Sample records for eyeblink conditioning emg

  1. Electromyography as a recording system for eyeblink conditioning with functional magnetic resonance imaging.

    PubMed

    Knuttinen, M-G; Parrish, T B; Weiss, C; LaBar, K S; Gitelman, D R; Power, J M; Mesulam, M-M; Disterhoft, J F

    2002-10-01

    This study was designed to develop a suitable method of recording eyeblink responses while conducting functional magnetic resonance imaging (fMRI). Given the complexity of this behavioral setup outside of the magnet, this study sought to adapt and further optimize an approach to eyeblink conditioning that would be suitable for conducting event-related fMRI experiments. This method involved the acquisition of electromyographic (EMG) signals from the orbicularis oculi of the right eye, which were subsequently amplified and converted into an optical signal outside of the head coil. This optical signal was converted back into an electrical signal once outside the magnet room. Electromyography (EMG)-detected eyeblinks were used to measure responses in a delay eyeblink conditioning paradigm. Our results indicate that: (1) electromyography is a sensitive method for the detection of eyeblinks during fMRI; (2) minimal interactions or artifacts of the EMG signal were created from the magnetic resonance pulse sequence; and (3) no electromyography-related artifacts were detected in the magnetic resonance images. Furthermore, an analysis of the functional data showed areas of activation that have previously been shown in positron emission tomography studies of human eyeblink conditioning. Our results support the strength of this behavioral setup as a suitable method to be used in association with fMRI.

  2. Implicit Memory in Monkeys: Development of a Delay Eyeblink Conditioning System with Parallel Electromyographic and High-Speed Video Measurements.

    PubMed

    Kishimoto, Yasushi; Yamamoto, Shigeyuki; Suzuki, Kazutaka; Toyoda, Haruyoshi; Kano, Masanobu; Tsukada, Hideo; Kirino, Yutaka

    2015-01-01

    Delay eyeblink conditioning, a cerebellum-dependent learning paradigm, has been applied to various mammalian species but not yet to monkeys. We therefore developed an accurate measuring system that we believe is the first system suitable for delay eyeblink conditioning in a monkey species (Macaca mulatta). Monkey eyeblinking was simultaneously monitored by orbicularis oculi electromyographic (OO-EMG) measurements and a high-speed camera-based tracking system built around a 1-kHz CMOS image sensor. A 1-kHz tone was the conditioned stimulus (CS), while an air puff (0.02 MPa) was the unconditioned stimulus. EMG analysis showed that the monkeys exhibited a conditioned response (CR) incidence of more than 60% of trials during the 5-day acquisition phase and an extinguished CR during the 2-day extinction phase. The camera system yielded similar results. Hence, we conclude that both methods are effective in evaluating monkey eyeblink conditioning. This system incorporating two different measuring principles enabled us to elucidate the relationship between the actual presence of eyelid closure and OO-EMG activity. An interesting finding permitted by the new system was that the monkeys frequently exhibited obvious CRs even when they produced visible facial signs of drowsiness or microsleep. Indeed, the probability of observing a CR in a given trial was not influenced by whether the monkeys closed their eyelids just before CS onset, suggesting that this memory could be expressed independently of wakefulness. This work presents a novel system for cognitive assessment in monkeys that will be useful for elucidating the neural mechanisms of implicit learning in nonhuman primates.

  3. Eyeblink conditioning in the developing rabbit

    PubMed Central

    Brown, Kevin L.; Woodruff-Pak, Diana S.

    2011-01-01

    Eyeblink classical conditioning in pre-weanling rabbits was examined in the present study. Using a custom lightweight headpiece and restrainer, New Zealand white littermates were trained once daily in 400 ms delay eyeblink classical conditioning from postnatal days (PD) 17–21 or PD 24–28. These ages were chosen because eyeblink conditioning emerges gradually over PD 17–24 in rats (Stanton, Freeman, & Skelton, 1992), another altricial species with neurodevelopmental features similar to those of rabbits. Consistent with well-established findings in rats, rabbits trained from PD 24–28 showed greater conditioning relative to littermates trained from PD 17–21. Both age groups displayed poor retention of eyeblink conditioning at retraining one month after acquisition. These findings are the first to demonstrate eyeblink conditioning in the developing rabbit. With further characterization of optimal conditioning parameters, this preparation may have applications to neurodevelopmental disease models as well as research exploring the ontogeny of memory. PMID:21953433

  4. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning

    PubMed Central

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of parallel fiber synapses on Purkinje cells and long-term potentiation of mossy fiber synapses on neurons in the anterior interpositus nucleus. Conditioned stimulus and unconditioned stimulus inputs arise from the pontine nuclei and inferior olive, respectively, converging in the cerebellar cortex and deep nuclei. Projections from subcortical sensory nuclei to the pontine nuclei that are necessary for eyeblink conditioning are beginning to be identified, and recent studies indicate that there are dynamic interactions between sensory thalamic nuclei and the cerebellum during eyeblink conditioning. Cerebellar output is projected to the magnocellular red nucleus and then to the motor nuclei that generate the blink response(s). Tremendous progress has been made toward determining the neural mechanisms of delay eyeblink conditioning but there are still significant gaps in our understanding of the necessary neural circuitry and plasticity mechanisms underlying cerebellar learning. PMID:21969489

  5. Eyeblink conditioning is impaired in subjects with essential tremor.

    PubMed

    Kronenbuerger, Martin; Gerwig, Marcus; Brol, Beate; Block, Frank; Timmann, Dagmar

    2007-06-01

    Several lines of evidence point to an involvement of the olivo-cerebellar system in the pathogenesis of essential tremor (ET), with clinical signs of cerebellar dysfunction being present in some subjects in the advanced stage. Besides motor coordination, the cerebellum is critically involved in motor learning. Evidence of motor learning deficits would strengthen the hypothesis of olivo-cerebellar involvement in ET. Conditioning of the eyeblink reflex is a well-established paradigm to assess motor learning. Twenty-three ET subjects (13 males, 10 females; mean age 44.3 +/- 22.3 years, mean disease duration 17.4 +/- 17.3 years) and 23 age-matched healthy controls were studied on two consecutive days using a standard delay eyeblink conditioning protocol. Six ET subjects exhibited accompanying clinical signs of cerebellar dysfunction. Care was taken to examine subjects without medication affecting central nervous functioning. Seven ET subjects and three controls on low-dose beta-blocker treatments, which had no effect on eyeblink conditioning in animal studies, were allowed into the study. The ability to acquire conditioned eyeblink responses was significantly reduced in ET subjects compared with controls. Impairment of eyeblink conditioning was not due to low-dose beta-blocker medication. Additionally, acquisition of conditioned eyeblink response was reduced in ET subjects regardless of the presence of cerebellar signs in clinical examination. There were no differences in timing or extinction of conditioned responses between groups and conditioning deficits did not correlate with the degree of tremor or ataxia as rated by clinical scores. The findings of disordered eyeblink conditioning support the hypothesis that ET is caused by a functional disturbance of olivo-cerebellar circuits which may cause cerebellar dysfunction. In particular, results point to an involvement of the olivo-cerebellar system in early stages of ET.

  6. Parallel Acquisition of Awareness and Differential Delay Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Weidemann, Gabrielle; Antees, Cassandra

    2012-01-01

    There is considerable debate about whether differential delay eyeblink conditioning can be acquired without awareness of the stimulus contingencies. Previous investigations of the relationship between differential-delay eyeblink conditioning and awareness of the stimulus contingencies have assessed awareness after the conditioning session was…

  7. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  8. Classical eyeblink conditioning in Parkinson's disease.

    PubMed

    Daum, I; Schugens, M M; Breitenstein, C; Topka, H; Spieker, S

    1996-11-01

    Patients with Parkinson's disease (PD) show impairments of a range of motor learning tasks, including tracking or serial reaction time task learning. Our study investigated whether such deficits would also be seen on a simple type of motor learning, classic conditioning of the eyeblink response. Medicated and unmediated patients with PD showed intact unconditioned eyeblink responses and significant learning across acquisition; the learning rates did not differ from those of healthy control subjects. The overall frequency of conditioned responses was significantly higher in the medicated patients with PD relative to control subjects, and there was also some evidence of facilitation in the unmedicated patients with PD. Conditioning of electrodermal and electrocortical responses was comparable in all groups. The findings are discussed in terms of enhanced excitability of brainstem pathways in PD and of the involvement of different neuronal circuits in different types of motor learning.

  9. Extinction, Reacquisition, and Rapid Forgetting of Eyeblink Conditioning in Developing Rats

    ERIC Educational Resources Information Center

    Brown, Kevin L.; Freeman, John H.

    2014-01-01

    Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory. However, age differences in extinction and subsequent reacquisition have yet to be studied using this model. The present study examined extinction and reacquisition of eyeblink conditioning in developing rats. In…

  10. Eyeblink Conditioning in Healthy Adults: A Positron Emission Tomography Study

    PubMed Central

    Andreasen, Nancy C.; Liu, Dawei; Freeman, John H.; Boles Ponto, Laura L.; O’Leary, Daniel S.

    2013-01-01

    Eyeblink conditioning is a paradigm commonly used to investigate the neural mechanisms underlying motor learning. It involves the paired presentation of a toneconditioning stimulus which precedes and co-terminates with an airpuff unconditioned stimulus. Following repeated paired presentations a conditioned eyeblink develops which precedes the airpuff. This type of learning has been intensively studied and the cerebellum is known to be essential in both humans and animals. The study presented here was designed to investigate the role of the cerebellum during eyeblink conditioning in humans using positron emission tomography (PET). The sample includes 20 subjects (10 male and 10 female) with an average age of 29.2 years. PET imaging was used to measure regional cerebral blood flow (rCBF) changes occurring during the first, second, and third blocks of conditioning. In addition, stimuli-specific rCBF to unpaired tones and airpuffs (“pseudoconditioning”) was used as a baseline level that was subtracted from each block. Conditioning was performed using three, 15-trial blocks of classical eyeblink conditioning with the last five trials in each block imaged. As expected, subjects quickly acquired conditioned responses. A comparison between the conditioning tasks and the baseline task revealed that during learning there was activation of the cerebellum and recruitment of several higher cortical regions. Specifically, large peaks were noted in cerebellar lobules IV/V, the frontal lobes, and cingulate gyri. PMID:22430943

  11. Cerebellar Secretin Modulates Eyeblink Classical Conditioning

    ERIC Educational Resources Information Center

    Fuchs, Jason R.; Robinson, Gain M.; Dean, Aaron M.; Schoenberg, Heidi E.; Williams, Michael R.; Morielli, Anthony D.; Green, John T.

    2014-01-01

    We have previously shown that intracerebellar infusion of the neuropeptide secretin enhances the acquisition phase of eyeblink conditioning (EBC). Here, we sought to test whether endogenous secretin also regulates EBC and to test whether the effect of exogenous and endogenous secretin is specific to acquisition. In Experiment 1, rats received…

  12. Central cannabinoid receptors modulate acquisition of eyeblink conditioning

    PubMed Central

    Steinmetz, Adam B.; Freeman, John H.

    2010-01-01

    Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light, and an unconditioned stimulus (US) that elicits the blink reflex. Conditioned stimulus information is projected from the basilar pontine nuclei to the cerebellar interpositus nucleus and cortex. The cerebellar cortex, particularly the molecular layer, contains a high density of cannabinoid receptors (CB1R). The CB1Rs are located on the axon terminals of parallel fibers, stellate cells, and basket cells where they inhibit neurotransmitter release. The present study examined the effects of a CB1R agonist WIN55,212-2 and antagonist SR141716A on the acquisition of delay eyeblink conditioning in rats. Rats were given subcutaneous administration of 1, 2, or 3 mg/kg of WIN55,212-2 or 1, 3, or 5 mg/kg of SR141716A before each day of acquisition training (10 sessions). Dose-dependent impairments in acquisition were found for WIN55,212-2 and SR141716A, with no effects on spontaneous or nonassociative blinking. However, the magnitude of impairment was greater for WIN55,212-2 than SR141716A. Dose-dependent impairments in conditioned blink response (CR) amplitude and timing were found with WIN55,212-2 but not with SR141716A. The findings support the hypothesis that CB1Rs in the cerebellar cortex play an important role in plasticity mechanisms underlying eyeblink conditioning. PMID:21030483

  13. Retention and Extinction of Delay Eyeblink Conditioning Are Modulated by Central Cannabinoids

    ERIC Educational Resources Information Center

    Steinmetz, Adam B.; Freeman, John H.

    2011-01-01

    Rats administered the cannabinoid agonist WIN55,212-2 or the antagonist SR141716A exhibit marked deficits during acquisition of delay eyeblink conditioning, as noted by Steinmetz and Freeman in an earlier study. However, the effects of these drugs on retention and extinction of eyeblink conditioning have not been assessed. The present study…

  14. Contextual Specificity of Extinction of Delay but Not Trace Eyeblink Conditioning in Humans

    ERIC Educational Resources Information Center

    Grillon, Christian; Alvarez, Ruben P.; Johnson, Linda; Chavis, Chanen

    2008-01-01

    Renewal of an extinguished conditioned response has been demonstrated in humans and in animals using various types of procedures, except renewal of motor learning such as eyeblink conditioning. We tested renewal of delay and trace eyeblink conditioning in a virtual environment in an ABA design. Following acquisition in one context (A, e.g., an…

  15. Central Cannabinoid Receptors Modulate Acquisition of Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Steinmetz, Adam B.; Freeman, John H.

    2010-01-01

    Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light, and an unconditioned stimulus (US) that elicits the blink reflex. Conditioned stimulus information is projected from the basilar pontine nuclei to the cerebellar interpositus nucleus and cortex. The cerebellar cortex,…

  16. Both trace and delay conditioned eyeblink responding can be dissociated from outcome expectancy.

    PubMed

    Weidemann, Gabrielle; Broderick, Joshua; Lovibond, Peter F; Mitchell, Christopher J

    2012-01-01

    Squire and colleagues have proposed that trace and delay eyeblink conditioning are fundamentally different kinds of learning: trace conditioning requires acquisition of a conscious declarative memory for the stimulus contingencies whereas delay conditioning does not. Declarative memory in trace conditioning is thought to generate conditioned responding through the activation of a conscious expectancy for when the unconditioned stimulus (US) is going to occur. Perruchet (1985) has previously shown that in a 50% partial reinforcement design it is possible to dissociate single cue delay eyeblink conditioning from conscious expectancy for the US by examining performance over runs of reinforced and nonreinforced trials. Clark, Manns, and Squire (2001) claim that this dissociation does not occur in trace eyeblink conditioning. In the present experiment we examined the Perruchet effect for short, moderate, and long trace intervals (600, 1000, and 1400 ms) and for the equivalent interstimulus intervals (ISIs) in a delay conditioning procedure. We found evidence for a dissociation of eyeblink CRs and US expectancy over runs regardless of whether there was a delay or a trace arrangement of cues. The reasons for the Perruchet effect are still unclear, but the present data suggest that it does not depend on a separate nondeclarative system of the type proposed by Squire and colleagues. (c) 2012 APA, all rights reserved.

  17. Is Perruchet's dissociation between eyeblink conditioned responding and outcome expectancy evidence for two learning systems?

    PubMed

    Weidemann, Gabrielle; Tangen, Jason M; Lovibond, Peter F; Mitchell, Christopher J

    2009-04-01

    P. Perruchet (1985b) showed a double dissociation of conditioned responses (CRs) and expectancy for an airpuff unconditioned stimulus (US) in a 50% partial reinforcement schedule in human eyeblink conditioning. In the Perruchet effect, participants show an increase in CRs and a concurrent decrease in expectancy for the airpuff across runs of reinforced trials; conversely, participants show a decrease in CRs and a concurrent increase in expectancy for the airpuff across runs of nonreinforced trials. Three eyeblink conditioning experiments investigated whether the linear trend in eyeblink CRs in the Perruchet effect is a result of changes in associative strength of the conditioned stimulus (CS), US sensitization, or learning the precise timing of the US. Experiments 1 and 2 demonstrated that the linear trend in eyeblink CRs is not the result of US sensitization. Experiment 3 showed that the linear trend in eyeblink CRs is present with both a fixed and a variable CS-US interval and so is not the result of learning the precise timing of the US. The results are difficult to reconcile with a single learning process model of associative learning in which expectancy mediates CRs. Copyright (c) 2009 APA, all rights reserved.

  18. Spontaneous Recovery But Not Reinstatement of the Extinguished Conditioned Eyeblink Response in the Rat

    PubMed Central

    Thanellou, Alexandra; Green, John T.

    2011-01-01

    Reinstatement, the return of an extinguished conditioned response (CR) after reexposure to the unconditioned stimulus (US), and spontaneous recovery, the return of an extinguished CR with the passage of time, are two of four well-established phenomena which demonstrate that extinction does not erase the conditioned stimulus (CS)-US association. However, reinstatement of extinguished eyeblink CRs has never been demonstrated and spontaneous recovery of extinguished eyeblink CRs has not been systematically demonstrated in rodent eyeblink conditioning. In Experiment 1, US reexposure was administered 24 hours prior to a reinstatement test. In Experiment 2, US reexposure was administered 5 min prior to a reinstatement test. In Experiment 3, a long, discrete cue (a houselight), present in all phases of training and testing, served as a context within which each trial occurred to maximize context processing, which in other preparations has been shown to be required for reinstatement. In Experiment 4, an additional group was included that received footshock exposure, rather than US reexposure, between extinction and test, and contextual freezing was measured prior to test. Spontaneous recovery was robust in Experiments 3 and 4. In Experiment 4, context freezing was strong in a group given footshock exposure but not in a group given eyeshock US reexposure. There was no reinstatement observed in any experiment. With stimulus conditions that produce eyeblink conditioning and research designs that produce reinstatement in other forms of classical conditioning, we observed spontaneous recovery but not reinstatement of extinguished eyeblink CRs. This suggests that reinstatement, but not spontaneous recovery, is a preparation- or substrate-dependent phenomenon. PMID:21517145

  19. Inferior Colliculus Lesions Impair Eyeblink Conditioning in Rats

    ERIC Educational Resources Information Center

    Freeman, John H.; Halverson, Hunter E.; Hubbard, Erin M.

    2007-01-01

    The neural plasticity necessary for acquisition and retention of eyeblink conditioning has been localized to the cerebellum. However, the sources of sensory input to the cerebellum that are necessary for establishing learning-related plasticity have not been identified completely. The inferior colliculus may be a source of sensory input to the…

  20. Ventral Lateral Geniculate Input to the Medial Pons Is Necessary for Visual Eyeblink Conditioning in Rats

    ERIC Educational Resources Information Center

    Halverson, Hunter E.; Freeman, John H.

    2010-01-01

    The conditioned stimulus (CS) pathway that is necessary for visual delay eyeblink conditioning was investigated in the current study. Rats were initially given eyeblink conditioning with stimulation of the ventral nucleus of the lateral geniculate (LGNv) as the CS followed by conditioning with light and tone CSs in separate training phases.…

  1. Eyeblink Conditioning: A Non-Invasive Biomarker for Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Reeb-Sutherland, Bethany C.; Fox, Nathan A.

    2015-01-01

    Eyeblink conditioning (EBC) is a classical conditioning paradigm typically used to study the underlying neural processes of learning and memory. EBC has a well-defined neural circuitry, is non-invasive, and can be employed in human infants shortly after birth making it an ideal tool to use in both developing and special populations. In addition,…

  2. Medial Auditory Thalamic Stimulation as a Conditioned Stimulus for Eyeblink Conditioning in Rats

    ERIC Educational Resources Information Center

    Campolattaro, Matthew M.; Halverson, Hunter E.; Freeman, John H.

    2007-01-01

    The neural pathways that convey conditioned stimulus (CS) information to the cerebellum during eyeblink conditioning have not been fully delineated. It is well established that pontine mossy fiber inputs to the cerebellum convey CS-related stimulation for different sensory modalities (e.g., auditory, visual, tactile). Less is known about the…

  3. Impaired delay eyeblink conditioning in amnesic Korsakoff's patients and recovered alcoholics.

    PubMed

    McGlinchey-Berroth, R; Cermak, L S; Carrillo, M C; Armfield, S; Gabrieli, J D; Disterhoft, J F

    1995-10-01

    The performance of amnesic Korsakoff patients in delay eyeblink classical conditioning was compared with that of recovered chronic alcoholic subjects and healthy normal control subjects. Normal control subjects exhibited acquisition of conditioned responses (CRs) to a previously neutral, conditioned tone stimulus (CS) following repeated pairings with an unconditioned air-puff stimulus, and demonstrated extinction of CRs when the CS was subsequently presented alone. Both amnesic Korsakoff patients and recovered chronic alcoholic subjects demonstrated an impairment in their ability to acquire CRs. These results indicate that the preservation of delay eyeblink conditioning in amnesia must depend on the underlying neuropathology of the amnesic syndrome. It is known that patients with amnesia caused by medial temporal lobe pathology have preserved conditioning. We have now demonstrated that patients with amnesia caused by Korsakoff's syndrome, as well as recovered chronic alcoholic subjects, have impaired conditioning. This impairment is most likely caused by cerebellar deterioration resulting from years of alcohol abuse.

  4. Training-Dependent Associative Learning Induced Neocortical Structural Plasticity: A Trace Eyeblink Conditioning Analysis

    PubMed Central

    Chau, Lily S.; Prakapenka, Alesia V.; Zendeli, Liridon; Davis, Ashley S.; Galvez, Roberto

    2014-01-01

    Studies utilizing general learning and memory tasks have suggested the importance of neocortical structural plasticity for memory consolidation. However, these learning tasks typically result in learning of multiple different tasks over several days of training, making it difficult to determine the synaptic time course mediating each learning event. The current study used trace-eyeblink conditioning to determine the time course for neocortical spine modification during learning. With eyeblink conditioning, subjects are presented with a neutral, conditioned stimulus (CS) paired with a salient, unconditioned stimulus (US) to elicit an unconditioned response (UR). With multiple CS-US pairings, subjects learn to associate the CS with the US and exhibit a conditioned response (CR) when presented with the CS. Trace conditioning is when there is a stimulus free interval between the CS and the US. Utilizing trace-eyeblink conditioning with whisker stimulation as the CS (whisker-trace-eyeblink: WTEB), previous findings have shown that primary somatosensory (barrel) cortex is required for both acquisition and retention of the trace-association. Additionally, prior findings demonstrated that WTEB acquisition results in an expansion of the cytochrome oxidase whisker representation and synaptic modification in layer IV of barrel cortex. To further explore these findings and determine the time course for neocortical learning-induced spine modification, the present study utilized WTEB conditioning to examine Golgi-Cox stained neurons in layer IV of barrel cortex. Findings from this study demonstrated a training-dependent spine proliferation in layer IV of barrel cortex during trace associative learning. Furthermore, findings from this study showing that filopodia-like spines exhibited a similar pattern to the overall spine density further suggests that reorganization of synaptic contacts set the foundation for learning-induced neocortical modifications through the different

  5. Medial Auditory Thalamus Inactivation Prevents Acquisition and Retention of Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Halverson, Hunter E.; Poremba, Amy; Freeman, John H.

    2008-01-01

    The auditory conditioned stimulus (CS) pathway that is necessary for delay eyeblink conditioning was investigated using reversible inactivation of the medial auditory thalamic nuclei (MATN) consisting of the medial division of the medial geniculate (MGm), suprageniculate (SG), and posterior intralaminar nucleus (PIN). Rats were given saline or…

  6. Eyeblink Conditioning Deficits Indicate Timing and Cerebellar Abnormalities in Schizophrenia

    ERIC Educational Resources Information Center

    Brown, S.M.; Kieffaber, P.D.; Carroll, C.A.; Vohs, J.L.; Tracy, J.A.; Shekhar, A.; O'Donnell, B.F.; Steinmetz, J.E.; Hetrick, W.P.

    2005-01-01

    Accumulating evidence indicates that individuals with schizophrenia manifest abnormalities in structures (cerebellum and basal ganglia) and neurotransmitter systems (dopamine) linked to internal-timing processes. A single-cue tone delay eyeblink conditioning paradigm comprised of 100 learning and 50 extinction trials was used to examine cerebellar…

  7. Blocking the BK Channel Impedes Acquisition of Trace Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Matthews, Elizabeth A.; Disterhoft, John F.

    2009-01-01

    Big-K[superscript +] conductance (BK)-channel mediated fast afterhyperpolarizations (AHPs) following action potentials are reduced after eyeblink conditioning. Blocking BK channels with paxilline increases evoked firing frequency in vitro and spontaneous pyramidal activity in vivo. To examine how increased excitability after BK-channel blockade…

  8. The Role of Contingency Awareness in Single-Cue Human Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Weidemann, Gabrielle; Best, Erin; Lee, Jessica C; Lovibond, Peter F.

    2013-01-01

    Single-cue delay eyeblink conditioning is presented as a prototypical example of automatic, nonsymbolic learning that is carried out by subcortical circuits. However, it has been difficult to assess the role of cognition in single-cue conditioning because participants become aware of the simple stimulus contingency so quickly. In this experiment…

  9. Shortened Conditioned Eyeblink Response Latency in Male but not Female Wistar-Kyoto Hyperactive Rats

    PubMed Central

    Thanellou, Alexandra; Schachinger, Kira M.; Green, John T.

    2014-01-01

    Reductions in the volume of the cerebellum and impairments in cerebellar-dependent eyeblink conditioning have been observed in attention-deficit/hyperactivity disorder (ADHD). Recently, it was reported that subjects with ADHD as well as male spontaneously hypertensive rats (SHR), a strain that is frequently employed as an animal model in the study of ADHD, exhibit a parallel pattern of timing deficits in eyeblink conditioning. One criticism that has been posed regarding the validity of the SHR strain as an animal model for the study of ADHD is that SHRs are not only hyperactive but also hypertensive. It is conceivable that many of the behavioral characteristics seen in SHRs that seem to parallel the behavioral symptoms of ADHD are not solely due to hyperactivity but instead are the net outcome of the interaction between hyperactivity and hypertension. We used Wistar-Kyoto Hyperactive (WKHA) and Wistar-Kyoto Hypertensive (WKHT) rats (males and females), strains generated from recombinant inbreeding of SHRs and their progenitor strain, Wistar-Kyoto (WKY) rats, to compare eyeblink conditioning in strains that are exclusively hyperactive or hypertensive. We used a long-delay eyeblink conditioning task in which a tone conditioned stimulus was paired with a periorbital stimulation unconditioned stimulus (750-ms delay paradigm). Our results showed that WKHA and WKHT rats exhibited similar rates of conditioned response (CR) acquisition. However, WKHA males displayed shortened CR latencies (early onset and peak latency) in comparison to WKHT males. In contrast, female WKHAs and WKHTs did not differ. In subsequent extinction training, WKHA rats extinguished at similar rates in comparison to WKHT rats. The current results support the hypothesis of a relationship between cerebellar abnormalities and ADHD in an animal model of ADHD-like symptoms that does not also exhibit hypertension, and suggest that cerebellar-related timing deficits are specific to males. PMID:19485572

  10. Differential Effects of the Cannabinoid Agonist WIN55,212-2 on Delay and Trace Eyeblink Conditioning

    PubMed Central

    Steinmetz, Adam B.; Freeman, John H.

    2014-01-01

    Central cannabinoid-1 receptors (CB1R) play a role in the acquisition of delay eyeblink conditioning but not trace eyeblink conditioning in humans and animals. However, it is not clear why trace conditioning is immune to the effects of cannabinoid receptor compounds. The current study examined the effects of variants of delay and trace conditioning procedures to elucidate the factors that determine the effects of CB1R agonists on eyeblink conditioning. In Experiment 1 rats were administered the cannabinoid agonist WIN55,212-2 during delay, long delay, or trace conditioning. Rats were impaired during delay and long delay but not trace conditioning; the impairment was greater for long delay than delay conditioning. Trace conditioning was further examined in Experiment 2 by manipulating the trace interval and keeping constant the conditioned stimulus (CS) duration. It was found that when the trace interval was 300 ms or less WIN55,212-2 administration impaired the rate of learning. Experiment 3 tested whether the trace interval duration or the relative durations of the CS and trace interval were critical parameters influencing the effects of WIN55,212-2 on eyeblink conditioning. Rats were not impaired with a 100 ms CS, 200 ms trace paradigm but were impaired with a 1000 ms CS, 500 ms trace paradigm, indicating that the duration of the trace interval does not matter but the proportion of the interstimulus interval occupied by the CS relative to the trace period is critical. Taken together the results indicate that cannabinoid agonists affect cerebellar learning the CS is longer than the trace interval. PMID:24128358

  11. Eye-blink conditioning deficits indicate temporal processing abnormalities in schizophrenia.

    PubMed

    Bolbecker, Amanda R; Mehta, Crystal S; Edwards, Chad R; Steinmetz, Joseph E; O'Donnell, Brian F; Hetrick, William P

    2009-06-01

    Theoretical models suggest that symptoms of schizophrenia may be due to a dysfunctional modulatory system associated with the cerebellum. Although it has long been known that the cerebellum plays a critical role in associative learning and motor timing, recent evidence suggests that it also plays a role in nonmotor psychological processes. Indeed, cerebellar anomalies in schizophrenia have been linked to cognitive dysfunction and poor long-term outcome. To test the hypothesis that schizophrenia is associated with cerebellar dysfunction, cerebellar-dependent, delay eye-blink conditioning was examined in 62 individuals with schizophrenia and 62 age-matched non-psychiatric comparison subjects. The conditioned stimulus was a 400 ms tone, which co-terminated with a 50 ms unconditioned stimulus air puff. A subset of participants (25 with schizophrenia and 29 controls) also completed the Wechsler Abbreviated Scale of Intelligence. Participants with schizophrenia exhibited lower rates of eye-blink conditioning, including earlier (less adaptively timed) conditioned response latencies. Cognitive functioning was correlated with the rate of conditioned responsing in the non-psychiatric comparison subjects but not among those with schizophrenia, and the magnitude of these correlations significantly differed between groups. These findings are consistent with models of schizophrenia in which disruptions within the cortico-cerebellar-thalamic-cortical (CCTC) brain circuit are postulated to underlie the cognitive fragmentation that characterizes the disorder.

  12. Eye-Blink Conditioning Deficits Indicate Temporal Processing Abnormalities in Schizophrenia

    PubMed Central

    Bolbecker, Amanda R.; Mehta, Crystal; Edwards, Chad R.; Steinmetz, Joseph E.; O’Donnell, Brian F.; Hetrick, William P.

    2009-01-01

    Theoretical models suggest that symptoms of schizophrenia may be due to a dysfunctional modulatory system associated with the cerebellum. Although it has long been known that the cerebellum plays a critical role in associative learning and motor timing, recent evidence suggests that it also plays a role in nonmotor psychological processes. Indeed, cerebellar anomalies in schizophrenia have been linked to cognitive dysfunction and poor long-term outcome. To test the hypothesis that schizophrenia is associated with cerebellar dysfunction, cerebellar-dependent, delay eye-blink conditioning was examined in 62 individuals with schizophrenia and 62 age-matched non-psychiatric comparison subjects. The conditioned stimulus was a 400 ms tone, which co-terminated with a 50 ms unconditioned stimulus air puff. A subset of participants (25 with schizophrenia and 29 controls) also completed the Wechsler Abbreviated Scale of Intelligence. Participants with schizophrenia exhibited lower rates of eye-blink conditioning, including earlier (less adaptively timed) conditioned response latencies. Cognitive functioning was correlated with the rate of conditioned responsing in the non-psychiatric comparison subjects but not among those with schizophrenia, and the magnitude of these correlations significantly differed between groups. These findings are consistent with models of schizophrenia in which disruptions within the cortico-cerebellar-thalamic-cortical (CCTC) brain circuit are postulated to underlie the cognitive fragmentation that characterizes the disorder. PMID:19351577

  13. Pretrial Hippocampal ?-State Differentiates Single-Unit Response Profiles during Rabbit Trace Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Cicchese, Joseph J.; Darling, Ryan D.; Berry, Stephen D.

    2015-01-01

    Eyeblink conditioning given in the explicit presence of hippocampal ? results in accelerated learning and enhanced multiple-unit responses, with slower learning and suppression of unit activity under non-? conditions. Recordings from putative pyramidal cells during ?-contingent training show that pretrial ?-state is linked to the probability of…

  14. Evidence of plasticity in the pontocerebellar conditioned stimulus pathway during classical conditioning of the eyeblink response in the rabbit.

    PubMed

    Tracy, Jo Anne; Thompson, Judith K; Krupa, David J; Thompson, Richard F

    2013-10-01

    Electrical stimulation thresholds required to elicit eyeblinks with either pontine or cerebellar interpositus stimulation were measured before and after classical eyeblink conditioning with paired pontine stimulation (conditioned stimulus, CS) and corneal airpuff (unconditioned stimulus, US). Pontine stimulation thresholds dropped dramatically after training and returned to baseline levels following extinction, whereas interpositus thresholds and input-output functions remained stable across training sessions. Learning rate, magnitude of threshold change, and electrode placements were correlated. Pontine projection patterns to the cerebellum were confirmed with retrograde labeling techniques. These results add to the body of literature suggesting that the pons relays CS information to the cerebellum and provide further evidence of synaptic plasticity in the cerebellar network. 2013 APA, all rights reserved

  15. Cholinergic Septo-Hippocampal Innervation Is Required for Trace Eyeblink Classical Conditioning

    ERIC Educational Resources Information Center

    Fontan-Lozano, Angela; Troncoso, Julieta; Munera, Alejandro; Carrion, Angel Manuel; Delgado-Garcia, Jose Maria

    2005-01-01

    We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical…

  16. Lack of renewal effect in extinction of naturally acquired conditioned eyeblink responses, but possible dependency on physical context.

    PubMed

    Claassen, J; Mazilescu, L; Thieme, A; Bracha, V; Timmann, D

    2016-01-01

    Context dependency of extinction is well known and has extensively been studied in fear conditioning, but has rarely been assessed in eyeblink conditioning. One way to demonstrate context dependency of extinction is the renewal effect. ABA paradigms are most commonly used to show the renewal effect of extinguished learned fear: if acquisition takes place in context A, and extinction takes place in context B (extinction phase), learned responses will recover in subsequent extinction trials presented in context A (renewal phase). The renewal effect of the visual threat eyeblink response (VTER), a conditioned eyeblink response, which is naturally acquired in early infancy, was examined in a total of 48 young and healthy participants with two experiments using an ABA paradigm. Twenty paired trials were performed in context A (baseline trials), followed by 50 extinction trials in context B (extinction phase) and 50 extinction trials in context A (renewal phase). In 24 participants, contexts A and B were two different rooms, and in the other 24 participants, two different background colors (orange and blue) and noises were used. To rule out spontaneous recovery, an AAA design was used for comparison. There were significant effects of extinction in both experiments. No significant renewal effects were observed. In experiment 2, however, extinction was significantly less using orange background during extinction compared to the blue background. The present findings suggest that extinction of conditioned eyeblinks depends on the physical context. Findings add to the animal literature that context can play a role in the acquisition of classically conditioned eyeblink responses. Future studies, however, need to be performed to confirm the present findings. Lack of renewal effect may be explained by the highly overlearned character of the VTER.

  17. Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency.

    PubMed

    Bao, S; Chen, L; Qiao, X; Knusel, B; Thompson, R F

    1998-01-01

    In addition to their trophic functions, neurotrophins are also implicated in synaptic modulation and learning and memory. Although gene knockout techniques have been used widely in studying the roles of neurotrophins at molecular and cellular levels, behavioral studies using neurotrophin knockouts are limited by the early-onset lethality and various sensory deficits associated with the gene knockout mice. In the present study, we found that in a spontaneous mutant mouse, waggler, the expression of brain-derived neurotrophic factor (BDNF) was selectively absent in the cerebellar granule cells. The cytoarchitecture of the waggler cerebellum appeared to be normal at the light microscope level. The mutant mice exhibited no sensory deficits to auditory stimuli or heat-induced pain. However, they were massively impaired in classic eye-blink conditioning. These results suggest that BDNF may have a role in normal cerebellar neuronal function, which, in turn, is essential for classic eye-blink conditioning.

  18. Purkinje Cell Activity in the Cerebellar Anterior Lobe after Rabbit Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Green, John T.; Steinmetz, Joseph E.

    2005-01-01

    The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus.…

  19. Hippocampal theta activity is selectively associated with contingency detection but not discrimination in rabbit discrimination-reversal eyeblink conditioning.

    PubMed

    Nokia, Miriam S; Wikgren, Jan

    2010-04-01

    The relative power of the hippocampal theta-band ( approximately 6 Hz) activity (theta ratio) is thought to reflect a distinct neural state and has been shown to affect learning rate in classical eyeblink conditioning in rabbits. We sought to determine if the theta ratio is mostly related to the detection of the contingency between the stimuli used in conditioning or also to the learning of more complex inhibitory associations when a highly demanding delay discrimination-reversal eyeblink conditioning paradigm is used. A high hippocampal theta ratio was not only associated with a fast increase in conditioned responding in general but also correlated with slow emergence of discriminative responding due to sustained responding to the conditioned stimulus not paired with an unconditioned stimulus. The results indicate that the neural state reflected by the hippocampal theta ratio is specifically linked to forming associations between stimuli rather than to the learning of inhibitory associations needed for successful discrimination. This is in line with the view that the hippocampus is responsible for contingency detection in the early phase of learning in eyeblink conditioning. (c) 2009 Wiley-Liss, Inc.

  20. Eye-Blink Conditioning Is Associated with Changes in Synaptic Ultrastructure in the Rabbit Interpositus Nuclei

    ERIC Educational Resources Information Center

    Weeks, Andrew C. W.; Connor, Steve; Hinchcliff, Richard; LeBoutillier, Janelle C.; Thompson, Richard F.; Petit, Ted L.

    2007-01-01

    Eye-blink conditioning involves the pairing of a conditioned stimulus (usually a tone) to an unconditioned stimulus (air puff), and it is well established that an intact cerebellum and interpositus nucleus, in particular, are required for this form of classical conditioning. Changes in synaptic number or structure have long been proposed as a…

  1. Pretrial Functional Connectivity Differentiates Behavioral Outcomes during Trace Eyeblink Conditioning in the Rabbit

    ERIC Educational Resources Information Center

    Schroeder, Matthew P.; Weiss, Craig; Procissi, Daniel; Wang, Lei; Disterhoft, John F.

    2016-01-01

    Fluctuations in neural activity can produce states that facilitate and accelerate task-related performance. Acquisition of trace eyeblink conditioning (tEBC) in the rabbit is enhanced when trials are contingent on optimal pretrial activity in the hippocampus. Other regions which are essential for whisker-signaled tEBC, such as the cerebellar…

  2. EYEBLINK CONDITIONING IN THE INFANT RAT: AN ANIMAL MODEL OF LEARNING IN DEVELOPMENTAL NEUROTOXICOLOGY

    EPA Science Inventory

    Classical conditioning of the eyeblink reflex is a relatively simple procedure for studying associative learning that was first developed for use with human subjects more than half a century ago. The use of this procedure in laboratory animals by psychologists and neuro-scientist...

  3. I Think, Therefore Eyeblink

    PubMed Central

    Weidemann, Gabrielle; Satkunarajah, Michelle; Lovibond, Peter F.

    2016-01-01

    Can conditioning occur without conscious awareness of the contingency between the stimuli? We trained participants on two separate reaction time tasks that ensured attention to the experimental stimuli. The tasks were then interleaved to create a differential Pavlovian contingency between visual stimuli from one task and an airpuff stimulus from the other. Many participants were unaware of the contingency and failed to show differential eyeblink conditioning, despite attending to a salient stimulus that was contingently and contiguously related to the airpuff stimulus over many trials. Manipulation of awareness by verbal instruction dramatically increased awareness and differential eyeblink responding. These findings cast doubt on dual-system theories, which propose an automatic associative system independent of cognition, and provide strong evidence that cognitive processes associated with awareness play a causal role in learning. PMID:26905277

  4. Enhanced Eyeblink Conditioning in Behaviorally Inhibited Individuals is Disrupted by Proactive Interference Following US Alone Pre-exposures.

    PubMed

    Allen, Michael Todd; Miller, Daniel P

    2016-01-01

    Anxiety vulnerable individuals exhibit enhanced acquisition of conditioned eyeblinks as well as enhanced proactive interference from conditioned stimulus (CS) or unconditioned stimulus (US) alone pre-exposures (Holloway et al., 2012). US alone pre-exposures disrupt subsequent conditioned response (CR) acquisition to CS-US paired trials as compared to context pre-exposure controls. While Holloway et al. (2012) reported enhanced acquisition in high trait anxiety individuals in the context condition, anxiety vulnerability effects were not reported for the US alone pre-exposure group. It appears from the published data that there were no differences between high and low anxiety individuals in the US alone condition. In the work reported here, we sought to extend the findings of enhanced proactive interference with US alone pre-exposures to determine if the enhanced conditioning was disrupted by proactive interference procedures. We also were interested in the spontaneous eyeblinks during the pre-exposure phase of training. We categorized individuals as anxiety vulnerability or non-vulnerable individuals based scores on the Adult Measure of Behavioral Inhibition (AMBI). Sixty-six participants received 60 trials consisting of 30 US alone or context alone pre-exposures followed by 30 CS-US trials. US alone pre-exposures not only disrupted CR acquisition overall, but behaviorally inhibited (BI) individuals exhibited enhanced proactive interference as compared to non-inhibited (NI) individuals. In addition, US alone pre-exposures disrupted the enhanced acquisition observed in BI individuals as compared to NI individuals following context alone pre-exposures. Differences were also found in rates of spontaneous eyeblinks between BI and NI individuals during context pre-exposure. Our findings will be discussed in the light of the neural substrates of eyeblink conditioning as well as possible factors such as hypervigilance in the amygdala and hippocampal systems, and possible

  5. Enhanced Eyeblink Conditioning in Behaviorally Inhibited Individuals is Disrupted by Proactive Interference Following US Alone Pre-exposures

    PubMed Central

    Allen, Michael Todd; Miller, Daniel P.

    2016-01-01

    Anxiety vulnerable individuals exhibit enhanced acquisition of conditioned eyeblinks as well as enhanced proactive interference from conditioned stimulus (CS) or unconditioned stimulus (US) alone pre-exposures (Holloway et al., 2012). US alone pre-exposures disrupt subsequent conditioned response (CR) acquisition to CS-US paired trials as compared to context pre-exposure controls. While Holloway et al. (2012) reported enhanced acquisition in high trait anxiety individuals in the context condition, anxiety vulnerability effects were not reported for the US alone pre-exposure group. It appears from the published data that there were no differences between high and low anxiety individuals in the US alone condition. In the work reported here, we sought to extend the findings of enhanced proactive interference with US alone pre-exposures to determine if the enhanced conditioning was disrupted by proactive interference procedures. We also were interested in the spontaneous eyeblinks during the pre-exposure phase of training. We categorized individuals as anxiety vulnerability or non-vulnerable individuals based scores on the Adult Measure of Behavioral Inhibition (AMBI). Sixty-six participants received 60 trials consisting of 30 US alone or context alone pre-exposures followed by 30 CS-US trials. US alone pre-exposures not only disrupted CR acquisition overall, but behaviorally inhibited (BI) individuals exhibited enhanced proactive interference as compared to non-inhibited (NI) individuals. In addition, US alone pre-exposures disrupted the enhanced acquisition observed in BI individuals as compared to NI individuals following context alone pre-exposures. Differences were also found in rates of spontaneous eyeblinks between BI and NI individuals during context pre-exposure. Our findings will be discussed in the light of the neural substrates of eyeblink conditioning as well as possible factors such as hypervigilance in the amygdala and hippocampal systems, and possible

  6. Deep Cerebellar Nuclei Play an Important Role in Two-Tone Discrimination on Delay Eyeblink Conditioning in C57BL/6 Mice

    PubMed Central

    Sakamoto, Toshiro; Endo, Shogo

    2013-01-01

    Previous studies have shown that deep cerebellar nuclei (DCN)-lesioned mice develop conditioned responses (CR) on delay eyeblink conditioning when a salient tone conditioned stimulus (CS) is used, which suggests that the cerebellum potentially plays a role in more complicated cognitive functions. In the present study, we examined the role of DCN in tone frequency discrimination in the delay eyeblink-conditioning paradigm. In the first experiment, DCN-lesioned and sham-operated mice were subjected to standard simple eyeblink conditioning under low-frequency tone CS (LCS: 1 kHz, 80 dB) or high-frequency tone CS (HCS: 10 kHz, 70 dB) conditions. DCN-lesioned mice developed CR in both CS conditions as well as sham-operated mice. In the second experiment, DCN-lesioned and sham-operated mice were subjected to two-tone discrimination tasks, with LCS+ (or HCS+) paired with unconditioned stimulus (US), and HCS− (or LCS−) without US. CR% in sham-operated mice increased in LCS+ (or HCS+) trials, regardless of tone frequency of CS, but not in HCS− (or LCS−) trials. The results indicate that sham-operated mice can discriminate between LCS+ and HCS− (or HCS+ and LCS−). In contrast, DCN-lesioned mice showed high CR% in not only LCS+ (or HCS+) trials but also HCS− (or LCS−) trials. The results indicate that DCN lesions impair the discrimination between tone frequency in eyeblink conditioning. Our results suggest that the cerebellum plays a pivotal role in the discrimination of tone frequency. PMID:23555821

  7. PKMζ Inhibition Reverses Learning-Induced Increases in Hippocampal Synaptic Strength and Memory during Trace Eyeblink Conditioning

    PubMed Central

    Madroñal, Noelia; Gruart, Agnès; Sacktor, Todd C.; Delgado-García, José M.

    2010-01-01

    A leading candidate in the process of memory formation is hippocampal long-term potentiation (LTP), a persistent enhancement in synaptic strength evoked by the repetitive activation of excitatory synapses, either by experimental high-frequency stimulation (HFS) or, as recently shown, during actual learning. But are the molecular mechanisms for maintaining synaptic potentiation induced by HFS and by experience the same? Protein kinase Mzeta (PKMζ), an autonomously active atypical protein kinase C isoform, plays a key role in the maintenance of LTP induced by tetanic stimulation and the storage of long-term memory. To test whether the persistent action of PKMζ is necessary for the maintenance of synaptic potentiation induced after learning, the effects of ZIP (zeta inhibitory peptide), a PKMζ inhibitor, on eyeblink-conditioned mice were studied. PKMζ inhibition in the hippocampus disrupted both the correct retrieval of conditioned responses (CRs) and the experience-dependent persistent increase in synaptic strength observed at CA3-CA1 synapses. In addition, the effects of ZIP on the same associative test were examined when tetanic LTP was induced at the hippocampal CA3-CA1 synapse before conditioning. In this case, PKMζ inhibition both reversed tetanic LTP and prevented the expected LTP-mediated deleterious effects on eyeblink conditioning. Thus, PKMζ inhibition in the CA1 area is able to reverse both the expression of trace eyeblink conditioned memories and the underlying changes in CA3-CA1 synaptic strength, as well as the anterograde effects of LTP on associative learning. PMID:20454458

  8. Children with autism spectrum disorders show abnormal conditioned response timing on delay, but not trace, eyeblink conditioning

    PubMed Central

    Oristaglio, Jeff; West, Susan Hyman; Ghaffari, Manely; Lech, Melissa S.; Verma, Beeta R.; Harvey, John A.; Welsh, John P.; Malone, Richard P.

    2013-01-01

    Children with autism spectrum disorder (ASD) and age-matched typically-developing (TD) peers were tested on two forms of eyeblink conditioning (EBC), a Pavlovian associative learning paradigm where subjects learn to execute an appropriately-timed eyeblink in response to a previously neutral conditioning stimulus (CS). One version of the task, trace EBC, interposes a stimulus-free interval between the presentation of the CS and the unconditioned stimulus (US), a puff of air to the eye which causes subjects to blink. In delay EBC, the CS overlaps in time with the delivery of the US, usually with both stimuli terminating simultaneously. ASD children performed normally during trace EBC, exhibiting no differences from typically-developing (TD) subjects with regard to learning rate or the timing of the CR. However, when subsequently tested on delay EBC, subjects with ASD displayed abnormally-timed conditioned eye blinks that began earlier and peaked sooner than those of TD subjects, consistent with previous findings. The results suggest an impaired ability of children with ASD to properly time conditioned eye blinks which appears to be specific to delay EBC. We suggest that this deficit may reflect a dysfunction of cerebellar cortex in which increases in the intensity or duration of sensory input can temporarily disrupt the accuracy of motor timing over short temporal intervals. PMID:23769889

  9. Extinction, reacquisition, and rapid forgetting of eyeblink conditioning in developing rats

    PubMed Central

    Freeman, John H.

    2014-01-01

    Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory. However, age differences in extinction and subsequent reacquisition have yet to be studied using this model. The present study examined extinction and reacquisition of eyeblink conditioning in developing rats. In Experiment 1, post-natal day (P) 17 and 24 rats were trained to a criterion of 80% conditioned responses (CRs) using stimulation of the middle cerebellar peduncle (MCP) as a conditioned stimulus (CS). Stimulation CS-alone extinction training commenced 24 h later, followed by reacquisition training after the fourth extinction session. Contrary to expected results, rats trained starting on P17 showed significantly fewer CRs to stimulation CS-alone presentations relative to P24s, including fewer CRs as early as the first block of extinction session 1. Furthermore, the P17 group was slower to reacquire following extinction. Experiment 2 was run to determine the extent to which the low CR percentage observed in P17s early in extinction reflected rapid forgetting versus rapid extinction. Twenty-four hours after reaching criterion, subjects were trained in a session split into 50 stimulation CS-unconditioned stimulus paired trials followed immediately by 50 stimulation CS-alone trials. With this “immediate” extinction protocol, CR percentages during the first block of stimulation CS-alone presentations were equivalent to terminal acquisition levels at both ages but extinction was more rapid in the P17 group. These findings indicate that forgetting is observed in P17 relative to P24 rats 24 h following acquisition. The forgetting in P17 rats has important implications for the neurobiological mechanisms of memory in the developing cerebellum. PMID:25403458

  10. A Variable Oscillator Underlies the Measurement of Time Intervals in the Rostral Medial Prefrontal Cortex during Classical Eyeblink Conditioning in Rabbits.

    PubMed

    Caro-Martín, C Rocío; Leal-Campanario, Rocío; Sánchez-Campusano, Raudel; Delgado-García, José M; Gruart, Agnès

    2015-11-04

    We were interested in determining whether rostral medial prefrontal cortex (rmPFC) neurons participate in the measurement of conditioned stimulus-unconditioned stimulus (CS-US) time intervals during classical eyeblink conditioning. Rabbits were conditioned with a delay paradigm consisting of a tone as CS. The CS started 50, 250, 500, 1000, or 2000 ms before and coterminated with an air puff (100 ms) directed at the cornea as the US. Eyelid movements were recorded with the magnetic search coil technique and the EMG activity of the orbicularis oculi muscle. Firing activities of rmPFC neurons were recorded across conditioning sessions. Reflex and conditioned eyelid responses presented a dominant oscillatory frequency of ≈12 Hz. The firing rate of each recorded neuron presented a single peak of activity with a frequency dependent on the CS-US interval (i.e., ≈12 Hz for 250 ms, ≈6 Hz for 500 ms, and≈3 Hz for 1000 ms). Interestingly, rmPFC neurons presented their dominant firing peaks at three precise times evenly distributed with respect to CS start and also depending on the duration of the CS-US interval (only for intervals of 250, 500, and 1000 ms). No significant neural responses were recorded at very short (50 ms) or long (2000 ms) CS-US intervals. rmPFC neurons seem not to encode the oscillatory properties characterizing conditioned eyelid responses in rabbits, but are probably involved in the determination of CS-US intervals of an intermediate range (250-1000 ms). We propose that a variable oscillator underlies the generation of working memories in rabbits. The way in which brains generate working memories (those used for the transient processing and storage of newly acquired information) is still an intriguing question. Here, we report that the firing activities of neurons located in the rostromedial prefrontal cortex recorded in alert behaving rabbits are controlled by a dynamic oscillator. This oscillator generated firing frequencies in a variable band

  11. Perirhinal and Postrhinal, but Not Lateral Entorhinal, Cortices Are Essential for Acquisition of Trace Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Suter, Eugenie E.; Weiss, Craig; Disterhoft, John F.

    2013-01-01

    The acquisition of temporal associative tasks such as trace eyeblink conditioning is hippocampus-dependent, while consolidated performance is not. The parahippocampal region mediates much of the input and output of the hippocampus, and perirhinal (PER) and entorhinal (EC) cortices support persistent spiking, a possible mediator of temporal…

  12. Stimulation of the Lateral Geniculate, Superior Colliculus, or Visual Cortex is Sufficient for Eyeblink Conditioning in Rats

    ERIC Educational Resources Information Center

    Halverson, Hunter E.; Hubbard, Erin M.; Freeman, John H.

    2009-01-01

    The role of the cerebellum in eyeblink conditioning is well established. Less work has been done to identify the necessary conditioned stimulus (CS) pathways that project sensory information to the cerebellum. A possible visual CS pathway has been hypothesized that consists of parallel inputs to the pontine nuclei from the lateral geniculate…

  13. Medial Auditory Thalamus Is Necessary for Acquisition and Retention of Eyeblink Conditioning to Cochlear Nucleus Stimulation

    ERIC Educational Resources Information Center

    Halverson, Hunter E.; Poremba, Amy; Freeman, John H.

    2015-01-01

    Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning.…

  14. The Use of Trace Eyeblink Classical Conditioning to Assess Hippocampal Dysfunction in a Rat Model of Fetal Alcohol Spectrum Disorders

    PubMed Central

    Tran, Tuan D.; Amin, Aenia; Jones, Keith G.; Sheffer, Ellen M.; Ortega, Lidia; Dolman, Keith

    2017-01-01

    Neonatal rats were administered a relatively high concentration of ethyl alcohol (11.9% v/v) during postnatal days 4-9, a time when the fetal brain undergoes rapid organizational change and is similar to accelerated brain changes that occur during the third trimester in humans. This model of fetal alcohol spectrum disorders (FASDs) produces severe brain damage, mimicking the amount and pattern of binge-drinking that occurs in some pregnant alcoholic mothers. We describe the use of trace eyeblink classical conditioning (ECC), a higher-order variant of associative learning, to assess long-term hippocampal dysfunction that is typically seen in alcohol-exposed adult offspring. At 90 days of age, rodents were surgically prepared with recording and stimulating electrodes, which measured electromyographic (EMG) blink activity from the left eyelid muscle and delivered mild shock posterior to the left eye, respectively. After a 5 day recovery period, they underwent 6 sessions of trace ECC to determine associative learning differences between alcohol-exposed and control rats. Trace ECC is one of many possible ECC procedures that can be easily modified using the same equipment and software, so that different neural systems can be assessed. ECC procedures in general, can be used as diagnostic tools for detecting neural pathology in different brain systems and different conditions that insult the brain. PMID:28809846

  15. Uncertainty of trial timing enhances acquisition of conditioned eyeblinks in anxiety vulnerable individuals.

    PubMed

    Allen, M T; Myers, C E; Servatius, R J

    2016-05-01

    Recent work has found that behaviorally inhibited (BI) individuals exhibit enhanced eyeblink conditioning in omission and yoked training as well as with schedules of partial reinforcement. We hypothesized that spacing CS-US paired trials over a longer period of time by extending and varying the inter-trial interval (ITI) would facilitate learning. All participants completed the Adult Measure of Behavioural Inhibition (AMBI) and were grouped as behaviorally inhibited (BI) and non-behaviorally inhibited (NI) based on a median split score of 15.5. All participants received 3 US alone trials and 30CS-US paired trials for acquisition training and 20CS alone trials for extinction training in one session. Conditioning stimuli were a 500 ms tone conditioned stimulus (CS) and a 50-ms air puff unconditional stimulus (US). Participants were randomly assigned to receive a short ITI (mean=30+/- 5s), a long ITI (mean=57+/- 5s) or a variable long ITI (mean=57 s, range 25-123 s). No significant ITI effects were observed for acquisition or extinction. Overall, anxiety vulnerable individuals exhibited enhanced conditioned eyeblink responses as compared to non-vulnerable individuals. This enhanced acquisition of CRs was significant in spaced training with a variable long ITI, but not the short or long ITI. There were no significant effects of ITI or BI on extinction. These findings are interpreted based on the idea that uncertainty plays a role in anxiety and can enhance associative learning in anxiety vulnerable individuals. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Eyeblink Synchrony in Multimodal Human-Android Interaction.

    PubMed

    Tatsukawa, Kyohei; Nakano, Tamami; Ishiguro, Hiroshi; Yoshikawa, Yuichiro

    2016-12-23

    As the result of recent progress in technology of communication robot, robots are becoming an important social partner for humans. Behavioral synchrony is understood as an important factor in establishing good human-robot relationships. In this study, we hypothesized that biasing a human's attitude toward a robot changes the degree of synchrony between human and robot. We first examined whether eyeblinks were synchronized between a human and an android in face-to-face interaction and found that human listeners' eyeblinks were entrained to android speakers' eyeblinks. This eyeblink synchrony disappeared when the android speaker spoke while looking away from the human listeners but was enhanced when the human participants listened to the speaking android while touching the android's hand. These results suggest that eyeblink synchrony reflects a qualitative state in human-robot interactions.

  17. Behaviorally-inhibited temperament is associated with severity of PTSD symptoms and faster eyeblink conditioning in veterans

    PubMed Central

    Myers, Catherine E.; VanMeenen, Kirsten M.; McAuley, J. Devin; Beck, Kevin D.; Pang, Kevin C. H.; Servatius, Richard J.

    2012-01-01

    Prior studies have sometimes demonstrated facilitated acquisition of classically-conditioned responses and/or resistance to extinction in post-traumatic stress disorder (PTSD). However, it is unclear whether these behaviors are acquired as a result of PTSD or exposure to trauma, or reflect pre-existing risk factors that confer vulnerability for PTSD. Here, we examined classical eyeblink conditioning and extinction in veterans self-assessed for current PTSD symptoms, exposure to combat, and the personality trait of behavioral inhibition (BI), a risk factor for PTSD. 128 veterans were recruited (mean age 51.2 years; 13.3% female); 126 completed self-assessment, with 25.4% reporting a history of exposure to combat and 30.9% reporting severe, current PTSD symptoms (PTSS). PTSD symptom severity was correlated with current BI (R2=0.497) and PTSS status could be predicted based on current BI and combat history (80.2% correct classification). A subset of the veterans (n=87) also completed eyeblink conditioning. Among veterans without PTSS, childhood BI was associated with faster acquisition; veterans with PTSS showed delayed extinction, under some conditions. These data demonstrate a relationship between current BI and PTSS, and suggest that the facilitated conditioning sometimes observed in PTSD patients may partially reflect personality traits such as childhood BI that pre-date and contribute to vulnerability for PTSD. PMID:21790343

  18. Eyeblink Synchrony in Multimodal Human-Android Interaction

    PubMed Central

    Tatsukawa, Kyohei; Nakano, Tamami; Ishiguro, Hiroshi; Yoshikawa, Yuichiro

    2016-01-01

    As the result of recent progress in technology of communication robot, robots are becoming an important social partner for humans. Behavioral synchrony is understood as an important factor in establishing good human-robot relationships. In this study, we hypothesized that biasing a human’s attitude toward a robot changes the degree of synchrony between human and robot. We first examined whether eyeblinks were synchronized between a human and an android in face-to-face interaction and found that human listeners’ eyeblinks were entrained to android speakers’ eyeblinks. This eyeblink synchrony disappeared when the android speaker spoke while looking away from the human listeners but was enhanced when the human participants listened to the speaking android while touching the android’s hand. These results suggest that eyeblink synchrony reflects a qualitative state in human-robot interactions. PMID:28009014

  19. Effects of Paradigm and Inter-Stimulus Interval on Age Differences in Eyeblink Classical Conditioning in Rabbits

    ERIC Educational Resources Information Center

    Woodruff-Pak, Diana S.; Seta, Susan E.; Roker, LaToya A.; Lehr, Melissa A.

    2007-01-01

    The aim of this study was to examine parameters affecting age differences in eyeblink classical conditioning in a large sample of young and middle-aged rabbits. A total of 122 rabbits of mean ages of 4 or 26 mo were tested at inter-stimulus intervals (ISIs) of 600 or 750 msec in the delay or trace paradigms. Paradigm affected both age groups…

  20. Modification of persistent responses in medial prefrontal cortex during learning in trace eyeblink conditioning

    PubMed Central

    2014-01-01

    Persistent spiking in response to a discrete stimulus is considered to reflect the active maintenance of a memory for that stimulus until a behavioral response is made. This response pattern has been reported in learning paradigms that impose a temporal gap between stimulus presentation and behavioral response, including trace eyeblink conditioning. However, it is unknown whether persistent responses are acquired as a function of learning or simply represent an already existing category of response type. This fundamental question was addressed by recording single-unit activity in the medial prefrontal cortex (mPFC) of rabbits during the initial learning phase of trace eyeblink conditioning. Persistent responses to the tone conditioned stimulus were observed in the mPFC during the very first training sessions. Further analysis revealed that most cells with persistent responses showed this pattern during the very first training trial, before animals had experienced paired training. However, persistent cells showed reliable decreases in response magnitude over the first training session, which were not observed on the second day of training or for sessions in which learning criterion was met. This modification of response magnitude was specific to persistent responses and was not observed for cells showing phasic tone-evoked responses. The data suggest that persistent responses to discrete stimuli do not require learning but that the ongoing robustness of such responses over the course of training is modified as a result of experience. Putative mechanisms for this modification are discussed, including changes in cellular or network properties, neuromodulatory tone, and/or the synaptic efficacy of tone-associated inputs. PMID:25080570

  1. Role of Muscarinic Acetylcholine Receptors in Serial Feature-Positive Discrimination Task during Eyeblink Conditioning in Mice

    PubMed Central

    Rahman, Md. Ashrafur; Tanaka, Norifumi; Usui, Koji; Kawahara, Shigenori

    2016-01-01

    We investigated the role of muscarinic acetylcholine receptors (mAChRs) in eyeblink serial feature-positive discrimination learning in mice using the mAChR antagonist. A 2-s light cue was delivered 5 or 6 s before the presentation of a 350-ms tone paired with a 100-ms periorbital electrical shock (cued trial) but not before the tone-alone presentation (non-cued trial). Mice received 30 cued and 30 non-cued trials each day in a random order. We found that saline-injected control mice were successfully discriminating between cued and non-cued trials within a few days of conditioning. The mice responded more frequently to the tone in cued trials than in non-cued trials. Analysis of conditioned response (CR) dynamics revealed that the CR onset latency was shorter in cued trials than in non-cued trials, despite the CR peak amplitude not differing significantly between the two conditions. In contrast, scopolamine-injected mice developed an equal number of CRs with similar temporal patterns irrespective of the presence of the cue during the 7 days of conditioning, indicating in a failure to acquire conditional discrimination. In addition, the scopolamine administration to the control mice after they had successfully acquired discrimination did not impair the conditional discrimination and expression of pre-acquired CR. These results suggest that mAChRs may play a pivotal role in memory formation in the conditional brain state associated with the feature cue; however they are unlikely to be involved in the development of discrimination after conditional memory had formed in the serial feature-positive discrimination task during eyeblink conditioning. PMID:26808980

  2. Impaired delay and trace eyeblink conditioning in school-age children with fetal alcohol syndrome.

    PubMed

    Jacobson, Sandra W; Stanton, Mark E; Dodge, Neil C; Pienaar, Mariska; Fuller, Douglas S; Molteno, Christopher D; Meintjes, Ernesta M; Hoyme, H Eugene; Robinson, Luther K; Khaole, Nathaniel; Jacobson, Joseph L

    2011-02-01

    Classical eyeblink conditioning (EBC) involves contingent temporal pairing of a conditioned stimulus (e.g., tone) with an unconditioned stimulus (e.g., air puff). Impairment of EBC has been demonstrated in studies of alcohol-exposed animals and in children exposed prenatally at heavy levels. Fetal alcohol syndrome (FAS) was diagnosed by expert dysmorphologists in a large sample of Cape Coloured, South African children. Delay EBC was examined in a new sample of 63 children at 11.3 years, and trace conditioning in 32 of the same children at 12.8 years. At each age, 2 sessions of 50 trials each were administered on the same day; 2 more sessions the next day, for children not meeting criterion for conditioning. Six of 34 (17.6%) children born to heavy drinkers were diagnosed with FAS, 28 were heavily exposed nonsyndromal (HE), and 29 were nonexposed controls. Only 33.3% with FAS and 42.9% of HE met criterion for delay conditioning, compared with 79.3% of controls. The more difficult trace conditioning task was also highly sensitive to fetal alcohol exposure. Only 16.7% of the FAS and 21.4% of HE met criterion for trace conditioning, compared with 66.7% of controls. The magnitude of the effect of diagnostic group on trace conditioning was not greater than the effect on short delay conditioning, findings consistent with recent rat studies. Longer latency to onset and peak eyeblink CR in exposed children indicated poor timing and failure to blink in anticipation of the puff. Extended training resulted in some but not all of the children reaching criterion. These data showing alcohol-related delay and trace conditioning deficits extend our earlier findings of impaired EBC in 5-year-olds to school-age. Alcohol-related impairment in the cerebellar circuitry required for both forms of conditioning may be sufficient to account for the deficit in both tasks. Extended training was beneficial for some exposed children. EBC provides a well-characterized model system for assessment

  3. Impaired delay and trace eyeblink conditioning in school-age children with fetal alcohol syndrome

    PubMed Central

    Jacobson, Sandra W.; Stanton, Mark E.; Dodge, Neil C.; Pienaar, Mariska; Fuller, Douglas S.; Molteno, Christopher D.; Meintjes, Ernesta M.; Hoyme, H. Eugene; Robinson, Luther K.; Khaole, Nathaniel; Jacobson, Joseph L.

    2013-01-01

    Background Classical eyeblink conditioning (EBC) involves contingent temporal pairing of a conditioned stimulus (e.g., tone) with an unconditioned stimulus (e.g., air puff). Impairment of EBC has been demonstrated in studies of alcohol-exposed animals and in children exposed prenatally at heavy levels. Methods Fetal alcohol syndrome (FAS) was diagnosed by expert dysmorphologists in a large sample of Cape Coloured, South African children. Delay EBC was examined in a new sample of 63 children at 11.3 years, and trace conditioning in 32 of the same children at 12.8 years. At each age, two sessions of 50 trials each were administered on the same day; two more sessions the next day, for children not meeting criterion for conditioning. Results 6 of 34 (17.6%) children born to heavy drinkers were diagnosed with FAS, 28 were heavily exposed nonsyndromal (HE), and 29 were non-exposed controls. Only 33.3% with FAS and 42.9% of HE met criterion for delay conditioning, compared with 79.3% of controls. The more difficult trace conditioning task was also highly sensitive to fetal alcohol exposure. Only 16.7% of the FAS and 21.4% of HE met criterion for trace conditioning, compared with 66.7% of controls. The magnitude of the effect of diagnostic group on trace conditioning was not greater than the effect on short delay conditioning, findings consistent with recent rat studies. Longer latency to onset and peak eyeblink CR in exposed children indicated poor timing and failure to blink in anticipation of the puff. Extended training resulted in some but not all of the children reaching criterion. Conclusions These data showing alcohol-related delay and trace conditioning deficits extend our earlier findings of impaired EBC in 5-year-olds to school-age. Alcohol-related impairment in the cerebellar circuitry required for both forms of conditioning may be sufficient to account for the deficit in both tasks. Extended training was beneficial for some exposed children. EBC provides a well

  4. Inactivation of the superior cerebellar peduncle blocks expression but not acquisition of the rabbit's classically conditioned eye-blink response.

    PubMed

    Krupa, D J; Thompson, R F

    1995-05-23

    The localization of sites of memory formation within the mammalian brain has proven to be a formidable task even for simple forms of learning and memory. Recent studies have demonstrated that reversibly inactivating a localized region of cerebellum, including the dorsal anterior interpositus nucleus, completely prevents acquisition of the conditioned eye-blink response with no effect upon subsequent learning without inactivation. This result indicates that the memory trace for this type of learning is located either (i) within this inactivated region of cerebellum or (ii) within some structure(s) efferent from the cerebellum to which output from the interpositus nucleus ultimately projects. To distinguish between these possibilities, two groups of rabbits were conditioned (by using two conditioning stimuli) while the output fibers of the interpositus (the superior cerebellar peduncle) were reversibly blocked with microinjections of the sodium channel blocker tetrodotoxin. Rabbits performed no conditioned responses during this inactivation training. However, training after inactivation revealed that the rabbits (trained with either conditioned stimulus) had fully learned the response during the previous inactivation training. Cerebellar output, therefore, does not appear to be essential for acquisition of the learned response. This result, coupled with the fact that inactivation of the appropriate region of cerebellum completely prevents learning, provides compelling evidence supporting the hypothesis that the essential memory trace for the classically conditioned eye-blink response is localized within the cerebellum.

  5. Interactions among Collective Spectators Facilitate Eyeblink Synchronization

    PubMed Central

    Nomura, Ryota; Liang, Yingzong; Okada, Takeshi

    2015-01-01

    Whereas the entrainment of movements and aspirations among audience members has been known as a basis of collective excitement in the theater, the role of the entrainment of cognitive processes among audience members is still unclear. In the current study, temporal patterns of the audience’s attention were observed using eyeblink responses. To determine the effect of interactions among audience members on cognitive entrainment, as well as its direction (attractive or repulsive), the eyeblink synchronization of the following two groups were compared: (1) the experimental condition, where the audience members (seven frequent viewers and seven first-time viewers) viewed live performances in situ, and (2) the control condition, where the audience members (15 frequent viewers and 15 first-time viewers) viewed videotaped performances in individual experimental settings (results reported in previous study.) The results of this study demonstrated that the mean values of a measure of asynchrony (i.e., D interval) were much lower for the experimental condition than for the control condition. Frequent viewers had a moderate attractive effect that increased as the story progressed, while a strong attractive effect was observed throughout the story for first-time viewers. The attractive effect of interactions among a group of spectators was discussed from the viewpoint of cognitive and somatic entrainment in live performances. PMID:26479405

  6. Hand and finger dexterity as a function of skin temperature, EMG, and ambient condition.

    PubMed

    Chen, Wen-Lin; Shih, Yuh-Chuan; Chi, Chia-Fen

    2010-06-01

    This article examines the changes in skin temperature (finger, hand, forearm), manual performance (hand dexterity and strength), and forearm surface electromyograph (EMG) through 40-min, 11 degrees C water cooling followed by 15-min, 34 degrees C water rewarming; additionally, it explores the relationship between dexterity and the factors of skin temperature, EMG, and ambient condition. Hand exposure in cold conditions is unavoidable and significantly affects manual performance. Two tasks requiring gross and fine dexterity were designed, namely, nut loosening and pin insertion, respectively. The nested-factorial design includes factors of gender, participant (nested within gender), immersion duration, muscle type (for EMG), and location (for skin temperature). The responses are changes in dexterity, skin temperature, normalized amplitude of EMG, and grip strength. Finally, factor analysis and stepwise regression are used to explore factors affecting hand and finger dexterity. Dexterity, EMG, and skin temperature fell with prolonged cooling, but the EMG of the flexor digitorum superficialis remained almost unchanged during the nut loosening task. All responses but the forearm skin temperature recovered to the baseline level at the end of rewarming. The three factors extracted by factor analysis are termed skin temperature, ambient condition, and EMG. They explain approximately two thirds of the variation of the linear models for both dexterities, and the factor of skin temperature is the most influential. Sustained cooling and warming significantly decreases and increases finger, hand, and forearm skin temperature. Dexterity, strength, and EMG are positively correlated to skin temperature. Therefore, keeping the finger, hand, and forearm warm is important to maintaining hand performance. The findings could be helpful to building safety guidelines for working in cold environments.

  7. Trace Eyeblink Conditioning in Mice Is Dependent upon the Dorsal Medial Prefrontal Cortex, Cerebellum, and Amygdala: Behavioral Characterization and Functional Circuitry1,2,3

    PubMed Central

    Taylor, William; Kalmbach, Brian; Desai, Niraj S.

    2015-01-01

    Abstract Trace eyeblink conditioning is useful for studying the interaction of multiple brain areas in learning and memory. The goal of the current work was to determine whether trace eyeblink conditioning could be established in a mouse model in the absence of elicited startle responses and the brain circuitry that supports this learning. We show here that mice can acquire trace conditioned responses (tCRs) devoid of startle while head-restrained and permitted to freely run on a wheel. Most mice (75%) could learn with a trace interval of 250 ms. Because tCRs were not contaminated with startle-associated components, we were able to document the development and timing of tCRs in mice, as well as their long-term retention (at 7 and 14 d) and flexible expression (extinction and reacquisition). To identify the circuitry involved, we made restricted lesions of the medial prefrontal cortex (mPFC) and found that learning was prevented. Furthermore, inactivation of the cerebellum with muscimol completely abolished tCRs, demonstrating that learned responses were driven by the cerebellum. Finally, inactivation of the mPFC and amygdala in trained animals nearly abolished tCRs. Anatomical data from these critical regions showed that mPFC and amygdala both project to the rostral basilar pons and overlap with eyelid-associated pontocerebellar neurons. The data provide the first report of trace eyeblink conditioning in mice in which tCRs were driven by the cerebellum and required a localized region of mPFC for acquisition. The data further reveal a specific role for the amygdala as providing a conditioned stimulus-associated input to the cerebellum. PMID:26464998

  8. Eyeblink classical conditioning and post-traumatic stress disorder - a model systems approach.

    PubMed

    Schreurs, Bernard G; Burhans, Lauren B

    2015-01-01

    Not everyone exposed to trauma suffers flashbacks, bad dreams, numbing, fear, anxiety, sleeplessness, hyper-vigilance, hyperarousal, or an inability to cope, but those who do may suffer from post-traumatic stress disorder (PTSD). PTSD is a major physical and mental health problem for military personnel and civilians exposed to trauma. There is still debate about the incidence and prevalence of PTSD especially among the military, but for those who are diagnosed, behavioral therapy and drug treatment strategies have proven to be less than effective. A number of these treatment strategies are based on rodent fear conditioning research and are capable of treating only some of the symptoms because the extinction of fear does not deal with the various forms of hyper-vigilance and hyperarousal experienced by people with PTSD. To help address this problem, we have developed a preclinical eyeblink classical conditioning model of PTSD in which conditioning and hyperarousal can both be extinguished. We review this model and discuss findings showing that unpaired stimulus presentations can be effective in reducing levels of conditioning and hyperarousal even when unconditioned stimulus intensity is reduced to the point where it is barely capable of eliciting a response. These procedures have direct implications for the treatment of PTSD and could be implemented in a virtual reality environment.

  9. Acute Stress Facilitates Trace Eyeblink Conditioning in C57BL/6 Male Mice and Increases the Excitability of Their CA1 Pyramidal Neurons

    ERIC Educational Resources Information Center

    Weiss, Craig; Sametsky, Evgeny; Sasse, Astrid; Spiess, Joachim; Disterhoft, John F.

    2005-01-01

    The effects of stress (restraint plus tail shock) on hippocampus-dependent trace eyeblink conditioning and hippocampal excitability were examined in C57BL/6 male mice. The results indicate that the stressor significantly increased the concentration of circulating corticosterone, the amount and rate of learning relative to nonstressed conditioned…

  10. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning

    PubMed Central

    Hoffmann, Loren C.; Cicchese, Joseph J.; Berry, Stephen D.

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3–12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3–7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning. PMID:25918501

  11. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning.

    PubMed

    Hoffmann, Loren C; Cicchese, Joseph J; Berry, Stephen D

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3-12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3-7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning.

  12. Hippocampal Non-Theta-Contingent Eyeblink Classical Conditioning: A Model System for Neurobiological Dysfunction

    PubMed Central

    Cicchese, Joseph J.; Berry, Stephen D.

    2016-01-01

    Typical information processing is thought to depend on the integrity of neurobiological oscillations that may underlie coordination and timing of cells and assemblies within and between structures. The 3–7 Hz bandwidth of hippocampal theta rhythm is associated with cognitive processes essential to learning and depends on the integrity of cholinergic, GABAergic, and glutamatergic forebrain systems. Since several significant psychiatric disorders appear to result from dysfunction of medial temporal lobe (MTL) neurochemical systems, preclinical studies on animal models may be an important step in defining and treating such syndromes. Many studies have shown that the amount of hippocampal theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning and attainment of asymptotic performance. Our lab has developed a brain–computer interface that makes eyeblink training trials contingent upon the explicit presence or absence of hippocampal theta. The behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to fourfold increase in learning speed over non-theta states. The non-theta behavioral impairment is accompanied by disruption of the amplitude and synchrony of hippocampal local field potentials, multiple-unit excitation, and single-unit response patterns dependent on theta state. Our findings indicate a significant electrophysiological and behavioral impact of the pretrial state of the hippocampus that suggests an important role for this MTL system in associative learning and a significant deleterious impact in the absence of theta. Here, we focus on the impairments in the non-theta state, integrate them into current models of psychiatric disorders, and suggest how improvement in our understanding of neurobiological oscillations is critical for theories and treatment of psychiatric

  13. Eye-blink behaviors in 71 species of primates.

    PubMed

    Tada, Hideoki; Omori, Yasuko; Hirokawa, Kumi; Ohira, Hideki; Tomonaga, Masaki

    2013-01-01

    The present study was performed to investigate the associations between eye-blink behaviors and various other factors in primates. We video-recorded 141 individuals across 71 primate species and analyzed the blink rate, blink duration, and "isolated" blink ratio (i.e., blinks without eye or head movement) in relation to activity rhythms, habitat types, group size, and body size factors. The results showed close relationships between three types of eye-blink measures and body size factors. All of these measures increased as a function of body weight. In addition, diurnal primates showed more blinks than nocturnal species even after controlling for body size factors. The most important findings were the relationships between eye-blink behaviors and social factors, e.g., group size. Among diurnal primates, only the blink rate was significantly correlated even after controlling for body size factors. The blink rate increased as the group size increased. Enlargement of the neocortex is strongly correlated with group size in primate species and considered strong evidence for the social brain hypothesis. Our results suggest that spontaneous eye-blinks have acquired a role in social communication, similar to grooming, to adapt to complex social living during primate evolution.

  14. Eye-Blink Behaviors in 71 Species of Primates

    PubMed Central

    Tada, Hideoki; Omori, Yasuko; Hirokawa, Kumi; Ohira, Hideki; Tomonaga, Masaki

    2013-01-01

    The present study was performed to investigate the associations between eye-blink behaviors and various other factors in primates. We video-recorded 141 individuals across 71 primate species and analyzed the blink rate, blink duration, and “isolated” blink ratio (i.e., blinks without eye or head movement) in relation to activity rhythms, habitat types, group size, and body size factors. The results showed close relationships between three types of eye-blink measures and body size factors. All of these measures increased as a function of body weight. In addition, diurnal primates showed more blinks than nocturnal species even after controlling for body size factors. The most important findings were the relationships between eye-blink behaviors and social factors, e.g., group size. Among diurnal primates, only the blink rate was significantly correlated even after controlling for body size factors. The blink rate increased as the group size increased. Enlargement of the neocortex is strongly correlated with group size in primate species and considered strong evidence for the social brain hypothesis. Our results suggest that spontaneous eye-blinks have acquired a role in social communication, similar to grooming, to adapt to complex social living during primate evolution. PMID:23741522

  15. The distressed (Type D) personality factor of social inhibition, but not negative affectivity, enhances eyeblink conditioning.

    PubMed

    Allen, M T; Handy, J D; Blankenship, M R; Servatius, R J

    2018-06-01

    Recent work has focused on a learning diathesis model in which specific personality factors such as behavioral inhibition (BI) may influence associative learning and in turn increase risk for the development of anxiety disorders. We have found in a series of studies that individuals self-reporting high levels of BI exhibit enhanced acquisition of conditioned eyeblinks. In the study reported here, hypotheses were extended to include distressed (Type D) personality which has been found to be related to BI. Type D personality is measured with the DS-14 scale which includes two subscales measuring negative affectivity (NA) and social inhibition (SI). We hypothesized that SI, which is similar to BI, would result in enhanced acquisition while the effect of NA is unclear. Eighty nine participants completed personality inventories including the Adult Measure of Behavioral Inhibition (AMBI) and DS-14. All participants received 60 acquisition trials with a 500 ms, 1000 Hz, tone CS and a co-terminating 50 ms, 5 psi corneal airpuff US. Participants received either 100% CS-US paired trials or a schedule of partial reinforcement where 50% US alone trials were intermixed into CS-US training. Acquisition of CRs did not differ between the two training protocols. Whereas BI was significantly related to Type D, SI, and NA, only BI and SI individuals exhibited enhanced acquisition of conditioned eyeblinks as compared to non-inhibited individuals. Personality factors now including social inhibition can be used to identify individuals who express enhanced associative learning which lends further support to a learning diathesis model of anxiety disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.

    PubMed

    Antonietti, Alberto; Casellato, Claudia; D'Angelo, Egidio; Pedrocchi, Alessandra

    The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the

  17. NMDA Receptor-Dependent Processes in the Medial Prefrontal Cortex Are Important for Acquisition and the Early Stage of Consolidation during Trace, but Not Delay Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Takehara-Nishiuchi, Kaori; Kawahara, Shigenori; Kirino, Yutaka

    2005-01-01

    Permanent lesions in the medial prefrontal cortex (mPFC) affect acquisition of conditioned responses (CRs) during trace eyeblink conditioning and retention of remotely acquired CRs. To clarify further roles of the mPFC in this type of learning, we investigated the participation of the mPFC in mnemonic processes both during and after daily…

  18. Eyeblink Classical Conditioning and Post-Traumatic Stress Disorder – A Model Systems Approach

    PubMed Central

    Schreurs, Bernard G.; Burhans, Lauren B.

    2015-01-01

    Not everyone exposed to trauma suffers flashbacks, bad dreams, numbing, fear, anxiety, sleeplessness, hyper-vigilance, hyperarousal, or an inability to cope, but those who do may suffer from post-traumatic stress disorder (PTSD). PTSD is a major physical and mental health problem for military personnel and civilians exposed to trauma. There is still debate about the incidence and prevalence of PTSD especially among the military, but for those who are diagnosed, behavioral therapy and drug treatment strategies have proven to be less than effective. A number of these treatment strategies are based on rodent fear conditioning research and are capable of treating only some of the symptoms because the extinction of fear does not deal with the various forms of hyper-vigilance and hyperarousal experienced by people with PTSD. To help address this problem, we have developed a preclinical eyeblink classical conditioning model of PTSD in which conditioning and hyperarousal can both be extinguished. We review this model and discuss findings showing that unpaired stimulus presentations can be effective in reducing levels of conditioning and hyperarousal even when unconditioned stimulus intensity is reduced to the point where it is barely capable of eliciting a response. These procedures have direct implications for the treatment of PTSD and could be implemented in a virtual reality environment. PMID:25904874

  19. Spontaneous Eye-Blinking and Stereotyped Behavior in Older Persons with Mental Retardation

    ERIC Educational Resources Information Center

    Roebel, Amanda M.; MacLean, William E., Jr.

    2007-01-01

    Previous research indicates that abnormal stereotyped movements are associated with central dopamine dysfunction and that eye-blink rate is a noninvasive, in vivo measure of dopamine function. We measured the spontaneous eye-blinking and stereotyped behavior of older adults with severe/profound mental retardation living in a state mental…

  20. Effects of meditation practice on spontaneous eyeblink rate.

    PubMed

    Kruis, Ayla; Slagter, Heleen A; Bachhuber, David R W; Davidson, Richard J; Lutz, Antoine

    2016-05-01

    A rapidly growing body of research suggests that meditation can change brain and cognitive functioning. Yet little is known about the neurochemical mechanisms underlying meditation-related changes in cognition. Here, we investigated the effects of meditation on spontaneous eyeblink rates (sEBR), a noninvasive peripheral correlate of striatal dopamine activity. Previous studies have shown a relationship between sEBR and cognitive functions such as mind wandering, cognitive flexibility, and attention-functions that are also affected by meditation. We therefore expected that long-term meditation practice would alter eyeblink activity. To test this, we recorded baseline sEBR and intereyeblink intervals (IEBI) in long-term meditators (LTM) and meditation-naive participants (MNP). We found that LTM not only blinked less frequently, but also showed a different eyeblink pattern than MNP. This pattern had good to high degree of consistency over three time points. Moreover, we examined the effects of an 8-week course of mindfulness-based stress reduction on sEBR and IEBI, compared to an active control group and a waitlist control group. No effect of short-term meditation practice was found. Finally, we investigated whether different types of meditation differentially alter eyeblink activity by measuring sEBR and IEBI after a full day of two kinds of meditation practices in the LTM. No effect of meditation type was found. Taken together, these findings may suggest either that individual difference in dopaminergic neurotransmission is a self-selection factor for meditation practice, or that long-term, but not short-term meditation practice induces stable changes in baseline striatal dopaminergic functioning. © 2016 Society for Psychophysiological Research.

  1. An assessment of the pattern of spontaneous eyeblink activity under the influence of topical ocular anaesthesia.

    PubMed

    Naase, Taher; Doughty, Michael J; Button, Norman F

    2005-04-01

    To determine whether there is a change in the pattern of human eyeblink events under topical ocular anaesthesia. Forty male subjects, aged between 19 and 52 years and with no significant ocular surface disease, were recruited. Their spontaneous eyeblink activity, in primary eye gaze position and in silence, was recorded for 5-min periods, before and after instillation of benoxinate 0.4% eyedrops. The surface anaesthesia was confirmed by aesthesiometry. The spontaneous eyeblink rate (SEBR) decreased from 9.1+/-4.0 blinks/min to an average of 5.7+/-3.3 blinks/min, with 37 subjects showing a decreased eyeblink rate under anaesthesia. Three blink patterns were observed before anaesthesia (symmetrical, J-type and I-type) and these were essentially unchanged under anaesthesia. These studies confirm that the SEBR is usually reduced under surface anaesthesia (so is sensitive to exogenous control) but the pattern of the eyeblink activity is unchanged (so is less sensitive to exogenous control). The removal of exogenous stimuli by anaesthesia does not shift the eyeblink pattern to a single type, so indicates endogenous control.

  2. Eyeblink conditioning in unmedicated schizophrenia patients: A positron emission tomography study

    PubMed Central

    Parker, Krystal L.; Andreasen, Nancy C.; Liu, Dawei; Freeman, John H.; O’Leary, Daniel S.

    2014-01-01

    Previous studies suggest that patients with schizophrenia exhibit dysfunctions in a widely distributed circuit—the cortico-cerebellar-thalamic-cortical circuit, or CCTCC—and that this may explain the multiple cognitive deficits observed in the disorder. This study uses positron emission tomography (PET) with O15 H2O to measure regional cerebral blood flow (rCBF) in response to a classic test of cerebellar function, the associative learning that occurs during eyeblink conditioning, in a sample of 20 unmedicated schizophrenia patients and 20 closely matched healthy controls. The PET paradigm examined three phases of acquisition and extinction (early, middle and late). The patients displayed impaired behavioral performance during both acquisition and extinction. The imaging data indicate that, compared to the control subjects, the patients displayed decreases in rCBF in all three components of the CCTCC during both acquisition and extinction. Specifically, patients had less rCBF in the middle and medial frontal lobes, anterior cerebellar lobules I/V and VI, as well as the thalamus during acquisition and although similar areas were found in the frontal lobe, ipsilateral cerebellar lobule IX showed consistently less activity in patients during extinction. Thus this study provides additional support for the hypothesis that patients with schizophrenia have a cognitive dysmetria—an inability to smoothly coordinate many different types of mental activity—that affects even a very basic cognitive task that taps into associative learning. PMID:24090512

  3. Eyeblink conditioning in unmedicated schizophrenia patients: a positron emission tomography study.

    PubMed

    Parker, Krystal L; Andreasen, Nancy C; Liu, Dawei; Freeman, John H; O'Leary, Daniel S

    2013-12-30

    Previous studies suggest that patients with schizophrenia exhibit dysfunctions in a widely distributed circuit-the cortico-cerebellar-thalamic-cortical circuit, or CCTCC-and that this may explain the multiple cognitive deficits observed in the disorder. This study uses positron emission tomography (PET) with O(15) H₂O to measure regional cerebral blood flow (rCBF) in response to a classic test of cerebellar function, the associative learning that occurs during eyeblink conditioning, in a sample of 20 unmedicated schizophrenia patients and 20 closely matched healthy controls. The PET paradigm examined three phases of acquisition and extinction (early, middle and late). The patients displayed impaired behavioral performance during both acquisition and extinction. The imaging data indicate that, compared to the control subjects, the patients displayed decreases in rCBF in all three components of the CCTCC during both acquisition and extinction. Specifically, patients had less rCBF in the middle and medial frontal lobes, anterior cerebellar lobules I/V and VI, as well as the thalamus during acquisition and although similar areas were found in the frontal lobe, ipsilateral cerebellar lobule IX showed consistently less activity in patients during extinction. Thus this study provides additional support for the hypothesis that patients with schizophrenia have a cognitive dysmetria--an inability to smoothly coordinate many different types of mental activity--that affects even a very basic cognitive task that taps into associative learning. © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Modulation of 7 T fMRI Signal in the Cerebellar Cortex and Nuclei During Acquisition, Extinction, and Reacquisition of Conditioned Eyeblink Responses.

    PubMed

    Ernst, Thomas M; Thürling, Markus; Müller, Sarah; Kahl, Fabian; Maderwald, Stefan; Schlamann, Marc; Boele, Henk-Jan; Koekkoek, Sebastiaan K E; Diedrichsen, Jörn; De Zeeuw, Chris I; Ladd, Mark E; Timmann, Dagmar

    2017-08-01

    Classical delay eyeblink conditioning is likely the most commonly used paradigm to study cerebellar learning. As yet, few studies have focused on extinction and savings of conditioned eyeblink responses (CRs). Saving effects, which are reflected in a reacquisition after extinction that is faster than the initial acquisition, suggest that learned associations are at least partly preserved during extinction. In this study, we tested the hypothesis that acquisition-related plasticity is nihilated during extinction in the cerebellar cortex, but retained in the cerebellar nuclei, allowing for faster reacquisition. Changes of 7 T functional magnetic resonance imaging (fMRI) signals were investigated in the cerebellar cortex and nuclei of young and healthy human subjects. Main effects of acquisition, extinction, and reacquisition against rest were calculated in conditioned stimulus-only trials. First-level β values were determined for a spherical region of interest (ROI) around the acquisition peak voxel in lobule VI, and dentate and interposed nuclei ipsilateral to the unconditioned stimulus. In the cerebellar cortex and nuclei, fMRI signals were significantly lower in extinction compared to acquisition and reacquisition, but not significantly different between acquisition and reacquisition. These findings are consistent with the theory of bidirectional learning in both the cerebellar cortex and nuclei. It cannot explain, however, why conditioned responses reappear almost immediately in reacquisition following extinction. Although the present data do not exclude that part of the initial memory remains in the cerebellum in extinction, future studies should also explore changes in extracerebellar regions as a potential substrate of saving effects. Hum Brain Mapp 38:3957-3974, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Voluntary eyeblinks disrupt iconic memory.

    PubMed

    Thomas, Laura E; Irwin, David E

    2006-04-01

    In the present research, we investigated whether eyeblinks interfere with cognitive processing. In Experiment 1, the participants performed a partial-report iconic memory task in which a letter array was presented for 106 msec, followed 50, 150, or 750 msec later by a tone that cued recall of onerow of the array. At a cue delay of 50 msec between array offset and cue onset, letter report accuracy was lower when the participants blinked following array presentation than under no-blink conditions; the participants made more mislocation errors under blink conditions. This result suggests that blinking interferes with the binding of object identity and object position in iconic memory. Experiment 2 demonstrated that interference due to blinks was not due merely to changes in light intensity. Experiments 3 and 4 demonstrated that other motor responses did not interfere with iconic memory. We propose a new phenomenon, cognitive blink suppression, in which blinking inhibits cognitive processing. This phenomenon may be due to neural interference. Blinks reduce activation in area V1, which may interfere with the representation of information in iconic memory.

  6. Effect of a jig on EMG activity in different orofacial pain conditions.

    PubMed

    Bodere, Celine; Woda, Alain

    2008-01-01

    The bite stop (jig) is commonly used in clinical practice. It has been recommended as a simple means to routinely record or provide centric relation closure and, more recently, to reduce migraines and tension-type headaches. However, the reason for the jig effect has yet to be explained. This study tested the hypothesis that it works through a decrease in masticatory muscle activity. The effect of a jig placed on the maxillary anterior teeth was investigated by recording the electromyographic (EMG) activity of the superficial masseter and anterior temporal muscles at postural position and when swallowing on the jig. EMG recordings were obtained from 2 groups of pain patients (myofascial and neuropathic) and from 2 groups of pain-free patients (disc derangement and controls) unaware of the role of dental occlusion treatments. EMG activity in postural position was higher in pain groups than in pain-free groups. The jig strongly but temporarily decreased the postural EMG activity for masseter muscles in all groups except for the neuropathic group and for temporal muscles in the myofascial group. The EMG activity when swallowing with the jig was reduced in control, disc derangement, and myofascial groups; however, EMG "hyperactivity" in the neuropathic pain group seemed to be locked. The decrease of postural EMG activity, especially in the myofascial group, was short lasting and cannot be considered as evidence to support the hypothesis of a long-term muscle relaxation jig effect. However, the results may uphold certain short-term clinical approaches.

  7. History dependence of the EMG-torque relationship.

    PubMed

    Paquin, James; Power, Geoffrey A

    2018-05-28

    The influence of active lengthening (residual force enhancement: RFE) and shortening (force depression: FD) on the electromyography (EMG)-torque relationship was investigated by matching torque and activation at 20%, 40%, 60%, 80% and 100% maximal voluntary contraction (MVC). Sixteen males performed lengthening and shortening contractions of the dorsiflexors over 25° into an isometric steady-state. There was 5% greater torque, with no change in agonist EMG during the RFE condition as compared to the isometric condition. Sub-maximally, in the force enhanced state, there was less agonist EMG during the torque clamp at all intensities relative to isometric, and greater torque during the activation clamps relative to isometric was observed across all intensities except 20% MVC. During the FD state compared to isometric, there was less torque produced during MVC (∼15%) with no change in agonist EMG. Sub-maximally, in the FD state, there was greater agonist EMG during the torque clamp and less torque during the activation clamp relative to the isometric condition across all intensities. The EMG-torque relationship was bilinear for all contraction types but was shifted to the left and right for FD and RFE, respectively as compared with isometric, indicating altered neuromuscular activation strategies in the history-dependent states of RFE and FD. Copyright © 2018. Published by Elsevier Ltd.

  8. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects.

    PubMed

    Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi

    2016-06-01

    This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG-EMG

  9. Cross-modal transfer of the conditioned eyeblink response during interstimulus interval discrimination training in young rats

    PubMed Central

    Brown, Kevin L.; Stanton, Mark E.

    2008-01-01

    Eyeblink classical conditioning (EBC) was observed across a broad developmental period with tasks utilizing two interstimulus intervals (ISIs). In ISI discrimination, two distinct conditioned stimuli (CSs; light and tone) are reinforced with a periocular shock unconditioned stimulus (US) at two different CS-US intervals. Temporal uncertainty is identical in design with the exception that the same CS is presented at both intervals. Developmental changes in conditioning have been reported in each task beyond ages when single-ISI learning is well developed. The present study sought to replicate and extend these previous findings by testing each task at four separate ages. Consistent with previous findings, younger rats (postnatal day – PD - 23 and 30) trained in ISI discrimination showed evidence of enhanced cross-modal influence of the short CS-US pairing upon long CS conditioning relative to older subjects. ISI discrimination training at PD43-47 yielded outcomes similar to those in adults (PD65-71). Cross-modal transfer effects in this task therefore appear to diminish between PD30 and PD43-47. Comparisons of ISI discrimination with temporal uncertainty indicated that cross-modal transfer in ISI discrimination at the youngest ages did not represent complete generalization across CSs. ISI discrimination undergoes a more protracted developmental emergence than single-cue EBC and may be a more sensitive indicator of developmental disorders involving cerebellar dysfunction. PMID:18726989

  10. Further evidence for unconscious learning: preliminary support for the conditioning of facial EMG to subliminal stimuli.

    PubMed

    Bunce, S C; Bernat, E; Wong, P S; Shevrin, H

    1999-01-01

    This study investigated the predictive validity of facial electromyograms (EMGs) in a subliminal conditioning paradigm. Two schematic faces (pleasant; CS- and unpleasant; CS+), were presented to eight right-handed males during supraliminal pre- and postconditioning phases. Subliminal conditioning consisted of 36 energy-masked presentations of each face pairing the CS+ with an aversive shock 800 ms poststimulus. A forced-choice recognition task established that the energy mask effectively precluded conscious recognition of stimuli. For the obicularis oculi and corrugator EMGs, significant face x condition interactions were found at 20-100 ms and 400-792 ms poststimulus. The results demonstrate the existence of an expressive motoric response related to affect operating in response to a learned but unconscious event. Subjects were not aware of a contingency between the CS+ and the US, suggesting emotional contingencies can be unconsciously acquired.

  11. Knowledge of electromyography (EMG) in patients undergoing EMG examinations

    PubMed Central

    Mondelli, Mauro; Aretini, Alessandro; Greco, Giuseppe

    2014-01-01

    Summary The aim of this study was to evaluate knowledge of electromyography (EMG) in patients undergoing the procedure. In one year, 1,586 consecutive patients (mean age 56 years; 58.8% women) were admitted to two EMG labs to undergo EMG for the first time. The patients found to be “informed” about the how an EMG examination is performed and about the purpose of EMG numbered 448 (28.2%), while those found to be “informed” only about the manner of its execution or only about its purpose numbered 161 (10.2%) and 151 (9.5%), respectively. The remaining 826 (52.1%) patients had either no information, or the information they had was very poor or incorrect (this was particularly true if they had been consulting websites). Being “informed” was associated with level of education (high), type of referring physician (specialist) and with an appropriate referral diagnosis specified in the EMG request. The quality of patient information on EMG was found to be very poor and could be improved. Physicians referring patients for EMG examinations, especially general practitioners, should assume primary responsibility for patient education and counseling in this field. PMID:25473740

  12. Enhanced conditioned eyeblink response acquisition and proactive interference in anxiety vulnerable individuals

    PubMed Central

    Holloway, Jacqueline L.; Trivedi, Payal; Myers, Catherine E.; Servatius, Richard J.

    2012-01-01

    In classical conditioning, proactive interference may arise from experience with the conditioned stimulus (CS), the unconditional stimulus (US), or both, prior to their paired presentations. Interest in the application of proactive interference has extended to clinical populations as either a risk factor for disorders or as a secondary sign. Although the current literature is dense with comparisons of stimulus pre-exposure effects in animals, such comparisons are lacking in human subjects. As such, interpretation of proactive interference over studies as well as its generalization and utility in clinical research is limited. The present study was designed to assess eyeblink response acquisition after equal numbers of CS, US, and explicitly unpaired CS and US pre-exposures, as well as to evaluate how anxiety vulnerability might modulate proactive interference. In the current study, anxiety vulnerability was assessed using the State/Trait Anxiety Inventories as well as the adult and retrospective measures of behavioral inhibition (AMBI and RMBI, respectively). Participants were exposed to 1 of 4 possible pre-exposure contingencies: 30 CS, 30 US, 30 CS, and 30 US explicitly unpaired pre-exposures, or Context pre-exposure, immediately prior to standard delay training. Robust proactive interference was evident in all pre-exposure groups relative to Context pre-exposure, independent of anxiety classification, with CR acquisition attenuated at similar rates. In addition, trait anxious individuals were found to have enhanced overall acquisition as well as greater proactive interference relative to non-vulnerable individuals. The findings suggest that anxiety vulnerable individuals learn implicit associations faster, an effect which persists after the introduction of new stimulus contingencies. This effect is not due to enhanced sensitivity to the US. Such differences would have implications for the development of anxiety psychopathology within a learning framework. PMID

  13. Enhanced conditioned eyeblink response acquisition and proactive interference in anxiety vulnerable individuals.

    PubMed

    Holloway, Jacqueline L; Trivedi, Payal; Myers, Catherine E; Servatius, Richard J

    2012-01-01

    In classical conditioning, proactive interference may arise from experience with the conditioned stimulus (CS), the unconditional stimulus (US), or both, prior to their paired presentations. Interest in the application of proactive interference has extended to clinical populations as either a risk factor for disorders or as a secondary sign. Although the current literature is dense with comparisons of stimulus pre-exposure effects in animals, such comparisons are lacking in human subjects. As such, interpretation of proactive interference over studies as well as its generalization and utility in clinical research is limited. The present study was designed to assess eyeblink response acquisition after equal numbers of CS, US, and explicitly unpaired CS and US pre-exposures, as well as to evaluate how anxiety vulnerability might modulate proactive interference. In the current study, anxiety vulnerability was assessed using the State/Trait Anxiety Inventories as well as the adult and retrospective measures of behavioral inhibition (AMBI and RMBI, respectively). Participants were exposed to 1 of 4 possible pre-exposure contingencies: 30 CS, 30 US, 30 CS, and 30 US explicitly unpaired pre-exposures, or Context pre-exposure, immediately prior to standard delay training. Robust proactive interference was evident in all pre-exposure groups relative to Context pre-exposure, independent of anxiety classification, with CR acquisition attenuated at similar rates. In addition, trait anxious individuals were found to have enhanced overall acquisition as well as greater proactive interference relative to non-vulnerable individuals. The findings suggest that anxiety vulnerable individuals learn implicit associations faster, an effect which persists after the introduction of new stimulus contingencies. This effect is not due to enhanced sensitivity to the US. Such differences would have implications for the development of anxiety psychopathology within a learning framework.

  14. Diffusion Tensor Imaging of the Cerebellum and Eyeblink Conditioning in Fetal Alcohol Spectrum Disorder

    PubMed Central

    Spottiswoode, B.S.; Meintjes, E.M.; Anderson, A.W.; Molteno, C.D.; Stanton, M.E.; Dodge, N.C.; Gore, J.C.; Peterson, B.S.; Jacobson, J.L.; Jacobson, S.W.

    2011-01-01

    Background Prenatal alcohol exposure is related to a wide range of neurocognitive effects. Eyeblink conditioning (EBC), which involves temporal pairing of a conditioned with an unconditioned stimulus, has been shown to be a potential biomarker of fetal alcohol exposure. A growing body of evidence suggests that white matter may be a specific target of alcohol teratogenesis, and the neural circuitry underlying EBC is known to involve the cerebellar peduncles. Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique which has proven useful for assessing central nervous system white matter integrity. This study used DTI to examine the degree to which the fetal alcohol-related deficit in EBC may be mediated by structural impairment in the cerebellar peduncles. Methods 13 children with fetal alcohol spectrum disorder (FASD) and 12 matched controls were scanned using DTI and structural MRI sequences. The DTI data were processed using a voxelwise technique, and the structural data were used for volumetric analyses. Prenatal alcohol exposure group and EBC performance were examined in relation to brain volumes and outputs from the DTI analysis. Results FA and perpendicular diffusivity group differences between alcohol-exposed and nonexposed children were identified in the left middle cerebellar peduncle. Alcohol exposure correlated with lower fractional anisotropy (FA) and greater perpendicular diffusivity in this region, and these correlations remained significant even after controlling for total brain and cerebellar volume. Conversely, trace conditioning performance was related to higher FA and lower perpendicular diffusivity in the left middle peduncle. The effect of prenatal alcohol exposure on trace conditioning was partially mediated by lower FA in this region. Conclusions This study extends recent findings that have used DTI to reveal microstructural deficits in white matter in children with FASD. This is the first DTI study to demonstrate

  15. Eyeblink rate watching classical Hollywood and post-classical MTV editing styles, in media and non-media professionals.

    PubMed

    Andreu-Sánchez, Celia; Martín-Pascual, Miguel Ángel; Gruart, Agnès; Delgado-García, José María

    2017-02-21

    While movie edition creates a discontinuity in audio-visual works for narrative and economy-of-storytelling reasons, eyeblink creates a discontinuity in visual perception for protective and cognitive reasons. We were interested in analyzing eyeblink rate linked to cinematographic edition styles. We created three video stimuli with different editing styles and analyzed spontaneous blink rate in participants (N = 40). We were also interested in looking for different perceptive patterns in blink rate related to media professionalization. For that, of our participants, half (n = 20) were media professionals, and the other half were not. According to our results, MTV editing style inhibits eyeblinks more than Hollywood style and one-shot style. More interestingly, we obtained differences in visual perception related to media professionalization: we found that media professionals inhibit eyeblink rate substantially compared with non-media professionals, in any style of audio-visual edition.

  16. Eyeblink rate watching classical Hollywood and post-classical MTV editing styles, in media and non-media professionals

    PubMed Central

    Andreu-Sánchez, Celia; Martín-Pascual, Miguel Ángel; Gruart, Agnès; Delgado-García, José María

    2017-01-01

    While movie edition creates a discontinuity in audio-visual works for narrative and economy-of-storytelling reasons, eyeblink creates a discontinuity in visual perception for protective and cognitive reasons. We were interested in analyzing eyeblink rate linked to cinematographic edition styles. We created three video stimuli with different editing styles and analyzed spontaneous blink rate in participants (N = 40). We were also interested in looking for different perceptive patterns in blink rate related to media professionalization. For that, of our participants, half (n = 20) were media professionals, and the other half were not. According to our results, MTV editing style inhibits eyeblinks more than Hollywood style and one-shot style. More interestingly, we obtained differences in visual perception related to media professionalization: we found that media professionals inhibit eyeblink rate substantially compared with non-media professionals, in any style of audio-visual edition. PMID:28220882

  17. Time-dependent reorganization of the brain components underlying memory retention in trace eyeblink conditioning.

    PubMed

    Takehara, Kaori; Kawahara, Shigenori; Kirino, Yutaka

    2003-10-29

    Many studies have confirmed the time-limited involvement of the hippocampus in mnemonic processes and suggested that there is reorganization of the responsible brain circuitry during memory consolidation. To clarify such reorganization, we chose trace classical eyeblink conditioning, in which hippocampal ablation produces temporally graded retrograde amnesia. Here, we extended the temporal characterization of retrograde amnesia to other regions that are involved in acquisition during this task: the medial prefrontal cortex (mPFC) and the cerebellum. At a various time interval after establishing the trace conditioned response (CR), rats received an aspiration of one of the three regions. After recovery, the animals were tested for their CR retention. When ablated 1 d after the learning, both the hippocampal lesion and the cerebellar lesion group of rats exhibited a severe impairment in retention of the CR, whereas the mPFC lesion group showed only a slight decline. With an increase in interval between the lesion and the learning, the effect of the hippocampal lesion diminished and that of the mPFC lesion increased. When ablated 4 weeks after the learning, the hippocampal lesion group exhibited as robust CRs as its corresponding control group. In contrast, the mPFC lesion and the cerebellar lesion groups failed to retain the CRs. These results indicate that the hippocampus and the cerebellum, but only marginally the mPFC, constitute a brain circuitry that mediates recently acquired memory. As time elapses, the circuitry is reorganized to use mainly the mPFC and the cerebellum, but not the hippocampus, for remotely acquired memory.

  18. Evoking Blinks with Natural Stimulation and Detecting Them with a Noninvasive Optical Device: A Simple, Inexpensive Method for Use with Freely Moving Animals

    PubMed Central

    Weiss, Craig; Disterhoft, John F.

    2008-01-01

    Many laboratories studying eyeblinks in unanesthetized rodents use a periorbital shock to evoke the blink. The stimulus is typically delivered via a tether and usually obliterates detection of a full unconditioned response with electromyographic (EMG) recording. Here we describe the adapter we have used successfully for several years to deliver puffs of air to the cornea of freely moving rats during our studies of eyeblink conditioning. The stimulus evokes an unconditioned response that can be recorded without affecting the EMG signal. This allows a complete analysis of the unconditioned response which is important for studies examining reflex modification or the effect of drugs, genetic manipulations, or aging on the unconditioned blink reflex. We also describe an infrared reflective sensor that can be added to the tether to minimize the number of wires that need to be implanted around the eye, and which is relatively immune to electrical artifacts associated with a periorbital shock stimulus or other devices powered by alternating current. The responses recorded simultaneously by EMG wires and the optical sensor appear highly correlated and demonstrate that the optical sensor can measure responses that might otherwise be lost due to electrical interference from a shock stimulus. PMID:18598716

  19. Emotionally excited eyeblink-rate variability predicts an experience of transportation into the narrative world

    PubMed Central

    Nomura, Ryota; Hino, Kojun; Shimazu, Makoto; Liang, Yingzong; Okada, Takeshi

    2015-01-01

    Collective spectator communications such as oral presentations, movies, and storytelling performances are ubiquitous in human culture. This study investigated the effects of past viewing experiences and differences in expressive performance on an audience’s transportive experience into a created world of a storytelling performance. In the experiment, 60 participants (mean age = 34.12 years, SD = 13.18 years, range 18–63 years) were assigned to watch one of two videotaped performances that were played (1) in an orthodox way for frequent viewers and (2) in a modified way aimed at easier comprehension for first-time viewers. Eyeblink synchronization among participants was quantified by employing distance-based measurements of spike trains, Dspike and Dinterval (Victor and Purpura, 1997). The results indicated that even non-familiar participants’ eyeblinks were synchronized as the story progressed and that the effect of the viewing experience on transportation was weak. Rather, the results of a multiple regression analysis demonstrated that the degrees of transportation could be predicted by a retrospectively reported humor experience and higher real-time variability (i.e., logarithmic transformed SD) of inter blink intervals during a performance viewing. The results are discussed from the viewpoint in which the extent of eyeblink synchronization and eyeblink-rate variability acts as an index of the inner experience of audience members. PMID:26029123

  20. Transfer of classical eyeblink conditioning with electrical stimulation of mPFC or tone as conditioned stimulus in guinea pigs.

    PubMed

    Yao, Juan; Wu, Guang-Yan; Liu, Guo-Long; Liu, Shu-Lei; Yang, Yi; Wu, Bing; Li, Xuan; Feng, Hua; Sui, Jian-Feng

    2014-11-01

    Learning with a stimulus from one sensory modality can facilitate subsequent learning with a new stimulus from a different sensory modality. To date, the characteristics and mechanism of this phenomenon named transfer effect still remain ambiguous. Our previous work showed that electrical stimulation of medial prefrontal cortex (mPFC) as a conditioned stimulus (CS) could successfully establish classical eyeblink conditioning (EBC). The present study aimed to (1) observe whether transfer of EBC learning would occur when CSs shift between central (mPFC electrical stimulation as a CS, mPFC-CS) and peripheral (tone as a CS, tone CS); (2) compare the difference in transfer effect between the two paradigms, delay EBC (DEBC) and trace EBC (TEBC). A total of 8 groups of guinea pigs were tested in the study, including 4 experimental groups and 4 control groups. Firstly, the experimental groups accepted central (or peripheral) CS paired with corneal airpuff unconditioned stimulus (US); then, CS shifted to the peripheral (or central) and paired with US. The control groups accepted corresponding central (or peripheral) CS and pseudo-paired with US, and then shifted CS from central (or peripheral) to peripheral (or central) and paired with US. The results showed that the acquisition rates of EBC were higher in experimental groups than in control groups after CS switching from central to peripheral or vice versa, and the CR acquisition rate was remarkably higher in DEBC than in TEBC in both transfer ways. The results indicate that EBC transfer can occur between learning established with mPFC-CS and tone CS. Memory of CS-US association for delay paradigm was less disturbed by the sudden switch of CS than for trace paradigm. This study provides new insight into neural mechanisms underlying conditioned reflex as well as the role of mPFC. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effects of OEF/OIF-Related Physical and Emotional Co-Morbidities on Associative Learning: Concurrent Delay and Trace Eyeblink Classical Conditioning

    PubMed Central

    McGlinchey, Regina E.; Fortier, Catherine B.; Venne, Jonathan R.; Maksimovskiy, Arkadiy L.; Milberg, William P.

    2014-01-01

    This study examined the performance of veterans and active duty personnel who served in Operation Enduring Freedom and/or Operation Iraqi Freedom (OEF/OIF) on a basic associative learning task. Eighty-eight individuals participated in this study. All received a comprehensive clinical evaluation to determine the presence and severity of posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI). The eyeblink conditioning task was composed of randomly intermixed delay and trace conditioned stimulus (CS) and unconditioned stimulus (US) pairs (acquisition) followed by a series of CS only trials (extinction). Results revealed that those with a clinical diagnosis of PTSD or a diagnosis of PTSD with comorbid mTBI acquired delay and trace conditioned responses (CRs) to levels and at rates similar to a deployed control group, thus suggesting intact basic associative learning. Differential extinction impairment was observed in the two clinical groups. Acquisition of CRs for both delay and trace conditioning, as well as extinction of trace CRs, was associated with alcoholic behavior across all participants. These findings help characterize the learning and memory function of individuals with PTSD and mTBI from OEF/OIF and raise the alarming possibility that the use of alcohol in this group may lead to more significant cognitive dysfunction. PMID:24625622

  2. Validity and feasibility of the EMG direct observation tool (EMG-DOT).

    PubMed

    Leep Hunderfund, Andrea N; Rubin, Devon I; Laughlin, Ruple S; Sorenson, Eric J; Watson, James C; Jones, Lyell K; Juul, Dorthea; Park, Yoon Soo

    2016-04-26

    To develop a new workplace-based EMG direct observation tool (EMG-DOT) and gather validity evidence supporting its use for assessing electrodiagnostic skills among postgraduate medical trainees. The EMG-DOT was developed by experts using an iterative process. Validity evidence from content, response process, internal structure, relations to other variables, and consequences of testing was collected during the 2013-2014 academic year. Of 3,412 studies performed by trainees during the study period, 299 (9%) were assessed using the EMG-DOT. Of these, 203 (68%) involved a physician rater and 96 (32%) involved a technician rater. The 14-item EMG-DOT had excellent internal-consistency reliability (Cronbach α 0.94). Correlations between individual items and criterion-referenced global ratings of performance ranged from 0.36 to 0.72 (all p < 0.001). Mean total scores increased from 70% to 80% over 4 months of the EMG rotation (p < 0.001) despite a corresponding significant increase in case complexity (0.21-0.74 on a 3-point rating scale; p < 0.001). Trainees reported that the observational assessment exercise improved their knowledge or skills in 82% of encounters (188/230) and that feedback generated by the EMG-DOT improved the quality of care provided to patients in 58% (133/230). Trainees were "satisfied" or "very satisfied" with the observational assessment exercise in 96% of encounters (234/243). This study provides validity evidence supporting the use of EMG-DOT scores to assess electrodiagnostic skills of residents and fellows. The EMG-DOT can be used to inform milestone-based assessments of trainee performance in neurology, child neurology, physical medicine and rehabilitation, neuromuscular, and clinical neurophysiology training programs. © 2016 American Academy of Neurology.

  3. Children with Specific Language Impairment are not impaired in the acquisition and retention of Pavlovian delay and trace conditioning of the eyeblink response☆

    PubMed Central

    Hardiman, Mervyn J.; Hsu, Hsin-jen; Bishop, Dorothy V.M.

    2013-01-01

    Three converging lines of evidence have suggested that cerebellar abnormality is implicated in developmental language and literacy problems. First, some brain imaging studies have linked abnormalities in cerebellar grey matter to dyslexia and specific language impairment (SLI). Second, theoretical accounts of both dyslexia and SLI have postulated impairments of procedural learning and automatisation of skills, functions that are known to be mediated by the cerebellum. Third, motor learning has been shown to be abnormal in some studies of both disorders. We assessed the integrity of face related regions of the cerebellum using Pavlovian eyeblink conditioning in 7–11 year-old children with SLI. We found no relationship between oral language skills or literacy skills with either delay or trace conditioning in the children. We conclude that this elementary form of associative learning is intact in children with impaired language or literacy development. PMID:24139661

  4. Effects of systemic glutamatergic manipulations on conditioned eyeblink responses and hyperarousal in a rabbit model of post-traumatic stress disorder.

    PubMed

    Burhans, Lauren B; Smith-Bell, Carrie A; Schreurs, Bernard G

    2017-10-01

    Glutamatergic dysfunction is implicated in many neuropsychiatric conditions, including post-traumatic stress disorder (PTSD). Glutamate antagonists have shown some utility in treating PTSD symptoms, whereas glutamate agonists may facilitate cognitive behavioral therapy outcomes. We have developed an animal model of PTSD, based on conditioning of the rabbit's eyeblink response, that addresses two key features: conditioned responses (CRs) to cues associated with an aversive event and a form of conditioned hyperarousal referred to as conditioning-specific reflex modification (CRM). The optimal treatment to reduce both CRs and CRM is unpaired extinction. The goals of the study were to examine whether treatment with the N-methyl-D-aspartate glutamate receptor antagonist ketamine could reduce CRs and CRM, and whether the N-methyl-D-aspartate agonist D-cycloserine combined with unpaired extinction treatment could enhance the extinction of both. Administration of a single dose of subanesthetic ketamine had no significant immediate or delayed effect on CRs or CRM. Combining D-cycloserine with a single day of unpaired extinction facilitated extinction of CRs in the short term while having no impact on CRM. These results caution that treatments may improve one aspect of the PTSD symptomology while having no significant effects on other symptoms, stressing the importance of a multiple-treatment approach to PTSD and of animal models that address multiple symptoms.

  5. EMG normalization to study muscle activation in cycling.

    PubMed

    Rouffet, David M; Hautier, Christophe A

    2008-10-01

    The value of electromyography (EMG) is sensitive to many physiological and non-physiological factors. The purpose of the present study was to determine if the torque-velocity test (T-V) can be used to normalize EMG signals into a framework of biological significance. Peak EMG amplitude of gluteus maximus (GMAX), vastus lateralis (VL), rectus femoris (RF), biceps femoris long head (BF), gastrocnemius medialis (GAS) and soleus (SOL) was calculated for nine subjects during isometric maximal voluntary contractions (IMVC) and torque-velocity bicycling tests (T-V). Then, the reference EMG signals obtained from IMVC and T-V bicycling tests were used to normalize the amplitude of the EMG signals collected for 15 different submaximal pedaling conditions. The results of this study showed that the repeatability of the measurements between IMVC (from 10% to 23%) and T-V (from 8% to 20%) was comparable. The amplitude of the peak EMG of VL was 99+/-43% higher (p<0.001) when measured during T-V. Moreover, the inter-individual variability of the EMG patterns calculated for submaximal cycling exercises differed significantly when using T-V bicycling normalization method (GMAX: 0.33+/-0.16 vs. 1.09+/-0.04, VL: 0.07+/-0.02 vs. 0.64+/-0.14, SOL: 0.07+/-0.03 vs. 1.00+/-0.07, RF: 1.21+/-0.20 vs. 0.92+/-0.13, BF: 1.47+/-0.47 vs. 0.84+/-0.11). It was concluded that T-V bicycling test offers the advantage to be less time and energy-consuming and to be as repeatable as IMVC tests to measure peak EMG amplitude. Furthermore, this normalization method avoids the impact of non-physiological factors on the amplitude of the EMG signals so that it allows quantifying better the activation level of lower limb muscles and the variability of the EMG patterns during submaximal bicycling exercises.

  6. Modeling startle eyeblink electromyogram to assess fear learning.

    PubMed

    Khemka, Saurabh; Tzovara, Athina; Gerster, Samuel; Quednow, Boris B; Bach, Dominik R

    2017-02-01

    Pavlovian fear conditioning is widely used as a laboratory model of associative learning in human and nonhuman species. In this model, an organism is trained to predict an aversive unconditioned stimulus from initially neutral events (conditioned stimuli, CS). In humans, fear memory is typically measured via conditioned autonomic responses or fear-potentiated startle. For the latter, various analysis approaches have been developed, but a systematic comparison of competing methodologies is lacking. Here, we investigate the suitability of a model-based approach to startle eyeblink analysis for assessment of fear memory, and compare this to extant analysis strategies. First, we build a psychophysiological model (PsPM) on a generic startle response. Then, we optimize and validate this PsPM on three independent fear-conditioning data sets. We demonstrate that our model can robustly distinguish aversive (CS+) from nonaversive stimuli (CS-, i.e., has high predictive validity). Importantly, our model-based approach captures fear-potentiated startle during fear retention as well as fear acquisition. Our results establish a PsPM-based approach to assessment of fear-potentiated startle, and qualify previous peak-scoring methods. Our proposed model represents a generic startle response and can potentially be used beyond fear conditioning, for example, to quantify affective startle modulation or prepulse inhibition of the acoustic startle response. © 2016 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  7. Changes in the magnitude of the eyeblink startle response during habituation of sexual arousal.

    PubMed

    Koukounas, E; Over, R

    2000-06-01

    Modulation of the startle response was used to examine emotional processing of sexual stimulation across trials within a session. Eyeblink startle was elicited by a probe (burst of intense white noise) presented intermittently while men were viewing an erotic film segment. Repeated display of the film segment resulted in a progressive decrease in sexual arousal. Habituation of sexual arousal was accompanied by a reduction over trials in the extent the men felt absorbed when viewing the erotic stimulus and by an increase over trials in the magnitude of the eyeblink startle response. Replacing the familiar stimulus by a novel erotic stimulus increased in sexual arousal and absorption and reduced startle (novelty effect), while dishabituation was evident for all three response measures when the familiar stimulus was reintroduced. This pattern of results indicates that with repeated presentation an erotic stimulus is experienced not only as less sexually arousing but also as less appetitive and absorbing. The question of whether habituation of sexual arousal is mediated by changes in attentional and affective processing over trials is discussed, as are clinical contexts in which eyeblink startle can be used in studying aspects of sexual functioning.

  8. Autism and Classical Eyeblink Conditioning: Performance Changes of the Conditioned Response Related to Autism Spectrum Disorder Diagnosis

    PubMed Central

    Welsh, John P.; Oristaglio, Jeffrey T.

    2016-01-01

    Changes in the timing performance of conditioned responses (CRs) acquired during trace and delay eyeblink conditioning (EBC) are presented for diagnostic subgroups of children having autism spectrum disorder (ASD) aged 6–15 years. Children diagnosed with autistic disorder (AD) were analyzed separately from children diagnosed with either Asperger’s syndrome or Pervasive developmental disorder (Asp/PDD) not otherwise specified and compared to an age- and IQ-matched group of children who were typically developing (TD). Within-subject and between-groups contrasts in CR performance on sequential exposure to trace and delay EBC were analyzed to determine whether any differences would expose underlying functional heterogeneities of the cerebral and cerebellar systems, in ASD subgroups. The EBC parameters measured were percentage CRs, CR onset latency, and CR peak latency. Neither AD nor Asp/PDD groups were impaired in CR acquisition during trace or delay EBC. Both AD and Asp/PDD altered CR timing, but not always in the same way. Although the AD group showed normal CR timing during trace EBC, the Asp/PDD group showed a significant 27 and 28 ms increase in CR onset and peak latency, respectively, during trace EBC. In contrast, the direction of the timing change was opposite during delay EBC, during which the Asp/PDD group showed a significant 29 ms decrease in CR onset latency and the AD group showed a larger 77 ms decrease in CR onset latency. Only the AD group showed a decrease in CR peak latency during delay EBC, demonstrating another difference between AD and Asp/PDD. The difference in CR onset latency during delay EBC for both AD and Asp/PDD was due to an abnormal prevalence of early onset CRs that were intermixed with CRs having normal timing, as observed both in CR onset histograms and mean CR waveforms. In conclusion, significant heterogeneity in EBC performance was apparent between diagnostic groups, and this may indicate that EBC performance can report

  9. EMG-Torque Relation in Chronic Stroke: A Novel EMG Complexity Representation With a Linear Electrode Array.

    PubMed

    Zhang, Xu; Wang, Dongqing; Yu, Zaiyang; Chen, Xiang; Li, Sheng; Zhou, Ping

    2017-11-01

    This study examines the electromyogram (EMG)-torque relation for chronic stroke survivors using a novel EMG complexity representation. Ten stroke subjects performed a series of submaximal isometric elbow flexion tasks using their affected and contralateral arms, respectively, while a 20-channel linear electrode array was used to record surface EMG from the biceps brachii muscles. The sample entropy (SampEn) of surface EMG signals was calculated with both global and local tolerance schemes. A regression analysis was performed between SampEn of each channel's surface EMG and elbow flexion torque. It was found that a linear regression can be used to well describe the relation between surface EMG SampEn and the torque. Each channel's root mean square (RMS) amplitude of surface EMG signal in the different torque level was computed to determine the channel with the highest EMG amplitude. The slope of the regression (observed from the channel with the highest EMG amplitude) was smaller on the impaired side than on the nonimpaired side in 8 of the 10 subjects, regardless of the tolerance scheme (global or local) and the range of torques (full or matched range) used for comparison. The surface EMG signals from the channels above the estimated muscle innervation zones demonstrated significantly lower levels of complexity compared with other channels between innervation zones and muscle tendons. The study provides a novel point of view of the EMG-torque relation in the complexity domain, and reveals its alterations post stroke, which are associated with complex neural and muscular changes post stroke. The slope difference between channels with regard to innervation zones also confirms the relevance of electrode position in surface EMG analysis.

  10. Variability of ICA decomposition may impact EEG signals when used to remove eyeblink artifacts

    PubMed Central

    PONTIFEX, MATTHEW B.; GWIZDALA, KATHRYN L.; PARKS, ANDREW C.; BILLINGER, MARTIN; BRUNNER, CLEMENS

    2017-01-01

    Despite the growing use of independent component analysis (ICA) algorithms for isolating and removing eyeblink-related activity from EEG data, we have limited understanding of how variability associated with ICA uncertainty may be influencing the reconstructed EEG signal after removing the eyeblink artifact components. To characterize the magnitude of this ICA uncertainty and to understand the extent to which it may influence findings within ERP and EEG investigations, ICA decompositions of EEG data from 32 college-aged young adults were repeated 30 times for three popular ICA algorithms. Following each decomposition, eyeblink components were identified and removed. The remaining components were back-projected, and the resulting clean EEG data were further used to analyze ERPs. Findings revealed that ICA uncertainty results in variation in P3 amplitude as well as variation across all EEG sampling points, but differs across ICA algorithms as a function of the spatial location of the EEG channel. This investigation highlights the potential of ICA uncertainty to introduce additional sources of variance when the data are back-projected without artifact components. Careful selection of ICA algorithms and parameters can reduce the extent to which ICA uncertainty may introduce an additional source of variance within ERP/EEG studies. PMID:28026876

  11. EMG circuit design and AR analysis of EMG signs.

    PubMed

    Hardalaç, Firat; Canal, Rahmi

    2004-12-01

    In this study, electromyogram (EMG) circuit was designed and tested on 27 people. Autoregressive (AR) analysis of EMG signals recorded on the ulnar nerve region of the right hand in resting position was performed. AR method, especially in the calculation of the spectrums of stable signs, is used for frequency analysis of signs, which give frequency response as sharp peaks and valleys. In this study, as the result of AR method analysis of EMG signals frequency-time domain, frequency spectrum curves (histogram curves) were obtained. As the images belonging to these histograms were evaluated, fibrillation potential widths of the muscle fibers of the ulnar nerve region of the people (material of the study) were examined. According to the degeneration degrees of the motor nerves, nine people had myopathy, nine had neuropathy, and nine were normal.

  12. Effect of Suppression, Reappraisal, and Acceptance of Emotional Pictures on Acoustic Eye-Blink Startle Magnitude

    PubMed Central

    Asnaani, Anu; Sawyer, Alice T.; Aderka, Idan M.; Hofmann, Stefan G.

    2012-01-01

    To examine the effects of different emotion regulation strategies on acoustic eye-blink startle, 65 participants viewed positive, neutral, and negative pictures and were instructed to suppress, reappraise, or accept their emotional responses to these pictures using a within-group experimental design with separate blocks of pictures for each strategy. Instructions to suppress the emotional response led to an attenuation of the eye-blink startle magnitude, in comparison with instructions to reappraise or accept. Reappraisal and acceptance instructions did not differ from one another in their effect on startle. These results are discussed within the context of the existing empirical literature on emotion regulation. PMID:24551448

  13. Prefrontal oxygenation and the acoustic startle eyeblink response during exercise: A test of the dual-mode model.

    PubMed

    Tempest, Gavin D; Parfitt, Gaynor

    2017-07-01

    The interplay between the prefrontal cortex and amygdala is proposed to explain the regulation of affective responses (pleasure/displeasure) during exercise as outlined in the dual-mode model. However, due to methodological limitations the dual-mode model has not been fully tested. In this study, prefrontal oxygenation (using near-infrared spectroscopy) and amygdala activity (reflected by eyeblink amplitude using acoustic startle methodology) were recorded during exercise standardized to metabolic processes: 80% of ventilatory threshold (below VT), at the VT, and at the respiratory compensation point (RCP). Self-reported tolerance of the intensity of exercise was assessed prior to, and affective responses recorded during exercise. The results revealed that, as the intensity of exercise became more challenging (from below VT to RCP), prefrontal oxygenation was larger and eyeblink amplitude and affective responses were reduced. Below VT and at VT, larger prefrontal oxygenation was associated with larger eyeblink amplitude. At the RCP, prefrontal oxygenation was greater in the left than right hemisphere, and eyeblink amplitude explained significant variance in affective responses (with prefrontal oxygenation) and self-reported tolerance. These findings highlight the role of the prefrontal cortex and potentially the amygdala in the regulation of affective (particularly negative) responses during exercise at physiologically challenging intensities (above VT). In addition, a psychophysiological basis of self-reported tolerance is indicated. This study provides some support of the dual-mode model and insight into the neural basis of affective responses during exercise. © 2017 Society for Psychophysiological Research.

  14. Analysis of the sEMG/force relationship using HD-sEMG technique and data fusion: A simulation study.

    PubMed

    Al Harrach, Mariam; Carriou, Vincent; Boudaoud, Sofiane; Laforet, Jeremy; Marin, Frederic

    2017-04-01

    The relationship between the surface Electromyogram (sEMG) signal and the force of an individual muscle is still ambiguous due to the complexity of experimental evaluation. However, understanding this relationship should be useful for the assessment of neuromuscular system in healthy and pathological contexts. In this study, we present a global investigation of the factors governing the shape of this relationship. Accordingly, we conducted a focused sensitivity analysis of the sEMG/force relationship form with respect to neural, functional and physiological parameters variation. For this purpose, we used a fast generation cylindrical model for the simulation of an 8×8 High Density-sEMG (HD-sEMG) grid and a twitch based force model for the muscle force generation. The HD-sEMG signals as well as the corresponding force signals were simulated in isometric non-fatiguing conditions and were based on the Biceps Brachii (BB) muscle properties. A total of 10 isometric constant contractions of 5s were simulated for each configuration of parameters. The Root Mean Squared (RMS) value was computed in order to quantify the sEMG amplitude. Then, an image segmentation method was used for data fusion of the 8×8 RMS maps. In addition, a comparative study between recent modeling propositions and the model proposed in this study is presented. The evaluation was made by computing the Normalized Root Mean Squared Error (NRMSE) of their fitting to the simulated relationship functions. Our results indicated that the relationship between the RMS (mV) and muscle force (N) can be modeled using a 3rd degree polynomial equation. Moreover, it appears that the obtained coefficients are patient-specific and dependent on physiological, anatomical and neural parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Acoustic (loudspeaker) facial EMG monitoring: II. Use of evoked EMG activity during acoustic neuroma resection.

    PubMed

    Prass, R L; Kinney, S E; Hardy, R W; Hahn, J F; Lüders, H

    1987-12-01

    Facial electromyographic (EMG) activity was continuously monitored via loudspeaker during eleven translabyrinthine and nine suboccipital consecutive unselected acoustic neuroma resections. Ipsilateral facial EMG activity was synchronously recorded on the audio channels of operative videotapes, which were retrospectively reviewed in order to allow detailed evaluation of the potential benefit of various acoustic EMG patterns in the performance of specific aspects of acoustic neuroma resection. The use of evoked facial EMG activity was classified and described. Direct local mechanical (surgical) stimulation and direct electrical stimulation were of benefit in the localization and/or delineation of the facial nerve contour. Burst and train acoustic patterns of EMG activity appeared to indicate surgical trauma to the facial nerve that would not have been appreciated otherwise. Early results of postoperative facial function of monitored patients are presented, and the possible value of burst and train acoustic EMG activity patterns in the intraoperative assessment of facial nerve function is discussed. Acoustic facial EMG monitoring appears to provide a potentially powerful surgical tool for delineation of the facial nerve contour, the ongoing use of which may lead to continued improvement in facial nerve function preservation through modification of dissection strategy.

  16. [The effect of EMG level by EMG biofeedback with progressive muscle relaxation training on tension headache].

    PubMed

    Ro, U J; Kim, N C; Kim, H S

    1990-08-01

    The purpose of this study is to assess if EMG biofeedback training with progressive muscle relaxation training is effective in reducing the EMG level in patients with tension headaches. This study which lasted from 23 October to 30 December 1989, was conducted on 10 females who were diagnosed as patients with tension headaches and selected from among volunteers at C. University in Seoul. The process of the study was as follows: First, before the treatment, the baseline was measured for two weeks and the level of EMG was measured five times in five minutes. And then EMG biofeedback training was used for six weeks, 12 sessions in all, and progressive muscle relaxation was done at home by audio tape over eight weeks. Each session was composed of a 5-minute baseline, two 5-minute EMG biofeedback training periods and a 5-minute self-control stage. Each stage was followed by a five minute rest period. So each session took a total of 40 minutes. The EMG level was measured by EMG biofeedback (Autogenic-Cyborg: M 130 EMG module). The results were as follows: 1. The average age of the subjects was 44.1 years and the average history of headache was 10.6 years (range: 6 months-20 years). 2. The level of EMG was lowest between the third and the fourth week of the training except in Cases I and IV. 3. The patients began to show a nonconciliatory attitude at the first session of the fifth week of the training.

  17. An EMG-based robot control scheme robust to time-varying EMG signal features.

    PubMed

    Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J

    2010-05-01

    Human-robot control interfaces have received increased attention during the past decades. With the introduction of robots in everyday life, especially in providing services to people with special needs (i.e., elderly, people with impairments, or people with disabilities), there is a strong necessity for simple and natural control interfaces. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a robot arm. EMG signals are recorded using surface EMG electrodes placed on the user's skin, making the user's upper limb free of bulky interface sensors or machinery usually found in conventional human-controlled systems. The proposed interface allows the user to control in real time an anthropomorphic robot arm in 3-D space, using upper limb motion estimates based only on EMG recordings. Moreover, the proposed interface is robust to EMG changes with respect to time, mainly caused by muscle fatigue or adjustments of contraction level. The efficiency of the method is assessed through real-time experiments, including random arm motions in the 3-D space with variable hand speed profiles.

  18. Effect of toe extension on EMG of triceps surae muscles during isometric dorsiflexion.

    PubMed

    Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh

    2016-12-01

    The protocol for estimating force of contraction by triceps surae (TS) muscles requires the immobilization of the ankle during dorsiflexion and plantar flexion. However, large variability in the results has been observed. To identify the cause of this variability, experiments were conducted where ankle dorsiflexion force and electromyogram (EMG) of the TS were recorded under two conditions: (i) toes were strapped and (ii) toes were unstrapped, with all other conditions such as immobilization of the ankle remaining unchanged. The root mean square (RMS) of the EMG and the force were analyzed and one-tail Student's t-test was performed for significance between the two conditions. The RMS of the EMG from TS muscles was found to be significantly higher (~55%) during dorsiflexion with toes unstrapped compared with when the toes were strapped. The torque corresponding to dorsiflexion was also higher with toes unstrapped. Our study has shown that it is important to strap the toes when measuring the torque at the ankle and EMG of the TS muscles.

  19. Affective Modulation of the Startle Eyeblink and Postauricular Reflexes in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Dichter, Gabriel S.; Benning, Stephen D.; Holtzclaw, Tia N.; Bodfish, James W.

    2010-01-01

    Eyeblink and postauricular reflexes to standardized affective images were examined in individuals without (n = 37) and with (n = 20) autism spectrum disorders (ASDs). Affective reflex modulation in control participants replicated previous findings. The ASD group, however, showed anomalous reflex modulation patterns, despite similar self-report…

  20. Measurement of EMG activity with textile electrodes embedded into clothing.

    PubMed

    Finni, T; Hu, M; Kettunen, P; Vilavuo, T; Cheng, S

    2007-11-01

    Novel textile electrodes that can be embedded into sports clothing to measure averaged rectified electromyography (EMG) have been developed for easy use in field tests and in clinical settings. The purpose of this study was to evaluate the validity, reliability and feasibility of this new product to measure averaged rectified EMG. The validity was tested by comparing the signals from bipolar textile electrodes (42 cm(2)) and traditional bipolar surface electrodes (1.32 cm(2)) during bilateral isometric knee extension exercise with two electrode locations (A: both electrodes located in the same place, B: traditional electrodes placed on the individual muscles according to SENIAM, n=10 persons for each). Within-session repeatability (the coefficient of variation CV%, n=10) was calculated from five repetitions of 60% maximum voluntary contraction (MVC). The day-to-day repeatability (n=8) was assessed by measuring three different isometric force levels on five consecutive days. The feasibility of the textile electrodes in field conditions was assessed during a maximal treadmill test (n=28). Bland-Altman plots showed a good agreement within 2SD between the textile and traditional electrodes, demonstrating that the textile electrodes provide similar information on the EMG signal amplitude to the traditional electrodes. The within-session CV ranged from 13% to 21% in both the textile and traditional electrodes. The day-to-day CV was smaller, ranging from 4% to 11% for the textile electrodes. A similar relationship (r(2)=0.5) was found between muscle strength and the EMG of traditional and textile electrodes. The feasibility study showed that the textile electrode technique can potentially make EMG measurements very easy in field conditions. This study indicates that textile electrodes embedded into shorts is a valid and feasible method for assessing the average rectified value of EMG.

  1. Motor unit size estimation: confrontation of surface EMG with macro EMG.

    PubMed

    Roeleveld, K; Stegeman, D F; Falck, B; Stålberg, E V

    1997-06-01

    Surface EMG (SEMG) is little used for diagnostic purposes in clinical neurophysiology, mainly because it provides little direct information on individual motor units (MUs). One of the techniques to estimate the MU size is intra-muscular Macro EMG. The present study compares SEMG with Macro EMG. Fifty-eight channel SEMG was recorded simultaneously with Macro EMG. Individual MUPs were obtained by single fiber triggered averaging. All recordings were made from the biceps brachii of healthy subjects during voluntary contraction at low force. High positive correlations were found between all Macro and Surface motor unit potential (MUP) parameters: area, peak-to-peak amplitude, negative peak amplitude and positive peak amplitude. The MUPs recorded with SEMG were dependent on the distance between the MU and the skin surface. Normalizing the SEMG parameters for MU location did not improve the correlation coefficient between the parameters of both techniques. The two measurement techniques had almost the same relative range in MUP parameters in any individual subject compared to the others, especially after normalizing the surface MUP parameters for MU location. MUPs recorded with this type of SEMG provide useful information about the MU size.

  2. Wideband EMG telemetry system

    NASA Technical Reports Server (NTRS)

    Rosatino, S. A.; Westbrook, R. M.

    1979-01-01

    Miniature, individual crystal-controlled RF transmitters located in EMG pressure sensors simplifies multichannel EMG telemetry for electronic gait monitoring. Transmitters which are assigned operating frequencies within 174 - 216 MHz band have linear frequency response from 20 - 2000 Hz and operate over range of 15 m.

  3. Influence of different attentional focus on EMG amplitude and contraction duration during the bench press at different speeds.

    PubMed

    Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus D; Sundstrup, Emil; Colado, Juan Carlos; Andersen, Lars L

    2018-05-01

    The purpose of this study was to investigate whether using different focus affects electromyographic (EMG) amplitude and contraction duration during bench press performed at explosive and controlled speeds. Eighteen young male individuals were familiarized with the procedure and performed the one-maximum repetition (1RM) test in the first session. In the second session, participants performed the bench press exercise at 50% of the 1RM with 3 different attentional focuses (regular focus on moving the load vs contracting the pectoralis vs contracting the triceps) at 2 speed conditions (controlled vs maximal speed). During the controlled speed condition, focusing on using either the pectoralis or the triceps muscles increased pectoralis normalized EMG (nEMG) by 6% (95% CI 3-8%; p = 0.0001) and 4% nEMG (95% CI 1-7%; p = 0.0096), respectively, compared with the regular focus condition. Triceps activity was increased by 4% nEMG (95% CI 0-7%; p = 0.0308) at the controlled speed condition during the triceps focus. During the explosive speed condition, the use of different focuses had no effect. The different attentional focus resulted in comparable contraction duration for the measured muscles when the exercise was performed explosively. Using internal focus to increase EMG amplitude seems to function only during conditions of controlled speed.

  4. EMG patterns during assisted walking in the exoskeleton.

    PubMed

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.

  5. Epoch length to accurately estimate the amplitude of interference EMG is likely the result of unavoidable amplitude cancellation

    PubMed Central

    Keenan, Kevin G.; Valero-Cuevas, Francisco J.

    2008-01-01

    Researchers and clinicians routinely rely on interference electromyograms (EMGs) to estimate muscle forces and command signals in the neuromuscular system (e.g., amplitude, timing, and frequency content). The amplitude cancellation intrinsic to interference EMG, however, raises important questions about how to optimize these estimates. For example, what should the length of the epoch (time window) be to average an EMG signal to reliably estimate muscle forces and command signals? Shorter epochs are most practical, and significant reductions in epoch have been reported with high-pass filtering and whitening. Given that this processing attenuates power at frequencies of interest (< 250 Hz), however, it is unclear how it improves the extraction of physiologically-relevant information. We examined the influence of amplitude cancellation and high-pass filtering on the epoch necessary to accurately estimate the “true” average EMG amplitude calculated from a 28 s EMG trace (EMGref) during simulated constant isometric conditions. Monte Carlo iterations of a motor-unit model simulating 28 s of surface EMG produced 245 simulations under 2 conditions: with and without amplitude cancellation. For each simulation, we calculated the epoch necessary to generate average full-wave rectified EMG amplitudes that settled within 5% of EMGref. For the no-cancellation EMG, the necessary epochs were short (e.g., < 100 ms). For the more realistic interference EMG (i.e., cancellation condition), epochs shortened dramatically after using high-pass filter cutoffs above 250 Hz, producing epochs short enough to be practical (i.e., < 500 ms). We conclude that the need to use long epochs to accurately estimate EMG amplitude is likely the result of unavoidable amplitude cancellation, which helps to clarify why high-pass filtering (> 250 Hz) improves EMG estimates. PMID:19081815

  6. Neonatal ethanol exposure results in dose-dependent impairments in the acquisition and timing of the conditioned eyeblink response and altered cerebellar interpositus nucleus and hippocampal CA1 unit activity in adult rats.

    PubMed

    Lindquist, Derick H; Sokoloff, Greta; Milner, Eric; Steinmetz, Joseph E

    2013-09-01

    Exposure to ethanol in neonatal rats results in reduced neuronal numbers in the cerebellar cortex and deep nuclei of juvenile and adult animals. This reduction in cell numbers is correlated with impaired delay eyeblink conditioning (EBC), a simple motor learning task in which a neutral conditioned stimulus (CS; tone) is repeatedly paired with a co-terminating unconditioned stimulus (US; periorbital shock). Across training, cell populations in the interpositus (IP) nucleus model the temporal form of the eyeblink-conditioned response (CR). The hippocampus, though not required for delay EBC, also shows learning-dependent increases in CA1 and CA3 unit activity. In the present study, rat pups were exposed to 0, 3, 4, or 5 mg/kg/day of ethanol during postnatal days (PD) 4-9. As adults, CR acquisition and timing were assessed during 6 training sessions of delay EBC with a short (280 ms) interstimulus interval (ISI; time from CS onset to US onset) followed by another 6 sessions with a long (880 ms) ISI. Neuronal activity was recorded in the IP and area CA1 during all 12 sessions. The high-dose rats learned the most slowly and, with the moderate-dose rats, produced the longest CR peak latencies over training to the short ISI. The low dose of alcohol impaired CR performance to the long ISI only. The 3E (3 mg/kg/day of ethanol) and 5E (5 mg/kg/day of ethanol) rats also showed slower-than-normal increases in learning-dependent excitatory unit activity in the IP and CA1. The 4E (4 mg/kg/day of ethanol) rats showed a higher rate of CR production to the long ISI and enhanced IP and CA1 activation when compared to the 3E and 5E rats. The results indicate that binge-like ethanol exposure in neonatal rats induces long-lasting, dose-dependent deficits in CR acquisition and timing and diminishes conditioning-related neuronal excitation in both the cerebellum and hippocampus. Published by Elsevier Inc.

  7. Neonatal ethanol exposure results in dose-dependent impairments in the acquisition and timing of the conditioned eyeblink response and altered cerebellar interpositus nucleus and hippocampal CA1 unit activity in adult rats

    PubMed Central

    Lindquist, Derick H.; Sokoloff, Greta; Milner, Eric; Steinmetz, Joseph E.

    2013-01-01

    Exposure to ethanol in neonatal rats results in reduced neuronal numbers in the cerebellar cortex and deep nuclei of juvenile and adult animals. This reduction in cell numbers is correlated with impaired delay eyeblink conditioning (EBC), a simple motor learning task in which a neutral conditioned stimulus (CS; tone) is repeatedly paired with a co-terminating unconditioned stimulus (US; periorbital shock). Across training, cell populations in the interpositus (IP) nucleus model the temporal form of the eyeblink conditioned response (CR). The hippocampus, though not required for delay EBC, also shows learning-dependent increases in CA1 and CA3 unit activity. In the present study, rat pups were exposed to 0, 3, 4, or 5 mg/kg/day of ethanol during postnatal days (PD) 4–9. As adults, CR acquisition and timing were assessed during 6 training sessions of delay EBC with a short (280 msec) interstimulus interval (ISI; time from CS onset to US onset) followed by another 6 sessions with a long (880 msec) ISI. Neuronal activity was recorded in the IP and area CA1 during all 12 sessions. The high-dose rats learned the most slowly and, with the moderate-dose rats, produced the longest CR peak latencies over training to the short ISI. The low dose of alcohol impaired CR performance to the long ISI only. The 3E (3 mg/kg/day of ethanol) and 5E (5 mg/kg/day of ethanol) rats also showed slower-than-normal increases in learning-dependent excitatory unit activity in the IP and CA1. The 4E (4 mg/kg/day of ethanol) rats showed a higher rate of CR production to the long ISI and enhanced IP and CA1 activation when compared to the 3E and 5E rats. The results indicate that binge-like ethanol exposure in neonatal rats induces long-lasting, dose-dependent deficits in CR acquisition and timing and diminishes conditioning-related neuronal excitation in both the cerebellum and hippocampus. PMID:23871534

  8. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting.

    PubMed

    Shair, E F; Ahmad, S A; Marhaban, M H; Mohd Tamrin, S B; Abdullah, A R

    2017-01-01

    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.

  9. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    PubMed Central

    Marhaban, M. H.; Abdullah, A. R.

    2017-01-01

    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications. PMID:28303251

  10. Artificial neural network EMG classifier for functional hand grasp movements prediction.

    PubMed

    Gandolla, Marta; Ferrante, Simona; Ferrigno, Giancarlo; Baldassini, Davide; Molteni, Franco; Guanziroli, Eleonora; Cotti Cottini, Michele; Seneci, Carlo; Pedrocchi, Alessandra

    2017-12-01

    Objective To design and implement an electromyography (EMG)-based controller for a hand robotic assistive device, which is able to classify the user's motion intention before the effective kinematic movement execution. Methods Multiple degrees-of-freedom hand grasp movements (i.e. pinching, grasp an object, grasping) were predicted by means of surface EMG signals, recorded from 10 bipolar EMG electrodes arranged in a circular configuration around the forearm 2-3 cm from the elbow. Two cascaded artificial neural networks were then exploited to detect the patient's motion intention from the EMG signal window starting from the electrical activity onset to movement onset (i.e. electromechanical delay). Results The proposed approach was tested on eight healthy control subjects (4 females; age range 25-26 years) and it demonstrated a mean ± SD testing performance of 76% ± 14% for correctly predicting healthy users' motion intention. Two post-stroke patients tested the controller and obtained 79% and 100% of correctly classified movements under testing conditions. Conclusion A task-selection controller was developed to estimate the intended movement from the EMG measured during the electromechanical delay.

  11. Artificial neural network EMG classifier for functional hand grasp movements prediction

    PubMed Central

    Ferrante, Simona; Ferrigno, Giancarlo; Baldassini, Davide; Molteni, Franco; Guanziroli, Eleonora; Cotti Cottini, Michele; Seneci, Carlo; Pedrocchi, Alessandra

    2016-01-01

    Objective To design and implement an electromyography (EMG)-based controller for a hand robotic assistive device, which is able to classify the user's motion intention before the effective kinematic movement execution. Methods Multiple degrees-of-freedom hand grasp movements (i.e. pinching, grasp an object, grasping) were predicted by means of surface EMG signals, recorded from 10 bipolar EMG electrodes arranged in a circular configuration around the forearm 2–3 cm from the elbow. Two cascaded artificial neural networks were then exploited to detect the patient's motion intention from the EMG signal window starting from the electrical activity onset to movement onset (i.e. electromechanical delay). Results The proposed approach was tested on eight healthy control subjects (4 females; age range 25–26 years) and it demonstrated a mean ± SD testing performance of 76% ± 14% for correctly predicting healthy users' motion intention. Two post-stroke patients tested the controller and obtained 79% and 100% of correctly classified movements under testing conditions. Conclusion A task-selection controller was developed to estimate the intended movement from the EMG measured during the electromechanical delay. PMID:27677300

  12. Gesture Based Control and EMG Decomposition

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Chang, Mindy H.; Knuth, Kevin H.

    2005-01-01

    This paper presents two probabilistic developments for use with Electromyograms (EMG). First described is a new-electric interface for virtual device control based on gesture recognition. The second development is a Bayesian method for decomposing EMG into individual motor unit action potentials. This more complex technique will then allow for higher resolution in separating muscle groups for gesture recognition. All examples presented rely upon sampling EMG data from a subject's forearm. The gesture based recognition uses pattern recognition software that has been trained to identify gestures from among a given set of gestures. The pattern recognition software consists of hidden Markov models which are used to recognize the gestures as they are being performed in real-time from moving averages of EMG. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard. Moving averages of EMG do not provide easy distinction between fine muscle groups. To better distinguish between different fine motor skill muscle groups we present a Bayesian algorithm to separate surface EMG into representative motor unit action potentials. The algorithm is based upon differential Variable Component Analysis (dVCA) [l], [2] which was originally developed for Electroencephalograms. The algorithm uses a simple forward model representing a mixture of motor unit action potentials as seen across multiple channels. The parameters of this model are iteratively optimized for each component. Results are presented on both synthetic and experimental EMG data. The synthetic case has additive white noise and is compared with known components. The experimental EMG data was obtained using a custom linear electrode array designed for this study.

  13. EMG patterns during assisted walking in the exoskeleton

    PubMed Central

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns. PMID:24982628

  14. Electrotactile EMG feedback improves the control of prosthesis grasping force

    NASA Astrophysics Data System (ADS)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario

    2016-10-01

    predictive control, as the subjects used the feedback to adjust the desired force even before the prosthesis contacted the object. In conclusion, the online emgFB was superior to the classic forceFB in realistic conditions that included electrotactile stimulation, limited feedback resolution (8 levels), cognitive processing delay, and time constraints (fast grasping).

  15. Specific muscle EMG biofeedback for hand dystonia.

    PubMed

    Deepak, K K; Behari, M

    1999-12-01

    Currently available therapies have only limited success in patients having hand dystonia (writer's cramp). We employed specific muscle EMG biofeedback (audio feedback of the EMG from proximal large muscles of the limb that show abnormally high activity during writing) in 10 of 13 consecutive patients (age, 19-62 years; all males) with a duration of illness from 6 months to 8 years. In three patients, biofeedback was not applicable due to lack of abnormal EMG values. Nine patients showed dystonic posture during writing and had hypertrophy of one or more large muscles of the dominant hand. The remaining four patients showed either involvement of small muscles or muscle wasting. Ten patients were given four or more sessions of EMG audio biofeedback from the proximal large limb muscles, which showed maximum EMG activity. They also practiced writing daily with the relaxed limb for 5 to 10 min. Nine patients showed improvement from 37 to 93% in handwriting, alleviation of discomfort, and pain (assessed on a visual analogue scale). One patient did not show any improvement. Thus EMG biofeedback improved the clinical and electromyographic picture in those patients with hand dystonia who showed EMG overactivity of proximal limb muscles during writing. This specific type of EMG biofeedback appears to be a promising tool for hand dystonia and might also be applied to other types of dystonias.

  16. Deficits in hippocampus-mediated Pavlovian conditioning in endogenous hypercortisolism.

    PubMed

    Grillon, Christian; Smith, Kathryn; Haynos, Ann; Nieman, Lynnette K

    2004-12-01

    Elevated endogenous levels of corticosteroids cause neural dysfunction and loss, especially within the hippocampus, as well as cognitive impairment in hippocampus-mediated tasks. Because Cushing's syndrome patients suffer from hypercortisolism, they represent a unique opportunity to study the impact of elevated glucocorticoids on cognitive functions. The aim of this study was to examine the performance of Cushing's syndrome patients on trace eyeblink conditioning, a cross-species, hippocampal-mediated test of learning and memory. Eleven Cushing's syndrome patients and 11 healthy control subjects participated in an eyeblink trace conditioning test (1000-msec trace) and a task of declarative memory for words. Salivary cortisol was collected in both the patients and the control subjects, and urinary free cortisol was collected in the patients only. The patients exhibited fewer conditional responses and remembered fewer words, compared with the control subjects. Cortisol levels correlated with immediate and delayed declarative memory only. Conditional response correlated with delayed recall after controlling for the magnitude of unconditional response. The integrity of the hippocampus seems to be compromised in Cushing's syndrome patients. Trace eyeblink conditioning might be useful both as a clinical tool to examine changes in hippocampus function in Cushing's disease patients and as a translational tool of research on the impact of chronic exposure of glucocorticoids.

  17. A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition.

    PubMed

    Zhang, Xiaorong; Huang, He

    2015-02-19

    Unreliability of surface EMG recordings over time is a challenge for applying the EMG pattern recognition (PR)-controlled prostheses in clinical practice. Our previous study proposed a sensor fault-tolerant module (SFTM) by utilizing redundant information in multiple EMG signals. The SFTM consists of multiple sensor fault detectors and a self-recovery mechanism that can identify anomaly in EMG signals and remove the recordings of the disturbed signals from the input of the pattern classifier to recover the PR performance. While the proposed SFTM has shown great promise, the previous design is impractical. A practical SFTM has to be fast enough, lightweight, automatic, and robust under different conditions with or without disturbances. This paper presented a real-time, practical SFTM towards robust EMG PR. A novel fast LDA retraining algorithm and a fully automatic sensor fault detector based on outlier detection were developed, which allowed the SFTM to promptly detect disturbances and recover the PR performance immediately. These components of SFTM were then integrated with the EMG PR module and tested on five able-bodied subjects and a transradial amputee in real-time for classifying multiple hand and wrist motions under different conditions with different disturbance types and levels. The proposed fast LDA retraining algorithm significantly shortened the retraining time from nearly 1 s to less than 4 ms when tested on the embedded system prototype, which demonstrated the feasibility of a nearly "zero-delay" SFTM that is imperceptible to the users. The results of the real-time tests suggested that the SFTM was able to handle different types of disturbances investigated in this study and significantly improve the classification performance when one or multiple EMG signals were disturbed. In addition, the SFTM could also maintain the system's classification performance when there was no disturbance. This paper presented a real-time, lightweight, and automatic

  18. Reflex Augmentation of a Tap-Elicited Eyeblink: The Effects of Tone Frequency and Tap Intensity.

    ERIC Educational Resources Information Center

    Cohen, Michelle E.; And Others

    1986-01-01

    Describes two experiments that examined whether the amplitude of the human eyeblink by a mild tap between the eyebrows can be increased if a brief tone is presented simultaneously with the tap and how these effects change from newborn infants to adults. (HOD)

  19. Characteristics of EMG frequency bands in temporomandibullar disorders patients.

    PubMed

    Politti, Fabiano; Casellato, Claudia; Kalytczak, Marcelo Martins; Garcia, Marilia Barbosa Santos; Biasotto-Gonzalez, Daniela Aparecida

    2016-12-01

    The aim of the present study was to determine whether any specific frequency bands of surface electromyographic (sEMG) signals are more susceptible to alterations in patients with temporomandibular disorders (TMD), when compared with healthy subjects. Twenty-seven healthy adults (19 women and eight men; mean age: 23±6.68years) and 27 TMD patients (20 women and seven men; mean age: 24±5.89years) voluntarily participated in the experiment. sEMG data were recorded from the right and left masseter muscles (RM and LM) and the right and left anterior temporalis muscles (RT and LT) as the participants performed tests of chewing (CHW) and maximal clenching effort (MCE). Frequency domain analysis of the sEMG signal was used to analyze differences between TMD patients and healthy subjects in relation to the Power Spectral Density Function (PSDF). The analysis focused on the median frequency (MDF) of the sEMG signal and PSDF frequency bands after the EMG spectrum was divided into twenty-five frequency band of 20Hz each. The Mann-Whitney test was used to compare MDF between TMD patients and healthy subjects and the frequency bands were analyzed using three-way ANOVA with three factors: frequency band, muscle and group. The results of the analysis confirmed that the median frequency values in TMD patients were significantly higher (p<0.05) than those recorded for healthy subjects in the two experimental conditions (MCE and CHW), for all of the muscles assessed (RM, LM, RT and LT). In addition, frequency content between 20 and 100Hz of the normalized PSDF range was significantly lower (p<0.05) in TMD patients than in healthy. This study contributes to quantitatively identify TMD dysfunctions, by non-invasive sEMGs; this assessment is clinically important and still lacking nowadays. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Design of microcontroller-based EMG and the analysis of EMG signals.

    PubMed

    Güler, Nihal Fatma; Hardalaç, Firat

    2002-04-01

    In this work, a microcontroller-based EMG designed and tested on 40 patients. When the patients are in rest, the fast Fourier transform (FFT) analysis was applied to EMG signals recorded from right leg peroneal region. The histograms are constructed from the results of the FFT analysis. The analysis results shows that the amplitude of fibrillation potential of the muscle fiber of 30 patients measured from peroneal region is low and the duration is short. This is the reason why the motor nerves degenerated and 10 patients were found to be healthy.

  1. Characteristics and significance of doublets on needle EMG.

    PubMed

    Lamb, Christopher J; Rubin, Devon I

    2017-04-01

    Voluntary doublets are electrophysiological phenomena thought to be associated with metabolic derangements or neuromuscular conditions. We prospectively studied 232 consecutive patients examined by a single examiner during routine electromyography (EMG) to determine the frequency of doublets in individual patients, specific muscles, neuromuscular conditions, electrolyte levels, and doublet characteristics. Of 232 patients, 25 (10.7%) exhibited doublets. The mean age was 59 (52% men). Only 32 of 1,303 (2.5%) muscles exhibited doublets. Lower extremity and paraspinal groups represented 91% of muscles with doublets. Doublet frequency grouped by EMG diagnoses was: ALS (3 of 11; 27.1%), myopathy (3 of 10; 30.0%), axonal polyneuropathy (7 of 29; 24.1%), and no disease (7 of 109; 6.4%). There were no differences in serum electrolytes between doublet and matched subjects. Doublets occur in approximately 10% of patients, more commonly in lower extremity and paraspinal muscles, and are not correlated with a specific metabolic abnormality or neuromuscular condition. Muscle Nerve 55: 598-600, 2017. © 2016 Wiley Periodicals, Inc.

  2. Pronounced reduction of acquisition of conditioned eyeblink responses in young adults with focal cerebellar lesions impedes conclusions on the role of the cerebellum in extinction and savings.

    PubMed

    Ernst, T M; Beyer, L; Mueller, O M; Göricke, S; Ladd, M E; Gerwig, M; Timmann, D

    2016-05-01

    Human cerebellar lesion studies provide good evidence that the cerebellum contributes to the acquisition of classically conditioned eyeblink responses (CRs). As yet, only one study used more advanced methods of lesion-symptom (or lesion-behavior) mapping to investigate which cerebellar areas are involved in CR acquisition in humans. Likewise, comparatively few studies investigated the contribution of the human cerebellum to CR extinction and savings. In this present study, young adults with focal cerebellar disease were tested. A subset of participants was expected to acquire enough conditioned responses to allow the investigation of extinction and saving effects. 19 participants with chronic surgical lesions of the cerebellum and 19 matched control subjects were tested. In all cerebellar subjects benign tumors of the cerebellum had been surgically removed. Eyeblink conditioning was performed using a standard short delay protocol. An initial unpaired control phase was followed by an acquisition phase, an extinction phase and a subsequent reacquisition phase. Structural 3T magnetic resonance images of the brain were acquired on the day of testing. Cerebellar lesions were normalized using methods optimized for the cerebellum. Subtraction analysis and Liebermeister tests were used to perform lesion-symptom mapping. As expected, CR acquisition was significantly reduced in cerebellar subjects compared to controls. Reduced CR acquisition was significantly more likely in participants with lesions of lobule VI and Crus I extending into Crus II (p<0.05, Liebermeister test). Cerebellar subjects could be subdivided into two groups: a smaller group (n=5) which showed acquisition, extinction and savings within the normal range; and a larger group (n=14) which did not show acquisition. In the latter, no conclusions on extinction or savings could be drawn. Previous findings were confirmed that circumscribed areas in lobule VI and Crus I are of major importance in CR acquisition

  3. Effects of inferior olive lesion on fear-conditioned bradycardia

    PubMed Central

    Kotajima, Hiroko; Sakai, Kazuhisa; Hashikawa, Tsutomu

    2014-01-01

    The inferior olive (IO) sends excitatory inputs to the cerebellar cortex and cerebellar nuclei through the climbing fibers. In eyeblink conditioning, a model of motor learning, the inactivation of or a lesion in the IO impairs the acquisition or expression of conditioned eyeblink responses. Additionally, climbing fibers originating from the IO are believed to transmit the unconditioned stimulus to the cerebellum in eyeblink conditioning. Studies using fear-conditioned bradycardia showed that the cerebellum is associated with adaptive control of heart rate. However, the role of inputs from the IO to the cerebellum in fear-conditioned bradycardia has not yet been investigated. To examine this possible role, we tested fear-conditioned bradycardia in mice by selective disruption of the IO using 3-acetylpyridine. In a rotarod test, mice with an IO lesion were unable to remain on the rod. The number of neurons of IO nuclei in these mice was decreased to ∼40% compared with control mice. Mice with an IO lesion did not show changes in the mean heart rate or in heart rate responses to a conditioned stimulus, or in their responses to a painful stimulus in a tail-flick test. However, they did show impairment of the acquisition/expression of conditioned bradycardia and attenuation of heart rate responses to a pain stimulus used as an unconditioned stimulus. These results indicate that the IO inputs to the cerebellum play a key role in the acquisition/expression of conditioned bradycardia. PMID:24784584

  4. Gesture recognition by instantaneous surface EMG images

    PubMed Central

    Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun

    2016-01-01

    Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses. PMID:27845347

  5. Gesture recognition by instantaneous surface EMG images.

    PubMed

    Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun

    2016-11-15

    Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses.

  6. Age related neuromuscular changes in sEMG of m. Tibialis Anterior using higher order statistics (Gaussianity & linearity test).

    PubMed

    Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh K

    2016-08-01

    Age-associated changes in the surface electromyogram (sEMG) of Tibialis Anterior (TA) muscle can be attributable to neuromuscular alterations that precede strength loss. We have used our sEMG model of the Tibialis Anterior to interpret the age-related changes and compared with the experimental sEMG. Eighteen young (20-30 years) and 18 older (60-85 years) performed isometric dorsiflexion at 6 different percentage levels of maximum voluntary contractions (MVC), and their sEMG from the TA muscle was recorded. Six different age-related changes in the neuromuscular system were simulated using the sEMG model at the same MVCs as the experiment. The maximal power of the spectrum, Gaussianity and Linearity Test Statistics were computed from the simulated and experimental sEMG. A correlation analysis at α=0.05 was performed between the simulated and experimental age-related change in the sEMG features. The results show the loss in motor units was distinguished by the Gaussianity and Linearity test statistics; while the maximal power of the PSD distinguished between the muscular factors. The simulated condition of 40% loss of motor units with halved the number of fast fibers best correlated with the age-related change observed in the experimental sEMG higher order statistical features. The simulated aging condition found by this study corresponds with the moderate motor unit remodelling and negligible strength loss reported in literature for the cohorts aged 60-70 years.

  7. EMG1 is essential for mouse pre-implantation embryo development.

    PubMed

    Wu, Xiaoli; Sandhu, Sumit; Patel, Nehal; Triggs-Raine, Barbara; Ding, Hao

    2010-09-21

    Essential for mitotic growth 1 (EMG1) is a highly conserved nucleolar protein identified in yeast to have a critical function in ribosome biogenesis. A mutation in the human EMG1 homolog causes Bowen-Conradi syndrome (BCS), a developmental disorder characterized by severe growth failure and psychomotor retardation leading to death in early childhood. To begin to understand the role of EMG1 in mammalian development, and how its deficiency could lead to Bowen-Conradi syndrome, we have used mouse as a model. The expression of Emg1 during mouse development was examined and mice carrying a null mutation for Emg1 were generated and characterized. Our studies indicated that Emg1 is broadly expressed during early mouse embryonic development. However, in late embryonic stages and during postnatal development, Emg1 exhibited specific expression patterns. To assess a developmental role for EMG1 in vivo, we exploited a mouse gene-targeting approach. Loss of EMG1 function in mice arrested embryonic development prior to the blastocyst stage. The arrested Emg1-/- embryos exhibited defects in early cell lineage-specification as well as in nucleologenesis. Further, loss of p53, which has been shown to rescue some phenotypes resulting from defects in ribosome biogenesis, failed to rescue the Emg1-/- pre-implantation lethality. Our data demonstrate that Emg1 is highly expressed during mouse embryonic development, and essential for mouse pre-implantation development. The absolute requirement for EMG1 in early embryonic development is consistent with its essential role in yeast. Further, our findings also lend support to the previous study that showed Bowen-Conradi syndrome results from a partial EMG1 deficiency. A complete deficiency would not be expected to be compatible with a live birth.

  8. EMG-Torque Dynamics Change With Contraction Bandwidth.

    PubMed

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  9. Cross-modal Savings in the Contralateral Eyelid Conditioned Response

    PubMed Central

    Campolattaro, Matthew M.; Buss, Eric W.; Freeman, John H.

    2015-01-01

    The present experiment monitored bilateral eyelid responses during eyeblink conditioning in rats trained with a unilateral unconditioned stimulus (US). Three groups of rats were used to determine if cross-modal savings occurs when the location of the US is switched from one eye to the other. Rats in each group first received paired or unpaired eyeblink conditioning with a conditioned stimulus (tone or light; CS) and a unilateral periorbital electrical stimulation US. All rats were subsequently given paired training, but with the US location (Group 1), CS modality (Group 2), or US location and CS modality (Group 3) changed. Changing the location of the US alone resulted in an immediate transfer of responding in both eyelids (Group 1) in rats that received paired training prior to the transfer session. Rats in groups 2 and 3 that initially received paired training showed facilitated learning to the new CS modality during the transfer sessions, indicating that cross-modal savings occurs whether or not the location of the US is changed. All rats that were initially given unpaired training acquired conditioned eyeblink responses similar to de novo acquisition rate during the transfer sessions. Savings of CR incidence was more robust than savings of CR amplitude when the US switched sides, a finding that has implications for elucidating the neural mechanisms of cross-modal savings. PMID:26501170

  10. Adaptive neuron-to-EMG decoder training for FES neuroprostheses

    NASA Astrophysics Data System (ADS)

    Ethier, Christian; Acuna, Daniel; Solla, Sara A.; Miller, Lee E.

    2016-08-01

    Objective. We have previously demonstrated a brain-machine interface neuroprosthetic system that provided continuous control of functional electrical stimulation (FES) and restoration of grasp in a primate model of spinal cord injury (SCI). Predicting intended EMG directly from cortical recordings provides a flexible high-dimensional control signal for FES. However, no peripheral signal such as force or EMG is available for training EMG decoders in paralyzed individuals. Approach. Here we present a method for training an EMG decoder in the absence of muscle activity recordings; the decoder relies on mapping behaviorally relevant cortical activity to the inferred EMG activity underlying an intended action. Monkeys were trained at a 2D isometric wrist force task to control a computer cursor by applying force in the flexion, extension, ulnar, and radial directions and execute a center-out task. We used a generic muscle force-to-endpoint force model based on muscle pulling directions to relate each target force to an optimal EMG pattern that attained the target force while minimizing overall muscle activity. We trained EMG decoders during the target hold periods using a gradient descent algorithm that compared EMG predictions to optimal EMG patterns. Main results. We tested this method both offline and online. We quantified both the accuracy of offline force predictions and the ability of a monkey to use these real-time force predictions for closed-loop cursor control. We compared both offline and online results to those obtained with several other direct force decoders, including an optimal decoder computed from concurrently measured neural and force signals. Significance. This novel approach to training an adaptive EMG decoder could make a brain-control FES neuroprosthesis an effective tool to restore the hand function of paralyzed individuals. Clinical implementation would make use of individualized EMG-to-force models. Broad generalization could be achieved by

  11. EMG finger movement classification based on ANFIS

    NASA Astrophysics Data System (ADS)

    Caesarendra, W.; Tjahjowidodo, T.; Nico, Y.; Wahyudati, S.; Nurhasanah, L.

    2018-04-01

    An increase number of people suffering from stroke has impact to the rapid development of finger hand exoskeleton to enable an automatic physical therapy. Prior to the development of finger exoskeleton, a research topic yet important i.e. machine learning of finger gestures classification is conducted. This paper presents a study on EMG signal classification of 5 finger gestures as a preliminary study toward the finger exoskeleton design and development in Indonesia. The EMG signals of 5 finger gestures were acquired using Myo EMG sensor. The EMG signal features were extracted and reduced using PCA. The ANFIS based learning is used to classify reduced features of 5 finger gestures. The result shows that the classification of finger gestures is less than the classification of 7 hand gestures.

  12. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    NASA Astrophysics Data System (ADS)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  13. sEMG Signal Acquisition Strategy towards Hand FES Control.

    PubMed

    Toledo-Peral, Cinthya Lourdes; Gutiérrez-Martínez, Josefina; Mercado-Gutiérrez, Jorge Airy; Martín-Vignon-Whaley, Ana Isabel; Vera-Hernández, Arturo; Leija-Salas, Lorenzo

    2018-01-01

    Due to damage of the nervous system, patients experience impediments in their daily life: severe fatigue, tremor or impaired hand dexterity, hemiparesis, or hemiplegia. Surface electromyography (sEMG) signal analysis is used to identify motion; however, standardization of electrode placement and classification of sEMG patterns are major challenges. This paper describes a technique used to acquire sEMG signals for five hand motion patterns from six able-bodied subjects using an array of recording and stimulation electrodes placed on the forearm and its effects over functional electrical stimulation (FES) and volitional sEMG combinations, in order to eventually control a sEMG-driven FES neuroprosthesis for upper limb rehabilitation. A two-part protocol was performed. First, personalized templates to place eight sEMG bipolar channels were designed; with these data, a universal template, called forearm electrode set (FELT), was built. Second, volitional and evoked movements were recorded during FES application. 95% classification accuracy was achieved using two sessions per movement. With the FELT, it was possible to perform FES and sEMG recordings simultaneously. Also, it was possible to extract the volitional and evoked sEMG from the raw signal, which is highly important for closed-loop FES control.

  14. White matter integrity of the cerebellar peduncles as a mediator of effects of prenatal alcohol exposure on eyeblink conditioning

    PubMed Central

    Fan, Jia; Meintjes, Ernesta M.; Molteno, Christopher D.; Spottiswoode, Bruce S.; Dodge, Neil C.; Alhamud, Alkathafi A.; Stanton, Mark E.; Peterson, Bradley S.; Jacobson, Joseph L.; Jacobson, Sandra W.

    2015-01-01

    Fetal alcohol spectrum disorders (FASD) are characterized by a range of neurodevelopmental deficits that result from prenatal exposure to alcohol. These can include cognitive, behavioural, and neurological impairment, as well as structural and functional brain damage. Eyeblink conditioning (EBC) is among the most sensitive endpoints affected in FASD. The cerebellar peduncles, large bundles of myelinated nerve fibers that connect the cerebellum to the brainstem, constitute the principal white matter element of the EBC circuit. Diffusion tensor imaging (DTI) is used to assess white matter integrity in fibre pathways linking brain regions. DTI scans of 54 children with FASD and 23 healthy controls, mean age 10.1±1.0 yrs, from the Cape Town Longitudinal Cohort were processed using voxelwise group comparisons. Prenatal alcohol exposure was related to lower fractional anisotropy (FA) bilaterally in the superior cerebellar peduncles and higher mean diffusivity (MD) in the left middle peduncle, effects that remained significant after controlling for potential confounding variables. Lower FA and higher MD in these regions were associated with poorer EBC performance. Moreover, effects of alcohol exposure on EBC decreased significantly after inclusion of these DTI measures in regression models, suggesting that these white matter deficits partially mediate the relation of prenatal alcohol exposure to EBC. The associations of greater alcohol consumption with these DTI measures are largely attributable to greater radial diffusivity, possibly indicating poorer myelination. Thus, these data suggest that fetal alcohol-related deficits in EBC are attributable, in part, to poorer myelination in key regions of the cerebellar peduncles. PMID:25783559

  15. Orthotic comfort is related to kinematics, kinetics, and EMG in recreational runners.

    PubMed

    Mündermann, Anne; Nigg, Benno M; Humble, R Neil; Stefanyshyn, Darren J

    2003-10-01

    The purpose of this study was to determine the relationship between differences in comfort and changes in lower extremity kinematic and kinetic variables and muscle activity in response to foot orthoses. Twenty-one recreational runners volunteered for this study. Three orthotic conditions (posting, custom-molding, and posting and custom-molding) were compared with a control (flat) insert. Lower extremity kinematic, kinetic, and EMG data were collected for 108 trials per subject and condition in nine sessions per subject for overground running at 4 m.s-1. Comfort for all orthotic conditions was assessed in each session using a visual analog scale. The statistical tests used included repeated measures ANOVA, linear regression analysis, and discriminant analysis (alpha = 0.05). Comfort ratings were significantly different between orthotic conditions and the control condition ([lower, upper] confidence limits; posting: [-3.1, -0.8]; molding: [0.4, 3.4]; and posting and molding: [-1.1, 1.9]); 34.9% of differences in comfort were explained by changes in 15 kinematic, kinetic, and EMG variables. The 15 kinematic, kinetic, and EMG variables that partially explained differences in comfort classified 75.0% of cases correctly to the corresponding orthotic condition. In general, comfort is an important and relevant feature of foot orthoses. Evaluations of foot orthoses using comfort do not only reflect subjective perceptions but also differences in functional biomechanical variables. Future research should focus on defining the relationship between comfort and biomechanical variables for material modifications of footwear, different modes of locomotion, and the general population.

  16. Objective models of EMG signals for cyclic processes such as a human gait

    NASA Astrophysics Data System (ADS)

    Babska, Luiza; Selegrat, Monika; Dusza, Jacek J.

    2016-09-01

    EMG signals are small potentials appearing at the surface of human skin during muscle work. They arise due to changes in the physiological state of cell membranes in the muscle fibers. They are characterized by a relatively low frequency range (500 Hz) and a low amplitude signal (of the order of μV), making it difficult to record. Raw EMG signal is inherently random shape. However we can distinguish certain features related to the activation of the muscles of a deterministic or quasi-deterministic associated with the movement and its parametric description. Objective models of EMG signals were created on the base of actual data obtained from the VICON system installed at the University of Physical Education in Warsaw. The object of research (healthy woman) moved repeatedly after a fixed track. On her body 35 reflective markers to record the gait kinematics and 8 electrodes to record EMG signals were placed. We obtained research data included more than 1,000 EMG signals synchronized with the phases of gait. Test result of the work is an algorithm for obtaining the average EMG signal received from the multiple registration gait cycles carried out in the same reproducible conditions. The method described in the article is essentially a pre-finding measurement data from the two quasi-synchronous signals at different sampling frequencies for further processing. This signal is characterized by a significant reduction of high frequency noise and emphasis on the specific characteristics of individual records found in muscle activity.

  17. Usefulness of BFB/EMG in facial palsy rehabilitation.

    PubMed

    Dalla Toffola, Elena; Bossi, Daniela; Buonocore, Michelangelo; Montomoli, Cristina; Petrucci, Lucia; Alfonsi, Enrico

    2005-07-22

    To analyze and to compare the recovery and the development of synkinesis in patients with idiopathic facial palsy (Bell's palsy) following treatment with two methods of rehabilitation, kinesitherapy (KT) and biofeedback/EMG (BFB/EMG). Retrospective cases--series review. Seventy-four patients with Bell' palsy were clinically evaluated within 1 month from onset of palsy and at 12 months after palsy (House scale and synkinesis evaluation). Electromyography (EMG) and Electroneurography (ENG) were performed about 4 weeks after palsy to better evaluate functional abnormalities due to facial nerve lesion. The patients followed two different protocols for rehabilitation: the first 32 patients were treated with therapeutic exercises performed by therapists (KT group), the latter 42 patients were treated using BFB/EMG methods (BFB group) with inhibition of synkinetic movement as the primary goal. KT and BFB patients were evaluated for clinical and neurophysiological characteristics before rehabilitative treatment. BFB patients showed better clinical recovery and minor synkinesis than KT patients. BFB/EMG seems to be more useful than KT in Bell's palsy treatment. This could be due to the fact that BFB/EMG gives more accurate information than KT on muscle activation with better modulation in voluntary recruitment of motor unit.

  18. Relationship between grasping force and features of single-channel intramuscular EMG signals.

    PubMed

    Kamavuako, Ernest Nlandu; Farina, Dario; Yoshida, Ken; Jensen, Winnie

    2009-12-15

    The surface electromyographic (sEMG) signal can be used for force prediction and control in prosthetic devices. Because of technological advances on implantable sensors, the use of intramuscular EMG (iEMG) is becoming a potential alternative to sEMG for the control of multiple degrees-of-freedom (DOF). An invasive system is not affected by crosstalk, typical of sEMG, and provides more stable and independent control sites. However, intramuscular recordings provide more local information because of their high selectivity, and may thus be less representative of the global muscle activity with respect to sEMG. This study investigates the capacity of selective single-channel iEMG recordings to represent the grasping force with respect to the use of sEMG with the aim of assessing if iEMG can be an effective method for proportional myoelectric control. sEMG and iEMG were recorded concurrently from 10 subjects who exerted six grasping force profiles from 0 to 25/50N. The linear correlation coefficient between features extracted from iEMG and force was approximately 0.9 and was not significantly different from the degree of correlation between sEMG and force. This result indicates that a selective iEMG recording is representative of the applied grasping force and can be used for proportional control.

  19. Is child walking conditioned by gender? Surface EMG patterns in female and male children.

    PubMed

    Di Nardo, Francesco; Laureati, Giulio; Strazza, Annachiara; Mengarelli, Alessandro; Burattini, Laura; Agostini, Valentina; Nascimbeni, Alberto; Knaflitz, Marco; Fioretti, Sandro

    2017-03-01

    EMG-based differences between females and males during walking are generally acknowledged in adults. Aim of the study was the quantification of possible gender differences in myoelectric activity of gastrocnemius lateralis (GL) and tibialis anterior (TA) during walking in school-age children. Gender-related comparison with adults was also provided to get possible novel insight in maturation of gait. To this aim, Statistical gait analysis, a recent methodology performing a statistical characterization of gait by averaging spatial-temporal and surface-EMG-based parameters over hundreds of strides, was performed in100 healthy school-age children (C-group) and in 33 healthy young adults (YA-group). On average, 301±110 consecutive strides were analyzed for each subject. In C-group, no significant differences (p>0.05) were observed between females and males in GL and TA, considering mean onset/offset instants of activation and occurrence frequency. Stratifying the C-group for age, small differences between females and males in occurrence frequency of GL arose in oldest children. In YA-group, females showed a significant propensity for a more complex recruitment of TA and GL (higher number of activations during gait cycle, quantified by occurrence frequency) compared to males. These outcomes suggest that gender-related differences in sEMG parameters do not characterize the recruitment of GL and TA during child walking in early years (6-8 years), start occurring when adolescence is approaching (10-12 years), and are acknowledged in both ankle muscles only in adults. Present findings seem to support previous studies on maturation of gait which indicate adolescence as the time-range where gait is completing its maturation path. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. EMG-force relationship during static contraction: effects on sensor placement locations on biceps brachii muscle.

    PubMed

    Ahamed, Nizam Uddin; Sundaraj, Kenneth; Alqahtani, Mahdi; Altwijri, Omar; Ali, Md Asraf; Islam, Md Anamul

    2014-01-01

    The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex. The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations. Twenty-one right hand dominant male subjects (age 25.3±1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation. The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r2=0.62, P<0.05) than when placed on the lower part (r2=0.31, P>0.05) and upper part of the muscle belly (r2=0.29, P<0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively). These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.

  1. Both Trace and Delay Conditioning of Evaluative Responses Depend on Contingency Awareness

    ERIC Educational Resources Information Center

    Kattner, Florian; Ellermeier, Wolfgang; Tavakoli, Paniz

    2012-01-01

    Whereas previous evaluative conditioning (EC) studies produced inconsistent results concerning the role of contingency knowledge, there are classical eye-blink conditioning studies suggesting that declarative processes are involved in trace conditioning but not in delay conditioning. In two EC experiments pairing neutral sounds (conditioned…

  2. Effects of anxiety sensitivity and expectations on the modulation of the startle eyeblink response during a caffeine challenge.

    PubMed

    Benke, Christoph; Blumenthal, Terry D; Modeß, Christiane; Hamm, Alfons O; Pané-Farré, Christiane A

    2015-09-01

    The way in which the tendency to fear somatic arousal sensations (anxiety sensitivity), in interaction with the created expectations regarding arousal induction, might affect defensive responding to a symptom provocation challenge is not yet understood. The present study investigated the effect of anxiety sensitivity on autonomic arousal, startle eyeblink responses, and reported arousal and alertness to expected vs. unexpected caffeine consumption. To create a match/mismatch of expected and experienced arousal, high and low anxiety sensitive participants received caffeine vs. no drug either mixed in coffee (expectation of arousal induction) or in bitter lemon soda (no expectation of arousal induction) on four separate occasions. Autonomic arousal (heart rate, skin conductance level), respiration (end-tidal CO2, minute ventilation), defensive reflex responses (startle eyeblink), and reported arousal and alertness were recorded prior to, immediately and 30 min after beverage ingestion. Caffeine increased ventilation, autonomic arousal, and startle response magnitudes. Both groups showed comparable levels of autonomic and respiratory responses. The startle eyeblink responses were decreased when caffeine-induced arousal occurred unexpectedly, e.g., after administering caffeine in bitter lemon. This effect was more accentuated in high anxiety sensitive persons. Moreover, in high anxiety sensitive persons, the expectation of arousal (coffee consumption) led to higher subjective alertness when administering caffeine and increased arousal even if no drug was consumed. Unexpected symptom provocation leads to increased attention allocation toward feared arousal sensations in high anxiety sensitive persons. This finding broadens our understanding of modulatory mechanisms in defensive responding to bodily symptoms.

  3. Techniques of EMG signal analysis: detection, processing, classification and applications

    PubMed Central

    Hussain, M.S.; Mohd-Yasin, F.

    2006-01-01

    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications. PMID:16799694

  4. Capacitively coupled EMG detection via ultra-low-power microcontroller STFT.

    PubMed

    Roland, Theresa; Baumgartner, Werner; Amsuess, Sebastian; Russold, Michael F

    2017-07-01

    As motion artefacts are a major problem with electromyography sensors, a new algorithm is developed to differentiate artefacts to contraction EMG. The performance of myoelectric prosthesis is increased with this algorithm. The implementation is done for an ultra-low-power microcontroller with limited calculation resources and memory. Short Time Fourier Transformation is used to enable real-time application. The sum of the differences (SOD) of the currently measured EMG to a reference contraction EMG is calculated. The SOD is a new parameter introduced for EMG classification. The satisfactory error rates are determined by measurements done with the capacitively coupling EMG prototype, recently developed by the research group.

  5. Customized Interactive Robotic Treatment for Stroke: EMG-Triggered Therapy

    PubMed Central

    Dipietro, Laura; Ferraro, Mark; Palazzolo, Jerome Joseph; Krebs, Hermano Igo; Volpe, Bruce T.; Hogan, Neville

    2009-01-01

    A system for electromyographic (EMG) triggering of robot-assisted therapy (dubbed the EMG game) for stroke patients is presented. The onset of a patient’s attempt to move is detected by monitoring EMG in selected muscles, whereupon the robot assists her or him to perform point-to-point movements in a horizontal plane. Besides delivering customized robot-assisted therapy, the system can record signals that may be useful to better understand the process of recovery from stroke. Preliminary experiments aimed at testing the proposed system and gaining insight into the potential of EMG-triggered, robot-assisted therapy are reported. PMID:16200756

  6. The extraction of neural strategies from the surface EMG: an update

    PubMed Central

    Merletti, Roberto; Enoka, Roger M.

    2014-01-01

    A surface EMG signal represents the linear transformation of motor neuron discharge times by the compound action potentials of the innervated muscle fibers and is often used as a source of information about neural activation of muscle. However, retrieving the embedded neural code from a surface EMG signal is extremely challenging. Most studies use indirect approaches in which selected features of the signal are interpreted as indicating certain characteristics of the neural code. These indirect associations are constrained by limitations that have been detailed previously (Farina D, Merletti R, Enoka RM. J Appl Physiol 96: 1486–1495, 2004) and are generally difficult to overcome. In an update on these issues, the current review extends the discussion to EMG-based coherence methods for assessing neural connectivity. We focus first on EMG amplitude cancellation, which intrinsically limits the association between EMG amplitude and the intensity of the neural activation and then discuss the limitations of coherence methods (EEG-EMG, EMG-EMG) as a way to assess the strength of the transmission of synaptic inputs into trains of motor unit action potentials. The debated influence of rectification on EMG spectral analysis and coherence measures is also discussed. Alternatively, there have been a number of attempts to identify the neural information directly by decomposing surface EMG signals into the discharge times of motor unit action potentials. The application of this approach is extremely powerful, but validation remains a central issue. PMID:25277737

  7. An Investigative Redesign of the ECG and EMG Signal Conditioning Circuits for Two-fault Tolerance and Circuit Improvement

    NASA Technical Reports Server (NTRS)

    Obrien, Edward M.

    1991-01-01

    An investigation was undertaken to make the elctrocardiography (ECG) and the electromyography (EMG) signal conditioning circuits two-fault tolerant and to update the circuitry. The present signal conditioning circuits provide at least one level of subject protection against electrical shock hazard but at a level of 100 micro-A (for voltages of up to 200 V). However, it is necessary to provide catastrophic fault tolerance protection for the astronauts and to provide protection at a current level of less that 100 micro-A. For this study, protection at the 10 micro-A level was sought. This is the generally accepted value below which no possibility of microshock exists. Only the possibility of macroshock exists in the case of the signal conditioners. However, this extra amount of protection is desirable. The initial part deals with current limiter circuits followed by an investigation into the signal conditioner specifications and circuit design.

  8. EMG-force relationship during static contraction: Effects on sensor placement locations on biceps brachii muscle.

    PubMed

    Ahamed, Nizam Uddin; Sundaraj, Kenneth; Alqahtani, Mahdi; Altwijri, Omar; Ali, Md Asraf; Islam, Md Anamul

    2014-10-15

    The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex. The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations. Twenty-one right hand dominant male subjects (age 25.3 ± 1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation. The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r^{2} = 0.61, P > 0.05) than when placed on the lower part (r^{2}=0.31, P< 0.05) and upper part of the muscle belly (r^{2}=0.29, P > 0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively). These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.

  9. A canonical correlation analysis based EMG classification algorithm for eliminating electrode shift effect.

    PubMed

    Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang

    2016-08-01

    Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.

  10. Assessment of low back muscle fatigue by surface EMG signal analysis: methodological aspects.

    PubMed

    Farina, Dario; Gazzoni, Marco; Merletti, Roberto

    2003-08-01

    This paper focuses on methodological issues related to surface electromyographic (EMG) signal detection from the low back muscles. In particular, we analysed (1) the characteristics (in terms of propagating components) of the signals detected from these muscles; (2) the effect of electrode location on the variables extracted from surface EMG; (3) the effect of the inter-electrode distance (IED) on the same variables; (4) the possibility of assessing fatigue during high and very low force level contractions. To address these issues, we detected single differential surface EMG signals by arrays of eight electrodes from six locations on the two sides of the spine, at the levels of the first (L1), the second (L2), and the fifth (L5) lumbar vertebra. In total, 42 surface EMG channels were acquired at the same time during both high and low force, short and long duration contractions. The main results were: (1) signal quality is poor with predominance of non-travelling components; (2) as a consequence of point (1), in the majority of the cases it is not possible to reliably estimate muscle fiber conduction velocity; (3) despite the poor signal quality, it was possible to distinguish the fatigue properties of the investigated muscles and the fatigability at different contraction levels; (4) IED affects the sensitivity of surface EMG variables to electrode location and large IEDs are suggested when spectral and amplitude analysis is performed; (5) the sensitivity of surface EMG variables to changes in electrode location is on average larger than for other muscles with less complex architecture; (6) IED influences amplitude initial values and slopes, and spectral variable initial values; (7) normalized slopes for both amplitude and spectral variables are not affected by IED and, thus, are suggested for fatigue analysis at different postures or during movement, when IED may change in different conditions (in case of separated electrodes); (8) the surface EMG technique at the

  11. EOG-sEMG Human Interface for Communication

    PubMed Central

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as “dual-modality” for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%. PMID:27418924

  12. EOG-sEMG Human Interface for Communication.

    PubMed

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as "dual-modality" for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%.

  13. Emg Amplitude Estimators Based on Probability Distribution for Muscle-Computer Interface

    NASA Astrophysics Data System (ADS)

    Phinyomark, Angkoon; Quaine, Franck; Laurillau, Yann; Thongpanja, Sirinee; Limsakul, Chusak; Phukpattaranont, Pornchai

    To develop an advanced muscle-computer interface (MCI) based on surface electromyography (EMG) signal, the amplitude estimations of muscle activities, i.e., root mean square (RMS) and mean absolute value (MAV) are widely used as a convenient and accurate input for a recognition system. Their classification performance is comparable to advanced and high computational time-scale methods, i.e., the wavelet transform. However, the signal-to-noise-ratio (SNR) performance of RMS and MAV depends on a probability density function (PDF) of EMG signals, i.e., Gaussian or Laplacian. The PDF of upper-limb motions associated with EMG signals is still not clear, especially for dynamic muscle contraction. In this paper, the EMG PDF is investigated based on surface EMG recorded during finger, hand, wrist and forearm motions. The results show that on average the experimental EMG PDF is closer to a Laplacian density, particularly for male subject and flexor muscle. For the amplitude estimation, MAV has a higher SNR, defined as the mean feature divided by its fluctuation, than RMS. Due to a same discrimination of RMS and MAV in feature space, MAV is recommended to be used as a suitable EMG amplitude estimator for EMG-based MCIs.

  14. Simultaneous, proportional, multi-axis prosthesis control using multichannel surface EMG.

    PubMed

    Yatsenko, Dimitri; McDonnall, Daniel; Guillory, K Shane

    2007-01-01

    Most upper limb prosthesis controllers only allow the individual selection and control of single joints of the limb. The main limiting factor for simultaneous multi-joint control is usually the availability of reliable independent control signals that can intuitively be used. In this paper, a novel method is presented for extraction of individual muscle source signals from surface EMG array recordings, based on EMG energy orthonormalization along principle movement vectors. In cases where independently-controllable muscles are present in residual limbs, this method can be used to provide simultaneous, multi-axis, proportional control of prosthetic systems. Initial results are presented for simultaneous control of wrist rotation, wrist flexion/extension, and grip open/close for two intact subjects under both isometric and non-isometric conditions and for one subject with transradial amputation.

  15. Generating Control Commands From Gestures Sensed by EMG

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Jorgensen, Charles

    2006-01-01

    An effort is under way to develop noninvasive neuro-electric interfaces through which human operators could control systems as diverse as simple mechanical devices, computers, aircraft, and even spacecraft. The basic idea is to use electrodes on the surface of the skin to acquire electromyographic (EMG) signals associated with gestures, digitize and process the EMG signals to recognize the gestures, and generate digital commands to perform the actions signified by the gestures. In an experimental prototype of such an interface, the EMG signals associated with hand gestures are acquired by use of several pairs of electrodes mounted in sleeves on a subject s forearm (see figure). The EMG signals are sampled and digitized. The resulting time-series data are fed as input to pattern-recognition software that has been trained to distinguish gestures from a given gesture set. The software implements, among other things, hidden Markov models, which are used to recognize the gestures as they are being performed in real time. Thus far, two experiments have been performed on the prototype interface to demonstrate feasibility: an experiment in synthesizing the output of a joystick and an experiment in synthesizing the output of a computer or typewriter keyboard. In the joystick experiment, the EMG signals were processed into joystick commands for a realistic flight simulator for an airplane. The acting pilot reached out into the air, grabbed an imaginary joystick, and pretended to manipulate the joystick to achieve left and right banks and up and down pitches of the simulated airplane. In the keyboard experiment, the subject pretended to type on a numerical keypad, and the EMG signals were processed into keystrokes. The results of the experiments demonstrate the basic feasibility of this method while indicating the need for further research to reduce the incidence of errors (including confusion among gestures). Topics that must be addressed include the numbers and arrangements

  16. Multi-step EMG Classification Algorithm for Human-Computer Interaction

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Barreto, Armando; Adjouadi, Malek

    A three-electrode human-computer interaction system, based on digital processing of the Electromyogram (EMG) signal, is presented. This system can effectively help disabled individuals paralyzed from the neck down to interact with computers or communicate with people through computers using point-and-click graphic interfaces. The three electrodes are placed on the right frontalis, the left temporalis and the right temporalis muscles in the head, respectively. The signal processing algorithm used translates the EMG signals during five kinds of facial movements (left jaw clenching, right jaw clenching, eyebrows up, eyebrows down, simultaneous left & right jaw clenching) into five corresponding types of cursor movements (left, right, up, down and left-click), to provide basic mouse control. The classification strategy is based on three principles: the EMG energy of one channel is typically larger than the others during one specific muscle contraction; the spectral characteristics of the EMG signals produced by the frontalis and temporalis muscles during different movements are different; the EMG signals from adjacent channels typically have correlated energy profiles. The algorithm is evaluated on 20 pre-recorded EMG signal sets, using Matlab simulations. The results show that this method provides improvements and is more robust than other previous approaches.

  17. EMG of the hip adductor muscles in six clinical examination tests.

    PubMed

    Lovell, Gregory A; Blanch, Peter D; Barnes, Christopher J

    2012-08-01

    To assess activation of muscles of hip adduction using EMG and force analysis during standard clinical tests, and compare athletes with and without a prior history of groin pain. Controlled laboratory study. 21 male athletes from an elite junior soccer program. Bilateral surface EMG recordings of the adductor magnus, adductor longus, gracilis and pectineus as well as a unilateral fine-wire EMG of the pectineus were made during isometric holds in six clinical examination tests. A load cell was used to measure force data. Test type was a significant factor in the EMG output for all four muscles (all muscles p < 0.01). EMG activation was highest in Hips 0 or Hips 45 for adductor magnus, adductor longus and gracilis. EMG activation for pectineus was highest in Hips 90. Injury history was a significant factor in the EMG output for the adductor longus (p < 0.05), pectineus (p < 0.01) and gracilis (p < 0.01) but not adductor magnus. For force data, clinical test type was a significant factor (p < 0.01) with Hips 0 being significantly stronger than Hips 45, Hips 90 and Side lay. BMI (body mass index) was a significant factor (p < 0.01) for producing a higher force. All other factors had no significant effect on the force outputs. Hip adduction strength assessment is best measured at hips 0 (which produced most force) or 45° flexion (which generally gave the highest EMG output). Muscle EMG varied significantly with clinical test position. Athletes with previous groin injury had a significant fall in some EMG outputs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. EMG synchrony to assess impaired corticomotor control of locomotion after stroke.

    PubMed

    Lodha, Neha; Chen, Yen-Ting; McGuirk, Theresa E; Fox, Emily J; Kautz, Steven A; Christou, Evangelos A; Clark, David J

    2017-12-01

    Adapting one's gait pattern requires a contribution from cortical motor commands. Evidence suggests that frequency-based analysis of electromyography (EMG) can be used to detect this cortical contribution. Specifically, increased EMG synchrony between synergistic muscles in the Piper frequency band has been linked to heightened corticomotor contribution to EMG. Stroke-related damage to cerebral motor pathways would be expected to diminish EMG Piper synchrony. The objective of this study is therefore to test the hypothesis that EMG Piper synchrony is diminished in the paretic leg relative to nonparetic and control legs, particularly during a long-step task of walking adaptability. Twenty adults with post-stroke hemiparesis and seventeen healthy controls participated in this study. EMG Piper synchrony increased more for the control legs compare to the paretic legs when taking a non-paretic long step (5.02±3.22% versus 0.86±2.62%), p<0.01) and when taking a paretic long step (2.04±1.98% versus 0.70±2.34%, p<0.05). A similar but non-significant trend was evident when comparing non-paretic and paretic legs. No statistically significant differences in EMG Piper synchrony were found between legs for typical walking. EMG Piper synchrony was positively associated with walking speed and step length within the stroke group. These findings support the assertion that EMG Piper synchrony indicates corticomotor contribution to walking. Published by Elsevier Ltd.

  19. FastICA peel-off for ECG interference removal from surface EMG.

    PubMed

    Chen, Maoqi; Zhang, Xu; Chen, Xiang; Zhu, Mingxing; Li, Guanglin; Zhou, Ping

    2016-06-13

    Multi-channel recording of surface electromyographyic (EMG) signals is very likely to be contaminated by electrocardiographic (ECG) interference, specifically when the surface electrode is placed on muscles close to the heart. A novel fast independent component analysis (FastICA) based peel-off method is presented to remove ECG interference contaminating multi-channel surface EMG signals. Although demonstrating spatial variability in waveform shape, the ECG interference in different channels shares the same firing instants. Utilizing the firing information estimated from FastICA, ECG interference can be separated from surface EMG by a "peel off" processing. The performance of the method was quantified with synthetic signals by combining a series of experimentally recorded "clean" surface EMG and "pure" ECG interference. It was demonstrated that the new method can remove ECG interference efficiently with little distortion to surface EMG amplitude and frequency. The proposed method was also validated using experimental surface EMG signals contaminated by ECG interference. The proposed FastICA peel-off method can be used as a new and practical solution to eliminating ECG interference from multichannel EMG recordings.

  20. EMG based FES for post-stroke rehabilitation

    NASA Astrophysics Data System (ADS)

    Piyus, Ceethal K.; Anjaly Cherian, V.; Nageswaran, Sharmila

    2017-11-01

    Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG Abstract—Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG based FES system can be used for effective upper limb motor re-education in post stroke upper limb rehabilitation. The governing feature of the designed system is its synchronous activation, in which the FES stimulation is dependent on the amplitude of the EMG signal acquired from the unaffected upper limb muscle of the hemiplegic patient. This proportionate operation eliminates the undesirable damage to the patient’s skin by generating stimulus in proportion to voluntary EMG signals. This feature overcomes the disadvantages of currently available manual motor re-education systems. This model can be used in home-based post stroke rehabilitation, to effectively improve the upper limb functions.

  1. Dissociating basal forebrain and medial temporal amnesic syndromes: insights from classical conditioning.

    PubMed

    Myer, Catherine E; Bryant, Deborah; DeLuca, John; Gluck, Mark A

    2002-01-01

    In humans, anterograde amnesia can result from damage to the medial temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these emerging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.

  2. Associations between motor unit action potential parameters and surface EMG features.

    PubMed

    Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario

    2017-10-01

    The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit

  3. EMG and peak force responses to PNF stretching and the relationship between stretching-induced force deficits and bilateral deficits

    PubMed Central

    Cengiz, Asim

    2015-01-01

    [Purpose] The aim of the present study was to investigate the possibility of an interaction between stretching induced deficit (SFD) and bilateral deficits (BLD) during maximal voluntary isometric hand flexion under PNF stretch and no-stretch conditions through measurement of EMG and force production. [Subjects and Methods] Ten physically active male Caucasian students (age, 24.1±2.38 years; body mass, 79.48±11.40 kg; height, 174.15±0.8 cm) volunteered to participate in this study. EMG and force measurements of the subjects were recorded during either unilateral or bilateral 3-second maximal voluntary isometric hand flexion (MVC) against a force transducer. The paired sample t-test was used to examine the significance of differences among several conditions. Pearson product-moment correlation was used to evaluate the associations between different parameters. [Results] Stretching-induced deficits correlated with bilateral deficits in both force (r=0.85) and iEMG (r=0.89). PNF stretching caused significant decrements in the bilateral and unilateral conditions for both the right and left sides. [Conclusion] Since both force and iEMG decreases were observed in most measurements; it suggests there is a neural mechanism behinnd both the BLD and the SFD. PMID:25931696

  4. Excitatory Cerebellar Nucleocortical Circuit Provides Internal Amplification during Associative Conditioning.

    PubMed

    Gao, Zhenyu; Proietti-Onori, Martina; Lin, Zhanmin; Ten Brinke, Michiel M; Boele, Henk-Jan; Potters, Jan-Willem; Ruigrok, Tom J H; Hoebeek, Freek E; De Zeeuw, Chris I

    2016-02-03

    Closed-loop circuitries between cortical and subcortical regions can facilitate precision of output patterns, but the role of such networks in the cerebellum remains to be elucidated. Here, we characterize the role of internal feedback from the cerebellar nuclei to the cerebellar cortex in classical eyeblink conditioning. We find that excitatory output neurons in the interposed nucleus provide efference-copy signals via mossy fibers to the cerebellar cortical zones that belong to the same module, triggering monosynaptic responses in granule and Golgi cells and indirectly inhibiting Purkinje cells. Upon conditioning, the local density of nucleocortical mossy fiber terminals significantly increases. Optogenetic activation and inhibition of nucleocortical fibers in conditioned animals increases and decreases the amplitude of learned eyeblink responses, respectively. Our data show that the excitatory nucleocortical closed-loop circuitry of the cerebellum relays a corollary discharge of premotor signals and suggests an amplifying role of this circuitry in controlling associative motor learning. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Individual Differences in Cognitive-Flexibility: The Influence of Spontaneous Eyeblink Rate, Trait Psychoticism and Working Memory on Attentional Set-Shifting

    ERIC Educational Resources Information Center

    Tharp, Ian J.; Pickering, Alan D.

    2011-01-01

    Individual differences in psychophysiological function have been shown to influence the balance between flexibility and distractibility during attentional set-shifting [e.g., Dreisbach et al. (2005). Dopamine and cognitive control: The influence of spontaneous eyeblink rate and dopamine gene polymorphisms on perseveration and distractibility.…

  6. siGnum: graphical user interface for EMG signal analysis.

    PubMed

    Kaur, Manvinder; Mathur, Shilpi; Bhatia, Dinesh; Verma, Suresh

    2015-01-01

    Electromyography (EMG) signals that represent the electrical activity of muscles can be used for various clinical and biomedical applications. These are complicated and highly varying signals that are dependent on anatomical location and physiological properties of the muscles. EMG signals acquired from the muscles require advanced methods for detection, decomposition and processing. This paper proposes a novel Graphical User Interface (GUI) siGnum developed in MATLAB that will apply efficient and effective techniques on processing of the raw EMG signals and decompose it in a simpler manner. It could be used independent of MATLAB software by employing a deploy tool. This would enable researcher's to gain good understanding of EMG signal and its analysis procedures that can be utilized for more powerful, flexible and efficient applications in near future.

  7. Altered EMG patterns in diabetic neuropathic and not neuropathic patients during step ascending and descending.

    PubMed

    Spolaor, Fabiola; Sawacha, Zimi; Guarneri, Gabriella; Del Din, Silvia; Avogaro, Angelo; Cobelli, Claudio

    2016-12-01

    Diabetic peripheral neuropathy (DPN) causes motor control alterations during daily life activities. Tripping during walking or stair climbing is the predominant cause of falls in the elderly subjects with DPN and without (NoDPN). Surface Electromyography (sEMG) has been shown to be a valid tool for detecting alterations of motor functions in subjects with DPN. This study aims at investigating the presence of functional alterations in diabetic subjects during stair climbing and at exploring the relationship between altered muscle activation and temporal parameter. Lower limb muscle activities, temporal parameters and speed were evaluated in 50 subjects (10 controls, 20 with DPN, 20 without DPN), while climbing up and down a stair, using sEMG, three-dimentional motion capture and force plates. Magnitude and timing of sEMG linear envelopes peaks were extracted. Level walking was used as reference condition for the comparison with step negotiation. sEMG, speed and temporal parameters revealed significant differences among all groups of patients. Results showed an association between earlier activation of lower limb muscles and reduced speed in subjects with DPN. Speed and temporal parameters significantly correlated with sEMG (p<0.05). The findings of this study are encouraging and could be used to improve rehabilitation programs aiming at reducing falls risk in diabetic subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Influence of Inter-Electrode Distance on EMG

    DTIC Science & Technology

    2001-10-25

    has been observed that at low levels of muscle contraction there was no significant variation due to the change in the distance between the...a variation of the spectral content of the EMG with change in the IED. The study also has shown that there is a variation of the EMG with muscle ... contraction but that the comparison should be done if the distance between the electrodes has been kept constant.

  9. Electromyography (EMG) signal recognition using combined discrete wavelet transform based adaptive neuro-fuzzy inference systems (ANFIS)

    NASA Astrophysics Data System (ADS)

    Arozi, Moh; Putri, Farika T.; Ariyanto, Mochammad; Khusnul Ari, M.; Munadi, Setiawan, Joga D.

    2017-01-01

    People with disabilities are increasing from year to year either due to congenital factors, sickness, accident factors and war. One form of disability is the case of interruptions of hand function. The condition requires and encourages the search for solutions in the form of creating an artificial hand with the ability as a human hand. The development of science in the field of neuroscience currently allows the use of electromyography (EMG) to control the motion of artificial prosthetic hand into the necessary use of EMG as an input signal to control artificial prosthetic hand. This study is the beginning of a significant research planned in the development of artificial prosthetic hand with EMG signal input. This initial research focused on the study of EMG signal recognition. Preliminary results show that the EMG signal recognition using combined discrete wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS) produces accuracy 98.3 % for training and 98.51% for testing. Thus the results can be used as an input signal for Simulink block diagram of a prosthetic hand that will be developed on next study. The research will proceed with the construction of artificial prosthetic hand along with Simulink program controlling and integrating everything into one system.

  10. Eyelid contour detection and tracking for startle research related eye-blink measurements from high-speed video records.

    PubMed

    Bernard, Florian; Deuter, Christian Eric; Gemmar, Peter; Schachinger, Hartmut

    2013-10-01

    Using the positions of the eyelids is an effective and contact-free way for the measurement of startle induced eye-blinks, which plays an important role in human psychophysiological research. To the best of our knowledge, no methods for an efficient detection and tracking of the exact eyelid contours in image sequences captured at high-speed exist that are conveniently usable by psychophysiological researchers. In this publication a semi-automatic model-based eyelid contour detection and tracking algorithm for the analysis of high-speed video recordings from an eye tracker is presented. As a large number of images have been acquired prior to method development it was important that our technique is able to deal with images that are recorded without any special parametrisation of the eye tracker. The method entails pupil detection, specular reflection removal and makes use of dynamic model adaption. In a proof-of-concept study we could achieve a correct detection rate of 90.6%. With this approach, we provide a feasible method to accurately assess eye-blinks from high-speed video recordings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.

    PubMed

    Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio

    2017-11-01

    Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this

  12. A Spiking Neural Network in sEMG Feature Extraction.

    PubMed

    Lobov, Sergey; Mironov, Vasiliy; Kastalskiy, Innokentiy; Kazantsev, Victor

    2015-11-03

    We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control.

  13. An EMG-CT method using multiple surface electrodes in the forearm.

    PubMed

    Nakajima, Yasuhiro; Keeratihattayakorn, Saran; Yoshinari, Satoshi; Tadano, Shigeru

    2014-12-01

    Electromyography computed tomography (EMG-CT) method is proposed for visualizing the individual muscle activities in the human forearm. An EMG conduction model was formulated for reverse-estimation of muscle activities using EMG signals obtained with multi surface electrodes. The optimization process was calculated using sequential quadratic programming by comparing the estimated EMG values from the model with the measured values. The individual muscle activities in the deep region were estimated and used to produce an EMG tomographic image. For validation of the method, isometric contractions of finger muscles were examined for three subjects, applying a flexion load (4.9, 7.4 and 9.8 N) to the proximal interphalangeal joint of the middle finger. EMG signals in the forearm were recorded during the tasks using multiple surface electrodes, which were bound around the subject's forearm. The EMG-CT method illustrates the distribution of muscle activities within the forearm. The change in amplitude and area of activated muscles can be observed. The normalized muscle activities of all three subjects appear to increase monotonically with increases in the load. Kinesiologically, this method was able to estimate individual muscle activation values and could provide a novel tool for studying hand function and development of an examination for evaluating rehabilitation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Emg Signal Analysis of Healthy and Neuropathic Individuals

    NASA Astrophysics Data System (ADS)

    Gupta, Ashutosh; Sayed, Tabassum; Garg, Ridhi; Shreyam, Richa

    2017-08-01

    Electromyography is a method to evaluate levels of muscle activity. When a muscle contracts, an action potential is generated and this circulates along the muscular fibers. In electromyography, electrodes are connected to the skin and the electrical activity of muscles is measured and graph is plotted. The surface EMG signals picked up during the muscular activity are interfaced with a system. The EMG signals from individual suffering from Neuropathy and healthy individual, so obtained, are processed and analyzed using signal processing techniques. This project includes the investigation and interpretation of EMG signals of healthy and Neuropathic individuals using MATLAB. The prospective use of this study is in developing the prosthetic device for the people with Neuropathic disability.

  15. Reflex-mediated dynamic neuromuscular stabilization in stroke patients: EMG processing and ultrasound imaging.

    PubMed

    Yoon, Hyun S; You, Joshua Sung H

    2017-07-20

    Postural core instability is associated with poor dynamic balance and a high risk of serious falls. Both neurodevelopmental treatment (NDT) and dynamic neuromuscular stabilization (DNS) core stabilization exercises have been used to improve core stability, but the outcomes of these treatments remain unclear. This study was undertaken to examine the therapeutic effects of NDT and DNS core stabilization exercises on muscular activity, core stability, and core muscle thickness. Ten participants (5 healthy adults; 5 hemiparetic stroke patients) were recruited. Surface electromyography (EMG) was used to determine core muscle activity of the transversus abdominis/internal oblique (TrA/IO), external oblique (EO), and rectus abdominis (RA) muscles. Ultrasound imaging was used to measure transversus abdominals/internal oblique (TrA/IO) thickness, and a pressure biofeedback unit (PBU) was used to measure core stability during the DNS and NDT core exercise conditions. Data are reported as median and range and were compared using nonparametric Mann - Whitney U test and Wilcoxon signed rank test at p< 0.05. Both healthy and hemiparetic stroke groups showed greater median EMG amplitude in the TrA/IO muscles, core stability, and muscle thickness values during the DNS exercise condition than during the NDT core exercise condition, respectively (p< 0.05). However, the relative changes in the EMG amplitude, core stability, and muscle thickness values were greater during the DNS exercise condition than during the NDT core exercise condition in the hemiparetic stroke patient group (p< 0.05). Our novel results provide the first clinical evidence that DNS is more effective than NDT in both healthy and hemiparetic stroke subjects to provide superior deep core muscle activation, core stabilization, and muscle thickness. Moreover, such advantageous therapeutic benefits of the DNS core stabilization exercise over the NDT exercise were more apparent in the hemiparetis stroke patients than

  16. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer

    PubMed Central

    van Dijk, Ludger; van der Sluis, Corry K.; van Dijk, Hylke W.; Bongers, Raoul M.

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs. PMID:27556154

  17. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.

    PubMed

    van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs.

  18. Comparison of sEMG processing methods during whole-body vibration exercise.

    PubMed

    Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S

    2015-12-01

    The objective was to investigate the influence of surface electromyography (sEMG) processing methods on the quantification of muscle activity during whole-body vibration (WBV) exercises. sEMG activity was recorded while the participants performed squats on the platform with and without WBV. The spikes observed in the sEMG spectrum at the vibration frequency and its harmonics were deleted using state-of-the-art methods, i.e. (1) a band-stop filter, (2) a band-pass filter, and (3) spectral linear interpolation. The same filtering methods were applied on the sEMG during the no-vibration trial. The linear interpolation method showed the highest intraclass correlation coefficients (no vibration: 0.999, WBV: 0.757-0.979) with the comparison measure (unfiltered sEMG during the no-vibration trial), followed by the band-stop filter (no vibration: 0.929-0.975, WBV: 0.661-0.938). While both methods introduced a systematic bias (P < 0.001), the error increased with increasing mean values to a higher degree for the band-stop filter. After adjusting the sEMG(RMS) during WBV for the bias, the performance of the interpolation method and the band-stop filter was comparable. The band-pass filter was in poor agreement with the other methods (ICC: 0.207-0.697), unless the sEMG(RMS) was corrected for the bias (ICC ⩾ 0.931, %LOA ⩽ 32.3). In conclusion, spectral linear interpolation or a band-stop filter centered at the vibration frequency and its multiple harmonics should be applied to delete the artifacts in the sEMG signals during WBV. With the use of a band-stop filter it is recommended to correct the sEMG(RMS) for the bias as this procedure improved its performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Robust functional statistics applied to Probability Density Function shape screening of sEMG data.

    PubMed

    Boudaoud, S; Rix, H; Al Harrach, M; Marin, F

    2014-01-01

    Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.

  20. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    NASA Astrophysics Data System (ADS)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  1. Error reduction in EMG signal decomposition

    PubMed Central

    Kline, Joshua C.

    2014-01-01

    Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. PMID:25210159

  2. A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors.

    PubMed

    Ying, Rex; Wall, Christine E

    2016-12-08

    Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Analysis of EMG Signals in Aggressive and Normal Activities by Using Higher-Order Spectra

    PubMed Central

    Sezgin, Necmettin

    2012-01-01

    The analysis and classification of electromyography (EMG) signals are very important in order to detect some symptoms of diseases, prosthetic arm/leg control, and so on. In this study, an EMG signal was analyzed using bispectrum, which belongs to a family of higher-order spectra. An EMG signal is the electrical potential difference of muscle cells. The EMG signals used in the present study are aggressive or normal actions. The EMG dataset was obtained from the machine learning repository. First, the aggressive and normal EMG activities were analyzed using bispectrum and the quadratic phase coupling of each EMG episode was determined. Next, the features of the analyzed EMG signals were fed into learning machines to separate the aggressive and normal actions. The best classification result was 99.75%, which is sufficient to significantly classify the aggressive and normal actions. PMID:23193379

  4. Masticatory Muscle Sleep Background EMG Activity is Elevated in Myofascial TMD Patients

    PubMed Central

    Raphael, Karen G.; Janal, Malvin N.; Sirois, David A.; Dubrovsky, Boris; Wigren, Pia E.; Klausner, Jack J.; Krieger, Ana C.; Lavigne, Gilles J.

    2013-01-01

    Despite theoretical speculation and strong clinical belief, recent research using laboratory polysomnographic (PSG) recording has provided new evidence that frequency of sleep bruxism (SB) masseter muscle events, including grinding or clenching of the teeth during sleep, is not increased for women with chronic myofascial temporomandibular disorder (TMD). The current case-control study compares a large sample of women suffering from chronic myofascial TMD (n=124) with a demographically matched control group without TMD (n=46) on sleep background electromyography (EMG) during a laboratory PSG study. Background EMG activity was measured as EMG root mean square (RMS) from the right masseter muscle after lights out. Sleep background EMG activity was defined as EMG RMS remaining after activity attributable to SB, other orofacial activity, other oromotor activity and movement artifacts were removed. Results indicated that median background EMG during these non SB-event periods was significantly higher (p<.01) for women with myofascial TMD (median=3.31 μV and mean=4.98 μV) than for control women (median=2.83 μV and mean=3.88 μV) with median activity in 72% of cases exceeding control activity. Moreover, for TMD cases, background EMG was positively associated and SB event-related EMG was negatively associated with pain intensity ratings (0–10 numerical scale) on post sleep waking. These data provide the foundation for a new focus on small, but persistent, elevations in sleep EMG activity over the course of the night as a mechanism of pain induction or maintenance. PMID:24237356

  5. Efficacy of EMG-triggered electrical arm stimulation in chronic hemiparetic stroke patients.

    PubMed

    von Lewinski, Friederike; Hofer, Sabine; Kaus, Jürgen; Merboldt, Klaus-Dietmar; Rothkegel, Holger; Schweizer, Renate; Liebetanz, David; Frahm, Jens; Paulus, Walter

    2009-01-01

    EMG-triggered electrostimulation (EMG-ES) may improve the motor performance of affected limbs of hemiparetic stroke patients even in the chronic stage. This study was designed to characterize cortical activation changes following intensified EMG-ES in chronic stroke patients and to identify predictors for successful rehabilitation depending on disease severity. We studied 9 patients with severe residual hemiparesis, who underwent 8 weeks of daily task-orientated multi-channel EMG-ES of the paretic arm. Before and after treatment, arm function was evaluated clinically and cortical activation patterns were assessed with functional MRI (fMRI) and/or transcranial magnetic stimulation (TMS). As response to therapy, arm function improved in a subset of patients with more capacity in less affected subjects, but there was no significant gain for those with Box & Block test values below 4 at inception. The clinical improvement, if any, was accompanied by an ipsilesional increase in the sensorimotor cortex (SMC) activation area in fMRI and enhanced intracortical facilitation (ICF) as revealed by paired TMS. The SMC activation change in fMRI was predicted by the presence or absence of motor-evoked potentials (MEPs) on the affected side. The present findings support the notion that intensified EMG-ES may improve the arm function in individual chronic hemiparetic stroke patients but not in more severely impaired individuals. Functional improvements are paralleled by increased ipsilesional SMC activation and enhanced ICF supporting neuroplasticity as contributor to rehabilitation. The clinical score at inception and the presence of MEPs have the best predictive potential.

  6. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  7. Improving EMG based classification of basic hand movements using EMD.

    PubMed

    Sapsanis, Christos; Georgoulas, George; Tzes, Anthony; Lymberopoulos, Dimitrios

    2013-01-01

    This paper presents a pattern recognition approach for the identification of basic hand movements using surface electromyographic (EMG) data. The EMG signal is decomposed using Empirical Mode Decomposition (EMD) into Intrinsic Mode Functions (IMFs) and subsequently a feature extraction stage takes place. Various combinations of feature subsets are tested using a simple linear classifier for the detection task. Our results suggest that the use of EMD can increase the discrimination ability of the conventional feature sets extracted from the raw EMG signal.

  8. Surface EMG crosstalk during phasic involuntary muscle activation in the nociceptive withdrawal reflex.

    PubMed

    Frahm, Ken S; Jensen, Michael B; Farina, Dario; Andersen, Ole K

    2012-08-01

    The human nociceptive withdrawal reflex is typically assessed using surface electromyography (sEMG). Based on sEMG, the reflex receptive field (RRF) can be mapped. However, EMG crosstalk can cause erroneous results in the RRF determination. Single differential (SD) vs. double differential (DD) surface EMG were evaluated. Different electrode areas and inter-electrode-distances (IED) were evaluated. The reflexes were elicited by electrical stimulation of the sole of the foot. EMG was obtained from both tibialis anterior (TA) and soleus (SOL) using both surface and intramuscular EMG (iEMG). The amount of crosstalk was significantly higher in SD recordings than in DD recordings (P < 0.05). Crosstalk increased when electrode measuring area increased (P < 0.05) and when IED increased (P < 0.05). Reflex detection sensitivity decreases with increasing measuring area and increasing IED. These results stress that for determination of RRF and similar tasks, DD recordings should be applied. Copyright © 2012 Wiley Periodicals, Inc.

  9. Design of sEMG assembly to detect external anal sphincter activity: a proof of concept.

    PubMed

    Shiraz, Arsam; Leaker, Brian; Mosse, Charles Alexander; Solomon, Eskinder; Craggs, Michael; Demosthenous, Andreas

    2017-10-31

    Conditional trans-rectal stimulation of the pudendal nerve could provide a viable solution to treat hyperreflexive bladder in spinal cord injury. A set threshold of the amplitude estimate of the external anal sphincter surface electromyography (sEMG) may be used as the trigger signal. The efficacy of such a device should be tested in a large scale clinical trial. As such, a probe should remain in situ for several hours while patients attend to their daily routine; the recording electrodes should be designed to be large enough to maintain good contact while observing design constraints. The objective of this study was to arrive at a design for intra-anal sEMG recording electrodes for the subsequent clinical trials while deriving the possible recording and processing parameters. Having in mind existing solutions and based on theoretical and anatomical considerations, a set of four multi-electrode probes were designed and developed. These were tested in a healthy subject and the measured sEMG traces were recorded and appropriately processed. It was shown that while comparatively large electrodes record sEMG traces that are not sufficiently correlated with the external anal sphincter contractions, smaller electrodes may not maintain a stable electrode tissue contact. It was shown that 3 mm wide and 1 cm long electrodes with 5 mm inter-electrode spacing, in agreement with Nyquist sampling, placed 1 cm from the orifice may intra-anally record a sEMG trace sufficiently correlated with external anal sphincter activity. The outcome of this study can be used in any biofeedback, treatment or diagnostic application where the activity of the external anal sphincter sEMG should be detected for an extended period of time.

  10. Latent Factors Limiting the Performance of sEMG-Interfaces

    PubMed Central

    Lobov, Sergey; Krilova, Nadia; Kazantsev, Victor

    2018-01-01

    Recent advances in recording and real-time analysis of surface electromyographic signals (sEMG) have fostered the use of sEMG human–machine interfaces for controlling personal computers, prostheses of upper limbs, and exoskeletons among others. Despite a relatively high mean performance, sEMG-interfaces still exhibit strong variance in the fidelity of gesture recognition among different users. Here, we systematically study the latent factors determining the performance of sEMG-interfaces in synthetic tests and in an arcade game. We show that the degree of muscle cooperation and the amount of the body fatty tissue are the decisive factors in synthetic tests. Our data suggest that these factors can only be adjusted by long-term training, which promotes fine-tuning of low-level neural circuits driving the muscles. Short-term training has no effect on synthetic tests, but significantly increases the game scoring. This implies that it works at a higher decision-making level, not relevant for synthetic gestures. We propose a procedure that enables quantification of the gestures’ fidelity in a dynamic gaming environment. For each individual subject, the approach allows identifying “problematic” gestures that decrease gaming performance. This information can be used for optimizing the training strategy and for adapting the signal processing algorithms to individual users, which could be a way for a qualitative leap in the development of future sEMG-interfaces. PMID:29642410

  11. Latent Factors Limiting the Performance of sEMG-Interfaces.

    PubMed

    Lobov, Sergey; Krilova, Nadia; Kastalskiy, Innokentiy; Kazantsev, Victor; Makarov, Valeri A

    2018-04-06

    Recent advances in recording and real-time analysis of surface electromyographic signals (sEMG) have fostered the use of sEMG human-machine interfaces for controlling personal computers, prostheses of upper limbs, and exoskeletons among others. Despite a relatively high mean performance, sEMG-interfaces still exhibit strong variance in the fidelity of gesture recognition among different users. Here, we systematically study the latent factors determining the performance of sEMG-interfaces in synthetic tests and in an arcade game. We show that the degree of muscle cooperation and the amount of the body fatty tissue are the decisive factors in synthetic tests. Our data suggest that these factors can only be adjusted by long-term training, which promotes fine-tuning of low-level neural circuits driving the muscles. Short-term training has no effect on synthetic tests, but significantly increases the game scoring. This implies that it works at a higher decision-making level, not relevant for synthetic gestures. We propose a procedure that enables quantification of the gestures' fidelity in a dynamic gaming environment. For each individual subject, the approach allows identifying "problematic" gestures that decrease gaming performance. This information can be used for optimizing the training strategy and for adapting the signal processing algorithms to individual users, which could be a way for a qualitative leap in the development of future sEMG-interfaces.

  12. An internet-based wearable watch-over system for elderly and disabled utilizing EMG and accelerometer.

    PubMed

    Kishimoto, M; Yoshida, T; Hayasaka, T; Mori, D; Imai, Y; Matsuki, N; Ishikawa, T; Yamaguchi, T

    2009-01-01

    An effective way for preventing injuries and diseases among the elderly is to monitor their daily lives. In this regard, we propose the use of a "Hyper Hospital Network", which is an information support system for elderly people and patients. In the current study, we developed a wearable system for monitoring electromyography (EMG) and acceleration using the Hyper Hospital Network plan. The current system is an upgraded version of our previous system for gait analysis (Yoshida et al. [13], Telemedicine and e-Health 13 703-714), and lets us monitor decreases in exercise and the presence of a hemiplegic gait more accurately. To clarify the capabilities and reliability of the system, we performed three experimental evaluations: one to verify the performance of the wearable system, a second to detect a hemiplegic gait, and a third to monitor EMG and accelerations simultaneously. Our system successfully detected a lack of exercise by monitoring the iEMG in healthy volunteers. Moreover, by using EMG and acceleration signals simultaneously, the reliability of the Hampering Index (HI) for detecting hemiplegia walking was improved significantly. The present study provides useful knowledge for the development of a wearable computer designed to monitor the physical conditions of older persons and patients.

  13. Relationship between oxygen uptake slow component and surface EMG during heavy exercise in humans: influence of pedal rate.

    PubMed

    Vercruyssen, Fabrice; Missenard, Olivier; Brisswalter, Jeanick

    2009-08-01

    The aim of this study was to test the hypothesis that extreme pedal rates contributed to the slow component of oxygen uptake (VO(2) SC) in association with changes in surface electromyographic (sEMG) during heavy-cycle exercise. Eight male trained cyclists performed two square-wave transitions at 50 and 110 rpm at a work rate that would elicit a VO(2) corresponding to 50% of the difference between peak VO(2) and the ventilatory threshold. Pulmonary gas exchange was measured breath-by-breath and sEMG was obtained from the vastus lateralis and medialis muscles. Integrated EMG flow (QiEMG) and mean power frequency (MPF) were computed. The relative amplitude of the VO(2) SC was significantly higher during the 110-rpm bout (556+/-186 ml min(-1), P<0.05) with compared to the 50-rpm bout (372+/-227 ml min(-1)). QiEMG values increased throughout exercise only during the 110-rpm bout and were associated with the greater amplitude of the VO(2) SC observed for this condition (P<0.05). MPF values remained relatively constant whatever the cycle bout. These findings indicated a VO(2) SC at the two pedal rates but the association with sEMG responses was observed only at high pedal rate. Possible changes in motor units recruitment pattern, muscle energy turnover and muscle temperature have been suggested to explain the different VO(2) SC to heavy pedal rate bouts.

  14. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  15. Influence on muscle oxygenation to EMG parameters at different skeletal muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Song, Gaoqing

    2010-02-01

    The purpose of this study is to investigate the influence of muscle oxygenation on EMG parameters during isometric and incremental exercises and to observe the relationship between EMG parameters and muscle oxygenation. Twelve rowers took part in the tests. Near infrared spectrometer was utilized for measurements of muscle oxygenation on lateral quadriceps. sEMG measurement is performed for EMG parameters during isometric and incremental exercises. Results indicated that Oxy-Hb decrease significantly correlated with IEMG, E/T ratio and frequency of impulse signal during 1/3 MVC and 2/3 MVC isometric exercise, and it is also correlated with IEMG, E/T ratio and frequency of impulse signal. Increase of IEMG occurred at the time after Oxy-Hb decrease during incremental exercise and highly correlated with BLa. It is concluded that no matter how heavy the intensity is, Oxy-Hb dissociation may play an important role in affecting EMG parameters of muscle fatigue during isometric exercise. 2) EMG parameters may be influenced by Oxy-Hb dissociation and blood lactate concentration during dynamic exercise.

  16. Influence on muscle oxygenation to EMG parameters at different skeletal muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Song, Gaoqing

    2009-10-01

    The purpose of this study is to investigate the influence of muscle oxygenation on EMG parameters during isometric and incremental exercises and to observe the relationship between EMG parameters and muscle oxygenation. Twelve rowers took part in the tests. Near infrared spectrometer was utilized for measurements of muscle oxygenation on lateral quadriceps. sEMG measurement is performed for EMG parameters during isometric and incremental exercises. Results indicated that Oxy-Hb decrease significantly correlated with IEMG, E/T ratio and frequency of impulse signal during 1/3 MVC and 2/3 MVC isometric exercise, and it is also correlated with IEMG, E/T ratio and frequency of impulse signal. Increase of IEMG occurred at the time after Oxy-Hb decrease during incremental exercise and highly correlated with BLa. It is concluded that no matter how heavy the intensity is, Oxy-Hb dissociation may play an important role in affecting EMG parameters of muscle fatigue during isometric exercise. 2) EMG parameters may be influenced by Oxy-Hb dissociation and blood lactate concentration during dynamic exercise.

  17. EMG activation patterns associated with high frequency, long-duration intracortical microstimulation of primary motor cortex.

    PubMed

    Griffin, Darcy M; Hudson, Heather M; Belhaj-Saïf, Abderraouf; Cheney, Paul D

    2014-01-29

    The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length-tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved.

  18. EMG Activation Patterns Associated with High Frequency, Long-Duration Intracortical Microstimulation of Primary Motor Cortex

    PubMed Central

    Griffin, Darcy M.; Hudson, Heather M.; Belhaj-Saïf, Abderraouf

    2014-01-01

    The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length–tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved. PMID:24478348

  19. Surface EMG system for use in long-term vigorous activities

    NASA Astrophysics Data System (ADS)

    de Luca, G.; Bergman, P.; de Luca, C.

    The purpose of the project was to develop an advanced surface electromyographic (EMG) system that is portable, un-tethered, and able to detect high-fidelity EMG signals from multiple channels. The innovation was specifically designed to extend NASA's capability to perform neurological status monitoring for long-term, vigorous activities. These features are a necessary requirement of ground-based and in-flight studies planned for the International Space Station and human expeditions to Mars. The project consisted of developing 1) a portable EMG digital data logger using a handheld PC for acquiring the signal and storing the data from as many as 8 channels, and 2) an EMG electrode/skin interface to improve signal fidelity and skin adhesion in the presence of sweat and mechanical disturbances encountered during vigorous activities. The system, referred to as a MyoMonitor, was configured with a communication port for downloading the data from the data logger to the PC computer workstation. Software specifications were developed and implemented for programming of acquisition protocols, power management, and transferring data to the PC for processing and graphical display. The prototype MyoMonitor was implemented using a handheld PC that features a color LCD screen, enhanced keyboard, extended Lithium Ion battery and recharger, and 128 Mbytes of F ash Memory. The system was designed to be belt-worn,l thereby allowing its use under vigorous activities. The Monitor utilizes up to 8 differential surface EMG sensors. The prototype allowed greater than 2 hours of continuous 8-channel EMG data to be collected, or 17.2 hours of continuous single channel EMG data. Standardized tests in human subjects were conducted to develop the mechanical and electrical properties of the prototype electrode/interface system. Tests conducted during treadmill running and repetitive lifting demonstrated that the prototype interface significantly reduced the detrimental effects of sweat

  20. 24 DOF EMG controlled hybrid actuated prosthetic hand.

    PubMed

    Atasoy, A; Kaya, E; Toptas, E; Kuchimov, S; Kaplanoglu, E; Ozkan, M

    2016-08-01

    A complete mechanical design concept of an electromyogram (EMG) controlled hybrid prosthetic hand, with 24 degree of freedom (DOF) anthropomorphic structure is presented. Brushless DC motors along with Shape Memory Alloy (SMA) actuators are used to achieve dexterous functionality. An 8 channel EMG is used for detecting 7 basic hand gestures for control purposes. The prosthetic hand will be integrated with the Neural Network (NNE) based controller in the next phase of the study.

  1. An artificial EMG generation model based on signal-dependent noise and related application to motion classification

    PubMed Central

    Hayashi, Hideaki; Nakamura, Go; Chin, Takaaki; Tsuji, Toshio

    2017-01-01

    This paper proposes an artificial electromyogram (EMG) signal generation model based on signal-dependent noise, which has been ignored in existing methods, by introducing the stochastic construction of the EMG signals. In the proposed model, an EMG signal variance value is first generated from a probability distribution with a shape determined by a commanded muscle force and signal-dependent noise. Artificial EMG signals are then generated from the associated Gaussian distribution with a zero mean and the generated variance. This facilitates representation of artificial EMG signals with signal-dependent noise superimposed according to the muscle activation levels. The frequency characteristics of the EMG signals are also simulated via a shaping filter with parameters determined by an autoregressive model. An estimation method to determine EMG variance distribution using rectified and smoothed EMG signals, thereby allowing model parameter estimation with a small number of samples, is also incorporated in the proposed model. Moreover, the prediction of variance distribution with strong muscle contraction from EMG signals with low muscle contraction and related artificial EMG generation are also described. The results of experiments conducted, in which the reproduction capability of the proposed model was evaluated through comparison with measured EMG signals in terms of amplitude, frequency content, and EMG distribution demonstrate that the proposed model can reproduce the features of measured EMG signals. Further, utilizing the generated EMG signals as training data for a neural network resulted in the classification of upper limb motion with a higher precision than by learning from only measured EMG signals. This indicates that the proposed model is also applicable to motion classification. PMID:28640883

  2. Cerebellar learning mechanisms

    PubMed Central

    Freeman, John H.

    2014-01-01

    The mechanisms underlying cerebellar learning are reviewed with an emphasis on old arguments and new perspectives on eyeblink conditioning. Eyeblink conditioning has been used for decades a model system for elucidating cerebellar learning mechanisms. The standard model of the mechanisms underlying eyeblink conditioning is that there two synaptic plasticity processes within the cerebellum that are necessary for acquisition of the conditioned response: 1) long-term depression (LTD) at parallel fiber-Purkinje cell synapses and 2) long-term potentiation (LTP) at mossy fiber-interpositus nucleus synapses. Additional Purkinje cell plasticity mechanisms may also contribute to eyeblink conditioning including LTP, excitability, and entrainment of deep nucleus activity. Recent analyses of the sensory input pathways necessary for eyeblink conditioning indicate that the cerebellum regulates its inputs to facilitate learning and maintain plasticity. Cerebellar learning during eyeblink conditioning is therefore a dynamic interactive process which maximizes responding to significant stimuli and suppresses responding to irrelevant or redundant stimuli. PMID:25289586

  3. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.

    PubMed

    Saito, Akira; Akima, Hiroshi

    2013-12-01

    It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P < 0.05). Comparing the normalized EMG among the four QF synergists, a significantly lower normalized EMG was observed in the VI at 150° as compared with the other three QF muscles (P < 0.05). These results suggest that the EMG-force relationship of the four QF synergists shifted downward at an extended knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Reliability study of tibialis posterior and selected leg muscle EMG and multi-segment foot kinematics in rheumatoid arthritis associated pes planovalgus

    PubMed Central

    Barn, Ruth; Rafferty, Daniel; Turner, Deborah E.; Woodburn, James

    2012-01-01

    Objective To determine within- and between-day reliability characteristics of electromyographic (EMG) activity patterns of selected lower leg muscles and kinematic variables in patients with rheumatoid arthritis (RA) and pes planovalgus. Methods Five patients with RA underwent gait analysis barefoot and shod on two occasions 1 week apart. Fine-wire (tibialis posterior [TP]) and surface EMG for selected muscles and 3D kinematics using a multi-segmented foot model was undertaken barefoot and shod. Reliability of pre-determined variables including EMG activity patterns and inter-segment kinematics were analysed using coefficients of multiple correlation, intraclass correlation coefficients (ICC) and the standard error of the measurement (SEM). Results Muscle activation patterns within- and between-day ranged from fair-to-good to excellent in both conditions. Discrete temporal and amplitude variables were highly variable across all muscle groups in both conditions but particularly poor for TP and peroneus longus. SEMs ranged from 1% to 9% of stance and 4% to 27% of maximum voluntary contraction; in most cases the 95% confidence interval crossed zero. Excellent within-day reliability was found for the inter-segment kinematics in both conditions. Between-day reliability ranged from fair-to-good to excellent for kinematic variables and all ICCs were excellent; the SEM ranged from 0.60° to 1.99°. Conclusion Multi-segmented foot kinematics can be reliably measured in RA patients with pes planovalgus. Serial measurement of discrete variables for TP and other selected leg muscles via EMG is not supported from the findings in this cohort of RA patients. Caution should be exercised when EMG measurements are considered to study disease progression or intervention effects. PMID:22721819

  5. Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.

    PubMed

    Liu, Pu; Liu, Lukai; Clancy, Edward A

    2015-11-01

    Relating the electromyogram (EMG) to joint torque is useful in various application areas, including prosthesis control, ergonomics and clinical biomechanics. Limited study has related EMG to torque across varied joint angles, particularly when subjects performed force-varying contractions or when optimized modeling methods were utilized. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint angles (spanning 60° to 135°) during constant-posture, torque-varying contractions. Three nonlinear EMG σ -torque models, advanced EMG amplitude (EMG σ ) estimation processors (i.e., whitened, multiple-channel) and the duration of data used to train models were investigated. When EMG-torque models were formed separately for each of the six distinct joint angles, a minimum "gold standard" error of 4.01±1.2% MVC(F90) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so achieved a statistically equivalent error of 4.06±1.2% MVC(F90). Results demonstrated that advanced EMG σ processors lead to improved joint torque estimation as do longer model training durations.

  6. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    PubMed Central

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering. PMID:22164006

  7. Steering a tractor by means of an EMG-based human-machine interface.

    PubMed

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver's scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering.

  8. Tremor Frequency Assessment by iPhone® Applications: Correlation with EMG Analysis.

    PubMed

    Araújo, Rui; Tábuas-Pereira, Miguel; Almendra, Luciano; Ribeiro, Joana; Arenga, Marta; Negrão, Luis; Matos, Anabela; Morgadinho, Ana; Januário, Cristina

    2016-10-19

    Tremor frequency analysis is usually performed by EMG studies but accelerometers are progressively being more used. The iPhone® contains an accelerometer and many applications claim to be capable of measuring tremor frequency. We tested three applications in twenty-two patients with a diagnosis of PD, ET and Holmes' tremor. EMG needle assessment as well as accelerometry was performed at the same time. There was very strong correlation (Pearson >0.8, p < 0.001) between the three applications, the EMG needle and the accelerometry. Our data suggests the apps LiftPulse®, iSeismometer® and Studymytremor® are a reliable alternative to the EMG for tremor frequency assessment.

  9. Young, Healthy Subjects Can Reduce the Activity of Calf Muscles When Provided with EMG Biofeedback in Upright Stance

    PubMed Central

    Vieira, Taian M.; Baudry, Stéphane; Botter, Alberto

    2016-01-01

    Recent evidence suggests the minimization of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimizing the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG) recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimize the level of muscle activation during standing without increasing the excursion of the center of pressure (CoP). CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from 10 healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects' responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P < 0.05) and an increase in tibialis anterior EMG (~10%; P < 0.05). Furthermore, CoP mean position significantly shifted backward (~30 mm). In contrast, the use of less sensitive EMG biofeedback resulted in a significant decrease in EMG activity of ankle plantar flexors with a marginal increase in TA activity compared with standing at ease. These changes were not accompanied by greater CoP displacements or significant changes in mean CoP position. Key results revealed subjects were able to keep standing stability while reducing the activity of gastrocnemius and soleus without loading their tibialis anterior muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at assisting subjects in

  10. Critically re-evaluating a common technique: Accuracy, reliability, and confirmation bias of EMG.

    PubMed

    Narayanaswami, Pushpa; Geisbush, Thomas; Jones, Lyell; Weiss, Michael; Mozaffar, Tahseen; Gronseth, Gary; Rutkove, Seward B

    2016-01-19

    (1) To assess the diagnostic accuracy of EMG in radiculopathy. (2) To evaluate the intrarater reliability and interrater reliability of EMG in radiculopathy. (3) To assess the presence of confirmation bias in EMG. Three experienced academic electromyographers interpreted 3 compact discs with 20 EMG videos (10 normal, 10 radiculopathy) in a blinded, standardized fashion without information regarding the nature of the study. The EMGs were interpreted 3 times (discs A, B, C) 1 month apart. Clinical information was provided only with disc C. Intrarater reliability was calculated by comparing interpretations in discs A and B, interrater reliability by comparing interpretation between reviewers. Confirmation bias was estimated by the difference in correct interpretations when clinical information was provided. Sensitivity was similar to previous reports (77%, confidence interval [CI] 63%-90%); specificity was 71%, CI 56%-85%. Intrarater reliability was good (κ 0.61, 95% CI 0.41-0.81); interrater reliability was lower (κ 0.53, CI 0.35-0.71). There was no substantial confirmation bias when clinical information was provided (absolute difference in correct responses 2.2%, CI -13.3% to 17.7%); the study lacked precision to exclude moderate confirmation bias. This study supports that (1) serial EMG studies should be performed by the same electromyographer since intrarater reliability is better than interrater reliability; (2) knowledge of clinical information does not bias EMG interpretation substantially; (3) EMG has moderate diagnostic accuracy for radiculopathy with modest specificity and electromyographers should exercise caution interpreting mild abnormalities. This study provides Class III evidence that EMG has moderate diagnostic accuracy and specificity for radiculopathy. © 2015 American Academy of Neurology.

  11. Locomotor training with body weight support in SCI: EMG improvement is more optimally expressed at a low testing speed.

    PubMed

    Meyns, P; Van de Crommert, H W A A; Rijken, H; van Kuppevelt, D H J M; Duysens, J

    2014-12-01

    Case series. To determine the optimal testing speed at which the recovery of the EMG (electromyographic) activity should be assessed during and after body weight supported (BWS) locomotor training. Tertiary hospital, Sint Maartenskliniek, Nijmegen, The Netherlands. Four participants with incomplete chronic SCI were included for BWS locomotor training; one AIS-C and three AIS-D (according to the ASIA (American Spinal Injury Association) Impairment Scale or AIS). All were at least 5 years after injury. The SCI participants were trained three times a week for a period of 6 weeks. They improved their locomotor function in terms of higher walking speed, less BWS and less assistance needed. To investigate which treadmill speed for EMG assessment reflects the functional improvement most adequately, all participants were assessed weekly using the same two speeds (0.5 and 1.5 km h(-1), referred to as low and high speed, respectively) for 6 weeks. The change in root mean square EMG (RMS EMG) was assessed in four leg muscles; biceps femoris, rectus femoris, gastrocnemius medialis and tibialis anterior. The changes in RMS EMG occurred at similar phases of the step cycle for both walking conditions, but these changes were larger when the treadmill was set at a low speed (0.5 km h(-1)). Improvement in gait is feasible with BWS treadmill training even long after injury. The EMG changes after treadmill training are more optimally expressed using a low rather than a high testing treadmill speed.

  12. Time Course of the Rabbit's Conditioned Nictitating Membrane Movements during Acquisition, Extinction, and Reacquisition

    ERIC Educational Resources Information Center

    Kehoe, E. James; Ludvig, Elliot A.; Sutton, Richard S.

    2014-01-01

    The present experiment tested whether or not the time course of a conditioned eyeblink response, particularly its duration, would expand and contract, as the magnitude of the conditioned response (CR) changed massively during acquisition, extinction, and reacquisition. The CR duration remained largely constant throughout the experiment, while CR…

  13. Grip Force and 3D Push-Pull Force Estimation Based on sEMG and GRNN

    PubMed Central

    Wu, Changcheng; Zeng, Hong; Song, Aiguo; Xu, Baoguo

    2017-01-01

    The estimation of the grip force and the 3D push-pull force (push and pull force in the three dimension space) from the electromyogram (EMG) signal is of great importance in the dexterous control of the EMG prosthetic hand. In this paper, an action force estimation method which is based on the eight channels of the surface EMG (sEMG) and the Generalized Regression Neural Network (GRNN) is proposed to meet the requirements of the force control of the intelligent EMG prosthetic hand. Firstly, the experimental platform, the acquisition of the sEMG, the feature extraction of the sEMG and the construction of GRNN are described. Then, the multi-channels of the sEMG when the hand is moving are captured by the EMG sensors attached on eight different positions of the arm skin surface. Meanwhile, a grip force sensor and a three dimension force sensor are adopted to measure the output force of the human's hand. The characteristic matrix of the sEMG and the force signals are used to construct the GRNN. The mean absolute value and the root mean square of the estimation errors, the correlation coefficients between the actual force and the estimated force are employed to assess the accuracy of the estimation. Analysis of variance (ANOVA) is also employed to test the difference of the force estimation. The experiments are implemented to verify the effectiveness of the proposed estimation method and the results show that the output force of the human's hand can be correctly estimated by using sEMG and GRNN method. PMID:28713231

  14. Grip Force and 3D Push-Pull Force Estimation Based on sEMG and GRNN.

    PubMed

    Wu, Changcheng; Zeng, Hong; Song, Aiguo; Xu, Baoguo

    2017-01-01

    The estimation of the grip force and the 3D push-pull force (push and pull force in the three dimension space) from the electromyogram (EMG) signal is of great importance in the dexterous control of the EMG prosthetic hand. In this paper, an action force estimation method which is based on the eight channels of the surface EMG (sEMG) and the Generalized Regression Neural Network (GRNN) is proposed to meet the requirements of the force control of the intelligent EMG prosthetic hand. Firstly, the experimental platform, the acquisition of the sEMG, the feature extraction of the sEMG and the construction of GRNN are described. Then, the multi-channels of the sEMG when the hand is moving are captured by the EMG sensors attached on eight different positions of the arm skin surface. Meanwhile, a grip force sensor and a three dimension force sensor are adopted to measure the output force of the human's hand. The characteristic matrix of the sEMG and the force signals are used to construct the GRNN. The mean absolute value and the root mean square of the estimation errors, the correlation coefficients between the actual force and the estimated force are employed to assess the accuracy of the estimation. Analysis of variance (ANOVA) is also employed to test the difference of the force estimation. The experiments are implemented to verify the effectiveness of the proposed estimation method and the results show that the output force of the human's hand can be correctly estimated by using sEMG and GRNN method.

  15. Hippocampal-dependent Pavlovian conditioning in adult rats exposed to binge-like doses of ethanol as neonates.

    PubMed

    Lindquist, Derick H

    2013-04-01

    Binge-like postnatal ethanol exposure produces significant damage throughout the brain in rats, including the cerebellum and hippocampus. In the current study, cue- and context-mediated Pavlovian conditioning were assessed in adult rats exposed to moderately low (3E; 3g/kg/day) or high (5E; 5g/kg/day) doses of ethanol across postnatal days 4-9. Ethanol-exposed and control groups were presented with 8 sessions of trace eyeblink conditioning followed by another 8 sessions of delay eyeblink conditioning, with an altered context presented over the last two sessions. Both forms of conditioning rely on the brainstem and cerebellum, while the more difficult trace conditioning also requires the hippocampus. The hippocampus is also needed to gate or modulate expression of the eyeblink conditioned response (CR) based on contextual cues. Results indicate that the ethanol-exposed rats were not significantly impaired in trace EBC relative to control subjects. In terms of CR topography, peak amplitude was significantly reduced by both doses of alcohol, whereas onset latency but not peak latency was significantly lengthened in the 5E rats across the latter half of delay EBC in the original training context. Neither dosage resulted in significant impairment in the contextual gating of the behavioral response, as revealed by similar decreases in CR production across all four treatment groups following introduction of the novel context. Results suggest ethanol-induced brainstem-cerebellar damage can account for the present results, independent of the putative disruption in hippocampal development and function proposed to occur following postnatal ethanol exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Memory consolidation within the central amygdala is not necessary for modulation of cerebellar learning.

    PubMed

    Steinmetz, Adam B; Ng, Ka H; Freeman, John H

    2017-06-01

    Amygdala lesions impair, but do not prevent, acquisition of cerebellum-dependent eyeblink conditioning suggesting that the amygdala modulates cerebellar learning. Two-factor theories of eyeblink conditioning posit that a fast-developing memory within the amygdala facilitates slower-developing memory within the cerebellum. The current study tested this hypothesis by impairing memory consolidation within the amygdala with inhibition of protein synthesis, transcription, and NMDA receptors in rats. Rats given infusions of anisomycin or DRB into the central amygdala (CeA) immediately after each eyeblink conditioning session were severely impaired in contextual and cued fear conditioning, but were completely unimpaired in eyeblink conditioning. Rats given the NMDA antagonist ifenprodil into the CeA before each eyeblink conditioning session also showed impaired fear conditioning, but no deficit in eyeblink conditioning. The results indicate that memory formation within the CeA is not necessary for its modulation of cerebellar learning mechanisms. The CeA may modulate cerebellar learning and retention through an attentional mechanism that develops within the training sessions. © 2017 Steinmetz et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Force Control Is Related to Low-Frequency Oscillations in Force and Surface EMG

    PubMed Central

    Moon, Hwasil; Kim, Changki; Kwon, Minhyuk; Chen, Yen Ting; Onushko, Tanya; Lodha, Neha; Christou, Evangelos A.

    2014-01-01

    Force variability during constant force tasks is directly related to oscillations below 0.5 Hz in force. However, it is unknown whether such oscillations exist in muscle activity. The purpose of this paper, therefore, was to determine whether oscillations below 0.5 Hz in force are evident in the activation of muscle. Fourteen young adults (21.07±2.76 years, 7 women) performed constant isometric force tasks at 5% and 30% MVC by abducting the left index finger. We recorded the force output from the index finger and surface EMG from the first dorsal interosseous (FDI) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) power spectrum of force below 2 Hz; 3) EMG bursts; 4) power spectrum of EMG bursts below 2 Hz; and 5) power spectrum of the interference EMG from 10–300 Hz. The SD of force increased significantly from 5 to 30% MVC and this increase was significantly related to the increase in force oscillations below 0.5 Hz (R 2 = 0.82). For both force levels, the power spectrum for force and EMG burst was similar and contained most of the power from 0–0.5 Hz. Force and EMG burst oscillations below 0.5 Hz were highly coherent (coherence = 0.68). The increase in force oscillations below 0.5 Hz from 5 to 30% MVC was related to an increase in EMG burst oscillations below 0.5 Hz (R 2 = 0.51). Finally, there was a strong association between the increase in EMG burst oscillations below 0.5 Hz and the interference EMG from 35–60 Hz (R 2 = 0.95). In conclusion, this finding demonstrates that bursting of the EMG signal contains low-frequency oscillations below 0.5 Hz, which are associated with oscillations in force below 0.5 Hz. PMID:25372038

  18. Analysis of surface EMG baseline for detection of hidden muscle activity

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Zhou, Ping

    2014-02-01

    Objective. This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach. Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used. Both analyses were applied to computer simulations of surface EMG baseline with the presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results. Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance. The findings implied the presence of a hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level.

  19. Analysis of Surface EMG Baseline for Detection of Hidden Muscle Activity

    PubMed Central

    Zhang, Xu; Zhou, Ping

    2014-01-01

    Objective This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used respectively. Both analyses were applied to computer simulations of surface EMG baseline with presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance The findings implied presence of hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level. PMID:24445526

  20. [The nonlinear parameters of interference EMG of two day old human newborns].

    PubMed

    Voroshilov, A S; Meĭgal, A Iu

    2011-01-01

    Temporal structure of interference electromyogram (iEMG) was studied in healthy two days old human newborns (n = 76) using the non-linear parameters (correlation dimension, fractal dimension, correlation entropy). It has been found that the non-linear parameters of iEMG were time-dependent because they were decreasing within the first two days of life. Also, these parameters were sensitive to muscle function, because correlation dimension, fractal dimension, and correlation entropy of iEMG in gastrocnemius muscle differed from the other muscles. The non-linear parameters were proven to be independent of the iEMG amplitude. That model of early ontogenesis may be of potential use for investigation of anti-gravitation activity.

  1. Heart rate variability (HRV) and muscular system activity (EMG) in cases of crash threat during simulated driving of a passenger car.

    PubMed

    Zużewicz, Krystyna; Roman-Liu, Danuta; Konarska, Maria; Bartuzi, Paweł; Matusiak, Krzysztof; Korczak, Dariusz; Lozia, Zbigniew; Guzek, Marek

    2013-10-01

    The aim of the study was to verify whether simultaneous responses from the muscular and circulatory system occur in the driver's body under simulated conditions of a crash threat. The study was carried out in a passenger car driving simulator. The crash was included in the driving test scenario developed in an urban setting. In the group of 22 young male subjects, two physiological signals - ECG and EMG were continuously recorded. The length of the RR interval in the ECG signal was assessed. A HRV analysis was performed in the time and frequency domains for 1-minute record segments at rest (seated position), during undisturbed driving as well as during and several minutes after the crash. For the left and right side muscles: m. trapezius (TR) and m. flexor digitorum superficialis (FDS), the EMG signal amplitude was determined. The percentage of maximal voluntary contraction (MVC) was compared during driving and during the crash. As for the ECG signal, it was found that in most of the drivers changes occurred in the parameter values reflecting HRV in the time domain. Significant changes were noted in the mean length of RR intervals (mRR). As for the EMG signal, the changes in the amplitude concerned the signal recorded from the FDS muscle. The changes in ECG and EMG were simultaneous in half of the cases. Such parameters as mRR (ECG signal) and FDS-L amplitude (EMG signal) were the responses to accident risk. Under simulated conditions, responses from the circulatory and musculoskeletal systems are not always simultaneous. The results indicate that a more complete driver's response to a crash in road traffic is obtained based on parallel recording of two physiological signals (ECG and EMG).

  2. Effects of innovative virtual reality game and EMG biofeedback on neuromotor control in cerebral palsy.

    PubMed

    Yoo, Ji Won; Lee, Dong Ryul; Sim, Yon Ju; You, Joshua H; Kim, Cheol J

    2014-01-01

    Sensorimotor control dysfunction or dyskinesia is a hallmark of neuromuscular impairment in children with cerebral palsy (CP), and is often implicated in reaching and grasping deficiencies due to a neuromuscular imbalance between the triceps and biceps. To mitigate such muscle imbalances, an innovative electromyography (EMG)-virtual reality (VR) biofeedback system were designed to provide accurate information about muscle activation and motivation. However, the clinical efficacy of this approach has not yet been determined in children with CP. The purpose of this study was to investigate the effectiveness of a combined EMG biofeedback and VR (EMG-VR biofeedback) intervention system to improve muscle imbalance between triceps and biceps during reaching movements in children with spastic CP. Raw EMG signals were recorded at a sampling rate of 1,000 Hz, band-pass filtered between 20-450 Hz, and notch-filtered at 60 Hz during elbow flexion and extension movements. EMG data were then processed using MyoResearch Master Edition 1.08 XP software. All participants underwent both interventions consisting of the EMG-VR biofeedback combination and EMG biofeedback alone. EMG analysis resulted in improved muscle activation in the underactive triceps while decreasing overactive or hypertonic biceps in the EMG-VR biofeedback compared with EMG biofeedback. The muscle imbalance ratio between the triceps and biceps was consistently improved. The present study is the first clinical trial to provide evidence for the additive benefits of VR intervention for enhancing the upper limb function of children with spastic CP.

  3. Surface EMG signals in very late-stage of Duchenne muscular dystrophy: a case study.

    PubMed

    Lobo-Prat, Joan; Janssen, Mariska M H P; Koopman, Bart F J M; Stienen, Arno H A; de Groot, Imelda J M

    2017-08-29

    Robotic arm supports aim at improving the quality of life for adults with Duchenne muscular dystrophy (DMD) by augmenting their residual functional abilities. A critical component of robotic arm supports is the control interface, as is it responsible for the human-machine interaction. Our previous studies showed the feasibility of using surface electromyography (sEMG) as a control interface to operate robotic arm supports in adults with DMD (22-24 years-old). However, in the biomedical engineering community there is an often raised skepticism on whether adults with DMD at the last stage of their disease have sEMG signals that can be measured and used for control. In this study sEMG signals from Biceps and Triceps Brachii muscles were measured for the first time in a 37 year-old man with DMD (Brooke 6) that lost his arm function 15 years ago. The sEMG signals were measured during maximal and sub-maximal voluntary isometric contractions and evaluated in terms of signal-to-noise ratio and co-activation ratio. Beyond the profound deterioration of the muscles, we found that sEMG signals from both Biceps and Triceps muscles were measurable in this individual, although with a maximum signal amplitude 100 times lower compared to sEMG from healthy subjects. The participant was able to voluntarily modulate the required level of muscle activation during the sub-maximal voluntary isometric contractions. Despite the low sEMG amplitude and a considerable level of muscle co-activation, simulations of an elbow orthosis using the measured sEMG as driving signal indicated that the sEMG signals of the participant had the potential to provide control of elbow movements. To the best of our knowledge this is the first time that sEMG signals from a man with DMD at the last-stage of the disease were measured, analyzed and reported. These findings offer promising perspectives to the use of sEMG as an intuitive and natural control interface for robotic arm supports in adults with DMD until

  4. Agonist and Antagonist Muscle EMG Activity Pattern Changes with Skill Acquisition.

    ERIC Educational Resources Information Center

    Engelhorn, Richard

    1983-01-01

    Using electromyography (EMG), researchers studied changes in the control of biceps and triceps brachii muscles that occurred as women college students learned two elbow flexion tasks. Data on EMG activity, angular kinematics, training, and angular displacement were analyzed. (Author/PP)

  5. Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals

    PubMed Central

    Zhang, Qin; Liu, Runfeng; Chen, Wenbin; Xiong, Caihua

    2017-01-01

    In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions. PMID:28611573

  6. Surface EMG decomposition based on K-means clustering and convolution kernel compensation.

    PubMed

    Ning, Yong; Zhu, Xiangjun; Zhu, Shanan; Zhang, Yingchun

    2015-03-01

    A new approach has been developed by combining the K-mean clustering (KMC) method and a modified convolution kernel compensation (CKC) method for multichannel surface electromyogram (EMG) decomposition. The KMC method was first utilized to cluster vectors of observations at different time instants and then estimate the initial innervation pulse train (IPT). The CKC method, modified with a novel multistep iterative process, was conducted to update the estimated IPT. The performance of the proposed K-means clustering-Modified CKC (KmCKC) approach was evaluated by reconstructing IPTs from both simulated and experimental surface EMG signals. The KmCKC approach successfully reconstructed all 10 IPTs from the simulated surface EMG signals with true positive rates (TPR) of over 90% with a low signal-to-noise ratio (SNR) of -10 dB. More than 10 motor units were also successfully extracted from the 64-channel experimental surface EMG signals of the first dorsal interosseous (FDI) muscles when a contraction force was held at 8 N by using the KmCKC approach. A "two-source" test was further conducted with 64-channel surface EMG signals. The high percentage of common MUs and common pulses (over 92% at all force levels) between the IPTs reconstructed from the two independent groups of surface EMG signals demonstrates the reliability and capability of the proposed KmCKC approach in multichannel surface EMG decomposition. Results from both simulated and experimental data are consistent and confirm that the proposed KmCKC approach can successfully reconstruct IPTs with high accuracy at different levels of contraction.

  7. An open and configurable embedded system for EMG pattern recognition implementation for artificial arms.

    PubMed

    Jun Liu; Fan Zhang; Huang, He Helen

    2014-01-01

    Pattern recognition (PR) based on electromyographic (EMG) signals has been developed for multifunctional artificial arms for decades. However, assessment of EMG PR control for daily prosthesis use is still limited. One of the major barriers is the lack of a portable and configurable embedded system to implement the EMG PR control. This paper aimed to design an open and configurable embedded system for EMG PR implementation so that researchers can easily modify and optimize the control algorithms upon our designed platform and test the EMG PR control outside of the lab environments. The open platform was built on an open source embedded Linux Operating System running a high-performance Gumstix board. Both the hardware and software system framework were openly designed. The system was highly flexible in terms of number of inputs/outputs and calibration interfaces used. Such flexibility enabled easy integration of our embedded system with different types of commercialized or prototypic artificial arms. Thus far, our system was portable for take-home use. Additionally, compared with previously reported embedded systems for EMG PR implementation, our system demonstrated improved processing efficiency and high system precision. Our long-term goals are (1) to develop a wearable and practical EMG PR-based control for multifunctional artificial arms, and (2) to quantify the benefits of EMG PR-based control over conventional myoelectric prosthesis control in a home setting.

  8. Relationship between intra-abdominal pressure and trunk EMG.

    PubMed

    McGill, S M; Sharratt, M T

    1990-05-01

    Intra-abdominal pressure (IAP) has been proposed as an important mechanism in manual lifting and breathing mechanics. Direct (invasive) measures of IAP have required the swallowing of a radio transducer or insertion of a pressure sensor into the rectum or down the oesophagus to the stomach. The purpose of this study was to investigate the relationship between a non-invasive method (EMG) and IAP. Several tasks involving abdominal muscle activation were performed to assess whether or not IAP played a common role in these tasks. IAP and EMG from rectus abdominis, the abdominal obliques, intercostals and erector spinae were measured. Peak IAP reached 340 mmHg (valsalva) for one subject but most values were less than 100 mmHg for tasks other than valsalva. The IAP and EMG data provide some insight into the role of IAP during the performance of specific tasks. Peak IAP within 60 ms of the onset of vigorous abdominal activation indicated the importance of a very rapid pressure response to abdominal muscle activation. The correlations between various muscle EMG time histories and IAP exceeded 0·80 for only two activities (i.e. r(2) = 0·82 between the intercostals and IAP during valsalva manoeuvres). These data suggest that no unifying hypothesis exists to explain the role of IAP for a wide variety of movement tasks; rather, the role of IAP is task specific. Copyright © 1990. Published by Elsevier Ltd.

  9. M-wave normalization of EMG signal to investigate heat stress and fatigue.

    PubMed

    Girard, Olivier; Bishop, David J; Racinais, Sébastien

    2018-05-01

    We examined the extent to which peripheral changes affect EMG signal adjustments during repeated sprinting in temperate and hot conditions. Randomised, crossover study. Ten males performed 10×6-s 'all-out' cycling sprints (recovery=30s) in either a temperate (24°C/30%rH) or a hot (35°C/40%rH) environment with concomitant surface EMG recordings of the vastus lateralis (VL) and rectus femoris (RF). In addition, peak-to-peak M-wave amplitudes were obtained for each muscle after each sprint (i.e., 15s into recovery). For both the VL and RF muscles RMS decreased across sprint repetitions (P<0.01), while significantly lower values for the VL (P=0.012), but not the RF (P=0.096), occurred in hot vs. temperate conditions. M-wave-normalised RMS for VL muscle decreased across sprint repetitions (P=0.030), with no condition or interaction effects (both P>0.621). M-wave-normalised RMS for the RF muscle was lower in the heat (P<0.034), with no significant sprint or interaction effects (both P>0.240). Controlling for changes in maximal M-wave amplitude of the quadriceps muscles after each bout of a repeated cycling exercise in hot and temperate conditions allows researchers to account for fatigue- and/or heat-induced neural and peripheral adjustments. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities.

    PubMed

    Dolan, P; Adams, M A

    1993-01-01

    The relationship between EMG activity and extensor moment generation in the erector spinae muscles was investigated under isometric and concentric conditions. The full-wave rectified and averaged EMG signal was recorded from skin-surface electrodes located over the belly of the erector spinae at the levels of T10 and L3, and compared with measurements of extensor moment. The effects of muscle length and contraction velocity were studied by measuring the overall curvature (theta) and rate of change of curvature (d theta/dt) of the lumbar spine in the sagittal plane, using the '3-Space Isotrak' system. Isometric contractions were investigated with the subjects pulling up on a load cell attached to the floor. Hand height was varied to produce different amounts of lumbar flexion, as indicated by changes in lumbar curvature. The extensor moment was found to be linearly related to EMG activity, and the 'gradient' and 'intercept' of the relationship were themselves dependent upon the lumbar curvature at the time of testing. Concentric contractions were investigated with the subjects extending from a seated toe-touching position, at various speeds, while the torque exerted on the arm of a Cybex dynamometer was continuously measured. Under these conditions the EMG signal (E) was higher than the isometric signal (E0) associated with the same torque. E and E0 were related as follows: E0 = E/(1 + A d theta/dt), where A = 0.0014 exp (0.045P) and P = percentage lumbar flexion. This equation was used to correct the EMG data for the effect of contraction velocity. The corrected data were then used, in conjunction with the results of the isometric calibrations, to calculate the extensor moment generated by the erector spinae muscles during bending and lifting activities. The extensor moment can itself be used to calculate the compressive force acting on the lumbar spine.

  11. An EMG-controlled neuroprosthesis for daily upper limb support: a preliminary study.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Tibiletti, Marta; Schauer, Thomas; Klauer, Christian; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2011-01-01

    MUNDUS is an assistive platform for recovering direct interaction capability of severely impaired people based on upper limb motor functions. Its main concept is to exploit any residual control of the end-user, thus being suitable for long term utilization in daily activities. MUNDUS integrates multimodal information (EMG, eye tracking, brain computer interface) to control different actuators, such as a passive exoskeleton for weight relief, a neuroprosthesis for arm motion and small motors for grasping. Within this project, the present work integreted a commercial passive exoskeleton with an EMG-controlled neuroprosthesis for supporting hand-to-mouth movements. Being the stimulated muscle the same from which the EMG was measured, first it was necessary to develop an appropriate digital filter to separate the volitional EMG and the stimulation response. Then, a control method aimed at exploiting as much as possible the residual motor control of the end-user was designed. The controller provided a stimulation intensity proportional to the volitional EMG. An experimental protocol was defined to validate the filter and the controller operation on one healthy volunteer. The subject was asked to perform a sequence of hand-to-mouth movements holding different loads. The movements were supported by both the exoskeleton and the neuroprosthesis. The filter was able to detect an increase of the volitional EMG as the weight held by the subject increased. Thus, a higher stimulation intensity was provided in order to support a more intense exercise. The study demonstrated the feasibility of an EMG-controlled neuroprosthesis for daily upper limb support on healthy subjects, providing a first step forward towards the development of the final MUNDUS platform.

  12. Nonlinear parameters of surface EMG in schizophrenia patients depend on kind of antipsychotic therapy.

    PubMed

    Meigal, Alexander Yu; Miroshnichenko, German G; Kuzmina, Anna P; Rissanen, Saara M; Georgiadis, Stefanos D; Karjalainen, Pasi A

    2015-01-01

    We compared a set of surface EMG (sEMG) parameters in several groups of schizophrenia (SZ, n = 74) patients and healthy controls (n = 11) and coupled them with the clinical data. sEMG records were quantified with spectral, mutual information (MI) based and recurrence quantification analysis (RQA) parameters, and with approximate and sample entropies (ApEn and SampEn). Psychotic deterioration was estimated with Positive and Negative Syndrome Scale (PANSS) and with the positive subscale of PANSS. Neuroleptic-induced parkinsonism (NIP) motor symptoms were estimated with Simpson-Angus Scale (SAS). Dyskinesia was measured with Abnormal Involuntary Movement Scale (AIMS). We found that there was no difference in values of sEMG parameters between healthy controls and drug-naïve SZ patients. The most specific group was formed of SZ patients who were administered both typical and atypical antipsychotics (AP). Their sEMG parameters were significantly different from those of SZ patients taking either typical or atypical AP or taking no AP. This may represent a kind of synergistic effect of these two classes of AP. For the clinical data we found that PANSS, SAS, and AIMS were not correlated to any of the sEMG parameters. with nonlinear parameters of sEMG it is possible to reveal NIP in SZ patients, and it may help to discriminate between different clinical groups of SZ patients. Combined typical and atypical AP therapy has stronger effect on sEMG than a therapy with AP of only one class.

  13. Wrist torque estimation during simultaneous and continuously changing movements: surface vs. untargeted intramuscular EMG.

    PubMed

    Kamavuako, Ernest N; Scheme, Erik J; Englehart, Kevin B

    2013-06-01

    In this paper, the predictive capability of surface and untargeted intramuscular electromyography (EMG) was compared with respect to wrist-joint torque to quantify which type of measurement better represents joint torque during multiple degrees-of-freedom (DoF) movements for possible application in prosthetic control. Ten able-bodied subjects participated in the study. Surface and intramuscular EMG was recorded concurrently from the right forearm. The subjects were instructed to track continuous contraction profiles using single and combined DoF in two trials. The association between torque and EMG was assessed using an artificial neural network. Results showed a significant difference between the two types of EMG (P < 0.007) for all performance metrics: coefficient of determination (R(2)), Pearson correlation coefficient (PCC), and root mean square error (RMSE). The performance of surface EMG (R(2) = 0.93 ± 0.03; PCC = 0.98 ± 0.01; RMSE = 8.7 ± 2.1%) was found to be superior compared with intramuscular EMG (R(2) = 0.80 ± 0.07; PCC = 0.93 ± 0.03; RMSE = 14.5 ± 2.9%). The higher values of PCC compared with R(2) indicate that both methods are able to track the torque profile well but have some trouble (particularly intramuscular EMG) in estimating the exact amplitude. The possible cause for the difference, thus the low performance of intramuscular EMG, may be attributed to the very high selectivity of the recordings used in this study.

  14. Sex differences in learning processes of classical and operant conditioning

    PubMed Central

    Dalla, Christina; Shors, Tracey J.

    2009-01-01

    Males and females learn and remember differently at different times in their lives. These differences occur in most species, from invertebrates to humans. We review here sex differences as they occur in laboratory rodent species. We focus on classical and operant conditioning paradigms, including classical eyeblink conditioning, fear conditioning, active avoidance and conditioned taste aversion. Sex differences have been reported during acquisition, retention and extinction in most of these paradigms. In general, females perform better than males in the classical eyeblink conditioning, in fear-potentiated startle and in most operant conditioning tasks, such as the active avoidance test. However, in the classical fear conditioning paradigm, in certain lever-pressing paradigms and in the conditioned taste aversion males outperform females or are more resistant to extinction. Most sex differences in conditioning are dependent on organizational effects of gonadal hormones during early development of the brain, in addition to modulation by activational effects during puberty and adulthood. Critically, sex differences in performance account for some of the reported effects on learning and these are discussed throughout the review. Because so many mental disorders are more prevalent on one sex than the other, it is important to consider sex differences in learning when applying animal models of learning for these disorders. Finally, we discuss how sex differences in learning continue to alter the brain throughout the lifespan. Thus, sex differences in learning are not only mediated by sex differences in the brain, but also contribute to them. PMID:19272397

  15. Sex differences in learning processes of classical and operant conditioning.

    PubMed

    Dalla, Christina; Shors, Tracey J

    2009-05-25

    Males and females learn and remember differently at different times in their lives. These differences occur in most species, from invertebrates to humans. We review here sex differences as they occur in laboratory rodent species. We focus on classical and operant conditioning paradigms, including classical eyeblink conditioning, fear-conditioning, active avoidance and conditioned taste aversion. Sex differences have been reported during acquisition, retention and extinction in most of these paradigms. In general, females perform better than males in the classical eyeblink conditioning, in fear-potentiated startle and in most operant conditioning tasks, such as the active avoidance test. However, in the classical fear-conditioning paradigm, in certain lever-pressing paradigms and in the conditioned taste aversion, males outperform females or are more resistant to extinction. Most sex differences in conditioning are dependent on organizational effects of gonadal hormones during early development of the brain, in addition to modulation by activational effects during puberty and adulthood. Critically, sex differences in performance account for some of the reported effects on learning and these are discussed throughout the review. Because so many mental disorders are more prevalent in one sex than the other, it is important to consider sex differences in learning when applying animal models of learning for these disorders. Finally, we discuss how sex differences in learning continue to alter the brain throughout the lifespan. Thus, sex differences in learning are not only mediated by sex differences in the brain, but also contribute to them.

  16. Fear-potentiated startle processing in humans: Parallel fMRI and orbicularis EMG assessment during cue conditioning and extinction.

    PubMed

    Lindner, Katja; Neubert, Jörg; Pfannmöller, Jörg; Lotze, Martin; Hamm, Alfons O; Wendt, Julia

    2015-12-01

    Studying neural networks and behavioral indices such as potentiated startle responses during fear conditioning has a long tradition in both animal and human research. However, most of the studies in humans do not link startle potentiation and neural activity during fear acquisition and extinction. Therefore, we examined startle blink responses measured with electromyography (EMG) and brain activity measured with functional MRI simultaneously during differential conditioning. Furthermore, we combined these behavioral fear indices with brain network activity by analyzing the brain activity evoked by the startle probe stimulus presented during conditioned visual threat and safety cues as well as in the absence of visual stimulation. In line with previous research, we found a fear-induced potentiation of the startle blink responses when elicited during a conditioned threat stimulus and a rapid decline of amygdala activity after an initial differentiation of threat and safety cues in early acquisition trials. Increased activation during processing of threat cues was also found in the anterior insula, the anterior cingulate cortex (ACC), and the periaqueductal gray (PAG). More importantly, our results depict an increase of brain activity to probes presented during threatening in comparison to safety cues indicating an involvement of the anterior insula, the ACC, the thalamus, and the PAG in fear-potentiated startle processing during early extinction trials. Our study underlines that parallel assessment of fear-potentiated startle in fMRI paradigms can provide a helpful method to investigate common and distinct processing pathways in humans and animals and, thus, contributes to translational research. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Extraction of the brachialis muscle activity using HD-sEMG technique and canonical correlation analysis.

    PubMed

    Al Harrach, M; Afsharipour, B; Boudaoud, S; Carriou, V; Marin, F; Merletti, R

    2016-08-01

    The Brachialis (BR) is placed under the Biceps Brachii (BB) deep in the upper arm. Therefore, the detection of the corresponding surface Electromyogram (sEMG) is a complex task. The BR is an important elbow flexor, but it is usually not considered in the sEMG based force estimation process. The aim of this study was to attempt to separate the two sEMG activities of the BR and the BB by using a High Density sEMG (HD-sEMG) grid placed at the upper arm and Canonical Component Analysis (CCA) technique. For this purpose, we recorded sEMG signals from seven subjects with two 8 × 4 electrode grids placed over BB and BR. Four isometric voluntary contraction levels were recorded (5, 10, 30 and 50 %MVC) for 90° elbow angle. Then using CCA and image processing tools the sources of each muscle activity were separated. Finally, the corresponding sEMG signals were reconstructed using the remaining canonical components in order to retrieve the activity of the BB and the BR muscles.

  18. A masked least-squares smoothing procedure for artifact reduction in scanning-EMG recordings.

    PubMed

    Corera, Íñigo; Eciolaza, Adrián; Rubio, Oliver; Malanda, Armando; Rodríguez-Falces, Javier; Navallas, Javier

    2018-01-11

    Scanning-EMG is an electrophysiological technique in which the electrical activity of the motor unit is recorded at multiple points along a corridor crossing the motor unit territory. Correct analysis of the scanning-EMG signal requires prior elimination of interference from nearby motor units. Although the traditional processing based on the median filtering is effective in removing such interference, it distorts the physiological waveform of the scanning-EMG signal. In this study, we describe a new scanning-EMG signal processing algorithm that preserves the physiological signal waveform while effectively removing interference from other motor units. To obtain a cleaned-up version of the scanning signal, the masked least-squares smoothing (MLSS) algorithm recalculates and replaces each sample value of the signal using a least-squares smoothing in the spatial dimension, taking into account the information of only those samples that are not contaminated with activity of other motor units. The performance of the new algorithm with simulated scanning-EMG signals is studied and compared with the performance of the median algorithm and tested with real scanning signals. Results show that the MLSS algorithm distorts the waveform of the scanning-EMG signal much less than the median algorithm (approximately 3.5 dB gain), being at the same time very effective at removing interference components. Graphical Abstract The raw scanning-EMG signal (left figure) is processed by the MLSS algorithm in order to remove the artifact interference. Firstly, artifacts are detected from the raw signal, obtaining a validity mask (central figure) that determines the samples that have been contaminated by artifacts. Secondly, a least-squares smoothing procedure in the spatial dimension is applied to the raw signal using the not contaminated samples according to the validity mask. The resulting MLSS-processed scanning-EMG signal (right figure) is clean of artifact interference.

  19. EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study

    PubMed Central

    2013-01-01

    Background Several studies investigating the use of electromyographic (EMG) signals in robot-based stroke neuro-rehabilitation to enhance functional recovery. Here we explored whether a classical EMG-based patterns recognition approach could be employed to predict patients’ intentions while attempting to generate goal-directed movements in the horizontal plane. Methods Nine right-handed healthy subjects and seven right-handed stroke survivors performed reaching movements in the horizontal plane. EMG signals were recorded and used to identify the intended motion direction of the subjects. To this aim, a standard pattern recognition algorithm (i.e., Support Vector Machine, SVM) was used. Different tests were carried out to understand the role of the inter- and intra-subjects’ variability in affecting classifier accuracy. Abnormal muscular spatial patterns generating misclassification were evaluated by means of an assessment index calculated from the results achieved with the PCA, i.e., the so-called Coefficient of Expressiveness (CoE). Results Processing the EMG signals of the healthy subjects, in most of the cases we were able to build a static functional map of the EMG activation patterns for point-to-point reaching movements on the horizontal plane. On the contrary, when processing the EMG signals of the pathological subjects a good classification was not possible. In particular, patients’ aimed movement direction was not predictable with sufficient accuracy either when using the general map extracted from data of normal subjects and when tuning the classifier on the EMG signals recorded from each patient. Conclusions The experimental findings herein reported show that the use of EMG patterns recognition approach might not be practical to decode movement intention in subjects with neurological injury such as stroke. Rather than estimate motion from EMGs, future scenarios should encourage the utilization of these signals to detect and interpret the normal and

  20. Real-time simultaneous and proportional myoelectric control using intramuscular EMG

    NASA Astrophysics Data System (ADS)

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2014-12-01

    Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG. Approach. We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main results. Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts’ Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts’ Law tasks with high levels of path efficiency. Significance. These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control.

  1. EMG prediction from Motor Cortical Recordings via a Non-Negative Point Process Filter

    PubMed Central

    Nazarpour, Kianoush; Ethier, Christian; Paninski, Liam; Rebesco, James M.; Miall, R. Chris; Miller, Lee E.

    2012-01-01

    A constrained point process filtering mechanism for prediction of electromyogram (EMG) signals from multi-channel neural spike recordings is proposed here. Filters from the Kalman family are inherently sub-optimal in dealing with non-Gaussian observations, or a state evolution that deviates from the Gaussianity assumption. To address these limitations, we modeled the non-Gaussian neural spike train observations by using a generalized linear model (GLM) that encapsulates covariates of neural activity, including the neurons’ own spiking history, concurrent ensemble activity, and extrinsic covariates (EMG signals). In order to predict the envelopes of EMGs, we reformulated the Kalman filter (KF) in an optimization framework and utilized a non-negativity constraint. This structure characterizes the non-linear correspondence between neural activity and EMG signals reasonably. The EMGs were recorded from twelve forearm and hand muscles of a behaving monkey during a grip-force task. For the case of limited training data, the constrained point process filter improved the prediction accuracy when compared to a conventional Wiener cascade filter (a linear causal filter followed by a static non-linearity) for different bin sizes and delays between input spikes and EMG output. For longer training data sets, results of the proposed filter and that of the Wiener cascade filter were comparable. PMID:21659018

  2. Nonlinear parameters of surface EMG in schizophrenia patients depend on kind of antipsychotic therapy

    PubMed Central

    Meigal, Alexander Yu.; Miroshnichenko, German G.; Kuzmina, Anna P.; Rissanen, Saara M.; Georgiadis, Stefanos D.; Karjalainen, Pasi A.

    2015-01-01

    We compared a set of surface EMG (sEMG) parameters in several groups of schizophrenia (SZ, n = 74) patients and healthy controls (n = 11) and coupled them with the clinical data. sEMG records were quantified with spectral, mutual information (MI) based and recurrence quantification analysis (RQA) parameters, and with approximate and sample entropies (ApEn and SampEn). Psychotic deterioration was estimated with Positive and Negative Syndrome Scale (PANSS) and with the positive subscale of PANSS. Neuroleptic-induced parkinsonism (NIP) motor symptoms were estimated with Simpson-Angus Scale (SAS). Dyskinesia was measured with Abnormal Involuntary Movement Scale (AIMS). We found that there was no difference in values of sEMG parameters between healthy controls and drug-naïve SZ patients. The most specific group was formed of SZ patients who were administered both typical and atypical antipsychotics (AP). Their sEMG parameters were significantly different from those of SZ patients taking either typical or atypical AP or taking no AP. This may represent a kind of synergistic effect of these two classes of AP. For the clinical data we found that PANSS, SAS, and AIMS were not correlated to any of the sEMG parameters. Conclusion: with nonlinear parameters of sEMG it is possible to reveal NIP in SZ patients, and it may help to discriminate between different clinical groups of SZ patients. Combined typical and atypical AP therapy has stronger effect on sEMG than a therapy with AP of only one class. PMID:26217236

  3. Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses.

    PubMed

    Akhtar, Aadeel; Aghasadeghi, Navid; Hargrove, Levi; Bretl, Timothy

    2017-08-01

    In this paper, we quantify the extent to which shoulder orientation, upper-arm electromyography (EMG), and forearm EMG are predictors of distal arm joint angles during reaching in eight subjects without disability as well as three subjects with a unilateral transhumeral amputation and targeted reinnervation. Prior studies have shown that shoulder orientation and upper-arm EMG, taken separately, are predictors of both elbow flexion/extension and forearm pronation/supination. We show that, for eight subjects without disability, shoulder orientation and upper-arm EMG together are a significantly better predictor of both elbow flexion/extension during unilateral (R 2 =0.72) and mirrored bilateral (R 2 =0.72) reaches and of forearm pronation/supination during unilateral (R 2 =0.77) and mirrored bilateral (R 2 =0.70) reaches. We also show that adding forearm EMG further improves the prediction of forearm pronation/supination during unilateral (R 2 =0.82) and mirrored bilateral (R 2 =0.75) reaches. In principle, these results provide the basis for choosing inputs for control of transhumeral prostheses, both by subjects with targeted motor reinnervation (when forearm EMG is available) and by subjects without target motor reinnervation (when forearm EMG is not available). In particular, we confirm that shoulder orientation and upper-arm EMG together best predict elbow flexion/extension (R 2 =0.72) for three subjects with unilateral transhumeral amputations and targeted motor reinnervation. However, shoulder orientation alone best predicts forearm pronation/supination (R 2 =0.88) for these subjects, a contradictory result that merits further study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Surface EMG signals based motion intent recognition using multi-layer ELM

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Qi, Lin; Wang, Xiao

    2017-11-01

    The upper-limb rehabilitation robot is regard as a useful tool to help patients with hemiplegic to do repetitive exercise. The surface electromyography (sEMG) contains motion information as the electric signals are generated and related to nerve-muscle motion. These sEMG signals, representing human's intentions of active motions, are introduced into the rehabilitation robot system to recognize upper-limb movements. Traditionally, the feature extraction is an indispensable part of drawing significant information from original signals, which is a tedious task requiring rich and related experience. This paper employs a deep learning scheme to extract the internal features of the sEMG signals using an advanced Extreme Learning Machine based auto-encoder (ELMAE). The mathematical information contained in the multi-layer structure of the ELM-AE is used as the high-level representation of the internal features of the sEMG signals, and thus a simple ELM can post-process the extracted features, formulating the entire multi-layer ELM (ML-ELM) algorithm. The method is employed for the sEMG based neural intentions recognition afterwards. The case studies show the adopted deep learning algorithm (ELM-AE) is capable of yielding higher classification accuracy compared to the Principle Component Analysis (PCA) scheme in 5 different types of upper-limb motions. This indicates the effectiveness and the learning capability of the ML-ELM in such motion intent recognition applications.

  5. Compression of high-density EMG signals for trapezius and gastrocnemius muscles.

    PubMed

    Itiki, Cinthia; Furuie, Sergio S; Merletti, Roberto

    2014-03-10

    New technologies for data transmission and multi-electrode arrays increased the demand for compressing high-density electromyography (HD EMG) signals. This article aims the compression of HD EMG signals recorded by two-dimensional electrode matrices at different muscle-contraction forces. It also shows methodological aspects of compressing HD EMG signals for non-pinnate (upper trapezius) and pinnate (medial gastrocnemius) muscles, using image compression techniques. HD EMG signals were placed in image rows, according to two distinct electrode orders: parallel and perpendicular to the muscle longitudinal axis. For the lossless case, the images obtained from single-differential signals as well as their differences in time were compressed. For the lossy algorithm, the images associated to the recorded monopolar or single-differential signals were compressed for different compression levels. Lossless compression provided up to 59.3% file-size reduction (FSR), with lower contraction forces associated to higher FSR. For lossy compression, a 90.8% reduction on the file size was attained, while keeping the signal-to-noise ratio (SNR) at 21.19 dB. For a similar FSR, higher contraction forces corresponded to higher SNR CONCLUSIONS: The computation of signal differences in time improves the performance of lossless compression while the selection of signals in the transversal order improves the lossy compression of HD EMG, for both pinnate and non-pinnate muscles.

  6. Compression of high-density EMG signals for trapezius and gastrocnemius muscles

    PubMed Central

    2014-01-01

    Background New technologies for data transmission and multi-electrode arrays increased the demand for compressing high-density electromyography (HD EMG) signals. This article aims the compression of HD EMG signals recorded by two-dimensional electrode matrices at different muscle-contraction forces. It also shows methodological aspects of compressing HD EMG signals for non-pinnate (upper trapezius) and pinnate (medial gastrocnemius) muscles, using image compression techniques. Methods HD EMG signals were placed in image rows, according to two distinct electrode orders: parallel and perpendicular to the muscle longitudinal axis. For the lossless case, the images obtained from single-differential signals as well as their differences in time were compressed. For the lossy algorithm, the images associated to the recorded monopolar or single-differential signals were compressed for different compression levels. Results Lossless compression provided up to 59.3% file-size reduction (FSR), with lower contraction forces associated to higher FSR. For lossy compression, a 90.8% reduction on the file size was attained, while keeping the signal-to-noise ratio (SNR) at 21.19 dB. For a similar FSR, higher contraction forces corresponded to higher SNR Conclusions The computation of signal differences in time improves the performance of lossless compression while the selection of signals in the transversal order improves the lossy compression of HD EMG, for both pinnate and non-pinnate muscles. PMID:24612604

  7. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    PubMed

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  8. Changes in complex spike activity during classical conditioning

    PubMed Central

    Rasmussen, Anders; Jirenhed, Dan-Anders; Wetmore, Daniel Z.; Hesslow, Germund

    2014-01-01

    The cerebellar cortex is necessary for adaptively timed conditioned responses (CRs) in eyeblink conditioning. During conditioning, Purkinje cells acquire pause responses or “Purkinje cell CRs” to the conditioned stimuli (CS), resulting in disinhibition of the cerebellar nuclei (CN), allowing them to activate motor nuclei that control eyeblinks. This disinhibition also causes inhibition of the inferior olive (IO), via the nucleo-olivary pathway (N-O). Activation of the IO, which relays the unconditional stimulus (US) to the cortex, elicits characteristic complex spikes in Purkinje cells. Although Purkinje cell activity, as well as stimulation of the CN, is known to influence IO activity, much remains to be learned about the way that learned changes in simple spike firing affects the IO. In the present study, we analyzed changes in simple and complex spike firing, in extracellular Purkinje cell records, from the C3 zone, in decerebrate ferrets undergoing training in a conditioning paradigm. In agreement with the N-O feedback hypothesis, acquisition resulted in a gradual decrease in complex spike activity during the conditioned stimulus, with a delay that is consistent with the long N-O latency. Also supporting the feedback hypothesis, training with a short interstimulus interval (ISI), which does not lead to acquisition of a Purkinje cell CR, did not cause a suppression of complex spike activity. In contrast, observations that extinction did not lead to a recovery in complex spike activity and the irregular patterns of simple and complex spike activity after the conditioned stimulus are less conclusive. PMID:25140129

  9. EMG and tibial shock upon the first attempt at barefoot running.

    PubMed

    Olin, Evan D; Gutierrez, Gregory M

    2013-04-01

    As a potential means to decrease their risk of injury, many runners are transitioning into barefoot running. Habitually shod runners tend to heel-strike (SHS), landing on their heel first, while barefoot runners tend to mid-foot or toe-strike (BTS), landing flat-footed or on the ball of their foot before bringing down the rest of the foot including the heel. This study compared muscle activity, tibial shock, and knee flexion angle in subjects between shod and barefoot conditions. Eighteen habitually SHS recreational runners ran for 3 separate 7-minute trials, including SHS, barefoot heel-strike (BHS), and BTS conditions. EMG, tibial shock, and knee flexion angle were monitored using bipolar surface electrodes, an accelerometer, and an electrogoniometer, respectively. A one-way MANOVA for repeated measures was conducted and several significant changes were noted between SHS and BTS, including significant increases in average EMG of the medial gastrocnemius (p=.05), average and peak tibial shock (p<.01), and the minimum knee flexion angle (p<.01). Based on our data, the initial change in mechanics may have detrimental effects on the runner. While it has been argued that BTS running may ultimately be less injurious, these data indicate that habitually SHS runners who choose to transition into a BTS technique must undertake the process cautiously. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Analysis of linear electrode array EMG for assessment of hemiparetic biceps brachii muscles.

    PubMed

    Yao, Bo; Zhang, Xu; Li, Sheng; Li, Xiaoyan; Chen, Xiang; Klein, Cliff S; Zhou, Ping

    2015-01-01

    This study presents a frequency analysis of surface electromyogram (EMG) signals acquired by a linear electrode array from the biceps brachii muscles bilaterally in 14 hemiparetic stroke subjects. For different levels of isometric contraction ranging from 10 to 80% of the maximum voluntary contraction (MVC), the power spectra of 19 bipolar surface EMG channels arranged proximally to distally along the muscle fibers were examined in both paretic and contralateral muscles. It was found that across all stroke subjects, the median frequency (MF) and the mean power frequency (MPF), averaged from different surface EMG channels, were significantly smaller in the paretic muscle compared to the contralateral muscle at each of the matched percent MVC contractions. The muscle fiber conduction velocity (MFCV) was significantly slower in the paretic muscle than in the contralateral muscle. No significant correlation between the averaged MF, MPF, or MFCV vs. torque was found in both paretic and contralateral muscles. However, there was a significant positive correlation between the global MFCV and MF. Examination of individual EMG channels showed that electrodes closest to the estimated muscle innervation zones produced surface EMG signals with significantly higher MF and MPF than more proximal or distal locations in both paretic and contralateral sides. These findings suggest complex central and peripheral neuromuscular alterations (such as selective loss of large motor units, disordered control of motor units, increased motor unit synchronization, and atrophy of muscle fibers, etc.) which can collectively influence the surface EMG signals. The frequency difference with regard to the innervation zone also confirms the relevance of electrode position in surface EMG analysis.

  11. EMG analysis of peroneal and tibialis anterior muscle activity prior to foot contact during functional activities.

    PubMed

    McLoda, T A; Hansen, A J; Birrer, D A

    2004-06-01

    The purpose of this investigation was to determine the pre-activity of the tibialis anterior (TA), peroneus longus (PL), and peroneus brevis (PB) prior to foot contact during three conditions. Twenty-six subjects (age 22 +/- 2 yrs; 15 male, 11 female) with no lower extremity injuries reported for data collection. Data were collected from each subject's dominant leg using surface electromyography (EMG). EMG electrodes were applied over the test muscles using a standard protocol. A heel-toe strike transducer was affixed to the bottom of the subject's shoe. The subject completed two randomized trials of walking on a treadmill (5.6 kph), jogging on a treadmill (9.3 kph) and drop landing from a 38 cm box. Isometric reference positions (IRPs) were recorded for the TA, PL, and PB. Muscle data were normalized to IRPs and the average processed EMG for the 200 ms prior to heel strike during walking and jogging and prior to toe strike when dropping from the box was used for analysis. A one-way repeated measures MANOVA was used to detect differences in pre-activity of the muscles between the three conditions. Univariate tests were used to determine differences for each muscle and Tukey's was applied post hoc to determine individual effect differences. The MANOVA revealed significant differences among the three conditions (F2.50 = 10.770; P < .0005). Average TA activity was significantly higher during jogging (Tukey's; P < .0005). Significant differences existed between each condition for the TA. Average PL and PB activity was significantly higher when drop landing (Tukey's; P < .0005). There was no significant difference between walking and jogging for the PL and PB. The amount of muscle pre-activity occurring before heel or toe strike provides useful information for the examination of reaction times to unexpected inversion during dynamic activities.

  12. Three-Dimensional Innervation Zone Imaging from Multi-Channel Surface EMG Recordings.

    PubMed

    Liu, Yang; Ning, Yong; Li, Sheng; Zhou, Ping; Rymer, William Z; Zhang, Yingchun

    2015-09-01

    There is an unmet need to accurately identify the locations of innervation zones (IZs) of spastic muscles, so as to guide botulinum toxin (BTX) injections for the best clinical outcome. A novel 3D IZ imaging (3DIZI) approach was developed by combining the bioelectrical source imaging and surface electromyogram (EMG) decomposition methods to image the 3D distribution of IZs in the target muscles. Surface IZ locations of motor units (MUs), identified from the bipolar map of their MU action potentials (MUAPs) were employed as a prior knowledge in the 3DIZI approach to improve its imaging accuracy. The performance of the 3DIZI approach was first optimized and evaluated via a series of designed computer simulations, and then validated with the intramuscular EMG data, together with simultaneously recorded 128-channel surface EMG data from the biceps of two subjects. Both simulation and experimental validation results demonstrate the high performance of the 3DIZI approach in accurately reconstructing the distributions of IZs and the dynamic propagation of internal muscle activities in the biceps from high-density surface EMG recordings.

  13. THREE-DIMENSIONAL INNERVATION ZONE IMAGING FROM MULTI-CHANNEL SURFACE EMG RECORDINGS

    PubMed Central

    LIU, YANG; NING, YONG; LI, SHENG; ZHOU, PING; RYMER, WILLIAM Z.; ZHANG, YINGCHUN

    2017-01-01

    There is an unmet need to accurately identify the locations of innervation zones (IZs) of spastic muscles, so as to guide botulinum toxin (BTX) injections for the best clinical outcome. A novel 3-dimensional IZ imaging (3DIZI) approach was developed by combining the bioelectrical source imaging and surface electromyogram (EMG) decomposition methods to image the 3D distribution of IZs in the target muscles. Surface IZ locations of motor units (MUs), identified from the bipolar map of their motor unit action potentials (MUAPs) were employed as a prior knowledge in the 3DIZI approach to improve its imaging accuracy. The performance of the 3DIZI approach was first optimized and evaluated via a series of designed computer simulations, and then validated with the intramuscular EMG data, together with simultaneously recorded 128-channel surface EMG data from the biceps of two subjects. Both simulation and experimental validation results demonstrate the high performance of the 3DIZI approach in accurately reconstructing the distributions of IZs and the dynamic propagation of internal muscle activities in the biceps from high-density surface EMG recordings. PMID:26160432

  14. Augmenting the decomposition of EMG signals using supervised feature extraction techniques.

    PubMed

    Parsaei, Hossein; Gangeh, Mehrdad J; Stashuk, Daniel W; Kamel, Mohamed S

    2012-01-01

    Electromyographic (EMG) signal decomposition is the process of resolving an EMG signal into its constituent motor unit potential trains (MUPTs). In this work, the possibility of improving the decomposing results using two supervised feature extraction methods, i.e., Fisher discriminant analysis (FDA) and supervised principal component analysis (SPCA), is explored. Using the MUP labels provided by a decomposition-based quantitative EMG system as a training data for FDA and SPCA, the MUPs are transformed into a new feature space such that the MUPs of a single MU become as close as possible to each other while those created by different MUs become as far as possible. The MUPs are then reclassified using a certainty-based classification algorithm. Evaluation results using 10 simulated EMG signals comprised of 3-11 MUPTs demonstrate that FDA and SPCA on average improve the decomposition accuracy by 6%. The improvement for the most difficult-to-decompose signal is about 12%, which shows the proposed approach is most beneficial in the decomposition of more complex signals.

  15. A model for generating Surface EMG signal of m. Tibialis Anterior.

    PubMed

    Siddiqi, Ariba; Kumar, Dinesh; Arjunan, Sridhar P

    2014-01-01

    A model that simulates surface electromyogram (sEMG) signal of m. Tibialis Anterior has been developed and tested. This has a firing rate equation that is based on experimental findings. It also has a recruitment threshold that is based on observed statistical distribution. Importantly, it has considered both, slow and fast type which has been distinguished based on their conduction velocity. This model has assumed that the deeper unipennate half of the muscle does not contribute significantly to the potential induced on the surface of the muscle and has approximated the muscle to have parallel structure. The model was validated by comparing the simulated and the experimental sEMG signal recordings. Experiments were conducted on eight subjects who performed isometric dorsiflexion at 10, 20, 30, 50, 75, and 100% maximal voluntary contraction. Normalized root mean square and median frequency of the experimental and simulated EMG signal were computed and the slopes of the linearity with the force were statistically analyzed. The gradients were found to be similar (p>0.05) for both experimental and simulated sEMG signal, validating the proposed model.

  16. Voluntary EMG-to-force estimation with a multi-scale physiological muscle model

    PubMed Central

    2013-01-01

    contractions schemes. Conclusions We introduced a novel approach that allows EMG-force estimation based on a multi-scale physiology model integrating Hill approach for the passive elements and microscopic cross-bridge representations for the contractile element. The experimental evaluation highlights estimation improvements especially a larger range of contraction conditions with integration of the neural activation frequency property and force-velocity relationship through cross-bridge dynamics consideration. PMID:24007560

  17. Power line interference attenuation in multi-channel sEMG signals: Algorithms and analysis.

    PubMed

    Soedirdjo, S D H; Ullah, K; Merletti, R

    2015-08-01

    Electromyogram (EMG) recordings are often corrupted by power line interference (PLI) even though the skin is prepared and well-designed instruments are used. This study focuses on the analysis of some of the recent and classical existing digital signal processing approaches have been used to attenuate, if not eliminate, the power line interference from EMG signals. A comparison of the signal to interference ratio (SIR) of the output signals is presented, for four methods: classical notch filter, spectral interpolation, adaptive noise canceller with phase locked loop (ANC-PLL) and adaptive filter, applied to simulated multichannel monopolar EMG signals with different SIR. The effect of each method on the shape of the EMG signals is also analyzed. The results show that ANC-PLL method gives the best output SIR and lowest shape distortion compared to the other methods. Classical notch filtering is the simplest method but some information might be lost as it removes both the interference and the EMG signals. Thus, it is obvious that notch filter has the lowest performance and it introduces distortion into the resulting signals.

  18. Circadian force and EMG activity in hindlimb muscles of rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Wichayanuparp, S.; Recktenwald, M. R.; Roy, R. R.; McCall, G.; Day, M. K.; Washburn, D.; Fanton, J. W.; Kozlovskaya, I.; Edgerton, V. R.; hide

    2001-01-01

    Continuous intramuscular electromyograms (EMGs) were recorded from the soleus (Sol), medial gastrocnemius (MG), tibialis anterior (TA), and vastus lateralis (VL) muscles of Rhesus during normal cage activity throughout 24-h periods and also during treadmill locomotion. Daily levels of MG tendon force and EMG activity were obtained from five monkeys with partial datasets from three other animals. Activity levels correlated with the light-dark cycle with peak activities in most muscles occurring between 08:00 and 10:00. The lowest levels of activity generally occurred between 22:00 and 02:00. Daily EMG integrals ranged from 19 mV/s in one TA muscle to 3339 mV/s in one Sol muscle: average values were 1245 (Sol), 90 (MG), 65 (TA), and 209 (VL) mV/s. The average Sol EMG amplitude per 24-h period was 14 microV, compared with 246 microV for a short burst of locomotion. Mean EMG amplitudes for the Sol, MG, TA, and VL during active periods were 102, 18, 20, and 33 microV, respectively. EMG amplitudes that approximated recruitment of all fibers within a muscle occurred for 5-40 s/day in all muscles. The duration of daily activation was greatest in the Sol [151 +/- 45 (SE) min] and shortest in the TA (61 +/- 19 min). The results show that even a "postural" muscle such as the Sol was active for only approximately 9% of the day, whereas less active muscles were active for approximately 4% of the day. MG tendon forces were generally very low, consistent with the MG EMG data but occasionally reached levels close to estimates of the maximum force generating potential of the muscle. The Sol and TA activities were mutually exclusive, except at very low levels, suggesting very little coactivation of these antagonistic muscles. In contrast, the MG activity usually accompanied Sol activity suggesting that the MG was rarely used in the absence of Sol activation. The results clearly demonstrate a wide range of activation levels among muscles of the same animal as well as among different

  19. Real-time simultaneous and proportional myoelectric control using intramuscular EMG

    PubMed Central

    Kuiken, Todd A; Hargrove, Levi J

    2014-01-01

    Objective Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG. Approach We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main Results Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency. Significance These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control. PMID:25394366

  20. Objectivity and validity of EMG method in estimating anaerobic threshold.

    PubMed

    Kang, S-K; Kim, J; Kwon, M; Eom, H

    2014-08-01

    The purposes of this study were to verify and compare the performances of anaerobic threshold (AT) point estimates among different filtering intervals (9, 15, 20, 25, 30 s) and to investigate the interrelationships of AT point estimates obtained by ventilatory threshold (VT) and muscle fatigue thresholds using electromyographic (EMG) activity during incremental exercise on a cycle ergometer. 69 untrained male university students, yet pursuing regular exercise voluntarily participated in this study. The incremental exercise protocol was applied with a consistent stepwise increase in power output of 20 watts per minute until exhaustion. AT point was also estimated in the same manner using V-slope program with gas exchange parameters. In general, the estimated values of AT point-time computed by EMG method were more consistent across 5 filtering intervals and demonstrated higher correlations among themselves when compared with those values obtained by VT method. The results found in the present study suggest that the EMG signals could be used as an alternative or a new option in estimating AT point. Also the proposed computing procedure implemented in Matlab for the analysis of EMG signals appeared to be valid and reliable as it produced nearly identical values and high correlations with VT estimates. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Patterns of motor recruitment can be determined using surface EMG.

    PubMed

    Wakeling, James M

    2009-04-01

    Previous studies have reported how different populations of motor units (MUs) can be recruited during dynamic and locomotor tasks. It was hypothesised that the higher-threshold units would contribute higher-frequency components to the sEMG spectra due to their faster conduction velocities, and thus recruitment patterns that increase the proportion of high-threshold units active would lead to higher-frequency elements in the sEMG spectra. This idea was tested by using a model of varying recruitment coupled to a three-layer volume conductor model to generate a series of sEMG signals. The recruitment varied from (A) orderly recruitment where the lowest-threshold MUs were initially activated and higher-threshold MUs were sequentially recruited as the contraction progressed, (B) a recurrent inhibition model that started with orderly recruitment, but as the higher-threshold units were activated they inhibited the lower-threshold MUs (C) nine models with intermediate properties that were graded between these two extremes. The sEMG was processed using wavelet analysis and the spectral properties quantified by their mean frequency, and an angle theta that was determined from the principal components of the spectra. Recruitment strategies that resulted in a greater proportion of faster MUs being active had a significantly lower theta and higher mean frequency.

  2. Body position effects on sternocleidomastoid and masseter EMG pattern activity in patients undergoing occlusal splint therapy.

    PubMed

    Ormeño, G; Miralles, R; Santander, H; Casassus, R; Ferrer, P; Palazzi, C; Moya, H

    1997-10-01

    This study was conducted in order to determine the effects of body position on electromyographic (EMG) activity of sternocleidomastoid and masseter muscles, in 15 patients with myogenic cranio-cervical-mandibular dysfunction undergoing occlusal splint therapy. EMG activity was recorded by placing surface electrodes on the sternocleidomastoid and masseter muscles (contralateral to the habitual sleeping side of each patient). EMG activity at rest and during swallowing of saliva and maximal voluntary clenching was recorded in the following body positions: standing, supine and lateral decubitus. In the sternocleidomastoid muscle significant higher EMG activities at rest and during swallowing were recorded in the lateral decubitus position, whereas during maximal voluntary clenching EMG activity did not change. In the masseter muscle significant higher EMG activity during maximal voluntary clenching in a standing position was observed, whereas EMG activity at rest and during swallowing did not change. The opposite pattern of EMG activity supports the idea that there may exist a differential modulation of the motor neuron pools of the sternocleidomastoid and masseter muscles, of peripheral and/or central origin. This suggests that the presence of parafunctional habits and body position could be closely correlated with the clinical symptomatology in these muscles in patients with myogenic craniomandibular dysfunction.

  3. EMG-based speech recognition using hidden markov models with global control variables.

    PubMed

    Lee, Ki-Seung

    2008-03-01

    It is well known that a strong relationship exists between human voices and the movement of articulatory facial muscles. In this paper, we utilize this knowledge to implement an automatic speech recognition scheme which uses solely surface electromyogram (EMG) signals. The sequence of EMG signals for each word is modelled by a hidden Markov model (HMM) framework. The main objective of the work involves building a model for state observation density when multichannel observation sequences are given. The proposed model reflects the dependencies between each of the EMG signals, which are described by introducing a global control variable. We also develop an efficient model training method, based on a maximum likelihood criterion. In a preliminary study, 60 isolated words were used as recognition variables. EMG signals were acquired from three articulatory facial muscles. The findings indicate that such a system may have the capacity to recognize speech signals with an accuracy of up to 87.07%, which is superior to the independent probabilistic model.

  4. Dynamical characteristics of surface EMG signals of hand grasps via recurrence plot.

    PubMed

    Ouyang, Gaoxiang; Zhu, Xiangyang; Ju, Zhaojie; Liu, Honghai

    2014-01-01

    Recognizing human hand grasp movements through surface electromyogram (sEMG) is a challenging task. In this paper, we investigated nonlinear measures based on recurrence plot, as a tool to evaluate the hidden dynamical characteristics of sEMG during four different hand movements. A series of experimental tests in this study show that the dynamical characteristics of sEMG data with recurrence quantification analysis (RQA) can distinguish different hand grasp movements. Meanwhile, adaptive neuro-fuzzy inference system (ANFIS) is applied to evaluate the performance of the aforementioned measures to identify the grasp movements. The experimental results show that the recognition rate (99.1%) based on the combination of linear and nonlinear measures is much higher than those with only linear measures (93.4%) or nonlinear measures (88.1%). These results suggest that the RQA measures might be a potential tool to reveal the sEMG hidden characteristics of hand grasp movements and an effective supplement for the traditional linear grasp recognition methods.

  5. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors.

    PubMed

    Phinyomark, Angkoon; N Khushaba, Rami; Scheme, Erik

    2018-05-18

    Specialized myoelectric sensors have been used in prosthetics for decades, but, with recent advancements in wearable sensors, wireless communication and embedded technologies, wearable electromyographic (EMG) armbands are now commercially available for the general public. Due to physical, processing, and cost constraints, however, these armbands typically sample EMG signals at a lower frequency (e.g., 200 Hz for the Myo armband) than their clinical counterparts. It remains unclear whether existing EMG feature extraction methods, which largely evolved based on EMG signals sampled at 1000 Hz or above, are still effective for use with these emerging lower-bandwidth systems. In this study, the effects of sampling rate (low: 200 Hz vs. high: 1000 Hz) on the classification of hand and finger movements were evaluated for twenty-six different individual features and eight sets of multiple features using a variety of datasets comprised of both able-bodied and amputee subjects. The results show that, on average, classification accuracies drop significantly ( p.

  6. Finite State Machine with Adaptive Electromyogram (EMG) Feature Extraction to Drive Meal Assistance Robot

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu; Wang, Xingyu; Wang, Bei; Sugi, Takenao; Nakamura, Masatoshi

    Surface electromyogram (EMG) from elbow, wrist and hand has been widely used as an input of multifunction prostheses for many years. However, for patients with high-level limb deficiencies, muscle activities in upper-limbs are not strong enough to be used as control signals. In this paper, EMG from lower-limbs is acquired and applied to drive a meal assistance robot. An onset detection method with adaptive threshold based on EMG power is proposed to recognize different muscle contractions. Predefined control commands are output by finite state machine (FSM), and applied to operate the robot. The performance of EMG control is compared with joystick control by both objective and subjective indices. The results show that FSM provides the user with an easy-performing control strategy, which successfully operates robots with complicated control commands by limited muscle motions. The high accuracy and comfortableness of the EMG-control meal assistance robot make it feasible for users with upper limbs motor disabilities.

  7. Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection

    NASA Astrophysics Data System (ADS)

    Flórez-Prias, L. A.; Contreras-Ortiz, S. H.

    2017-11-01

    The purpose of the present article is to characterize sEMG signals to determine muscular fatigue levels. To do this, the signal is decomposed using the discrete wavelet transform, which offers noise filtering features, simplicity and efficiency. sEMG signals on the forearm were acquired and analyzed during the execution of cyclic muscular contractions in the presence and absence of fatigue. When the muscle fatigues, the sEMG signal shows a more erratic behavior of the signal as more energy is required to maintain the effort levels.

  8. EMG monitoring during functional non-surgical therapy of Achilles tendon rupture.

    PubMed

    Hüfner, Tobias; Wohifarth, Kai; Fink, Matthias; Thermann, H; Rollnik, Jens D

    2002-07-01

    After surgical therapy of Achilles tendon rupture, neuromuscular changes may persist, even one year after surgery. We were interested whether these changes are also evident following a non-surgical functional therapy (Variostabil therapy boot/Adidas). Twenty-one patients with complete Achilles tendon rupture were enrolled in the study (mean age 38.5 years, range 24 to 60; 18 men, three women) and followed-up clinically and with surface EMG of the gastrocnemius muscles after four, eight, 12 weeks, and one year after rupture. EMG differences between the affected and non-affected side could only be observed at baseline and after four weeks following Achilles tendon rupture. The results from our study show that EMG changes are not found following non-surgical functional therapy.

  9. Low-cost assistive device for hand gesture recognition using sEMG

    NASA Astrophysics Data System (ADS)

    Kainz, Ondrej; Cymbalák, Dávid; Kardoš, Slavomír.; Fecil'ak, Peter; Jakab, František

    2016-07-01

    In this paper a low-cost solution for surface EMG (sEMG) signal retrieval is presented. The principal goal is to enable reading the temporal parameters of muscles activity by a computer device, with its further processing. Paper integrates design and deployment of surface electrodes and amplifier following the prior researches. Bearing in mind the goal of creating low-cost solution, the Arduino micro-controller was utilized for analog-to-digital conversion and communication. The software part of the system employs support vector machine (SVM) to classify the EMG signal, as acquired from sensors. Accuracy of the proposed solution achieves over 90 percent for six hand movements. Proposed solution is to be tested as an assistive device for several cases, involving people with motor disabilities and amputees.

  10. An online hybrid BCI system based on SSVEP and EMG

    NASA Astrophysics Data System (ADS)

    Lin, Ke; Cinetto, Andrea; Wang, Yijun; Chen, Xiaogang; Gao, Shangkai; Gao, Xiaorong

    2016-04-01

    Objective. A hybrid brain-computer interface (BCI) is a device combined with at least one other communication system that takes advantage of both parts to build a link between humans and machines. To increase the number of targets and the information transfer rate (ITR), electromyogram (EMG) and steady-state visual evoked potential (SSVEP) were combined to implement a hybrid BCI. A multi-choice selection method based on EMG was developed to enhance the system performance. Approach. A 60-target hybrid BCI speller was built in this study. A single trial was divided into two stages: a stimulation stage and an output selection stage. In the stimulation stage, SSVEP and EMG were used together. Every stimulus flickered at its given frequency to elicit SSVEP. All of the stimuli were divided equally into four sections with the same frequency set. The frequency of each stimulus in a section was different. SSVEPs were used to discriminate targets in the same section. Different sections were classified using EMG signals from the forearm. Subjects were asked to make different number of fists according to the target section. Canonical Correlation Analysis (CCA) and mean filtering was used to classify SSVEP and EMG separately. In the output selection stage, the top two optimal choices were given. The first choice with the highest probability of an accurate classification was the default output of the system. Subjects were required to make a fist to select the second choice only if the second choice was correct. Main results. The online results obtained from ten subjects showed that the mean accurate classification rate and ITR were 81.0% and 83.6 bits min-1 respectively only using the first choice selection. The ITR of the hybrid system was significantly higher than the ITR of any of the two single modalities (EMG: 30.7 bits min-1, SSVEP: 60.2 bits min-1). After the addition of the second choice selection and the correction task, the accurate classification rate and ITR was

  11. An Analysis of EMG Electrode Configuration for Targeted Muscle Reinnervation Based Neural Machine Interface

    PubMed Central

    Huang, He; Zhou, Ping; Li, Guanglin; Kuiken, Todd A.

    2015-01-01

    Targeted muscle reinnervation (TMR) is a novel neural machine interface for improved myoelectric prosthesis control. Previous high-density (HD) surface electromyography (EMG) studies have indicated that tremendous neural control information can be extracted from the reinnervated muscles by EMG pattern recognition (PR). However, using a large number of EMG electrodes hinders clinical application of the TMR technique. This study investigated a reduced number of electrodes and the placement required to extract sufficient neural control information for accurate identification of user movement intents. An electrode selection algorithm was applied to the HD EMG recordings from each of 4 TMR amputee subjects. The results show that when using only 12 selected bipolar electrodes the average accuracy over subjects for classifying 16 movement intents was 93.0(±3.3)%, just 1.2% lower than when using the entire HD electrode complement. The locations of selected electrodes were consistent with the anatomical reinnervation sites. Additionally, a practical protocol for clinical electrode placement was developed, which does not rely on complex HD EMG experiment and analysis while maintaining a classification accuracy of 88.7±4.5%. These outcomes provide important guidelines for practical electrode placement that can promote future clinical application of TMR and EMG PR in the control of multifunctional prostheses. PMID:18303804

  12. A Versatile Embedded Platform for EMG Acquisition and Gesture Recognition.

    PubMed

    Benatti, Simone; Casamassima, Filippo; Milosevic, Bojan; Farella, Elisabetta; Schönle, Philipp; Fateh, Schekeb; Burger, Thomas; Huang, Qiuting; Benini, Luca

    2015-10-01

    Wearable devices offer interesting features, such as low cost and user friendliness, but their use for medical applications is an open research topic, given the limited hardware resources they provide. In this paper, we present an embedded solution for real-time EMG-based hand gesture recognition. The work focuses on the multi-level design of the system, integrating the hardware and software components to develop a wearable device capable of acquiring and processing EMG signals for real-time gesture recognition. The system combines the accuracy of a custom analog front end with the flexibility of a low power and high performance microcontroller for on-board processing. Our system achieves the same accuracy of high-end and more expensive active EMG sensors used in applications with strict requirements on signal quality. At the same time, due to its flexible configuration, it can be compared to the few wearable platforms designed for EMG gesture recognition available on market. We demonstrate that we reach similar or better performance while embedding the gesture recognition on board, with the benefit of cost reduction. To validate this approach, we collected a dataset of 7 gestures from 4 users, which were used to evaluate the impact of the number of EMG channels, the number of recognized gestures and the data rate on the recognition accuracy and on the computational demand of the classifier. As a result, we implemented a SVM recognition algorithm capable of real-time performance on the proposed wearable platform, achieving a classification rate of 90%, which is aligned with the state-of-the-art off-line results and a 29.7 mW power consumption, guaranteeing 44 hours of continuous operation with a 400 mAh battery.

  13. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.

    PubMed

    Li, Xiangxin; Samuel, Oluwarotimi Williams; Zhang, Xu; Wang, Hui; Fang, Peng; Li, Guanglin

    2017-01-07

    Most of the modern motorized prostheses are controlled with the surface electromyography (sEMG) recorded on the residual muscles of amputated limbs. However, the residual muscles are usually limited, especially after above-elbow amputations, which would not provide enough sEMG for the control of prostheses with multiple degrees of freedom. Signal fusion is a possible approach to solve the problem of insufficient control commands, where some non-EMG signals are combined with sEMG signals to provide sufficient information for motion intension decoding. In this study, a motion-classification method that combines sEMG and electroencephalography (EEG) signals were proposed and investigated, in order to improve the control performance of upper-limb prostheses. Four transhumeral amputees without any form of neurological disease were recruited in the experiments. Five motion classes including hand-open, hand-close, wrist-pronation, wrist-supination, and no-movement were specified. During the motion performances, sEMG and EEG signals were simultaneously acquired from the skin surface and scalp of the amputees, respectively. The two types of signals were independently preprocessed and then combined as a parallel control input. Four time-domain features were extracted and fed into a classifier trained by the Linear Discriminant Analysis (LDA) algorithm for motion recognition. In addition, channel selections were performed by using the Sequential Forward Selection (SFS) algorithm to optimize the performance of the proposed method. The classification performance achieved by the fusion of sEMG and EEG signals was significantly better than that obtained by single signal source of either sEMG or EEG. An increment of more than 14% in classification accuracy was achieved when using a combination of 32-channel sEMG and 64-channel EEG. Furthermore, based on the SFS algorithm, two optimized electrode arrangements (10-channel sEMG + 10-channel EEG, 10-channel sEMG + 20-channel

  14. Effects of head and neck inclination on bilateral sternocleidomastoid EMG activity in healthy subjects and in patients with myogenic cranio-cervical-mandibular dysfunction.

    PubMed

    Santander, H; Miralles, R; Pérez, J; Valenzuela, S; Ravera, M J; Ormeño, G; Villegas, R

    2000-07-01

    This study was conducted in order to determine the effect of head and neck position on bilateral electromyographic (EMG) activity of the sternocleidomastoid muscles. The study was performed on 16 patients with myogenic cranio-cervical-mandibular dysfunction (CMD) and 16 healthy subjects. EMG recordings at rest and during swallowing of saliva and maximal voluntary clenching were performed by placing surface electrodes on the right and left sternocleidomastoid muscles. EMG activity was recorded in the left lateral decubitus position, in a darkened room and with the individual's eyes closed, under the following experimental conditions: 1. Head, neck, and body horizontally aligned; 2. Head and neck upwardly inclined with respect to the body, simulating the effect of a thick pillow, 3. Head and neck downwardly inclined with respect to the body, simulating the effect of a thin pillow. Variation of head and neck positions was determined by measuring the distance from the angle of neck and shoulder and the apex of the shoulder (SND = shoulder-neck distance) of each individual. Then, head and neck were forward or downwardly inclined with respect to the body at one-third of SND. A significantly higher contralateral EMG activity and a more asymmetric EMG activity were observed in the CMD group than in the healthy subjects (Kruskal-Wallis Test). These results suggest a different behavior of bilateral sternocleidomastoid EMG activity in CMD patients than in healthy subjects depending on the positioning of the head and neck.

  15. Test-retest reliability of cardinal plane isokinetic hip torque and EMG.

    PubMed

    Claiborne, Tina L; Timmons, Mark K; Pincivero, Danny M

    2009-10-01

    The objective of the present study was to establish test-retest reliability of isokinetic hip torque and prime mover electromyogram (EMG) through the three cardinal planes of motion. Thirteen healthy young adults participated in two experimental sessions, separated by approximately one week. During each session, isokinetic hip torque was evaluated on the Biodex Isokinetic Dynamometer at a velocity of 60 deg/s. Subjects performed three maximal-effort concentric and eccentric contractions, separately, for right and left hip abduction/adduction, flexion/extension, and internal/external rotation. Surface EMGs were sampled from the gluteus maximus, gluteus medius, adductor, medial and lateral hamstring, and rectus femoris muscles during all contractions. Intraclass correlation coefficients (ICC - 2,1) and standard errors of measurement (SEM) were calculated for peak torque for each movement direction and contraction mode, while ICCs were only computed for the EMG data. Motions that demonstrated high torque reliability included concentric hip abduction (right and left), flexion (right and left), extension (right) and internal rotation (right and left), and eccentric hip abduction (left), adduction (left), flexion (right), and extension (right and left) (ICC range=0.81-0.91). Motions with moderate torque reliability included concentric hip adduction (right), extension (left), internal rotation (left), and external rotation (right), and eccentric hip abduction and adduction (right), flexion (left), internal rotation (right and left), and external rotation (right and left) (ICC range=0.49-0.79). The majority of the EMG sampled muscles (n=12 and n=11 for concentric and eccentric contractions, respectively) demonstrated high reliability (ICC=0.81-0.95). Instances of low, or unacceptable, EMG reliability values occurred for the medial hamstring muscle of the left leg (both contraction modes) and the adductor muscle of the right leg during eccentric internal rotation. The major

  16. An intelligent system with EMG-based joint angle estimation for telemanipulation.

    PubMed

    Suryanarayanan, S; Reddy, N P; Gupta, V

    1996-01-01

    Bio-control of telemanipulators is being researched as an alternate control strategy. This study investigates the use of surface EMG from the biceps to predict joint angle during flexion of the arm that can be used to control an anthropomorphic telemanipulator. An intelligent system based on neural networks and fuzzy logic has been developed to use the processed surface EMG signal and predict the joint angle. The system has been tested on various angles of flexion-extension of the arm and at several speeds of flexion-extension. Preliminary results show the RMS error between the predicted angle and the actual angle to be less than 3% during training and less than 15% during testing. The technique of direct bio-control using EMG has the potential as an interface for telemanipulation applications.

  17. Non-Stationarity and Power Spectral Shifts in EMG Activity Reflect Motor Unit Recruitment in Rat Diaphragm Muscle

    PubMed Central

    Seven, Yasin B.; Mantilla, Carlos B.; Zhan, Wen-Zhi; Sieck, Gary C.

    2012-01-01

    We hypothesized that diaphragm muscle (DIAm) by a shift in the EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O2-5% CO2), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p<0.05). The non-stationary period at the onset of EMG activity ranged from ~70 ms during airway occlusion to ~150 ms during eupnea. Within the initial non-stationary period of EMG activity 80–95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. PMID:22986086

  18. Non-stationarity and power spectral shifts in EMG activity reflect motor unit recruitment in rat diaphragm muscle.

    PubMed

    Seven, Yasin B; Mantilla, Carlos B; Zhan, Wen-Zhi; Sieck, Gary C

    2013-01-15

    We hypothesized that a shift in diaphragm muscle (DIAm) EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O(2)-5% CO(2)), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p<0.05). The non-stationary period at the onset of EMG activity ranged from ∼80 ms during airway occlusion to ∼150 ms during eupnea. Within the initial non-stationary period of EMG activity 80-95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Using State-Space Model with Regime Switching to Represent the Dynamics of Facial Electromyography (EMG) Data

    ERIC Educational Resources Information Center

    Yang, Manshu; Chow, Sy-Miin

    2010-01-01

    Facial electromyography (EMG) is a useful physiological measure for detecting subtle affective changes in real time. A time series of EMG data contains bursts of electrical activity that increase in magnitude when the pertinent facial muscles are activated. Whereas previous methods for detecting EMG activation are often based on deterministic or…

  20. A new algorithm for ECG interference removal from single channel EMG recording.

    PubMed

    Yazdani, Shayan; Azghani, Mahmood Reza; Sedaaghi, Mohammad Hossein

    2017-09-01

    This paper presents a new method to remove electrocardiogram (ECG) interference from electromyogram (EMG). This interference occurs during the EMG acquisition from trunk muscles. The proposed algorithm employs progressive image denoising (PID) algorithm and ensembles empirical mode decomposition (EEMD) to remove this type of interference. PID is a very recent method that is being used for denoising digital images mixed with white Gaussian noise. It detects white Gaussian noise by deterministic annealing. To the best of our knowledge, PID has never been used before, in the case of EMG and ECG separation or in other 1D signal denoising applications. We have used it according to this fact that amplitude of the EMG signal can be modeled as white Gaussian noise using a filter with time-variant properties. The proposed algorithm has been compared to the other well-known methods such as HPF, EEMD-ICA, Wavelet-ICA and PID. The results show that the proposed algorithm outperforms the others, on the basis of three evaluation criteria used in this paper: Normalized mean square error, Signal to noise ratio and Pearson correlation.

  1. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface.

    PubMed

    Matsubara, Takamitsu; Morimoto, Jun

    2013-08-01

    In this study, we propose a multiuser myoelectric interface that can easily adapt to novel users. When a user performs different motions (e.g., grasping and pinching), different electromyography (EMG) signals are measured. When different users perform the same motion (e.g., grasping), different EMG signals are also measured. Therefore, designing a myoelectric interface that can be used by multiple users to perform multiple motions is difficult. To cope with this problem, we propose for EMG signals a bilinear model that is composed of two linear factors: 1) user dependent and 2) motion dependent. By decomposing the EMG signals into these two factors, the extracted motion-dependent factors can be used as user-independent features. We can construct a motion classifier on the extracted feature space to develop the multiuser interface. For novel users, the proposed adaptation method estimates the user-dependent factor through only a few interactions. The bilinear EMG model with the estimated user-dependent factor can extract the user-independent features from the novel user data. We applied our proposed method to a recognition task of five hand gestures for robotic hand control using four-channel EMG signals measured from subject forearms. Our method resulted in 73% accuracy, which was statistically significantly different from the accuracy of standard nonmultiuser interfaces, as the result of a two-sample t -test at a significance level of 1%.

  2. Age Related Differences in the Surface EMG Signals on Adolescent's Muscle during Contraction

    NASA Astrophysics Data System (ADS)

    Uddin Ahamed, Nizam; Taha, Zahari; Alqahtani, Mahdi; Altwijri, Omar; Rahman, Matiur; Deboucha, Abdelhakim

    2016-02-01

    The aim of this study was to investigate whether there are differences in the amplitude of the EMG signal among five different age groups of adolescent's muscle. Fifteen healthy adolescents participated in this study and they were divided into five age groups (13, 14, 15, 16 and 17 years). Subjects were performed dynamic contraction during lifting a standard weight (3-kg dumbbell) and EMG signals were recorded from their Biceps Brachii (BB) muscle. Two common EMG analysis techniques namely root mean square (RMS) and mean absolute values (MAV) were used to find the differences. The statistical analysis was included: linear regression to examine the relationships between EMG amplitude and age, repeated measures ANOVA to assess differences among the variables, and finally Coefficient of Variation (CoV) for signal steadiness among the groups of subjects during contraction. The result from RMS and MAV analysis shows that the 17-years age groups exhibited higher activity (0.28 and 0.19 mV respectively) compare to other groups (13-Years: 0.26 and 0.17 mV, 14-years: 0.25 and 0.23 mV, 15-Years: 0.23 and 0.16 mV, 16-years: 0.23 and 0.16 mV respectively). Also, this study shows modest correlation between age and signal activities among all age group's muscle. The experiential results can play a pivotal role for developing EMG prosthetic hand controller, neuromuscular system, EMG based rehabilitation aid and movement biomechanics, which may help to separate age groups among the adolescents.

  3. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.

    PubMed

    Doorenbosch, Caroline A M; Joosten, Annemiek; Harlaar, Jaap

    2005-08-01

    In this study, the influence of using submaximal isokinetic contractions about the knee compared to maximal voluntary contractions as input to obtain the calibration of an EMG-force model for knee muscles is investigated. Isokinetic knee flexion and extension contractions were performed by healthy subjects at five different velocities and at three contraction levels (100%, 75% and 50% of MVC). Joint angle, angular velocity, joint moment and surface EMG of five knee muscles were recorded. Individual calibration values were calculated according to [C.A.M. Doorenbosch, J. Harlaar, A clinically applicable EMG-force model to quantify active stabilization of the knee after a lesion of the anterior cruciate ligament, Clinical Biomechanics 18 (2003) 142-149] for each contraction level. First, the output of the model, calibrated with the 100% MVC was compared to the actually exerted net knee moment at the dynamometer. Normalized root mean square errors were calculated [A.L. Hof, C.A.N. Pronk, J.A. van Best, Comparison between EMG to force processing and kinetic analysis for the calf muscle moment in walking and stepping, Journal of Biomechanics 20 (1987) 167-187] to compare the estimated moments with the actually exerted moments. Mean RMSD errors ranged from 0.06 to 0.21 for extension and from 0.12 to 0.29 for flexion at the 100% trials. Subsequently, the calibration results of the 50% and 75% MVC calibration procedures were used. A standard signal, representing a random EMG level was used as input in the EMG force model, to compare the three models. Paired samples t-tests between the 100% MVC and the 75% MVC and 50% MVC, respectively, showed no significant differences (p>0.05). The application of submaximal contractions of larger than 50% MVC is suitable to calibrate a simple EMG to force model for knee extension and flexion. This means that in clinical practice, the EMG to force model can be applied by patients who cannot exert maximal force.

  4. Power independent EMG based gesture recognition for robotics.

    PubMed

    Li, Ling; Looney, David; Park, Cheolsoo; Rehman, Naveed U; Mandic, Danilo P

    2011-01-01

    A novel method for detecting muscle contraction is presented. This method is further developed for identifying four different gestures to facilitate a hand gesture controlled robot system. It is achieved based on surface Electromyograph (EMG) measurements of groups of arm muscles. The cross-information is preserved through a simultaneous processing of EMG channels using a recent multivariate extension of Empirical Mode Decomposition (EMD). Next, phase synchrony measures are employed to make the system robust to different power levels due to electrode placements and impedances. The multiple pairwise muscle synchronies are used as features of a discrete gesture space comprising four gestures (flexion, extension, pronation, supination). Simulations on real-time robot control illustrate the enhanced accuracy and robustness of the proposed methodology.

  5. Embodied simulation as part of affective evaluation processes: task dependence of valence concordant EMG activity.

    PubMed

    Weinreich, André; Funcke, Jakob Maria

    2014-01-01

    Drawing on recent findings, this study examines whether valence concordant electromyography (EMG) responses can be explained as an unconditional effect of mere stimulus processing or as somatosensory simulation driven by task-dependent processing strategies. While facial EMG over the Corrugator supercilii and the Zygomaticus major was measured, each participant performed two tasks with pictures of album covers. One task was an affective evaluation task and the other was to attribute the album covers to one of five decades. The Embodied Emotion Account predicts that valence concordant EMG is more likely to occur if the task necessitates a somatosensory simulation of the evaluative meaning of stimuli. Results support this prediction with regard to Corrugator supercilii in that valence concordant EMG activity was only present in the affective evaluation task but not in the non-evaluative task. Results for the Zygomaticus major were ambiguous. Our findings are in line with the view that EMG activity is an embodied part of the evaluation process and not a mere physical outcome.

  6. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles

    PubMed Central

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569

  7. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles.

    PubMed

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3-5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human-machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons.

  8. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.

    PubMed

    Leonardis, Daniele; Barsotti, Michele; Loconsole, Claudio; Solazzi, Massimiliano; Troncossi, Marco; Mazzotti, Claudio; Castelli, Vincenzo Parenti; Procopio, Caterina; Lamola, Giuseppe; Chisari, Carmelo; Bergamasco, Massimo; Frisoli, Antonio

    2015-01-01

    This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.

  9. A sEMG model with experimentally based simulation parameters.

    PubMed

    Wheeler, Katherine A; Shimada, Hiroshima; Kumar, Dinesh K; Arjunan, Sridhar P

    2010-01-01

    A differential, time-invariant, surface electromyogram (sEMG) model has been implemented. While it is based on existing EMG models, the novelty of this implementation is that it assigns more accurate distributions of variables to create realistic motor unit (MU) characteristics. Variables such as muscle fibre conduction velocity, jitter (the change in the interpulse interval between subsequent action potential firings) and motor unit size have been considered to follow normal distributions about an experimentally obtained mean. In addition, motor unit firing frequencies have been considered to have non-linear and type based distributions that are in accordance with experimental results. Motor unit recruitment thresholds have been considered to be related to the MU type. The model has been used to simulate single channel differential sEMG signals from voluntary, isometric contractions of the biceps brachii muscle. The model has been experimentally verified by conducting experiments on three subjects. Comparison between simulated signals and experimental recordings shows that the Root Mean Square (RMS) increases linearly with force in both cases. The simulated signals also show similar values and rates of change of RMS to the experimental signals.

  10. Development of new muscle contraction sensor to replace sEMG for using in muscles analysis fields.

    PubMed

    Zhang, D; Matsuoka, Y; Kong, W; Imtiaz, U; Bartolomeo, L; Cosentino, S; Zecca, M; Sessa, S; Ishii, H; Takanishi, A

    2014-01-01

    Nowadays, the technologies for detecting, processing and interpreting bioelectrical signals have improved tremendously. In particular, surface electromyography (sEMG) has gained momentum in a wide range of applications in various fields. However, sEMG sensing has several shortcomings, the most important being: measurements are heavily sensible to individual differences, sensors are difficult to position and very expensive. In this paper, the authors will present an innovative muscle contraction sensing device (MC sensor), aiming to replace sEMG sensing in the field of muscle movement analysis. Compared with sEMG, this sensor is easier to position, setup and use, less dependent from individual differences, and less expensive. Preliminary experiments, described in this paper, confirm that MC sensing is suitable for muscle contraction analysis, and compare the results of sEMG and MC sensor for the measurement of forearm muscle contraction.

  11. The Movement- and Load-Dependent Differences in the EMG Patterns of the Human Arm Muscles during Two-Joint Movements (A Preliminary Study)

    PubMed Central

    Tomiak, Tomasz; Abramovych, Tetiana I.; Gorkovenko, Andriy V.; Vereshchaka, Inna V.; Mishchenko, Viktor S.; Dornowski, Marcin; Kostyukov, Alexander I.

    2016-01-01

    Slow circular movements of the hand with a fixed wrist joint that were produced in a horizontal plane under visual guidance during conditions of action of the elastic load directed tangentially to the movement trajectory were studied. The positional dependencies of the averaged surface EMGs in the muscles of the elbow and shoulder joints were compared for four possible combinations in the directions of load and movements. The EMG intensities were largely correlated with the waves of the force moment computed for a corresponding joint in the framework of a simple geometrical model of the system: arm - experimental setup. At the same time, in some cases the averaged EMGs exit from the segments of the trajectory restricted by the force moment singular points (FMSPs), in which the moments exhibited altered signs. The EMG activities display clear differences for the eccentric and concentric zones of contraction that are separated by the joint angle singular points (JASPs), which present extreme at the joint angle traces. We assumed that the modeled patterns of FMSPs and JASPs may be applied for an analysis of the synergic interaction between the motor commands arriving at different muscles in arbitrary two-joint movements. PMID:27375496

  12. An equilibrium-point model for fast, single-joint movement: I. Emergence of strategy-dependent EMG patterns.

    PubMed

    Latash, M L; Gottlieb, G L

    1991-09-01

    We describe a model for the regulation of fast, single-joint movements, based on the equilibrium-point hypothesis. Limb movement follows constant rate shifts of independently regulated neuromuscular variables. The independently regulated variables are tentatively identified as thresholds of a length sensitive reflex for each of the participating muscles. We use the model to predict EMG patterns associated with changes in the conditions of movement execution, specifically, changes in movement times, velocities, amplitudes, and moments of limb inertia. The approach provides a theoretical neural framework for the dual-strategy hypothesis, which considers certain movements to be results of one of two basic, speed-sensitive or speed-insensitive strategies. This model is advanced as an alternative to pattern-imposing models based on explicit regulation of timing and amplitudes of signals that are explicitly manifest in the EMG patterns.

  13. A mechatronics platform to study prosthetic hand control using EMG signals.

    PubMed

    Geethanjali, P

    2016-09-01

    In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time

  14. Multiple sleep bruxism data collected using a self-contained EMG detector/analyzer system in asymptomatic healthy subjects.

    PubMed

    Minakuchi, Hajime; Sakaguchi, Chiyomi; Hara, Emilio S; Maekawa, Kenji; Matsuka, Yoshizo; Clark, Glenn T; Kuboki, Takuo

    2012-12-01

    Small, self-contained electromyographic (EMG) detector/analyzer (D/A) devices have become available for the detection of jaw muscle activity events above threshold. These devices claim to be less intrusive to the subjects sleep so it is less prone to induce disturbed sleep. The objective of this study was to evaluate for night-to-night variability and examine for a systematic alteration on the first night in EMG levels. Ten asymptomatic healthy volunteers (mean age, 26.8 ± 3.78) were recorded for six sequential nights in their home environment using EMG D/A system. The device yields a nightly EMG level above threshold score on a 0-4 level. Because the data are categorical and nonparametric, the data of the ten subjects across six nights were submitted to a Friedman repeated measures ANOVA. The significant level was set as alpha equal to 0.05. The median and mode values of the subjects were tabulated and analyzed and we did not find a significant difference in EMG D/A level across the six nights (p = 0.287, Kendall's coefficient of concordance = 0.124, Friedman two-way repeated measures ANOVA). The data did show clear and substantial night-to-night variability. Substantial night-to-night variability in masseter EMG activity levels was clearly observed in our subjects. There was no evidence of a suppressed or elevated first-night effect-like variability on masseter muscle EMG level seen in these subjects using a small portable self-contained EMG detector/analyzer. These data suggest that recordings should be at least 5-6-nights duration to establish a reasonable measure of an individual's average nightly masseter EMG level.

  15. An Embedded, Eight Channel, Noise Canceling, Wireless, Wearable sEMG Data Acquisition System With Adaptive Muscle Contraction Detection.

    PubMed

    Ergeneci, Mert; Gokcesu, Kaan; Ertan, Erhan; Kosmas, Panagiotis

    2018-02-01

    Wearable technology has gained increasing popularity in the applications of healthcare, sports science, and biomedical engineering in recent years. Because of its convenient nature, the wearable technology is particularly useful in the acquisition of the physiological signals. Specifically, the (surface electromyography) sEMG systems, which measure the muscle activation potentials, greatly benefit from this technology in both clinical and industrial applications. However, the current wearable sEMG systems have several drawbacks including inefficient noise cancellation, insufficient measurement quality, and difficult integration to customized applications. Additionally, none of these sEMG data acquisition systems can detect sEMG signals (i.e., contractions), which provides a valuable environment for further studies such as human machine interaction, gesture recognition, and fatigue tracking. To this end, we introduce an embedded, eight channel, noise canceling, wireless, wearable sEMG data acquisition system with adaptive muscle contraction detection. Our design consists of two stages, which are the sEMG sensors and the multichannel data acquisition unit. For the first stage, we propose a low cost, dry, and active sEMG sensor that captures the muscle activation potentials, a data acquisition unit that evaluates these captured multichannel sEMG signals and transmits them to a user interface. In the data acquisition unit, the sEMG signals are processed through embedded, adaptive methods in order to reject the power line noise and detect the muscle contractions. Through extensive experiments, we demonstrate that our sEMG sensor outperforms a widely used commercially available product and our data acquisition system achieves 4.583 dB SNR gain with accuracy in the detection of the contractions.

  16. Pattern learning with deep neural networks in EMG-based speech recognition.

    PubMed

    Wand, Michael; Schultz, Tanja

    2014-01-01

    We report on classification of phones and phonetic features from facial electromyographic (EMG) data, within the context of our EMG-based Silent Speech interface. In this paper we show that a Deep Neural Network can be used to perform this classification task, yielding a significant improvement over conventional Gaussian Mixture models. Our central contribution is the visualization of patterns which are learned by the neural network. With increasing network depth, these patterns represent more and more intricate electromyographic activity.

  17. A Novel Framework Based on FastICA for High Density Surface EMG Decomposition

    PubMed Central

    Chen, Maoqi; Zhou, Ping

    2015-01-01

    This study presents a progressive FastICA peel-off (PFP) framework for high density surface electromyogram (EMG) decomposition. The novel framework is based on a shift-invariant model for describing surface EMG. The decomposition process can be viewed as progressively expanding the set of motor unit spike trains, which is primarily based on FastICA. To overcome the local convergence of FastICA, a “peel off” strategy (i.e. removal of the estimated motor unit action potential (MUAP) trains from the previous step) is used to mitigate the effects of the already identified motor units, so more motor units can be extracted. Moreover, a constrained FastICA is applied to assess the extracted spike trains and correct possible erroneous or missed spikes. These procedures work together to improve the decomposition performance. The proposed framework was validated using simulated surface EMG signals with different motor unit numbers (30, 70, 91) and signal to noise ratios (SNRs) (20, 10, 0 dB). The results demonstrated relatively large numbers of extracted motor units and high accuracies (high F1-scores). The framework was also tested with 111 trials of 64-channel electrode array experimental surface EMG signals during the first dorsal interosseous (FDI) muscle contraction at different intensities. On average 14.1 ± 5.0 motor units were identified from each trial of experimental surface EMG signals. PMID:25775496

  18. Filter design for cancellation of baseline-fluctuation in needle EMG recordings.

    PubMed

    Rodríguez-Carreño, I; Malanda-Trigueros, A; Gila-Useros, L; Navallas-Irujo, J; Rodríguez-Falces, J

    2006-01-01

    Appropriate cancellation of the baseline fluctuation (BLF) is an important issue when recording EMG signals as it may degrade signal quality and distort qualitative and quantitative analysis. We present a novel filter-design approach for automatic cancellation of the BLF based on several signal processing techniques used sequentially. The methodology is to estimate the spectral content of the BLF, and then to use this estimation to design a high-pass FIR filter that cancel the BLF present in the signal. Two merit figures are devised for measuring the degree of BLF present in an EMG record. These figures are used to compare our method with the conventional approach, which naively considers the baseline course to be of constant (without any fluctuation) potential shift. Applications of the technique on real and simulated EMG signals show the superior performance of our approach in terms of both visual inspection and the merit figures.

  19. Disruption of trace conditioning of the nictitating membrane response in rabbits by central cholinergic blockade.

    PubMed

    Kaneko, T; Thompson, R F

    1997-05-01

    Central muscarinic cholinergic involvement in classical conditioning of eyeblink responses was determined in trace and delay paradigms. Rabbits were trained on a trace procedure in which a 250-ms tone conditioned stimulus (CS) and a 100-ms air-puff unconditioned stimulus (UCS) were presented with a 500-ms trace interval. Each training session day consisted of ten tone alone, ten air-puff alone and 80 paired CS-UCS trials. Scopolamine hydrochloride at doses of 0.03 and 0.1 mg/0.5 ml per kg, s.c. dose-dependently disrupted acquisition of conditioned responses. Rabbits that were treated with scopolamine and failed to learn showed a gradual increase in conditioned responses during an additional training period with saline injections and no transfer from earlier training. Scopolamine methyl bromide, which does not appreciably cross the blood-brain barrier, showed no effects in the trace conditioning paradigm at a dose of 0.1 mg/kg, s.c., indicating central cholinergic blockade is responsible for the suppressive effect of scopolamine. Scopolamine hydrochloride at a dose of 0.1 mg/kg, s.c. did not block acquisition in the delay procedure with a 250-ms inter-stimulus interval, although the rate of acquisition was somewhat reduced by the drug. These data are the first to demonstrate that classical conditioning of the eyeblink response in the trace procedure is highly sensitive to central cholinergic deficits.

  20. EMG analysis tuned for determining the timing and level of activation in different motor units

    PubMed Central

    Lee, Sabrina S.M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2011-01-01

    Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94Hz and 323.13Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98 to 0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. PMID:21570317

  1. EMG analysis tuned for determining the timing and level of activation in different motor units.

    PubMed

    Lee, Sabrina S M; Miara, Maria de Boef; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2011-08-01

    Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94 Hz and 323.13 Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98-0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Assessment of the non-Gaussianity and non-linearity levels of simulated sEMG signals on stationary segments.

    PubMed

    Messaoudi, Noureddine; Bekka, Raïs El'hadi; Ravier, Philippe; Harba, Rachid

    2017-02-01

    The purpose of this paper was to evaluate the effects of the longitudinal single differential (LSD), the longitudinal double differential (LDD) and the normal double differential (NDD) spatial filters, the electrode shape, the inter-electrode distance (IED) on non-Gaussianity and non-linearity levels of simulated surface EMG (sEMG) signals when the maximum voluntary contraction (MVC) varied from 10% to 100% by a step of 10%. The effects of recruitment range thresholds (RR), the firing rate (FR) strategy and the peak firing rate (PFR) of motor units were also considered. A cylindrical multilayer model of the volume conductor and a model of motor unit (MU) recruitment and firing rate were used to simulate sEMG signals in a pool of 120 MUs for 5s. Firstly, the stationarity of sEMG signals was tested by the runs, the reverse arrangements (RA) and the modified reverse arrangements (MRA) tests. Then the non-Gaussianity was characterised with bicoherence and kurtosis, and non-linearity levels was evaluated with linearity test. The kurtosis analysis showed that the sEMG signals detected by the LSD filter were the most Gaussian and those detected by the NDD filter were the least Gaussian. In addition, the sEMG signals detected by the LSD filter were the most linear. For a given filter, the sEMG signals detected by using rectangular electrodes were more Gaussian and more linear than that detected with circular electrodes. Moreover, the sEMG signals are less non-Gaussian and more linear with reverse onion-skin firing rate strategy than those with onion-skin strategy. The levels of sEMG signal Gaussianity and linearity increased with the increase of the IED, RR and PFR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effects of transient blur and VDT screen luminance changes on eyeblink rate.

    PubMed

    Cardona, Genís; Gómez, Marcelo; Quevedo, Lluïsa; Gispets, Joan

    2014-10-01

    A study was designed to evaluate the efficacy of three different strategies aiming at increasing spontaneous eyeblink rate (SEBR) during computer use. A total of 12 subjects (5 female) with a mean age of 28.7 years were instructed to read a text presented on a computer display terminal during 15min. Four reading sessions (reference and three "blinking events" [BE]) were programmed in which SEBR was digitally recorded. "Blinking events" were based on either a slight distortion of the text characters or on the presentation of a white screen instead of the text, with or without accompanying blinking instructions. All BE had a duration of 20ms and occurred every 15s. Participants graded the intrusiveness of each BE configuration, and the number of lines participants read in each session was recorded. Data from 11 subjects was analysed. A statistically significant difference in SEBR was encountered between the experimental configuration consisting on a white screen plus blinking instructions (7.8 blinks/min) and both reference (5.2 blinks/min; p=0.049) and white screen without blinking instructions (4.8 blinks/min; p=0.038). All three BE had superior levels of intrusiveness than reference conditions, although the performance of participants (line count) was not compromised. The joint contribution of white screen and blinking instructions has been shown to result in a short term improvement in blinking rate in the present sample of non-dry eye computer users. Further work is necessary to improve the acceptance of any BE aiming at influencing SEBR. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  4. Assessment of the paraspinal muscles of subjects presenting an idiopathic scoliosis: an EMG pilot study

    PubMed Central

    Gaudreault, Nathaly; Arsenault, A Bertrand; Larivière, Christian; DeSerres, Sophie J; Rivard, Charles-Hilaire

    2005-01-01

    Background It is known that the back muscles of scoliotic subjects present abnormalities in their fiber type composition. Some researchers have hypothesized that abnormal fiber composition can lead to paraspinal muscle dysfunction such as poor neuromuscular efficiency and muscle fatigue. EMG parameters were used to evaluate these impairments. The purpose of the present study was to examine the clinical potential of different EMG parameters such as amplitude (RMS) and median frequency (MF) of the power spectrum in order to assess the back muscles of patients presenting idiopathic scoliosis in terms of their neuromuscular efficiency and their muscular fatigue. Methods L5/S1 moments during isometric efforts in extension were measured in six subjects with idiopathic scoliosis and ten healthy controls. The subjects performed three 7 s ramp contractions ranging from 0 to 100% maximum voluntary contraction (MVC) and one 30 s sustained contraction at 75% MVC. Surface EMG activity was recorded bilaterally from the paraspinal muscles at L5, L3, L1 and T10. The slope of the EMG RMS/force (neuromuscular efficiency) and MF/force (muscle composition) relationships were computed during the ramp contractions while the slope of the EMG RMS/time and MF/time relationships (muscle fatigue) were computed during the sustained contraction. Comparisons were performed between the two groups and between the left and right sides for the EMG parameters. Results No significant group or side differences between the slopes of the different measures used were found at the level of the apex (around T10) of the major curve of the spine. However, a significant side difference was seen at a lower level (L3, p = 0.01) for the MF/time parameter. Conclusion The EMG parameters used in this study could not discriminate between the back muscles of scoliotic subjects and those of control subject regarding fiber type composition, neuromuscular efficiency and muscle fatigue at the level of the apex. The

  5. Wiener Filtering of Surface EMG with a priori SNR Estimation Toward Myoelectric Control for Neurological Injury Patients

    PubMed Central

    Liu, Jie; Ying, Dongwen; Zhou, Ping

    2014-01-01

    Voluntary surface electromyogram (EMG) signals from neurological injury patients are often corrupted by involuntary background interference or spikes, imposing difficulties for myoelectric control. We present a novel framework to suppress involuntary background spikes during voluntary surface EMG recordings. The framework applies a Wiener filter to restore voluntary surface EMG signals based on tracking a priori signal to noise ratio (SNR) by using the decision-directed method. Semi-synthetic surface EMG signals contaminated by different levels of involuntary background spikes were constructed from a database of surface EMG recordings in a group of spinal cord injury subjects. After the processing, the onset detection of voluntary muscle activity was significantly improved against involuntary background spikes. The magnitude of voluntary surface EMG signals can also be reliably estimated for myoelectric control purpose. Compared with the previous sample entropy analysis for suppressing involuntary background spikes, the proposed framework is characterized by quick and simple implementation, making it more suitable for application in a myoelectric control system toward neurological injury rehabilitation. PMID:25443536

  6. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.

    PubMed

    Adewuyi, Adenike A; Hargrove, Levi J; Kuiken, Todd A

    2016-04-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.

  7. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control

    PubMed Central

    Adewuyi, Adenike A.; Hargrove, Levi J.; Kuiken, Todd A.

    2015-01-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for partial-hand applications. PMID:25955989

  8. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses

    NASA Astrophysics Data System (ADS)

    Young, A. J.; Kuiken, T. A.; Hargrove, L. J.

    2014-10-01

    Objective. The purpose of this study was to determine the contribution of electromyography (EMG) data, in combination with a diverse array of mechanical sensors, to locomotion mode intent recognition in transfemoral amputees using powered prostheses. Additionally, we determined the effect of adding time history information using a dynamic Bayesian network (DBN) for both the mechanical and EMG sensors. Approach. EMG signals from the residual limbs of amputees have been proposed to enhance pattern recognition-based intent recognition systems for powered lower limb prostheses, but mechanical sensors on the prosthesis—such as inertial measurement units, position and velocity sensors, and load cells—may be just as useful. EMG and mechanical sensor data were collected from 8 transfemoral amputees using a powered knee/ankle prosthesis over basic locomotion modes such as walking, slopes and stairs. An offline study was conducted to determine the benefit of different sensor sets for predicting intent. Main results. EMG information was not as accurate alone as mechanical sensor information (p < 0.05) for any classification strategy. However, EMG in combination with the mechanical sensor data did significantly reduce intent recognition errors (p < 0.05) both for transitions between locomotion modes and steady-state locomotion. The sensor time history (DBN) classifier significantly reduced error rates compared to a linear discriminant classifier for steady-state steps, without increasing the transitional error, for both EMG and mechanical sensors. Combining EMG and mechanical sensor data with sensor time history reduced the average transitional error from 18.4% to 12.2% and the average steady-state error from 3.8% to 1.0% when classifying level-ground walking, ramps, and stairs in eight transfemoral amputee subjects. Significance. These results suggest that a neural interface in combination with time history methods for locomotion mode classification can enhance intent

  9. EOG and EMG: two important switches in automatic sleep stage classification.

    PubMed

    Estrada, E; Nazeran, H; Barragan, J; Burk, J R; Lucas, E A; Behbehani, K

    2006-01-01

    Sleep is a natural periodic state of rest for the body, in which the eyes are usually closed and consciousness is completely or partially lost. In this investigation we used the EOG and EMG signals acquired from 10 patients undergoing overnight polysomnography with their sleep stages determined by expert sleep specialists based on RK rules. Differentiation between Stage 1, Awake and REM stages challenged a well trained neural network classifier to distinguish between classes when only EEG-derived signal features were used. To meet this challenge and improve the classification rate, extra features extracted from EOG and EMG signals were fed to the classifier. In this study, two simple feature extraction algorithms were applied to EOG and EMG signals. The statistics of the results were calculated and displayed in an easy to visualize fashion to observe tendencies for each sleep stage. Inclusion of these features show a great promise to improve the classification rate towards the target rate of 100%

  10. Multi-channel orbicularis oculi stimulation to restore eye-blink function in facial paralysis.

    PubMed

    Somia, N N; Zonnevijlle, E D; Stremel, R W; Maldonado, C; Gossman, M D; Barker, J H

    2001-01-01

    Facial paralysis due to facial nerve injury results in the loss of function of the muscles of the hemiface. The most serious complication in extreme cases is the loss of vision. In this study, we compared the effectiveness of single- and multiple-channel electrical stimulation to restore a complete and cosmetically acceptable eye blink. We established bilateral orbicularis oculi muscle (OOM) paralysis in eight dogs; the OOM of one side was directly stimulated using single-channel electrical stimulation and the opposite side was stimulated using multi-channel electrical stimulation. The changes in the palpebral fissure and complete palpebral closure were measured. The difference in current intensities between the multi-channel and single-channel simulation groups was significant, while only multi-channel stimulation produced complete eyelid closure. The latest electronic stimulation circuitry with high-quality implantable electrodes will make it possible to regulate precisely OOM contractions and thus generate complete and cosmetically acceptable eye-blink motion in patients with facial paralysis. Copyright 2001 Wiley-Liss, Inc.

  11. Features extraction of EMG signal using time domain analysis for arm rehabilitation device

    NASA Astrophysics Data System (ADS)

    Jali, Mohd Hafiz; Ibrahim, Iffah Masturah; Sulaima, Mohamad Fani; Bukhari, W. M.; Izzuddin, Tarmizi Ahmad; Nasir, Mohamad Na'im

    2015-05-01

    Rehabilitation device is used as an exoskeleton for people who had failure of their limb. Arm rehabilitation device may help the rehab program whom suffers from arm disability. The device that is used to facilitate the tasks of the program should improve the electrical activity in the motor unit and minimize the mental effort of the user. Electromyography (EMG) is the techniques to analyze the presence of electrical activity in musculoskeletal systems. The electrical activity in muscles of disable person is failed to contract the muscle for movements. In order to prevent the muscles from paralysis becomes spasticity, the force of movements should minimize the mental efforts. Therefore, the rehabilitation device should analyze the surface EMG signal of normal people that can be implemented to the device. The signal is collected according to procedure of surface electromyography for non-invasive assessment of muscles (SENIAM). The EMG signal is implemented to set the movements' pattern of the arm rehabilitation device. The filtered EMG signal was extracted for features of Standard Deviation (STD), Mean Absolute Value (MAV) and Root Mean Square (RMS) in time-domain. The extraction of EMG data is important to have the reduced vector in the signal features with less of error. In order to determine the best features for any movements, several trials of extraction methods are used by determining the features with less of errors. The accurate features can be use for future works of rehabilitation control in real-time.

  12. A combined sEMG and accelerometer system for monitoring functional activity in stroke.

    PubMed

    Roy, Serge H; Cheng, M Samuel; Chang, Shey-Sheen; Moore, John; De Luca, Gianluca; Nawab, S Hamid; De Luca, Carlo J

    2009-12-01

    Remote monitoring of physical activity using body-worn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data (eight channels each) were recorded from 10 hemiparetic patients while they carried out a sequence of 11 activities of daily living (identification tasks), and 10 activities used to evaluate misclassification errors (nonidentification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the nonidentification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of four ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0%, and a mean specificity of 99.7% for the identification tasks, and a mean misclassification error of < 10% for the nonidentification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke.

  13. A Combined sEMG and Accelerometer System for Monitoring Functional Activity in Stroke.

    PubMed

    Roy, S; Cheng, M; Chang, S; Moore, J; De Luca, G; Nawab, S; De Luca, C

    2014-04-23

    Remote monitoring of physical activity using bodyworn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data were recorded from 10 hemi paretic patients while they carried out a sequence of 11 activities of daily living (Identification tasks), and 10 activities used to evaluate misclassification errors (non-Identification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the non-Identification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of 4 ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0 %, and a mean specificity of 99.7 % for the identification tasks, and a mean misclassification error of < 10% for the non-Identification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke.

  14. The Response of Hyperkinesis to EMG Biofeedback.

    ERIC Educational Resources Information Center

    Haight, Maryellen J.; And Others

    A study was conducted involving eight hyperkinetic males (11-15 years old) to determine if Ss receiving electromyography (EMG) biofeedback training would show a reduction in frontalis muscle tension, hyperactivity, and lability, and increases in self-esteem and visual and auditory attention span. Individual 45- and 30-minute relaxation exercises…

  15. sEMG feature evaluation for identification of elbow angle resolution in graded arm movement.

    PubMed

    Castro, Maria Claudia F; Colombini, Esther L; Aquino, Plinio T; Arjunan, Sridhar P; Kumar, Dinesh K

    2014-11-25

    Automatic and accurate identification of elbow angle from surface electromyogram (sEMG) is essential for myoelectric controlled upper limb exoskeleton systems. This requires appropriate selection of sEMG features, and identifying the limitations of such a system.This study has demonstrated that it is possible to identify three discrete positions of the elbow; full extension, right angle, and mid-way point, with window size of only 200 milliseconds. It was seen that while most features were suitable for this purpose, Power Spectral Density Averages (PSD-Av) performed best. The system correctly classified the sEMG against the elbow angle for 100% cases when only two discrete positions (full extension and elbow at right angle) were considered, while correct classification was 89% when there were three discrete positions. However, sEMG was unable to accurately determine the elbow position when five discrete angles were considered. It was also observed that there was no difference for extension or flexion phases.

  16. What Does Eye-Blink Rate Variability Dynamics Tell Us About Cognitive Performance?

    PubMed Central

    Paprocki, Rafal; Lenskiy, Artem

    2017-01-01

    Cognitive performance is defined as the ability to utilize knowledge, attention, memory, and working memory. In this study, we briefly discuss various markers that have been proposed to predict cognitive performance. Next, we develop a novel approach to characterize cognitive performance by analyzing eye-blink rate variability dynamics. Our findings are based on a sample of 24 subjects. The subjects were given a 5-min resting period prior to a 10-min IQ test. During both stages, eye blinks were recorded from Fp1 and Fp2 electrodes. We found that scale exponents estimated for blink rate variability during rest were correlated with subjects' performance on the subsequent IQ test. This surprising phenomenon could be explained by the person to person variation in concentrations of dopamine in PFC and accumulation of GABA in the visual cortex, as both neurotransmitters play a key role in cognitive processes and affect blinking. This study demonstrates the possibility that blink rate variability dynamics at rest carry information about cognitive performance and can be employed in the assessment of cognitive abilities without taking a test. PMID:29311876

  17. Natural mediotrusive contact: does it affect the masticatory and neck EMG activity during tooth grinding?

    PubMed

    Fuentes, Aler D; Martin, Conchita; Bull, Ricardo; Santander, Hugo; Gutiérrez, Mario F; Miralles, Rodolfo

    2015-12-29

    There is scarce knowledge regarding the influence of a natural mediotrusive contact on mandibular and cervical muscular activity. The purpose of this study was to analyze the EMG activity of the anterior temporalis (AT) and sternocleidomastoid (SCM) muscles during awake grinding in healthy subjects with or without a natural mediotrusive occlusal contact. 15 subjects with natural mediotrusive occlusal contact (Group 1) and 15 subjects without natural mediotrusive occlusal contact (Group 2) participated. Bilateral surface EMG activity of AT and SCM muscles was recorded during unilateral eccentric or concentric tooth grinding tasks. EMG activity was normalized against the activity recorded during maximal voluntary clenching in intercuspal position (IP) for AT muscles and during maximal intentional isometric head-neck rotation to each side, for SCM muscles. EMG activity of AT and SCM muscles showed no statistical difference between groups. EMG activity of AT muscle was higher in the working side (WS) than in the non-WS (NWS) in Group 1 during concentric grinding (0.492 vs 0.331, P = 0.047), whereas no difference was observed in Group 2. EMG activity of SCM was similar between working and NWSs in both groups and tasks. Asymmetry indexes (AIs) were not significantly different between groups. These findings in healthy subjects support the assumption that during awake tooth grinding, central nerve control predominates over peripheral inputs, and reinforce the idea of a functional link between the motor-neuron pools that control jaw and neck muscles.

  18. Natural mediotrusive contact: does it affect the masticatory and neck EMG activity during tooth grinding?

    PubMed

    Fuentes, Aler D; Martin, Conchita; Bull, Ricardo; Santander, Hugo; Gutiérrez, Mario F; Miralles, Rodolfo

    2016-07-01

    There is scarce knowledge regarding the influence of a natural mediotrusive contact on mandibular and cervical muscular activity. The purpose of this study was to analyze the EMG activity of the anterior temporalis (AT) and sternocleidomastoid (SCM) muscles during awake grinding in healthy subjects with or without a natural mediotrusive occlusal contact. Fifteen subjects with natural mediotrusive occlusal contact (Group 1) and 15 subjects without natural mediotrusive occlusal contact (Group 2) participated. Bilateral surface EMG activity of AT and SCM muscles was recorded during unilateral eccentric or concentric tooth grinding tasks. EMG activity was normalized against the activity recorded during maximal voluntary clenching in intercuspal position (IP) for AT muscles and during maximal intentional isometric head-neck rotation to each side, for SCM muscles. EMG activity of AT and SCM muscles showed no statistical difference between groups. EMG activity of AT muscle was higher in the working side (WS) than in the non-WS (NWS) in Group 1 during concentric grinding (0.492 vs 0.331, p = 0.047), whereas no difference was observed in Group 2. EMG activity of SCM was similar between working and NWSs in both groups and tasks. Asymmetry indexes (AIs) were not significantly different between groups. These findings in healthy subjects support the assumption that during awake tooth grinding, central nerve control predominates over peripheral inputs, and reinforce the idea of a functional link between the motor-neuron pools that control jaw and neck muscles.

  19. Vastus lateralis surface and single motor unit EMG following submaximal shortening and lengthening contractions.

    PubMed

    Altenburg, Teatske M; de Ruiter, Cornelis J; Verdijk, Peter W L; van Mechelen, Willem; de Haan, Arnold

    2008-12-01

    A single shortening contraction reduces the force capacity of muscle fibers, whereas force capacity is enhanced following lengthening. However, how motor unit recruitment and discharge rate (muscle activation) are adapted to such changes in force capacity during submaximal contractions remains unknown. Additionally, there is limited evidence for force enhancement in larger muscles. We therefore investigated lengthening- and shortening-induced changes in activation of the knee extensors. We hypothesized that when the same submaximal torque had to be generated following shortening, muscle activation had to be increased, whereas a lower activation would suffice to produce the same torque following lengthening. Muscle activation following shortening and lengthening (20 degrees at 10 degrees /s) was determined using rectified surface electromyography (rsEMG) in a 1st session (at 10% and 50% maximal voluntary contraction (MVC)) and additionally with EMG of 42 vastus lateralis motor units recorded in a 2nd session (at 4%-47%MVC). rsEMG and motor unit discharge rates following shortening and lengthening were normalized to isometric reference contractions. As expected, normalized rsEMG (1.15 +/- 0.19) and discharge rate (1.11 +/- 0.09) were higher following shortening (p < 0.05). Following lengthening, normalized rsEMG (0.91 +/- 0.10) was, as expected, lower than 1.0 (p < 0.05), but normalized discharge rate (0.99 +/- 0.08) was not (p > 0.05). Thus, muscle activation was increased to compensate for a reduced force capacity following shortening by increasing the discharge rate of the active motor units (rate coding). In contrast, following lengthening, rsEMG decreased while the discharge rates of active motor units remained similar, suggesting that derecruitment of units might have occurred.

  20. Adaptive EMG noise reduction in ECG signals using noise level approximation

    NASA Astrophysics Data System (ADS)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  1. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2016-06-01

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.

  2. Peak medial (but not lateral) hamstring activity is significantly lower during stance phase of running. An EMG investigation using a reduced gravity treadmill.

    PubMed

    Hansen, Clint; Einarson, Einar; Thomson, Athol; Whiteley, Rodney

    2017-09-01

    The hamstrings are seen to work during late swing phase (presumably to decelerate the extending shank) then during stance phase (presumably stabilizing the knee and contributing to horizontal force production during propulsion) of running. A better understanding of this hamstring activation during running may contribute to injury prevention and performance enhancement (targeting the specific role via specific contraction mode). Twenty active adult males underwent surface EMG recordings of their medial and lateral hamstrings while running on a reduced gravity treadmill. Participants underwent 36 different conditions for combinations of 50%-100% altering bodyweight (10% increments) & 6-16km/h (2km/h increments, i.e.: 36 conditions) for a minimum of 6 strides of each leg (maximum 32). EMG was normalized to the peak value seen for each individual during any stride in any trial to describe relative activation levels during gait. Increasing running speed effected greater increases in EMG for all muscles than did altering bodyweight. Peak EMG for the lateral hamstrings during running trials was similar for both swing and stance phase whereas the medial hamstrings showed an approximate 20% reduction during stance compared to swing phase. It is suggested that the lateral hamstrings work equally hard during swing and stance phase however the medial hamstrings are loaded slightly less every stance phase. Likely this helps explain the higher incidence of lateral hamstring injury. Hamstring injury prevention and rehabilitation programs incorporating running should consider running speed as more potent stimulus for increasing hamstring muscle activation than impact loading. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of Vibration Training on Anaerobic Power and Quardroceps Surface EMG in Long Jumpers

    ERIC Educational Resources Information Center

    Liu, Bin; Luo, Jiong

    2015-01-01

    Objective: To explore the anaerobic power and surface EMG (sEMG) of quardrocep muscle in lower extremities after single vibration training intervention. Methods: 8 excellent male long jumpers voluntarily participated in this study. Four intervention modes were devised, including high frequency high amplitude (HFHA,30Hz,6mm), low frequency low…

  4. Muscle networks: Connectivity analysis of EMG activity during postural control

    NASA Astrophysics Data System (ADS)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  5. EMG Versus Torque Control of Human-Machine Systems: Equalizing Control Signal Variability Does not Equalize Error or Uncertainty.

    PubMed

    Johnson, Reva E; Kording, Konrad P; Hargrove, Levi J; Sensinger, Jonathon W

    2017-06-01

    In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.

  6. The Assessment of Muscular Effort, Fatigue, and Physiological Adaptation Using EMG and Wavelet Analysis.

    PubMed

    Graham, Ryan B; Wachowiak, Mark P; Gurd, Brendon J

    2015-01-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG). Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs) to our previous data to comprehensively evaluate: 1) differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power), and 2) muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue-associated increases in

  7. Effect of instructions on EMG during the bench press in trained and untrained males.

    PubMed

    Daniels, Rebecca J; Cook, Summer B

    2017-10-01

    Strength and rehabilitation professionals strive to emphasize certain muscles used during an exercise and it may be possible to alter muscle recruitment strategies with varying instructions. This study aimed to determine whether resistance trained and untrained males could selectively activate the pectoralis major or triceps brachii during the bench press according to various instructions. This study included 13 trained males (21.5±2.9years old, 178.7±7.0cm, 85.7±10.7kg) and 12 untrained males (20.3±1.6years old, 178.8±9.4cm, 74.6±17.3kg). Participants performed a bench press one-repetition maximum (1-RM) test, 3 uninstructed repetitions at 80% 1-RM and two more sets of three repetitions with instructions to isolate the chest or arm muscles. Electromyography (EMG) was obtained from the pectoralis major, anterior deltoid, and the long head and short head of the triceps brachii. Maximum EMG activity normalized to 1-RM for each muscle was averaged over the three repetitions for each set and compared between the uninstructed, chest-instructed and arm-instructed conditions among the groups. The trained participants had a greater 1-RM (126.2±30.6kg) than the untrained participants (61.6±14.8kg) (P<0.01). EMG activity was not different between the groups for any of the instructions (P>0.05). When the group data was combined, short head of the triceps activity was significantly lower in the chest instruction (80.1±19.3%) when compared to the uninstructed (85.6±23.3%; P=0.01) and arm-instructed (86.0±23.2; P=0.01) conditions. It can be concluded that instructions can affect muscle activation during the bench press, and this is not dependent on training status. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Compressed sensing system considerations for ECG and EMG wireless biosensors.

    PubMed

    Dixon, Anna M R; Allstot, Emily G; Gangopadhyay, Daibashish; Allstot, David J

    2012-04-01

    Compressed sensing (CS) is an emerging signal processing paradigm that enables sub-Nyquist processing of sparse signals such as electrocardiogram (ECG) and electromyogram (EMG) biosignals. Consequently, it can be applied to biosignal acquisition systems to reduce the data rate to realize ultra-low-power performance. CS is compared to conventional and adaptive sampling techniques and several system-level design considerations are presented for CS acquisition systems including sparsity and compression limits, thresholding techniques, encoder bit-precision requirements, and signal recovery algorithms. Simulation studies show that compression factors greater than 16X are achievable for ECG and EMG signals with signal-to-quantization noise ratios greater than 60 dB.

  9. Frequency domain surface EMG sensor fusion for estimating finger forces.

    PubMed

    Potluri, Chandrasekhar; Kumar, Parmod; Anugolu, Madhavi; Urfer, Alex; Chiu, Steve; Naidu, D; Schoen, Marco P

    2010-01-01

    Extracting or estimating skeletal hand/finger forces using surface electro myographic (sEMG) signals poses many challenges due to cross-talk, noise, and a temporal and spatially modulated signal characteristics. Normal sEMG measurements are based on single sensor data. In this paper, array sensors are used along with a proposed sensor fusion scheme that result in a simple Multi-Input-Single-Output (MISO) transfer function. Experimental data is used along with system identification to find this MISO system. A Genetic Algorithm (GA) approach is employed to optimize the characteristics of the MISO system. The proposed fusion-based approach is tested experimentally and indicates improvement in finger/hand force estimation.

  10. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

    NASA Astrophysics Data System (ADS)

    Hussain, M. S.; Mamun, Md.

    2012-01-01

    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  11. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking

    PubMed Central

    Bruijn, Sjoerd M.; Van Dieën, Jaap H.; Daffertshofer, Andreas

    2015-01-01

    Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG) during stabilized and normal walking. Subjects walked on a treadmill in two conditions, each lasting 10 min; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG) of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component (IC) analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e., lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability. PMID:26578937

  12. Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry

    PubMed Central

    Meyer, Andrew J.; Patten, Carolynn

    2017-01-01

    Neuromusculoskeletal disorders affecting walking ability are often difficult to manage, in part due to limited understanding of how a patient’s lower extremity muscle excitations contribute to the patient’s lower extremity joint moments. To assist in the study of these disorders, researchers have developed electromyography (EMG) driven neuromusculoskeletal models utilizing scaled generic musculoskeletal geometry. While these models can predict individual muscle contributions to lower extremity joint moments during walking, the accuracy of the predictions can be hindered by errors in the scaled geometry. This study presents a novel EMG-driven modeling method that automatically adjusts surrogate representations of the patient’s musculoskeletal geometry to improve prediction of lower extremity joint moments during walking. In addition to commonly adjusted neuromusculoskeletal model parameters, the proposed method adjusts model parameters defining muscle-tendon lengths, velocities, and moment arms. We evaluated our EMG-driven modeling method using data collected from a high-functioning hemiparetic subject walking on an instrumented treadmill at speeds ranging from 0.4 to 0.8 m/s. EMG-driven model parameter values were calibrated to match inverse dynamic moments for five degrees of freedom in each leg while keeping musculoskeletal geometry close to that of an initial scaled musculoskeletal model. We found that our EMG-driven modeling method incorporating automated adjustment of musculoskeletal geometry predicted net joint moments during walking more accurately than did the same method without geometric adjustments. Geometric adjustments improved moment prediction errors by 25% on average and up to 52%, with the largest improvements occurring at the hip. Predicted adjustments to musculoskeletal geometry were comparable to errors reported in the literature between scaled generic geometric models and measurements made from imaging data. Our results demonstrate that

  13. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements

    NASA Astrophysics Data System (ADS)

    Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji

    2017-02-01

    Objective. Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Approach. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Main results. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81  ±  0.09, 0.85  ±  0.09, and 0.76  ±  0.13, respectively) and the patients (e.g. 0.91  ±  0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors  <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. Significance. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of

  14. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.

    PubMed

    Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji

    2017-02-01

    Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81  ±  0.09, 0.85  ±  0.09, and 0.76  ±  0.13, respectively) and the patients (e.g. 0.91  ±  0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors  <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.

  15. Usefulness of electromyography of the cavernous corpora (CC EMG) in the diagnosis of arterial erectile dysfunction.

    PubMed

    Virseda-Chamorro, M; Lopez-Garcia-Moreno, A M; Salinas-Casado, J; Esteban-Fuertes, M

    2012-01-01

    Electromyography (EMG) of the corpora cavernosa (CC-EMG) is able to record the activity of the erectile tissue during erection, and thus has been used as a diagnostic technique in patients with erectile dysfunction (ED). The present study examines the usefulness of the technique in the diagnosis of arterial ED. A cross-sectional study was made of 35 males with a mean age of 48.5 years (s.d. 11.34), referred to our center with ED for >1 year. The patients were subjected to CC-EMG and a penile Doppler ultrasound study following the injection of 20 μg of prostaglandin E1 (PGE1). The patients were divided into three groups according to their response to the intracavernous injection of PGE1: Group 1 (adequate erection and reduction/suppression of EMG activity); Group 2 (insufficient erection and persistence of EMG activity); and Group 3 (insufficient erection and reduction/suppression of EMG activity). Patient classification according to response to the intracavernous injection of PGE1 was as follows: Group 1: six patients (17%), Group 2: 18 patients (51%), and Group 3: 11 patients (31%). Patients diagnosed with arterial insufficiency according to Doppler ultrasound (systolic arterial peak velocity <30 mm s(-1) in both arteries) were significantly older than those without such damage (54.5 versus 41.8 years, respectively; s.d. 11.12). The patients in Group 3 showed a significantly lower maximum systolic velocity in both arteries than the subjects belonging to Group 2. Likewise, a statistically significant relationship was observed between the diagnosis of arterial insufficiency and patient classification in Group 3. The confirmation of insufficient erection associated with reduction/suppression of EMG activity showed a sensitivity of 66.7% (confidence interval between 50 and 84%) and a specificity of 92.9% (confidence interval between 84 and 100%) in the diagnosis of arterial ED. Owing to the high specificity of CC-EMG response to the injection of PGE1, this test is

  16. Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition.

    PubMed

    Zhang, Yi; Li, Peiyang; Zhu, Xuyang; Su, Steven W; Guo, Qing; Xu, Peng; Yao, Dezhong

    2017-01-01

    The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exercises, i.e., flexion of the leg up (standing), hip extension from a sitting position (sitting) and gait (walking) are investigated from 14 healthy untrained subjects, while EMG signals from the muscle group of vastus medialis and the goniometer on the knee joint of the detected leg are synchronously monitored and recorded. Four types of lower-limb motions including standing, sitting, stance phase of walking, and swing phase of walking, are segmented. The Wavelet Transform (WT) based Singular Value Decomposition (SVD) approach is proposed for the classification of four lower-limb motions using a single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb motions from all subjects, the combination of five-level wavelet decomposition and SVD is used to comprise the feature vector. The Support Vector Machine (SVM) is then configured to build a multiple-subject classifier for which the subject independent accuracy will be given across all subjects for the classification of four types of lower-limb motions. In order to effectively indicate the classification performance, EMG features from time-domain (e.g., Mean Absolute Value (MAV), Root-Mean-Square (RMS), integrated EMG (iEMG), Zero Crossing (ZC)) and frequency-domain (e.g., Mean Frequency (MNF) and Median Frequency (MDF)) are also used to classify lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in order to acquire the robust subject independent accuracy. Results show that the proposed WT-based SVD approach has the classification accuracy of 91.85%±0.88% which

  17. Speedup computation of HD-sEMG signals using a motor unit-specific electrical source model.

    PubMed

    Carriou, Vincent; Boudaoud, Sofiane; Laforet, Jeremy

    2018-01-23

    Nowadays, bio-reliable modeling of muscle contraction is becoming more accurate and complex. This increasing complexity induces a significant increase in computation time which prevents the possibility of using this model in certain applications and studies. Accordingly, the aim of this work is to significantly reduce the computation time of high-density surface electromyogram (HD-sEMG) generation. This will be done through a new model of motor unit (MU)-specific electrical source based on the fibers composing the MU. In order to assess the efficiency of this approach, we computed the normalized root mean square error (NRMSE) between several simulations on single generated MU action potential (MUAP) using the usual fiber electrical sources and the MU-specific electrical source. This NRMSE was computed for five different simulation sets wherein hundreds of MUAPs are generated and summed into HD-sEMG signals. The obtained results display less than 2% error on the generated signals compared to the same signals generated with fiber electrical sources. Moreover, the computation time of the HD-sEMG signal generation model is reduced to about 90% compared to the fiber electrical source model. Using this model with MU electrical sources, we can simulate HD-sEMG signals of a physiological muscle (hundreds of MU) in less than an hour on a classical workstation. Graphical Abstract Overview of the simulation of HD-sEMG signals using the fiber scale and the MU scale. Upscaling the electrical source to the MU scale reduces the computation time by 90% inducing only small deviation of the same simulated HD-sEMG signals.

  18. Continuous movement decoding using a target-dependent model with EMG inputs.

    PubMed

    Sachs, Nicholas A; Corbett, Elaine A; Miller, Lee E; Perreault, Eric J

    2011-01-01

    Trajectory-based models that incorporate target position information have been shown to accurately decode reaching movements from bio-control signals, such as muscle (EMG) and cortical activity (neural spikes). One major hurdle in implementing such models for neuroprosthetic control is that they are inherently designed to decode single reaches from a position of origin to a specific target. Gaze direction can be used to identify appropriate targets, however information regarding movement intent is needed to determine when a reach is meant to begin and when it has been completed. We used linear discriminant analysis to classify limb states into movement classes based on recorded EMG from a sparse set of shoulder muscles. We then used the detected state transitions to update target information in a mixture of Kalman filters that incorporated target position explicitly in the state, and used EMG activity to decode arm movements. Updating the target position initiated movement along new trajectories, allowing a sequence of appropriately timed single reaches to be decoded in series and enabling highly accurate continuous control.

  19. Prosthetic EMG control enhancement through the application of man-machine principles

    NASA Technical Reports Server (NTRS)

    Simcox, W. A.

    1977-01-01

    An area in medicine that appears suitable to man-machine principles is rehabilitation research, particularly when the motor aspects of the body are involved. If one considers the limb, whether functional or not, as the machine, the brain as the controller and the neuromuscular system as the man-machine interface, the human body is reduced to a man-machine system that can benefit from the principles behind such systems. The area of rehabilitation that this paper deals with is that of an arm amputee and his prosthetic device. Reducing this area to its man-machine basics, the problem becomes one of attaining natural multiaxis prosthetic control using Electromyographic activity (EMG) as the means of communication between man and prothesis. In order to use EMG as the communication channel it must be amplified and processed to yield a high information signal suitable for control. The most common processing scheme employed is termed Mean Value Processing. This technique for extracting the useful EMG signal consists of a differential to single ended conversion to the surface activity followed by a rectification and smoothing.

  20. Functional mapping of the pelvic floor and sphincter muscles from high-density surface EMG recordings.

    PubMed

    Peng, Yun; He, Jinbao; Khavari, Rose; Boone, Timothy B; Zhang, Yingchun

    2016-11-01

    Knowledge of the innervation of pelvic floor and sphincter muscles is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. This report presents our high-density intravaginal and intrarectal electromyography (EMG) probes and a comprehensive innervation zone (IZ) imaging technique based on high-density EMG readings to characterize the IZ distribution. Both intravaginal and intrarectal probes are covered with a high-density surface electromyography electrode grid (8 × 8). Surface EMG signals were acquired in ten healthy women performing maximum voluntary contractions of their pelvic floor. EMG decomposition was performed to separate motor-unit action potentials (MUAPs) and then localize their IZs. High-density surface EMG signals were successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. During each contraction, up to 218 and 456 repetitions of motor units were detected by the vaginal and rectal probes, respectively. MUAPs were separated with their IZs identified at various orientations and depths. The proposed probes are capable of providing a comprehensive mapping of IZs of the pelvic floor and sphincter muscles. They can be employed as diagnostic and preventative tools in clinical practices.

  1. Influence of post-stroke spasticity on EMG-force coupling and force steadiness in biceps brachii.

    PubMed

    Carlyle, Jennilee K; Mochizuki, George

    2018-02-01

    Individuals with spasticity after stroke experience a decrease in force steadiness which can impact function. Alterations in the strength of EMG-force coupling may contribute to the reduction in force steadiness observed in spasticity. The aim was to determine the extent to which force steadiness and EMG-force coupling is affected by post-stroke spasticity. This cross-sectional study involved individuals with upper limb spasticity after stroke. Participants were required to generate and maintain isometric contractions of the elbow flexors at varying force levels. Coefficient of variation of force, absolute force, EMG-force cross-correlation function peak and peak latency was measured from both limbs with surface electromyography and isometric dynamometry. Statistically significant differences were observed between the affected and less affected limbs for all outcome measures. Significant main effects of force level were also observed. Force steadiness was not statistically significantly correlated with EMG-force coupling; however, both force steadiness and absolute force were associated with the level of impairment as measured by the Chedoke McMaster Stroke Assessment Scale. Spasticity after stroke uncouples the relationship between EMG and force and is associated with reduced force steadiness during isometric contractions; however, these features of control are not associated in individuals with spasticity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. EMG-Torque correction on Human Upper extremity using Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly

    2016-09-01

    There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.

  3. Achieving professional success in US government, academia, and industry: an EMGS commentary.

    PubMed

    Poirier, Miriam C; Schwartz, Jeffrey L; Aardema, Marilyn J

    2014-08-01

    One of the goals of the EMGS is to help members achieve professional success in the fields they have trained in. Today, there is greater competition for jobs in genetic toxicology, genomics, and basic research than ever before. In addition, job security and the ability to advance in one's career is challenging, regardless of whether one works in a regulatory, academic, or industry environment. At the EMGS Annual Meeting in Monterey, CA (September, 2013), the Women in EMGS Special Interest Group held a workshop to discuss strategies for achieving professional success. Presentations were given by three speakers, each representing a different employment environment: Government (Miriam C. Poirier), Academia (Jeffrey L. Schwartz), and Industry (Marilyn J. Aardema). Although some differences in factors or traits affecting success in the three employment sectors were noted by each of the speakers, common factors considered important for advancement included networking, seeking out mentors, and developing exceptional communication skills. © 2014 Wiley Periodicals, Inc.

  4. Fractal based modelling and analysis of electromyography (EMG) to identify subtle actions.

    PubMed

    Arjunan, Sridhar P; Kumar, Dinesh K

    2007-01-01

    The paper reports the use of fractal theory and fractal dimension to study the non-linear properties of surface electromyogram (sEMG) and to use these properties to classify subtle hand actions. The paper reports identifying a new feature of the fractal dimension, the bias that has been found to be useful in modelling the muscle activity and of sEMG. Experimental results demonstrate that the feature set consisting of bias values and fractal dimension of the recordings is suitable for classification of sEMG against the different hand gestures. The scatter plots demonstrate the presence of simple relationships of these features against the four hand gestures. The results indicate that there is small inter-experimental variation but large inter-subject variation. This may be due to differences in the size and shape of muscles for different subjects. The possible applications of this research include use in developing prosthetic hands, controlling machines and computers.

  5. A comparative study of efficacy of emg bio-feedback and progressive muscular relaxation in tension headache.

    PubMed

    Gada, M T

    1984-04-01

    The aim of the present study was to find out efficacy of frontalis EMG Biofeedback therapy, deep muscular relaxation therapy and compare the efficacy of both in cases of tension headache. During two week basal-data recording period all patients were taught deep muscular relaxation by Jacobson's technique. Simultaneously patients were instructed to keep headache diary. Headache diary yielded three different parameters a) number of headache-free days per week, b) peak headache intensity (or each week and c) average daily headache activity score per week. These parameters were used to find out therapeutic efficacy of each treatment. Patients were randomly divided in two groups. EMG Biofeedback group was given frontalis EMG feedback through EMG J 33 muscle trainer of Cyborg Corporation (U.S.A.). Patients in each group were given 20 sessions (two sessions per week); each session lasting 30 minutes. Patients were instructed to practice at least one 30 minute session of relaxation at home. The data were subjected to statistical calculation. The results indicate that frontalis EMG Biofeedback therapy and deep muscle relaxation therapy are significantly effective in cases of tension headache. Both treatments are equally effective. The findings are discussed in relation to Indian situation.

  6. Safety of intraoperative electrophysiological monitoring (TES and EMG) for spinal and cranial lesions.

    PubMed

    Gazzeri, Roberto; Faiola, Andrea; Neroni, Massimiliano; Fiore, Claudio; Callovini, Giorgio; Pischedda, Mauro; Galarza, Marcelo

    2013-09-01

    Intraoperative motor evoked potentials (MEP) and electromyography (EMG) monitoring in patients with spinal and cranial lesions is a valuable tool for prevention of postoperative motor deficits. The purpose of this study was to determine whether electrophysiological monitoring during skull base, spinal cord, and spinal surgery might be useful for predicting postoperative motor deterioration. From January 2012 to March 2013, thirty-three consecutive patients were studied using intraoperative monitoring (Nuvasive NV-M5 System) to check the integrity of brainstem, spinal cord, and nerve roots, recording transcranial motor evoked potentials (TcMEPs) and electromyography. Changes in MEPs and EMGs were related to postoperative deficits. Preoperative diagnosis included skull base and brainstem lesions (6 patients), spinal tumors (11 patients), spinal deformity (16 cases). Using TcMEPs and EMG is a practicable and safe method. MEPs are useful in any surgery in which the brainstem and spinal cord are at risk. EMG stimulation helps to identify an optimal trans-psoas entry point for an extreme lateral lumbar interbody fusion (XLIF) approach to protect against potential nerve injury. This neural navigation technique via a surgeon-interpreted interface assists the surgical team in safely removing lesions and accessing the intervertebral disc space for minimally invasive spinal procedures.

  7. Impact of early life adversity on EMG stress reactivity of the trapezius muscle.

    PubMed

    Luijcks, Rosan; Vossen, Catherine J; Roggeveen, Suzanne; van Os, Jim; Hermens, Hermie J; Lousberg, Richel

    2016-09-01

    Human and animal research indicates that exposure to early life adversity increases stress sensitivity later in life. While behavioral markers of adversity-induced stress sensitivity have been suggested, physiological markers remain to be elucidated. It is known that trapezius muscle activity increases during stressful situations. The present study examined to what degree early life adverse events experienced during early childhood (0-11 years) and adolescence (12-17 years) moderate experimentally induced electromyographic (EMG) stress activity of the trapezius muscles, in an experimental setting. In a general population sample (n = 115), an anticipatory stress effect was generated by presenting a single unpredictable and uncontrollable electrical painful stimulus at t = 3 minutes. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. Linear and nonlinear time courses in EMG activity were modeled using multilevel analysis. The study protocol included 2 experimental sessions (t = 0 and t = 6 months) allowing for examination of reliability.Results show that EMG stress reactivity during the stress paradigm was consistently stronger in people with higher levels of early life adverse events; early childhood adversity had a stronger moderating effect than adolescent adversity. The impact of early life adversity on EMG stress reactivity may represent a reliable facet that can be used in both clinical and nonclinical studies.

  8. Effects of seated posture on erector spinae EMG activity during whole body vibration.

    PubMed

    Zimmermann, C L; Cook, T M; Goel, V K

    1993-06-01

    The purpose of this study was to evaluate the electromyographic (EMG) response of the erector spinae to whole body vibration in three different unsupported seated postures: neutral upright, forward lean, and posterior lean. Subjects were 11 healthy college-age men. EMG was collected using bipolar surface electrodes placed bilaterally over the erector spinae at the L4 level. A modified chair with attached accelerometer was affixed to an induction type vibrator. Subjects were vibrated vertically at 4.5 Hz and 6.21 m.s-2 RMS. Data were collected in each of the three postures for 30 s pre- and post-vibration and for 2 min during vibration. Mean EMG values were determined for each sampling period and compared using ANOVA. The mean value for anterior lean was significantly larger (p < 0.05) than that for posterior lean and neutral. EMG data analysed by triggered averaging showed a phase-dependent response to the vibratory cycle for the forward leaning and neutral upright postures. The results of this study indicate that the magnitude of the vibration synchronous response of the erector spinae musculature is dependent upon body posture. This response may be an important factor in the onset of muscular fatigue and the increased incidence of back disorders among individuals exposed to whole body vibration.

  9. A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions

    PubMed Central

    Nazmi, Nurhazimah; Abdul Rahman, Mohd Azizi; Yamamoto, Shin-Ichiroh; Ahmad, Siti Anom; Zamzuri, Hairi; Mazlan, Saiful Amri

    2016-01-01

    In recent years, there has been major interest in the exposure to physical therapy during rehabilitation. Several publications have demonstrated its usefulness in clinical/medical and human machine interface (HMI) applications. An automated system will guide the user to perform the training during rehabilitation independently. Advances in engineering have extended electromyography (EMG) beyond the traditional diagnostic applications to also include applications in diverse areas such as movement analysis. This paper gives an overview of the numerous methods available to recognize motion patterns of EMG signals for both isotonic and isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who would like to select the most appropriate methodology in classifying motion patterns, especially during different types of contractions. For feature extraction, the probability density function (PDF) of EMG signals will be the main interest of this study. Following that, a brief explanation of the different methods for pre-processing, feature extraction and classifying EMG signals will be compared in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:27548165

  10. Intramuscular pressure: A better tool than EMG to optimize exercise for long-duration space flight

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Ballard, R. E.; Aratow, M.; Crenshaw, A.; Styf, J.; Kahan, N.; Watenpaugh, D. E.

    1992-01-01

    A serious problem experienced by astronauts during long-duration space flight is muscle atrophy. In order to develop countermeasures for this problem, a simple method for monitoring in vivo function of specific muscles is needed. Previous studies document that both intramuscular pressure (IMP) and electromyography (EMG) provide quantitative indices of muscle contraction force during isometric exercise. However, at present there are no data available concerning the usefulness of IMP versus EMG during dynamic exercise. Methods: IMP (Myopress catheter) and surface EMG activity were measured continuously and simultaneously in the tibalis anterior (TA) and soleus (SOL) muscles of 9 normal male volunteers (28-54 years). These parameters were recorded during both concentric and eccentric exercises which consisted of plantarflexon and dorsiflexon of the ankle joint. A Lido Active Isokinetic Dynamometer concurrently recorded ankle joint torque and position. Results: Intramuscular pressure correlated linearly with contraction force for both SOL (r exp 2 = 0.037) and TA (R exp 2 = 0.716 and r exp 2 = 0.802, respectively). During eccentric exercises, SOL and TA IMP also correlated linearly with contraction force (r(exp 2) = 0.883 and r(exp 2) = 0.904 respectively), but SOL and TA EMG correlated poorly with force (r(exp 2) = 0.489 and r(exp 2) = 0.702 respectively). Conclusion: IMP measurement provides a better index of muscle contraction force than EMG during concentric and eccentric exercise. IMP reflects intrinsic mechanical properties of individual muscles, such as length tension relationships. Although invasive, IMP provides a more powerful tool and EMG for developing exercise hardware and protocols for astronauts exposed to long-duration space flight.

  11. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.

    PubMed

    Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping

    2015-05-01

    Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.

  12. EMG Activity of Selected Trunk and Hip Muscles During a Squat Lift: Effect of Varying the Lumbar Posture

    DTIC Science & Technology

    1990-01-01

    8 Posterior Ligamentous System..........11 Stoop Lift vs. Squat Lift...............17 Kyphosis.....................18 Lordosis ...of EMG electrodes .. ........... . 27 3. Plot of the EMG activity (% MVIC) recorded during a squat lift with the lumbar spine in lordosis . . 31 4...during a squat lift with the lumbar spine in lordosis . . . 33 6. Plot of the EMG activity (% MDA) recorded during a squat lift with the lumbar spine in

  13. Development of a lumbar EMG-based coactivation index for the assessment of complex dynamic tasks.

    PubMed

    Le, Peter; Aurand, Alexander; Walter, Benjamin A; Best, Thomas M; Khan, Safdar N; Mendel, Ehud; Marras, William S

    2018-03-01

    The objective of this study was to develop and test an EMG-based coactivation index and compare it to a coactivation index defined by a biologically assisted lumbar spine model to differentiate between tasks. The purpose was to provide a universal approach to assess coactivation of a multi-muscle system when a computational model is not accessible. The EMG-based index developed utilised anthropometric-defined muscle characteristics driven by torso kinematics and EMG. Muscles were classified as agonists/antagonists based upon 'simulated' moments of the muscles relative to the total 'simulated' moment. Different tasks were used to test the range of the index including lifting, pushing and Valsalva. Results showed that the EMG-based index was comparable to the index defined by a biologically assisted model (r 2  = 0.78). Overall, the EMG-based index provides a universal, usable method to assess the neuromuscular effort associated with coactivation for complex dynamic tasks when the benefit of a biomechanical model is not available. Practitioner Summary: A universal coactivation index for the lumbar spine was developed to assess complex dynamic tasks. This method was validated relative to a model-based index for use when a high-end computational model is not available. Its simplicity allows for fewer inputs and usability for assessment of task ergonomics and rehabilitation.

  14. The time course of face processing: startle eyeblink response modulation by face gender and expression.

    PubMed

    Duval, Elizabeth R; Lovelace, Christopher T; Aarant, Justin; Filion, Diane L

    2013-12-01

    The purpose of this study was to investigate the effects of both facial expression and face gender on startle eyeblink response patterns at varying lead intervals (300, 800, and 3500ms) indicative of attentional and emotional processes. We aimed to determine whether responses to affective faces map onto the Defense Cascade Model (Lang et al., 1997) to better understand the stages of processing during affective face viewing. At 300ms, there was an interaction between face expression and face gender with female happy and neutral faces and male angry faces producing inhibited startle. At 3500ms, there was a trend for facilitated startle during angry compared to neutral faces. These findings suggest that affective expressions are perceived differently in male and female faces, especially at short lead intervals. Future studies investigating face processing should take both face gender and expression into account. © 2013.

  15. Effect of spatial filtering on crosstalk reduction in surface EMG recordings.

    PubMed

    Mesin, Luca; Smith, Stuart; Hugo, Suzanne; Viljoen, Suretha; Hanekom, Tania

    2009-04-01

    Increasing the selectivity of the detection system in surface electromyography (EMG) is beneficial in the collection of information of a specific portion of the investigated muscle and to reduce the contribution of undesired components, such as non-propagating components (due to generation or end-of-fibre effects) or crosstalk from nearby muscles. A comparison of the ability of different spatial filters to reduce the amount of crosstalk in surface EMG measurements was conducted in this paper using simulated signals. It focused on the influence of different properties of the muscle anatomy (changing subcutaneous layer thickness, skin conductivity, fibre length) and detection system (single, double and normal double differential, with two inter-electrode distances - IED) on the amount of crosstalk present in the measurements. A cylindrical multilayer (skin, subcutaneous tissue, muscle, bone) analytical model was used to simulate single fibre action potentials (SFAPs). Fibres were grouped together in motor units (MUs) and motor unit action potentials (MUAPs) were obtained by adding the SFAPs of the corresponding fibres. Interference surface EMG signals were obtained, modelling the recruitment of MUs and rate coding. The average rectified value (ARV) and mean frequency (MNF) content of the EMG signals were studied and used as a basis for determining the selectivity of each spatial filter. From these results it was found that the selectivity of each spatial filter varies depending on the transversal location of the measurement electrodes and on the anatomy. An increase in skin conductivity favourably affects the selectivity of normal double differential filters as does an increase in subcutaneous layer thickness. An increase in IED decreases the selectivity of all the analysed filters.

  16. Memory Consolidation within the Central Amygdala Is Not Necessary for Modulation of Cerebellar Learning

    ERIC Educational Resources Information Center

    Steinmetz, Adam B.; Ng, Ka H.; Freeman, John H.

    2017-01-01

    Amygdala lesions impair, but do not prevent, acquisition of cerebellum-dependent eyeblink conditioning suggesting that the amygdala modulates cerebellar learning. Two-factor theories of eyeblink conditioning posit that a fast-developing memory within the amygdala facilitates slower-developing memory within the cerebellum. The current study tested…

  17. Design, development and testing of a low-cost sEMG system and its use in recording muscle activity in human gait.

    PubMed

    Supuk, Tamara Grujic; Skelin, Ana Kuzmanic; Cic, Maja

    2014-05-07

    Surface electromyography (sEMG) is an important measurement technique used in biomechanical, rehabilitation and sport environments. In this article the design, development and testing of a low-cost wearable sEMG system are described. The hardware architecture consists of a two-cascade small-sized bioamplifier with a total gain of 2,000 and band-pass of 3 to 500 Hz. The sampling frequency of the system is 1,000 Hz. Since real measured EMG signals are usually corrupted by various types of noises (motion artifacts, white noise and electromagnetic noise present at 50 Hz and higher harmonics), we have tested several denoising techniques, both on artificial and measured EMG signals. Results showed that a wavelet-based technique implementing Daubechies5 wavelet and soft sqtwolog thresholding is the most appropriate for EMG signals denoising. To test the system performance, EMG activities of six dominant muscles of ten healthy subjects during gait were measured (gluteus maximus, biceps femoris, sartorius, rectus femoris, tibialis anterior and medial gastrocnemius). The obtained EMG envelopes presented against the duration of gait cycle were compared favourably with the EMG data available in the literature, suggesting that the proposed system is suitable for a wide range of applications in biomechanics.

  18. Design, Development and Testing of a Low-Cost sEMG System and Its Use in Recording Muscle Activity in Human Gait

    PubMed Central

    Supuk, Tamara Grujic; Skelin, Ana Kuzmanic; Cic, Maja

    2014-01-01

    Surface electromyography (sEMG) is an important measurement technique used in biomechanical, rehabilitation and sport environments. In this article the design, development and testing of a low-cost wearable sEMG system are described. The hardware architecture consists of a two-cascade small-sized bioamplifier with a total gain of 2,000 and band-pass of 3 to 500 Hz. The sampling frequency of the system is 1,000 Hz. Since real measured EMG signals are usually corrupted by various types of noises (motion artifacts, white noise and electromagnetic noise present at 50 Hz and higher harmonics), we have tested several denoising techniques, both on artificial and measured EMG signals. Results showed that a wavelet—based technique implementing Daubechies5 wavelet and soft sqtwolog thresholding is the most appropriate for EMG signals denoising. To test the system performance, EMG activities of six dominant muscles of ten healthy subjects during gait were measured (gluteus maximus, biceps femoris, sartorius, rectus femoris, tibialis anterior and medial gastrocnemius). The obtained EMG envelopes presented against the duration of gait cycle were compared favourably with the EMG data available in the literature, suggesting that the proposed system is suitable for a wide range of applications in biomechanics. PMID:24811078

  19. Characteristics of power spectrum density function of EMG during muscle contraction below 30%MVC.

    PubMed

    Roman-Liu, Danuta; Konarska, Maria

    2009-10-01

    The aim of the study was to quantify changes in PSDF frequency bands of the EMG signal and EMG parameters such as MF, MPF and zero crossing, with an increase in the level of muscle contractions in the range from 0.5% to 30% RMS(max) and to determine the frequency bands with the lowest dependency on RMS level so that this could be used in investigating muscle fatigue. Sixteen men, aged from 23 to 33 years old (mean 26.1), who participated in the study performed two force exertion tests. Fragments of EMG which corresponded to the levels of muscle contraction of 0.5%, 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30% RMS(max) registered from left and right trapezius pars descendents (TP) and left and right extensor digitorum superficialis (ED) muscles were selected for analysis. The analysis included changes in standard parameters of the EMG signal and changes in PSDF frequency bands, which occurred across muscle contraction levels. To analyze changes in PSDF across the level of muscle contraction, the spectrum was divided into six frequency bandwidths. The analysis of parameters focused on the differences in those parameters between the analyzed muscles, at different levels of muscle contraction. The study revealed that, at muscle contraction levels below 5% RMSmax, contraction level influences standard parameters of the EMG signal and that at such levels of muscle contraction every change in muscle contraction level (recruitment of additional MUs) is reflected in PSDF. The frequency band with the lowest dependency on contraction level was 76-140 Hz for which in both muscles no contraction level effect was detected for contraction levels above 5% RMS(max). The reproducibility of the results was very high, since the observations in of the left and right muscles were almost equal. The other factor, which strongly influences PSDF of the EMG signal, is probably the examined muscle structure (muscle morphology, size, function, subcutaneous layer, cross talk). It seems that low

  20. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    NASA Astrophysics Data System (ADS)

    Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.

    2014-10-01

    Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical

  1. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    PubMed Central

    Crago, Patrick E; Makowski, Nathaniel S; Cole, Natalie M

    2014-01-01

    Objective Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity, without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main Results Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously - voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical

  2. Impact-induced soft-tissue vibrations associate with muscle activation in human landing movements: An accelerometry and EMG evaluation.

    PubMed

    Fu, Weijie; Wang, Xi; Liu, Yu

    2015-01-01

    Previous studies have not used neurophysiological methodology to explore the damping effects on induced soft-tissue vibrations and muscle responses. This study aimed to investigate the changes in activation of the musculoskeletal system in response to soft-tissue vibrations with different applied compression conditions in a drop-jump landing task. Twelve trained male participants were instructed to perform drop-jump landings in compression shorts (CS) and regular shorts without compression (control condition, CC). Soft-tissue vibrations and EMG amplitudes of the leg within 50 ms before and after touchdown were collected synchronously. Peak acceleration of the thigh muscles was significantly lower in CS than in CC during landings from 45 or 60 cm and 30 cm heights (p < 0.05), respectively. However, the damping coefficient was higher in CS than in CC at the thigh muscles during landings from 60 cm height (p < 0.05). Significant decrease in EMG amplitude of the rectus femoris and biceps femoris muscles was also observed in CS (p < 0.05). Externally induced soft-tissue vibration damping was associated with a decrease in muscular activity of the rectus femoris and biceps femoris muscles during drop-jump landings from different heights.

  3. Impact of early life adversity on EMG stress reactivity of the trapezius muscle

    PubMed Central

    Luijcks, Rosan; Vossen, Catherine J.; Roggeveen, Suzanne; van Os, Jim; Hermens, Hermie J.; Lousberg, Richel

    2016-01-01

    Abstract Human and animal research indicates that exposure to early life adversity increases stress sensitivity later in life. While behavioral markers of adversity-induced stress sensitivity have been suggested, physiological markers remain to be elucidated. It is known that trapezius muscle activity increases during stressful situations. The present study examined to what degree early life adverse events experienced during early childhood (0–11 years) and adolescence (12–17 years) moderate experimentally induced electromyographic (EMG) stress activity of the trapezius muscles, in an experimental setting. In a general population sample (n = 115), an anticipatory stress effect was generated by presenting a single unpredictable and uncontrollable electrical painful stimulus at t = 3 minutes. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. Linear and nonlinear time courses in EMG activity were modeled using multilevel analysis. The study protocol included 2 experimental sessions (t = 0 and t = 6 months) allowing for examination of reliability. Results show that EMG stress reactivity during the stress paradigm was consistently stronger in people with higher levels of early life adverse events; early childhood adversity had a stronger moderating effect than adolescent adversity. The impact of early life adversity on EMG stress reactivity may represent a reliable facet that can be used in both clinical and nonclinical studies. PMID:27684800

  4. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.

    PubMed

    Subasi, Abdulhamit

    2013-06-01

    Support vector machine (SVM) is an extensively used machine learning method with many biomedical signal classification applications. In this study, a novel PSO-SVM model has been proposed that hybridized the particle swarm optimization (PSO) and SVM to improve the EMG signal classification accuracy. This optimization mechanism involves kernel parameter setting in the SVM training procedure, which significantly influences the classification accuracy. The experiments were conducted on the basis of EMG signal to classify into normal, neurogenic or myopathic. In the proposed method the EMG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT) and a set of statistical features were extracted from these sub-bands to represent the distribution of wavelet coefficients. The obtained results obviously validate the superiority of the SVM method compared to conventional machine learning methods, and suggest that further significant enhancements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. The PSO-SVM yielded an overall accuracy of 97.41% on 1200 EMG signals selected from 27 subject records against 96.75%, 95.17% and 94.08% for the SVM, the k-NN and the RBF classifiers, respectively. PSO-SVM is developed as an efficient tool so that various SVMs can be used conveniently as the core of PSO-SVM for diagnosis of neuromuscular disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model.

    PubMed

    Ngeo, Jimson G; Tamei, Tomoya; Shibata, Tomohiro

    2014-08-14

    Surface electromyography (EMG) signals are often used in many robot and rehabilitation applications because these reflect motor intentions of users very well. However, very few studies have focused on the accurate and proportional control of the human hand using EMG signals. Many have focused on discrete gesture classification and some have encountered inherent problems such as electro-mechanical delays (EMD). Here, we present a new method for estimating simultaneous and multiple finger kinematics from multi-channel surface EMG signals. In this study, surface EMG signals from the forearm and finger kinematic data were extracted from ten able-bodied subjects while they were tasked to do individual and simultaneous multiple finger flexion and extension movements in free space. Instead of using traditional time-domain features of EMG, an EMG-to-Muscle Activation model that parameterizes EMD was used and shown to give better estimation performance. A fast feed forward artificial neural network (ANN) and a nonparametric Gaussian Process (GP) regressor were both used and evaluated to estimate complex finger kinematics, with the latter rarely used in the other related literature. The estimation accuracies, in terms of mean correlation coefficient, were 0.85 ± 0.07, 0.78 ± 0.06 and 0.73 ± 0.04 for the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and the distal interphalangeal (DIP) finger joint DOFs, respectively. The mean root-mean-square error in each individual DOF ranged from 5 to 15%. We show that estimation improved using the proposed muscle activation inputs compared to other features, and that using GP regression gave better estimation results when using fewer training samples. The proposed method provides a viable means of capturing the general trend of finger movements and shows a good way of estimating finger joint kinematics using a muscle activation model that parameterizes EMD. The results from this study demonstrates a potential control

  6. Measuring leg movements during sleep using accelerometry: comparison with EMG and piezo-electric scored events.

    PubMed

    Terrill, Philip I; Leong, Matthew; Barton, Katrina; Freakley, Craig; Downey, Carl; Vanniekerk, Mark; Jorgensen, Greg; Douglas, James

    2013-01-01

    Periodic Limb Movements during Sleep (PLMS) can cause significant disturbance to sleep, resulting in daytime sleepiness and reduced quality of life. In conventional clinical practice, PLMS are measured using overnight electromyogram (EMG) of the tibialis anterior muscle, although historically they have also been measured using piezo-electric gauges placed over the muscle. However, PLMS counts (PLM index) do not correlate well with clinical symptomology. In this study, we propose that because EMG and piezo derived signals measure muscle activation rather than actual movement, they may count events with no appreciable movement of the limb and therefore no contribution to sleep disturbance. The aim of this study is thus to determine the percentage of clinically scored limb movements which are not associated with movement of the great toe measured using accelerometry. 9 participants were studied simultaneously with an overnight diagnostic polysomnogram (including EMG and piezo instrumentation of the right leg) and high temporal resolution accelerometry of the right great toe. Limb movements were scored, and peak acceleration during each scored movement was quantified. Across the participant population, 54.9% (range: 26.7-76.3) and 39.0% (range: 4.8-69.6) of limb movements scored using piezo and EMG instrumentation respectively, were not associated with toe movement measured with accelerometry. If sleep disturbance is the consequence of the limb movements, these results may explain why conventional piezo or EMG derived PLMI is poorly correlated with clinical symptomology.

  7. Examination of Post-stroke Alteration in Motor Unit Firing Behavior Using High Density Surface EMG Decomposition

    PubMed Central

    Li, Xiaoyan; Holobar, Aleš; Gazzoni, Marco; Merletti, Roberto; Rymer, William Z.; Zhou, Ping

    2014-01-01

    Recent advances in high density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study we applied high density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations post-stroke. Surface EMG signals were collected using a 64-channel 2-dimensional electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 N to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high density surface EMG signals, and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (CoV, averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations post-stroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness. PMID:25389239

  8. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks.

    PubMed

    Xia, Peng; Hu, Jie; Peng, Yinghong

    2017-10-25

    A novel model based on deep learning is proposed to estimate kinematic information for myoelectric control from multi-channel electromyogram (EMG) signals. The neural information of limb movement is embedded in EMG signals that are influenced by all kinds of factors. In order to overcome the negative effects of variability in signals, the proposed model employs the deep architecture combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The EMG signals are transformed to time-frequency frames as the input to the model. The limb movement is estimated by the model that is trained with the gradient descent and backpropagation procedure. We tested the model for simultaneous and proportional estimation of limb movement in eight healthy subjects and compared it with support vector regression (SVR) and CNNs on the same data set. The experimental studies show that the proposed model has higher estimation accuracy and better robustness with respect to time. The combination of CNNs and RNNs can improve the model performance compared with using CNNs alone. The model of deep architecture is promising in EMG decoding and optimization of network structures can increase the accuracy and robustness. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    PubMed

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Control of an optimal finger exoskeleton based on continuous joint angle estimation from EMG signals.

    PubMed

    Ngeo, Jimson; Tamei, Tomoya; Shibata, Tomohiro; Orlando, M F Felix; Behera, Laxmidhar; Saxena, Anupam; Dutta, Ashish

    2013-01-01

    Patients suffering from loss of hand functions caused by stroke and other spinal cord injuries have driven a surge in the development of wearable assistive devices in recent years. In this paper, we present a system made up of a low-profile, optimally designed finger exoskeleton continuously controlled by a user's surface electromyographic (sEMG) signals. The mechanical design is based on an optimal four-bar linkage that can model the finger's irregular trajectory due to the finger's varying lengths and changing instantaneous center. The desired joint angle positions are given by the predictive output of an artificial neural network with an EMG-to-Muscle Activation model that parameterizes electromechanical delay (EMD). After confirming good prediction accuracy of multiple finger joint angles we evaluated an index finger exoskeleton by obtaining a subject's EMG signals from the left forearm and using the signal to actuate a finger on the right hand with the exoskeleton. Our results show that our sEMG-based control strategy worked well in controlling the exoskeleton, obtaining the intended positions of the device, and that the subject felt the appropriate motion support from the device.

  11. To What Extent Is Mean EMG Frequency during Gait a Reflection of Functional Muscle Strength in Children with Cerebral Palsy?

    ERIC Educational Resources Information Center

    Van Gestel, L.; Wambacq, H.; Aertbelien, E.; Meyns, P.; Bruyninckx, H.; Bar-On, L.; Molenaers, G.; De Cock, P.; Desloovere, K.

    2012-01-01

    The aim of the current paper was to analyze the potential of the mean EMG frequency, recorded during 3D gait analysis (3DGA), for the evaluation of functional muscle strength in children with cerebral palsy (CP). As walking velocity is known to also influence EMG frequency, it was investigated to which extent the mean EMG frequency is a reflection…

  12. A COMPARATIVE STUDY OF EFFICACY OF EMG BIO-FEEDBACK AND PROGRESSIVE MUSCULAR RELAXATION IN TENSION HEADACHE1

    PubMed Central

    Gada, M.T.

    1984-01-01

    SUMMARY The aim of the present study was to find out efficacy of frontalis EMG Biofeedback therapy, deep muscular relaxation therapy and compare the efficacy of both in cases of tension headache. During two week basal-data recording period all patients were taught deep muscular relaxation by Jacobson′s technique. Simultaneously patients were instructed to keep headache diary. Headache diary yielded three different parameters a) number of headache-free days per week, b) peak headache intensity (or each week and c) average daily headache activity score per week. These parameters were used to find out therapeutic efficacy of each treatment. Patients were randomly divided in two groups. EMG Biofeedback group was given frontalis EMG feedback through EMG J 33 muscle trainer of Cyborg Corporation (U.S.A.). Patients in each group were given 20 sessions (two sessions per week); each session lasting 30 minutes. Patients were instructed to practice at least one 30 minute session of relaxation at home. The data were subjected to statistical calculation. The results indicate that frontalis EMG Biofeedback therapy and deep muscle relaxation therapy are significantly effective in cases of tension headache. Both treatments are equally effective. The findings are discussed in relation to Indian situation. PMID:21965970

  13. A Comparison of a Maximum Exertion Method and a Model-Based, Sub-Maximum Exertion Method for Normalizing Trunk EMG

    PubMed Central

    Cholewicki, Jacek; van Dieën, Jaap; Lee, Angela S.; Reeves, N. Peter

    2011-01-01

    The problem with normalizing EMG data from patients with painful symptoms (e.g. low back pain) is that such patients may be unwilling or unable to perform maximum exertions. Furthermore, the normalization to a reference signal, obtained from a maximal or sub-maximal task, tends to mask differences that might exist as a result of pathology. Therefore, we presented a novel method (GAIN method) for normalizing trunk EMG data that overcomes both problems. The GAIN method does not require maximal exertions (MVC) and tends to preserve distinct features in the muscle recruitment patterns for various tasks. Ten healthy subjects performed various isometric trunk exertions, while EMG data from 10 muscles were recorded and later normalized using the GAIN and MVC methods. The MVC method resulted in smaller variation between subjects when tasks were executed at the three relative force levels (10%, 20%, and 30% MVC), while the GAIN method resulted in smaller variation between subjects when the tasks were executed at the three absolute force levels (50 N, 100 N, and 145 N). This outcome implies that the MVC method provides a relative measure of muscle effort, while the GAIN-normalized EMG data gives an estimate of the absolute muscle force. Therefore, the GAIN-normalized EMG data tends to preserve the EMG differences between subjects in the way they recruit their muscles to execute various tasks, while the MVC-normalized data will tend to suppress such differences. The appropriate choice of the EMG normalization method will depend on the specific question that an experimenter is attempting to answer. PMID:21665489

  14. Muscle Performance Investigated With a Novel Smart Compression Garment Based on Pressure Sensor Force Myography and Its Validation Against EMG

    PubMed Central

    Belbasis, Aaron; Fuss, Franz Konstantin

    2018-01-01

    Muscle activity and fatigue performance parameters were obtained and compared between both a smart compression garment and the gold-standard, a surface electromyography (EMG) system during high-speed cycling in seven participants. The smart compression garment, based on force myography (FMG), comprised of integrated pressure sensors that were sandwiched between skin and garment, located on five thigh muscles. The muscle activity was assessed by means of crank cycle diagrams (polar plots) that displayed the muscle activity relative to the crank cycle. The fatigue was assessed by means of the median frequency of the power spectrum of the EMG signal; the fractal dimension (FD) of the EMG signal; and the FD of the pressure signal. The smart compression garment returned performance parameters (muscle activity and fatigue) comparable to the surface EMG. The major differences were that the EMG measured the electrical activity, whereas the pressure sensor measured the mechanical activity. As such, there was a phase shift between electrical and mechanical signals, with the electrical signals preceding the mechanical counterparts in most cases. This is specifically pronounced in high-speed cycling. The fatigue trend over the duration of the cycling exercise was clearly reflected in the fatigue parameters (FDs and median frequency) obtained from pressure and EMG signals. The fatigue parameter of the pressure signal (FD) showed a higher time dependency (R2 = 0.84) compared to the EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue as a function of time rather than on the origin of fatigue (e.g., peripheral or central fatigue). In light of the high-speed activity results, caution should be exerted when using data obtained from EMG for biomechanical models. In contrast to EMG data, activity data obtained from FMG are considered more appropriate and accurate as an input for biomechanical modeling as they truly reflect the mechanical muscle

  15. Muscle Performance Investigated With a Novel Smart Compression Garment Based on Pressure Sensor Force Myography and Its Validation Against EMG.

    PubMed

    Belbasis, Aaron; Fuss, Franz Konstantin

    2018-01-01

    Muscle activity and fatigue performance parameters were obtained and compared between both a smart compression garment and the gold-standard, a surface electromyography (EMG) system during high-speed cycling in seven participants. The smart compression garment, based on force myography (FMG), comprised of integrated pressure sensors that were sandwiched between skin and garment, located on five thigh muscles. The muscle activity was assessed by means of crank cycle diagrams (polar plots) that displayed the muscle activity relative to the crank cycle. The fatigue was assessed by means of the median frequency of the power spectrum of the EMG signal; the fractal dimension (FD) of the EMG signal; and the FD of the pressure signal. The smart compression garment returned performance parameters (muscle activity and fatigue) comparable to the surface EMG. The major differences were that the EMG measured the electrical activity, whereas the pressure sensor measured the mechanical activity. As such, there was a phase shift between electrical and mechanical signals, with the electrical signals preceding the mechanical counterparts in most cases. This is specifically pronounced in high-speed cycling. The fatigue trend over the duration of the cycling exercise was clearly reflected in the fatigue parameters (FDs and median frequency) obtained from pressure and EMG signals. The fatigue parameter of the pressure signal (FD) showed a higher time dependency ( R 2 = 0.84) compared to the EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue as a function of time rather than on the origin of fatigue (e.g., peripheral or central fatigue). In light of the high-speed activity results, caution should be exerted when using data obtained from EMG for biomechanical models. In contrast to EMG data, activity data obtained from FMG are considered more appropriate and accurate as an input for biomechanical modeling as they truly reflect the mechanical muscle

  16. EMG-based visual-haptic biofeedback: a tool to improve motor control in children with primary dystonia.

    PubMed

    Casellato, Claudia; Pedrocchi, Alessandra; Zorzi, Giovanna; Vernisse, Lea; Ferrigno, Giancarlo; Nardocci, Nardo

    2013-05-01

    New insights suggest that dystonic motor impairments could also involve a deficit of sensory processing. In this framework, biofeedback, making covert physiological processes more overt, could be useful. The present work proposes an innovative integrated setup which provides the user with an electromyogram (EMG)-based visual-haptic biofeedback during upper limb movements (spiral tracking tasks), to test if augmented sensory feedbacks can induce motor control improvement in patients with primary dystonia. The ad hoc developed real-time control algorithm synchronizes the haptic loop with the EMG reading; the brachioradialis EMG values were used to modify visual and haptic features of the interface: the higher was the EMG level, the higher was the virtual table friction and the background color proportionally moved from green to red. From recordings on dystonic and healthy subjects, statistical results showed that biofeedback has a significant impact, correlated with the local impairment, on the dystonic muscular control. These tests pointed out the effectiveness of biofeedback paradigms in gaining a better specific-muscle voluntary motor control. The flexible tool developed here shows promising prospects of clinical applications and sensorimotor rehabilitation.

  17. Low-power polling mode of the next-generation IMES2 implantable wireless EMG sensor.

    PubMed

    DeMichele, Glenn A; Hu, Zhe; Troyk, Philip R; Chen, Hongnan; Weir, Richard F ff

    2014-01-01

    The IMES1 Implantable MyoElectric Sensor device is currently in human clinical trials led by the Alfred Mann Foundation. The IMES is implanted in a residual limb and is powered wirelessly using a magnetic field. EMG signals resulting from the amputee's voluntary movement are amplified and transmitted wirelessly by the IMES to an external controller which controls movement of an external motorized prosthesis. Development of the IMES technology is on-going, producing the next-generation IMES2. Among various improvements, a new feature of the IMES2 is a low-power polling mode. In this low-power mode, the IMES2 power consumption can be dramatically reduced when the limb is inactive through the use of a polled sampling. With the onset of EMG activity, the IMES2 system can switch to the normal higher sample rate to allow the acquisition of high-fidelity EMG data for prosthesis control.

  18. Fusion of spectral models for dynamic modeling of sEMG and skeletal muscle force.

    PubMed

    Potluri, Chandrasekhar; Anugolu, Madhavi; Chiu, Steve; Urfer, Alex; Schoen, Marco P; Naidu, D Subbaram

    2012-01-01

    In this paper, we present a method of combining spectral models using a Kullback Information Criterion (KIC) data fusion algorithm. Surface Electromyographic (sEMG) signals and their corresponding skeletal muscle force signals are acquired from three sensors and pre-processed using a Half-Gaussian filter and a Chebyshev Type- II filter, respectively. Spectral models - Spectral Analysis (SPA), Empirical Transfer Function Estimate (ETFE), Spectral Analysis with Frequency Dependent Resolution (SPFRD) - are extracted from sEMG signals as input and skeletal muscle force as output signal. These signals are then employed in a System Identification (SI) routine to establish the dynamic models relating the input and output. After the individual models are extracted, the models are fused by a probability based KIC fusion algorithm. The results show that the SPFRD spectral models perform better than SPA and ETFE models in modeling the frequency content of the sEMG/skeletal muscle force data.

  19. S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation

    PubMed Central

    2014-01-01

    Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data

  20. Evaluation of higher order statistics parameters for multi channel sEMG using different force levels.

    PubMed

    Naik, Ganesh R; Kumar, Dinesh K

    2011-01-01

    The electromyograpy (EMG) signal provides information about the performance of muscles and nerves. The shape of the muscle signal and motor unit action potential (MUAP) varies due to the movement of the position of the electrode or due to changes in contraction level. This research deals with evaluating the non-Gaussianity in Surface Electromyogram signal (sEMG) using higher order statistics (HOS) parameters. To achieve this, experiments were conducted for four different finger and wrist actions at different levels of Maximum Voluntary Contractions (MVCs). Our experimental analysis shows that at constant force and for non-fatiguing contractions, probability density functions (PDF) of sEMG signals were non-Gaussian. For lesser MVCs (below 30% of MVC) PDF measures tends to be Gaussian process. The above measures were verified by computing the Kurtosis values for different MVCs.

  1. Activity of masticatory muscles in subjects with different orofacial pain conditions.

    PubMed

    Bodéré, Céline; Téa, Say Hack; Giroux-Metges, Marie Agnes; Woda, Alain

    2005-07-01

    The existence of a pathophysiological link between tonic muscle activity and chronic muscle pain is still being debated. The purpose of this retrospective, controlled study was to evaluate the electromyographic (EMG) activity of masticatory muscles in subjects with different orofacial pain conditions. The temporal and masseter EMG activity at rest and the masseteric reflex were recorded in two groups of patients with either myofascial pain (n=33) or neuropathic pain (n=20), one group of non-pain patients with disc derangement disorders (n=27) and one control group of healthy, asymptomatic subjects (n=32). The EMG activities of both muscles at rest were significantly higher in the pain patient groups compared to the asymptomatic control group. There was no significant difference between the disc derangement disorder group and the control group. The masseteric reflex amplitude was reduced in all patient groups when compared with the control group. In pain patient groups, the increased EMG activity at rest and the reduction of the masseteric reflex amplitude were equally distributed in the pain and non-pain sides. In addition, subjects presenting with bilateral pain showed higher EMG activity at rest than those with unilateral pain. These results suggested that the modulation of muscle activity was not the direct consequence of a peripheral nociceptive mechanism and seemed to indicate that a central mechanism was at work. The contrast between the increased EMG activity at rest and the reduction of the masseteric reflex amplitude may reflect modulations of motoneurones that differed in tonic versus phasic conditions in chronic pain patients.

  2. Startling sweet temptations: hedonic chocolate deprivation modulates experience, eating behavior, and eyeblink startle.

    PubMed

    Blechert, Jens; Naumann, Eva; Schmitz, Julian; Herbert, Beate M; Tuschen-Caffier, Brunna

    2014-01-01

    Many individuals restrict their food intake to prevent weight gain. This restriction has both homeostatic and hedonic effects but their relative contribution is currently unclear. To isolate hedonic effects of food restriction, we exposed regular chocolate eaters to one week of chocolate deprivation but otherwise regular eating. Before and after this hedonic deprivation, participants viewed images of chocolate and images of high-calorie but non-chocolate containing foods, while experiential, behavioral and eyeblink startle responses were measured. Compared to satiety, hedonic deprivation triggered increased chocolate wanting, liking, and chocolate consumption but also feelings of frustration and startle potentiation during the intertrial intervals. Deprivation was further characterized by startle inhibition during both chocolate and food images relative to the intertrial intervals. Individuals who responded with frustration to the manipulation and those who scored high on a questionnaire of impulsivity showed more relative startle inhibition. The results reveal the profound effects of hedonic deprivation on experiential, behavioral and attentional/appetitive response systems and underscore the role of individual differences and state variables for startle modulation. Implications for dieting research and practice as well as for eating and weight disorders are discussed.

  3. Startling Sweet Temptations: Hedonic Chocolate Deprivation Modulates Experience, Eating Behavior, and Eyeblink Startle

    PubMed Central

    Blechert, Jens; Naumann, Eva; Schmitz, Julian; Herbert, Beate M.; Tuschen-Caffier, Brunna

    2014-01-01

    Many individuals restrict their food intake to prevent weight gain. This restriction has both homeostatic and hedonic effects but their relative contribution is currently unclear. To isolate hedonic effects of food restriction, we exposed regular chocolate eaters to one week of chocolate deprivation but otherwise regular eating. Before and after this hedonic deprivation, participants viewed images of chocolate and images of high-calorie but non-chocolate containing foods, while experiential, behavioral and eyeblink startle responses were measured. Compared to satiety, hedonic deprivation triggered increased chocolate wanting, liking, and chocolate consumption but also feelings of frustration and startle potentiation during the intertrial intervals. Deprivation was further characterized by startle inhibition during both chocolate and food images relative to the intertrial intervals. Individuals who responded with frustration to the manipulation and those who scored high on a questionnaire of impulsivity showed more relative startle inhibition. The results reveal the profound effects of hedonic deprivation on experiential, behavioral and attentional/appetitive response systems and underscore the role of individual differences and state variables for startle modulation. Implications for dieting research and practice as well as for eating and weight disorders are discussed. PMID:24416437

  4. Real-time estimation of FES-induced joint torque with evoked EMG : Application to spinal cord injured patients.

    PubMed

    Li, Zhan; Guiraud, David; Andreu, David; Benoussaad, Mourad; Fattal, Charles; Hayashibe, Mitsuhiro

    2016-06-22

    Functional electrical stimulation (FES) is a neuroprosthetic technique for restoring lost motor function of spinal cord injured (SCI) patients and motor-impaired subjects by delivering short electrical pulses to their paralyzed muscles or motor nerves. FES induces action potentials respectively on muscles or nerves so that muscle activity can be characterized by the synchronous recruitment of motor units with its compound electromyography (EMG) signal is called M-wave. The recorded evoked EMG (eEMG) can be employed to predict the resultant joint torque, and modeling of FES-induced joint torque based on eEMG is an essential step to provide necessary prediction of the expected muscle response before achieving accurate joint torque control by FES. Previous works on FES-induced torque tracking issues were mainly based on offline analysis. However, toward personalized clinical rehabilitation applications, real-time FES systems are essentially required considering the subject-specific muscle responses against electrical stimulation. This paper proposes a wireless portable stimulator used for estimating/predicting joint torque based on real time processing of eEMG. Kalman filter and recurrent neural network (RNN) are embedded into the real-time FES system for identification and estimation. Prediction results on 3 able-bodied subjects and 3 SCI patients demonstrate promising performances. As estimators, both Kalman filter and RNN approaches show clinically feasible results on estimation/prediction of joint torque with eEMG signals only, moreover RNN requires less computational requirement. The proposed real-time FES system establishes a platform for estimating and assessing the mechanical output, the electromyographic recordings and associated models. It will contribute to open a new modality for personalized portable neuroprosthetic control toward consolidated personal healthcare for motor-impaired patients.

  5. Model for nerve visualization in preoperative image data based on intraoperatively gained EMG signals.

    PubMed

    Strauss, Mario; Lueders, Christian; Strauss, Gero; Stopp, Sebastian; Shi, Jiaxi; Lueth, Tim C

    2008-01-01

    While removing bone tissue of the mastoid, the facial nerve is at risk of being injured. In this contribution a model for nerve visualization in preoperative image data based on intraoperatively gained EMG signals is proposed. A neuro monitor can assist the surgeon locating and preserving the nerve. With the proposed model gained EMG signals can be spatially related to the patient resp. the image data. During navigation the detected nerve course will be visualized and hence permanently available for assessing the situs.

  6. EMG changes in thigh and calf muscles in fin swimming exercise.

    PubMed

    Jammes, Y; Delliaux, S; Coulange, M; Jammes, C; Kipson, N; Brerro-Saby, C; Bregeon, F

    2010-08-01

    Because previous researchers have reported a reduced lactic acid production that accompanies a delayed or an absent ventilatory threshold (VTh) in water-based exercise, we hypothesized that the metaboreflex, activated by muscle acidosis, might be absent in fin swimming. This motor response, delaying the occurrence of fatigue, is characterized by a decreased median frequency (MF) of electromyographic (EMG) power spectrum. Seven healthy subjects performed a maximal fin swimming exercise protocol with simultaneous recordings of surface EMGs in VASTUS MEDIALIS (VM), TIBIALIS ANTERIOR (TA) and GASTROCNEMIUS MEDIALIS (GM). We computed the root mean square (RMS) and MF and recorded the compound evoked muscle potential (M-wave) in VM. We also measured the propulsive force and oxygen uptake (VO (2)), and determined VTh. VTh was absent in 4/7 subjects and measured at 70-90% of VO (2max) in the other three. In the three studied muscles, the global EMG activity (RMS) increased while the MF decreased in proportion of VO (2), the MF changes being significantly higher in VM (-29%) and GM (-39%) than in TA (-19%). Because no M-wave changes were noted, the MF decline was attributed to the recruitment of low-frequency, fatigue-resistant motor units. Our most important finding is the persistence of the metaboreflex even in a situation of reduced muscle acidosis. (c) Georg Thieme Verlag KG Stuttgart . New York.

  7. Low-Power Polling Mode of the Next-Generation IMES2 Implantable Wireless EMG Sensor

    PubMed Central

    DeMichele, Glenn A.; Hu, Zhe; Troyk, Philip R.; Chen, Hongnan; Weir, Richard F. ff.

    2015-01-01

    The IMES1 Implantable MyoElectric Sensor device is currently in human clinical trials led by the Alfred Mann Foundation. The IMES is implanted in a residual limb and is powered wirelessly using a magnetic field. EMG signals resulting from the amputee’s voluntary movement are amplified and transmitted wirelessly by the IMES to an external controller which controls movement of an external motorized prosthesis. Development of the IMES technology is on-going, producing the next-generation IMES2. Among various improvements, a new feature of the IMES2 is a lowpower polling mode. In this low-power mode, the IMES2 power consumption can be dramatically reduced when the limb is inactive through the use of a polled sampling. With the onset of EMG activity, the IMES2 system can switch to the normal higher sample rate to allow the acquisition of high-fidelity EMG data for prosthesis control. PMID:25570642

  8. Pinch-force-magnification mechanism of low degree of freedom EMG prosthetic hand for children.

    PubMed

    Ye, Hesong; Sakoda, Shintaro; Jiang, Yinlai; Morishita, Soichiro; Yokoi, Hiroshi

    2015-01-01

    EMG prosthetic hands are being extensively studied for the disabled who need them not only for cosmesis but also for the functions to help them with basic daily activities. However, most EMG prosthetic hands are developed for adults. Since the early use of prosthetic hands is important for the children to accept and adapt to them, we are developing low degrees of freedom (DoF) prosthetic hand that is suitable for children. Due to the limited size of a child's hand, the servo motor which drives the MP joint are small-sized and low-power. Hence, a pinch-force-magnification mechanism is required to improve the pinch force of the EMG prosthetic hand. In this paper we designed a wire-driven mechanism which can magnify pinch force by increasing the length of the MP joint's moment arm. Pinch force measurement experiment validated that the pinch force of the prosthetic hand with the mechanism is more than twice of that of the hand with direct drive.

  9. Towards the control of individual fingers of a prosthetic hand using surface EMG signals.

    PubMed

    Tenore, Francesco; Ramos, Ander; Fahmy, Amir; Acharya, Soumyadipta; Etienne-Cummings, Ralph; Thakor, Nitish V

    2007-01-01

    The fast pace of development of upper-limb prostheses requires a paradigm shift in EMG-based controls. Traditional control schemes are only capable of providing 2 degrees of freedom, which is insufficient for dexterous control of individual fingers. We present a framework where myoelectric signals from natural hand and finger movements can be decoded with a high accuracy. 32 surface-EMG electrodes were placed on the forearm of an able-bodied subject while performing individual finger movements. Using time-domain feature extraction methods as inputs to a neural network classifier, we show that 12 individuated flexion and extension movements of the fingers can be decoded with an accuracy higher than 98%. To our knowledge, this is the first instance in which such movements have been successfully decoded using surface-EMG. These preliminary findings provide a framework that will allow the results to be extended to non-invasive control of the next generation of upper-limb prostheses for amputees.

  10. The linear synchronization measures of uterine EMG signals: Evidence of synchronized action potentials during propagation.

    PubMed

    Domino, Malgorzata; Pawlinski, Bartosz; Gajewski, Zdzislaw

    2016-11-01

    Evaluation of synchronization between myoelectric signals can give new insights into the functioning of the complex system of porcine myometrium. We propose a model of uterine contractions according to the hypothesis of action potentials similarity which is possible to detect during propagation in the uterine wall. We introduce similarity measures based on the concept of synchronization as used in matching linear signals such as electromyographic (EMG) time series data. The aim was to present linear measures to assess synchronization between contractions in different topographic regions of the uterus. We use the cross-correlation function (ƒx,y[l], ƒy,z[l]) and the cross-coherence function (Cxy[ƒ], Cyz[ƒ]) to assess synchronization between three data series of a diestral uterine EMG bundles in porcine reproductive tract. Spontaneous uterine activity was recorded using telemetry method directly by three-channel transmitter and three silver bipolar needle electrodes sutured on different topographic regions of the reproductive tract in the sow. The results show the usefulness of the cross-coherence function in that synchronization between uterine horn and corpus uteri for multiple action potentials (bundles) could be observed. The EMG bundles synchronization may be used to investigate the direction and velocity of EMG signals propagation in porcine reproductive tract. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Augmented effects of EMG biofeedback interfaced with virtual reality on neuromuscular control and movement coordination during reaching in children with cerebral palsy.

    PubMed

    Yoo, Ji Won; Lee, Dong Ryul; Cha, Young Joo; You, Sung Hyun

    2017-01-01

    The purpose of the present study was to compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps (T:B) muscle activity imbalance and elbow joint movement coordination during a reaching motor taskOBJECTIVE: To compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps muscle activity imbalance and elbow joint movement coordination during a reaching motor task in normal children and children with spastic cerebral palsy (CP). 18 children with spastic CP (2 females; mean±standard deviation = 9.5 ± 1.96 years) and 8 normal children (3 females; mean ± standard deviation = 9.75 ± 2.55 years) were recruited from a local community center. All children with CP first underwent one intensive session of EMG feedback (30 minutes), followed by one session of the EMG-VR feedback (30 minutes) after a 1-week washout period. Clinical tests included elbow extension range of motion (ROM), biceps muscle strength, and box and block test. EMG triceps and biceps (T:B) muscle activity imbalance and reaching movement acceleration coordination were concurrently determined by EMG and 3-axis accelerometer measurements respectively. Independent t-test and one-way repeated analysis of variance (ANOVA) were performed at p < 0.05. The one-way repeated ANOVA was revealed to be significantly effective in elbow extension ROM (p = 0.01), biceps muscle strength (p = 0.01), and box and block test (p = 0.03). The one-way repeated ANOVA also revealed to be significantly effective in the peak triceps muscle activity (p = 0.01). However, one-way repeated ANOVA produced no statistical significance in the composite 3-dimensional movement acceleration coordination data (p = 0.12). The present study is a first clinical trial that demonstrated the superior benefits of the EMG biofeedback

  12. Effect of whole-body vibration on lower-limb EMG activity in subjects with and without spinal cord injury

    PubMed Central

    Alizadeh-Meghrazi, Milad; Masani, Kei; Zariffa, José; Sayenko, Dimitry G.; Popovic, Milos R.; Craven, B. Catharine

    2014-01-01

    Objective Traumatic spinal cord injury (SCI) results in substantial reductions in lower extremity muscle mass and bone mineral density below the level of the lesion. Whole-body vibration (WBV) has been proposed as a means of counteracting or treating musculoskeletal degradation after chronic motor complete SCI. To ascertain how WBV might be used to augment muscle and bone mass, we investigated whether WBV could evoke lower extremity electromyography (EMG) activity in able-bodied individuals and individuals with SCI, and which vibration parameters produced the largest magnitude of effect. Methods Ten male subjects participated in the study, six able-bodied and four with chronic SCI. Two different manufacturers' vibration platforms (WAVE® and Juvent™) were evaluated. The effects of vibration amplitude (0.2, 0.6 or 1.2 mm), vibration frequency (25, 35, or 45 Hz), and subject posture (knee angle of 140°, 160°, or 180°) on lower extremity EMG activation were determined (not all combinations of parameters were possible on both platforms). A novel signal processing technique was proposed to estimate the power of the EMG waveform while minimizing interference and artifacts from the plate vibration. Results WBV can elicit EMG activity among subjects with chronic SCI, if appropriate vibration parameters are employed. The amplitude of vibration had the greatest influence on EMG activation, while the frequency of vibration had lesser but statistically significant impact on the measured lower extremity EMG activity. Conclusion These findings suggest that WBV with appropriate parameters may constitute a promising intervention to treat musculoskeletal degradation after chronic SCI. PMID:24986541

  13. The impact of shoulder abduction loading on EMG-based intention detection of hand opening and closing after stroke.

    PubMed

    Lan, Yiyun; Yao, Jun; Dewald, Julius P A

    2011-01-01

    Many stroke patients are subject to limited hand functions in the paretic arm due to a significant loss of Corticospinal Tract (CST) fibers. A possible solution for this problem is to classify surface Electromyography (EMG) signals generated by hand movements and uses that to implement Functional Electrical Stimulation (FES). However, EMG usually presents an abnormal muscle coactivation pattern shown as increased coupling between muscles within and/or across joints after stroke. The resulting Abnormal Muscle Synergies (AMS) could make the classification more difficult in individuals with stroke, especially when attempting to use the hand together with other joints in the paretic arm. Therefore, this study is aimed at identifying the impact of AMS following stroke on EMG pattern recognition between two hand movements. In an effort to achieve this goal, 7 chronic hemiparetic chronic stroke subjects were recruited and asked to perform hand opening and closing movements at their paretic arm while being either fully supported by a virtual table or loaded with 25% of subject's maximum shoulder abduction force. During the execution of motor tasks EMG signals from the wrist flexors and extensors were simultaneously acquired. Our results showed that increased synergy-induced activity at elbow flexors, induced by increasing shoulder abduction loading, deteriorated the performance of EMG pattern recognition for hand opening for those with a weak grasp strength and EMG activity. However, no such impact on hand closing has yet been observed possibly because finger/wrist flexion is facilitated by the shoulder abduction-induced flexion synergy.

  14. Preliminary Study on Continuous Recognition of Elbow Flexion/Extension Using sEMG Signals for Bilateral Rehabilitation

    PubMed Central

    Song, Zhibin; Zhang, Songyuan

    2016-01-01

    Surface electromyography (sEMG) signals are closely related to the activation of human muscles and the motion of the human body, which can be used to estimate the dynamics of human limbs in the rehabilitation field. They also have the potential to be used in the application of bilateral rehabilitation, where hemiplegic patients can train their affected limbs following the motion of unaffected limbs via some rehabilitation devices. Traditional methods to process the sEMG focused on motion pattern recognition, namely, discrete patterns, which are not satisfactory for use in bilateral rehabilitation. In order to overcome this problem, in this paper, we built a relationship between sEMG signals and human motion in elbow flexion and extension on the sagittal plane. During the conducted experiments, four participants were required to perform elbow flexion and extension on the sagittal plane smoothly with only an inertia sensor in their hands, where forearm dynamics were not considered. In these circumstances, sEMG signals were weak compared to those with heavy loads or high acceleration. The contrastive experimental results show that continuous motion can also be obtained within an acceptable precision range. PMID:27775573

  15. Preliminary Study on Continuous Recognition of Elbow Flexion/Extension Using sEMG Signals for Bilateral Rehabilitation.

    PubMed

    Song, Zhibin; Zhang, Songyuan

    2016-10-19

    Surface electromyography (sEMG) signals are closely related to the activation of human muscles and the motion of the human body, which can be used to estimate the dynamics of human limbs in the rehabilitation field. They also have the potential to be used in the application of bilateral rehabilitation, where hemiplegic patients can train their affected limbs following the motion of unaffected limbs via some rehabilitation devices. Traditional methods to process the sEMG focused on motion pattern recognition, namely, discrete patterns, which are not satisfactory for use in bilateral rehabilitation. In order to overcome this problem, in this paper, we built a relationship between sEMG signals and human motion in elbow flexion and extension on the sagittal plane. During the conducted experiments, four participants were required to perform elbow flexion and extension on the sagittal plane smoothly with only an inertia sensor in their hands, where forearm dynamics were not considered. In these circumstances, sEMG signals were weak compared to those with heavy loads or high acceleration. The contrastive experimental results show that continuous motion can also be obtained within an acceptable precision range.

  16. Spontaneous Eye-Blink Rate as an Index of Reward Responsivity: Validation and Links to Bipolar Disorder

    PubMed Central

    Peckham, Andrew D.; Johnson, Sheri L.

    2015-01-01

    Extensive research supports the role of striatal dopamine in pursuing and responding to reward, and that eye-blink rate is a valid indicator of striatal dopamine. This study tested whether phasic changes in blink rate could provide an index of reward pursuit. This hypothesis was tested in people with bipolar I disorder (BD; a population with aberrations in reward responsivity), and in those without BD. Thirty-one adults with BD and 28 control participants completed a laboratory task involving effort towards monetary reward. Blink rate was recorded using eye-tracking at baseline, reward anticipation, and post-reward. Those in the BD group completed self-report measures relating to reward and ambition. Results showed that across all participants, blink rates increased from reward anticipation to post-reward. In the BD group, reward-relevant measures were strongly correlated with variation in blink rate. These findings provide validation for phasic changes in blink rate as an index of reward response. PMID:27274949

  17. Quantitative analysis of four EMG amplifiers.

    PubMed

    Perreault, E J; Hunter, I W; Kearney, R E

    1993-09-01

    Four typical EMG amplifiers were tested quantitatively to observe the diversity and specificity of available equipment. Gain, phase, common mode rejection ratio (CMRR) and noise characteristics were measured for each device. Various gain and phase responses were observed, each best suited to specific application areas. For all amplifiers, the CMRR was shown to decrease dramatically in the presence of input impedance mismatches of more than 10 k omega between the two electrodes. Because such impedance mismatches are common on the skin surface, these results indicate that proper skin preparation is required to maximize the noise rejection capabilities of the tested amplifiers.

  18. EMG Biofeedback Training Versus Systematic Desensitization for Test Anxiety Reduction

    ERIC Educational Resources Information Center

    Romano, John L.; Cabianca, William A.

    1978-01-01

    Biofeedback training to reduce test anxiety among university students was investigated. Biofeedback training with systematic desensitization was compared to an automated systematic desensitization program not using EMG feedback. Biofeedback training is a useful technique for reducing test anxiety, but not necessarily more effective than systematic…

  19. Effect of hypnosis on masseter EMG recorded during the 'resting' and a slightly open jaw posture.

    PubMed

    Al-Enaizan, N; Davey, K J; Lyons, M F; Cadden, S W

    2015-11-01

    The aim of this experimental study was to determine whether minimal levels of electromyographic activity in the masseter muscle are altered when individuals are in a verified hypnotic state. Experiments were performed on 17 volunteer subjects (8 male, 9 female) all of whom gave informed consent. The subjects were dentate and had no symptoms of pain or masticatory dysfunction. Surface electromyograms (EMGs) were made from the masseter muscles and quantified by integration following full-wave rectification and averaging. The EMGs were obtained (i) with the mandible in 'resting' posture; (ii) with the mandible voluntarily lowered (but with the lips closed); (iii) during maximum voluntary clenching (MVC). The first two recordings were made before, during and after the subjects were in a hypnotic state. Susceptibility to hypnosis was assessed with Spiegel's eye-roll test, and the existence of the hypnotic state was verified by changes in ventilatory pattern. On average, EMG levels expressed as percentages of MVC were less: (i) when the jaw was deliberately lowered as opposed to being in the postural position: (ii) during hypnosis compared with during the pre- and post-hypnotic periods. However, analysis of variance followed by post hoc tests with multiple comparison corrections (Bonferroni) revealed that only the differences between the level during hypnosis and those before and after hypnosis were statistically significant (P < 0·05). As the level of masseter EMG when the mandible was in 'resting' posture was reduced by hypnosis, it appears that part of that EMG is of biological origin. © 2015 John Wiley & Sons Ltd.

  20. Neuromuscular interfacing: establishing an EMG-driven model for the human elbow joint.

    PubMed

    Pau, James W L; Xie, Shane S Q; Pullan, Andrew J

    2012-09-01

    Assistive devices aim to mitigate the effects of physical disability by aiding users to move their limbs or by rehabilitating through therapy. These devices are commonly embodied by robotic or exoskeletal systems that are still in development and use the electromyographic (EMG) signal to determine user intent. Not much focus has been placed on developing a neuromuscular interface (NI) that solely relies on the EMG signal, and does not require modifications to the end user's state to enhance the signal (such as adding weights). This paper presents the development of a flexible, physiological model for the elbow joint that is leading toward the implementation of an NI, which predicts joint motion from EMG signals for both able-bodied and less-abled users. The approach uses musculotendon models to determine muscle contraction forces, a proposed musculoskeletal model to determine total joint torque, and a kinematic model to determine joint rotational kinematics. After a sensitivity analysis and tuning using genetic algorithms, subject trials yielded an average root-mean-square error of 6.53° and 22.4° for a single cycle and random cycles of movement of the elbow joint, respectively. This helps us to validate the elbow model and paves the way toward the development of an NI.

  1. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    PubMed Central

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H.; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M.

    2014-01-01

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population. PMID:25025551

  2. Motor unit recruitment and EMG power spectra during ramp contractions of a bifunctional muscle.

    PubMed

    Dupont, L; Gamet, D; Pérot, C

    2000-08-01

    Surface electromyograms (EMGs) were analysed on the short and long head of the biceps brachii (BBSH and BBLH) during single (F and S) or dual (F+S) flexion and supination tasks. It was confirmed, by the analysis of EMG root-mean-square (RMS) values, that the highest activations of BBSH and BBLH were obtained during a maximal dual task. This study was essentially concerned with the analysis of power spectra data obtained during progressive or ramp contractions (RCs). The shape of the power spectra established during the first second of the RCs differs between F, S and F+S tasks. Differences in mean power frequency (MPF) calculated during RCs would be representative of a recruitment of motor units (MUs) that is, at least partly, task-dependent. In order to compare MPF values calculated from RCs performed under different mechanical conditions (F, S and F+S), MPF-RMS(PSD) relationships have been established (RMS(PSD) being defined as the power spectrum density RMS). Both BBSH and BBLH exhibited initial MPF values higher in supination RC than in flexion RC. Because of plateau values reached at the same level of muscle activation whatever the task performed, the slope of the MPF-RMS(PSD) relationship was lower in S than in F. These results are in favour of MU recruitment that is, at least partly, different in F and in S conditions. Dual submaximal tasks seem to mix the activation of the F and S subpopulations of MUs as revealed by the spectral parameters obtained during F+S ramp contractions. This study could find some implication in the field of muscle rehabilitation or reinforcement.

  3. Additive Effects of Threat-of-Shock and Picture Valence on Startle Reflex Modulation

    PubMed Central

    Bublatzky, Florian; Guerra, Pedro M.; Pastor, M. Carmen; Schupp, Harald T.; Vila, Jaime

    2013-01-01

    The present study examined the effects of sustained anticipatory anxiety on the affective modulation of the eyeblink startle reflex. Towards this end, pleasant, neutral and unpleasant pictures were presented as a continuous stream during alternating threat-of-shock and safety periods, which were cued by colored picture frames. Orbicularis-EMG to auditory startle probes and electrodermal activity were recorded. Previous findings regarding affective picture valence and threat-of-shock modulation were replicated. Of main interest, anticipating aversive events and viewing affective pictures additively modulated defensive activation. Specifically, despite overall potentiated startle blink magnitude in threat-of-shock conditions, the startle reflex remained sensitive to hedonic picture valence. Finally, skin conductance level revealed sustained sympathetic activation throughout the entire experiment during threat- compared to safety-periods. Overall, defensive activation by physical threat appears to operate independently from reflex modulation by picture media. The present data confirms the importance of simultaneously manipulating phasic-fear and sustained-anxiety in studying both normal and abnormal anxiety. PMID:23342060

  4. Effects of self-hypnosis training and EMG biofeedback relaxation training on chronic pain in persons with spinal-cord injury.

    PubMed

    Jensen, Mark P; Barber, Joseph; Romano, Joan M; Hanley, Marisol A; Raichle, Katherine A; Molton, Ivan R; Engel, Joyce M; Osborne, Travis L; Stoelb, Brenda L; Cardenas, Diana D; Patterson, David R

    2009-07-01

    Thirty-seven adults with spinal-cord injury and chronic pain were randomly assigned to receive 10 sessions of self-hypnosis (HYP) or EMG biofeedback relaxation (BIO) training for pain management. Participants in both treatment conditions reported substantial, but similar, decreases in pain intensity from before to after the treatment sessions. However, participants in the HYP condition, but not the BIO condition, reported statistically significant decreases in daily average pain pre- to posttreatment. These pre- to posttreatment decreases in pain reported by the HYP participants were maintained at 3-month follow-up. Participants in the HYP condition, but not the BIO condition, also reported significant pre- to posttreatment increases in perceived control over pain, but this change was not maintained at the 3-month follow-up.

  5. Changes in force, surface and motor unit EMG during post-exercise development of low frequency fatigue in vastus lateralis muscle.

    PubMed

    de Ruiter, C J; Elzinga, M J H; Verdijk, P W L; van Mechelen, W; de Haan, A

    2005-08-01

    We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n = 9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50% maximal force capacity (MFC). On the first day post-exercise (15 s, 3, 9, 15, 21 and 27 min) rsEMG and electrically-induced (surface stimulation) forces were investigated. SmuEMG was obtained on day two. During short ramp and hold (5 s) contractions at 50% MFC, motor unit discharges of the same units were followed over time. Post-exercise MFC and tetanic force (100 Hz stimulation) recovered to about 90% of the pre-exercise values, but recovery with 20 Hz stimulation was less complete: the 20-100 Hz force ratio (mean +/- SD) decreased from 0.65+/-0.06 (pre-exercise) to 0.56+/-0.04 at 27 min post-exercise (P<0.05), indicative of LFF. At 50% MFC, pre-exercise rsEMG (% pre-exercise maximum) and motor unit discharge rate were 51.1 +/- 12.7% and 14.1 +/- 3.7 (pulses per second; pps) respectively, 15 s post-exercise the respective values were 61.4 +/- 15.4% (P<0.05) and 13.2 +/- 5.6 pps (P>0.05). Thereafter, rsEMG (at 50% MFC) remained stable but motor unit discharge rate significantly increased to 17.7 +/- 3.9 pps 27 min post-exercise. The recruitment threshold decreased (P<0.05) from 27.7 +/- 6.6% MFC before exercise to 25.2 +/- 6.7% 27 min post-exercise. The increase in discharge rate was significantly greater than could be expected from the decrease in recruitment threshold. Thus, post-exercise LFF was compensated by increased motor unit discharge rates which could only partly be accounted for by the small decrease in motor unit recruitment threshold.

  6. Comparison of conventional filtering and independent component analysis for artifact reduction in simultaneous gastric EMG and magnetogastrography from porcines.

    PubMed

    Irimia, Andrei; Richards, William O; Bradshaw, L Alan

    2009-11-01

    In this study, we perform a comparative study of independent component analysis (ICA) and conventional filtering (CF) for the purpose of artifact reduction from simultaneous gastric EMG and magnetogastrography (MGG). EMG/MGG data were acquired from ten anesthetized pigs by obtaining simultaneous recordings using serosal electrodes (EMG) as well as with a superconducting quantum interference device biomagnetometer (MGG). The analysis of MGG waveforms using ICA and CF indicates that ICA is superior to the CF method in its ability to extract respiration and cardiac artifacts from MGG recordings. A signal frequency analysis of ICA- and CF-processed data was also undertaken using waterfall plots, and it was determined that the two methods produce qualitatively comparable results. Through the use of simultaneous EMG/MGG, we were able to demonstrate the accuracy and trustworthiness of our results by comparison and cross-validation within the framework of a porcine model.

  7. A train of electrical pulses applied to the primary auditory cortex evokes a conditioned response in guinea pigs.

    PubMed

    Okuda, Yuji; Shikata, Hiroshi; Song, Wen-Jie

    2011-09-01

    As a step to develop auditory prosthesis by cortical stimulation, we tested whether a single train of pulses applied to the primary auditory cortex could elicit classically conditioned behavior in guinea pigs. Animals were trained using a tone as the conditioned stimulus and an electrical shock to the right eyelid as the unconditioned stimulus. After conditioning, a train of 11 pulses applied to the left AI induced the conditioned eye-blink response. Cortical stimulation induced no response after extinction. Our results support the feasibility of auditory prosthesis by electrical stimulation of the cortex. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  8. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model.

    PubMed

    Menegaldo, Luciano Luporini; de Oliveira, Liliam Fernandes; Minato, Kin K

    2014-04-04

    This paper describes the "EMG Driven Force Estimator (EMGD-FE)", a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. An example of the application's functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues.

  9. Multichannel noninvasive human-machine interface via stretchable µm thick sEMG patches for robot manipulation

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wang, Youhua; Liu, Runfeng; Xiao, Lin; Zhang, Qin; Huang, YongAn

    2018-01-01

    Epidermal electronics (e-skin) emerging in recent years offer the opportunity to noninvasively and wearably extract biosignals from human bodies. The conventional processes of e-skin based on standard microelectronic fabrication processes and a variety of transfer printing methods, nevertheless, unquestionably constrains the size of the devices, posing a serious challenge to collecting signals via skin, the largest organ in the human body. Herein we propose a multichannel noninvasive human-machine interface (HMI) using stretchable surface electromyography (sEMG) patches to realize a robot hand mimicking human gestures. Time-efficient processes are first developed to manufacture µm thick large-scale stretchable devices. With micron thickness, the stretchable µm thick sEMG patches show excellent conformability with human skin and consequently comparable electrical performance with conventional gel electrodes. Combined with the large-scale size, the multichannel noninvasive HMI via stretchable µm thick sEMG patches successfully manipulates the robot hand with eight different gestures, whose precision is as high as conventional gel electrodes array.

  10. Characterizing muscular activities using non-negative matrix factorization from EMG channels for driver swings in golf.

    PubMed

    Ozaki, Yasunori; Aoki, Ryosuke; Kimura, Toshitaka; Takashima, Youichi; Yamada, Tomohiro

    2016-08-01

    The goal of this study is to propose a data driven approach method to characterize muscular activities of complex actions in sports such as golf from a lot of EMG channels. Two problems occur in a many channel measurement. The first problem is that it takes a lot of time to check the many channel data because of combinatorial explosion. The second problem is that it is difficult to understand muscle activities related with complex actions. To solve these problems, we propose an analysis method of multi EMG channels using Non-negative Matrix Factorization and adopt the method to driver swings in golf. We measured 26 EMG channels about 4 professional coaches of golf. The results show that the proposed method detected 9 muscle synergies and the activation of each synergy were mostly fitted by sigmoid curve (R2=0.85).

  11. Walking with a four wheeled walker (rollator) significantly reduces EMG lower-limb muscle activity in healthy subjects.

    PubMed

    Suica, Zorica; Romkes, Jacqueline; Tal, Amir; Maguire, Clare

    2016-01-01

    To investigate the immediate effect of four-wheeled- walker(rollator)walking on lower-limb muscle activity and trunk-sway in healthy subjects. In this cross-sectional design electromyographic (EMG) data was collected in six lower-limb muscle groups and trunk-sway was measured as peak-to-peak angular displacement of the centre-of-mass (level L2/3) in the sagittal and frontal-planes using the SwayStar balance system. 19 subjects walked at self-selected speed firstly without a rollator then in randomised order 1. with rollator 2. with rollator with increased weight-bearing. Rollator-walking caused statistically significant reductions in EMG activity in lower-limb muscle groups and effect-sizes were medium to large. Increased weight-bearing increased the effect. Trunk-sway in the sagittal and frontal-planes showed no statistically significant difference between conditions. Rollator-walking reduces lower-limb muscle activity but trunk-sway remains unchanged as stability is likely gained through forces generated by the upper-limbs. Short-term stability is gained but the long-term effect is unclear and requires investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong

    2016-02-01

    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle

  13. A two-dimensional matrix image based feature extraction method for classification of sEMG: A comparative analysis based on SVM, KNN and RBF-NN.

    PubMed

    Wen, Tingxi; Zhang, Zhongnan; Qiu, Ming; Zeng, Ming; Luo, Weizhen

    2017-01-01

    The computer mouse is an important human-computer interaction device. But patients with physical finger disability are unable to operate this device. Surface EMG (sEMG) can be monitored by electrodes on the skin surface and is a reflection of the neuromuscular activities. Therefore, we can control limbs auxiliary equipment by utilizing sEMG classification in order to help the physically disabled patients to operate the mouse. To develop a new a method to extract sEMG generated by finger motion and apply novel features to classify sEMG. A window-based data acquisition method was presented to extract signal samples from sEMG electordes. Afterwards, a two-dimensional matrix image based feature extraction method, which differs from the classical methods based on time domain or frequency domain, was employed to transform signal samples to feature maps used for classification. In the experiments, sEMG data samples produced by the index and middle fingers at the click of a mouse button were separately acquired. Then, characteristics of the samples were analyzed to generate a feature map for each sample. Finally, the machine learning classification algorithms (SVM, KNN, RBF-NN) were employed to classify these feature maps on a GPU. The study demonstrated that all classifiers can identify and classify sEMG samples effectively. In particular, the accuracy of the SVM classifier reached up to 100%. The signal separation method is a convenient, efficient and quick method, which can effectively extract the sEMG samples produced by fingers. In addition, unlike the classical methods, the new method enables to extract features by enlarging sample signals' energy appropriately. The classical machine learning classifiers all performed well by using these features.

  14. sEMG Sensor Using Polypyrrole-Coated Nonwoven Fabric Sheet for Practical Control of Prosthetic Hand

    PubMed Central

    Jiang, Yinlai; Togane, Masami; Lu, Baoliang; Yokoi, Hiroshi

    2017-01-01

    One of the greatest challenges of using a myoelectric prosthetic hand in daily life is to conveniently measure stable myoelectric signals. This study proposes a novel surface electromyography (sEMG) sensor using polypyrrole-coated nonwoven fabric sheet as electrodes (PPy electrodes) to allow people with disabilities to control prosthetic limbs. The PPy electrodes are sewn on an elastic band to guarantee close contact with the skin and thus reduce the contact electrical impedance between the electrodes and the skin. The sensor is highly customizable to fit the size and the shape of the stump so that people with disabilities can attach the sensor by themselves. The performance of the proposed sensor was investigated experimentally by comparing measurements of Ag/AgCl electrodes with electrolytic gel and the sEMG from the same muscle fibers. The high correlation coefficient (0.87) between the two types of sensors suggests the effectiveness of the proposed sensor. Another experiment of sEMG pattern recognition to control myoelectric prosthetic hands showed that the PPy electrodes are as effective as Ag/AgCl electrodes for measuring sEMG signals for practical myoelectric control. We also investigated the relation between the myoelectric signals' signal-to-noise ratio and the source impedances by simultaneously measuring the source impedances and the myoelectric signals with a switching circuit. The results showed that differences in both the norm and the phase of the source impedance greatly affect the common mode noise in the signal. PMID:28220058

  15. An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot.

    PubMed

    Kiguchi, K; Hayashi, Y

    2012-08-01

    Many kinds of power-assist robots have been developed in order to assist self-rehabilitation and/or daily life motions of physically weak persons. Several kinds of control methods have been proposed to control the power-assist robots according to user's motion intention. In this paper, an electromyogram (EMG)-based impedance control method for an upper-limb power-assist exoskeleton robot is proposed to control the robot in accordance with the user's motion intention. The proposed method is simple, easy to design, humanlike, and adaptable to any user. A neurofuzzy matrix modifier is applied to make the controller adaptable to any users. Not only the characteristics of EMG signals but also the characteristics of human body are taken into account in the proposed method. The effectiveness of the proposed method was evaluated by the experiments.

  16. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model

    PubMed Central

    2014-01-01

    Background This paper describes the “EMG Driven Force Estimator (EMGD-FE)”, a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. Results An example of the application’s functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. Conclusions The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues. PMID:24708668

  17. Angular velocity affects trunk muscle strength and EMG activation during isokinetic axial rotation.

    PubMed

    Fan, Jian-Zhong; Liu, Xia; Ni, Guo-Xin

    2014-01-01

    To evaluate trunk muscle strength and EMG activation during isokinetic axial rotation at different angular velocities. Twenty-four healthy young men performed isokinetic axial rotation in right and left directions at 30, 60, and 120 degrees per second angular velocity. Simultaneously, surface EMG was recorded on external oblique (EO), internal oblique (IO), and latissimus dorsi (LD) bilaterally. In each direction, with the increase of angular velocity, peak torque decreased, whereas peak power increased. During isokinetic axial rotation, contralateral EO as well as ipsilateral IO and LD acted as primary agonists, whereas, ipsilateral EO as well as contralateral IO and LD acted as primary antagonistic muscles. For each primary agonist, the root mean square values decreased with the increase of angular velocity. Antagonist coactiviation was observed at each velocity; however, it appears to be higher with the increase of angular velocity. Our results suggest that velocity of rotation has great impact on the axial rotation torque and EMG activity. An inverse relationship of angular velocity was suggested with the axial rotation torque as well as root mean square value of individual trunk muscle. In addition, higher velocity is associated with higher coactivation of antagonist, leading to a decrease in torque with the increase of velocity.

  18. Does Heel Height Cause Imbalance during Sit-to-Stand Task: Surface EMG Perspective

    PubMed Central

    Naik, Ganesh R.; Al-Ani, Ahmed; Gobbo, Massimiliano; Nguyen, Hung T.

    2017-01-01

    The purpose of this study was to determine whether electromyography (EMG) muscle activities around the knee differ during sit-to-stand (STS) and returning task for females wearing shoes with different heel heights. Sixteen healthy young women (age = 25.2 ± 3.9 years, body mass index = 20.8 ± 2.7 kg/m2) participated in this study. Electromyography signals were recorded from the two muscles, vastus medialis (VM) and vastus lateralis (VL) that involve in the extension of knee. The participants wore shoes with five different heights, including 4, 6, 8, 10, and 12 cm. Surface electromyography (sEMG) data were acquired during STS and stand-to-sit-returning (STSR) tasks. The data was filtered using a fourth order Butterworth (band pass) filter of 20–450 Hz frequency range. For each heel height, we extracted median frequency (MDF) and root mean square (RMS) features to measure sEMG activities between VM and VL muscles. The experimental results (based on MDF and RMS-values) indicated that there is imbalance between vasti muscles for more elevated heels. The results are also quantified with statistical measures. The study findings suggest that there would be an increased likelihood of knee imbalance and fatigue with regular usage of high heel shoes (HHS) in women. PMID:28894422

  19. Evaluation of head orientation and neck muscle EMG signals as three-dimensional command sources.

    PubMed

    Williams, Matthew R; Kirsch, Robert F

    2015-03-05

    High cervical spinal cord injuries result in significant functional impairments and affect both the injured individual as well as their family and care givers. To help restore function to these individuals, multiple user interfaces are available to enable command and control of external devices. However, little work has been performed to assess the 3D performance of these interfaces. We investigated the performance of eight human subjects in using three user interfaces (head orientation, EMG from muscles of the head and neck, and a three-axis joystick) to command the endpoint position of a multi-axis robotic arm within a 3D workspace to perform a novel out-to-center 3D Fitts' Law style task. Two of these interfaces (head orientation, EMG from muscles of the head and neck) could realistically be used by individuals with high tetraplegia, while the joystick was evaluated as a standard of high performance. Performance metrics were developed to assess the aspects of command source performance. Data were analyzed using a mixed model design ANOVA. Fixed effects were investigated between sources as well as for interactions between index of difficulty, command source, and the five performance measures used. A 5% threshold for statistical significance was used in the analysis. The performances of the three command interfaces were rather similar, though significant differences between command sources were observed. The apparent similarity is due in large part to the sequential command strategy (i.e., one dimension of movement at a time) typically adopted by the subjects. EMG-based commands were particularly pulsatile in nature. The use of sequential commands had a significant impact on each command source's performance for movements in two or three dimensions. While the sequential nature of the commands produced by the user did not fit with Fitts' Law, the other performance measures used were able to illustrate the properties of each command source. Though pulsatile, given

  20. A patient-specific EMG-driven neuromuscular model for the potential use of human-inspired gait rehabilitation robots.

    PubMed

    Ma, Ye; Xie, Shengquan; Zhang, Yanxin

    2016-03-01

    A patient-specific electromyography (EMG)-driven neuromuscular model (PENm) is developed for the potential use of human-inspired gait rehabilitation robots. The PENm is modified based on the current EMG-driven models by decreasing the calculation time and ensuring good prediction accuracy. To ensure the calculation efficiency, the PENm is simplified into two EMG channels around one joint with minimal physiological parameters. In addition, a dynamic computation model is developed to achieve real-time calculation. To ensure the calculation accuracy, patient-specific muscle kinematics information, such as the musculotendon lengths and the muscle moment arms during the entire gait cycle, are employed based on the patient-specific musculoskeletal model. Moreover, an improved force-length-velocity relationship is implemented to generate accurate muscle forces. Gait analysis data including kinematics, ground reaction forces, and raw EMG signals from six adolescents at three different speeds were used to evaluate the PENm. The simulation results show that the PENm has the potential to predict accurate joint moment in real-time. The design of advanced human-robot interaction control strategies and human-inspired gait rehabilitation robots can benefit from the application of the human internal state provided by the PENm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Computational Intelligence Based Data Fusion Algorithm for Dynamic sEMG and Skeletal Muscle Force Modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen

    2013-08-01

    In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy,more » the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.« less

  2. EMG parameters and EEG α Index change at fatigue period during different types of muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhou, Bin; Song, Gaoqing

    2010-10-01

    The purpose of this study is to measure and analyze the characteristics in change of EMG and EEG parameters at muscle fatigue period in participants with different exercise capacity. Twenty participants took part in the tests. They were divided into two groups, Group A (constant exerciser) and Group B (seldom-exerciser). MVC dynamic and 1/3 isometric exercises were performed; EMG and EEG signals were recorded synchronously during different type of muscle contraction. Results indicated that values of MVC, RMS and IEMG in Group A were greater than Group B, but isometric exercise time was shorter than the time of dynamic exercise although its intensity was light. Turning point of IEMG and α Index occurred synchronously during constant muscle contraction of isometric or dynamic exercise. It is concluded that IEMG turning point may be an indication to justify muscle fatigue. Synchronization of EEG and EMG reflects its common characteristics on its bio-electric change.

  3. EMG parameters and EEG α Index change at fatigue period during different types of muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhou, Bin; Song, Gaoqing

    2011-03-01

    The purpose of this study is to measure and analyze the characteristics in change of EMG and EEG parameters at muscle fatigue period in participants with different exercise capacity. Twenty participants took part in the tests. They were divided into two groups, Group A (constant exerciser) and Group B (seldom-exerciser). MVC dynamic and 1/3 isometric exercises were performed; EMG and EEG signals were recorded synchronously during different type of muscle contraction. Results indicated that values of MVC, RMS and IEMG in Group A were greater than Group B, but isometric exercise time was shorter than the time of dynamic exercise although its intensity was light. Turning point of IEMG and α Index occurred synchronously during constant muscle contraction of isometric or dynamic exercise. It is concluded that IEMG turning point may be an indication to justify muscle fatigue. Synchronization of EEG and EMG reflects its common characteristics on its bio-electric change.

  4. Different fatigue-resistant leg muscles and EMG response during whole-body vibration.

    PubMed

    Simsek, Deniz

    2017-12-01

    The purpose of this study was to determine the effects of static whole-body vibration (WBV) on the Electromyograhic (EMG) responses of leg muscles, which are fatigue-resistant in different manner. The study population was divided into two groups according to the values obtained by the Fatigue Index [Group I: Less Fatigue Resistant (LFR), n=11; Group II: More Fatigue Resistant (MFR), n=11]. The repeated electromyographic (EMG) activities of four leg muscles were analyzed the following determinants: (1) frequency (30 Hz, 35 Hz and 40 Hz); (2) stance position (static squat position); (3) amplitude (2 mm and 4 mm) and (4) knee flexion angle (120°), (5) vertical vibration platform. Vibration data were analyzed using Minitab 16 (Minitab Ltd, State College, PA, USA). The significance level was set at p<.05. The study results showed that static WBV stimuli given at different frequencies and amplitudes resulted in a significant increase (p<.05) in compared, the LFR group showed significantly (1) higher rates of quadriceps femoris and hamstring muscle fatigue (p<.05), (2) higher levels of knee extensor and flexor torque (p<.05) and (3) higher percentage increases in EMG activation at higher frequencies (max at 40 Hz) and amplitudes (4 mm) (p<.05). The present study can be used for the optimal prescription of vibration exercise and can serve to guide the development of training programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. EMG and mechanical changes during sprint starts at different front block obliquities.

    PubMed

    Guissard, N; Duchateau, J; Hainaut, K

    1992-11-01

    The effect of decreased front block obliquity on start velocity was studied during sprint starts. The electromyographic (EMG) activity of the medial gastrocnemius (MG), the soleus (Sol), and the vastus medialis (VM) was recorded and analyzed at a 70 degrees, a 50 degrees, and a 30 degrees angle between the foot plate surface and the horizontal. Integrated EMGs (IEMG) were compared with muscle length changes in the MG and Sol in relation to foot and knee movements. The results indicate that decreasing front block obliquity significantly (P < 0.05) increases the start velocity without any change to the total duration of the pushing phase and the overall EMG activity. This improvement in sprint start performance is associated with the enhanced contribution of the MG during eccentric and concentric phases of calf muscles contraction. In the "set position" the initial length of MG and Sol is increased at 50 degrees and 30 degrees as compared with 70 degrees. The subsequent stretch-shortening cycle is improved and contributes more effectively to the speed of the muscle shortening. Moreover, lengthening these muscles during the eccentric phase stretches the muscle spindles, and the reflex activities that contribute to the observed increase in the MG IEMG, are present when the slope of the block is reduced. The results indicate that decreasing front block obliquity induces neural and mechanical modifications that contribute to increasing the sprint start velocity without any increase in the duration of the pushing phase.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. The importance of the orientation of the electrode plates in recording the external anal sphincter EMG by non-invasive anal plug electrodes.

    PubMed

    Binnie, N R; Kawimbe, B M; Papachrysostomou, M; Clare, N; Smith, A N

    1991-02-01

    Two non-invasive anal plug electrodes of similar size have been compared, one with the electrode plates orientated circularly in the anal canal and the other with the plates in the long axis of the anal canal. There was a significant increase in the amplitude in the EMG signals recorded at rest and during squeeze from the external anal sphincter with a longitudinally placed electrode in 117 patients. Inappropriate contraction of the external anal sphincter when straining at stool was more readily detected using the longitudinal electrode in 52 patients investigated for intractable constipation. The longitudinal electrode detected the amplitude of the response to the elicitation of a pudeno-anal reflex more readily than the circular electrode. When in 12 of the 117 the pudeno-anal reflex EMG signal was either absent or not detected with the circumferential plug electrode, the longitudinal electrode detected the presence of a low amplitude response in 11 of these. When the non-invasive longitudinal electrode was compared to invasive fine wire stainless steel electrodes, a correlation was found for external anal sphincter resting EMG (r = 0.99, p less than 0.01), voluntary squeeze EMG (r = 0.99, p less than 0.001) and strain EMG (r = 0.91, p less than 0.01). The longitudinal anal plug electrode thus facilitates surface acquisition of EMG activity.

  7. A Simple Network to Remove Interference in Surface EMG Signal from Single Gene Affected Phenylketonuria Patients for Proper Diagnosis

    NASA Astrophysics Data System (ADS)

    Mohanty, Madhusmita; Basu, Mousumi; Pattanayak, Deba Narayan; Mohapatra, Sumant Kumar

    2018-04-01

    Recently Autosomal Recessive Single Gene (ARSG) diseases are highly effective to the children within the age of 5-10 years. One of the most ARSG disease is a Phenylketonuria (PKU). This single gene disease is associated with mutations in the gene that encodes the enzyme phenylalanine hydroxylase (PAH, Gene 612349). Through this mutation process, PAH of the gene affected patient can not properly manufacture PAH as a result the patients suffer from decreased muscle tone which shows abnormality in EMG signal. Here the extraction of the quality of the PKU affected EMG (PKU-EMG) signal is a keen interest, so it is highly necessary to remove the added ECG signal as well as the biological and instrumental noises. In the Present paper we proposed a method for detection and classification of the PKU affected EMG signal. Here Discrete Wavelet Transformation is implemented for extraction of the features of the PKU affected EMG signal. Adaptive Neuro-Fuzzy Inference System (ANFIS) network is used for the classification of the signal. Modified Particle Swarm Optimization (MPSO) and Modified Genetic Algorithm (MGA) are used to train the ANFIS network. Simulation result shows that the proposed method gives better performance as compared to existing approaches. Also it gives better accuracy of 98.02% for the detection of PKU-EMG signal. The advantages of the proposed model is to use MGA and MPSO to train the parameters of ANFIS network for classification of ECG and EMG signal of PKU affected patients. The proposed method obtained the high SNR (18.13 ± 0.36 dB), SNR (0.52 ± 1.62 dB), RE (0.02 ± 0.32), MSE (0.64 ± 2.01), CC (0.99 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02), RMSE (0.75 ± 0.35) and MFRE (0.01 ± 0.02). From authors knowledge, this is the first time a composite method is used for diagnosis of PKU affected patients. The accuracy (98.02%), sensitivity (100%) and specificity (98.59%) helps for proper clinical treatment. It can help for readers

  8. Wireless sEMG-Based Body-Machine Interface for Assistive Technology Devices.

    PubMed

    Fall, Cheikh Latyr; Gagnon-Turcotte, Gabriel; Dube, Jean-Francois; Gagne, Jean Simon; Delisle, Yanick; Campeau-Lecours, Alexandre; Gosselin, Clement; Gosselin, Benoit

    2017-07-01

    Assistive technology (AT) tools and appliances are being more and more widely used and developed worldwide to improve the autonomy of people living with disabilities and ease the interaction with their environment. This paper describes an intuitive and wireless surface electromyography (sEMG) based body-machine interface for AT tools. Spinal cord injuries at C5-C8 levels affect patients' arms, forearms, hands, and fingers control. Thus, using classical AT control interfaces (keypads, joysticks, etc.) is often difficult or impossible. The proposed system reads the AT users' residual functional capacities through their sEMG activity, and converts them into appropriate commands using a threshold-based control algorithm. It has proven to be suitable as a control alternative for assistive devices and has been tested with the JACO arm, an articulated assistive device of which the vocation is to help people living with upper-body disabilities in their daily life activities. The wireless prototype, the architecture of which is based on a 3-channel sEMG measurement system and a 915-MHz wireless transceiver built around a low-power microcontroller, uses low-cost off-the-shelf commercial components. The embedded controller is compared with JACO's regular joystick-based interface, using combinations of forearm, pectoral, masseter, and trapeze muscles. The measured index of performance values is 0.88, 0.51, and 0.41 bits/s, respectively, for correlation coefficients with the Fitt's model of 0.75, 0.85, and 0.67. These results demonstrate that the proposed controller offers an attractive alternative to conventional interfaces, such as joystick devices, for upper-body disabled people using ATs such as JACO.

  9. Comparison between sEMG and force as control interfaces to support planar arm movements in adults with Duchenne: a feasibility study.

    PubMed

    Lobo-Prat, Joan; Nizamis, Kostas; Janssen, Mariska M H P; Keemink, Arvid Q L; Veltink, Peter H; Koopman, Bart F J M; Stienen, Arno H A

    2017-07-12

    Adults with Duchenne muscular dystrophy (DMD) can benefit from devices that actively support their arm function. A critical component of such devices is the control interface as it is responsible for the human-machine interaction. Our previous work indicated that surface electromyography (sEMG) and force-based control with active gravity and joint-stiffness compensation were feasible solutions for the support of elbow movements (one degree of freedom). In this paper, we extend the evaluation of sEMG- and force-based control interfaces to simultaneous and proportional control of planar arm movements (two degrees of freedom). Three men with DMD (18-23 years-old) with different levels of arm function (i.e. Brooke scores of 4, 5 and 6) performed a series of line-tracing tasks over a tabletop surface using an experimental active arm support. The arm movements were controlled using three control methods: sEMG-based control, force-based control with stiffness compensation (FSC), and force-based control with no compensation (FNC). The movement performance was evaluated in terms of percentage of task completion, tracing error, smoothness and speed. For subject S1 (Brooke 4) FNC was the preferred method and performed better than FSC and sEMG. FNC was not usable for subject S2 (Brooke 5) and S3 (Brooke 6). Subject S2 presented significantly lower movement speed with sEMG than with FSC, yet he preferred sEMG since FSC was perceived to be too fatiguing. Subject S3 could not successfully use neither of the two force-based control methods, while with sEMG he could reach almost his entire workspace. Movement performance and subjective preference of the three control methods differed with the level of arm function of the participants. Our results indicate that all three control methods have to be considered in real applications, as they present complementary advantages and disadvantages. The fact that the two weaker subjects (S2 and S3) experienced the force-based control

  10. Oscillations in motor unit discharge are reflected in the low-frequency component of rectified surface EMG and the rate of change in force.

    PubMed

    Yoshitake, Yasuhide; Shinohara, Minoru

    2013-11-01

    Common drive to a motor unit (MU) pool manifests as low-frequency oscillations in MU discharge rate, producing fluctuations in muscle force. The aim of the study was to examine the temporal correlation between instantaneous MU discharge rate and rectified EMG in low frequencies. Additionally, we attempted to examine whether there is a temporal correlation between the low-frequency oscillations in MU discharge rate and the first derivative of force (dF/dt). Healthy young subjects produced steady submaximal force with their right finger as a single task or while maintaining a pinch-grip force with the left hand as a dual task. Surface EMG and fine-wire MU potentials were recorded from the first dorsal interosseous muscle in the right hand. Surface EMG was band-pass filtered (5-1,000 Hz) and full-wave rectified. Rectified surface EMG and the instantaneous discharge rate of MUs were smoothed by a Hann-window of 400 ms duration (equivalent to 2 Hz low-pass filtering). In each of the identified MUs, the smoothed MU discharge rate was positively correlated with the rectified-and-smoothed EMG as confirmed by the distinct peak in cross-correlation function with greater values in the dual task compared with the single task. Additionally, the smoothed MU discharge rate was temporally correlated with dF/dt more than with force and with rectified-and-smoothed EMG. The results indicated that the low-frequency component of rectified surface EMG and the first derivative of force provide temporal information on the low-frequency oscillations in the MU discharge rate.

  11. Surface EMG of shoulder and back muscles and posture analysis in secretaries typing at visual display units.

    PubMed

    Kleine, B U; Schumann, N P; Bradl, I; Grieshaber, R; Scholle, H C

    1999-09-01

    A study was carried out to investigate temporal changes of activation of shoulder and back muscles in workers at visual display units by means of surface EMG. Moreover, postural parameters were recorded to distinguish fatigue-related from posture-related changes of the myoelectrical activity. Nine healthy female office workers typed texts spoken from tape during three 1-h-long sessions. After the first and again after the second hour there was a break of 15 min. Sixteen-channel surface EMG was bipolarly recorded from the erector spinae, trapezius, deltoid and sternocleidomastoid muscles. Root mean square (RMS) and power spectrum median frequency of the EMG were calculated. Sitting posture was assessed using an eight-channel movement analysis system with ultrasound markers. The position of the seventh cervical spinous process and the left and the right acromion were analysed synchronously with the EMG characteristics using regression analysis. The normalised RMS of the left and right trapezius muscle increased, while the median frequency did not change. The increase of the normalised RMS was significantly lower when the linear influence of posture was excluded. On average, the distance between C7 and the left and right acromion decreased within each working an hour. C7 became lower on average by 5.5 mm within an hour, whereas the acromions became lower by only 1.7 mm (left) and 3.3 mm (right). The increase in trapezius muscle activity was partly related to a lifting of the shoulders to compensate a slight slumping of the back. Another part of the EMG activity increase has to be attributed to fatigue, to attention-related activity or to the combination of both. Therefore, training of the back muscles and a varied organisation of work might have a preventive effect with respect to musculoskeletal complaints in VDU workers.

  12. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.

    PubMed

    Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei

    2015-02-01

    We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.

  13. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network

    PubMed Central

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H. M.; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications. PMID:28744189

  14. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

    PubMed

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  15. Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns.

    PubMed

    Pan, Lizhi; Zhang, Dingguo; Jiang, Ning; Sheng, Xinjun; Zhu, Xiangyang

    2015-12-02

    Most prosthetic myoelectric control studies have concentrated on low density (less than 16 electrodes, LD) electromyography (EMG) signals, due to its better clinical applicability and low computation complexity compared with high density (more than 16 electrodes, HD) EMG signals. Since HD EMG electrodes have been developed more conveniently to wear with respect to the previous versions recently, HD EMG signals become an alternative for myoelectric prostheses. The electrode shift, which may occur during repositioning or donning/doffing of the prosthetic socket, is one of the main reasons for degradation in classification accuracy (CA). HD EMG signals acquired from the forearm of the subjects were used for pattern recognition-based myoelectric control in this study. Multiclass common spatial patterns (CSP) with two types of schemes, namely one versus one (CSP-OvO) and one versus rest (CSP-OvR), were used for feature extraction to improve the robustness against electrode shift for myoelectric control. Shift transversal (ST1 and ST2) and longitudinal (SL1 and SL2) to the direction of the muscle fibers were taken into consideration. We tested nine intact-limb subjects for eleven hand and wrist motions. The CSP features (CSP-OvO and CSP-OvR) were compared with three commonly used features, namely time-domain (TD) features, time-domain autoregressive (TDAR) features and variogram (Variog) features. Compared with the TD features, the CSP features significantly improved the CA over 10 % in all shift configurations (ST1, ST2, SL1 and SL2). Compared with the TDAR features, a. the CSP-OvO feature significantly improved the average CA over 5 % in all shift configurations; b. the CSP-OvR feature significantly improved the average CA in shift configurations ST1, SL1 and SL2. Compared with the Variog features, the CSP features significantly improved the average CA in longitudinal shift configurations (SL1 and SL2). The results demonstrated that the CSP features significantly

  16. [Data collection of signals in the multi-channel sEMG system of masticatory muscles and development and preliminary clinical application of an analytic system].

    PubMed

    Du, Hongliang; Li, Xin; Li, Shan; Zhang, Rui; Song, Rong; Li, Lan; Wang, Wei; Kang, Hong

    2014-02-01

    The aim of this study was to design a simple, economic, with high Common Mode Rejection Ratio (CMRR), preamplifier and multi-channel masticatory muscle surface electromyography (sEMG) signal acquisition system assisting to diagnose temporomandibular disorders (TMD). We used the USB interface technology in the EMG data with the aid of the windows to operate system and graphical interface. Eight patients with TMD and eight controls were analyzed separately using this system. In this system, we analyzed sEMG by an optional combination of time domain, frequency domain, time-frequency, several spectral analysis, wavelets and other special algorithms under multi-parameter. Multi-channel sEMG System of Masticatory Muscles is a simple, economic system. It has high sensitivity and specificity. The sEMG signals were changed in patients with TMD. The system would pave the way for diagnosis TMD and help us to assess the treatment effect. A novel and objective method is provided for diagnosis and treatment of oral-maxillofacial disease and functional reconstruction.

  17. EEG and EMG responses to emotion-evoking stimuli processed without conscious awareness.

    PubMed

    Wexler, B E; Warrenburg, S; Schwartz, G E; Janer, L D

    1992-12-01

    Dichotic stimulus pairs were constructed with one word that was emotionally neutral and another that evoked either negative or positive feelings. Temporal and spectral overlap between the members of each pair was so great that the two words fused into a single auditory percept. Subjects were consciously aware of hearing only one word from most pairs; sometimes the emotion-evoking word was heard consciously, other times the neutral word was heard consciously. Subjects were instructed to let their thoughts wander in response to the word they heard, during which time EEG alpha activity over left and right frontal regions, and muscle activity (EMG) in the corrugator ("frowning") and zygomatic ("smiling") regions were recorded. Both EEG and EMG provided evidence of emotion-specific responses to stimuli that were processed without conscious awareness. Moreover both suggested relatively greater right hemisphere activity with unconscious rather than conscious processing.

  18. EMG normalization method based on grade 3 of manual muscle testing: Within- and between-day reliability of normalization tasks and application to gait analysis.

    PubMed

    Tabard-Fougère, Anne; Rose-Dulcina, Kevin; Pittet, Vincent; Dayer, Romain; Vuillerme, Nicolas; Armand, Stéphane

    2018-02-01

    Electromyography (EMG) is an important parameter in Clinical Gait Analysis (CGA), and is generally interpreted with timing of activation. EMG amplitude comparisons between individuals, muscles or days need normalization. There is no consensus on existing methods. The gold standard, maximum voluntary isometric contraction (MVIC), is not adapted to pathological populations because patients are often unable to perform an MVIC. The normalization method inspired by the isometric grade 3 of manual muscle testing (isoMMT3), which is the ability of a muscle to maintain a position against gravity, could be an interesting alternative. The aim of this study was to evaluate the within- and between-day reliability of the isoMMT3 EMG normalizing method during gait compared with the conventional MVIC method. Lower limb muscles EMG (gluteus medius, rectus femoris, tibialis anterior, semitendinosus) were recorded bilaterally in nine healthy participants (five males, aged 29.7±6.2years, BMI 22.7±3.3kgm -2 ) giving a total of 18 independent legs. Three repeated measurements of the isoMMT3 and MVIC exercises were performed with an EMG recording. EMG amplitude of the muscles during gait was normalized by these two methods. This protocol was repeated one week later. Within- and between-day reliability of normalization tasks were similar for isoMMT3 and MVIC methods. Within- and between-day reliability of gait EMG normalized by isoMMT3 was higher than with MVIC normalization. These results indicate that EMG normalization using isoMMT3 is a reliable method with no special equipment needed and will support CGA interpretation. The next step will be to evaluate this method in pathological populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Neuromuscular adjustments of gait associated with unstable conditions

    PubMed Central

    Ivanenko, Y. P.; d'Avella, A.; Serrao, M.; Ranavolo, A.; Draicchio, F.; Cappellini, G.; Casali, C.; Lacquaniti, F.

    2015-01-01

    A compact description of coordinated muscle activity is provided by the factorization of electromyographic (EMG) signals. With the use of this approach, it has consistently been shown that multimuscle activity during human locomotion can be accounted for by four to five modules, each one comprised of a basic pattern timed at a different phase of gait cycle and the weighting coefficients of synergistic muscle activations. These modules are flexible, in so far as the timing of patterns and the amplitude of weightings can change as a function of gait speed and mode. Here we consider the adjustments of the locomotor modules related to unstable walking conditions. We compared three different conditions, i.e., locomotion of healthy subjects on slippery ground (SL) and on narrow beam (NB) and of cerebellar ataxic (CA) patients on normal ground. Motor modules were computed from the EMG signals of 12 muscles of the right lower limb using non-negative matrix factorization. The unstable gait of SL, NB, and CA showed significant changes compared with controls in the stride length, stride width, range of angular motion, and trunk oscillations. In most subjects of all three unstable conditions, >70% of the overall variation of EMG waveforms was accounted for by four modules that were characterized by a widening of muscle activity patterns. This suggests that the nervous system adopts the strategy of prolonging the duration of basic muscle activity patterns to cope with unstable conditions resulting from either slippery ground, reduced support surface, or pathology. PMID:26378199

  20. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

    PubMed Central

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can

  1. Intention detection of gait initiation using EMG and kinematic data.

    PubMed

    Wentink, E C; Beijen, S I; Hermens, H J; Rietman, J S; Veltink, P H

    2013-02-01

    Gait initiation in transfemoral amputees (TFA) is different from non-amputees. This is mainly caused by the lack of stability and push-off from the prosthetic leg. Adding control and artificial push-off to the prosthesis may therefore be beneficial to TFA. In this study the feasibility of real-time intention detection of gait initiation was determined by mimicking the TFA situation in non-amputees. EMG and inertial sensor data was measured in 10 non-amputees. Only data available in TFA was used to determine if gait initiation can be predicted in time to control a transfemoral prosthesis to generate push-off and stability. Toe-off and heel-strike of the leading limb are important parameters to be detected, to control a prosthesis and to time push-off. The results show that toe-off and heel-strike of the leading limb can be detected using EMG and kinematic data in non-amputees 130-260 ms in advance. This leaves enough time to control a prosthesis. Based on these results we hypothesize that similar results can be found in TFA, allowing for adequate control of a prosthesis during gait initiation. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Surface EMG and intra-socket force measurement to control a prosthetic device

    NASA Astrophysics Data System (ADS)

    Sanford, Joe; Patterson, Rita; Popa, Dan

    2015-06-01

    Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.

  3. Two cases of childhood narcolepsy mimicking epileptic seizures in video-EEG/EMG.

    PubMed

    Yanagishita, Tomoe; Ito, Susumu; Ohtani, Yui; Eto, Kaoru; Kanbayashi, Takashi; Oguni, Hirokazu; Nagata, Satoru

    2018-06-06

    Narcolepsy is characterized by excessive sleepiness, hypnagogic hallucinations, and sleep paralysis, and can occur with or without cataplexy. Here, we report two children with narcolepsy presenting with cataplexy mimicking epileptic seizures as determined by long-term video-electroencephalography (EEG) and electromyography (EMG) monitoring. Case 1 was a 15-year-old girl presenting with recurrent episodes of "convulsions" and loss of consciousness, who was referred to our hospital with a diagnosis of epilepsy showing "convulsions" and "complex partial seizures". The long-term video-polygraph showed a clonic attack lasting for 15 s, which corresponded to 1-2 Hz with interruption of mentalis EMG discharges lasting for 70-300 ms without any EEG changes. Narcolepsy was suspected due to the attack induced by hearty laughs and the presence of sleep attacks, and confirmed by low orexin levels in cerebrospinal fluid (CSF). Case 2 was an 11-year-old girl presenting with recurrent episodes of myoclonic attacks simultaneously with dropping objects immediately after hearty laughs, in addition to sleep attacks, hypnagogic hallucinations, and sleep paralysis. The long-term video-polygraph showed a subtle attack, characterized by dropping chopsticks from her hand, which corresponded to an interruption of ongoing deltoid EMG discharges lasting 140 ms without any EEG changes. A diagnosis of narcolepsy was confirmed by the low orexin levels in CSF. These cases demonstrate that children with narcolepsy may have attacks of cataplexy that resemble clonic or myoclonic seizures. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  4. Spatial EMG potential distribution pattern of vastus lateralis muscle during isometric knee extension in young and elderly men.

    PubMed

    Watanabe, Kohei; Kouzaki, Motoki; Merletti, Roberto; Fujibayashi, Mami; Moritani, Toshio

    2012-02-01

    The aim of the present study was to compare spatial electromyographic (EMG) potential distribution during force production between elderly and young individuals using multi-channel surface EMG (SEMG). Thirteen elderly (72-79years) and 13 young (21-27years) healthy male volunteers performed ramp submaximal contraction during isometric knee extension from 0% to 65% of maximal voluntary contraction. During contraction, multi-channel EMG was recorded from the vastus lateralis muscle. To evaluate alteration in heterogeneity and pattern in spatial EMG potential distribution, coefficient of variation (CoV), modified entropy and correlation coefficients with initial torque level were calculated from multi-channel SEMG at 5% force increment. Increase in CoV and decrease in modified entropy of RMS with increase of exerted torque were significantly smaller in elderly group (p<0.05) and correlation coefficients with initial torque level were significantly higher in elderly group than in young group at moderate torque levels (p<0.05). These data suggest that the increase of heterogeneity and the change in the activation pattern are smaller in elderly individuals than in young individuals. We speculated that multi-channel SEMG pattern in elderly individual reflects neuromuscular activation strategy regulated predominantly by clustering of similar type of muscle fibers in aged muscle. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Surface EMG characteristics of people with multiple sclerosis during static contractions of the knee extensors.

    PubMed

    Scott, Sasha M; Hughes, Adrienne R; Galloway, Stuart D R; Hunter, Angus M

    2011-01-01

    This study was designed to determine whether any alterations existed in surface electromyography (sEMG) in people with multiple sclerosis (MS) during isometric contractions of the knee extensors. Fifteen people with MS and 14 matched controls (mean ± SD age and body mass index 53·7 ± 10·5 versus 54·6 ± 9·6 years and 27·7 ± 6·1 versus 26·5 ± 4, respectively) completed 20%, 40%, 60% and 80% of their maximal voluntary contraction (MVC) of the knee extensors. sEMG was recorded from the vastus lateralis where muscle fibre conduction velocity (MFCV) and sEMG amplitude (RMS) were assessed. Body composition was determined using dual-energy X-ray absorptiometry and physical activity with the use of accelerometry. People with MS showed significantly (P<0·05) faster MFCV during MVC (6·6 ± 2·7 versus 4·7 ± 1·4 m s(-1) ) and all submaximal contractions, while RMS was significantly (P<0·05) less (0·11 ± 0·03 versus 0·24 ± 0·06 mV) in comparison with the controls. MVC along with specific thigh lean mass to torque, rate of force development and mean physical activity were significantly (P<0·01) less in PwMS. People with MS have elevated MFCV alongside reduced RMS during isometric contraction. This elevation in MFCV should be accounted for when interpreting sEMG from people with MS. © 2010 University of Stirling. Clinical physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  6. Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement

    PubMed Central

    Guo, Shuxiang; Pang, Muye; Gao, Baofeng; Hirata, Hideyuki; Ishihara, Hidenori

    2015-01-01

    The surface electromyography (sEMG) technique is proposed for muscle activation detection and intuitive control of prostheses or robot arms. Motion recognition is widely used to map sEMG signals to the target motions. One of the main factors preventing the implementation of this kind of method for real-time applications is the unsatisfactory motion recognition rate and time consumption. The purpose of this paper is to compare eight combinations of four feature extraction methods (Root Mean Square (RMS), Detrended Fluctuation Analysis (DFA), Weight Peaks (WP), and Muscular Model (MM)) and two classifiers (Neural Networks (NN) and Support Vector Machine (SVM)), for the task of mapping sEMG signals to eight upper-limb motions, to find out the relation between these methods and propose a proper combination to solve this issue. Seven subjects participated in the experiment and six muscles of the upper-limb were selected to record sEMG signals. The experimental results showed that NN classifier obtained the highest recognition accuracy rate (88.7%) during the training process while SVM performed better in real-time experiments (85.9%). For time consumption, SVM took less time than NN during the training process but needed more time for real-time computation. Among the four feature extraction methods, WP had the highest recognition rate for the training process (97.7%) while MM performed the best during real-time tests (94.3%). The combination of MM and NN is recommended for strict real-time applications while a combination of MM and SVM will be more suitable when time consumption is not a key requirement. PMID:25894941

  7. Estimation of continuous multi-DOF finger joint kinematics from surface EMG using a multi-output Gaussian Process.

    PubMed

    Ngeo, Jimson; Tamei, Tomoya; Shibata, Tomohiro

    2014-01-01

    Surface electromyographic (EMG) signals have often been used in estimating upper and lower limb dynamics and kinematics for the purpose of controlling robotic devices such as robot prosthesis and finger exoskeletons. However, in estimating multiple and a high number of degrees-of-freedom (DOF) kinematics from EMG, output DOFs are usually estimated independently. In this study, we estimate finger joint kinematics from EMG signals using a multi-output convolved Gaussian Process (Multi-output Full GP) that considers dependencies between outputs. We show that estimation of finger joints from muscle activation inputs can be improved by using a regression model that considers inherent coupling or correlation within the hand and finger joints. We also provide a comparison of estimation performance between different regression methods, such as Artificial Neural Networks (ANN) which is used by many of the related studies. We show that using a multi-output GP gives improved estimation compared to multi-output ANN and even dedicated or independent regression models.

  8. Power optimization in body sensor networks: the case of an autonomous wireless EMG sensor powered by PV-cells.

    PubMed

    Penders, J; Pop, V; Caballero, L; van de Molengraft, J; van Schaijk, R; Vullers, R; Van Hoof, C

    2010-01-01

    Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body sensor nodes a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper reviews system-level power optimization techniques, and illustrates their impact on the case of autonomous wireless EMG monitoring. The resulting prototype, an Autonomous wireless EMG sensor power by PV-cells, is presented.

  9. The effect of isolating the paretic limb on weight-bearing distribution and EMG activity during squats in hemiplegic and healthy individuals.

    PubMed

    Lee, Dong-Kyu; An, Duk-Hyun; Yoo, Won-Gyu; Hwang, Byong-Yong; Kim, Tae-Ho; Oh, Jae-Seop

    2017-05-01

    Neural reorganization for movement therapy after a stroke is thought to be an important mechanism that facilitates motor recovery. However, there is a lack of evidence for the effectiveness of exercise programs in improving the lower limbs. We investigated the immediate effect of isolating the paretic limb using different foot positions ((i) foot parallel; both feet parallel, (ii) foot asymmetry; paretic foot backward by 10 cm, and (iii) foot lifting; nonparetic foot lifting by normalization to 25% of knee height) on weight-bearing distribution and electromyography (EMG) of the thigh muscle during squats. In total, 20 patients with hemiplegia and 16 healthy subjects randomly performed three squat conditions in which the knee joint was flexed to 30°. Weight distribution was measured using the BioRescue system. Muscle activity was measured using a surface EMG system. Patients with hemiplegia exhibited significantly decreased weight bearing on the paretic foot at 0° and 30° knee flexion compared with the nondominant foot of a healthy subject. The muscle activity of the quadriceps was significantly lower in patients with hemiplegia compared to healthy subjects. Weight bearing and EMG activity of the quadriceps femoris on the paretic or nondominant side significantly increased during a knee flexion of 30° with under the foot asymmetry and foot lifting positions compared with the parallel foot position. Isolating the paretic limb using the asymmetric foot positions and lifting of the foot during squats might help patients with hemiplegia to improve weight-bearing and achieve greater activation of the quadriceps muscle in the paretic limb.

  10. High efficiency and simple technique for controlling mechanisms by EMG signals

    NASA Astrophysics Data System (ADS)

    Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Javier, F.; Ceballos, G.; Olivares, A.

    2016-04-01

    This article reports the development of a simple and efficient system that allows control of mechanisms through electromyography (EMG) signals. The novelty about this instrument is focused on individual control of each motion vector mechanism through independent electronic circuits. Each of electronic circuit does positions a motor according to intensity of EMG signal captured. This action defines movement in one mechanical axis considered from an initial point, based on increased muscle tension. The final displacement of mechanism depends on individual’s ability to handle the levels of muscle tension at different body parts. This is the design of a robotic arm where each degree of freedom is handled with a specific microcontroller that responds to signals taken from a defined muscle. The biophysical interaction between the person and the final positioning of the robotic arm is used as feedback. Preliminary tests showed that the control operates with minimal positioning error margins. The constant use of system with the same operator showed that the person adapts and progressively improves at control technique.

  11. [Integration of the functional signal of intraoperative EMG of the facial nerve in to navigation model for surgery of the petrous bone].

    PubMed

    Strauss, G; Strauss, M; Lüders, C; Stopp, S; Shi, J; Dietz, A; Lüth, T

    2008-10-01

    PROBLEM DEFINITION: The goal of this work is the integration of the information of the intraoperative EMG monitoring of the facial nerve into the radiological data of the petrous bone. The following hypotheses are to be examined: (I) the N. VII can be determined intraoperatively with a high reliability by the stimulation-probe. A computer program is able to discriminate true-positive EMG signals from false-positive artifacts. (II) The course of the facial nerve can be registered in a three-dimensional area by EMG signals at a nerve model in the lab test. The individual items of the nerve can be combined into a route model. The route model can be integrated into the data of digital volume tomography (DVT). (I) Intraoperative EMG signals of the facial nerve were classified at 128 measurements by an automatic software. The results were correlated with the actual intraoperative situation. (II) The nerve phantom was designed and a DVT data set was provided. Phantom was registered with a navigation system (Karl Storz NPU, Tuttlingen, Germany). The stimulation probe of the EMG-system was tracked by the navigation system. The navigation system was extended by a processing unit (MiMed, Technische Universität München, Germany). Thus the classified EMG parameters of the facial route can be received, processed and be generated to a model of the facial nerve route. The operability was examined at 120 (10 x 12) measuring points. The evaluation of the examined algorithm for classification EMG-signals of the facial nerve resulted as correct in all measuring events. In all 10 attempts it succeeded to visualize the nerve route as three-dimensional model. The different sizes of the individual measuring points reflect the appropriate values of Istim and UEMG correctly. This work proves the feasibility of an automatic classification of an intraoperative EMG signal of the facial nerve by a processing unit. Furthermore the work shows the feasibility of tracking of the position of the

  12. Detection of driving fatigue by using noncontact EMG and ECG signals measurement system.

    PubMed

    Fu, Rongrong; Wang, Hong

    2014-05-01

    Driver fatigue can be detected by constructing a discriminant mode using some features obtained from physiological signals. There exist two major challenges of this kind of methods. One is how to collect physiological signals from subjects while they are driving without any interruption. The other is to find features of physiological signals that are of corresponding change with the loss of attention caused by driver fatigue. Driving fatigue is detected based on the study of surface electromyography (EMG) and electrocardiograph (ECG) during the driving period. The noncontact data acquisition system was used to collect physiological signals from the biceps femoris of each subject to tackle the first challenge. Fast independent component analysis (FastICA) and digital filter were utilized to process the original signals. Based on the statistical analysis results given by Kolmogorov-Smirnov Z test, the peak factor of EMG (p < 0.001) and the maximum of the cross-relation curve of EMG and ECG (p < 0.001) were selected as the combined characteristic to detect fatigue of drivers. The discriminant criterion of fatigue was obtained from the training samples by using Mahalanobis distance, and then the average classification accuracy was given by 10-fold cross-validation. The results showed that the method proposed in this paper can give well performance in distinguishing the normal state and fatigue state. The noncontact, onboard vehicle drivers' fatigue detection system was developed to reduce fatigue-related risks.

  13. Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy

    PubMed Central

    Kim, Janis; Arora, Pooja; Zhang, Yunhui

    2016-01-01

    Treadmill training has been used for improving locomotor function in children with cerebral palsy (CP), but the functional gains are relatively small, suggesting a need to improve current paradigms. The understanding of the kinematic and EMG responses to forces applied to the body of subjects during treadmill walking is crucial for improving current paradigms. The objective of this study was to determine the kinematics and EMG responses to the pelvis and/or leg assistance force. Ten children with spastic CP were recruited to participate in this study. A controlled assistance force was applied to the pelvis and/or legs during stance and swing phase of gait through a custom designed robotic system during walking. Muscle activities and spatial-temporal gait parameters were measured at different loading conditions during walking. In addition, the spatial-temporal gait parameters during overground walking before and after treadmill training were also collected. Applying pelvis assistance improved step height and applying leg assistance improved step length during walking, but applying leg assistance also reduced muscle activation of ankle flexor during the swing phase of gait. In addition, step length and self-selected walking speed significantly improved after one session of treadmill training with combined pelvis and leg assistance. PMID:27651955

  14. Specific Diurnal EMG Activity Pattern Observed in Occlusal Collapse Patients: Relationship between Diurnal Bruxism and Tooth Loss Progression

    PubMed Central

    Kawakami, Shigehisa; Kumazaki, Yohei; Manda, Yosuke; Oki, Kazuhiro; Minagi, Shogo

    2014-01-01

    Aim The role of parafunctional masticatory muscle activity in tooth loss has not been fully clarified. This study aimed to reveal the characteristic activity of masseter muscles in bite collapse patients while awake and asleep. Materials and Methods Six progressive bite collapse patients (PBC group), six age- and gender-matched control subjects (MC group), and six young control subjects (YC group) were enrolled. Electromyograms (EMG) of the masseter muscles were continuously recorded with an ambulatory EMG recorder while patients were awake and asleep. Diurnal and nocturnal parafunctional EMG activity was classified as phasic, tonic, or mixed using an EMG threshold of 20% maximal voluntary clenching. Results Highly extended diurnal phasic activity was observed only in the PBC group. The three groups had significantly different mean diurnal phasic episodes per hour, with 13.29±7.18 per hour in the PBC group, 0.95±0.97 per hour in the MC group, and 0.87±0.98 per hour in the YC group (p<0.01). ROC curve analysis suggested that the number of diurnal phasic episodes might be used to predict bite collapsing tooth loss. Conclusion Extensive bite loss might be related to diurnal masticatory muscle parafunction but not to parafunction during sleep. Clinical Relevance: Scientific rationale for study Although mandibular parafunction has been implicated in stomatognathic system breakdown, a causal relationship has not been established because scientific modalities to evaluate parafunctional activity have been lacking. Principal findings This study used a newly developed EMG recording system that evaluates masseter muscle activity throughout the day. Our results challenge the stereotypical idea of nocturnal bruxism as a strong destructive force. We found that diurnal phasic masticatory muscle activity was most characteristic in patients with progressive bite collapse. Practical implications The incidence of diurnal phasic contractions could be used for the prognostic

  15. Aircraft control forces and EMG activity in a C-130 Hercules during strength-critical maneuvers.

    PubMed

    Hewson, D J; McNair, P J; Marshall, R N

    2001-03-01

    The force levels required to operate aircraft controls should be readily generated by pilots, without undue fatigue or exertion. However, maximum pilot applied forces, as specified in aircraft design standards, were empirically derived from the subjective comments of test pilots, and may not be applicable for the majority of pilots. Further, experienced RNZAF Hercules flying instructors have indicated that endurance and fatigue are problems for Hercules pilots. The aim of this study was to quantify aircraft control forces during emergency maneuvers in a Hercules aircraft and compare these forces with design standards. In addition, EMG data were recorded as an indicator of muscle fatigue during flight. Six subjects were tested in a C-130 Hercules aircraft. The maneuvers performed were low-level dynamic flight, one engine-off straight-and-level flight, and a two-engines-off simulated approach. The variables recorded were pilot-applied forces and EMG activity. Left rudder pedal force and vastus lateralis activity were both significantly greater during engine-off maneuvers than during low-level dynamic flight (p < 0.05). Maximum aircraft control forces for all controls were within 10% of the design standards. The mean EMG activity across all muscles and maneuvers was 26% MVC, with a peak of 61% MVC in vastus lateralis during the two-engine-off approach. The median frequency of the vastus lateralis EMG signal decreased 13.0% and 16.0% for the one engine-off and two-engine-off maneuvers, respectively. The forces required to fly a Hercules aircraft during emergency maneuvers are similar to the aircraft design standards. However, the levels of vastus lateralis muscle activation observed during the engine-off maneuvers can be sustained for approximately 1 min only. Thus, if two engines fail more than 1 min before landing, pilots may have to alternate control of the aircraft to share the workload and enable the aircraft to land safely.

  16. Applications of ICA and fractal dimension in sEMG signal processing for subtle movement analysis: a review.

    PubMed

    Naik, Ganesh R; Arjunan, Sridhar; Kumar, Dinesh

    2011-06-01

    The surface electromyography (sEMG) signal separation and decphompositions has always been an interesting research topic in the field of rehabilitation and medical research. Subtle myoelectric control is an advanced technique concerned with the detection, processing, classification, and application of myoelectric signals to control human-assisting robots or rehabilitation devices. This paper reviews recent research and development in independent component analysis and Fractal dimensional analysis for sEMG pattern recognition, and presents state-of-the-art achievements in terms of their type, structure, and potential application. Directions for future research are also briefly outlined.

  17. Boundary element analysis of the directional sensitivity of the concentric EMG electrode.

    PubMed

    Henneberg, K A; Plonsey, R

    1993-07-01

    Assessment of the motor unit architecture based on concentric electrode motor unit potentials requires a thorough understanding of the recording characteristics of the concentric EMG electrode. Previous simulation studies have attempted to include the effect of EMG electrodes on the recorded waveforms by uniformly averaging the tissue potential at the coordinates of one- or two-dimensional electrode models. By employing the boundary element method, this paper improves earlier models of the concentric EMG electrode by including an accurate geometric representation of the electrode, as well as the mutual electrical influence between the electrode surfaces. A three-dimensional sensitivity function is defined from which information about the preferential direction of sensitivity, blind spots, phase changes, rate of attenuation, and range of pick-up radius can be derived. The study focuses on the intrinsic features linked to the geometry of the electrode. The results show that the cannula perturbs the potential distribution significantly. The core and the cannula electrodes measure potentials of the same order of magnitude in all of the pick-up range, except adjacent to the central wire, where the latter dominates the sensitivity function. The preferential directions of sensitivity are determined by the amount of geometric offset between the individual sensitivity functions of the core and the cannula. The sensitivity function also reveals a complicated pattern of phase changes in the pick-up range. Potentials from fibers located behind the tip or along the cannula are recorded with reversed polarity compared to those located in front of the tip. Rotation of the electrode about its axis was found to alter the duration, the peak-to-peak amplitude, and the rise time of waveforms recorded from a moving dipole.

  18. Evaluation of Head Orientation and Neck Muscle EMG Signals as Command Inputs to a Human-Computer Interface for Individuals with High Tetraplegia

    PubMed Central

    Williams, Matthew R.; Kirsch, Robert F.

    2013-01-01

    We investigated the performance of three user interfaces for restoration of cursor control in individuals with tetraplegia: head orientation, EMG from face and neck muscles, and a standard computer mouse (for comparison). Subjects engaged in a 2D, center-out, Fitts’ Law style task and performance was evaluated using several measures. Overall, head orientation commanded motion resembled mouse commanded cursor motion (smooth, accurate movements to all targets), although with somewhat lower performance. EMG commanded movements exhibited a higher average speed, but other performance measures were lower, particularly for diagonal targets. Compared to head orientation, EMG as a cursor command source was less accurate, was more affected by target direction and was more prone to overshoot the target. In particular, EMG commands for diagonal targets were more sequential, moving first in one direction and then the other rather than moving simultaneous in the two directions. While the relative performance of each user interface differs, each has specific advantages depending on the application. PMID:18990652

  19. Electromyography (EMG) analysis on impact of classroom chair and table usage among primary school students in Perlis

    NASA Astrophysics Data System (ADS)

    Jing, Ewe Hui; Shan, Lim Shaiu; Effendi, M. S. M.; Rosli, Muhamad Farizuan

    2017-09-01

    The existing design of primary school classroom chair and table had brought low back pain, neck pain and shoulder pain problems respectively among students in primary school. The purpose of this study is to relate the electromyography (EMG) analysis with the most critical area of the body during sitting and writing. Six male and six female primary school students from SK Seri Perlis with no back pain, neck pain and shoulder pain problems involved were invited as respondents in this study. EMG experiment was carried out by first determined the critical point at T9 and L3 from thoracic and lumbar segment respectively for ECG electrode placement and performed with a series of sitting trials for analysis. The sitting trials performed were slouch to lumbopelvic sitting and slouch to thoracic sitting follow by instruction. Next, the electrode placement was identified at C2-C3 on cervical spine for neck and at midpoint between C7 to the lateral edge of acromion spanning for shoulder respectively. These points were identified for a series of writing task performing for the EMG analysis. There were two type of writing task which included writing by looking at the whiteboard and paper placed on the table. The subjects were instructed to rest during the experiment when necessary. During lumbopelvic sitting posture, the average muscle activation on lumbar area was at the highest peak. The peak indicated that there was critical effect from the experimental finding. The performance of writing task from whiteboard gave rise a higher impact on neck muscle while writing task from paper had a greater impact on shoulder muscle. The critical affected muscle on these areas was proven on these written tasks. The EMG experiment showed that the existing design of primary school classroom chair and table had brought impact on lumbar, neck and shoulder towards the students who were using. A future recommendation suggests that to redesign primary school classroom chair and table which

  20. [Women boxing athletes' EMG of upper limbs and lumbar muscles in the training of air striking of straight punch].

    PubMed

    Zhang, Ri-Hui; Kang, Zhi-Xin

    2011-05-01

    To study training effect of upper limbs and lumbar muscles in the proceed of air striking of straight punch by analyzing boxing athletes' changes of electromyogram (EMG). We measured EMG of ten women boxing athletes' upper arm biceps (contractor muscle), upper arm triceps (antagonistic muscle), forearm flexor muscle (contractor muscle), forearm extensor muscle (antagonistic muscle), and lumbar muscles by ME6000 (Mega Electronics Ltd.). The stipulated exercise was to do air striking of straight punch with loads of 2.5 kg of dumbbell in the hand until exhausted. In the proceed of exercise-induce exhausted, the descend magnitude and speed of median frequency (MF) in upper limb antagonistic muscle exceeded to contracting muscle, moreover, the work percentage showed that contractor have done a larger percentage of work than antagonistic muscle. Compared with world champion's EMG, the majority of ordinary athletes' lumbar muscles MF revealed non-drop tendency, and the work percentage showed that lumbar muscles had a very little percentage of work. After comparing the EMG test index in upper limb and lumbar muscle of average boxing athletes with that of the world champion, we find the testees lack of the training of upper limb antagonistic muscle and lumbar muscle, and more trainings aimed at these muscles need to be taken.

  1. Effective Synchronization of EEG and EMG for Mobile Brain/Body Imaging in Clinical Settings.

    PubMed

    Artoni, Fiorenzo; Barsotti, Annalisa; Guanziroli, Eleonora; Micera, Silvestro; Landi, Alberto; Molteni, Franco

    2017-01-01

    Mobile Brain/Body Imaging (MoBI) is rapidly gaining traction as a new imaging modality to study how cognitive processes support locomotion. Electroencephalogram (EEG) and electromyogram (EMG), due to their time resolution, non-invasiveness and portability are the techniques of choice for MoBI, but synchronization requirements among others restrict its use to high-end research facilities. Here we test the effectiveness of a technique that enables us to achieve MoBI-grade synchronization of EEG and EMG, even when other strategies (such as Lab Streaming Layer (LSL)) cannot be used e.g., due to the unavailability of proprietary Application Programming Interfaces (APIs), which is often the case in clinical settings. The proposed strategy is that of aligning several spikes at the beginning and end of the session. We delivered a train of spikes to the EEG amplifier and EMG electrodes every 2 s over a 10-min time period. We selected a variable number of spikes (from 1 to 10) both at the beginning and end of the time series and linearly resampled the data so as to align them. We then compared the misalignment of the "middle" spikes over the whole recording to test for jitter and synchronization drifts, highlighting possible nonlinearities (due to hardware filters) and estimated the maximum length of the recording to achieve a [-5 to 5] ms misalignment range. We demonstrate that MoBI-grade synchronization can be achieved within 10-min recordings with a 1.7 ms jitter and [-5 5] ms misalignment range. We show that repeated spike delivery can be used to test online synchronization options and to troubleshoot synchronization issues over EEG and EMG. We also show that synchronization cannot rely only on the equipment sampling rate advertised by manufacturers. The synchronization strategy described can be used virtually in every clinical environment, and may increase the interest among a broader spectrum of clinicians and researchers in the MoBI framework, ultimately leading to a

  2. Subauditory Speech Recognition based on EMG/EPG Signals

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Lee, Diana Dee; Agabon, Shane; Lau, Sonie (Technical Monitor)

    2003-01-01

    Sub-vocal electromyogram/electro palatogram (EMG/EPG) signal classification is demonstrated as a method for silent speech recognition. Recorded electrode signals from the larynx and sublingual areas below the jaw are noise filtered and transformed into features using complex dual quad tree wavelet transforms. Feature sets for six sub-vocally pronounced words are trained using a trust region scaled conjugate gradient neural network. Real time signals for previously unseen patterns are classified into categories suitable for primitive control of graphic objects. Feature construction, recognition accuracy and an approach for extension of the technique to a variety of real world application areas are presented.

  3. The effect of 630-nm light stimulation on the sEMG signal of forearm muscle

    NASA Astrophysics Data System (ADS)

    Yang, Dan D.; Hou, W. Sheng; Wu, Xiao Y.; Zheng, Xiao L.; Zheng, Jun; Jiang, Ying T.

    2010-11-01

    This study aimed to explore if the red light irradiation can affect the electrophysiology performance of flexor digitorum superficialis (FDS) and fatigue recovery. Four healthy volunteers were randomly divided into two groups. In the designed force-tracking tasks, all subjects performed the four fingertip isometric force production except thumb with a load of 30% of the maximum voluntary contraction (MVC) force until exhaustion. Subsequently, for the red light group, red light irradiation (640 nm wavelength, 0.23J/cm2, 20 min) was used on the right forearm; for the control group, the subjects relaxed without red light irradiation. Then subjects were required to perform fatigue trail again, and sEMG signal was collected simultaneously from FDS during finger force production. Average rectified value (ARV) and median frequency (MF) of sEMG were calculated. Compared to the control group, the red light irradiation induced more smoother value of ARV between 30% and 40%, and the value of MF was obviously large and smooth. The above electrophysiological markers indicated that recovery from muscle fatigue may be positively affected by the red light irradiation, suggesting that sEMG would become a power tool for exploring the effect of red light irradiation on local muscle fatigue.

  4. Stretchable human-machine interface based on skin-conformal sEMG electrodes with self-similar geometry

    NASA Astrophysics Data System (ADS)

    Dong, Wentao; Zhu, Chen; Hu, Wei; Xiao, Lin; Huang, Yong'an

    2018-01-01

    Current stretchable surface electrodes have attracted increasing attention owing to their potential applications in biological signal monitoring, wearable human-machine interfaces (HMIs) and the Internet of Things. The paper proposed a stretchable HMI based on a surface electromyography (sEMG) electrode with a self-similar serpentine configuration. The sEMG electrode was transfer-printed onto the skin surface conformally to monitor biological signals, followed by signal classification and controlling of a mobile robot. Such electrodes can bear rather large deformation (such as >30%) under an appropriate areal coverage. The sEMG electrodes have been used to record electrophysiological signals from different parts of the body with sharp curvature, such as the index finger, back of the neck and face, and they exhibit great potential for HMI in the fields of robotics and healthcare. The electrodes placed onto the two wrists would generate two different signals with the fist clenched and loosened. It is classified to four kinds of signals with a combination of the gestures from the two wrists, that is, four control modes. Experiments demonstrated that the electrodes were successfully used as an HMI to control the motion of a mobile robot remotely. Project supported by the National Natural Science Foundation of China (Nos. 51635007, 91323303).

  5. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise.

    PubMed

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-08-19

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R(2) = 0:77 to R(2) = 0:98 (for blood lactate) and from R(2) = 0:81 to R(2) = 0:97 (for oxygen uptake) were obtained when using random forest regressors.

  6. Acute Warm-up Effects in Submaximal Athletes: An EMG Study of Skilled Violinists.

    PubMed

    McCrary, J Matt; Halaki, Mark; Sorkin, Evgeny; Ackermann, Bronwen J

    2016-02-01

    Warm-up is commonly recommended for injury prevention and performance enhancement across all activities, yet this recommendation is not supported by evidence for repetitive submaximal activities such as instrumental music performance. The objective of this study is to quantify the effects of cardiovascular, core muscle, and musical warm-ups on muscle activity levels, musical performance, and subjective experience in skilled violinists. Fifty-five undergraduate, postgraduate, or professional violinists performed five randomly ordered 45-s musical excerpts of varying physical demands both before and after a randomly assigned 15-min, moderate-intensity cardiovascular, core muscle, musical (technical violin exercises), or inactive control warm-up protocol. Surface EMG data were obtained for 16 muscles of the trunk, shoulders, and right arm during each musical performance. Sound recording and perceived exertion (RPE) data were also obtained. Sound recordings were randomly ordered and rated for performance quality by blinded adjudicators. Questionnaire data regarding participant pain sites and fitness levels were used to stratify participants according to pain and fitness levels. Data were analyzed using two- and three-factor ANCOVA (surface EMG and sound recording) and Wilcoxon matched pairs tests (RPE). None of the three warm-up protocols had significant effects on muscle activity levels (P ≥ 0.10). Performance quality did not significantly increase (P ≥ 0.21). RPE significantly decreased (P < 0.05) after warm-up for each of the three experimental warm-ups; control condition RPE did not significantly decrease (P > 0.23). Acute physiological and musical benefits from cardiovascular, core muscle, and musical warm-ups in skilled violinists are limited to decreases in RPE. This investigation provides data from the performing arts in support of sports medical evidence suggesting that warm-up only effectively enhances maximal strength and power performance.

  7. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    PubMed

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.

  8. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton

    PubMed Central

    Kinnaird, Catherine R.; Ferris, Daniel P.

    2013-01-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to “fight” the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  9. Muscle-tendon units localization and activation level analysis based on high-density surface EMG array and NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-12-01

    Objective. Some skeletal muscles can be subdivided into smaller segments called muscle-tendon units (MTUs). The purpose of this paper is to propose a framework to locate the active region of the corresponding MTUs within a single skeletal muscle and to analyze the activation level varieties of different MTUs during a dynamic motion task. Approach. Biceps brachii and gastrocnemius were selected as targeted muscles and three dynamic motion tasks were designed and studied. Eight healthy male subjects participated in the data collection experiments, and 128-channel surface electromyographic (sEMG) signals were collected with a high-density sEMG electrode grid (a grid consists of 8 rows and 16 columns). Then the sEMG envelopes matrix was factorized into a matrix of weighting vectors and a matrix of time-varying coefficients by nonnegative matrix factorization algorithm. Main results. The experimental results demonstrated that the weightings vectors, which represent invariant pattern of muscle activity across all channels, could be used to estimate the location of MTUs and the time-varying coefficients could be used to depict the variation of MTUs activation level during dynamic motion task. Significance. The proposed method provides one way to analyze in-depth the functional state of MTUs during dynamic tasks and thus can be employed on multiple noteworthy sEMG-based applications such as muscle force estimation, muscle fatigue research and the control of myoelectric prostheses. This work was supported by the National Nature Science Foundation of China under Grant 61431017 and 61271138.

  10. Overactive bladder (OAB): A symptom in search of a disease - Its relationship to specific lower urinary tract symptoms and conditions.

    PubMed

    Van Batavia, Jason P; Combs, Andrew J; Fast, Angela M; Glassberg, Kenneth I

    2017-06-01

    The ICCS defines OAB by the subjective symptom of urgency; detrusor overactivity (DO) is only implied. While no other symptom is required, OAB can also be associated with urinary frequency, decreased functional bladder capacity, and incontinence. We sought to determine how often these associated findings occur in OAB and what if any uroflow/EMG-defined conditions are found to be associated with it. The charts of 548 children (231M, 318F; mean age 9.0 years, range 3-20) who presented sequentially with urgency (OAB), over a period of 2 years, were reviewed paying particular attention to whether or not there was a history of frequency and/or daytime incontinence in addition to the urgency. All patients had been previously diagnosed with one of the following four lower urinary tract (LUT) conditions based on specific uroflow/EMG findings: 1. dysfunctional voiding (DV; active pelvic floor EMG during voiding); 2. idiopathic detrusor overactivity disorder (IDOD; OAB with a short EMG lag time (<2 s), and quiet pelvic floor EMG during voiding); 3. detrusor underutilization disorder (DUD; willful infrequent voiding with %EBC >125%, quiet EMG during voiding); and 4. primary bladder neck dysfunction (PBND; prolonged EMG lag time (>6 s), quiet EMG during voiding, and depressed uroflow curve). Mean %EBC was compared between patients with urgency alone and those with urgency plus other symptoms. Any association with gender was analyzed. Urgency was accompanied by either frequency or daytime incontinence in 91% of the children (summary Table). Daytime incontinence was reported in 398 (72.6%) and frequency in 268 (48.9%). Mean %EBC was 80.9. Females were more likely to report daytime incontinence (76.7% vs. 66.7%, p = 0.02) and frequency was found more often in males (63.6% vs. 38.1%, p < 0.001). %EBC was less in males (70.0 vs. 88.8, p < 0.001). The majority of patients with urgency were diagnosed with IDOD (62%), while 15% had DV, 5% PBND, 3% DUD, and in 15%, the uroflow/EMG

  11. Human-machine interfaces based on EMG and EEG applied to robotic systems.

    PubMed

    Ferreira, Andre; Celeste, Wanderley C; Cheein, Fernando A; Bastos-Filho, Teodiano F; Sarcinelli-Filho, Mario; Carelli, Ricardo

    2008-03-26

    Two different Human-Machine Interfaces (HMIs) were developed, both based on electro-biological signals. One is based on the EMG signal and the other is based on the EEG signal. Two major features of such interfaces are their relatively simple data acquisition and processing systems, which need just a few hardware and software resources, so that they are, computationally and financially speaking, low cost solutions. Both interfaces were applied to robotic systems, and their performances are analyzed here. The EMG-based HMI was tested in a mobile robot, while the EEG-based HMI was tested in a mobile robot and a robotic manipulator as well. Experiments using the EMG-based HMI were carried out by eight individuals, who were asked to accomplish ten eye blinks with each eye, in order to test the eye blink detection algorithm. An average rightness rate of about 95% reached by individuals with the ability to blink both eyes allowed to conclude that the system could be used to command devices. Experiments with EEG consisted of inviting 25 people (some of them had suffered cases of meningitis and epilepsy) to test the system. All of them managed to deal with the HMI in only one training session. Most of them learnt how to use such HMI in less than 15 minutes. The minimum and maximum training times observed were 3 and 50 minutes, respectively. Such works are the initial parts of a system to help people with neuromotor diseases, including those with severe dysfunctions. The next steps are to convert a commercial wheelchair in an autonomous mobile vehicle; to implement the HMI onboard the autonomous wheelchair thus obtained to assist people with motor diseases, and to explore the potentiality of EEG signals, making the EEG-based HMI more robust and faster, aiming at using it to help individuals with severe motor dysfunctions.

  12. Recurrence quantification analysis of electrically evoked surface EMG signal.

    PubMed

    Liu, Chunling; Wang, Xu

    2005-01-01

    Recurrence Plot is a quite useful tool used in time-series analysis, in particular for measuring unstable periodic orbits embedded in a chaotic dynamical system. This paper introduced the structures of the Recurrence Plot and the ways of the plot coming into being. Then the way of the quantification of the Recurrence Plot is defined. In this paper, one of the possible applications of Recurrence Quantification Analysis (RQA) strategy to the analysis of electrical stimulation evoked surface EMG. The result shows the percent determination is increased along with stimulation intensity.

  13. An ICA-EBM-Based sEMG Classifier for Recognizing Lower Limb Movements in Individuals With and Without Knee Pathology.

    PubMed

    Naik, Ganesh R; Selvan, S Easter; Arjunan, Sridhar P; Acharyya, Amit; Kumar, Dinesh K; Ramanujam, Arvind; Nguyen, Hung T

    2018-03-01

    Surface electromyography (sEMG) data acquired during lower limb movements has the potential for investigating knee pathology. Nevertheless, a major challenge encountered with sEMG signals generated by lower limb movements is the intersubject variability, because the signals recorded from the leg or thigh muscles are contingent on the characteristics of a subject such as gait activity and muscle structure. In order to cope with this difficulty, we have designed a three-step classification scheme. First, the multichannel sEMG is decomposed into activities of the underlying sources by means of independent component analysis via entropy bound minimization. Next, a set of time-domain features, which would best discriminate various movements, are extracted from the source estimates. Finally, the feature selection is performed with the help of the Fisher score and a scree-plot-based statistical technique, prior to feeding the dimension-reduced features to the linear discriminant analysis. The investigation involves 11 healthy subjects and 11 individuals with knee pathology performing three different lower limb movements, namely, walking, sitting, and standing, which yielded an average classification accuracy of 96.1% and 86.2%, respectively. While the outcome of this study per se is very encouraging, with suitable improvement, the clinical application of such an sEMG-based pattern recognition system that distinguishes healthy and knee pathological subjects would be an attractive consequence.

  14. Linear methods for reducing EMG contamination in peripheral nerve motor decodes.

    PubMed

    Kagan, Zachary B; Wendelken, Suzanne; Page, David M; Davis, Tyler; Hutchinson, Douglas T; Clark, Gregory A; Warren, David J

    2016-08-01

    Signals recorded from the peripheral nervous system (PNS) with high channel count penetrating microelectrode arrays, such as the Utah Slanted Electrode Array (USEA), often have electromyographic (EMG) signals contaminating the neural signal. This common-mode signal source may prevent single neural units from successfully being detected, thus hindering motor decode algorithms. Reducing this EMG contamination may lead to more accurate motor decode performance. A virtual reference (VR), created by a weighted linear combination of signals from a subset of all available channels, can be used to reduce this EMG contamination. Four methods of determining individual channel weights and six different methods of selecting subsets of channels were investigated (24 different VR types in total). The methods of determining individual channel weights were equal weighting, regression-based weighting, and two different proximity-based weightings. The subsets of channels were selected by a radius-based criteria, such that a channel was included if it was within a particular radius of inclusion from the target channel. These six radii of inclusion were 1.5, 2.9, 3.2, 5, 8.4, and 12.8 electrode-distances; the 12.8 electrode radius includes all USEA electrodes. We found that application of a VR improves the detectability of neural events via increasing the SNR, but we found no statistically meaningful difference amongst the VR types we examined. The computational complexity of implementation varies with respect to the method of determining channel weights and the number of channels in a subset, but does not correlate with VR performance. Hence, we examined the computational costs of calculating and applying the VR and based on these criteria, we recommend an equal weighting method of assigning weights with a 3.2 electrode-distance radius of inclusion. Further, we found empirically that application of the recommended VR will require less than 1 ms for 33.3 ms of data from one USEA.

  15. Use of sEMG in identification of low level muscle activities: features based on ICA and fractal dimension.

    PubMed

    Naik, Ganesh R; Kumar, Dinesh K; Arjunan, Sridhar

    2009-01-01

    This paper has experimentally verified and compared features of sEMG (Surface Electromyogram) such as ICA (Independent Component Analysis) and Fractal Dimension (FD) for identification of low level forearm muscle activities. The fractal dimension was used as a feature as reported in the literature. The normalized feature values were used as training and testing vectors for an Artificial neural network (ANN), in order to reduce inter-experimental variations. The identification accuracy using FD of four channels sEMG was 58%, and increased to 96% when the signals are separated to their independent components using ICA.

  16. The effects of whole body vibration on EMG activity of the upper extremity muscles in static modified push up position.

    PubMed

    Ashnagar, Zinat; Shadmehr, Azadeh; Hadian, Mohammadreza; Talebian, Saeed; Jalaei, Shohreh

    2016-08-10

    Whole Body Vibration (WBV) has been reported to change neuromuscular activity which indirectly assessed by electromyography (EMG). Although researches regarding the influence of WBV on EMG activity of the upper extremity muscles are in their infancy, contradictory findings have been reported as a result of dissimilar protocols. The purpose of this study was to investigate the effects of WBV on electromyography (EMG) activity of upper extremity muscles in static modified push up position. Forty recreationally active females were randomly assigned in WBV and control groups. Participants in WBV group received 5 sets of 30 seconds vibration at 5 mm (peak to peak) and 30 Hz by using vibratory platform. No vibration stimulus was used in the control group. Surface EMG was recorded from Upper Trapezius (UT), Serratus Anterior (SA), Biceps Brachii (BB) and Triceps Brachii (TB) muscles before, during and after the vibration protocol while the subjects maintained the static modified push up position. EMG signals were expressed as root mean square (EMGrms) and normalized by maximum voluntary exertion (MVE). EMGrms activity of the studied muscles increased significantly during the vibration protocol in the WBV group comparing to the control group (P ≤ 0.05). The results indicated that vibration stimulus transmitting via hands increased muscle activity of UT, SA, BB and TB muscles by an average of 206%, 60%, 106% and 120%, respectively, comparing to pre vibration values. These findings suggest that short exposure to the WBV could increase the EMGrms activity of the upper extremity muscles in the static modified push-up position. However, more sessions of WBV application require for a proper judgment.

  17. Supplementing biomechanical modeling with EMG analysis

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Jagodnik, Kathleen; Crentsil, Lawton; Humphreys, Bradley; Funk, Justin; Gallo, Christopher; Thompson, William; DeWitt, John; Perusek, Gail

    2016-01-01

    It is well established that astronauts experience musculoskeletal deconditioning when exposed to microgravity environments for long periods of time. Spaceflight exercise is used to counteract these effects, and the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS) has been effective in minimizing musculoskeletal losses. However, the exercise devices of the new exploration vehicles will have requirements of limited mass, power and volume. Because of these limitations, there is a concern that the exercise devices will not be as effective as ARED in maintaining astronaut performance. Therefore, biomechanical modeling is being performed to provide insight on whether the small Multi-Purpose Crew Vehicle (MPCV) device, which utilizes a single-strap design, will provide sufficient physiological loading to maintain musculoskeletal performance. Electromyography (EMG) data are used to supplement the biomechanical model results and to explore differences in muscle activation patterns during exercises using different loading configurations.

  18. Modification of postural response caused by footwear conditions.

    PubMed

    Maejima, H; Kamoda, C; Takayanagi, K; Hosoda, M; Kobayashi, R; Minematsu, A; Sasaki, H; Matsuda, Y; Tanaka, Y; Matsuo, A; Kanemura, N; Ueda, T; Yoshimura, O

    2000-01-01

    The purpose of this study was to clarify the effect of changing footwear conditions on postural response against postural perturbation. Twenty-three healthy subjects participated in this study. Postural response was induced by moving a platform forward, hereafter referred to as forward-perturbation of a platform. The center of pressure (COP) from the force plate and the electromyograms (EMG) of the tibialis anterior (TA) and quadriceps femoris (QUAD), which are both agonists of the response, were measured. The effect of plantar material and shape of footwear on postural response was examined as footwear condition. Changing plantar materials had an effect on integrated EMG of the agonists (IEMG) but not on the response pattern. On the other hand, the shape of footwear had an effect on the response pattern but not on IEMG. It was supposed from this result that changes in somatosensory input, caused by coupling of plantar material and shape of footwear, modifies postural response variously.

  19. Comparative muscle study fatigue with sEMG signals during the isotonic and isometric tasks for diagnostics purposes.

    PubMed

    Sarmiento, Jhon F; Benevides, Alessandro B; Moreira, Marcelo H; Elias, Arlindo; Bastos, Teodiano F; Silva, Ian V; Pelegrina, Claudinei C

    2011-01-01

    The study of fatigue is an important tool for diagnostics of disease, sports, ergonomics and robotics areas. This work deals with the analysis of sEMG most important fatigue muscle indicators with use of signal processing in isometric and isotonic tasks with the propose of standardizing fatigue protocol to select the data acquisition and processing with diagnostic proposes. As a result, the slope of the RMS, ARV and MNF indicators were successful to describe the fatigue behavior expected. Whereas that, MDF and AIF indicators failed in the description of fatigue. Similarly, the use of a constant load for sEMG data acquisition was the best strategy in both tasks.

  20. Design of a portable, intrinsically safe multichannel acquisition system for high-resolution, real-time processing HD-sEMG.

    PubMed

    Barone, Umberto; Merletti, Roberto

    2013-08-01

    A compact and portable system for real-time, multichannel, HD-sEMG acquisition is presented. The device is based on a modular, multiboard approach for scalability and to optimize power consumption for battery operating mode. The proposed modular approach allows us to configure the number of sEMG channels from 64 to 424. A plastic-optical-fiber-based 10/100 Ethernet link is implemented on a field-programmable gate array (FPGA)-based board for real-time, safety data transmission toward a personal computer or laptop for data storage and offline analysis. The high-performance A/D conversion stage, based on 24-bit ADC, allows us to automatically serialize the samples and transmits them on a single SPI bus connecting a sequence of up to 14 ADC chips in chain mode. The prototype is configured to work with 64 channels and a sample frequency of 2.441 ksps (derived from 25-MHz clock source), corresponding to a real data throughput of 3 Mbps. The prototype was assembled to demonstrate the available features (e.g., scalability) and evaluate the expected performances. The analog front end board could be dynamically configured to acquire sEMG signals in monopolar or single differential mode by means of FPGA I/O interface. The system can acquire continuously 64 channels for up to 5 h with a lightweight battery pack of 7.5 Vdc/2200 mAh. A PC-based application was also developed, by means of the open source Qt Development Kit from Nokia, for prototype characterization, sEMG measurements, and real-time visualization of 2-D maps.