitation

    NASA Astrophysics Data System (ADS)

    Gyakum, John; Wood, Alice; Milrad, Shawn; Atallah, Eyad

    2017-04-01

    We investigate extremely warm, moist air masses with an analysis of 850-hPa equivalent potential temperature (θe) extremes at Montreal, Quebec. The utility of using this metric is that it represents the thermodynamic property of air that ascends during a precipitation event. We produce an analysis of the 40 most extreme cases of positive θe, 10 for each season, based upon standardized anomalies from the 33-year climatology. The analysis shows the cases to be characterized by air masses with distinct subtropical traits for all seasons: reduced static stability, anomalously high precipitable water, and anomalously elevated dynamic tropopause heights. Persistent, slow moving upper- and lower-level features were essential in the build up of high- θe air encompassing much of eastern Canada. The trajectory analysis also showed anticyclonic curvature to all paths in all seasons, implying that the subtropical anticyclone is crucial in the transport of high- θe air. These atmospheric rivers during the winter are characterized by trajectories from the subtropical North Atlantic, and over the Gulf Stream current, northward into Montreal. In contrast, the summer anticyclonic trajectories are primarily continental, traveling from Texas north-northeastward into the Great Lakes, and then eastward into Montreal. The role of the air mass in modulating the strength of a precipitation event is addressed with an analysis of the expression, P = RD, where P is the total precipitation, and R is the precipitation rate, averaged through the duration, D, of the event. Though appearing simple, this expression includes R, (assumed to be same as condensation, with an efficiency of 1), which may be expressed as the product of vertical motion and the change of saturation mixing ratio following a moist adiabat, through the troposphere. This expression for R includes the essential ingredients of lift, air mass temperature, and static stability (implicit in vertical motion). We use this

  12. Extreme Programming: Maestro Style

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark

    2009-01-01

    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme

  13. Interventional Therapy for Upper Extremity Deep Vein Thrombosis

    PubMed Central

    Carlon, Timothy A.; Sudheendra, Deepak

    2017-01-01

    Approximately 10% of all deep vein thromboses occur in the upper extremity, and that number is increasing due to the use of peripherally inserted central catheters. Sequelae of upper extremity deep vein thrombosis (UEDVT) are similar to those for lower extremity deep vein thrombosis (LEDVT) and include postthrombotic syndrome and pulmonary embolism. In addition to systemic anticoagulation, there are multiple interventional treatment options for UEDVT with the potential to reduce the incidence of these sequelae. To date, there have been no randomized trials to define the optimal management strategy for patients presenting with UEDVT, so many conclusions are drawn from smaller, single-center studies or from LEDVT research. In this article, the authors describe the evidence for the currently available treatment options and an approach to a patient with acute UEDVT. PMID:28265130

  14. Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China.

    PubMed

    Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan

    2015-12-21

    Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. We collected data from Beijing and Shanghai, China, during 2007-2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0-27, while the hot effects reached the strongest at lag 0-14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days.

  15. Extremely High-Frequency Holographic Radar Imaging of Personnel and Mail

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, Douglas L.; Sheen, David M.; Griffin, Jeffrey W.

    2006-08-01

    The awareness of terrorists covertly transporting chemical warfare (CW) and biological warfare (BW) agents into government, military, and civilian facilities to harm the occupants has increased dramatically since the attacks of 9/11. Government and civilian security personnel have a need for innovative surveillance technology that can rapidly detect these lethal agents, even when they are hidden away in sealed containers and concealed either under clothing or in hand-carried items such as mailed packages or handbags. Sensor technology that detects BW and CW agents in mail or sealed containers carried under the clothing are under development. One promising sensor technology presentlymore » under development to defeat these threats is active millimeter-wave holographic radar imaging, which can readily image concealed items behind paper, cardboard, and clothing. Feasibility imaging studies at frequencies greater than 40 GHz have been conducted to determine whether simulated biological or chemical agents concealed in mail packages or under clothing could be detected using this extremely high-frequency imaging technique. The results of this imaging study will be presented in this paper.« less

  16. Enhancing the Extreme Climate Index (ECI) to monitor climate extremes for an index-based insurance scheme across Africa

    NASA Astrophysics Data System (ADS)

    Helmschrot, J.; Malherbe, J.; Chamunorwa, M.; Muthige, M.; Petitta, M.; Calmanti, S.; Cucchi, M.; Syroka, J.; Iyahen, E.; Engelbrecht, F.

    2017-12-01

    Climate services are a key component of National Adaptation Plan (NAP) processes, which require the analysis of current climate conditions, future climate change scenarios and the identification of adaptation strategies, including the capacity to finance and implement effective adaptation options. The Extreme Climate Facility (XCF) proposed by the African Risk Capacity (ARC) developed a climate index insurance scheme, which is based on the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events, thus indicating possible shifts to a new climate regime in various regions. The main hazards covered by ECI are extreme dry, wet and heat events, with the possibility of adding other region-specific risk events. The ECI is standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be compared. Initially developed by an Italian company specialized in Climate Services, research is now conducted at the CSIR and SASSCAL, to verify and further develop the ECI for application in southern African countries, through a project initiated by the World Food Programme (WFP) and ARC. The paper will present findings on the most appropriate definitions of extremely wet and dry conditions in Africa, in terms of their impact across a multitude of sub-regional climates of the African continent. Findings of a verification analysis of the ECI, as determined through vegetation monitoring data and the SASSCAL weather station network will be discussed. Changes in the ECI under climate change will subsequently be projected, using detailed regional projections generated by the CSIR and through the Coordinated Regional Downscaling Experiment (CORDEX). This work will be concluded by the development of a web-based climate service informing African Stakeholders on climate extremes.

  17. Imaging of upper extremity stress fractures in the athlete.

    PubMed

    Anderson, Mark W

    2006-07-01

    Although it is much less common than injuries in the lower extremities, an upper extremity stress injury can have a significant impact on an athlete. If an accurate and timely diagnosis is to be made, the clinician must have a high index of suspicion of a stress fracture in any athlete who is involved in a throwing, weightlifting, or upper extremity weight-bearing sport and presents with chronic pain in the upper extremity. Imaging should play an integral role in the work-up of these patients; if initial radiographs are unrevealing, further cross-sectional imaging should be strongly considered. Although a three-phase bone scan is highly sensitive in this regard, MRI has become the study of choice at most centers.

  18. A low cost, high precision extreme/harsh cold environment, autonomous sensor data gathering and transmission platform.

    NASA Astrophysics Data System (ADS)

    Chetty, S.; Field, L. A.

    2014-12-01

    SWIMS III, is a low cost, autonomous sensor data gathering platform developed specifically for extreme/harsh cold environments. Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally inert materials that when deployed will increase the albedo, enabling the formation and/preservation of multi-year ice. SWIMS III's sophisticated autonomous sensors are designed to measure the albedo, weather, water temperature and other environmental parameters. This platform uses low cost, high accuracy/precision sensors, extreme environment command and data handling computer system using satellite and terrestrial wireless solution. The system also incorporates tilt sensors and sonar based ice thickness sensors. The system is light weight and can be deployed by hand by a single person. This presentation covers the technical, and design challenges in developing and deploying these platforms.

  19. Litter Decomposition in Low and High Mortality Northern Red Oak Stands on Extremely Acidic Southwestern Pennsylvania Soils

    Treesearch

    Michael C. Demchik; William E. Sharpe

    2004-01-01

    Previous research has shown that decomposition of organic matter is slower in soils with high levels of soil acidity and available aluminum (Al). The objective of this experiment was to determine if differences in decomposition rates of northern red oak leaves occurred between extremely acidic and less acidic sites that also differed in oak mortality. Leaf litter from...

  20. Extreme Weather Events and Interconnected Infrastructures: Toward More Comprehensive Climate Change Planning [Meeting challenges in understanding impacts of extreme weather events on connected infrastructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbanks, Thomas J.; Fernandez, Steven J.; Allen, Melissa R.

    The President s Climate Change Action Plan calls for the development of better science, data, and tools for climate preparedness. Many of the current questions about preparedness for extreme weather events in coming decades are, however, difficult to answer with assets that have been developed by climate science to answer longer-term questions about climate change. Capacities for projecting exposures to climate-related extreme events, along with their implications for interconnected infrastructures, are now emerging.

  1. Extreme Weather Events and Interconnected Infrastructures: Toward More Comprehensive Climate Change Planning [Meeting challenges in understanding impacts of extreme weather events on connected infrastructures

    DOE PAGES

    Wilbanks, Thomas J.; Fernandez, Steven J.; Allen, Melissa R.

    2015-06-23

    The President s Climate Change Action Plan calls for the development of better science, data, and tools for climate preparedness. Many of the current questions about preparedness for extreme weather events in coming decades are, however, difficult to answer with assets that have been developed by climate science to answer longer-term questions about climate change. Capacities for projecting exposures to climate-related extreme events, along with their implications for interconnected infrastructures, are now emerging.

  2. The critical role of uncertainty in projections of hydrological extremes

    NASA Astrophysics Data System (ADS)

    Meresa, Hadush K.; Romanowicz, Renata J.

    2017-08-01

    This paper aims to quantify the uncertainty in projections of future hydrological extremes in the Biala Tarnowska River at Koszyce gauging station, south Poland. The approach followed is based on several climate projections obtained from the EURO-CORDEX initiative, raw and bias-corrected realizations of catchment precipitation, and flow simulations derived using multiple hydrological model parameter sets. The projections cover the 21st century. Three sources of uncertainty are considered: one related to climate projection ensemble spread, the second related to the uncertainty in hydrological model parameters and the third related to the error in fitting theoretical distribution models to annual extreme flow series. The uncertainty of projected extreme indices related to hydrological model parameters was conditioned on flow observations from the reference period using the generalized likelihood uncertainty estimation (GLUE) approach, with separate criteria for high- and low-flow extremes. Extreme (low and high) flow quantiles were estimated using the generalized extreme value (GEV) distribution at different return periods and were based on two different lengths of the flow time series. A sensitivity analysis based on the analysis of variance (ANOVA) shows that the uncertainty introduced by the hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource planning and management.

  3. Efficient extreme-UV-to-extreme-UV conversion by four-wave mixing with intense near-IR pulses in highly charged ion plasmas

    NASA Astrophysics Data System (ADS)

    Chu, Hsu-hsin; Wang, Jyhpyng

    2018-05-01

    Nonlinear optics in the extreme-ultraviolet (EUV) has been limited by lack of transparent media and small conversion efficiency. To overcome this problem we explore the advantage of using multiply charged ion plasmas as the interacting media between EUV and intense near-infrared (NIR) pulses. Such media are transparent to EUV and can withstand intense NIR driving pulses without damage. We calculate the third-order nonlinear polarizabilities of Ar2 + and Ar3 + ions for EUV and NIR four-wave mixing by using the well-proven Cowan code and find that the EUV-to-EUV conversion efficiency as high as 26% can be expected for practical experimental configurations using multi-terawatt NIR lasers. Such a high efficiency is possible because the driving pulse intensity can be scaled up to several orders of magnitude higher than in conventional nonlinear media, and the group-velocity and phase mismatch are insignificant at the experimental plasma densities. This effective scheme of wave mixing can be utilized for ultrafast EUV waveform measurement and control as well as wavelength conversion.

  4. An extreme internal solitary wave event observed in the northern South China Sea

    PubMed Central

    Huang, Xiaodong; Chen, Zhaohui; Zhao, Wei; Zhang, Zhiwei; Zhou, Chun; Yang, Qingxuan; Tian, Jiwei

    2016-01-01

    With characteristics of large amplitude and strong current, internal solitary wave (ISW) is a major hazard to marine engineering and submarine navigation; it also has significant impacts on marine ecosystems and fishery activity. Among the world oceans, ISWs are particular active in the northern South China Sea (SCS). In this spirit, the SCS Internal Wave Experiment has been conducted since March 2010 using subsurface mooring array. Here, we report an extreme ISW captured on 4 December 2013 with a maximum amplitude of 240 m and a peak westward current velocity of 2.55 m/s. To the authors’ best knowledge, this is the strongest ISW of the world oceans on record. Full-depth measurements also revealed notable impacts of the extreme ISW on deep-ocean currents and thermal structures. Concurrent mooring measurements near Batan Island showed that the powerful semidiurnal internal tide generation in the Luzon Strait was likely responsible for the occurrence of the extreme ISW event. Based on the HYCOM data-assimilation product, we speculate that the strong stratification around Batan Island related to the strengthening Kuroshio may have contributed to the formation of the extreme ISW. PMID:27444063

  5. Extremely Luminous Far-infrared Sources (ELFS)

    NASA Technical Reports Server (NTRS)

    Harwit, Martin; Houck, James R.; Soifer, B. Thomas; Palumbo, Giorgio G. C.

    1987-01-01

    The Infrared Astronomical Satellite (IRAS) survey uncovered a class of Extremely Luminous Far Infrared Sources (ELFS), exhibiting luminosities up to and occasionally exceeding 10 to the 12th power L sub 0. Arguments are presented to show that sources with luminosities L equal to or greater than 3 x 10 to the 10th power L sub 0 may represent gas rich galaxies in collision. The more conventional explanation of these sources as sites of extremely active star formation fails to explain the observed low optical luminosities of ELFS as well as their high infrared excess. In contrast, a collisional model heats gas to a temperature of approx. 10 to the 6th power K where cooling takes place in the extreme ultraviolet. The UV is absorbed by dust and converted into far infrared radiation (FIR) without generation of appreciable optical luminosity. Gas recombination as it cools generates a Lyman alpha photon only once for every two extreme ultraviolet approx. 50eV photons emitted by the 10 to the 6th power gas. That accounts for the high infrared excess. Finally, the model also is able to explain the observed luminosity distribution of ELFS as well as many other traits.

  6. Suitability of the isolated chicken eye test for classification of extreme pH detergents and cleaning products.

    PubMed

    Cazelle, Elodie; Eskes, Chantra; Hermann, Martina; Jones, Penny; McNamee, Pauline; Prinsen, Menk; Taylor, Hannah; Wijnands, Marcel V W

    2015-04-01

    A.I.S.E. investigated the suitability of the regulatory adopted ICE in vitro test method (OECD TG 438) with or without histopathology to identify detergent and cleaning formulations having extreme pH that require classification as EU CLP/UN GHS Category 1. To this aim, 18 extreme pH detergent and cleaning formulations were tested covering both alkaline and acidic extreme pHs. The ICE standard test method following OECD Test Guideline 438 showed good concordance with in vivo classification (83%) and good and balanced specificity and sensitivity values (83%) which are in line with the performances of currently adopted in vitro test guidelines, confirming its suitability to identify Category 1 extreme pH detergent and cleaning products. In contrast to previous findings obtained with non-extreme pH formulations, the use of histopathology did not improve the sensitivity of the assay whilst it strongly decreased its specificity for the extreme pH formulations. Furthermore, use of non-testing prediction rules for classification showed poor concordance values (33% for the extreme pH rule and 61% for the EU CLP additivity approach) with high rates of over-prediction (100% for the extreme pH rule and 50% for the additivity approach), indicating that these non-testing prediction rules are not suitable to predict Category 1 hazards of extreme pH detergent and cleaning formulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A 500 year climate reconstruction of Southwest Germany based on documentary and direct data with a special focus on high resolute reconstructed extreme rain events

    NASA Astrophysics Data System (ADS)

    Dostal, P.; Seidel, J.; Imbery, F.

    2010-09-01

    A 500 year climate reconstruction of Southwest Germany based on documentary and direct data with a special focus on high resolute reconstructed extreme rain events Against the background of an increasing world population and the changes that this is causing to the earth, the increasing industrialisation resulting in more emissions of greenhouse gases, it is indispensable to differentiate between natural and anthropogenic climate changes. This applies equally to global as well as regional climates. Due to the fact, that the weather data measurement series in the upper Rhine valley go back a maximum of 150 years, it is not possible to use this data to grasp long term climate fluctuations. For example, the current climate is integrated in long scale climate cycles which last thousands of years. To describe these changes accurately, it is necessary to reconstruct the climate beyond that of instrumental series measurements. With the application of direct and indirect data (proxy data) a climate reconstruction will be attempted for the area of region TriRhena. With the application of documentary data it is possible to reconstruct the climate prior to instrumental measurements. These historical records are made up of, for e.g. weather descriptions, information about the wine harvest and other agricultural products, as well as their price fluctuations. Using this data it is possible to calculate meteorological parameters creating an index of air temperature and precipitation values. Climate is an integration of weather and therefore its worth to set the focus also on single interesting weather events. Especially extreme events can contribute to the thesis "learning from the past for a better future". Aim of the research is to identify and apply extreme flood events of the past 500 years as a basis for further analysis like a contribution to improve current flood hazard maps. The data which will be presented were extracted from historical records such as local annuals and

  8. Small-scale turbidity currents in a big submarine canyon

    USGS Publications Warehouse

    Xu, Jingping; Barry, James P.; Paull, Charles K.

    2013-01-01

    Field measurements of oceanic turbidity currents, especially diluted currents, are extremely rare. We present a dilute turbidity current recorded by instrumented moorings 14.5 km apart at 1300 and 1860 m water depth. The sediment concentration within the flow was 0.017%, accounting for 18 cm/s gravity current speed due to density excess. Tidal currents of ∼30 cm/s during the event provided a "tailwind" that assisted the down-canyon movement of the turbidity current and its sediment plume. High-resolution velocity measurements suggested that the turbidity current was likely the result of a local canyon wall slumping near the 1300 m mooring. Frequent occurrences, in both space and time, of such weak sediment transport events could be an important mechanism to cascade sediment and other particles, and to help sustain the vibrant ecosystems in deep-sea canyons.

  9. The effects of return current and target charging in short pulse high intensity laser interactions

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2003-10-01

    Since the introduction of the technique of chirped pulse amplification (CPA), peak laser intensities have increased dramatically. It is now possible to perform laser-plasma interaction experiments at intensities approaching 1021 Wcm-2. The electrons in the field of such lasers are highly relativistic (gamma 31) and the temperature of the hot electron distribution produced in a plasma at such extreme intensities can exceed 10 MeV. Since the resulting beam current exceeds the Alfvén limit, a neutralizing return current of cold plasma electrons moving in the opposite direction is produced. Another source of return current is that due to the escape of very energetic electrons from the target, which then creates a large electrostatic potential due to charge separation. These return currents can cause significant ohmic heating. We present results from experiments performed at Rutherford Appleton Laboratory using the VULCAN laser facility (I> 5 x1019 Wcm-2). Single wire targets were used and in some shots a secondary wire or foil was placed near the target. Three main observations were made: (i) generation of a Z-pinch in the wire due to the return current, (ii) optical transition radiation at 2w and (iii) proton emission from both the primary wire target and the secondary wire or foil. The Z-pinch was observed to be m=0 unstable. The current was estimated to be about 0.8 MA using simple energy balance considerations. Intense second harmonic emission due to coherent optical transition radiation from both the primary target and secondary objects was observed and is likely due to electron bunches accelerated by the ponderomotive jxB force of the laser. The proton emission from the secondary wire or foil was likely due to field emission of electrons from the these objects in response to the large potential produced from charging of the primary target. Results of simulations to model these interactions will also be presented.

  10. Security, Extremism and Education: Safeguarding or Surveillance?

    ERIC Educational Resources Information Center

    Davies, Lynn

    2016-01-01

    This article analyses how education is positioned in the current concerns about security and extremism. This means firstly examining the different meanings of security (national, human and societal) and who provides security for whom. Initially, a central dilemma is acknowledged: that schooling appears to be simultaneously irrelevant to the huge…

  11. A Robust High Current Density Electron Gun

    NASA Astrophysics Data System (ADS)

    Mako, F.; Peter, W.; Shiloh, J.; Len, L. K.

    1996-11-01

    Proof-of-principle experiments are proposed to validate a new concept for a robust, high-current density Pierce electron gun (RPG) for use in klystrons and high brightness electron sources for accelerators. This rugged, long-life electron gun avoids the difficulties associated with plasma cathodes, thermionic emitters, and field emission cathodes. The RPG concept employs the emission of secondary electrons in a transmission mode as opposed to the conventional mode of reflection, i.e., electrons exit from the back face of a thin negative electron affinity (NEA) material, and in the same direction as the incident beam. Current amplification through one stage of a NEA material could be over 50 times. The amplification is accomplished in one or more stages consisting of one primary emitter and one or more secondary emitters. The primary emitter is a low current density robust emitter (e.g., thoriated tungsten). The secondary emitters are thin NEA electrodes which emit secondary electrons in the same direction as the incident beam. Specific application is targeted for a klystron gun to be used by SLAC with a cold cathode at 30-40 amps/cm^2 output from the secondary emission stage, a ~2 μs pulse length, and ~200 pulses/second.

  12. How extreme is extreme hourly precipitation?

    NASA Astrophysics Data System (ADS)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  13. More tornadoes in the most extreme U.S. tornado outbreaks

    NASA Astrophysics Data System (ADS)

    Tippett, Michael K.; Lepore, Chiara; Cohen, Joel E.

    2016-12-01

    Tornadoes and severe thunderstorms kill people and damage property every year. Estimated U.S. insured losses due to severe thunderstorms in the first half of 2016 were $8.5 billion (US). The largest U.S. effects of tornadoes result from tornado outbreaks, which are sequences of tornadoes that occur in close succession. Here, using extreme value analysis, we find that the frequency of U.S. outbreaks with many tornadoes is increasing and that it is increasing faster for more extreme outbreaks. We model this behavior by extreme value distributions with parameters that are linear functions of time or of some indicators of multidecadal climatic variability. Extreme meteorological environments associated with severe thunderstorms show consistent upward trends, but the trends do not resemble those currently expected to result from global warming.

  14. Extreme air-sea surface turbulent fluxes in mid latitudes - estimation, origins and mechanisms

    NASA Astrophysics Data System (ADS)

    Gulev, Sergey; Natalia, Tilinina

    2014-05-01

    Extreme turbulent heat fluxes in the North Atlantic and North Pacific mid latitudes were estimated from the modern era and first generation reanalyses (NCEP-DOE, ERA-Interim, MERRA NCEP-CFSR, JRA-25) for the period from 1979 onwards. We used direct surface turbulent flux output as well as reanalysis state variables from which fluxes have been computed using COARE-3 bulk algorithm. For estimation of extreme flux values we analyzed surface flux probability density distribution which was approximated by Modified Fisher-Tippett distribution. In all reanalyses extreme turbulent heat fluxes amount to 1500-2000 W/m2 (for the 99th percentile) and can exceed 2000 W/m2 for higher percentiles in the western boundary current extension (WBCE) regions. Different reanalyses show significantly different shape of MFT distribution, implying considerable differences in the estimates of extreme fluxes. The highest extreme turbulent latent heat fluxes are diagnosed in NCEP-DOE, ERA-Interim and NCEP-CFSR reanalyses with the smallest being in MERRA. These differences may not necessarily reflect the differences in mean values. Analysis shows that differences in statistical properties of the state variables are the major source of differences in the shape of PDF of fluxes and in the estimates of extreme fluxes while the contribution of computational schemes used in different reanalyses is minor. The strongest differences in the characteristics of probability distributions of surface fluxes and extreme surface flux values between different reanalyses are found in the WBCE extension regions and high latitudes. In the next instance we analyzed the mechanisms responsible for forming surface turbulent fluxes and their potential role in changes of midlatitudinal heat balance. Midlatitudinal cyclones were considered as the major mechanism responsible for extreme turbulent fluxes which are typically occur during the cold air outbreaks in the rear parts of cyclones when atmospheric conditions

  15. The role of extreme events in evolution

    NASA Astrophysics Data System (ADS)

    Combes, Claude

    2008-09-01

    Evolutionists have often had a marked tendency to think that, in the course of time, planetary events were not very different from those occurring during a human life. However, when a 'non-human' timescale is used, the history of our planet appears profoundly and frequently disturbed by extreme events. These events, even not always instantaneous, impose - because of their amplitude - a severe sorting, not between individuals of a species, but between species, or even between phyla. In the face of an extreme event, intraspecific diversity counts little: it is the interspecific diversity that makes the difference. As shown by mass extinctions, extreme events open ecological niches and redistribute the cards of life, giving survivors opportunities to radiate. The capacity to cope with extreme ecological conditions favours certain species in ecosystems, not certain individuals in populations. This is not a macroevolutionary process in terms of acquiring new adaptations, but a macroevolutionary process in terms of sorting entire sections of life. The most important is perhaps that the current 'mediatisation' of a limited number of mass extinctions dissimulates less important extinctions caused by less extreme and more localized events that were possibly responsible for many changes in the composition and structure of communities throughout the evolution. The term of 'pre-adaptation' has been neglected, because it gives an impression of finalism, but it expresses well that, when an unexpected event occurs, a particular species has or has not the 'right genes' to continue to sustain viable populations. The role of extreme events in modifying the course of evolution should not be underestimated.

  16. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    NASA Astrophysics Data System (ADS)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for

  17. High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Le, Trung; DeWall, Petra; Bartelt, Nicole; Woldeamlak, Solomon; Yang, Xiaolei; Sotiropoulos, Fotis

    2016-12-01

    We present data-driven numerical simulations of extreme flooding in a large-scale river coupling coherent-structure resolving hydrodynamics with bed morphodynamics under live-bed conditions. The study area is a ∼ 3.2 km long and ∼ 300 m wide reach of the Upper Mississippi River, near Minneapolis MN, which contains several natural islands and man-made hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the Virtual Flow Simulator (VFS-Rivers) model, a recently developed in-house code, to investigate the flow and bed evolution of the river during a 100-year flood event. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. We integrate data from airborne Light Detection and Ranging (LiDAR), sub-aqueous sonar apparatus on-board a boat and in-situ laser scanners to construct a digital elevation model of the river bathymetry and surrounding flood plain, including islands and bridge piers. A field campaign under base-flow condition is also carried out to collect mean flow measurements via Acoustic Doppler Current Profiler (ADCP) to validate the hydrodynamic module of the VFS-Rivers model. Our simulation results for the bed evolution of the river under the 100-year flood reveal complex sediment transport dynamics near the bridge piers consisting of both scour and refilling events due to the continuous passage of sand dunes. We find that the scour depth near the bridge piers can reach to a maximum of ∼ 9 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems.

  18. The Pace of Perceivable Extreme Climate Change

    NASA Astrophysics Data System (ADS)

    Tan, X.; Gan, T. Y.

    2015-12-01

    When will the signal of obvious changes in extreme climate emerge over climate variability (Time of Emergence, ToE) is a key question for planning and implementing measures to mitigate the potential impact of climate change to natural and human systems that are generally adapted to potential changes from current variability. We estimated ToEs for the magnitude, duration and frequency of global extreme climate represented by 24 extreme climate indices (16 for temperature and 8 for precipitation) with different thresholds of the signal-to-noise (S/N) ratio based on projections of CMIP5 global climate models under RCP8.5 and RCP4.5 for the 21st century. The uncertainty of ToE is assessed by using 3 different methods to calculate S/N for each extreme index. Results show that ToEs of the projected extreme climate indices based on the RCP4.5 climate scenarios are generally projected to happen about 20 years later than that for the RCP8.5 climate scenarios. Under RCP8.5, the projected magnitude, duration and frequency of extreme temperature on Earth will all exceed 2 standard deviations by 2100, and the empirical 50th percentile of the global ToE for the frequency and magnitude of hot (cold) extreme are about 2040 and 2054 (2064 and 2054) for S/N > 2, respectively. The 50th percentile of global ToE for the intensity of extreme precipitation is about 2030 and 2058 for S/N >0.5 and S/N >1, respectively. We further evaluated the exposure of ecosystems and human societies to the pace of extreme climate change by determining the year of ToE for various extreme climate indices projected to occur over terrestrial biomes, marine realms and major urban areas with large populations. This was done by overlaying terrestrial, ecoregions and population maps with maps of ToE derived, to extract ToEs for these regions. Possible relationships between GDP per person and ToE are also investigated by relating the mean ToE for each country and its average value of GDP per person.

  19. Thermodynamics of extremal rotating thin shells in an extremal BTZ spacetime and the extremal black hole entropy

    NASA Astrophysics Data System (ADS)

    Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.

    2017-02-01

    In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it

  20. Melorheostosis in the upper extremity.

    PubMed

    Yildirim, Cengiz; Ozyürek, Selahattin; Ciçek, Engin Ilker; Kuskucu, Mesih

    2009-04-01

    Melorheostosis is a rare mesodermal disease affecting the skeleton and adjacent soft tissues. Often it is incidentally detected on radiographs. In the standard radiology and orthopedics literature, melorheostosis is described as a "flowing hyperostosis, resembling dripping candle wax as an incidental radiographic finding." A 22-year-old man presented with a 2-year history of right-hand pain. Radiologic evaluation of the hand showed massive sclerotic changes in the first and second metacarpal and phalangeal bones on the right side. Further radiographic evaluation of the right upper extremity revealed the same sclerotic changes in the right scapula, humerus, radius, and scaphoid. Computed tomography (CT) scans showed a high attenuation undulating cortical hyperostosis with a "dripping candle wax appearance" involving the radial and/or dorsal aspects of humerus, radius, scaphoid, and first and second ray bones of the hand. Radionuclide triphasic bone scintigraphy showed diffuse homogenous radiotracer uptake within the entire right upper extremity involving the scapula, humerus, radius, scaphoid, and first and second metacarpals and phalangeal bones of the hand. The patient was followed conservatively, and 1-year follow-up revealed no change in the clinical, laboratory, or radiological findings. The diagnosis of melorheostosis was made on the basis of the characteristic distribution, location, and combined radiographic, CT, and radionuclide imaging features of the abnormalities. Conservative treatment was recommended for the patient. After 26 months of follow-up, despite the persistence of the radiologic findings, the patient is currently well, with no painful symptoms unless he performs forceful exercise.

  1. Seasonal temperature extremes in Potsdam

    NASA Astrophysics Data System (ADS)

    Kundzewicz, Zbigniew; Huang, Shaochun

    2010-12-01

    The awareness of global warming is well established and results from the observations made on thousands of stations. This paper complements the large-scale results by examining a long time-series of high-quality temperature data from the Secular Meteorological Station in Potsdam, where observation records over the last 117 years, i.e., from January 1893 are available. Tendencies of change in seasonal temperature-related climate extremes are demonstrated. "Cold" extremes have become less frequent and less severe than in the past, while "warm" extremes have become more frequent and more severe. Moreover, the interval of the occurrence of frost has been decreasing, while the interval of the occurrence of hot days has been increasing. However, many changes are not statistically significant, since the variability of temperature indices at the Potsdam station has been very strong.

  2. Optical phased array configuration for an extremely large telescope.

    PubMed

    Meinel, Aden Baker; Meinel, Marjorie Pettit

    2004-01-20

    Extremely large telescopes are currently under consideration by several groups in several countries. Extrapolation of current technology up to 30 m indicates a cost of over dollars 1 billion. Innovative concepts are being explored to find significant cost reductions. We explore the concept of an Optical Phased Array (OPA) telescope. Each element of the OPA is a separate Cassegrain telescope. Collimated beams from the array are sent via an associated set of delay lines to a central beam combiner. This array of small telescope elements offers the possibility of starting with a low-cost array of a few rings of elements, adding structure and additional Cass elements until the desired diameter telescope is attained. We address the salient features of such an extremely large telescope and cost elements relative to more conventional options.

  3. Extreme Energy Events Project: Construction of the detectors and installation in Italian High Schools

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; An, S.; Antolini, R.; Badalà, A.; Baldini Ferroli, R.; Bencivenni, G.; Blanco, F.; Bressan, E.; Chiavassa, A.; Chiri, C.; Cifarelli, L.; Cindolo, F.; Coccia, E.; de Pasquale, S.; di Giovanni, A.; D'Incecco, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gustavino, C.; Hatzifotiadou, D.; Imponente, G.; Kim, J.; La Rocca, P.; Librizzi, F.; Maggiora, A.; Menghetti, H.; Miozzi, S.; Moro, R.; Panareo, M.; Pappalardo, G. S.; Piragino, G.; Riggi, F.; Romano, F.; Sartorelli, G.; Sbarra, C.; Selvi, M.; Serci, S.; Williams, C.; Zichichi, A.; Zuyeuski, R.

    2008-04-01

    The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented.

  4. Perceived Gender Ratings for High and Low Scorers on the Autism-Spectrum Quotient Consistent with the Extreme Male Brain Account of Autism

    PubMed Central

    Simons, Jessica M.; Maybery, Murray T.; Leung, Doris; Ng, Honey L. H.; Whitehouse, Andrew J. O.

    2015-01-01

    The Extreme Male Brain (EMB) theory posits that autistic traits are linked to excessive exposure to testosterone in utero. While findings from a number of studies are consistent with this theory, other studies have produced contradictory results. For example, some findings suggest that rather than being linked to hypermasculinization for males, or defeminization for females, elevated levels of autistic traits are instead linked to more androgynous physical features. The current study provided further evidence relevant to the EMB and androgony positions by comparing groups of males selected for high or low scores on the Autism-spectrum Quotient (AQ) as to the rated masculinity of their faces and voices, and comparable groups of females as to the rated femininity of their faces and voices. The voices of High-AQ males were rated as more masculine than those of Low-AQ males, while the faces of High-AQ females were rated as less feminine than those of Low-AQ females. There was no effect of AQ group on femininity ratings for female voices or on masculinity ratings for male faces. The results thus provide partial support for a link between high levels of autistic-like traits and hypermasculinization for males and defeminization for females, consistent with the EMB theory. PMID:26186689

  5. Typologies of Extreme Longevity Myths

    PubMed Central

    Young, Robert D.; Desjardins, Bertrand; McLaughlin, Kirsten; Poulain, Michel; Perls, Thomas T.

    2010-01-01

    Purpose. Political, national, religious, and other motivations have led the media and even scientists to errantly accept extreme longevity claims prima facie. We describe various causes of false claims of extraordinary longevity. Design and Methods. American Social Security Death Index files for the period 1980–2009 were queried for individuals with birth and death dates yielding ages 110+ years of age. Frequency was compared to a list of age-validated supercentenarians maintained by the Gerontology Research Group who died during the same time period. Age claims of 110+ years and the age validation experiences of the authors facilitated a list of typologies of false age claims. Results. Invalid age claim rates increase with age from 65% at age 110-111 to 98% by age 115 to 100% for 120+ years. Eleven typologies of false claims were: Religious Authority Myth, Village Elder Myth, Fountain of Youth Myth (substance), Shangri-La Myth (geographic), Nationalist Pride, Spiritual Practice, Familial Longevity, Individual and/or Family Notoriety, Military Service, Administrative Entry Error, and Pension-Social Entitlement Fraud. Conclusions. Understanding various causes of false extreme age claims is important for placing current, past, and future extreme longevity claims in context and for providing a necessary level of skepticism. PMID:21461047

  6. Typologies of extreme longevity myths.

    PubMed

    Young, Robert D; Desjardins, Bertrand; McLaughlin, Kirsten; Poulain, Michel; Perls, Thomas T

    2010-01-01

    Purpose. Political, national, religious, and other motivations have led the media and even scientists to errantly accept extreme longevity claims prima facie. We describe various causes of false claims of extraordinary longevity. Design and Methods. American Social Security Death Index files for the period 1980-2009 were queried for individuals with birth and death dates yielding ages 110+ years of age. Frequency was compared to a list of age-validated supercentenarians maintained by the Gerontology Research Group who died during the same time period. Age claims of 110+ years and the age validation experiences of the authors facilitated a list of typologies of false age claims. Results. Invalid age claim rates increase with age from 65% at age 110-111 to 98% by age 115 to 100% for 120+ years. Eleven typologies of false claims were: Religious Authority Myth, Village Elder Myth, Fountain of Youth Myth (substance), Shangri-La Myth (geographic), Nationalist Pride, Spiritual Practice, Familial Longevity, Individual and/or Family Notoriety, Military Service, Administrative Entry Error, and Pension-Social Entitlement Fraud. Conclusions. Understanding various causes of false extreme age claims is important for placing current, past, and future extreme longevity claims in context and for providing a necessary level of skepticism.

  7. Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China

    PubMed Central

    Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan

    2015-01-01

    Objective: Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. Methods: We collected data from Beijing and Shanghai, China, during 2007–2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. Results: For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0–27, while the hot effects reached the strongest at lag 0–14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. Conclusion: People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days. PMID:26703637

  8. Adaptation of superconducting fault current limiter to high-speed reclosing

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yanabu, S.

    2009-10-01

    Using a high temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor might break in some cases because of its excessive generation of heat. Therefore, it is desirable to interrupt early the current that flows to superconductor. So, we proposed the SFCL using an electromagnetic repulsion switch which is composed of a superconductor, a vacuum interrupter and a by-pass coil, and its structure is simple. Duration that the current flow in the superconductor can be easily minimized to the level of less than 0.5 cycle using this equipment. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. There is duty of high-speed reclosing after interrupting fault current in the electric power system. After the fault current is interrupted, the back-up breaker is re-closed within 350 ms. So, the electromagnetic repulsion switch should return to former state and the superconductor should be recovered to superconducting state before high-speed reclosing. Then, we proposed the SFCL using an electromagnetic repulsion switch which employs our new reclosing function. We also studied recovery time of the superconductor, because superconductor should be recovered to superconducting state within 350 ms. In this paper, the recovery time characteristics of the superconducting wire were investigated. Also, we combined the superconductor with the electromagnetic repulsion switch, and we did performance test. As a result, a high-speed reclosing within 350 ms was proven to be possible.

  9. Extreme Water Deficit in Brazil Detected from Space

    NASA Technical Reports Server (NTRS)

    Vieira Getirana

    2016-01-01

    Extreme droughts have caused significant socioeconomic and environmental damage worldwide. In Brazil, ineffective energy development and water management policies have magnified the impacts of recent severe droughts, which include massive agricultural losses, water supply restrictions, and energy rationing. Spaceborne remote sensing data advance our understanding of the spatiotemporal variability of large-scale droughts and enhance the detection and monitoring of extreme water-related events. In this study, data derived from the Gravity Recovery and Climate Experiment (GRACE) mission are used to detect and quantify an extended major drought over eastern Brazil and provide estimates of impacted areas and region-specific water deficits. Two structural breakpoint detection methods were applied to time series of GRACE-based terrestrial water storage anomalies (TWSA), determining when two abrupt changes occurred. One, in particular, defines the beginning of the current drought. Using TWSA, a water loss rate of 26.1 cmyr21 over southeastern Brazil was detected from 2012 to 2015. Based on analysis of Global Land Data Assimilation System(GLDAS) outputs, the extreme drought is mostly related to lower-than-usual precipitation rates, resulting in high soil moisture depletion and lower-than-usual rates of evapotranspiration. A reduction of 2023 of precipitation over an extended period of 3 years is enough to raise serious water scarcity conditions in the country. Correlations between monthly time series of both grid-based TWSA and ground-based water storage measurements at 16 reservoirs located within southeastern Brazil varied from 0.42 to 0.82. Differences are mainly explained by reservoir sizes and proximity to the drought nucleus.

  10. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  11. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  12. Extremely high efficient nanoreactor with Au@ZnO catalyst for photocatalysis

    NASA Astrophysics Data System (ADS)

    Su, Chung-Yi; Yang, Tung-Han; Gurylev, Vitaly; Huang, Sheng-Hsin; Wu, Jenn-Ming; Perng, Tsong-Pyng

    2015-10-01

    We fabricated a photocatalytic Au@ZnO@PC (polycarbonate) nanoreactor composed of monolayered Au nanoparticles chemisorbed on conformal ZnO nanochannel arrays within the PC membrane. A commercial PC membrane was used as the template for deposition of a ZnO shell into the pores by atomic layer deposition (ALD). Thioctic acid (TA) with sufficient steric stabilization was used as a molecular linker for functionalization of Au nanoparticles in a diameter of 10 nm. High coverage of Au nanoparticles anchored on the inner wall of ZnO nanochannels greatly improved the photocatalytic activity for degradation of Rhodamine B. The membrane nanoreactor achieved 63% degradation of Rhodamine B within only 26.88 ms of effective reaction time owing to its superior mass transfer efficiency based on Damköhler number analysis. Mass transfer limitation can be eliminated in the present study due to extremely large surface-to-volume ratio of the membrane nanoreactor.

  13. Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications

    NASA Astrophysics Data System (ADS)

    Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.

    2017-10-01

    We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.

  14. Global Distribution of Extreme Precipitation and High-Impact Landslides in 2010 Relative to Previous Years

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Adler, Robert; Adler, David; Peters-Lidard, Christa; Huffman, George

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This study uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from TRMM data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the globally scale in order to improve landslide cataloging, forecasting and quantify potential triggering sources at daily, monthly and yearly time scales.

  15. Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier

    PubMed Central

    Tsai, Cheng-Tao; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521

  16. Comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier.

    PubMed

    Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  17. Novel All-Extremity High-Intensity Interval Training Improves Aerobic Fitness, Cardiac Function and Insulin Resistance in Healthy Older Adults

    PubMed Central

    Hwang, Chueh-Lung; Yoo, Jeung-Ki; Kim, Han-Kyul; Hwang, Moon-Hyon; Handberg, Eileen M.; Petersen, John W.; Christou, Demetra D.

    2016-01-01

    Aging is associated with decreased aerobic fitness and cardiac remodeling leading to increased risk for cardiovascular disease. High-intensity interval training (HIIT) on the treadmill has been reported to be more effective in ameliorating these risk factors compared with moderate-intensity continuous training (MICT) in patients with cardiometabolic disease. In older adults, however, weight-bearing activities are frequently limited due to musculoskeletal and balance problems. The purpose of this study was to examine the feasibility and safety of non-weight-bearing all-extremity HIIT in older adults. In addition, we tested the hypothesis that all-extremity HIIT will be more effective in improving aerobic fitness, cardiac function, and metabolic risk factors compared with all-extremity MICT. Fifty-one healthy sedentary older adults (age: 65±1 years) were randomized to HIIT (n=17), MICT (n=18) or non-exercise control (CONT; n=16). HIIT (4×4 minutes 90% of peak heart rate; HRpeak) and isocaloric MICT (70% of HRpeak) were performed on a non-weight-bearing all-extremity ergometer, 4x/week for 8 weeks under supervision. All-extremity HIIT was feasible in older adults and resulted in no adverse events. Aerobic fitness (peak oxygen consumption; VO2peak) and ejection fraction (echocardiography) improved by 11% (P<0.0001) and 4% (P=0.001) respectively in HIIT, while no changes were observed in MICT and CONT (P≥0.1). Greater improvements in ejection fraction were associated with greater improvements in VO2peak (r=0.57; P<0.0001). Insulin resistance (homeostatic model assessment) decreased only in HIIT by 26% (P=0.016). Diastolic function, body composition, glucose and lipids were unaffected (P≥0.1). In conclusion, all-extremity HIIT is feasible and safe in older adults. HIIT, but not MICT, improved aerobic fitness, ejection fraction, and insulin resistance. PMID:27346646

  18. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults.

    PubMed

    Hwang, Chueh-Lung; Yoo, Jeung-Ki; Kim, Han-Kyul; Hwang, Moon-Hyon; Handberg, Eileen M; Petersen, John W; Christou, Demetra D

    2016-09-01

    Aging is associated with decreased aerobic fitness and cardiac remodeling leading to increased risk for cardiovascular disease. High-intensity interval training (HIIT) on the treadmill has been reported to be more effective in ameliorating these risk factors compared with moderate-intensity continuous training (MICT) in patients with cardiometabolic disease. In older adults, however, weight-bearing activities are frequently limited due to musculoskeletal and balance problems. The purpose of this study was to examine the feasibility and safety of non-weight-bearing all-extremity HIIT in older adults. In addition, we tested the hypothesis that all-extremity HIIT will be more effective in improving aerobic fitness, cardiac function, and metabolic risk factors compared with all-extremity MICT. Fifty-one healthy sedentary older adults (age: 65±1years) were randomized to HIIT (n=17), MICT (n=18) or non-exercise control (CONT; n=16). HIIT (4×4min 90% of peak heart rate; HRpeak) and isocaloric MICT (70% of HRpeak) were performed on a non-weight-bearing all-extremity ergometer, 4×/week for 8weeks under supervision. All-extremity HIIT was feasible in older adults and resulted in no adverse events. Aerobic fitness (peak oxygen consumption; VO2peak) and ejection fraction (echocardiography) improved by 11% (P<0.0001) and 4% (P=0.001), respectively in HIIT, while no changes were observed in MICT and CONT (P≥0.1). Greater improvements in ejection fraction were associated with greater improvements in VO2peak (r=0.57; P<0.0001). Insulin resistance (homeostatic model assessment) decreased only in HIIT by 26% (P=0.016). Diastolic function, body composition, glucose and lipids were unaffected (P≥0.1). In conclusion, all-extremity HIIT is feasible and safe in older adults. HIIT, but not MICT, improved aerobic fitness, ejection fraction, and insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Flat-field anastigmatic mirror objective for high-magnification extreme ultraviolet microscopy

    NASA Astrophysics Data System (ADS)

    Toyoda, Mitsunori

    2015-08-01

    To apply high-definition microscopy to the extreme ultraviolet (EUV) region in practice, i.e. to enable in situ observation of living tissue and the at-wavelength inspection of lithography masks, we constructed a novel reflective objective made of three multilayer mirrors. This objective is configured as a two-stage imaging system made of a Schwarzschild two-mirror system as the primary objective and an additional magnifier with a single curved mirror. This two-stage configuration can provide a high magnification of 1500, which is suitable for real-time observation with an EUV charge coupled device (CCD) camera. Besides, since off-axis aberrations can be corrected by the magnifier, which provides field flattener optics, we are able to configure the objective as a flat-field anastigmatic system, in which we will have a diffraction-limited spatial resolution over a large field-of-view. This paper describes in detail the optical design of the present objective. After calculating the closed-form equations representing the third-order aberrations of the objective, we apply these equations to practical design examples with a numerical aperture of 0.25 and an operation wavelength of 13.5 nm. We also confirm the imaging performances of this novel design by using the numerical ray-tracing method.

  20. Investigating Extreme Lifestyles through Mangrove Transcriptomics

    ERIC Educational Resources Information Center

    Dassanayake, Maheshi

    2009-01-01

    Mangroves represent phylogenetically diverse taxa in tropical coastal terrestrial habitats. They are extremophiles, evolutionarily adapted to tolerate flooding, anoxia, high temperatures, wind, and high and extremely variable salt conditions in typically resource-poor environments. The genetic basis for these adaptations is, however, virtually…

  1. High-harmonic generation in amorphous solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yong Sing; Yin, Yanchun; Wu, Yi

    High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less

  2. High-harmonic generation in amorphous solids

    DOE PAGES

    You, Yong Sing; Yin, Yanchun; Wu, Yi; ...

    2017-09-28

    High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less

  3. Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments

    DOE PAGES

    White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.; ...

    2016-05-26

    Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less

  4. Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.

    Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less

  5. Coupled hydro-meteorological modelling on a HPC platform for high-resolution extreme weather impact study

    NASA Astrophysics Data System (ADS)

    Zhu, Dehua; Echendu, Shirley; Xuan, Yunqing; Webster, Mike; Cluckie, Ian

    2016-11-01

    Impact-focused studies of extreme weather require coupling of accurate simulations of weather and climate systems and impact-measuring hydrological models which themselves demand larger computer resources. In this paper, we present a preliminary analysis of a high-performance computing (HPC)-based hydrological modelling approach, which is aimed at utilizing and maximizing HPC power resources, to support the study on extreme weather impact due to climate change. Here, four case studies are presented through implementation on the HPC Wales platform of the UK mesoscale meteorological Unified Model (UM) with high-resolution simulation suite UKV, alongside a Linux-based hydrological model, Hydrological Predictions for the Environment (HYPE). The results of this study suggest that the coupled hydro-meteorological model was still able to capture the major flood peaks, compared with the conventional gauge- or radar-driving forecast, but with the added value of much extended forecast lead time. The high-resolution rainfall estimation produced by the UKV performs similarly to that of radar rainfall products in the first 2-3 days of tested flood events, but the uncertainties particularly increased as the forecast horizon goes beyond 3 days. This study takes a step forward to identify how the online mode approach can be used, where both numerical weather prediction and the hydrological model are executed, either simultaneously or on the same hardware infrastructures, so that more effective interaction and communication can be achieved and maintained between the models. But the concluding comments are that running the entire system on a reasonably powerful HPC platform does not yet allow for real-time simulations, even without the most complex and demanding data simulation part.

  6. Identification of extremely premature infants at high risk of rehospitalization.

    PubMed

    Ambalavanan, Namasivayam; Carlo, Waldemar A; McDonald, Scott A; Yao, Qing; Das, Abhik; Higgins, Rosemary D

    2011-11-01

    Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002-2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%-42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after discharge.

  7. Identification of Extremely Premature Infants at High Risk of Rehospitalization

    PubMed Central

    Carlo, Waldemar A.; McDonald, Scott A.; Yao, Qing; Das, Abhik; Higgins, Rosemary D.

    2011-01-01

    OBJECTIVE: Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. METHODS: Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002–2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. RESULTS: A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%–42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. CONCLUSIONS: The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after

  8. More tornadoes in the most extreme U.S. tornado outbreaks.

    PubMed

    Tippett, Michael K; Lepore, Chiara; Cohen, Joel E

    2016-12-16

    Tornadoes and severe thunderstorms kill people and damage property every year. Estimated U.S. insured losses due to severe thunderstorms in the first half of 2016 were $8.5 billion (US). The largest U.S. effects of tornadoes result from tornado outbreaks, which are sequences of tornadoes that occur in close succession. Here, using extreme value analysis, we find that the frequency of U.S. outbreaks with many tornadoes is increasing and that it is increasing faster for more extreme outbreaks. We model this behavior by extreme value distributions with parameters that are linear functions of time or of some indicators of multidecadal climatic variability. Extreme meteorological environments associated with severe thunderstorms show consistent upward trends, but the trends do not resemble those currently expected to result from global warming. Copyright © 2016, American Association for the Advancement of Science.

  9. Comparison of joint angles and electromyographic activity of the lower extremities during standing with wearing standard and revised high-heeled shoes: A pilot study.

    PubMed

    Bae, Young-Hyeon; Ko, Mansoo; Lee, Suk Min

    2016-04-29

    Revised high-heeled shoes (HHSs) were designed to improve the shortcomings of standard HHSs. This study was conducted to compare revised and standard HHSs with regard to joint angles and electromyographic (EMG) activity of the lower extremities during standing. The participants were five healthy young women. Data regarding joint angles and EMG activity of the lower extremities were obtained under three conditions: barefoot, when wearing revised HHSs, and when wearing standard HHSs. Lower extremity joint angles in the three dimensional plane were confirmed using a VICON motion capture system. EMG activity of the lower extremities was measured using active bipolar surface EMG. Kruskal-Wallis one-way analysis of variance by rank applied to analyze differences during three standing conditions. Compared with the barefoot condition, the standard HHSs condition was more different than the revised HHSs condition with regard to lower extremity joint angles during standing. EMG activity of the lower extremities was different for the revised HHSs condition, but the differences among the three conditions were not significant. Wearing revised HHSs may positively impact joint angles and EMG activity of the lower extremities by improving body alignment while standing.

  10. Estimating the effects of extreme weather on transportation infrastructure.

    DOT National Transportation Integrated Search

    2016-12-01

    Climate change, already taking place, is expected to become more pronounced in the future. Current damage assessment models for extreme weather events, such as FEMAs Hazus, do not take the full impact to transportation systems into consideration. ...

  11. Impacts of Extreme Events on Human Health. Chapter 4

    NASA Technical Reports Server (NTRS)

    Bell, Jesse E.; Herring, Stephanie C.; Jantarasami, Lesley; Adrianopoli, Carl; Benedict, Kaitlin; Conlon, Kathryn; Escobar, Vanessa; Hess, Jeremy; Luvall, Jeffrey; Garcia-Pando, Carlos Perez; hide

    2016-01-01

    Increased Exposure to Extreme Events Key Finding 1: Health impacts associated with climate-related changes in exposure to extreme events include death, injury, or illness; exacerbation of underlying medical conditions; and adverse effects on mental health[High Confidence]. Climate change will increase exposure risk in some regions of the United States due to projected increases in the frequency and/or intensity of drought, wildfires, and flooding related to extreme precipitation and hurricanes [Medium Confidence].Disruption of Essential Infrastructure Key Finding 2: Many types of extreme events related to climate change cause disruption of infrastructure, including power, water, transportation, and communication systems, that are essential to maintaining access to health care and emergency response services and safeguarding human health [High Confidence].Vulnerability to Coastal Flooding Key Finding 3: Coastal populations with greater vulnerability to health impacts from coastal flooding include persons with disabilities or other access and functional needs, certain populations of color, older adults, pregnant women and children, low-income populations, and some occupational groups [High Confidence].Climate change will increase exposure risk to coastal flooding due to increases in extreme precipitation and in hurricane intensity and rainfall rates, as well as sea level rise and the resulting increases in storm surge.

  12. Cold and Hot Extremozymes: Industrial Relevance and Current Trends

    PubMed Central

    Sarmiento, Felipe; Peralta, Rocío; Blamey, Jenny M.

    2015-01-01

    The development of enzymes for industrial applications relies heavily on the use of microorganisms. The intrinsic properties of microbial enzymes, e.g., consistency, reproducibility, and high yields along with many others, have pushed their introduction into a wide range of products and industrial processes. Extremophilic microorganisms represent an underutilized and innovative source of novel enzymes. These microorganisms have developed unique mechanisms and molecular means to cope with extreme temperatures, acidic and basic pH, high salinity, high radiation, low water activity, and high metal concentrations among other environmental conditions. Extremophile-derived enzymes, or extremozymes, are able to catalyze chemical reactions under harsh conditions, like those found in industrial processes, which were previously not thought to be conducive for enzymatic activity. Due to their optimal activity and stability under extreme conditions, extremozymes offer new catalytic alternatives for current industrial applications. These extremozymes also represent the cornerstone for the development of environmentally friendly, efficient, and sustainable industrial technologies. Many advances in industrial biocatalysis have been achieved in recent years; however, the potential of biocatalysis through the use of extremozymes is far from being fully realized. In this article, the adaptations and significance of psychrophilic, thermophilic, and hyperthermophilic enzymes, and their applications in selected industrial markets will be reviewed. Also, the current challenges in the development and mass production of extremozymes as well as future prospects and trends for their biotechnological application will be discussed. PMID:26539430

  13. Prevention of bronchopulmonary dysplasia in extremely low gestational age neonates: current evidence.

    PubMed

    Poets, Christian F; Lorenz, Laila

    2018-05-01

    Bronchopulmonary dysplasia (BPD) is one of the most frequent complications in extremely low gestational age neonates, but has remained largely unchanged in rate. We reviewed data on BPD prevention focusing on recent meta-analyses. Interventions with proven effectiveness in reducing BPD include the primary use of non-invasive respiratory support, the application of surfactant without endotracheal ventilation and the use of volume-targeted ventilation in infants requiring endotracheal intubation. Following extubation, synchronised nasal ventilation is more effective than continuous positive airway pressure in reducing BPD. Pharmacologically, commencing caffeine citrate on postnatal day 1 or 2 seems more effective than a later start. Applying intramuscular vitamin A for the first 4 weeks reduces BPD, but is expensive and painful and thus not widely used. Low-dose hydrocortisone for the first 10 days prevents BPD, but was associated with almost twice as many cases of late-onset sepsis in infants born at 24-25 weeks' gestation. Inhaled corticosteroids, despite reducing BPD, were associated with a higher mortality rate. Administering dexamethasone to infants still requiring mechanical ventilation around postnatal weeks 2-3 may represent the best trade-off between restricting steroids to infants at risk of BPD while still affording high efficacy. Finally, identifying infants colonised with ureaplasma and treating those requiring intubation and mechanical ventilation with azithromycin is another promising approach to BPD prevention. Further interventions yet only backed by cohort studies include exclusive breastmilk feeding and a better prevention of nosocomial infections. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Applying systems biology methods to the study of human physiology in extreme environments

    PubMed Central

    2013-01-01

    Systems biology is defined in this review as ‘an iterative process of computational model building and experimental model revision with the aim of understanding or simulating complex biological systems’. We propose that, in practice, systems biology rests on three pillars: computation, the omics disciplines and repeated experimental perturbation of the system of interest. The number of ethical and physiologically relevant perturbations that can be used in experiments on healthy humans is extremely limited and principally comprises exercise, nutrition, infusions (e.g. Intralipid), some drugs and altered environment. Thus, we argue that systems biology and environmental physiology are natural symbionts for those interested in a system-level understanding of human biology. However, despite excellent progress in high-altitude genetics and several proteomics studies, systems biology research into human adaptation to extreme environments is in its infancy. A brief description and overview of systems biology in its current guise is given, followed by a mini review of computational methods used for modelling biological systems. Special attention is given to high-altitude research, metabolic network reconstruction and constraint-based modelling. PMID:23849719

  15. Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fingersh, Lee J; Loth, Eric; Kaminski, Meghan

    2017-06-09

    A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3more » wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.« less

  16. Climate Change Extreme Events: Meeting the Information Needs of Water Resource Managers

    NASA Astrophysics Data System (ADS)

    Quay, R.; Garfin, G. M.; Dominguez, F.; Hirschboeck, K. K.; Woodhouse, C. A.; Guido, Z.; White, D. D.

    2013-12-01

    Information about climate has long been used by water managers to develop short term and long term plans and strategies for regional and local water resources. Inherent within longer term forecasts is an element of uncertainty, which is particularly evident in Global Climate model results for precipitation. For example in the southwest estimates in the flow of the Colorado River based on GCM results indicate changes from 120% or current flow to 60%. Many water resource managers are now using global climate model down scaled estimates results as indications of potential climate change as part of that planning. They are addressing the uncertainty within these estimates by using an anticipatory planning approach looking at a range of possible futures. One aspect of climate that is important for such planning are estimates of future extreme storm (short term) and drought (long term) events. However, the climate science of future possible changes in extreme events is less mature than general climate change science. At a recent workshop among climate scientists and water managers in the southwest, it was concluded the science of climate change extreme events is at least a decade away from being robust enough to be useful for water managers in their water resource management activities. However, it was proposed that there are existing estimates and records of past flooding and drought events that could be combined with general climate change science to create possible future events. These derived events could be of sufficient detail to be used by water resource managers until such time that the science of extreme events is able to provide more detailed estimates. Based on the results of this workshop and other work being done by the Decision Center for a Desert City at Arizona State University and the Climate Assessment for the Southwest center at University of Arizona., this article will 1) review what are the extreme event data needs of Water Resource Managers in the

  17. The Extreme Ultraviolet Explorer mission - Overview and initial results

    NASA Technical Reports Server (NTRS)

    Haisch, B.; Bowyer, S.; Malina, R. F.

    1993-01-01

    The history of extreme ultraviolet (EUV) astronomy is briefly reviewed, and an overview of the Extreme Ultraviolet Explorer mission, launched into a near-earth (550 km) orbit on June 7, 1992, is presented. First, the principal objective of the mission are summarized. The instrumentation and operation of the mission are then described, with particular attention given to the sky survey instruments, the deep survey instrument, and the spectrometers. The discussion also covers the current view of the interstellar medium, early results from the mission, and future prospects for EUV astronomy.

  18. Intra-seasonal Characteristics of Wintertime Extreme Cold Events over South Korea

    NASA Astrophysics Data System (ADS)

    Park, Taewon; Jeong, Jeehoon; Choi, Jahyun

    2017-04-01

    The present study reveals the changes in the characteristics of extreme cold events over South Korea for boreal winter (November to March) in terms of the intra-seasonal variability of frequency, duration, and atmospheric circulation pattern. Influences of large-scale variabilities such as the Siberian High activity, the Arctic Oscillation (AO), and the Madden-Julian Oscillation (MJO) on extreme cold events are also investigated. In the early and the late of the winter during November and March, the upper-tropospheric wave-train for a life-cycle of the extreme cold events tends to pass quickly over East Asia. In addition, compared with the other months, the intensity of the Siberian High is weaker and the occurrences of strong negative AO are less frequent. It lead to events with weak amplitude and short duration. On the other hand, the amplified Siberian High and the strong negative AO occur more frequently in the mid of the winter from December to February. The extreme cold events are mainly characterized by a well-organized anticyclonic blocking around the Ural Mountain and the Subarctic. These large-scale circulation makes the extreme cold events for the midwinter last long with strong amplitude. The MJO phases 2-3 which provide a suitable condition for the amplification of extreme cold events occur frequently for November to January when the frequencies are more than twice those for February and March. While the extreme cold events during March have the least frequency, the weakest amplitude, and the shortest duration due to weak impacts of the abovementioned factors, the strong activities of the factors for January force the extreme cold events to be the most frequent, the strongest, and the longest among the boreal winter. Keywords extreme cold event, wave-train, blocking, Siberian High, AO, MJO

  19. Epidemiology of extremity fractures in the Netherlands.

    PubMed

    Beerekamp, M S H; de Muinck Keizer, R J O; Schep, N W L; Ubbink, D T; Panneman, M J M; Goslings, J C

    2017-07-01

    Insight in epidemiologic data of extremity fractures is relevant to identify people at risk. By analyzing age- and gender specific fracture incidence and treatment patterns we may adjust future policy, take preventive measures and optimize health care management. Current epidemiologic data on extremity fractures and their treatment are scarce, outdated or aiming at a small spectrum of fractures. The aim of this study was to assess trends in incidence and treatment of extremity fractures between 2004 and 2012 in relation to gender and age. We used a combination of national registries of patients aged ≥ 16 years with extremity fractures. Fractures were coded by the International Classification of Diseases (ICD) 10, and allocated to an anatomic region. ICD-10 codes were used for combining the data of the registries. Absolute numbers, incidences, number of patients treated in university hospitals and surgically treated patients were reported. A binary logistic regression was used to calculate trends during the study period. From 2004 to 2012 the Dutch population aged ≥16 years grew from 13,047,018 to 13,639,412 inhabitants, particularly in the higher age groups of 46 years and older. The absolute number of extremity fractures increased significantly from 129,188 to 176,129 (OR 1.308 [1.299-1.318]), except for forearm and lower leg fractures. Incidences increased significantly (3-4%) for wrist, hand/finger, hip/upper leg, ankle and foot/toe fractures. In contrast to the older age categories from 66 years and older, in younger age categories from 16 to 35 years, fractures of the extremities were more frequent in men than in women. Treatments gradually moved towards non-university hospitals for all except forearm fractures. Both relative and absolute numbers increased for surgical treatments of clavicle/shoulder, forearm, wrist and hand/finger fractures. Contrarily, lower extremity fractures showed an increase in non-surgical treatment, except for lower leg fractures

  20. Changes in the Occurrence and Distribution of Extreme Precipitation Events at the Paleocene-Eocene Thermal Maximum (PETM)

    NASA Astrophysics Data System (ADS)

    Carmichael, M.; Pancost, R. D.; Lunt, D. J.

    2015-12-01

    The study of the sensitivity of the hydrological cycle to episodes of global warmth in the geologic past is receiving increased attention, but knowledge of the occurrence of hydrological extremes remains limited. A range of geomorphological, microfossil and biomarker proxies indicate significant hydrological change accompanied the PETM hyperthermal at ~55.8 Ma, many of which have been interpreted to reflect changes to Mean Annual Precipitation (MAP) or runoff. Recently, changes in the occurrence of intense, episodic precipitation has been suggested at some sites, but it is currently unknown whether such regions were particularly susceptible to extremes, or whether proxies from other regions require further interpretation. In this work, we seek to understand whether a numerical climate model is capable of simulating changes in the frequency and global distribution of intense precipitation events by analysing GCM-simulated hourly precipitation rates. Our Eocene simulations are performed at x2 and x4 preindustrial CO2 using a coupled atmosphere-ocean GCM, HadCM3L. Climatological differences between high- and low-CO2 may be considered analogous to the PETM. We find that changes in storm characteristics and extremes are highly regionalised. In particular, our simulations support that extreme events occurred with a reduced return period at the PETM in tropical regions of Africa and South America, whilst in the mid-latitudes the importance of extremes varies significantly between sites in close proximity. We also identify regions where changes in extreme behaviour are decoupled from those of MAP, which may represent important proxy acquisition targets. Given that tropical precipitation distributions are highly sensitive to GCM parameterisation scheme and given biases in the representation of sub-daily precipitation within HadCM3L, there is a clear need for further modelling work to fully characterise the Eocene hydrological cycle. However, our results indicate that the

  1. Characterization of extreme air-sea turbulent fluxes

    NASA Astrophysics Data System (ADS)

    Gulev, Sergey; Belyaev, Konstantin

    2017-04-01

    Extreme ocean-atmosphere turbulent fluxes play a critical role in the convective processes in the mid and subpolar latitudes and may also affect a variety of atmospheric processes, such as generation and re-intensification of extreme cyclones in the areas of the mid latitude storm tracks. From the ocean dynamics perspective, specifically for quantifying extreme vertical mixing, characterization of the extreme fluxes requires, besides estimation of the extreme events, also consideration of the relative extremeness of surface fluxes and their timing, e.g. the duration of periods of high surface fluxes. In order to comprehensively characterize extreme turbulent fluxes at sea surface we propose a formalism based upon probability density distributions of surface turbulent fluxes and flux-related variables. Individual absolute flux extremes were derived using Modified Fisher-Tippett (MFT) distribution of turbulent fluxes. Then, we extend this distribution to the fractional distribution, characterizing the fraction of time-integrated turbulent heat flux provided by the fluxes exceeding a given percentile. Finally, we consider the time durations during which fluxes of a given intensity provide extreme accumulations of heat loss from the surface. For estimation of these characteristics of surface fluxes we use fluxes recomputed from the state variables available from modern era reanalyses (ERA-Interim, MERRA and CFSR) for the period from 1979 onwards. Applications of the formalism to the VOS (Voluntary Observing Ship) - based surface fluxes are also considered. We discuss application of the new metrics of mesoscale and synoptic variability of surface fluxes to the dynamics of mixed layer depth in the North Atlantic.

  2. Climate Change and Hydrological Extreme Events - Risks and Perspectives for Water Management in Bavaria and Québec

    NASA Astrophysics Data System (ADS)

    Ludwig, R.

    2017-12-01

    There is as yet no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for `virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the

  3. Familial correlates of extreme weight control behaviors among adolescents.

    PubMed

    Fonseca, Helena; Ireland, Marjorie; Resnick, Michael D

    2002-12-01

    To identify familial factors associated with extreme weight control among adolescents. Analysis of a comprehensive 1996 health survey of Connecticut students. Familial factors among extreme dieters who deliberately vomited, took diet pills, laxatives, or diuretics were compared with youth reporting none of these behaviors, using logistic regression controlling for age and body mass index. Nearly 7% of adolescents reported engaging in extreme weight control behaviors. Boys' risk factors included high parental supervision/monitoring and sexual abuse history. Protective factors included high parental expectations, maternal presence, and connectedness with friends and other adults. The only significant risk factor for girls was sexual abuse history. Protective factors included family connectedness, positive family communication, parental supervision/monitoring, and maternal presence. Extreme dieting appears to be less an expression of body composition than of psychosocial issues. That connectedness to family, other adults, and friends is protective further demonstrates interrelationships of extreme weight control behaviors with family/social issues. Copyright 2002 by Wiley Periodicals, Inc. Int J Eat Disord 32: 441-448, 2002.

  4. The Extreme Ultraviolet spectrometer on bard the Hisaki satellite

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Kagitani, M.; Kimura, T.; Yoshikawa, I.

    2017-12-01

    The extreme ultraviolet spectroscope EXCEED (EXtrem ultraviolet spetrosCope for ExosphEric Dynamics) on board the Hisaki satellite was launched in September 2013 from the Uchinoura space center, Japan. It is orbiting around the Earth with an orbital altitude of around 950-1150 km. This satellite is dedicated to and optimized for observing the atmosphere and magnetosphere of terrestrial planets such as Mercury, Venus, Mars, as well as Jupiter. The instrument consists of an off axis parabolic entrance mirror, switchable slits with multiple filters and shapes, a toroidal grating, and a photon counting detector, together with a field of view guiding camera. The design goal is to achieve a large effective area but with high spatial and spectral resolution. Based on the after-launch calibration, the spectral resolution of EXCEED is found to be 0.3-0.5 nm FWHM (Full Width at Half Maximum) over the entire spectral band, and the spatial resolution is around 17". The evaluated effective area is larger than 1cm2. In this presentation, the basic concept of the instrument design and the observation technique are introduced. The current status of the spacecraft and its future observation plan are also shown.

  5. Synoptic Conditions and Moisture Sources Actuating Extreme Precipitation in Nepal

    NASA Astrophysics Data System (ADS)

    Bohlinger, Patrik; Sorteberg, Asgeir; Sodemann, Harald

    2017-12-01

    Despite the vast literature on heavy-precipitation events in South Asia, synoptic conditions and moisture sources related to extreme precipitation in Nepal have not been addressed systematically. We investigate two types of synoptic conditions—low-pressure systems and midlevel troughs—and moisture sources related to extreme precipitation events. To account for the high spatial variability in rainfall, we cluster station-based daily precipitation measurements resulting in three well-separated geographic regions: west, central, and east Nepal. For each region, composite analysis of extreme events shows that atmospheric circulation is directed against the Himalayas during an extreme event. The direction of the flow is regulated by midtropospheric troughs and low-pressure systems traveling toward the respective region. Extreme precipitation events feature anomalous high abundance of total column moisture. Quantitative Lagrangian moisture source diagnostic reveals that the largest direct contribution stems from land (approximately 75%), where, in particular, over the Indo-Gangetic Plain moisture uptake was increased. Precipitation events occurring in this region before the extreme event likely provided additional moisture.

  6. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    PubMed

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  7. Diagnosing causes of extreme aerosol optical depth events

    NASA Astrophysics Data System (ADS)

    Bernstein, D. N.; Sullivan, R.; Crippa, P.; Thota, A.; Pryor, S. C.

    2017-12-01

    Aerosol burdens and optical properties exhibit substantial spatiotemporal variability, and simulation of current and possible future aerosol burdens and characteristics exhibits relatively high uncertainty due to uncertainties in emission estimates and in chemical and physical processes associated with aerosol formation, dynamics and removal. We report research designed to improve understanding of the causes and characteristics of extreme aerosol optical depth (AOD) at the regional scale, and diagnose and attribute model skill in simulating these events. Extreme AOD events over the US Midwest are selected by identifying all dates on which AOD in a MERRA-2 reanalysis grid cell exceeds the local seasonally computed 90th percentile (p90) value during 2004-2016 and then finding the dates on which the highest number of grid cells exceed their local p90. MODIS AOD data are subsequently used to exclude events dominated by wildfires. MERRA-2 data are also analyzed within a synoptic classification to determine in what ways the extreme AOD events are atypical and to identify possible meteorological `finger-prints' that can be detected in regional climate model simulations of future climate states to project possible changes in the occurrence of extreme AOD. Then WRF-Chem v3.6 is applied at 12-km resolution and regridded to the MERRA-2 resolution over eastern North America to quantify model performance, and also evaluated using in situ measurements of columnar AOD (AERONET) and near-surface PM2.5 (US EPA). Finally the sensitivity to (i) spin-up time (including procedure used to spin-up the chemistry), (ii) modal versus sectional aerosol schemes, (iii) meteorological nudging, (iv) chemistry initial and boundary conditions, and (v) anthropogenic emissions is quantified. Despite recent declines in mean AOD, supraregional (> 1000 km) extreme AOD events continue to occur. During these events AOD exceeds 0.6 in many Midwestern grid cells for multiple consecutive days. In all

  8. Extreme events of perceived temperature over Europe: a projected northward extension of dangerous areas

    NASA Astrophysics Data System (ADS)

    Scoccimarro, Enrico; Fogli, Pier Giuseppe; Gualdi, Silvio

    2017-04-01

    It is well known that an increase of temperature over Europe, both in terms of averages and extremes, is expected within the current century. In order to consider health impacts under warm conditions, it is important to take into account the combined effect of temperature and humidity on the human body. To this aim a basic index - the humindex - representative of the perceived temperature, under different scenarios and periods, has been investigated in this study. A very low concomitance of extreme temperature events and extreme humindex events is found over the present climate, reinforcing the importance to investigate not only extreme temperature and relative humidity future projections but also the combination of the two parameters. A set of 10-km resolution regional climate simulations provided within the EUR-11 EURO-CORDEX multi-model effort, demonstrates ability in representing the intense and extreme events of the humindex over the present climate and to be eligible as a tool to quantify future changes in geographical patterns of exposed areas over Europe. An enlargement of the domain subject to dangerous conditions is found since the middle of the current century, reaching 60 degrees North when considering really extreme events. The most significant increase in humindex extreme events is found when comparing the 2066-2095 projections under rcp8.5 scenario, to the 1966-2005 period: bearing in mind that changes in relative humidity may either amplify or offset the health effects of temperature extremes, a less pronounced projected reduction of relative humidity intensity in the Northern part of the European domain, associated to extreme temperature and humindex, makes Northern Europe the most prone region to a local increase of the humindex extremes.

  9. Upslope deposition of extremely distal turbidites: An example from the Tiburon Rise, west-central Atlantic

    NASA Astrophysics Data System (ADS)

    Dolan, James; Beck, Christian; Ogawa, Yujiro

    1989-11-01

    Terrigenous silt and sand turbidites recovered from the crest of the Tiburon Rise in the west-central Atlantic represent an unprecedented example of upslope turbidite deposition in an extremely distal setting. These Eocene-Oligocene beds, which were derived from South America more than 1000 km to the southeast, were probably deposited by extremely thick (>1500 m) turbidity currents that flowed parallel to the southern margin of the rise. We suggest that flow thickness was the dominant control on deposition of these beds, rather than true upslope flow. This interpretation points out the importance of local bathymetry on the behavior of even extremely distal turbidity currents.

  10. Extreme pressure differences at 0900 NZST and winds across New Zealand

    NASA Astrophysics Data System (ADS)

    Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita

    2005-07-01

    Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are

  11. Structure of High Latitude Currents in Magnetosphere-Ionosphere Models

    NASA Astrophysics Data System (ADS)

    Wiltberger, M.; Rigler, E. J.; Merkin, V.; Lyon, J. G.

    2017-03-01

    Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.

  12. NLDAS Views of North American 2011 Extreme Events

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, William L.; Vollmer, Bruce; Mocko, David; Lei, Guang-Dih

    2014-01-01

    2011 was marked as one of the most extreme years in recent history. Over the course of the year, weather-related extreme events, such as floods, heat waves, blizzards, tornadoes, and wildfires, caused tremendous loss of human life and property. The North American Land Data Assimilation System (NLDAS, http:ldas.gsfc.nasa.govnldas) data set, with high spatial and temporal resolutions (0.125 x 0.125, hourly) and various water- and energy-related variables, is an excellent data source for case studies of extreme events. This presentation illustrates some extreme events from 2011 in North America, including the Groundhog Day Blizzard, the July heat wave, Hurricane Irene, and Tropical Storm Lee, all utilizing NLDAS Phase 2 (NLDAS-2) data.

  13. Betti multiplets, flows across dimensions and c-extremization

    DOE PAGES

    Amariti, Antonio; Toldo, Chiara

    2017-07-10

    We consider 4d N = 1 SCFTs, topologically twisted on compact constant curvature Riemann surfaces, giving rise to 2d N = (0; 2) SCFTs. The exact R-current of these 2d SCFT extremizes the central charge c 2d, similarly to the 4d picture, where the exact R-current maximizes the central charge a 4d. There are global currents that do not mix with the R-current in 4d but their mixing becomes non trivial in 2d. In this paper we study the holographic dual of this process by analyzing a 5d N = 2 truncation of T 1,1 with one Betti vector multiplet,more » dual to the baryonic current on the CFT side. The holographic realization of the flow across dimensions connects AdS 5 to AdS 3 vacua in the supergravity picture. We verify the existence of the flow to AdS 3 solutions and we retrieve the field theory results for the mixing of the Betti vector with the graviphoton. Moreover, we extract the central charge from the Brown-Henneaux formula, matching with the results obtained in field theory. We develop a general formalism to obtain the central charge of a 2d SCFT from 5d N = 2 gauged supergravity with a generic number of vector multiplets, showing that its extremization corresponds to an attractor mechanism for the scalars in the supergravity picture.« less

  14. Betti multiplets, flows across dimensions and c-extremization

    NASA Astrophysics Data System (ADS)

    Amariti, Antonio; Toldo, Chiara

    2017-07-01

    We consider 4d N = 1 SCFTs, topologically twisted on compact constant curvature Riemann surfaces, giving rise to 2d N = (0, 2) SCFTs. The exact R-current of these 2d SCFT extremizes the central charge c 2 d , similarly to the 4d picture, where the exact R-current maximizes the central charge a 4 d . There are global currents that do not mix with the R-current in 4d but their mixing becomes non trivial in 2d. In this paper we study the holographic dual of this process by analyzing a 5d N = 2 truncation of T 1,1 with one Betti vector multiplet, dual to the baryonic current on the CFT side. The holographic realization of the flow across dimensions connects AdS5 to AdS3 vacua in the supergravity picture. We verify the existence of the flow to AdS3 solutions and we retrieve the field theory results for the mixing of the Betti vector with the graviphoton. Moreover, we extract the central charge from the Brown-Henneaux formula, matching with the results obtained in field theory. We develop a general formalism to obtain the central charge of a 2d SCFT from 5d N = 2 gauged supergravity with a generic number of vector multiplets, showing that its extremization corresponds to an attractor mechanism for the scalars in the supergravity picture.

  15. Extreme Precipitation and Runoff under Changing Climate in Southern Maine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Eugene; Jared, Alissa; Mahat, Vinod

    The quantification of extreme precipitation events is vitally important for designing and engineering water and flood sensitive infrastructure. Since this kind of infrastructure is usually built to last much longer than 10, 50, or even 100 years, there is great need for statistically sound estimates of the intensity of 10-, 50-, 100-, and 500-year rainstorms and associated floods. The recent assessment indicated that the intensity of the most extreme precipitation events (or the heaviest 1% of all daily events) have increased in every region of the contiguous states since the 1950s (Melillo et al. 2014). The maximum change in precipitationmore » intensity of extreme events occurred in the northeast region reaching 71%. The precipitation extremes can be characterized using intensity-duration-frequency analysis (IDF). However, the current IDFs in this region were developed around the assumption that climate condition remains stationary over the next 50 or 100 years. To better characterize the potential flood risk, this project will (1) develop precipitation IDFs on the basis of both historical observations and future climate projections from dynamic downscaling with Argonne National Laboratory’s (Argonne’s) regional climate model and (2) develop runoff IDFs using precipitation IDFs for the Casco Bay Watershed. IDF development also considers non-stationary distribution models and snowmelt effects that are not incorporated in the current IDFs.« less

  16. Moving in extreme environments: extreme loading; carriage versus distance.

    PubMed

    Lucas, Samuel J E; Helge, Jørn W; Schütz, Uwe H W; Goldman, Ralph F; Cotter, James D

    2016-01-01

    This review addresses human capacity for movement in the context of extreme loading and with it the combined effects of metabolic, biomechanical and gravitational stress on the human body. This topic encompasses extreme duration, as occurs in ultra-endurance competitions (e.g. adventure racing and transcontinental races) and expeditions (e.g. polar crossings), to the more gravitationally limited load carriage (e.g. in the military context). Juxtaposed to these circumstances is the extreme metabolic and mechanical unloading associated with space travel, prolonged bedrest and sedentary lifestyle, which may be at least as problematic, and are therefore included as a reference, e.g. when considering exposure, dangers and (mal)adaptations. As per the other reviews in this series, we describe the nature of the stress and the associated consequences; illustrate relevant regulations, including why and how they are set; present the pros and cons for self versus prescribed acute and chronic exposure; describe humans' (mal)adaptations; and finally suggest future directions for practice and research. In summary, we describe adaptation patterns that are often U or J shaped and that over time minimal or no load carriage decreases the global load carrying capacity and eventually leads to severe adverse effects and manifest disease under minimal absolute but high relative loads. We advocate that further understanding of load carrying capacity and the inherent mechanisms leading to adverse effects may advantageously be studied in this perspective. With improved access to insightful and portable technologies, there are some exciting possibilities to explore these questions in this context.

  17. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    PubMed

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  18. Improving Ramsey spectroscopy in the extreme-ultraviolet region with a random-sampling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eramo, R.; Bellini, M.; European Laboratory for Non-linear Spectroscopy

    2011-04-15

    Ramsey-like techniques, based on the coherent excitation of a sample by delayed and phase-correlated pulses, are promising tools for high-precision spectroscopic tests of QED in the extreme-ultraviolet (xuv) spectral region, but currently suffer experimental limitations related to long acquisition times and critical stability issues. Here we propose a random subsampling approach to Ramsey spectroscopy that, by allowing experimentalists to reach a given spectral resolution goal in a fraction of the usual acquisition time, leads to substantial improvements in high-resolution spectroscopy and may open the way to a widespread application of Ramsey-like techniques to precision measurements in the xuv spectral region.

  19. The Extreme Hosts of Extreme Supernovae

    NASA Astrophysics Data System (ADS)

    Neill, James D.

    2012-01-01

    We present the results from a deeper survey of Luminous Supernova (LSN) hosts with the Galaxy Evolution Explorer (GALEX). We have added new, multiple kilo-second observations to our original observations of seventeen LSN hosts providing better constraints on their physical properties. We place the LSNe hosts on the galaxy NUV-r versus M(r) color magnitude diagram (CMD) with a larger comparison sample ( 26,000) to illustrate the extreme nature of these galaxies. The LSN hosts favor low-density regions of the galaxy CMD falling on the blue edge of the blue cloud toward the low luminosity end. The new observations provide tighter constraints on the star formation rates (SFRs) and stellar masses, M(*), and show that the LSNe result from regions of high specific star formation and yet low total SFR. This regime is of particular interest for exploring the upper end of the stellar IMF and its variation. If our understanding of the progenitors of the LSNe leans toward very massive (> 200 M_sun) progenitors, the potential for a conflict with IMF theory exists because the conditions found in the hosts producing the LSNe should not create such massive stars. If it also required that LSNe can only be produced in primordial or very low metallicity environments, then they will also provide evidence for strong variation in metallicity within a dwarf galaxy, since their masses are consistent with low, but not extreme metallicity.

  20. A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations

    NASA Astrophysics Data System (ADS)

    Han, Jichang; Wang, Song; Zhang, Lin; Yang, Guanpin; Zhao, Lu; Pan, Kehou

    2016-01-01

    Axenic microalgal strains are highly valued in diverse microalgal studies and applications. Antibiotics, alone or in combination, are often used to avoid bacterial contamination during microalgal isolation and culture. In our preliminary trials, we found that many microalgae ceased growing in antibiotics at extremely high concentrations but could resume growth quickly when returned to an antibiotics-free liquid medium and formed colonies when spread on a solid medium. We developed a simple and highly efficient method of obtaining axenic microalgal cultures based on this observation. First, microalgal strains of different species or strains were treated with a mixture of ampicillin, gentamycin sulfate, kanamycin, neomycin and streptomycin (each at a concentration of 600 mg/L) for 3 days; they were then transferred to antibiotics-free medium for 5 days; and finally they were spread on solid f/2 media to allow algal colonies to form. With this method, five strains of Nannochloropsis sp. (Eustigmatophyceae), two strains of Cylindrotheca sp. (Bacillariophyceae), two strains of Tetraselmis sp. (Chlorodendrophyceae) and one strain of Amphikrikos sp. (Trebouxiophyceae) were purified successfully. The method shows promise for batch-purifying microalgal cultures.

  1. First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration

    2010-10-01

    We report on the results of the search for extremely-high energy neutrinos with energies above 107GeV obtained with the partially (˜30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective live time, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at E2ϕνe+νμ+ντ≃1.4×10-6GeVcm-2sec⁡-1sr-1 for neutrinos in the energy range from 3×107 to 3×109GeV.

  2. Response of Simple, Model Systems to Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, Rodney C.; Lang, Maik

    2015-07-30

    The focus of the research was on the application of high-pressure/high-temperature techniques, together with intense energetic ion beams, to the study of the behavior of simple oxide systems (e.g., SiO 2, GeO 2, CeO 2, TiO 2, HfO 2, SnO 2, ZnO and ZrO 2) under extreme conditions. These simple stoichiometries provide unique model systems for the analysis of structural responses to pressure up to and above 1 Mbar, temperatures of up to several thousands of kelvin, and the extreme energy density generated by energetic heavy ions (tens of keV/atom). The investigations included systematic studies of radiation- and pressure-induced amorphizationmore » of high P-T polymorphs. By studying the response of simple stoichiometries that have multiple structural “outcomes”, we have established the basic knowledge required for the prediction of the response of more complex structures to extreme conditions. We especially focused on the amorphous state and characterized the different non-crystalline structure-types that result from the interplay of radiation and pressure. For such experiments, we made use of recent technological developments, such as the perforated diamond-anvil cell and in situ investigation using synchrotron x-ray sources. We have been particularly interested in using extreme pressures to alter the electronic structure of a solid prior to irradiation. We expected that the effects of modified band structure would be evident in the track structure and morphology, information which is much needed to describe theoretically the fundamental physics of track-formation. Finally, we investigated the behavior of different simple-oxide, composite nanomaterials (e.g., uncoated nanoparticles vs. core/shell systems) under coupled, extreme conditions. This provided insight into surface and boundary effects on phase stability under extreme conditions.« less

  3. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: LEO IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Joshua D.; McWilliam, Andrew; Thompson, Ian B.

    2010-06-10

    We present high-resolution Magellan/MIKE spectroscopy of the brightest star in the ultra-faint dwarf galaxy Leo IV. We measure an iron abundance of [Fe/H] = -3.2, adding to the rapidly growing sample of extremely metal-poor (EMP) stars being identified in Milky Way satellite galaxies. The star is enhanced in the {alpha} elements Mg, Ca, and Ti by {approx}0.3 dex, very similar to the typical Milky Way halo abundance pattern. All of the light and iron-peak elements follow the trends established by EMP halo stars, but the neutron-capture elements Ba and Sr are significantly underabundant. These results are quite similar to thosemore » found for stars in the ultra-faint dwarfs Ursa Major II, Coma Berenices, Booetes I, and Hercules, suggesting that the chemical evolution of the lowest-luminosity galaxies may be universal. The abundance pattern we observe is consistent with predictions for nucleosynthesis from a Population III supernova explosion. The extremely low metallicity of this star also supports the idea that a significant fraction ({approx}>10%) of the stars in the faintest dwarfs have metallicities below [Fe/H] = -3.0.« less

  4. An observational and modeling study of the August 2017 Florida climate extreme event.

    NASA Astrophysics Data System (ADS)

    Konduru, R.; Singh, V.; Routray, A.

    2017-12-01

    A special report on the climate extremes by the Intergovernmental Panel on Climate Change (IPCC) elucidates that the sole cause of disasters is due to the exposure and vulnerability of the human and natural system to the climate extremes. The cause of such a climate extreme could be anthropogenic or non-anthropogenic. Therefore, it is challenging to discern the critical factor of influence for a particular climate extreme. Such kind of perceptive study with reasonable confidence on climate extreme events is possible only if there exist any past case studies. A similar rarest climate extreme problem encountered in the case of Houston floods and extreme rainfall over Florida in August 2017. A continuum of hurricanes like Harvey and Irma targeted the Florida region and caused catastrophe. Due to the rarity of August 2017 Florida climate extreme event, it requires the in-depth study on this case. To understand the multi-faceted nature of the event, a study on the development of the Harvey hurricane and its progression and dynamics is significant. Current article focus on the observational and modeling study on the Harvey hurricane. A global model named as NCUM (The global UK Met office Unified Model (UM) operational at National Center for Medium Range Weather Forecasting, India, was utilized to simulate the Harvey hurricane. The simulated rainfall and wind fields were compared with the observational datasets like Tropical Rainfall Measuring Mission rainfall datasets and Era-Interim wind fields. The National Centre for Environmental Prediction (NCEP) automated tracking system was utilized to track the Harvey hurricane, and the tracks were analyzed statistically for different forecasts concerning the Harvey hurricane track of Joint Typhon Warning Centre. Further, the current study will be continued to investigate the atmospheric processes involved in the August 2017 Florida climate extreme event.

  5. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    NASA Astrophysics Data System (ADS)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are

  6. Streamflow response to increasing precipitation extremes altered by forest management

    NASA Astrophysics Data System (ADS)

    Kelly, Charlene N.; McGuire, Kevin J.; Miniat, Chelcy Ford; Vose, James M.

    2016-04-01

    Increases in extreme precipitation events of floods and droughts are expected to occur worldwide. The increase in extreme events will result in changes in streamflow that are expected to affect water availability for human consumption and aquatic ecosystem function. We present an analysis that may greatly improve current streamflow models by quantifying the impact of the interaction between forest management and precipitation. We use daily long-term data from paired watersheds that have undergone forest harvest or species conversion. We find that interactive effects of climate change, represented by changes in observed precipitation trends, and forest management regime, significantly alter expected streamflow most often during extreme events, ranging from a decrease of 59% to an increase of 40% in streamflow, depending upon management. Our results suggest that vegetation might be managed to compensate for hydrologic responses due to climate change to help mitigate effects of extreme changes in precipitation.

  7. Simulation of Theoretical Most-Extreme Geomagnetic Sudden Commencements

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Love, J. J.; Wiltberger, M. J.; Rigler, E. J.

    2016-12-01

    We report results from a numerical simulation of geomagnetic sudden commencements driven by solar wind conditions given by theoretical-limit extreme coronal-mass ejections (CMEs) estimated by Tsurutani and Lakhina [2014]. The CME characteristics at Earth are a step function that jumps from typical quiet values to 2700 km/s flow speed and a magnetic field magnitude of 127 nT. These values are used to drive three coupled models: a global magnetohydrodynamic (MHD) magnetospheric model (BATS-R-US), a ring current model (the Rice Convection Model, RCM), and a height-integrated ionospheric electrodynamics model (the Ridley Ionosphere Model, RIM), all coupled together using the Space Weather Modeling Framework (SWMF). Additionally, simulations from the Lyon-Fedder-Mobarry MHD model are performed for comparison. The commencement is simulated with both purely northward and southward IMF orientations. Low-latitude ground-level geomagnetic variations, both B and dB/dt, are estimated in response to the storm sudden commencement. For a northward interplanetary magnetic field (IMF) storm, the combined models predict a maximum sudden commencement response, Dst-equivalent of +200 nT and a maximum local dB/dt of 200nT/s. While this positive Dst response is driven mainly by magnetopause currents, complicated and dynamic Birkeland current patterns also develop, which drive the strong dB/dt responses at high latitude. For southward IMF conditions, erosion of dayside magnetic flux allows magnetopause currents to approach much closer to the Earth, leading to a stronger terrestrial response (Dst-equivalent of +250 nT). Further, high latitude signals from Region 1 Birkeland currents move to lower latitudes during the southward IMF case, increasing the risk to populated areas around the globe. Results inform fundamental understanding of solar-terrestrial interaction and benchmark estimates for induction hazards of interest to the electric-power grid industry.

  8. Impact of extreme exercise at high altitude on oxidative stress in humans.

    PubMed

    Quindry, John; Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2016-09-15

    Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field-based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox-sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude-induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude-induced hypoxia may have an independent influence on redox-sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  9. Impact of extreme exercise at high altitude on oxidative stress in humans

    PubMed Central

    Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2015-01-01

    Abstract Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field‐based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox‐sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude‐induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude‐induced hypoxia may have an independent influence on redox‐sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude. PMID:26453842

  10. Can physiological engineering/programming increase multi-generational thermal tolerance to extreme temperature events?

    PubMed

    Sorby, Kris L; Green, Mark P; Dempster, Tim D; Jessop, Tim S

    2018-05-29

    Organisms increasingly encounter higher frequencies of extreme weather events as a consequence of global climate change. Currently, few strategies are available to mitigate climate change effects on animals arising from acute extreme high temperature events. We tested the capacity of physiological engineering to influence the intra- and multi-generational upper thermal tolerance capacity of a model organism Artemia , subjected to extreme high temperatures. Enhancement of specific physiological regulators during development could affect thermal tolerances or life-history attributes affecting subsequent fitness. Using experimental Artemia populations we exposed F0 individuals to one of four treatments; heat hardening (28°C to 36°C, 1°C per 10 minutes), heat hardening plus serotonin (0.056 µg ml -1 ), heat hardening plus methionine (0.79 mg ml -1 ), and a control treatment. Regulator concentrations were based on previous literature. Serotonin may promote thermotolerance, acting upon metabolism and life-history. Methionine acts as a methylation agent across generations. For all groups, measurements were collected for three performance traits of individual thermal tolerance (upper sublethal thermal limit, lethal limit, and dysregulation range) over two generations. Results showed no treatment increased upper thermal limit during acute thermal stress, although serotonin-treated and methionine-treated individuals outperformed controls across multiple thermal performance traits. Additionally, some effects were evident across generations. Together these results suggest phenotypic engineering provides complex outcomes; and if implemented with heat hardening can further influence performance in multiple thermal tolerance traits, within and across generations. Potentially, such techniques could be up-scaled to provide resilience and stability in populations susceptible to extreme temperature events. © 2018. Published by The Company of Biologists Ltd.

  11. Extreme temperatures and paediatric emergency department admissions.

    PubMed

    Xu, Zhiwei; Hu, Wenbiao; Su, Hong; Turner, Lyle R; Ye, Xiaofang; Wang, Jiajia; Tong, Shilu

    2014-04-01

    Children are particularly vulnerable to the effects of extreme temperatures. To examine the relationship between extreme temperatures and paediatric emergency department admissions (EDAs) in Brisbane, Australia, during 2003-2009. A quasi-Poisson generalised linear model combined with a distributed lag non-linear model was used to examine the relationships between extreme temperatures and age-, gender- and cause-specific paediatric EDAs, while controlling for air pollution, relative humidity, day of the week, influenza epidemics, public holiday, season and long-term trends. The model residuals were checked to identify whether there was an added effect due to heat waves or cold spells. There were 131 249 EDAs among children during the study period. Both high (RR=1.27; 95% CI 1.12 to 1.44) and low (RR=1.81; 95% CI 1.66 to 1.97) temperatures were significantly associated with an increase in paediatric EDAs in Brisbane. Male children were more vulnerable to temperature effects. Children aged 0-4 years were more vulnerable to heat effects and children aged 10-14 years were more sensitive to both hot and cold effects. High temperatures had a significant impact on several paediatric diseases, including intestinal infectious diseases, respiratory diseases, endocrine, nutritional and metabolic diseases, nervous system diseases and chronic lower respiratory diseases. Low temperatures were significantly associated with intestinal infectious diseases, respiratory diseases and endocrine, nutritional and metabolic diseases. An added effect of heat waves on childhood chronic lower respiratory diseases was seen, but no added effect of cold spells was found. As climate change continues, children are at particular risk of a variety of diseases which might be triggered by extremely high temperatures. This study suggests that preventing the effects of extreme temperature on children with respiratory diseases might reduce the number of EDAs.

  12. Highly sensitive current sensor utilizing CrNi-wire supported microfiber coils

    NASA Astrophysics Data System (ADS)

    Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Jin, Long; Guan, Bai-ou

    2013-09-01

    High current sensitivity is obtained based on a microfiber that is wrapping around a chrome-nickel (CrNi) wire. Due to the strong heating effect of the CrNi wire with the flowing electric current, the mode index and the loop length of microfiber are changed, resulting in the shift of resonant wavelength. The measured current responsivity is as high as 220.65nm/A2, which is in two or three magnitude orders than the previously-obtained ones. We study the influence of component size to the structure performance, which is useful for future applications of current sensing or tuning devices.

  13. Characteristics of Extreme Geoelectric Fields and Their Possible Causes: Localized Peak Enhancements

    NASA Astrophysics Data System (ADS)

    Pulkkinen, A. A.; Ngwira, C. M.; Bernabeu, E.; Eichner, J.; Viljanen, A.; Crowley, G.

    2015-12-01

    One of the major challenges pertaining to extreme geomagnetic storms is to understand the basic processes associated with the development of dynamic magnetosphere-ionosphere currents, which generate large induced surface geoelectric fields. Previous studies point out the existence of localized peak geoelectric field enhancements during extreme storms. We examined induced global geoelectric fields derived from ground-based magnetometer recordings for 12 extreme geomagnetic storms between the years 1982--2005. However for the present study, an in-depth analysis was performed for two important extreme storms, October 29, 2003 and March 13, 1989. The primary purpose of this paper is to provide further evidence on the existence of localized peak geoelectric field enhancements, and to show that the structure of the geoelectric field during these localized extremes at single sites can differ greatly from globally and regionally averaged fields. Although the physical processes that govern the development of these localized extremes are still not clear, we discuss some possible causes.

  14. QED cascade saturation in extreme high fields.

    PubMed

    Luo, Wen; Liu, Wei-Yuan; Yuan, Tao; Chen, Min; Yu, Ji-Ye; Li, Fei-Yu; Del Sorbo, D; Ridgers, C P; Sheng, Zheng-Ming

    2018-05-30

    Upcoming ultrahigh power lasers at 10 PW level will make it possible to experimentally explore electron-positron (e - e + ) pair cascades and subsequent relativistic e - e + jets formation, which are supposed to occur in extreme astrophysical environments, such as black holes, pulsars, quasars and gamma-ray bursts. In the latter case it is a long-standing question as to how the relativistic jets are formed and what their temperatures and compositions are. Here we report simulation results of pair cascades in two counter-propagating QED-strong laser fields. A scaling of QED cascade growth with laser intensity is found, showing clear cascade saturation above threshold intensity of ~10 24 W/cm 2 . QED cascade saturation leads to pair plasma cooling and longitudinal compression along the laser axis, resulting in the subsequent formation of relativistic dense e - e + jets along transverse directions. Such laser-driven QED cascade saturation may open up the opportunity to study energetic astrophysical phenomena in laboratory.

  15. Extreme Space Weather Events: From Cradle to Grave

    NASA Astrophysics Data System (ADS)

    Riley, Pete; Baker, Dan; Liu, Ying D.; Verronen, Pekka; Singer, Howard; Güdel, Manuel

    2018-02-01

    Extreme space weather events, while rare, can have a substantial impact on our technologically-dependent society. And, although such events have only occasionally been observed, through careful analysis of a wealth of space-based and ground-based observations, historical records, and extrapolations from more moderate events, we have developed a basic picture of the components required to produce them. Several key issues, however, remain unresolved. For example, what limits are imposed on the maximum size of such events? What are the likely societal consequences of a so-called "100-year" solar storm? In this review, we summarize our current scientific understanding about extreme space weather events as we follow several examples from the Sun, through the solar corona and inner heliosphere, across the magnetospheric boundary, into the ionosphere and atmosphere, into the Earth's lithosphere, and, finally, its impact on man-made structures and activities, such as spacecraft, GPS signals, radio communication, and the electric power grid. We describe preliminary attempts to provide probabilistic forecasts of extreme space weather phenomena, and we conclude by identifying several key areas that must be addressed if we are better able to understand, and, ultimately, predict extreme space weather events.

  16. Aerosol forcing of extreme summer drought over North China

    NASA Astrophysics Data System (ADS)

    Zhang, L.

    2017-12-01

    The frequency of extreme summer drought has been increasing in North China during the past sixty years, which has caused serious water shortages. It remains unclear whether anthropogenic forcing has contributed to the increasing extreme droughts. Using the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) re-analysis data and Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations with various combinations of historical forcings, the authors investigated the driving mechanism behind the observed changes. Metrological drought is usually measured by precipitation anomalies, which show lower fidelity in current climate models compared to largescale circulation patterns. Based on NCEP/NCAR re-analysis, a linear relationship is firstly established between the weakest regional average 850 hPa southerly winds and extreme summer drought. This meridional winds index (MWI) is then used as a proxy for attribution of extreme North China drought using CMIP5 outputs. Examination of the CMIP5 simulations reveals that the probability of the extreme summer droughts with the first percentile of MWI for 1850-2004 under anthropogenic forcing has increased by 100%, on average, relative to a pre-industrial control run. The more frequent occurrence of extremely weak MWIs or drought over North China is ascribed from weakened climate and East Asian summer monsoon (EASM) circulation due to the direct cooling effect from increased aerosol.

  17. Extreme Temperature Operation of a 10 MHz Silicon Oscillator Type STCL1100

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2008-01-01

    The performance of STMicroelectronics 10 MHz silicon oscillator was evaluated under exposure to extreme temperatures. The oscillator was characterized in terms of its output frequency stability, output signal rise and fall times, duty cycle, and supply current. The effects of thermal cycling and re-start capability at extreme low and high temperatures were also investigated. The silicon oscillator chip operated well with good stability in its output frequency over the temperature region of -50 C to +130 C, a range that by far exceeded its recommended specified boundaries of -20 C to +85 C. In addition, this chip, which is a low-cost oscillator designed for use in applications where great accuracy is not required, continued to function at cryogenic temperatures as low as - 195 C but at the expense of drop in its output frequency. The STCL1100 silicon oscillator was also able to re-start at both -195 C and +130 C, and it exhibited no change in performance due to the thermal cycling. In addition, no physical damage was observed in the packaging material due to extreme temperature exposure and thermal cycling. Therefore, it can be concluded that this device could potentially be used in space exploration missions under extreme temperature conditions in microprocessor and other applications where tight clock accuracy is not critical. In addition to the aforementioned screening evaluation, additional testing, however, is required to fully establish the reliability of these devices and to determine their suitability for long-term use.

  18. Discharge current modes of high power impulse magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhongzhen, E-mail: wuzz@pkusz.edu.cn; Xiao, Shu; Ma, Zhengyong

    2015-09-15

    Based on the production and disappearance of ions and electrons in the high power impulse magnetron sputtering plasma near the target, the expression of the discharge current is derived. Depending on the slope, six possible modes are deduced for the discharge current and the feasibility of each mode is discussed. The discharge parameters and target properties are simplified into the discharge voltage, sputtering yield, and ionization energy which mainly affect the discharge plasma. The relationship between these factors and the discharge current modes is also investigated.

  19. The diagnostic management of upper extremity deep vein thrombosis: A review of the literature.

    PubMed

    Kraaijpoel, Noémie; van Es, Nick; Porreca, Ettore; Büller, Harry R; Di Nisio, Marcello

    2017-08-01

    Upper extremity deep vein thrombosis (UEDVT) accounts for 4% to 10% of all cases of deep vein thrombosis. UEDVT may present with localized pain, erythema, and swelling of the arm, but may also be detected incidentally by diagnostic imaging tests performed for other reasons. Prompt and accurate diagnosis is crucial to prevent pulmonary embolism and long-term complications as the post-thrombotic syndrome of the arm. Unlike the diagnostic management of deep vein thrombosis (DVT) of the lower extremities, which is well established, the work-up of patients with clinically suspected UEDVT remains uncertain with limited evidence from studies of small size and poor methodological quality. Currently, only one prospective study evaluated the use of an algorithm, similar to the one used for DVT of the lower extremities, for the diagnostic workup of clinically suspected UEDVT. The algorithm combined clinical probability assessment, D-dimer testing and ultrasonography and appeared to safely and effectively exclude UEDVT. However, before recommending its use in routine clinical practice, external validation of this strategy and improvements of the efficiency are needed, especially in high-risk subgroups in whom the performance of the algorithm appeared to be suboptimal, such as hospitalized or cancer patients. In this review, we critically assess the accuracy and efficacy of current diagnostic tools and provide clinical guidance for the diagnostic management of clinically suspected UEDVT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Simulations of nearly extremal binary black holes

    NASA Astrophysics Data System (ADS)

    Giesler, Matthew; Scheel, Mark; Hemberger, Daniel; Lovelace, Geoffrey; Kuper, Kevin; Boyle, Michael; Szilagyi, Bela; Kidder, Lawrence; SXS Collaboration

    2015-04-01

    Astrophysical black holes could have nearly extremal spins; therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass m and spin S exceeding the Bowen-York limit of S /m2 = 0 . 93 . Using improved methods we simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has S /m2 = 0 . 99 . We also use these methods to simulate a nearly extremal non-precessing binary black hole coalescence, where both black holes have S /m2 = 0 . 994 , nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; and we compare the evolution of the black-hole masses and spins with analytic predictions.

  1. The Effects of Wearing High Heels while Pressing a Car Accelerator Pedal on Lower Extremity Muscle Activation

    PubMed Central

    Jung, Jaemin; Lee, Sang-yeol

    2014-01-01

    [Purpose] The purpose of this study was to determine the effects of wearing high heels while driving on lower extremity muscle activation. [Subjects] The subjects of this experimental study were 14 healthy women in their 20s who normally wear shoes with high heels. [Methods] The subjects were asked to place their shoes on an accelerator pedal with the heel touching the floor and then asked to press the pedal with as much pressure as possible for 3 seconds before removing their feet from the pedal. A total of 3 measurements were taken for each heel height (flat, 5 cm, 7 cm), and the heel height was randomly selected. [Results] The levels of muscle activity, indicated as the percentage of reference voluntary contraction, for gastrocnemius muscle in the flat, 5 cm, and 7 cm shoes were 180.8±61.8%, 285.4±122.3%, and 366.2±193.7%, respectively, and there were significant differences between groups. Those for the soleus muscle were 477.3±209.2%, 718.8±380.5%, and 882.4±509.9%, and there were significant differences between groups. [Conclusion] To summarize the results of this study, it was found that female drivers require greater lower extremity muscle activation when wearing high heels than when wearing low heels. Furthermore, instability and muscle fatigue of the ankle joint, which results from wearing high heels on a daily basis, could also occur while driving. PMID:25435684

  2. Spike train generation and current-to-frequency conversion in silicon diodes

    NASA Technical Reports Server (NTRS)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A device physics model is developed to analyze spontaneous neuron-like spike train generation in current driven silicon p(+)-n-n(+) devices in cryogenic environments. The model is shown to explain the very high dynamic range (0 to the 7th) current-to-frequency conversion and experimental features of the spike train frequency as a function of input current. The devices are interesting components for implementation of parallel asynchronous processing adjacent to cryogenically cooled focal planes because of their extremely low current and power requirements, their electronic simplicity, and their pulse coding capability, and could be used to form the hardware basis for neural networks which employ biologically plausible means of information coding.

  3. Dynamics of a high-current relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru; Tarakanov, V. P., E-mail: karat@gmail.ru; Ivanov, I. E., E-mail: iei@fpl.gpi.ru

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as themore » electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.« less

  4. Increased medial longitudinal arch mobility, lower extremity kinematics, and ground reaction forces in high-arched runners.

    PubMed

    Williams, D S Blaise; Tierney, Robin N; Butler, Robert J

    2014-01-01

    Runners with high medial longitudinal arch structure demonstrate unique kinematics and kinetics that may lead to running injuries. The mobility of the midfoot as measured by the change in arch height is also suspected to play a role in lower extremity function during running. The effect of arch mobility in high-arched runners is an important factor in prescribing footwear, training, and rehabilitating the running athlete after injury. To examine the effect of medial longitudinal arch mobility on running kinematics, ground reaction forces, and loading rates in high-arched runners. Cross-sectional study. Human movement research laboratory. A total of 104 runners were screened for arch height. Runners were then identified as having high arches if the arch height index was greater than 0.5 SD above the mean. Of the runners with high arches, 11 rigid runners with the lowest arch mobility (R) were compared with 8 mobile runners with the highest arch mobility (M). Arch mobility was determined by calculating the left arch height index in all runners. Three-dimensional motion analysis of running over ground. Rearfoot and tibial angular excursions, eversion-to-tibial internal-rotation ratio, vertical ground reaction forces, and the associated loading rates. Runners with mobile arches exhibited decreased tibial internal-rotation excursion (mobile: 5.6° ± 2.3° versus rigid: 8.0° ± 3.0°), greater eversion-to-tibial internal-rotation ratio (mobile: 2.1 ± 0.8 versus rigid: 1.5 ± 0.5), decreased second peak vertical ground reaction force values (mobile: 2.3 ± 0.2 × body weight versus rigid: 2.4 ± 0.1 × body weight), and decreased vertical loading rate values (mobile: 55.7 ± 14.1 × body weight/s versus rigid: 65.9 ± 11.4 × body weight/s). Based on the results of this study, it appears that runners with high arch structure but differing arch mobility exhibited differences in select lower extremity movement patterns and forces. Future authors should investigate the

  5. Hot spots of multivariate extreme anomalies in Earth observations

    NASA Astrophysics Data System (ADS)

    Flach, M.; Sippel, S.; Bodesheim, P.; Brenning, A.; Denzler, J.; Gans, F.; Guanche, Y.; Reichstein, M.; Rodner, E.; Mahecha, M. D.

    2016-12-01

    Anomalies in Earth observations might indicate data quality issues, extremes or the change of underlying processes within a highly multivariate system. Thus, considering the multivariate constellation of variables for extreme detection yields crucial additional information over conventional univariate approaches. We highlight areas in which multivariate extreme anomalies are more likely to occur, i.e. hot spots of extremes in global atmospheric Earth observations that impact the Biosphere. In addition, we present the year of the most unusual multivariate extreme between 2001 and 2013 and show that these coincide with well known high impact extremes. Technically speaking, we account for multivariate extremes by using three sophisticated algorithms adapted from computer science applications. Namely an ensemble of the k-nearest neighbours mean distance, a kernel density estimation and an approach based on recurrences is used. However, the impact of atmosphere extremes on the Biosphere might largely depend on what is considered to be normal, i.e. the shape of the mean seasonal cycle and its inter-annual variability. We identify regions with similar mean seasonality by means of dimensionality reduction in order to estimate in each region both the `normal' variance and robust thresholds for detecting the extremes. In addition, we account for challenges like heteroscedasticity in Northern latitudes. Apart from hot spot areas, those anomalies in the atmosphere time series are of particular interest, which can only be detected by a multivariate approach but not by a simple univariate approach. Such an anomalous constellation of atmosphere variables is of interest if it impacts the Biosphere. The multivariate constellation of such an anomalous part of a time series is shown in one case study indicating that multivariate anomaly detection can provide novel insights into Earth observations.

  6. Structure of high latitude currents in magnetosphere-ionosphere models

    NASA Astrophysics Data System (ADS)

    Wiltberger, M. J.; Lyon, J.; Merkin, V. G.; Rigler, E. J.

    2016-12-01

    Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model the structure of the high latitude field-aligned current patterns is examined. Each LFM resolution was run for the entire Whole Heliosphere Interval (WHI), which contained two high-speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results from the Weimer 2005 computed using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and confined. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths in the model also results in a better shielding of mid- and low-latitude ionosphere from the polar cap convection, also in agreement with observations. Current-voltage relationships between the R1 strength and the cross-polar cap potential (CPCP) are quite similar at the higher resolutions indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.

  7. A case study of an extremely luminous, highly spatially extended starburst only 1.7Gyr after the Big Bang

    NASA Astrophysics Data System (ADS)

    Farrah, Duncan

    2017-08-01

    Luminous starbursts, systems with SFRs exceeding 1000Msun yr-1, are predicted to be extremely rare at z>3. However, recent observations find such systems at rates of tens to hundreds above predictions. This discrepancy is extremely difficult to explain. Case studies of such luminous starbursts are thus of profound importance to understand how star formation is triggered and quenched at z > 3, and help reconcile models with observations. Our group has been intensively studying the quasar SDSS J160705.16, at z = 3.65 (or 1.7Gyr after the Big Bang). This quasar is an excellent case study of luminous star formation at z > 3, and how AGN activity may affect such star formation. SDSS J160705.16 harbors both a broad-line, luminous quasar and an extremely high star formation rate, with an AGN luminosity of 10^47 ergs s-1 and an SFR of 2000 Msol yr-1. Sub-mm interferometry has further revealed that the star formation is highly spatially extended on scales up to 40kpc. Furthermore, VLA observations show an emerging 4kpc radio jet.We here propose WFC3 imaging with the following goals: (1) to set precise constraints on any lensing magnification, (2) to determine the morphology and color structure of the extended star formation, (3) to compare the optical morphology of the star formation to that seen in the sub-mm data, and (4) to search for evidence that SDSS J160705.16 resides in a protocluster.

  8. Extreme ground motions and Yucca Mountain

    USGS Publications Warehouse

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  9. NLDAS Views of North American 2011 Extreme Events

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, William; Vollmer, Bruce; Mocko, David; Lei, Guang-Dih

    2012-01-01

    2011 was marked as one of the most extreme years in recent history. Over the course of the year, weather-related extreme events, such as floods, heat waves, blizzards, tornadoes, and wildfires, caused tremendous loss of human life and property. The North American Land Data Assimilation System (NLDAS, http://ldas.gsfc.nasa.gov/nldas/) data set, with high spatial and temporal resolutions (0.125? x 0.125?, hourly) and various water- and energy-related variables, is an excellent data source for case studies of extreme events. This presentation illustrates some extreme events from 2011 in North America, including the Groundhog Day Blizzard, the July heat wave, Hurricane Irene, and Tropical Storm Lee, all utilizing NLDAS Phase 2 (NLDAS-2) data.

  10. Symbiont community stability through severe coral bleaching in a thermally extreme lagoon.

    PubMed

    Smith, E G; Vaughan, G O; Ketchum, R N; McParland, D; Burt, J A

    2017-05-25

    Coral reefs are threatened by climate change as coral-algal symbioses are currently living close to their upper thermal limits. The resilience of the algal partner plays a key role in determining the thermal tolerance of the coral holobiont and therefore, understanding the acclimatory limits of present day coral-algal symbioses is fundamental to forecasting corals' responses to climate change. This study characterised the symbiont community in a highly variable and thermally extreme (Max = 37.5 °C, Min = 16.8 °C) lagoon located in the southern Persian/Arabian Gulf using next generation sequencing of ITS2 amplicons. Despite experiencing extreme temperatures, severe bleaching and many factors that would be expected to promote the presence of, or transition to clade D dominance, the symbiont communities of the lagoon remain dominated by the C3 variant, Symbiodinium thermophilum. The stability of this symbiosis across multiple genera with different means of symbiont transmission highlights the importance of Symbiodinium thermophilum for corals living at the acclimatory limits of modern day corals. Corals in this extreme environment did not undergo adaptive bleaching, suggesting they are living at the edge of their acclimatory potential and that this valuable source of thermally tolerant genotypes may be lost in the near future under climate change.

  11. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    PubMed

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  12. Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans.

    PubMed

    Yamashiro, Takumi; Murata, Kousaku; Kawai, Shigeyuki

    2017-03-01

    Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD + , NADH, NADP + , and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P) + in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.

  13. Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations

    DOE PAGES

    Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; ...

    2016-02-25

    This article discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric gridmore » cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere–ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.« less

  14. High Resolution Modeling in Mountainous Terrain for Water Resource Management: AN Extreme Precipitation Event Case Study

    NASA Astrophysics Data System (ADS)

    Masarik, M. T.; Watson, K. A.; Flores, A. N.; Anderson, K.; Tangen, S.

    2016-12-01

    The water resources infrastructure of the Western US is designed to deliver reliable water supply to users and provide recreational opportunities for the public, as well as afford flood control for communities by buffering variability in precipitation and snow storage. Thus water resource management is a balancing act of meeting multiple objectives while trying to anticipate and mitigate natural variability of water supply. Currently, the forecast guidance available to personnel managing resources in mountainous terrain is lacking in two ways: the spatial resolution is too coarse, and there is a gap in the intermediate time range (10-30 days). To address this need we examine the effectiveness of using the Weather Research and Forecasting (WRF) model, a state of the art, regional, numerical weather prediction model, as a means to generate high-resolution weather guidance in the intermediate time range. This presentation will focus on a reanalysis and hindcasting case study of the extreme precipitation and flooding event in the Payette River Basin of Idaho during the period of June 2nd-4th, 2010. For the reanalysis exercise we use NCEP's Climate Forecast System Reanalysis (CFSR) and the North American Regional Reanalysis (NARR) data sets as input boundary conditions to WRF. The model configuration includes a horizontal spatial resolution of 3km in the outer nest, and 1 km in the inner nest, with output temporal resolution of 3 hrs and 1 hr, respectively. The hindcast simulations, which are currently underway, will make use of the NCEP Climate Forecast System Reforecast (CFSRR) data. The current state of these runs will be discussed. Preparations for the second of two components in this project, weekly WRF forecasts during the intense portion of the water year, will be briefly described. These forecasts will use the NCEP Climate Forecast System version 2 (CFSv2) operational forecast data as boundary conditions to provide forecast guidance geared towards water resource

  15. Extremophiles and biotechnology: current uses and prospects

    PubMed Central

    Coker, James A.

    2016-01-01

    Biotechnology has almost unlimited potential to change our lives in very exciting ways. Many of the chemical reactions that produce these products can be fully optimized by performing them at extremes of temperature, pressure, salinity, and pH for efficient and cost-effective outcomes. Fortunately, there are many organisms (extremophiles) that thrive in extreme environments found in nature and offer an excellent source of replacement enzymes in lieu of mesophilic ones currently used in these processes. In this review, I discuss the current uses and some potential new applications of extremophiles and their products, including enzymes, in biotechnology. PMID:27019700

  16. Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific — A regional assessment

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin J. E.; McInnes, Kathleen L.; McBride, John L.

    2012-01-01

    This paper reviews the current understanding of the effect of climate change on extreme sea levels in the South Pacific region. This region contains many locations that are vulnerable to extreme sea levels in the current climate, and projections indicate that this vulnerability will increase in the future. The recent publication of authoritative statements on the relationship between global warming and global sea level rise, tropical cyclones and the El Niño-Southern Oscillation phenomenon has motivated this review. Confident predictions of global mean sea level rise are modified by regional differences in the steric (density-related) component of sea level rise and changing gravitational interactions between the ocean and the ice sheets which affect the regional distribution of the eustatic (mass-related) contribution to sea level rise. The most extreme sea levels in this region are generated by tropical cyclones. The intensity of the strongest tropical cyclones is likely to increase, but many climate models project a substantial decrease in tropical cyclone numbers in this region, which may lead to an overall decrease in the total number of intense tropical cyclones. This projection, however, needs to be better quantified using improved high-resolution climate model simulations of tropical cyclones. Future changes in ENSO may lead to large regional variations in tropical cyclone incidence and sea level rise, but these impacts are also not well constrained. While storm surges from tropical cyclones give the largest sea level extremes in the parts of this region where they occur, other more frequent high sea level events can arise from swell generated by distant storms. Changes in wave climate are projected for the tropical Pacific due to anthropogenically-forced changes in atmospheric circulation. Future changes in sea level extremes will be caused by a combination of changes in mean sea level, regional sea level trends, tropical cyclone incidence and wave

  17. Communities that thrive in extreme conditions captured from a freshwater lake.

    PubMed

    Low-Décarie, Etienne; Fussmann, Gregor F; Dumbrell, Alex J; Bell, Graham

    2016-09-01

    Organisms that can grow in extreme conditions would be expected to be confined to extreme environments. However, we were able to capture highly productive communities of algae and bacteria capable of growing in acidic (pH 2), basic (pH 12) and saline (40 ppt) conditions from an ordinary freshwater lake. Microbial communities may thus include taxa that are highly productive in conditions that are far outside the range of conditions experienced in their host ecosystem. The organisms we captured were not obligate extremophiles, but were capable of growing in both extreme and benign conditions. The ability to grow in extreme conditions may thus be a common functional attribute in microbial communities. © 2016 The Author(s).

  18. Extreme Weight-Control Behaviors and Suicide Risk among High School Students

    ERIC Educational Resources Information Center

    Johnson, Emily R.; Weiler, Robert M.; Barnett, Tracey E.; Pealer, Lisa N.

    2016-01-01

    Background: Suicide is the third leading cause of death for people ages 15-19. Research has established an association across numerous risk factors and suicide, including depression, substance abuse, bullying victimization, and feelings of alienation. However, the connection between disordered eating as manifested in extreme weight-control…

  19. Extreme weather: Subtropical floods and tropical cyclones

    NASA Astrophysics Data System (ADS)

    Shaevitz, Daniel A.

    Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the

  20. Electronic Current Transducer (ECT) for high voltage dc lines

    NASA Astrophysics Data System (ADS)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.