These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

3718-F Alkali Metal Treatment and Storage Facility Closure Plan  

SciTech Connect

Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

none,

1991-12-01

2

105-DR Large Sodium Fire Facility closure plan. Revision 1  

SciTech Connect

The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, and activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide a means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950`s and is located in the 100-D Area of the Hanford Site. The building housed the 105-DR defense reactor, which was shut down in 1964. The LSFF was initially used only for engineering-scale alkali metal reaction studies. In addition, the Fusion Safety Support Studies program sponsored intermediate-size safety reaction tests in the LSFF with lithium and lithium lead compounds. The facility has also been used to store and treat alkali metal waste, therefore the LSFF is subject to the regulatory requirements for the storage and treatment of dangerous waste. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610. This closure plan presents a description of the facility, the history of waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected.

Not Available

1993-05-01

3

303-K Storage Facility closure plan. Revision 2  

SciTech Connect

Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

Not Available

1993-12-15

4

3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1  

SciTech Connect

The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

none,

1992-11-01

5

State Environmental Policy Act (SEPA) Checklist for the 105-DR Large Sodium Fire Facility Closure Plan  

SciTech Connect

The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950's and is located in the 100-D Area of the Hanford Site. The building housed the DR defense reactor, which was shut down in 1964. The LSFF is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Clean closure is the proposed method of closure for the LSFF. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989). This closure plan presents a description of the facility, the history of wastes managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected.

Not Available

1990-09-01

6

Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility  

SciTech Connect

The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. This review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.

Bamberger, Judith A.; Burks, Barry L.; Quigley, Keith D.; Butterworth, S. W.; Falter, Diedre D.

2001-09-28

7

HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

K. Winterholler

2007-01-31

8

State Environmental Policy Act (SEPA) environmental checklist forms for 304 Concretion Facility Closure Plan. Revision 2  

SciTech Connect

The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 304 Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 304 Facility, the history of materials and waste managed, and the procedures that will be followed to close the 304 Facility. The 304 Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

Not Available

1993-11-01

9

Mobilization plan for the Y-12 9409-5 tank storage facility RCRA closure plan. Final report. Revision 1  

SciTech Connect

This mobilization plan identifies the activities and equipment necessary to begin the field sampling for the Oak Ridge Y-12 9409-5 Diked Tank Storage Facility (DTSF) Resource Conservation and Recovery Act (RCRA) closure. Elements of the plan outline the necessary components of each mobilization task and identify whether SAIC or the Martin Marietta Energy Systems, Inc. Y-12 Environmental Restoration Division will be responsible for task coordination. Field work will be conducted in two phases: mobilization phase and soil sampling phase. Training and medical monitoring, access, permits and passes, decontamination/staging area, equipment, and management are covered in this document.

NONE

1993-11-01

10

ICPP calcined solids storage facility closure study. Volume II: Cost estimates, planning schedules, yearly cost flowcharts, and life-cycle cost estimates  

SciTech Connect

This document contains Volume II of the Closure Study for the Idaho Chemical Processing Plant Calcined Solids Storage Facility. This volume contains draft information on cost estimates, planning schedules, yearly cost flowcharts, and life-cycle costs for the four options described in Volume I: (1) Risk-Based Clean Closure; NRC Class C fill, (2) Risk-Based Clean Closure; Clean fill, (3) Closure to landfill Standards; NRC Class C fill, and (4) Closure to Landfill Standards; Clean fill.

NONE

1998-02-01

11

Final closure plan for the high-explosives open burn treatment facility at Lawrence Livermore National Laboratory Experimental Test Site 300  

SciTech Connect

This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration of site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.

Mathews, S.

1997-04-01

12

100-D Ponds closure plan. Revision 1  

SciTech Connect

The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit is clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure.

Petersen, S.W.

1997-09-01

13

FINAL CLOSURE PLAN SURFACE IMPOUNDMENTS CLOSURE, SITE 300  

SciTech Connect

Lawrence Livermore National Laboratory of the University of California (LLNL) operates two Class II surface impoundments that store wastewater that is discharged from a number of buildings located on the Site 300 Facility (Site 300). The wastewater is the by-product of explosives processing. Reduction in the volume of water discharged from these buildings over the past several years has significantly reduced the wastewater storage needs. In addition, the impoundments were constructed in 1984, and the high-density polyethylene (HDPE) geomembrane liners are nearing the end of their service life. The purpose of this project is to clean close the surface impoundments and provide new wastewater storage using portable, above ground storage tanks at six locations. The tanks will be installed prior to closure of the impoundments and will include heaters for allowing evaporation during relatively cool weather. Golder Associates (Golder) has prepared this Final Closure Plan (Closure Plan) on behalf of LLNL to address construction associated with the clean closure of the impoundments. This Closure Plan complies with State Water Resources Control Board (SWRCB) Section 21400 of the California Code of Regulations Title 27 (27 CCR {section}21400). As required by these regulations and guidance, this Plan provides the following information: (1) A site characterization, including the site location, history, current operations, and geology and hydrogeology; (2) The regulatory requirements relevant to clean closure of the impoundments; (3) The closure procedures; and, (4) The procedures for validation and documentation of clean closure.

Lane, J E; Scott, J E; Mathews, S E

2004-09-29

14

HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

Evans, S. K.

2007-11-07

15

CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS  

SciTech Connect

The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been defueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D&D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D&D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009.

LESPERANCE, C.P.

2007-05-23

16

CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS  

SciTech Connect

Deactivation activities are currently in progress at the Fast Flux Test Facility. These deactivation activities are intended to remove most hazardous materials and prepare the facility for final disposition. The two major hazards to be removed are the nuclear fuel and the alkali metal (most sodium) coolant. The fuel and coolant removal activities are proceeding well and are expected to complete in 2006. Plant systems are being shut down as allowed by completion of various fuel and coolant removal actions. A Decommissioning Environmental Impact Statement is in progress to evaluate a range of potential final disposition end states.

BURKE, T.M.

2005-04-13

17

Hanford Patrol Academy demolition sites closure plan  

SciTech Connect

The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

Not Available

1993-09-30

18

303-K Storage Facility report on FY98 closure activities  

SciTech Connect

This report summarizes and evaluates the decontamination activities, sampling activities, and sample analysis performed in support of the closure of the 303-K Storage Facility. The evaluation is based on the validated data included in the data validation package (98-EAP-346) for the 303-K Storage Facility. The results of this evaluation will be used for assessing contamination for the purpose of closing the 303-K Storage Facility as described in the 303-K Storage Facility Closure Plan, DOE/RL-90-04. The closure strategy for the 303-K Storage Facility is to decontaminate the interior of the north half of the 303-K Building to remove known or suspected dangerous waste contamination, to sample the interior concrete and exterior soils for the constituents of concern, and then to perform data analysis, with an evaluation to determine if the closure activities and data meet the closure criteria. The closure criteria for the 303-K Storage Facility is that the concentrations of constituents of concern are not present above the cleanup levels. Based on the evaluation of the decontamination activities, sampling activities, and sample data, determination has been made that the soils at the 303-K Storage Facility meet the cleanup performance standards (WMH 1997) and can be clean closed. The evaluation determined that the 303-K Building cannot be clean closed without additional closure activities. An additional evaluation will be needed to determine the specific activities required to clean close the 303-K Storage Facility. The radiological contamination at the 303-K Storage Facility is not addressed by the closure strategy.

Adler, J.G.

1998-07-17

19

300 Area waste acid treatment system closure plan  

SciTech Connect

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

LUKE, S.N.

1999-05-17

20

Contingent post-closure plan, hazardous waste management units at selected maintenance facilities, US Army National Training Center, Fort Irwin, California  

SciTech Connect

The National Training Center (NTC) at Fort Irwin, California, is a US Army training installation that provides tactical experience for battalion/task forces and squadrons in a mid- to high-intensity combat scenario. Through joint exercises with US Air Force and other services, the NTC also provides a data source for improvements of training doctrines, organization, and equipment. To meet the training and operational needs of the NTC, several maintenance facilities provide general and direct support for mechanical devices, equipment, and vehicles. Maintenance products used at these facilities include fuels, petroleum-based oils, lubricating grease, various degreasing solvents, antifreeze (ethylene glycol), transmission fluid, brake fluid, and hydraulic oil. Used or spent petroleum-based products generated at the maintenance facilities are temporarily accumulated in underground storage tanks (USTs), collected by the NTC hazardous waste management contractor (HAZCO), and stored at the Petroleum, Oil, and Lubricant (POL) Storage Facility, Building 630, until shipped off site to be recovered, reused, and/or reclaimed. Spent degreasing solvents and other hazardous wastes are containerized and stored on-base for up to 90 days at the NTC's Hazardous Waste Storage Facility, Building 703. The US Environmental Protection Agency (EPA) performed an inspection and reviewed the hazardous waste management operations of the NTC. Inspections indicated that the NTC had violated one or more requirements of Subtitle C of the Resource Conservation and Recovery Act (RCRA) and as a result of these violations was issued a Notice of Noncompliance, Notice of Necessity for Conference, and Proposed Compliance Schedule (NON) dated October 13, 1989. The following post-closure plan is the compliance-based approach for the NTC to respond to the regulatory violations cited in the NON.

Not Available

1992-01-01

21

Contingent post-closure plan, hazardous waste management units at selected maintenance facilities, US Army National Training Center, Fort Irwin, California  

SciTech Connect

The National Training Center (NTC) at Fort Irwin, California, is a US Army training installation that provides tactical experience for battalion/task forces and squadrons in a mid- to high-intensity combat scenario. Through joint exercises with US Air Force and other services, the NTC also provides a data source for improvements of training doctrines, organization, and equipment. To meet the training and operational needs of the NTC, several maintenance facilities provide general and direct support for mechanical devices, equipment, and vehicles. Maintenance products used at these facilities include fuels, petroleum-based oils, lubricating grease, various degreasing solvents, antifreeze (ethylene glycol), transmission fluid, brake fluid, and hydraulic oil. Used or spent petroleum-based products generated at the maintenance facilities are temporarily accumulated in underground storage tanks (USTs), collected by the NTC hazardous waste management contractor (HAZCO), and stored at the Petroleum, Oil, and Lubricant (POL) Storage Facility, Building 630, until shipped off site to be recovered, reused, and/or reclaimed. Spent degreasing solvents and other hazardous wastes are containerized and stored on-base for up to 90 days at the NTC`s Hazardous Waste Storage Facility, Building 703. The US Environmental Protection Agency (EPA) performed an inspection and reviewed the hazardous waste management operations of the NTC. Inspections indicated that the NTC had violated one or more requirements of Subtitle C of the Resource Conservation and Recovery Act (RCRA) and as a result of these violations was issued a Notice of Noncompliance, Notice of Necessity for Conference, and Proposed Compliance Schedule (NON) dated October 13, 1989. The following post-closure plan is the compliance-based approach for the NTC to respond to the regulatory violations cited in the NON.

Not Available

1992-01-01

22

Facilities Planning & Management FACILITIES PLANNING & MANAGEMENT  

E-print Network

Geoffrey Ellazar Shuttle Drivers Budget Manager Caren Johnson Admin.Analyst I Mikki Comstock SeniorFacilities Planning & Management FACILITIES PLANNING & MANAGEMENT Associate Executive Director Property Manager Deborah Collet Mike Johnson Rick Sims Building Maintenance Workers Admin. Support Asst. I

Ponce, V. Miguel

23

Calcined solids storage facility closure study  

SciTech Connect

The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others] [and others

1998-02-01

24

40 CFR 264.112 - Closure plan; amendment of plan.  

Code of Federal Regulations, 2013 CFR

...prior to the date on which he expects to begin closure of a surface impoundment, waste...prior to the date on which he expects to begin final closure of a facility with only...prior to the date on which he expects to begin partial or final closure of a boiler...

2013-07-01

25

40 CFR 264.112 - Closure plan; amendment of plan.  

Code of Federal Regulations, 2014 CFR

...prior to the date on which he expects to begin closure of a surface impoundment, waste...prior to the date on which he expects to begin final closure of a facility with only...prior to the date on which he expects to begin partial or final closure of a boiler...

2014-07-01

26

Closure Plan for Active Low Level Burial Grounds  

SciTech Connect

This plan has been prepared in response to direction from the U.S. Department of Energy. The purpose of the plan is to define approaches that will be implemented to ensure protection of the public and the environment when active Low-Level Burial Grounds (LLBGs) at the Hanford Site are closed. Performance assessments for active burial grounds in the 200 East and West 200 Areas provide current estimates of potential environmental contamination and doses to the ''maximum exposed individual'' from burial ground operation and closure and compare dose estimates to performance objective dose limits for the facilities. This is an Operational Closure Plan. The intent of the guidance in DOE Order 435.1 is that this plan will be a living document, like the facility performance assessments, and will be revised periodically through the operational life of the LLBGs to reflect updated information on waste inventory. management practices, facility transition planning, schedule dates, assessments of post-closure performance, and environmental consequences. Out year dates identified in this plan are tentative. A Final Closure Plan will be prepared in the future when the timing and extent of closure-related activities for LLBGs can be established with greater certainty. After current operations at the LLBGs are concluded, this plan proposes transitioning of these facilities to the Environmental Restoration Program. This action will enable the Environmental Restoration Program to design and implement consistent and coordinated final remedial actions for active and inactive LLBGs. Active and inactive burial grounds in the 200 West and 200 East Areas are commingled. This plan describes approaches that will be implemented during Interim Closure, Final Closure, and Institutional Control Periods to prepare LLBGs for surface barriers, and the construction of barriers, as well as the scope of inspection, monitoring and maintenance practices that will be performed during and after closure. Environmental monitoring is briefly discussed in this plan. However, a more comprehensive discussion of monitoring issues is provided in a separate performance assessment monitoring plan for LLBGs. Supporting information is provided regarding the geography, climate, hydrogeology, geochemistry and land-use practices of adjacent land areas.

SKELLY, W.A.

2000-11-16

27

PLAN FOR CLOSURE OF HANFORDS CENTRAL PLATEAU  

SciTech Connect

This paper summarizes an approach to reduce risk to the public and environment through accelerated closure of Hanford's Central Plateau, based on a plan developed by Fluor Hanford and submitted to the Department of Energy (DOE)-Richland Office, for consideration, in September, 2004. This plan provides a framework and starting point for discussions with regulators and further planning for closure activities on the Plateau. The closure strategy and approach required developing a full inventory of items needing closure as well as identifying and defining technical and regulatory approaches that were compatible with current regulatory processes, reduce risks, and met DOE objectives. This effort, and the paper that follows, integrates closure activities among several contractors and two DOE field offices.

AUSTIN, B.A.

2004-12-15

28

COMPREHENSIVE CLOSURE PLAN FOR THE HANFORD CENTRAL PLATEAU  

SciTech Connect

This paper describes a comprehensive and strategic plan that has been recently developed for the environmental closure of the Central Plateau area of the Hanford Site, a former weapons-production complex managed by the U.S. Department of Energy (DOE). This approach was submitted to the DOE Richland Operations Office by Fluor Hanford to provide a framework and roadmap to integrate ongoing operations with closure of facilities that are no longer actively used--all with a view to closing the Central Plateau by 2035. The plan is currently under consideration by the DOE.

LACKEY, M.B.

2005-05-31

29

Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary  

SciTech Connect

This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

Not Available

1990-06-01

30

Mixed Waste Management Facility closure at the Savannah River Site  

SciTech Connect

The Mixed Waste Management Facility of the Savannah River Plant received hazardous and solid low level radioactive wastes from 1972 until 1986. Because this facility did not have a permit to receive hazardous wastes, a Resource Conservation and Recovery Act closure was performed between 1987 and 1990. This closure consisted of dynamic compaction of the waste trenches and placement of a 3-foot clay cap, a 2-foot soil cover, and a vegetative layer. Operations of the waste disposal facility, tests performed to complete the closure design, and the construction of the closure cap are discussed herein.

Bittner, M.F.

1991-08-01

31

Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect

The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

NSTec Environmental Management

2008-09-01

32

Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray  

SciTech Connect

This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

Vigil-Holterman, Luciana R. [Los Alamos National Laboratory

2012-05-07

33

Single-shell tank closure work plan. Revision A  

SciTech Connect

In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs.

NONE

1995-06-01

34

324 Building REC and HLV Tank Closure Plan  

SciTech Connect

This closure plan describes the activities necessary to close the 324 Radiochemical Engineering Cells (REC) and High-Level Vault (HLV) in accordance with the Washington State Dangerous Waste regulations. To provide a complete description of the activities required, the closure plan relies on information contained in the 324 Building B-Cell Safety Cleanout Project (BCCP) plans, the 324 Building REC HLV Interim Waste Management Plan (IWMP), the Project Management Plan for Nuclear Facilities Management 300 Area Compliance Program, and the 324 High Level Vault Interim Removal Action Project (project management plan [PMP]). The IWMP addresses the management of mixed waste in accordance with state and federal hazardous waste regulations. It provides a strategy for managing high-activity mixed waste in compliance with Resource Conservation and Recovery Act (RCRA) requirements or provides for an alternative management approach for the waste. The BCCP outlines the past, present, and future activities necessary for removing from B-Cell the solid waste, including mixed waste generated as a result of historical research and development (R&D) activities conducted in the cell. The BCCP also includes all records and project files associated with the B-Cell cleanout. This information is referenced throughout the closure plan. The PMP sets forth the plans, organization, and systems that Pacific Northwest National Laboratory (PNNL) will use to direct and control the 324 High-Level Vault Interim Removal Action Project. This project will develop and implement a treatment strategy that will remove and stabilize the inventory of liquid waste from the 324 HLV tanks. The PMP also provides for flushing and sampling the flush solution.

Becker-Khaleel, B; Schlick, K. [Scienfific Ecology Group, Inc. Richland, WA (United States)

1995-12-01

35

Facility Planning and Management.  

ERIC Educational Resources Information Center

This chapter of "Principles of School Business Management" reviews the extensive range of activities associated with planning for and constructing school facilities. These activities include (1) organizing the staff and organizing the task; (2) conducting long-range planning (involving the gathering of data, the development of a planning document,…

Earthman, Glen I.

36

Hanford facility contingency plan  

SciTech Connect

The Hanford Facility Contingency Plan, together with each TSD unit- specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. Applicability of this plan to Hanford Facility activities is described in the Hanford Facility RCRA Permit, Dangerous Waste Portion, General Condition II.A. General Condition II.A applies to Part III TSD units, Part V TSD units, and to releases of hazardous substances which threaten human health or the environment. Additional information about the applicability of this document may also be found in the Hanford Facility RCRA Permit Handbook (DOE/RL-96-10). This plan includes descriptions of responses to a nonradiological hazardous substance spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. The term hazardous substances is defined in WAC 173-303-040 as: ``any liquid, solid, gas, or sludge, including any material, substance, product, commodity, or waste, regardless of quantity, that exhibits any of the physical, chemical or biological properties described in WAC 173-303-090 or 173-303-100.`` Whenever the term hazardous substances is used in this document, it will be used in the context of this definition. This plan includes descriptions of responses for spills or releases of hazardous substances occurring at areas between TSD units that may, or may not, threaten human health or the environment.

Sutton, L.N.

1996-07-01

37

Underground storage tank 253-D1U1 Closure Plan  

SciTech Connect

This report is a closure plan for a diesel fuel tank at the Lawrence Livermore National Laboratory. Included are maps of the site, work plans, and personnel information regarding training and qualification.

Mancieri, S.; Giuntoli, N.

1993-09-01

38

Comprehensive facilities plan  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

NONE

1997-09-01

39

Business Planning Core Facilities  

PubMed Central

Thoughtful business planning is pivotal to the success of any business/operational venture. When planned in a thoughtful and detailed manner there are very few operational or financial surprises for an institution or facility (service center) to contend with. At Stony Brook Medicine we include SWOT analysis and a detailed Market Analysis as part of the process. This is bolstered by an initiative to ensure institutional policies are met so that facilities remain in compliance throughout their lifecycle. As we operate 14 facilities we have had the opportunity to become creative in our approach to coordinate activities, virtualize services, integrate new software business-to-business partners, and finally coordinate plans for phased consolidation instead of outright termination of services when required. As the Associate Dean for Scientific Operations and Research Facilities, the shared research facilities (cores) of the Medical School are in my direct line of sight. We understand their value to the meeting our overall research mission. We have found that an active process of monitoring to predict trouble as much as possible is the best approach for facilities. Some case analysis of this type of interaction will be presented as well.

Itzkowitz, G.N.

2014-01-01

40

Calibration facility safety plan  

NASA Technical Reports Server (NTRS)

A set of requirements is presented to insure the highest practical standard of safety for the Apollo 17 Calibration Facility in terms of identifying all critical or catastrophic type hazard areas. Plans for either counteracting or eliminating these areas are presented. All functional operations in calibrating the ultraviolet spectrometer and the testing of its components are described.

Fastie, W. G.

1971-01-01

41

RCRA closure plan for underground storage tank 105-C  

SciTech Connect

A Reactor Department program for repairing heat exchangers created a low level radioactive waste, which was held in underground storage tank (UST) 105-C, hereafter referred to as the tank. According to Procedures used at the facility, the waste`s pH was adjusted to the 8.0--12.0 range before shipping it to the SRS Waste Management Department. For this reason, area personnel did not anticipate that the waste which is currently contained in the tank would have corrosive hazardous characteristic. However, recent analysis indicates that waste contained in the tank has a pH of greater than 12.5, thereby constituting a hazardous waste. Because the Department of Energy-Savannah River Office (DOE-SR) could not prove that the hazardous waste had been stored in the tank for less than 90 days, the State of South Carolina Department of Health and Environmental Control (SCDHEC) alleged that DOE-SR was in violation of the 1976 Code of Laws of South Carolina. As agreed in Settlement Agreement 90-74-SW between the DOE and SCDHEC, this is the required closure plan for Tank 105-C. The purpose of this document is to present SCDHEC with an official plan for closing the underground storage tank. Upon approval by SCDHEC, the schedule for closure will be an enforceable portion of this agreement.

Miles, W.C. Jr.

1990-10-01

42

216-B-3 expansion ponds closure plan  

SciTech Connect

This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

Not Available

1994-10-01

43

300 Area waste acid treatment system closure plan. Revision 1  

SciTech Connect

This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

NONE

1996-03-01

44

Facility Planning for Technology Implementation.  

ERIC Educational Resources Information Center

When planning new school buildings or modifications to existing structures, checking facility planning in relation to technology planning is critical. Areas requiring serious attention include space, electricity, lighting, security, furnishings, shielding, and acoustics. (MLF)

Ross, Tweed W.; Stewart, G. Kent

1993-01-01

45

Regulatory review of closure, post-closure and perpetual care funds at the energy solutions, LLC mixed waste facility  

SciTech Connect

EnergySolutions, LLC operates its Mixed Waste Facility at Clive, Utah under the provisions of its State-issued Part B Permit. The facility accepts waste that contains both hazardous and radioactive contaminants. Utah is an EPA Agreement State and therefore the Utah Division of Solid and Hazardous Waste (DSHW) is authorized to regulate the hazardous waste operations at the facility. The radioactive portion of the waste is regulated by the Utah Division of Radiation Control. 40 CFR 264.142 outlines the facility requirements for Closure Costs. The owner or operator must have a detailed written estimate of the cost of closing the facility in accordance with the rules. For many years the State of Utah had relied on the facility's estimate of closure costs as the amount that needed to be funded. This amount is reviewed annually and adjusted for inflation and for changes at the facility. In 2004 the agency and the facility requested bids from independent contractors to provide their estimate for closure costs. Three engineering firms bid on the project. The facility funded the project and both the agency and the facility chose one of the firms to provide an independent estimate. The engineering firms met with both parties and toured the facility. They were also provided with the current closure cost line items. Each firm provided an estimated cost for closure of the facility at the point in the facility's active life that would make the closure most expensive. Included with the direct costs were indirect line items such as overhead, profit, mobilization, hazardous working conditions and regulatory oversight. The agency and the facility reviewed the independent estimates and negotiated a final Closure and Post-Closure Cost Estimate for the Mixed Waste Facility. There are several mechanisms allowed under the rules to fund the Closure and Post- Closure Care Funds. EnergySolutions has chosen to fund their costs through the use of an insurance policy. Changing mechanisms from an irrevocable trust to an insurance policy required extensive review by the DSHW and the Utah Attorney General's Office. The duration of the Post-Closure Care Period is generally designated as 30 years under the hazardous waste rules. The Legislature of the State of Utah commissioned a review of the need for Perpetual Care Funds for hazardous waste facilities. This fund would provide funds for maintenance and monitoring of facilities following termination of the Post-Closure Permit. The DSHW has recommended to the legislature that a perpetual care fund be created. The legislature will study the recommendation and take appropriate action. (authors)

Willoughby III, O.H.; Lukes, G.C. [Utah Department of Environmental Quality, Div. of Solid and Hazardous Waste, Salt Lake City, UT (United States)

2007-07-01

46

40 CFR 265.118 - Post-closure plan; amendment of plan.  

Code of Federal Regulations, 2012 CFR

...time during the active life of the facility or...occur during the active life of the facility, including...the date he expects to begin partial or final closure...date he “expects to begin closure” of the first...to prevent threats to human health and the...

2012-07-01

47

40 CFR 265.118 - Post-closure plan; amendment of plan.  

Code of Federal Regulations, 2014 CFR

...time during the active life of the facility or...occur during the active life of the facility, including...the date he expects to begin partial or final closure...date he “expects to begin closure” of the first...to prevent threats to human health and the...

2014-07-01

48

CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 115: AREA 25 TEST CELL A FACILITY, NEVADA TEST SITE, NEVADA  

SciTech Connect

This Closure Report (CR) describes the activities performed to close CAU 115, Area 25 Test Cell A Facility, as presented in the NDEP-approved SAFER Plan (NNSA/NSO, 2004). The SAFER Plan includes a summary of the site history, process knowledge, and closure standards. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical and radiological data to confirm that the remediation goals were met and to document final site conditions. The approved closure alternative as presented in the SAFER Plan for CAU 115 (NNSA/NSO, 2004) was clean closure; however, closure in place was implemented under a Record of Technical Change (ROTC) to the SAFER Plan when radiological surveys indicated that the concrete reactor pad was radiologically activated and could not be decontaminated to meet free release levels. The ROTC is included as Appendix G of this report. The objectives of closure were to remove any trapped residual liquids and gases, dispose regulated and hazardous waste, decontaminate removable radiological contamination, demolish and dispose aboveground structures, remove the dewar as a best management practice (BMP), and characterize and restrict access to all remaining radiological contamination. Radiological contaminants of concern (COCs) included cobalt-60, cesium-137, strontium-90, uranium-234/235/236/238, and plutonium-239/240. Additional COCs included Resource Conservation and Recovery Act (RCRA) metals, polychlorinated biphenyls (PCBs), and asbestos.

NA

2006-03-01

49

Idaho HWMA/RCRA Closure Plan for Idaho Nuclear Technology and Engineering Center Tanks WM-182 and WM-183 - Rev. 2  

SciTech Connect

This document presents the plan for the closure of the Idaho Nuclear Technology and Engineering Center Tank Farm Facility tanks WM-182 and WM-183 in accordance with Idaho Hazardous Waste Management Act/Resource Conservation and Recovery Act interim status closure requirements. Closure of these two tanks is the first in a series of closures leading to the final closure of the eleven 300,000-gal tanks in the Tank Farm Facility. As such, closure of tanks WM-182 and WM-183 will serve as a proof-of-process demonstration of the waste removal, decontamination, and sampling techniques for the closure of the remaining Tank Farm Facility tanks. Such an approach is required because of the complexity and uniqueness of the Tank Farm Facility closure. This plan describes the closure units, objectives, and compliance strategy as well as the operational history and current status of the tanks. Decontamination, closure activities, and sampling and analysis will be performed with the goal of achieving clean closure of the tanks. Coordination with other regulatory requirements, such as U.S. Department of Energy closure requirements, is also discussed.

Evans, Susan Kay; unknown

2000-12-01

50

Texas Facilities Commission's Facility Management Strategic Plan  

E-print Network

funds with ARRA ?M&V ?Coordination with DM ?Coordination with Building Automation Project ESL-IC-09-11-12 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 Facility & Energy..., Texas, November 17 - 19, 2009 Facility Strategic Plan ?High Performance Building Approach ? Envelope ? Load Reduction ? (Re)Design ? Advanced Tactics ?Building Automation ? Sub-metering ? Controls ?Commissioning ? Assessment ? Continuous ?Facility...

Ramirez, J. A.

51

Underground storage tank 511-D1U1 closure plan  

SciTech Connect

This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

Mancieri, S.; Giuntoli, N.

1993-09-01

52

Closure plan evaluation for risk of acid rock drainage  

SciTech Connect

Control of acid rock drainage (ARD) is a long-term issue for many mine sites and is often a primary objective of remediation efforts. Some sites continue to require monitoring and management of ARD long after mine operation has ceased and closure is complete. In New Zealand, an innovative and quantitative approach was applied to evaluate the expected risk of ARD after implementation of the closure plan for the Golden Cross Mine. In addition, this future risk was compared to current operating conditions to provide an estimate of the reduction in risk provided by the remediation activities. This approach was useful to both the mine proponent and the regulatory agencies in assessing the effectiveness of the existing closure plan and providing focus on the components of greatest risk. Mine components remaining on site after closure that could potentially generate ARD under various failure scenarios were identified and evaluated. These components included the tailings decant pond, waste rock, stockpiles, open pit mine and water treatment systems. For each component, a series of initiating events and failure scenarios were identified, and a decision tree methodology was utilized to estimate the probability of ARD generation for both current and closure conditions. Due to the implementation of closure plans designed to minimize or eliminate ARD through regarding, construction of engineered covers and water management designs, the risk of ARD generation will be significantly reduced over time.

Dwire, D.L.; Krause, A.J.; Russell, L.J.

1999-07-01

53

School Nutrition Facility Planning Guide.  

ERIC Educational Resources Information Center

This publication is designed to help superintendents, local facilities coordinators, and food-service directors in planning the remodeling of an outdated food-service facility or the building of a new one. The introduction describes the roles of the local facility coordinator, the local child-nutrition director, the architect, the food-service…

Pannell, Dorothy VanEgmond

54

Considerations on Facilities Planning  

ERIC Educational Resources Information Center

Most facilities renovation projects occur because someone at the executive or board level has lobbied successfully for them. Often in public schools, the voters have agreed to the project as well via a building referendum. Therefore, facilities projects are highly visible to the community. Unlike many other issues in schools, facilities projects…

Baule, Steven

2007-01-01

55

40 CFR 264.112 - Closure plan; amendment of plan.  

Code of Federal Regulations, 2012 CFR

...certain surface impoundments and waste piles from which the owner or operator intends...operator of a surface impoundment or waste pile that intends to remove all hazardous...closure of a surface impoundment, waste pile, land treatment or landfill...

2012-07-01

56

40 CFR 264.112 - Closure plan; amendment of plan.  

Code of Federal Regulations, 2011 CFR

...certain surface impoundments and waste piles from which the owner or operator intends...operator of a surface impoundment or waste pile that intends to remove all hazardous...closure of a surface impoundment, waste pile, land treatment or landfill...

2011-07-01

57

Facility effluent monitoring plan determinations for the 400 Area facilities  

SciTech Connect

This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs.

Nickels, J.M.

1991-09-01

58

Facility Effluent Monitoring Plan determinations for the 600 Area facilities  

SciTech Connect

This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

Nickels, J.M.

1991-08-01

59

40 CFR 265.121 - Post-closure requirements for facilities that obtain enforceable documents in lieu of post...  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Post-closure requirements for facilities that obtain enforceable documents in lieu of post-closure permits. 265.121 Section...AND DISPOSAL FACILITIES Closure and Post-Closure § 265.121...

2010-07-01

60

Low-level radioactive waste disposal facility closure  

SciTech Connect

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01

61

Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada  

SciTech Connect

This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

NSTec Environmental Restoration

2011-09-29

62

Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect

The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure cover has been placed on unit U-3ax/bl (Corrective Action Unit 110) at the Area 3 RWMS. Monolayer-evapotranspirative closure cover designs for the U-3ah/at and U-3bh units are provided in this plan. The current-design closure cover thickness is 3 meters (10 feet). The final design cover will have an optimized cover thickness, which is expected to be less than 3 m (10 ft). Although waste operations at the Area 3 RWMS have ceased at the end of June 2006, disposal capacity is available for future disposals at the U-3ah/at and U-3bh units. The Area 3 RWMS is expected to start closure activities in fiscal year 2025, which include the development of final performance assessment and composite analysis documents, closure plan, closure cover design for construction, cover construction, and initiation of the post-closure care and monitoring activities. Current monitoring at the Area 3 RWMS includes monitoring the cover of the closed mixed waste unit U-3ax/bl as required by the Nevada Department of Environmental Protection, and others required under federal regulations and DOE orders. Monitoring data, collected via sensors and analysis of samples, are needed to evaluate radiation doses to the general public, for performance assessment maintenance, to demonstrate regulatory compliance, and to evaluate the actual performance of the RWMSs. Monitoring provides data to ensure the integrity and performance of waste disposal units. The monitoring program is designed to forewarn management and regulators of any failure and need for mitigating actions. The plan describes the program for monitoring direct radiation, air, vadose zone, biota, groundwater, meteorology, and subsidence. The requirements of post-closure cover maintenance and monitoring will be determined in the final closure plan.

NSTec Environmental Management

2007-09-01

63

WIPP facility representative program plan  

SciTech Connect

This plan describes the Department of Energy (DOE), Carlsbad Area Office (CAO) facility representative (FR) program at the Waste Isolation Pilot Plant (WIPP). It provides the following information: (1) FR and support organization authorities and responsibilities; (2) FR program requirements; and (3) FR training and qualification requirements.

Not Available

1994-07-15

64

Closure Report for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada with ROTC 1, Revision 0  

SciTech Connect

This CR provides documentation and justification for the closure of CAU 118 without further corrective action. This justification is based on process knowledge and the results of the investigative and closure activities conducted in accordance with the CAU 118 SAFER Plan: Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada (NNSA/NSO, 2006). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. This CR also provides the analytical and radiological survey data to confirm that the remediation goals were met as specified in the CAU 118 SAFER Plan (NNSA/NSO, 2006). The Nevada Division of Environmental Protection (NDEP) approved the CAU 118 SAFER Plan (Murphy, 2006), which recommends closure in place with use restrictions (URs).

Mark Burmeister

2007-09-01

65

40 CFR 264.112 - Closure plan; amendment of plan.  

Code of Federal Regulations, 2010 CFR

...be unclosed during the active life of the facility...hazardous wastes ever on-site over the active life of the facility...type(s) of the off-site hazardous waste management...decontaminate all hazardous waste residues and...

2010-07-01

66

The use of mine-development models to support mine closure and reclamation planning  

SciTech Connect

Geochemical characterization and the development of compositional models for waste-rock and spent leach piles and tailing impoundments are in integral part of mine closure and reclamation planning. A compositional model is a three-dimensional graphical representation of a waste facility that shows the distribution of the different types of mined or milled materials comprising it. As part of closure plans, regulatory authorities typically require the characterization of potential sources of dissolved contaminants. Geologic resource and mineable reserve (mine-development or block) models may be used, in conjunction with mine development records, to create compositional models of waste-rock and leach piles and tailing impoundments. The procedures involves: (1) the collection and analysis of samples that represent the geochemical variability of the different rocks that occur in the mine that are also components of the mine waste; (2) classification and grouping of the different rock types based on their potential to release contaminants (e.g., ABA, leachable metals); and (3) evaluation of historical records concerning the volume and disposition of mined materials. This approach significantly reduces the efforts and costs associated with traditional characterization (e.g., drilling and sampling on grids) of the waste facilities. The block models of the mine and compositional models of the waste facilities may also be used to: (1) develop more effective rock handling plans; (2) support the creation of hydrogeochemical models used to predict long-term environmental impacts to groundwater and surface water; and (3) support evaluations of cost-effective closure and reclamation alternatives (e.g., cover designs and revegetation).

Newcomer, R.W. Jr.; Wolf, C.P.

1999-07-01

67

Closure plan for Corrective Action Unit 109: U-2bu subsidence crater, Nevada Test Site, Nevada  

SciTech Connect

The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facility Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). Based on the results of the analyses reported in the site characterization report, the only constituents of concern in the U-2bu subsidence crater include leachable lead and total petroleum hydrocarbons. Closure activities will include the excavation and disposal of impacted soil from the top of the crater. Upon completion of excavation, verification samples will be collected to show that the leachable lead has been removed to concentrations below the regulatory action level. After sample results show that the lead has been removed, the excavated area will be backfilled and a soil flood diversion berm will be constructed as a best management practice. An independent registered professional engineer will certify the site was closed following the approved Closure Plan. Post-closure care is not warranted for this site because closure activities will involve removal of the Resource Conservation and Recovery Act constituents of concern.

NONE

1999-03-01

68

Closure End States for Facilities, Waste Sites, and Subsurface Contamination  

SciTech Connect

The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

2012-11-21

69

Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs.

Nickels, J.M.

1991-06-01

70

Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site  

SciTech Connect

The U.S. Department of Energy, National Security Administration Nevada Site Office (NNSA/NSO) is planning to close the 92-Acre Area of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada. Closure planning for this facility must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. This paper provides a brief background of the Area 5 RWMS, identifies key closure issues, and presents the closure strategy. Disposals have been made in 25 shallow excavated pits and trenches and 13 Greater Confinement Disposal (GCD) boreholes at the 92-Acre Area since 1961. The pits and trenches have been used to dispose unclassified low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform waste, and to store classified low-level and low-level mixed materials. The GCD boreholes are intermediate-depth disposal units about 10 feet (ft) in diameter and 120 ft deep. Classified and unclassified high-specific activity LLW, transuranic (TRU), and mixed TRU are disposed in the GCD boreholes. TRU waste was also disposed inadvertently in trench T-04C. Except for three disposal units that are active, all pits and trenches are operationally covered with 8-ft thick alluvium. The 92-Acre Area also includes a Mixed Waste Disposal Unit (MWDU) operating under Resource Conservation and Recovery Act (RCRA) Interim Status, and an asbestiform waste unit operating under a state of Nevada Solid Waste Disposal Site Permit. A single final closure cover is envisioned over the 92-Acre Area. The cover is the evapotranspirative-type cover that has been successfully employed at the NTS. Closure, post-closure care, and monitoring must meet the requirements of the following regulations: U.S. Department of Energy Order 435.1, Title 40 Code of Federal Regulations (CFR) Part 191, Title 40 CFR Part 265, Nevada Administrative Code (NAC) 444.743, RCRA requirements as incorporated into NAC 444.8632, and the Federal Facility Agreement and Consent Order (FFACO). A grouping of waste disposal units according to waste type, location, and similarity in regulatory requirements identified six closure units: LLW Unit, Corrective Action Unit (CAU) 111 under FFACO, Asbestiform LLW Unit, Pit 3 MWDU, TRU GCD Borehole Unit, and TRU Trench Unit. The closure schedule of all units is tied to the closure schedule of the Pit 3 MWDU under RCRA.

L. Desotell; D. Wieland; V. Yucel; G. Shott; J. Wrapp

2008-03-01

71

Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

Frazier, T.P.

1994-10-20

72

324 Building radiochemical engineering cells, high-level vault, low-level vault, and associated areas closure plan  

SciTech Connect

The Hanford Site, located adjacent to and north of Richland, Washington, is operated by the US Department of Energy, Richland Operations Office (RL). The 324 Building is located in the 300 Area of the Hanford Site. The 324 Building was constructed in the 1960s to support materials and chemical process research and development activities ranging from laboratory/bench-scale studies to full engineering-scale pilot plant demonstrations. In the mid-1990s, it was determined that dangerous waste and waste residues were being stored for greater than 90 days in the 324 Building Radiochemical Engineering Cells (REC) and in the High-Level Vault/Low-Level Vault (HLV/LLV) tanks. [These areas are not Resource Conservation and Recovery Act of 1976 (RCRA) permitted portions of the 324 Building.] Through the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-89, agreement was reached to close the nonpermitted RCRA unit in the 324 Building. This closure plan, managed under TPA Milestone M-20-55, addresses the identified building areas targeted by the Tri-Party Agreement and provides commitments to achieve the highest degree of compliance practicable, given the special technical difficulties of managing mixed waste that contains high-activity radioactive materials, and the physical limitations of working remotely in the areas within the subject closure unit. This closure plan is divided into nine chapters. Chapter 1.0 provides the introduction, historical perspective, 324 Building history and current mission, and the regulatory basis and strategy for managing the closure unit. Chapters 2.0, 3.0, 4.0, and 5.0 discuss the detailed facility description, process information, waste characteristics, and groundwater monitoring respectively. Chapter 6.0 deals with the closure strategy and performance standard, including the closure activities for the B-Cell, D-Cell, HLV, LLV; piping and miscellaneous associated building areas. Chapter 7.0 addresses the closure activities identified in Chapter 6.0, and also adds information on closure activities for the soil directly beneath the unit, regulated material removed during closure, and the schedule for closure. Chapter 8.0 provides Surveillance, monitoring and post-closure information and Chapter 9.0 provides a list of references used throughout the document.

Barnett, J.M.

1998-03-25

73

The 'People Plan' Concept for Contract Closure - 12432  

SciTech Connect

The U.S. Department of Energy's (DOE) first-of-a-kind closure project at the Hanford Site in Richland, Washington, still has more than 3 years to run, but its contractor, Washington Closure Hanford (WCH), has already started its plans for going out of business. It will be the first contract that closes in increments and, paramount to its success, will be its ability to provide a disciplined and positive approach to release personnel while at the same time retaining personnel critical to timely and safe completion of the work scope. In May 2011, WCH produced the people plan, a program that maximizes communication and support for employees being released, provides an incentivization strategy to retain personnel to the end of their assignments, and reflects a sensitivity to the long-term goals of the contract and WCH's parent companies. The combination of all of these efforts equal one thing: treating employees with respect by providing specific information in a timely manner; respecting employees by sharing as much information as possible, as soon as possible, with as much detail as possible; and respecting each individual's ability to be in control of their next step in their life or career. The project is only in the second ORW and has 13 more before the end of the contract. That time remaining will continue to bring new challenges and unknowns, but the confidence and trust of the employees is proving to be solid. This is largely as a result of the stability provided by the people plan program. A success that can only truly be measured by the continued positive response it has already received from WCH's employees. (authors)

Diaz, Peter [Washington Closure Hanford, 2620 Fermi Avenue, Richland, WA 99354 (United States)

2012-07-01

74

Preservation Impacts on Educational Facilities Planning.  

ERIC Educational Resources Information Center

This paper examines the significance of facilities preservation for educational facilities planning and identifies various forms of facilities preservation applicable to educational facilities. It analyzes why educational facilities planners need to be aware of preservation considerations, reviews the relevant literature for preservation…

Shultz, James A.

75

Simplifying documentation while approaching site closure: integrated health & safety plans as documented safety analysis  

SciTech Connect

At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D&D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D&D I-HASP as an example.

Brown, Tulanda

2003-06-01

76

Saltstone Disposal Facility Mechanically Stabilized Earth Vault Closure Cap Degradation: Sensitivity Analysis  

SciTech Connect

As part of the current Saltstone Disposal Facility (SDF) Performance Assessment (PA) revision, Mechanically Stabilized Earth (MSE) vault closure cap degradation mechanisms and their impact upon filtration through the MSE vault closure cap were evaluated for the base case land use scenario (i.e. institutional control to pine forest). The degradation mechanisms evaluated included pine forest succession, erosion, and colloidal clay migration (Phifer 2003). Infiltration through the upper hydraulic barrier layer of the closure cap as determined by this evaluation will be utilized as the infiltration input to subsequent PORFLOW vadose zone contaminant transport modeling, which will also be performed as part of the PA revision.

PHIFER, MARK

2004-03-19

77

40 CFR 264.258 - Closure and post-closure care.  

Code of Federal Regulations, 2010 CFR

...STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.258 Closure and post-closure...1) The owner or operator of a waste pile that does not comply with the liner requirements...i) Include in the closure plan for the pile under § 264.112 both a plan for...

2010-07-01

78

40 CFR 264.258 - Closure and post-closure care.  

Code of Federal Regulations, 2013 CFR

...STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.258 Closure and post-closure...1) The owner or operator of a waste pile that does not comply with the liner requirements...i) Include in the closure plan for the pile under § 264.112 both a plan for...

2013-07-01

79

40 CFR 264.258 - Closure and post-closure care.  

Code of Federal Regulations, 2014 CFR

...STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.258 Closure and post-closure...1) The owner or operator of a waste pile that does not comply with the liner requirements...i) Include in the closure plan for the pile under § 264.112 both a plan for...

2014-07-01

80

40 CFR 264.258 - Closure and post-closure care.  

Code of Federal Regulations, 2011 CFR

...STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.258 Closure and post-closure...1) The owner or operator of a waste pile that does not comply with the liner requirements...i) Include in the closure plan for the pile under § 264.112 both a plan for...

2011-07-01

81

40 CFR 264.258 - Closure and post-closure care.  

Code of Federal Regulations, 2012 CFR

...STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.258 Closure and post-closure...1) The owner or operator of a waste pile that does not comply with the liner requirements...i) Include in the closure plan for the pile under § 264.112 both a plan for...

2012-07-01

82

HWMA/RCRA Closure Plan for the Fluorinel Dissolution Process Makeup and Cooling and Heating Systems Voluntary Consent Order SITE-TANK-005 Action Plan Tank Systems INTEC-066, INTEC-067, INTEC-068, and INTEC-072  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the fluorinel dissolution process makeup and cooling and heating systems located in the Fluorinel Dissolution Process and Fuel Storage Facility (CPP-666), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory Site, was developed to meet milestones established under the Voluntary Consent Order. The systems to be closed include waste piping associated with the fluorinel dissolution process makeup systems. This closure plan presents the closure performance standards and methods of achieving those standards.

M.E. Davis

2007-05-01

83

Closure Report for Corrective Action Unit 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 117 comprises Corrective Action Site (CAS) 26-41-01, Pluto Disassembly Facility, located in Area 26 of the Nevada Test Site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CAU 117 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 117 issued by the Nevada Division of Environmental Protection. From May 2008 through February 2009, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 117, Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. The purpose of the activities as defined during the data quality objectives process were: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels to determine COCs for CAU 117. Assessment of the data generated from closure activities indicated that the final action levels were exceeded for polychlorinated biphenyls (PCBs) reported as total Aroclor and radium-226. A corrective action was implemented to remove approximately 50 cubic yards of PCB-contaminated soil, approximately 1 cubic foot of radium-226 contaminated soil (and scabbled asphalt), and a high-efficiency particulate air filter that was determined to meet the criteria of a potential source material (PSM). Electrical and lighting components (i.e., PCB-containing ballasts and capacitors) and other materials (e.g., mercury-containing thermostats and switches, lead plugs and bricks) assumed to be PSM were also removed from Building 2201, as practical, without the need for sampling. Because the COC contamination and PSMs have been removed, clean closure of CAS 26-41-01 is recommended, and no use restrictions are required to be placed on this CAU. No further action is necessary because no other contaminants of potential concern were found above preliminary action levels. The physical end state for Building 2201 is expected to be eventual demolition to slab. The DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • Clean closure is the recommended corrective action for CAS 26-41-01 in CAU 117. • A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office is requested from the Nevada Division of Environmental Protection for closure of CAU 117. • Corrective Action Unit 117 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

Mark Burmeister

2009-06-01

84

The Electronic Spreadsheet: A Facilities Planning Tool.  

ERIC Educational Resources Information Center

Microcomputers and available software can be used to display spreadsheet information helpful to facility planners. This article discusses the nature of electronic spreadsheets, presents an applications procedure, and illustrates a practical facilities planning application by using software generally available. (MLF)

McGuffey, C. W.; Argo, Ray

1984-01-01

85

Land Use-Based Landscape Planning and Restoration in Mine Closure Areas  

Microsoft Academic Search

Landscape planning and restoration in mine closure areas is not only an inevitable choice to sustain mining areas but also\\u000a an important path to maximize landscape resources and to improve ecological function in mine closure areas. The analysis of\\u000a the present mine development shows that many mines are unavoidably facing closures in China. This paper analyzes the periodic\\u000a impact of

Jianjun Zhang; Meichen Fu; Ferri P. Hassani; Hui Zeng; Yuhuan Geng; Zhongke Bai

2011-01-01

86

State Environmental Policy Act (SEPA) Environmental Checklist Form 216-B-3 Expansion Ponds Closure Plan. Revision 1  

SciTech Connect

The 216-B-3 Expansion Ponds Closure Plan (Revision 1) consists of a Part A Dangerous Waste Permit Application and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and five appendices. The 216-B-3 Pond System consists of a series of four earthen, unlined, interconnected ponds and the 216-B-3-3 Ditch that receive waste water from various 200 East Area operating facilities. These four ponds, collectively. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the 216-B-3-3 Ditch. Water discharged to the 216-8-3-3 Ditch flows directly into the 216-B-3 Pond. In the past, waste water discharges to B Pond and the 216-B-3-3 Ditch contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous portion of mixed waste is regulated under RCRA. Mixed waste also may be considered a hazardous substance under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) when considering remediation of waste sites.

Not Available

1993-12-01

87

The 324 building radiochemical engineering scales and high-level vault closure plan  

SciTech Connect

This closure plan incorporates the requirements and decisions made during a Data Quality Objectives process held in 1996 by the State of Washington Department of Ecology, US Department of Energy Richland Operations Office, and contractors associated with closure of the 324 Building.

Prignano, A.L.

1997-05-29

88

Strategic facility planning improves capital decision making.  

PubMed

A large, Midwestern IDS undertook a strategic facility-planning process to evaluate its facility portfolio and determine how best to allocate future investments in facility development. The IDS assembled a facility-planning team, which initiated the planning process with a market analysis to determine future market demands and identify service areas that warranted facility expansion. The team then analyzed each of the IDS's facilities from the perspective of uniform capacity measurements, highest and best use compared with needs, building condition and investment-worthiness, and facility growth and site development opportunities. Based on results of the analysis, the strategy adopted entailed, in part, shifting some space from inpatient care to ambulatory care services and demolishing and replacing the 11 percent of facilities deemed to be in the worst condition. PMID:11258269

Reeve, J R

2001-03-01

89

RADIATION DOSE CALCULATION FOR FUEL HANDLING FACILITY CLOSURE CELL EQUIPMENT  

SciTech Connect

This calculation evaluates the energy deposition rates in silicon, gamma and neutron flux spectra at various locations of interest throughout FHF closure cell. The physical configuration features a complex geometry, with particle flux attenuation of many orders of magnitude that cannot be modeled by computer codes that use deterministic methods. Therefore, in this calculation the Monte Carlo method was used to solve the photon and neutron transport. In contrast with the deterministic methods, Monte Carlo does not solve an explicit transport equation, but rather obtain answers by simulating individual particles, recording the aspects of interest of their average behavior, and estimates the statistical precision of the results.

D. Musat

2005-03-07

90

Office of Facilities Planning and Management  

E-print Network

Office of Facilities Planning and Management Building Best Practices Through Energy Efficiency, Sustainability, & Behavior Change #12;Office of Facilities Planning and Management OFPM Systems & Sustainability year Fairchild ­ Water efficient fixtures in bath rooms, saving 1,013,680 gal/yr & $9,478 per year

Ford, James

91

Underground storage tank 291-D1U1: Closure plan  

SciTech Connect

The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

Mancieri, S.; Giuntoli, N.

1993-09-01

92

Facility effluent monitoring plan for the tank farm facility  

SciTech Connect

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

Crummel, G.M.

1998-05-18

93

Facility effluent monitoring plan for the 327 Facility  

SciTech Connect

The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01

94

Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report  

SciTech Connect

This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

Not Available

1988-02-26

95

Facility Closures and Downsizing in the Rural Midwest: A Preliminary Assessment of Extent and Effects  

Microsoft Academic Search

Rural communities across the United States have been undergoing dramatic economic restructuring. As a result, many rural communities are struggling to recover from the closure or downsizing of manufacturing facilities and to implement economic development programs. The goal of this study was to gain new insights into community, organizational, and economic factors that underlie effective rural community response to economic

F. Larry Leistritz; Tim Knapp; Kenneth A. Root; Norman Walzer

1996-01-01

96

Closure Plan for Corrective Action Unit 109: U-2bu Subsidence Crater Nevada Test Site, Nevada  

SciTech Connect

The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facilities Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). The subsidence crater was used as a land disposal unit for radioactive and hazardous waste from 1973 to 1988. Site disposal history is supported by memorandums, letters, and personnel who worked at the Nevada Test Site at the time of active disposal. Closure activities will include the excavation and disposal of impacted soil form the tip of the crater. Upon completion of excavation, verification samples will be collected to show that lead has been removed to concentrations be low regulatory action level. The area will then be backfilled and a soil flood diversion berm will be constructed, and certified by an independent professional engineer as to having followed the approved Closure Plan.

Shannon Parsons

1999-03-01

97

Facility effluent monitoring plan for the plutonium uranium extraction facility  

SciTech Connect

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

Wiegand, D.L.

1994-09-01

98

Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility  

SciTech Connect

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

Greager, E.M.

1997-12-11

99

Facility effluent monitoring plan for 242-A evaporator facility  

SciTech Connect

A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

Crummel, G.M.; Gustavson, R.D.

1995-02-01

100

Remedial Action Work Plan Amchitka Island Mud Pit Closures  

SciTech Connect

This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

DOE/NV

2001-04-05

101

40 CFR 35.925-1 - Facilities planning.  

Code of Federal Regulations, 2010 CFR

... false Facilities planning. 35.925-1 Section...Grants for Construction of Treatment Works-Clean Water Act...925-1 Facilities planning. That, if the award...assistance, the facilities planning requirements in §...

2010-07-01

102

Integrated Planning: Consolidating Annual Facility Planning - More Time for Execution  

SciTech Connect

Previously, annual planning for Readiness in Technical Base and Facilities (RTBF) at the Nevada National Security Site (NNSS) was fragmented, disconnected, circular, and occurred constantly throughout the fiscal year (FY) comprising 9 of the 12 months, reducing the focus on implementation and execution. This required constant “looking back” instead of “looking forward.” In FY 2009, annual planning was consolidated into one comprehensive integrated plan (IP) for each facility/project, which comprised annual task planning/outyear budgeting, AMPs, and investment planning (i.e., TYIP). In FY 2010, the Risk Management Plans were added to the IPs. The integrated planning process achieved the following: 1) Eliminated fragmented, circular, planning and moved the plan to be more forward-looking; 2) Achieved a 90% reduction in schedule planning timeframe from 40 weeks (9 months) to 6 weeks; 3) Achieved an 80% reduction in cost from just under $1.0M to just over $200K, for a cost savings of nearly $800K (reduced combined effort from over 200 person-weeks to less than 40); 4) Reduced the number of plans generated from 21 plans (1 per facility per plan) per year to 8 plans per year (1 per facility plus 1 program-level IP); 5) Eliminated redundancy in common content between plans and improved consistency and overall quality; 6) Reduced the preparation time and cost of the FY 2010 SEP by 50% due to information provided in the IP; 7) Met the requirements for annual task planning, annual maintenance planning, ten-year investment planning, and risk management plans.

Nelson, J. G.; R., L. Morton; Ramirez, C.; Morris, P. S.; McSwain, J. T.

2011-02-02

103

Facility Closure Report for Tunnel U16a, Area 16, Nevada Test Site, Nevada  

SciTech Connect

U16a is not listed in the Federal Facility Agreement and Consent Order. The closure of U16a was sponsored by the Defense Threat Reduction Agency (DTRA) and performed with the cooperation of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the Nevada Division of Environmental Protection. This report documents closure of this site as identified in the DTRA Fiscal Year 2008 Statement of Work, Task 6.3. Closure activities included: · Removing and disposing of a shack and its contents · Disposing of debris from within the shack and in the vicinity of the tunnel entrance · Verifying that the tunnel is empty · Welding screened covers over tunnel vent holes to limit access and allow ventilation · Constructing a full-tunnel cross-section fibercrete bulkhead to prevent access to the tunnel Field activities were conducted from July to August 2008.

NSTec Environmental Restoration

2009-07-01

104

Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site  

SciTech Connect

The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep Tanks System Phase 1. These monitoring wells are intended to monitor for the occurrence of contaminants of concern in the perched water beneath and adjacent to the CPP-601/627/640 Landfill. The wells were constructed to satisfy requirements of the HWMA/RCRA Post-Closure Plan for the CPP 601/627/640 Landfill.

Boehmer, Ann

2010-11-01

105

Facilities Operations, Planning, and Engineering Services  

E-print Network

Facilities Operations, Planning, and Design Engineering Services Energy Management & Water Reception Campus Maintenance Housing Support Life Safety Services HVAC Energy Management Controls and In- house Engineering Mechanical Electrical Engineering Data Analysis Construction Services In

McLaughlin, Richard M.

106

Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site  

SciTech Connect

Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

S. E. Rawlinson

2001-09-01

107

Maintenance Implementation Plan for the Grout Facility  

SciTech Connect

The objective of the Maintenance Implementation Plan (MIP) is to describe how the Grout Treatment Facility will implement the requirements established by US Department of Energy (DOE) Order 4330.4A, Maintenance Management Program, Chapter 2.0 Nuclear Facilities (DOE 1990). The plan provides a blueprint for a disciplined approach to implementation and compliance. Each element of the order is prioritized, categorized, and then placed into one of three phases for implementation.

Yoakum, A.K.

1993-08-01

108

PLANNING THE INDOOR PHYSICAL EDUCATION FACILITIES.  

ERIC Educational Resources Information Center

THIS PAMPHLET IS DESIGNED TO HELP ARCHITECTS AND LOCAL SCHOOL OFFICIALS IN THE PREPARATION OF PLANS FOR PHYSICAL EDUCATION FACILITIES IN NEW AND EXISTING BUILDINGS. FACILITIES MENTIONED INCLUDE--(1) GYMNASIUM, (2) SWIMMING POOL, (3) SMALL GROUP ACTIVITY ROOM, (4) DRESSING AND SHOWERING ROOMS, (5) TEAM ROOM, (6) EQUIPMENT DRYING ROOM, (7) LAUNDRY…

HASE, GERALD J.; HICK, BASIL L.

109

Dalton Cumbrian Facility Strategic Science Plan  

E-print Network

future for the Dalton Cumbrian Facility, the science programmes have to make an impact in the nuclearDalton Cumbrian Facility Strategic Science Plan Purpose of this Document: This document gives: DCF on a sunny Cumbrian day. #12;2 Executive Summary The radiation sciences and nuclear engineering

110

77 FR 60319 - Harbor Porpoise Take Reduction Plan; Coastal Gulf of Maine Closure Area Established With a...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Porpoise Take Reduction Plan; Coastal Gulf of Maine Closure Area Established With a Temporary...Establishment of the Coastal Gulf of Maine Closure Area; temporary shift of its effective...the establishment of the Coastal Gulf of Maine Closure Area under the Harbor...

2012-10-03

111

Mission College Educational and Facilities Master Plan.  

ERIC Educational Resources Information Center

This document details Mission College's 2001 master plan for education and facilities. The plan makes several recommendations. (1) It is imperative to stay on the "cutting edge" in high-demand fields; (2) With a changing student population (45% ESL and 85% first-generation college students), it is also important to provide a strong, basic…

Mission Coll., Santa Clara, CA.

112

National Ignition Facility Site Management Plan  

Microsoft Academic Search

The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the

1997-01-01

113

Facility effluent monitoring plan for the tank farms facilities  

SciTech Connect

A facility effluent monitoring plan is required by the US Department of Energy for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using specific guidelines. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

Bachand, D.D.; Crummel, G.M.

1995-05-01

114

CONSIDERATIONS FOR GROUT FORMULATIONS FOR FACILITY CLOSURES USING IN SITU STRATEGIES  

SciTech Connect

The U.S. Department of Energy (DOE) is conducting in situ closures (entombment) at a large number of facilities throughout the complex. Among the largest closure actions currently underway are the closures of the P and R Reactors at the Savannah River Site (SRS), near Aiken, South Carolina. In these facilities, subgrade open spaces are being stabilized with grout; this ensures the long term structural integrity of the facilities and permanently immobilizes and isolates residual contamination. The large size and structural complexity of these facilities present a wide variety of challenges for the identification and selection of appropriate fill materials. Considerations for grout formulations must account for flowability, long term stability, set times, heat generation and interactions with materials within the structure. The large size and configuration of the facility necessitates that grout must be pumped from the exterior to the spaces to be filled, which requires that the material must retain a high degree of flowability to move through piping without clogging while achieving the required leveling properties at the pour site. Set times and curing properties must be controlled to meet operations schedules, while not generating sufficient heat to compromise the properties of the fill material. The properties of residual materials can result in additional requirements for grout formulations. If significant quantities of aluminum are present in the facility, common formulations of highly alkaline grouts may not be appropriate because of the potential for hydrogen generation with the resultant risks. SRS is developing specialized inorganic grout formulations that are designed to address this issue. One circum-neutral chemical grout formulation identified for initial consideration did not possess the proper chemical characteristics, having exceptionally short set times and high heat of hydration. Research efforts are directed toward developing grout formulations that can meet operational requirements for chemical compatibility, extended set times and reduced heat generation.

Gladden, J.; Serrato, M.; Langton, C.; Long, T.; Blankenship, J.; Hannah, G.; Stubblefield, R.; Szilagyi, A.

2010-08-25

115

Waste minimization plan, T plant facilities  

SciTech Connect

This document contains the waste minimization plan for the T Plant facilities, located in the 200 West Area of the Hanford Site in south central Washington State. A waste minimization plan is one part of a multi-faceted waste management program; this waste minimization plan documents the goals and techniques of the waste minimization program, identifies methods for evaluating the program and ensuring quality assurance, and establishes the current baseline waste generation volume estimates.

Kover, K.K.

1997-01-01

116

Clay Cap Test Program for the Mixed Waste Management Facility closure at the Savannah River Site  

SciTech Connect

A 58 acre low-level radioactive waste disposal facility at the Savannah River Site, a Department of Energy facility near Aiken, South Carolina, requires closure with a RCRA clay cap. A three-foot thick can requiring 300,000 cubic yards of local Tertiary Kaolin clay with an in-situ permeability of less than or equal to 1 {times} 10{sup -7} centimeters per second is to be constructed. The Clay Cap Test Program was conducted to evaluate the source, lab permeability, in-situ permeability, compaction characteristics, representative kaolin clays from the Aiken, SC vicinity. 11 refs., 8 figs., 1 tab.

Newell, J.W. (Main (Charles T.), Inc., Charlotte, NC (USA))

1989-01-01

117

Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site  

SciTech Connect

The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

Boehmer, Ann M.

2009-05-31

118

Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility  

SciTech Connect

Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States); Suttora, L.C. [U.S. Department of Energy, Washington, D.C. (United States); Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Stanisich, N. [Portage Environmental, Inc., Idaho Falls, ID (United States)

2007-07-01

119

Liquid effluent retention facility final-status groundwater monitoring plan  

SciTech Connect

The following sections describe the groundwater-monitoring program for the Liquid Effluent Retention Facility (LERF). The LERF is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The LERF is included in the {open_quotes}Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit WA890008967{close_quotes}, (referred to herein as the Permit) (Ecology 1994) and is subject to final-status requirements for groundwater monitoring (WAC 173-303-645). This document describes a RCRA/WAC groundwater detection-monitoring program for groundwater in the uppermost aquifer system at the LERF. This plan describes the LERF monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the LERF. This plan will be used to meet the groundwater monitoring requirements from the time the LERF becomes part of the Permit and through the post-closure care period, until certification of final closure.

Sweeney, M.D.; Chou, C.J.; Bjornstad, B.N.

1997-09-01

120

Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory  

SciTech Connect

The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements.

NONE

1996-07-01

121

Facility effluent monitoring plan for the 325 Facility  

SciTech Connect

The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1998-12-31

122

Saltstone Disposal Facility Mechanically Stabilized Earth Vault Closure Cap Degradation Base Case: Institutional Control To Pine Forest Scenario  

SciTech Connect

As part of the current Saltstone Disposal Facility (SDF) Performance Assessment (PA) revision, the closure cap configuration was reevaluated and closure cap degradation mechanisms and their impact upon infiltration through the closure cap was evaluated for the existing SDF concrete vaults (i.e. vaults 1 and 4) for the base case land use scenario (i.e. institutional control to pine forest scenario) and documented in Phifer and Nelson (2003). The closure cap configuration was modified from a compacted kaolin barrier layer concept to a geosynthetic clay layer (GCL) barrier layer concept. The degradation mechanisms developed included pine forest succession, erosion, and colloidal clay migration. These degradation mechanisms resulted in changes in the hydraulic properties of the closure cap layers and resulting increases in infiltration through the closure cap over time.

Phifer, MA

2004-03-19

123

Saltstone Disposal Facility Closure Cap Configuration and Degradation Base Case: Institutional Control to Pine Forest Scenario  

SciTech Connect

The Performance Assessment (PA) for the Saltstone Disposal Facility (SDF) is currently under revision. As part of the PA revision and as documented herein, the closure cap configuration has been reevaluated and closure cap degradation mechanisms and their impact upon infiltration through the closure cap have been evaluated for the institutional control to pine forest, land use scenario. This land use scenario is considered the base case land use scenario. This scenario assumes a 100-year institutional control period following final SDF closure during which the closure cap is maintained. At the end of institutional control, it is assumed that a pine forest succeeds the cap's original bamboo cover. Infiltration through the upper hydraulic barrier layer of the closure cap as determined by this evaluation will be utilized as the infiltration input to subsequent PORFLOW vadose zone contaminant transport modeling, which will also be performed as part of the PA revision. The impacts of pine forest succession, erosion, and colloidal clay migration as degradation mechanisms on the hydraulic properties of the closure cap layers over time have been estimated and the resulting infiltration through the closure cap has been evaluated. The primary changes caused by the degradation mechanisms that result in increased infiltration are the formation of holes in the upper GCL by pine forest succession and the reduction in the saturated hydraulic conductivity of the drainage layers due to colloidal clay migration into the layers. Erosion can also result in significant increases in infiltration if it causes the removal of soil layers, which provide water storage for the promotion of evapotranspiration. For this scenario, infiltration through the upper GCL was estimated at approximately 0.29 inches/year under initial intact conditions, it increased to approximately 11.6 inches/year at year 1000 in nearly a linear fashion, and it approached an asymptote of around 14.1 inches/year at year 1800 and thereafter. At year 1800, it was estimated that holes covered approximately 0.3 percent of the GCL due to root penetration, and that this resulted in an infiltration near that of typical background infiltration (i.e. as though the GCL were not there at all). This demonstrated that a very small area of holes essentially controlled the hydraulic performance of the GCL.

Phifer, M.A.

2004-03-19

124

Campus Planning & Facilities October 2012  

E-print Network

Office Energy Program Power Plant Building and Repair Shop Electrical Shop Electronics Shop Equipment and Safety CP&F Administration CP&F Systems Woodlands Office #12; & Facilities John Scherding Director of Campus Design Matt Purcell Director of Project Management Lisa Celone

125

Facility effluent monitoring plan for the 324 Facility  

SciTech Connect

The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01

126

Library Automation and Facility Planning.  

ERIC Educational Resources Information Center

This seminar and workbook are designed to aid librarians in planning and designing attractive and efficient libraries in light of the changing technologies of the 1980s. It is based on the premise that the electronic revolution of the 1980s will cause substantial changes in the work force, work processes, and the nature of physical layouts of…

Cohen, Aaron; Cohen, Elaine

127

The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility  

SciTech Connect

The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme.

Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

2002-02-26

128

Land use-based landscape planning and restoration in mine closure areas.  

PubMed

Landscape planning and restoration in mine closure areas is not only an inevitable choice to sustain mining areas but also an important path to maximize landscape resources and to improve ecological function in mine closure areas. The analysis of the present mine development shows that many mines are unavoidably facing closures in China. This paper analyzes the periodic impact of mining activities on landscapes and then proposes planning concepts and principles. According to the landscape characteristics in mine closure areas, this paper classifies available landscape resources in mine closure areas into the landscape for restoration, for limited restoration and for protection, and then summarizes directions for their uses. This paper establishes the framework of spatial control planning and design of landscape elements from "macro control, medium allocation and micro optimization" for the purpose of managing and using this kind of special landscape resources. Finally, this paper applies the theories and methods to a case study in Wu'an from two aspects: the construction of a sustainable land-use pattern on a large scale and the optimized allocation of typical mine landscape resources on a small scale. PMID:21359867

Zhang, Jianjun; Fu, Meichen; Hassani, Ferri P; Zeng, Hui; Geng, Yuhuan; Bai, Zhongke

2011-05-01

129

Land Use-Based Landscape Planning and Restoration in Mine Closure Areas  

NASA Astrophysics Data System (ADS)

Landscape planning and restoration in mine closure areas is not only an inevitable choice to sustain mining areas but also an important path to maximize landscape resources and to improve ecological function in mine closure areas. The analysis of the present mine development shows that many mines are unavoidably facing closures in China. This paper analyzes the periodic impact of mining activities on landscapes and then proposes planning concepts and principles. According to the landscape characteristics in mine closure areas, this paper classifies available landscape resources in mine closure areas into the landscape for restoration, for limited restoration and for protection, and then summarizes directions for their uses. This paper establishes the framework of spatial control planning and design of landscape elements from "macro control, medium allocation and micro optimization" for the purpose of managing and using this kind of special landscape resources. Finally, this paper applies the theories and methods to a case study in Wu'an from two aspects: the construction of a sustainable land-use pattern on a large scale and the optimized allocation of typical mine landscape resources on a small scale.

Zhang, Jianjun; Fu, Meichen; Hassani, Ferri P.; Zeng, Hui; Geng, Yuhuan; Bai, Zhongke

2011-05-01

130

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: Area 25 EMAD Facility Nevada Test Site, Nevada  

Microsoft Academic Search

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 114, Area 25 EMAD Facility, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 114 comprises the following corrective action site (CAS) located in Area 25 of the Nevada Test Site:;\\u000a;\\u000a 25-41-03, EMAD Facility;\\u000a;

Mark Krauss

2010-01-01

131

High-energy facility development plan  

NASA Technical Reports Server (NTRS)

Approaches to the deployment of instruments for the study of high-energy solar emissions alone or in conjunction with other solar instruments are considered. The Space Station has been identified as the preferred mode for the deployment of the Advanced Solar Observatory, and it is suggested that a proposed High-Energy Facility could be on a coorbiting platform. The implementation plan for the High-Energy Facility involves the definition of the interface structures required to mount the facility instruments to the Space Station and the development of hard X-ray and gamma-ray imaging, spectroscopic, and polarimetric instruments.

Walker, Arthur B. C., Jr.; Roberts, W. T.; Dabbs, J. R.

1988-01-01

132

The Impact of Hospital-Based Skilled Nursing Facility Closures on Rehospitalizations  

PubMed Central

Objective To examine the effect of reductions in hospital-based (HB) skilled nursing facility (SNF) bed supply on the rate of rehospitalization of patients discharged to any SNF from zip codes that lost HB beds. Data Source We used Medicare enrollment records, Medicare hospital and SNF claims, and nursing home Minimum Dataset assessments and characteristics (OSCAR) to examine nearly 10 million Medicare fee-for-service hospital discharges to SNFs between 1999 and 2006. Study Design We calculated the number of HB and freestanding (FS) SNF beds within a 22 km radius from the centroid of all zip codes in which Medicare beneficiaries reside in all years. We examined the relationship between HB and FS bed supply and the rehospitalization rates of the patients residing in corresponding zip codes in different years using zip code fixed effects and instrumental variable methods including extensive sensitivity analyses. Principal Findings Our estimated coefficients suggest that closure of 882 HB homes during our study period resulted in 12,000–18,000 extra rehospitalizations within 30 days of discharge. The effect was largely concentrated among the most acutely ill, high-need patients. Conclusions SNF patient-based prospective payment resulted in closure of higher cost HB facilities that had served most postacute patients. As other, less experienced SNFs replaced HB facilities, they were less able to manage high acuity patients without rehospitalizing them. PMID:23033808

Rahman, Momotazur; Zinn, Jacqueline S; Mor, Vincent

2013-01-01

133

Facilities & Campus Planning John V. Lombardi, Date  

E-print Network

Design Guidelines Facilities & Campus Planning #12;Design Guidelines Amherst Table of Contents Design Guidelines University of Massachusetts Amherst Design Guidelines Table of Contents Part I Building Design Guidelines 1.1 Introduction 1.2 Historical Context 1.3 Principles 1

Massachusetts at Amherst, University of

134

Recommended management practices for operation and closure of shallow injection wells at DOE facilities  

SciTech Connect

The Safe Drinking Water Act established the Underground Injection Control (UIC) program to ensure that underground injection of wastes does not endanger an underground source of drinking water. Under UIC regulations, an injection well is a hole in the ground, deeper than it is wide, that receives wastes or other fluid substances. Types of injection wells range from deep cased wells to shallow sumps, drywells, and drainfields. The report describes the five classes of UIC wells and summarizes relevant regulations for each class of wells and for the UIC program. The main focus of the report is Class IV and V shallow injection wells. Class IV wells are prohibited and should be closed when they are identified. Class V wells are generally authorized by rule, but EPA or a delegated state may require a permit for a Class V well. This report provides recommendations on sound operating and closure practices for shallow injection wells. In addition the report contains copies of several relevant EPA documents that provide additional information on well operation and closure. Another appendix contains information on the UIC programs in 21 states in which there are DOE facilities discharging to injection wells. The appendix includes the name of the responsible regulatory agency and contact person, a summary of differences between the state`s regulations and Federal regulations, and any closure guidelines for Class IV and V wells.

Not Available

1993-07-01

135

Planning for closure and deactivation of the EBR-II complex  

SciTech Connect

In January 1994, DOE terminated the Integral Fast Reactor (IFR) Program. Argonne National Laboratory-West (ANL-W) prepared a detailed plan to put Experimental Breeder Reactor-II (EBR-II) in a safe condition, including removal of irradiated fueled subassemblies from the plant, transfer of subassemblies, and removal and stabilization of primary and secondary sodium liquid heat transfer metal. The goal of deactivation is to stabilize the EBR-II complex until decontamination and decommissioning (D&D) is implemented, thereby minimizing maintenance and surveillance. Deactivation of a sodium cooled reactor presents unique concerns. Residual sodium in the primary and secondary systems must be either reacted or inerted to preclude concerns with explosive sodium-air reactions. Also, residual sodium on components will effectively solder these items in place, making removal unfeasible. Several special cases reside in the primary system, including primary cold traps, a cesium trap, a cover gas condenser, and systems containing sodium-potassium alloy. The sodium or sodium-potassium alloy in these components must be reacted in place or the components removed. The Sodium Components Maintenance Shop at ANL-W provides the capability for washing primary components, removing residual quantities of sodium while providing some decontamination capacity. Considerations need to be given to component removal necessary for providing access to primary tank internals for D&D activities, removal of hazardous materials, and removal of stored energy sources. ANL-W`s plan for the deactivation of EBR-II addresses these issues, providing for an industrially and radiologically safe complex, requiring minimal surveillance during the interim period between deactivation and D&D. Throughout the deactivation and closure of the EBR-II complex, federal environmental concerns will be addressed, including obtaining the proper permits for facility condition and waste processing and disposal. 2 figs.

Michelbacher, J.A.; Henslee, S.P.; Poland, H.F.; Wells, P.B.

1997-07-01

136

Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0  

SciTech Connect

This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D&D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities.

Olson, A.L.; Nacht, S.J.

1997-11-01

137

Development of a prototype plan for the effective closure of a waste disposal site in Los Alamos, New Mexico  

SciTech Connect

The purpose of this study was to develop a prototype plan for the effective closure and stabilization of a semiarid low-level waste disposal site. This prototype plan will provide demonstrated closure techniques for a trench in a disposal site at Los Alamos based on previous shallow land burial (SLB) field research both at the Los Alamos Experimental Engineered Test Facility (EETF), and at a waste disposal area at Los Alamos. The accuracy of modeling soil water storage by two hydrologic models was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems at Waste Disposal Area B having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that one of the two models tested represented soil moisture more accurately than the second model. The accuracy of modeling all of the parameters of the water balance equation was then evaluated using field data from the Integrated Systems Demonstration plots at the EETF. Optimized parameters were developed for one model to describe observed values of deep percolation, evapotranspiration, and runoff from the field plots containing an SLB trench cap configuration.

Nyhan, J.; Barnes, F.

1989-02-01

138

National Ignition Facility project acquisition plan  

SciTech Connect

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

Callaghan, R.W.

1996-04-01

139

2101-M pond closure plan. Volume 1, Revision 2  

SciTech Connect

This document describes activities for the closure of a surface impoundment (2101-M Pond) at the Hanford Site. The 2101-H Pond was initially constructed in 1953 to serve as a drainage collection area for the 2101-H Building. (Until the Basalt Waste Isolation Project (BWIP) Laboratory was constructed in the 2101-M Building in 1979--1981, the only source contributing discharge to the pond was condensate water from the 2101-H Building heating, ventilation, and air conditioning (HVAC) system. The drains for the BWIP Laboratory rooms were plumbed into a 4-in., cast-iron, low-pressure drain pipe that carries waste water from the HVAC system to the pond. During the active life of the BWIP Laboratory, solutions of dissolved barium in groundwater samples were discharged to the 2101-M Pond via the laboratory drains. As a result of the discharges, a Part A permit application was initially submitted to the Washington State Department of Ecology (Ecology) in August 1986 which designates the 2101-M Pond as a surface impoundment.

Izatt, R. D.; Lerch, R. E.

1993-06-01

140

Post-Closure RCRA Groundwater Monitoring Plan for the 216-S-10 Pond and Ditch  

SciTech Connect

The purpose of this plan is to provide a post-closure groundwater monitoring program for the 216-S-10 Pond and Ditch (S-10) treatment, storage, and/or disposal (TSD) unit. The plan incorporates the sum of knowledge about the potential for groundwater contamination to originate from the S-10, including groundwater monitoring results, hydrogeology, and operational history. The S-10 has not received liquid waste since October 1991. The closure of S-10 has been coordinated with the 200-CS-1 source operable unit in accordance with the Tri-Party Agreement interim milestones M-20-39 and M-15-39C. The S-10 is closely situated among other waste sites of very similar operational histories. The proximity of the S-10 to the other facilities (216-S-17 pond, 216-S-11 Pond, 216-S-5,6 cribs, 216-S-16 ditch and pond, and 216-U-9 ditch) indicate that at least some observed groundwater contamination beneath and downgradient of S-10 could have originated from waste sites other than S-10. Hence, it may not be feasible to strictly discriminate between the contributions of each waste site to groundwater contamination beneath the S-10. A post-closure groundwater monitoring network is proposed that will include the drilling of three new wells to replace wells that have gone dry. When completed, the revised network will meet the intent for groundwater monitoring network under WAC 173-303-645, and enable an improved understanding of groundwater contamination at the S-10. Site-specific sampling constituents are based on the dangerous waste constituents of concern relating to RCRA TSD unit operations (TSD unit constituents) identified in the Part A Permit Application. Thus, a constituent is selected for monitoring if it is: A dangerous waste constituent identified in the Part A Permit Application, or A mobile decomposition product (i.e., nitrate from nitrite) of a Part A constituent, or A reliable indicator of the site-specific contaminants (i.e., specific conductance). Using these criteria, the following constituent list and sampling schedule is proposed: Constituent; Sampling Frequency Site-Specific Parameters; Hexavalent chromium (a); Semiannual Chloride; Semiannual Fluoride; Semiannual Nitrate; Semiannual Nitrite; Semiannual Specific conductance (field)(a); Semiannual Ancillary Parameters; Anions; Annual Alkalinity Annual Metals, (in addition to chromium); Annual pH (field) Semiannual Temperature (field); Semiannual Turbidity (field) Semiannual (a). These constituents will be subject to statistical tests after background is established. It will be necessary to install new monitoring wells and accumulate background data on the groundwater from those wells before statistical comparisons can be made. Until then, the constituents listed above will be evaluated by tracking and trending concentrations in all wells and comparing these results with the corresponding DWS or Hanford Site background concentration for each constituent. If a comparison value (background or DWS) for a constituent is exceeded, DOE will notify Ecology per WAC 173-303-645 (9) (g) requirements (within seven days or a time agreed to between DOE and Ecology).

Barnett, D BRENT.; Williams, Bruce A.; Chou, Charissa J.; Hartman, Mary J.

2006-03-17

141

15 CFR 923.13 - Energy facility planning process.  

Code of Federal Regulations, 2013 CFR

...13 Energy facility planning process. The management program must contain a planning process for energy facilities likely...the coastal zone, including a process for anticipating the management of the impacts resulting...

2013-01-01

142

15 CFR 923.13 - Energy facility planning process.  

Code of Federal Regulations, 2012 CFR

...13 Energy facility planning process. The management program must contain a planning process for energy facilities likely...the coastal zone, including a process for anticipating the management of the impacts resulting...

2012-01-01

143

15 CFR 923.13 - Energy facility planning process.  

Code of Federal Regulations, 2011 CFR

...13 Energy facility planning process. The management program must contain a planning process for energy facilities likely...the coastal zone, including a process for anticipating the management of the impacts resulting...

2011-01-01

144

15 CFR 923.13 - Energy facility planning process.  

Code of Federal Regulations, 2014 CFR

...13 Energy facility planning process. The management program must contain a planning process for energy facilities likely...the coastal zone, including a process for anticipating the management of the impacts resulting...

2014-01-01

145

15 CFR 923.13 - Energy facility planning process.  

Code of Federal Regulations, 2010 CFR

...MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities likely to be located in or which...

2010-01-01

146

National Ignition Facility project acquisition plan revision 1  

SciTech Connect

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager.

Clobes, A.R.

1996-10-01

147

School closure as an influenza mitigation strategy: how variations in legal authority and plan criteria can alter the impact  

PubMed Central

Background States’ pandemic influenza plans and school closure statutes are intended to guide state and local officials, but most faced a great deal of uncertainty during the 2009 influenza H1N1 epidemic. Questions remained about whether, when, and for how long to close schools and about which agencies and officials had legal authority over school closures. Methods This study began with analysis of states’ school-closure statutes and pandemic influenza plans to identify the variations among them. An agent-based model of one state was used to represent as constants a population’s demographics, commuting patterns, work and school attendance, and community mixing patterns while repeated simulations explored the effects of variations in school closure authority, duration, closure thresholds, and reopening criteria. Results The results show no basis on which to justify statewide rather than school-specific or community-specific authority for school closures. Nor do these simulations offer evidence to require school closures promptly at the earliest stage of an epidemic. More important are criteria based on monitoring of local case incidence and on authority to sustain closure periods sufficiently to achieve epidemic mitigation. Conclusions This agent-based simulation suggests several ways to improve statutes and influenza plans. First, school closure should remain available to state and local authorities as an influenza mitigation strategy. Second, influenza plans need not necessarily specify the threshold for school closures but should clearly define provisions for early and ongoing local monitoring. Finally, school closure authority may be exercised at the statewide or local level, so long as decisions are informed by monitoring incidence in local communities and schools. PMID:23148556

2012-01-01

148

Emergency evacuation/transportation plan update: Traffic model development and evaluation of early closure procedures. Final report  

SciTech Connect

Prolonged delays in traffic experienced by Laboratory personnel during a recent early dismissal in inclement weather, coupled with reconstruction efforts along NM 502 east of the White Rock Wye for the next 1 to 2 years, has prompted Los Alamos National Laboratory (LANL) to re-evaluate and improve the present transportation plan and its integration with contingency plans maintained in other organizations. Facilities planners and emergency operations staff need to evaluate the transportation system`s capability to inefficiently and safely evacuate LANL under different low-level emergency conditions. A variety of potential procedures governing the release of employees from the different technical areas (TAs) requires evaluation, perhaps with regard to multiple emergency-condition scenarios, with one or more optimal procedures ultimately presented for adoption by Lab Management. The work undertaken in this project will hopefully lay a foundation for an on-going, progressive transportation system analysis capability. It utilizes microscale simulation techniques to affirm, reassess and validate the Laboratory`s Early Dismissal/Closure/Delayed Opening Plan. The Laboratory is required by Federal guidelines, and compelled by prudent practice and conscientious regard for the welfare of employees and nearby residents, to maintain plans and operating procedures for evacuation if the need arises. The tools developed during this process can be used outside of contingency planning. It is anticipated that the traffic models developed will allow site planners to evaluate changes to the traffic network which could better serve the normal traffic levels. Changes in roadway configuration, control strategies (signalization and signing), response strategies to traffic accidents, and patterns of demand can be modelled using the analysis tools developed during this project. Such scenarios typically are important considerations in master planning and facilities programming.

NONE

1993-10-28

149

Management plan for Facility Effluent Monitoring Plan activities  

SciTech Connect

The DOE/RL 89-19, United States Department of Energy-Richland Operations Office Environmental Protection Implementation Plan (1989), requires the Hanford Site to prepare an Environmental Monitoring Plan (EMP) by November 9, 1991. The DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (1991), provides additional guidance and requires implementation of the EMP within 36 months of the effective data of the rule. DOE Order 5400.1, General Environmental Protection Program, requires each US Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials to prepare an EMP. This EMP is to identify and discuss two major activities: (1) effluent monitoring and (2) environmental surveillance. At the Hanford Site, the site-wide EMP will consist of the following elements: (1) A conceptual plan addressing effluent monitoring and environmental surveillance; (2) Pacific Northwest Laboratory (PNL) site-wide environmental surveillance program; (3) Westinghouse Hanford Company (Westinghouse Hanford) effluent monitoring program consisting of the near-field operations environmental monitoring activities and abstracts of each Facility Effluent Monitoring Plan (FEMP). This management plan addresses the third of these three elements of the EMP, the FEMPs.

Nickels, J.M.; Pratt, D.R.

1991-08-01

150

Draft environmental assessment -- Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory  

SciTech Connect

The DOE-Idaho Operations Office has prepared an environmental assessment (EA) to analyze the environmental impacts of closing the Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory (INEL). The purpose of the action is to reduce the risk of radioactive exposure and release of radioactive and hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce these risks to human health and the environment and to comply with Resource Conservation and Recovery Act requirements. The WCF closure project is described in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (Programmatic EIS). DOE determined in the Programmatic EIS Record of Decision (ROD) that certain actions would be implemented and other actions deferred. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality Regulations. Based on the analysis in the EA, the action will not have a significant effect on the human environment.

Braun, J.B.; Irving, J.S.; Staley, C.S.; Stanley, N.

1996-04-01

151

ICPP calcined solids storage facility closure study. Volume III: Engineering design files  

SciTech Connect

The following information was calculated to support cost estimates and radiation exposure calculations for closure activities at the Calcined Solids Storage Facility (CSSF). Within the estimate, volumes were calculated to determine the required amount of grout to be used during closure activities. The remaining calcine on the bin walls, supports, piping, and floor was also calculated to approximate the remaining residual calcine volumes at different stages of the removal process. The estimates for remaining calcine and vault void volume are higher than what would actually be experienced in the field, but are necessary for bounding purposes. The residual calcine in the bins may be higher than was is experienced in the field as it was assumed that the entire bin volume is full of calcine before removal activities commence. The vault void volumes are higher as the vault roof beam volumes were neglected. The estimations that follow should be considered rough order of magnitude, due to the time constraints as dictated by the project`s scope of work. Should more accurate numbers be required, a new analysis would be necessary.

NONE

1998-02-01

152

Sampling and analysis plan for site assessment during the closure or replacement of nonradioactive underground storage tanks  

SciTech Connect

The Tank Management Program is responsible for closure or replacement of nonradioactive underground storage tanks throughout the Idaho National Engineering Laboratory (INEL). A Sampling and Analysis Plan (SAP) has been developed that complies with EPA regulations and with INEL Tank Removal Procedures for sampling activities associated with site assessment during these closure or replacement activities. The SAP will ensure that all data are valid, and it also will function as a Quality Assurance Project Plan. 18 refs., 8 figs., 11 tabs.

Gitt, M.J.

1990-08-01

153

Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report  

SciTech Connect

This report summarizes the information gathered in constructing the clay cap test section. The purpose of the test section was to determine compaction characteristics of four representative kaolin clays and demonstrate in-situ permeability for these clays of 1 {times} 10 {sup {minus}7} cm/sec or less. The final technical specifications with regard to maximum clod size, acceptable ranges of placement water content, lift thickness, and degree of compaction will be based on experience gained from the test section. The data derived from this study will also be used in the development of Quality Assurance (QA) and Quality Control (QC) methods to be used during actual cap construction of the Mixed Waste Management Facility (MWMF) Closure project. 7 tabs.

Not Available

1988-02-26

154

HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards.

KIRK WINTERHOLLER

2008-02-25

155

Closure plan for CAU No. 93: Area 6 steam cleaning effluent ponds, Nevada Test Site  

SciTech Connect

The steam cleaning effluent ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site (NTS). Nevada Operations Office operates the NTS and has entered into a trilateral agreement with the State of Nevada and the Defense Special Weapons Agency (DSWA). The trilateral agreement provides a framework for identifying, characterizing, remediating, and closing environmental sites on the NTS and associated bombing ranges. The SCEP waste unit consists of: two steam cleaning effluent ponds; layout pad and associated grease trap; Building 6-623 steam cleaning pad; test pad; Building 6-623 grease trap; Building 6-800 steam cleaning pad; Building 6-800 separator; Building 6-621 sump; and the concrete asbestos piping connecting these components to both SCEPs. Clean closure is the recommended closure strategy for the majority of the components within this CAU. Four components of the unit (Building 6-621 Sump, Test Pad Grease Trap, Building 6-623 Steam Cleaning Pad, and North SCEP pipeline) are recommended to be closed in place. This closure plan provides the strategy and backup information necessary to support the clean closure of each of the individual components within CAU 93. Analytical data generated during the characterization field work and earlier sampling events indicates the majority of CAU 93 soil and infrastructure is non-hazardous (i.e., impacted primarily with petroleum hydrocarbons).

NONE

1997-04-01

156

Arid Lands Ecology Facility management plan  

SciTech Connect

The Arid Lands Ecology (ALE) facility is a 312-sq-km tract of land that lies on the western side of the Hanford Site in southcentral Washington. The US Atomic Energy Commission officially set aside this land area in 1967 to preserve shrub-steppe habitat and vegetation. The ALE facility is managed by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for ecological research and education purposes. In 1971, the ALE facility was designated the Rattlesnake Hills Research Natural Area (RNA) as a result of an interagency federal cooperative agreement, and remains the largest RNA in Washington. it is also one of the few remaining large tracts of shrub-steppe vegetation in the state retaining a predominant preeuropean settlement character. This management plan provides policy and implementation methods for management of the ALE facilities consistent with both US Department of Energy Headquarters and the Richland Field Office decision (US Congress 1977) to designate and manage ALE lands as an RNA and as a component of the DOE National Environmental Research Park System.

None

1993-02-01

157

Facility planning for small and rural hospitals.  

PubMed

As changes in health care delivery move faster than ever, small or rural hospitals are struggling in a catch-up mode. In order to reverse this trend, these facilities need to reassess their position in the marketplace and develop a flexible plan for responding to the needs. This document provides a model to help achieve the vision of the physical plant in its supporting role to the strategic vision for the hospital, as well as options in the business of caring in a variety of alternative caregiving and treatment environments. PMID:10158170

Johnson, D E; Easter, J G

1995-05-01

158

The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan  

SciTech Connect

The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational disposal facility or disapproval to initiate construction of a new facility.''

DEFFENBAUGH, M.L.

2000-08-01

159

Fast Flux Test Facility (FFTF) standby plan  

SciTech Connect

The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

Hulvey, R.K.

1997-03-06

160

Outcome-Based Planning-Hanford's Shift Towards Closure and Shrinking the Hanford Site  

SciTech Connect

Over the past two years, the U.S. Department of Energy (DOE) Richland Operations Office (RL) has formulated a focused, outcomes-based vision for accelerated cleanup of the Hanford Site. The primary elements, or outcomes, of this vision are to (1) accelerate restoration of the Columbia River Corridor, (2) transition the Central Plateau to long-term waste management, thereby shrinking the footprint of active site cleanup and operations, and (3) prepare for the future. The third outcome includes operation of the Pacific Northwest National Laboratory (PNNL), a key element of the foundation for Hanford's future; leveraging DOE's assets; and working with the community to understand their vision and reflect it as appropriate in the execution of the Hanford 2012 Vision. The purpose of these three outcomes is to provide a near term focus, aimed at achieving definitive end points over the next decade, while not precluding any long-term end-state associated with the completion of the Environmental Management (EM) mission at Hanford. The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make the Hanford Site arguably the world's largest and most complex environmental cleanup project. Current projections are that it will cost over $80 billion and take over four decades to complete the cleanup at Hanford. Accelerated cleanup of the River Corridor portion of the Site will allow the remediation effort to focus on specific, near-term outcomes. Hanford's success in achieving these outcomes will reduce urgent risk, shrink the Site, remove contamination and wastes from the proximity of the river, and consolidate waste management activities on the Central Plateau. Hanford has begun implementation of this vision. Performance-based contracts are being realigned to reflect the outcome orientation, including issuing a new River Corridor closure contract. This paper summarizes the outcome-based planning approach for other sites and interested parties. A brief introduction to the Hanford Site, along with detailed descriptions of the three outcomes is provided. This paper also summarizes the analyses and resulting products that were prepared in shifting to an outcome-based approach for closing the Hanford Site.

Ballard, W. W.; Holten, R.; Johnson, W.; Reichmuth, B.; White, M.; Wood, T.

2002-02-26

161

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: Area 25 EMAD Facility Nevada Test Site, Nevada, Revision 0  

Microsoft Academic Search

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 114, Area 25 EMAD Facility, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 114 comprises the following corrective action sites (CASs) located in Area 25 of the Nevada Test Site:;\\u000a;\\u000a 25-41-03, EMAD Facility;\\u000a 25-99-20,

Mark Burmeister

2009-01-01

162

40 CFR 35.917 - Facilities planning (step 1).  

Code of Federal Regulations, 2010 CFR

...allocations, delineation of facility planning areas and population projection totals and disaggregations in approved water quality management (WQM) plans. (See paragraph 8a(3) of appendix A.) After October 1, 1979, the Regional...

2010-07-01

163

Resource Conservation and Recovery Act (RCRA). Facility Investigation Program Plan  

SciTech Connect

This Resource Conservation and Recovery Act (RCRA) Facility Investigation Program Plan has been developed to provide a framework for the completion of RCRA Facility Investigations (RFI) at identified units on the Savannah Rive Site (SRS) facility. As such, the RFI Program Plan provides: technical guidance for all work to be performed, managerial control, a practical, scientific approach. The purpose of this Overview is to demonstrate how the basic RFI Program Plan elements (technical, management, and approach) are interwoven to provide a practical and workable plan. The goal of the RFI Program Plan is to provide a systematic, uniform approach for performance and reporting. In addition, the RFI Program Plan has been developed to be specific to the SRS facility and to adhere to the Environmental Protection Agency (EPA) RFI guidance received as part of the SRS. The US EPA publication ``Characterization of Hazardous Waste Sites`` has been liberally adapted for use in this RFI Program Plan.

Not Available

1989-06-30

164

Resource Conservation and Recovery Act (RCRA) Closure Plan Summary for Interim reasctive Waste Treatment Area (IRWTA)  

SciTech Connect

This closure plan has been prepared for the interim Reactive Waste Treatment Area (IRWT'A) located at the Y-12 Pkmt in oak Ridge, Tennessee (Environmental Protection Agency [EPA] Identification TN 389-009-0001). The actions required to achieve closure of the IRWTA are outlined in this plan, which is being submitted in accordance with Tennessee Ruie 1200- 1-1 1-.0S(7) and Title 40, Code of Federal Regulations (CFR), Part 265, Subpart G. The IRWTA was used to treat waste sodium and potassium (NaK) that are regulated by the Resource Conservation and Recovery Act (RCRA). The location of the IRWT'A is shown in Figures 1 and 2, and a diagram is shown in Figure 3. This pkm details all steps that wdi be petiormed to close the IRWTA. Note that this is a fmai ciosure.and a diagram is shown in Figure 3. This pkm details all steps that wdi be petiormed to close the IRWTA. Note that this is a fmai ciosure.

Collins, E.T.

1997-07-01

165

Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543  

SciTech Connect

The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites. (authors)

Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin [Office of Groundwater and Soil Remediation, U.S. Department of Energy, Washington, DC 20585 (United States); Wellman, Dawn [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Deeb, Rula; Hawley, Elisabeth [ARCADIS U.S., Inc., Emeryville, CA 94608 (United States)

2012-07-01

166

Sport Facility Planning and Management. Sport Management Library.  

ERIC Educational Resources Information Center

Students of sports facilities management will need to acquire a wide variety of managerial skills and knowledge in order to be adequately prepared to plan and manage these facilities. This textbook offers students a mix of practical examples and recognized theory to help them in the planning, constructing, promoting, and managing of sports…

Farmer, Peter J.; Mulrooney, Aaron L.; Ammon, Rob, Jr.

167

MSU Bid Proposal Long Form 098 FACILITIES PLANNING, DESIGN & CONSTRUCTION  

E-print Network

MSU Bid Proposal Long Form 098 FACILITIES PLANNING, DESIGN & CONSTRUCTION Sixth Avenue and Grant PROPOSAL Project Title PPA No. __-____ TO: State of Montana Montana State University Facilities Planning, Design, and Construction Attn: Walt Banziger, Director Plew Building, 6th PO Box 172760 & Grant Bozeman

Dyer, Bill

168

Planning Physical Education and Athletic Facilities in Schools.  

ERIC Educational Resources Information Center

This book is primarily designed for a course in planning physical education and athletic facilities and as a supplementary textbook for administration courses. It illustrates the skills necessary for designing and planning facilities, stresses the need for effective communication between planners and users, and covers elementary through college…

Penman, Kenneth A.

169

NSTX: Facility/Research Highlights and Near Term Facility Plans  

SciTech Connect

The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

M. Ono

2008-11-19

170

ICPP tank farm closure study. Volume 3: Cost estimates, planning schedules, yearly cost flowcharts, and life-cycle cost estimates  

SciTech Connect

This volume contains information on cost estimates, planning schedules, yearly cost flowcharts, and life-cycle costs for the six options described in Volume 1, Section 2: Option 1 -- Total removal clean closure; No subsequent use; Option 2 -- Risk-based clean closure; LLW fill; Option 3 -- Risk-based clean closure; CERCLA fill; Option 4 -- Close to RCRA landfill standards; LLW fill; Option 5 -- Close to RCRA landfill standards; CERCLA fill; and Option 6 -- Close to RCRA landfill standards; Clean fill. This volume is divided into two portions. The first portion contains the cost and planning schedule estimates while the second portion contains life-cycle costs and yearly cash flow information for each option.

NONE

1998-02-01

171

PRODUCTION FACILITY SPILL CONTINGENCY PLAN Operator Name, Address, Phone, Contact Facility Name, Address, Phone, Contact  

E-print Network

provide resources and liaison fuctions during oil spills. Page 3 of 9 #12;PRODUCTION FACILITY SPILL CONTINGENCY PLAN CCR 1722.9 E Spill Control/Cleanup Equipment Available Either Onsite or in Another LocationPRODUCTION FACILITY SPILL CONTINGENCY PLAN CCR 1722.9 Operator Name, Address, Phone, Contact

172

The National Ignition Facility: Status and Plans  

Microsoft Academic Search

Summary form only given. The National Ignition Facility (NIF) is a 192 beam laser facility presently under construction at LLNL. When completed, NIF will produce 1.8 MJ, 500 TW of ultraviolet light making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for performing experiments for fusion ignition for inertial confinement fusion (ICF)

E. I. Moses

2005-01-01

173

Planning and Managing the Campus Facilities Portfolio  

ERIC Educational Resources Information Center

The campus and facilities of a college should be managed using the same principles as any other investment in an institution's financial portfolio. Stemming from the APPA/National Association of College & University Business Officers (NACUBO) Institute for Facilities Finance, this book addresses the totality of managing the facilities investment…

Daigneau, William A., Ed.

2003-01-01

174

Final closure cover for a Hanford radioactive mixed waste disposal facility  

SciTech Connect

This study provides a preliminary design for a RCRA mixed waste landfill final closure cover. The cover design was developed by a senior class design team from Seattle University. The design incorporates a layered design of indigenous soils and geosynthetics in a layered system to meet final closure cover requirements for a landfill as imposed by the Washington Administrative Code WAC-173-303 implementation of the Resource Conservation and Recovery Act.

Johnson, K.D.

1996-02-06

175

Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

G. N. Doyle

2002-02-01

176

A Guide for Planning and Construction of Public School Facilities in Georgia. School Food Service Facilities.  

ERIC Educational Resources Information Center

It is the purpose of this guide to provide established, well-tested guidelines for planning and constructing food service facilities. These guidelines attempt to get the most efficient and economical operation from a school's food service facilities by providing pertinent information for expanding and remodeling existing facilities, as well as…

Georgia State Dept. of Education, Atlanta. Office of School Administrative Services.

177

Antenna Test Facility (ATF): User Test Planning Guide  

NASA Technical Reports Server (NTRS)

Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

Lin, Greg

2011-01-01

178

Vibration and Acoustic Test Facility (VATF): User Test Planning Guide  

NASA Technical Reports Server (NTRS)

Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

Fantasia, Peter M.

2011-01-01

179

Radiant Heat Test Facility (RHTF): User Test Planning Guide  

NASA Technical Reports Server (NTRS)

Test process, milestones and inputs are unknowns to first-time users of the RHTF. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

DelPapa, Steven

2011-01-01

180

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada, Rev. No.: 1  

Microsoft Academic Search

This Streamlined Approach for Environmental Restoration (SAFER) plan addresses closure for Corrective Action Unit (CAU) 118, Area 27 Super Kukla Facility, identified in the ''Federal Facility Agreement and Consent Order''. Corrective Action Unit 118 consists of one Corrective Action Site (CAS), 27-41-01, located in Area 27 of the Nevada Test Site. Corrective Action Site 27-41-01 consists of the following four

David Strand

2006-01-01

181

Corrective Action Investigation Plan for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada (includes ROTC No. 1, date 01\\/25\\/1999)  

Microsoft Academic Search

This Corrective Action Investigation Plan contains the US Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 254 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 254 consists of Corrective Action Site (CAS) 25-23-06, Decontamination Facility. Located in Area 25

1999-01-01

182

Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order  

SciTech Connect

This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

Evans, Susan Kay; Orchard, B. J.

2002-01-01

183

Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order  

SciTech Connect

This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

Evans, S.K.

2002-01-31

184

Planning and Designing Facilities. Facility Design and Development--Part 1  

ERIC Educational Resources Information Center

Before one begins the planning process for a new facility, it is important to determine if there is a need for a new facility. The demand for a new facility can be drawn from increases in the number of users, the type of users, and the type of events to be conducted in the facility. A feasibility study should be conducted to analyze the legal…

Hypes, Michael G.

2006-01-01

185

Facility effluent monitoring plan for the 222-S Laboratory  

SciTech Connect

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable Federal, State, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

Nickels, J.M.; Warwick, G.J.

1992-11-01

186

PROJECT INITIATION FORM FACILITY SERVICES PLANNING, DESIGN AND CONSTRUCTION  

E-print Network

PROJECT INITIATION FORM FACILITY SERVICES ­ PLANNING, DESIGN AND CONSTRUCTION 202 Facility Services would like an appointment to discuss the project. Department: College: Requestor's Name: E-mail : Phone: Project Contact: (if other than requestor): E-mail : Phone: B. PROJECT INFORMATION Project Location

Stephens, Jacqueline

187

Places and Spaces: Facility Planning for Handicapped Children and Adults.  

ERIC Educational Resources Information Center

Intended for special educators and architectural designers, the book provides specifications and lists of resource materials on facility design for handicapped children and adults. In an overview, R. Vosbeck discusses the need for cooperation between architects and educators and relates his experiences in planning facilities for exceptional…

Aiello, Barbara, Ed.

188

30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE GRADE AND AT LEVEL OF OPERATING CORRIDOR. INEEL DRAWING NUMBER 200-0633-00-287-106351. FLUOR NUMBER 5775-CPP-633-A-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

189

31. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS ACCESS CORRIDOR ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

31. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS ACCESS CORRIDOR AT MEZZANINE AND LOWER LEVELS. INEEL DRAWING NUMBER 200-0633-00-287-106352. FLUOR NUMBER 5775-CPP-633-A-2. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

190

29. FLOOR PLAN OF WASTE CALCINATION FACILITY SHOWING MAIN ABOVEGRADE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

29. FLOOR PLAN OF WASTE CALCINATION FACILITY SHOWING MAIN ABOVE-GRADE FLOOR LEVEL. INEEL DRAWING NUMBER 200-0633-00-287-106354. FLUOR NUMBER 5775-CPP-633-A-4. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

191

Safer Work Plan for CAUs 452, 454, 456, and 464 Closure of Historical UST Release Sites Nevada Test Site  

SciTech Connect

This plan addresses characterization and closure of nine underground storage tank petroleum hydrocarbon release sites. The sites are located at the Nevada Test Site in Areas 2, 9, 12, 23, and 25. The underground storage tanks associated with the release sites and addressed by this plan were closed between 1990 and 1996 by the U. S. Department of Energy, Nevada Operations Office. One underground storage tank was closed in place (23-111-1) while the remaining eight were closed by removal. Hydrocarbon releases were identified at each of the sites based upon laboratory analytical data samples collected below the tank bottoms. The objective of this plan is to provide a method for implementing characterization and closure of historical underground storage tank hydrocarbon release sites.

Jerry Bonn

1997-08-01

192

The mixed waste management facility, FY95 plan  

SciTech Connect

This document contains the Fiscal Year 1995 Plan for the Mixed Waste Management Facility (MWMF) at Lawrence Livermore National Laboratory. Major objectives to be completed during FY 1995 for the MWMF project are listed and described. This report also contains a budget plan, project task summaries, a milestone control log, and a responsibility assignment matrix for the MWMF project.

Streit, R.

1994-12-01

193

National Ignition Facility risk management plan, rev. 1  

Microsoft Academic Search

The initial release of the National Ignition Facility (AUF) Risk Management Plan (LLNL, 1997a) was prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide (DOE, 1996a) and supported Critical Decision 3 (CD3), Approval to Initiate Construction (DOE, 1997a). The objectives of the plan were to: (1) Identify the risks to the completion of the Project in

S J Brereton

1998-01-01

194

Interim Closure Activities at Corrective Action Unit 114: Area 25 EMAD Facility, Nevada National Security Site, Nevada  

SciTech Connect

This letter report documents interim activities that have been completed at CAU 114 to support ongoing access and generate information necessary to plan future closure activities. General housekeeping and cleanup of debris was conducted in the EMAD yard, cold bays, support areas of Building 3900, and postmortem cell tunnel area of the hot bay. All non-asbestos ceiling tiles and loose and broken non-friable asbestos floor tiles were removed from support galleries and office areas. Non-radiologically contaminated piping and equipment in the cold areas of the building and in the two 120-ton locomotives in the yard were tapped, characterized, drained, and verified free of contents.

Boehlecke, R. F.

2011-10-24

195

National Ignition Facility Risk Management Plan  

Microsoft Academic Search

The NIF Risk Management Plan has been prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide to support Critical Decision 3 of the NIF Project. The objectives of the plan are to: 1) identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule, 2) assess the

Brereton

1997-01-01

196

Planning Educational Facilities for the Next Century.  

ERIC Educational Resources Information Center

This book examines each phase in the process of planning capital projects and those individuals in the schools who make decisions about the buildings students will use. It uses the long range planning process of the school system as the vehicle for providing the proper housing for students and programs. Program development, student enrollment…

Earthman, Glen I.

197

Instructional Television Facilities: A Planning Guide.  

ERIC Educational Resources Information Center

When planning an instructional television (ITV) system, it is suggested that educational objectives should outweigh technological considerations and that expert advice be secured before the planning process is far advanced. In line with the latter suggestion, the book offers a background of technical knowledge aimed at educational administrators…

Witherspoon, John P.; Kessler, William J.

198

HWMA\\/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO5.8 D REVISION2  

Microsoft Academic Search

This Hazardous Waste Management Act\\/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604

KIRK WINTERHOLLER

2008-01-01

199

Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1  

SciTech Connect

This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

NONE

1993-10-29

200

Development of Facilities Master Plan and Laboratory Renovation Project  

SciTech Connect

Funding from this grant has allowed Morehouse School of Medicine to complete its first professionally developed, comprehensive campus master plan that is in alignment with the recently completed strategic plan. In addition to master planning activities, funds were used for programming and designing research renovations, and also to supplement other research facility upgrades by providing lighting and equipment. The activities funded by this grant will provide the catalyst for substantial improvement in the Schoolâ??s overall facilities for biomedical education and research, and will also provide much of the information needed to conduct a successful campaign to raise funds for proposed buildings and renovations.

Andrea D. Fox

2011-10-03

201

Hanford Site waste tank farm facilities design reconstitution program plan  

SciTech Connect

Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

Vollert, F.R.

1994-09-06

202

Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order  

SciTech Connect

This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

Evans, S.K.

2002-01-31

203

Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order  

SciTech Connect

This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

Evans, Susan Kay; Orchard, B. J.

2002-01-01

204

Facility effluent monitoring plan for the plutonium-uranium extraction facility  

SciTech Connect

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, NM (United States)

1993-12-01

205

Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1  

SciTech Connect

A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

Lewis, C.J.

1995-10-01

206

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect

This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

Washington TRU Solutions LLC

2001-02-25

207

Fast flux test facility, transition project plan  

SciTech Connect

The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

Guttenberg, S.

1994-11-15

208

TRA Closure Plan REV 0-9-20-06 HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump were characterized as having managed hazardous waste. The reactor drain tank and canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

Winterholler, K.

2007-01-31

209

Planning for a Healthier School Facility  

ERIC Educational Resources Information Center

One might assume that, within the walls of a school, it is the shared responsibility of the school nurse, guidance counselor, physical fitness instructor, and food services staff to protect student health. In truth, such an important responsibility also belongs, in very large part, to the educational facility planner and school maintenance staff.…

Belew, Rachel

2012-01-01

210

Facility effluent monitoring plan for WESF  

SciTech Connect

The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

SIMMONS, F.M.

1999-09-01

211

NSTA Guide to Planning School Science Facilities, Second Edition  

NSDL National Science Digital Library

Science-learning spaces are different from general-purpose classrooms. So if your school is planning to build or renovate, you need the fully updated NSTA Guide to Planning School Science Facilities . It's the definitive resource for every K-12 school that seeks safe, effective science space without costly, time-consuming mistakes. New to this edition is a chapter on "green" schools, including how to think outside the traditional walls and use the entire grounds to encourage environmental responsibility in students. The revised guide also provides essential up-to-date coverage such as: ? Practical information on laboratory and general room design, budget priorities, space considerations, and furnishings. ? Stages of the planning process for new and renovated science facilities. ? Current trends and future directions in science education and safety, accessibility, and legal guidelines. ? Detailed appendices about equipment-needs planning, classroom dimensions, and new safety research, plus an updated science facilities audit. NSTA Guide to Planning School Science Facilities will help science teachers, district coordinators, school administrators, boards of education, and schoolhouse architects understand those differences and develop science facilities that will serve students for years to come.

James T. Biehle

2007-08-01

212

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect

This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED’s guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A Phase I RFI was completed at WIPP as part of a Voluntary Release Assessment (VRA). The risk-based decision criteria recommended by EPA for the VRA were contained in a proposed Corrective Action rule for SWMUs (EPA, 1990). EPA Region VI has issued new risk-based screening criteria applicable to the WIPP SWMUs and AOCs.

Washington TRU Solutions LLC

2000-02-25

213

Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility  

SciTech Connect

Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Butterworth, St.W. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States)

2008-07-01

214

Planning Educational Facilities for the Next Century.  

ERIC Educational Resources Information Center

A school building constructed 10 years ago may not be relevant to what is needed in a new building today. Methodology and curriculum change rapidly, and, as a result, buildings change as do the students attending schools today. The administrators in the school system are responsible for adequately planning a new capital-improvement project and…

Earthman, Glen I.

215

Emergency Planning for Municipal Wastewater Treatment Facilities.  

ERIC Educational Resources Information Center

This manual for the development of emergency operating plans for municipal wastewater treatment systems was compiled using information provided by over two hundred municipal treatment systems. It covers emergencies caused by natural disasters, civil disorders and strikes, faulty maintenance, negligent operation, and accidents. The effects of such…

Lemon, R. A.; And Others

216

Facility Effluent Monitoring Plan for the 3720 Building  

SciTech Connect

This Facility Effluent Monitoring Plan (FEMP) has been prepared for the Environmental Science Laboratory (3720 Facility) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs'' This FEMP has been prepared for the 3720 Facility primarily because it has a major (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The 3720 Facility provides office and laboratory space for PNNL scientific and engineering staff conducting multidisciplinary research in the areas of materials characterization and testing and waste management. The facility is designed to accommodate the use of radioactive and hazardous materials to conduct these activities. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, and dispersible particulate. The facility is in the process of being vacated for shutdown, but is considered a Major Emission Point as of the date of this document approval.

Shields, K.D.; Ballinger, M.Y.

1999-04-02

217

Facility Effluent Monitoring Plan for the Plutonium Finishing Plant (PFP)  

SciTech Connect

A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years.

FRAZIER, T.P.

1999-10-01

218

Planning for Education: Space Guidelines for Planning Educational Facilities. Revised.  

ERIC Educational Resources Information Center

This booklet provides guidelines for school planners and designers on the state requirements for space allocation in its K-12 public schools. Recommendations are included for various specialized facilities to assure that proper spaces can be provided beyond the typical classroom space. Guidelines are arranged under the categories of instructional,…

Oklahoma State Dept. of Education, Oklahoma City.

219

National Ignition Facility Risk Management Plan  

SciTech Connect

The NIF Risk Management Plan has been prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide to support Critical Decision 3 of the NIF Project. The objectives of the plan are to: 1) identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule, 2) assess the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES&H (environment, safety and health), costs, and schedule, and 3) address each identified risk in terms of suitable risk mitigation measures. The documents that form the basis for this risk assessment are as follows: 1. Final Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (DOE, 1996a) and Record of Decision (DOE, 1996b), 2. Preliminary Hazards Analysis (Brereton, 1993), 3. Fire Hazards Analysis (Jensen, 1997), 4. Preliminary Safety Analysis Report (LLNL, 1996a), 5. Reliability, Availability and Maintainability Report, 6. Radiation Protection Evaluation, 7. Primary Criteria and Functional Requirements (LLNL, 1996b), 8. Project Execution Plan (DOE, 1996c), 9. Schedule Risk Assessment, 10. Construction Safety Program (LLNL, 1997), 11. Title I Design Media, 12. Congressional Data Sheet. The process used in developing this plan was to form a Risk Assessment team of knowledgeable project personnel. This included: Assurances Manager, Systems Integration Manager, Project Control Manager, a Risk Management consultant, Deputy Associate Project Engineer for Activation and Start-up (Co-chairperson), and Lead Engineer for Safety Analysis (Co-chairperson). They were familiar with the risk basis documents and developed a list of the key risk elements. A methodology for assigning likelihoods, consequences, and risks was developed. Risk elements were then reviewed, and likelihoods, consequences, and risks were assigned. Risk mitigation measures were then developed. Comments were obtained, resolved and incorporated, and this document presents the results of the assessment.

Brereton, S.J.

1997-02-01

220

Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

Ballinger, M.Y.; Shields, K.D.

1999-04-02

221

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada, Rev. No.: 1  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) plan addresses closure for Corrective Action Unit (CAU) 118, Area 27 Super Kukla Facility, identified in the ''Federal Facility Agreement and Consent Order''. Corrective Action Unit 118 consists of one Corrective Action Site (CAS), 27-41-01, located in Area 27 of the Nevada Test Site. Corrective Action Site 27-41-01 consists of the following four structures: (1) Building 5400A, Reactor High Bay; (2) Building 5400, Reactor Building and access tunnel; (3) Building 5410, Mechanical Building; and (4) Wooden Shed, a.k.a. ''Brock House''. This plan provides the methodology for field activities needed to gather the necessary information for closing the CAS. There is sufficient information and process knowledge from historical documentation and site confirmation data collected in 2005 and 2006 to recommend closure of CAU 118 using the SAFER process. The Data Quality Objective process developed for this CAU identified the following expected closure option: closure in place with use restrictions. This expected closure option was selected based on available information including contaminants of potential concern, future land use, and assumed risks. There are two decisions that need to be answered for closure. Decision I is to determine the nature of contaminants of concern in environmental media or potential source material that could impact human health or the environment. Decision II is to determine whether or not sufficient information has been obtained to confirm that closure objectives were met. This decision includes determining whether the extent of any contamination remaining on site has been defined, and whether actions have been taken to eliminate exposure pathways.

David Strand

2006-09-01

222

Risk-Based Decision Process for Accelerated Closure of a Nuclear Weapons Facility  

SciTech Connect

Nearly 40 years of nuclear weapons production at the Rocky Flats Environmental Technology Site (RFETS or Site) resulted in contamination of soil and underground systems and structures with hazardous substances, including plutonium, uranium and hazardous waste constituents. The Site was placed on the National Priority List in 1989. There are more than 370 Individual Hazardous Substance Sites (IHSSs) at RFETS. Accelerated cleanup and closure of RFETS is being achieved through implementation and refinement of a regulatory framework that fosters programmatic and technical innovations: (1) extensive use of ''accelerated actions'' to remediate IHSSs, (2) development of a risk-based screening process that triggers and helps define the scope of accelerated actions consistent with the final remedial action objectives for the Site, (3) use of field instrumentation for real time data collection, (4) a data management system that renders near real time field data assessment, and (5) a regulatory agency consultative process to facilitate timely decisions. This paper presents the process and interim results for these aspects of the accelerated closure program applied to Environmental Restoration activities at the Site.

Butler, L.; Norland, R. L.; DiSalvo, R.; Anderson, M.

2003-02-25

223

Master Plan for Educational Facilities: Garwood, Union County, New Jersey.  

ERIC Educational Resources Information Center

Garwood, New Jersey, is a small borough of 0.69 square miles with an estimated population in 1978 of 4,856 persons. This master plan for educational facilities begins with an overview of the district that describes its beginnings as an industrial community. A number of maps illustrate characteristics of the area including its topography,…

Engelhardt and Engelhardt, Inc., Purdy Station, NY.

224

Middle School Educational Specifications: Facilities Planning Standards. Edition II.  

ERIC Educational Resources Information Center

The Jefferson County School District (Denver, Colorado) has published this document as a model standard for the planning and designing of new middle schools and remodeling and modernizing existing schools. It describes the facility requirements to accommodate the instructional program, activities, and support functions to assist architects, school…

Jefferson County School District R-1, Denver, CO.

225

Notes on Planning & Funding for School Arts Facilities.  

ERIC Educational Resources Information Center

In planning for an arts facility for a private school, it is necessary to consider the proposal's appropriateness to the student body, curriculum, and community. The early appointment of a director prevents expensive mistakes and gives the program an articulate spokesperson. In addition, the teaching and support staff must be chosen with care. An…

Severance, Jake

226

www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION  

E-print Network

www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION PDC PROJECT MANAGEMENT GUIDE, this practice increases the potential for non-competitive pricing. B. Policy. Unless otherwise authorized by PDC written consent of PDC. The requirement to obtain prior written PDC consent also applies to trade

Slatton, Clint

227

www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION  

E-print Network

www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION PDC PROJECT MANAGEMENT GUIDE categories, and to fiscally close the contract. All change orders must be approved by the PDC Assistant Vice-President (AVP) or designee, the PDC Contract Administrator (CA), and the PDC Project Manager. B. Funding

Slatton, Clint

228

www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION  

E-print Network

www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION PDC PROJECT MANAGEMENT GUIDE are available on the PDC website. The PM and CA shall use the PDC pay application checklist as a means to support the Cost of Work. PDC REVISED JANUARY 2014 PAGE 1 OF 3 #12;a)All trade contractors' pay

Slatton, Clint

229

The Planning and Design of a New PET Radiochemistry Facility  

Microsoft Academic Search

The objectives of the Mayo positron emission tomography (PET) radiochemistry facility are the production of PET drugs for clinical service of our in-house patients, commercial distribution of PET drug products, and development of new PET drugs. The factors foremost in the planning and design phases were the current regulatory climate for PET drug production, radiation safety issues, and effective production

Mark S Jacobson; Joseph C Hung; Trenton L Mays; Brian P Mullan

2002-01-01

230

State-of-the-Art Facility: A Planning Process.  

ERIC Educational Resources Information Center

Chief executive officers of school districts and facility planners must assume the role of change agent to meet the information needs of the 21st century. Public school learning, which will serve more groupings of people on a continual basis, will be disseminated through media learning centers. Management should follow six steps in planning

Day, C. William; Speicher, A. Dean

231

123. Back side technical facilities passageways, "key plan" architectural, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

123. Back side technical facilities passageways, "key plan" - architectural, AS-BLT AW 36-25-13, sheet 1 of 40, dated 23 November, 1960. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

232

Hanford Site waste tank farm facilities design reconstitution program plan  

Microsoft Academic Search

Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result

Vollert

1994-01-01

233

Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility  

SciTech Connect

A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

DAVIS, W.E.

2000-03-08

234

Current trends in health facility planning, design, and construction.  

PubMed

It is critical now more than ever for today's healthcare facilities to serve as more than just a backdrop to the care provided--they can, and should, be an integral part of that care. In addition to promoting efficacy, delighting the senses, and placing patients and families at ease, facilities need to be high-performing, sustainable, and healthy environments. Creating today's healthcare facilities requires breaking through barriers in unexpected ways, and it often requires looking outside the healthcare profession for guidance. In this article, we explore current trends in health facility planning, design, and construction. Our focus is on the buildings that serve as venues for the provision of healthcare services across the full continuum, from prevention to critical care. In particular, we discuss four current broad trends and conclude with thoughts on future developments. PMID:25671997

Beale, Craig; Kittredge, Frank D

2014-01-01

235

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect

This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-02-14

236

Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory  

SciTech Connect

This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

Shields, K.D.; Ballinger, M.Y.

1999-04-02

237

Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan  

SciTech Connect

The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

SIMMONS, F.M.

2000-12-01

238

30 CFR 254.3 - May I cover more than one facility in my response plan?  

Code of Federal Regulations, 2011 CFR

...DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES...for a response plan in Subpart B, Oil Spill Response Plans for Outer Continental Shelf Facilities, or Subpart D, Oil Spill Response Requirements for...

2011-07-01

239

30 CFR 254.3 - May I cover more than one facility in my response plan?  

Code of Federal Regulations, 2010 CFR

...DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES...for a response plan in Subpart B, Oil Spill Response Plans for Outer Continental Shelf Facilities, or Subpart D, Oil Spill Response Requirements for...

2010-07-01

240

78 FR 67223 - Proposed Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Facility; Material Control and Accounting Plans and Completing NRC Form 327...Amendments to Material Control and Accounting Regulations; Proposed Rules Federal...Facility; Material Control and Accounting Plans and Completing NRC Form...

2013-11-08

241

30 CFR 254.3 - May I cover more than one facility in my response plan?  

Code of Federal Regulations, 2014 CFR

...DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES...for a response plan in Subpart B, Oil Spill Response Plans for Outer Continental Shelf Facilities, or Subpart D, Oil Spill Response Requirements for...

2014-07-01

242

30 CFR 254.3 - May I cover more than one facility in my response plan?  

Code of Federal Regulations, 2013 CFR

...DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES...for a response plan in Subpart B, Oil Spill Response Plans for Outer Continental Shelf Facilities, or Subpart D, Oil Spill Response Requirements for...

2013-07-01

243

30 CFR 254.3 - May I cover more than one facility in my response plan?  

Code of Federal Regulations, 2012 CFR

...DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES...for a response plan in Subpart B, Oil Spill Response Plans for Outer Continental Shelf Facilities, or Subpart D, Oil Spill Response Requirements for...

2012-07-01

244

An arid zone lysimeter facility for performance assessment and closure investigations at the Nevada Test Site  

SciTech Connect

Two precision weighing lysimeters were installed near the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site to provide support for investigations of water, solute, and heat fluxes in the near-surface of the soil. The lysimeters consist of soil tanks with a volume of 16 cubic meters mounted on a sensitive scale. One lysimeter was revegetated with native shrubs whereas the other was kept bare to stimulate a non-vegetated waste cover. Data consisting of physical and hydrological properties of the lysimeter soils, thermal and moisture conditions in the lysimeters, and atmospheric boundary conditions are being collected for calibrating and verifying computer models for simulating the flow of water and heat in the near surface alluvium at the Area 5 RWMS. This effort will provide site- specific models for demonstration of ``no migration`` of constituents to the water table. Moisture and thermal conditions in the lysimeters are monitored daily using time domain reflectometry probes and thermocouple psychrometers. Daily evaporation and evapotranspiration are calculated from the lysimeter scales. Meteorological variables are monitored by sensors mounted on a 3 meter tower adjacent to the lysimeters. An array of soil-solution samplers to be installed through the side of the soil tank will allow studies of waste mobility under natural conditions. Conceptual designs for closure at the RWMS are focused on using an upper layer of repacked native alluvium, which can be tested with the lysimeters. In addition, performance of other components such as a capillary barrier can be tested by installing a scaled version in one of the lysimeter tanks.

Levitt, D.G.; Lohrstorfer, C.F.; Sully, M.J. [Bechtel Nevada Corp., Las Vegas, NV (United States); Ginanni, J.M. [USDOE Nevada Operations Office, Las Vegas, NV (United States). Waste Management Div.

1996-07-01

245

Technical data summary: Plan for closure of the 643-G burial ground  

SciTech Connect

This report involves the actions of closing the 643-G burial ground which involves waste removal, stabilization, and capping. Remedial action involves the removing of the transuranic waste and closing of the grid wells. The closure cap for the burial site will consist of native soil, clay, and gravel. This will assure long-term physical and chemical stability. (MB)

Cook, J R

1987-08-17

246

Experimental area plans for an advanced hadron facility  

SciTech Connect

A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs. (LEW)

Hoffman, E.W.; Macek, R.J.; Tschalear, C.

1986-01-01

247

33 CFR 105.405 - Format and content of the Facility Security Plan (FSP).  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Format and content of the Facility Security Plan (FSP). 105.405 Section 105.405...Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARITIME SECURITY: FACILITIES Facility...

2013-07-01

248

Pinellas Plant contingency plan for the hazardous waste management facility  

SciTech Connect

Subpart D of Part 264 (264.50 through .56) of the Resource Conservation and Recovery Act (RCRA) regulations require that each facility maintain a contingency plan detailing procedures to {open_quotes}minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water.{close_quotes}

NONE

1988-04-01

249

38. Photograph of plans for alterations to IBM facilities, drawn ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

38. Photograph of plans for alterations to IBM facilities, drawn by U.S. Navy Bureau of Yards and Docks, c. 1960. Drawing on file at Caretaker Site Office, Naval Undersea Warfare Center, New London. Copyright-free. - Naval Undersea Warfare Center, Bowditch Hall, 600 feet east of Smith Street & 350 feet south of Columbia Cove, West bank of Thames River, New London, New London County, CT

250

Energy systems planning procedure for industrial facility complexes  

Microsoft Academic Search

A systematic procedure for optimizing selections from among available energy-saving opportunities is being developed for use in the U.S. Navy's fixed shore facilities. The purpose of this procedure is to provide Navy activities with an easy-to-use energy systems planning and acquisition tool that focuses on state-of-the-art technology having maximum energy impact for minimum life-cycle cost. The intended result of the

C. J. Ward; W. V. Miller

1982-01-01

251

New Concepts in Planning and Funding Athletic, Physical Education, and Recreational Facilities.  

ERIC Educational Resources Information Center

The major purpose of this book is to provide information needed to plan, design, equip, and finance a sports-related facility. Planning and financing are discussed and guidelines offered for securing and compiling data for analysis in justifying new facilities. Other chapters discuss determining facility needs and eventual plans, selection of the…

Bronzan, Robert T.

252

40 CFR Appendix B to Subpart I of... - Allowance for Facilities Planning and Design  

Code of Federal Regulations, 2010 CFR

...Allowance for Facilities Planning and Design B Appendix...for Construction of Treatment Works Pt. 35, Subpt...Allowance for Facilities Planning and Design 1...determine the facilities planning allowance for a Step...improving, or extending a treatment works, whether...

2010-07-01

253

Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are located downstream of control technologies and just before discharge to the atmosphere. The need for monitoring airborne emissions of hazardous chemicals is established in the Hanford Site Air Operating Permit and in notices of construction. Based on the current potential-to-emit, the Hanford Site Air Operating Permit does not contain general monitoring requirements for BOP facilities. However, the permit identifies monitoring requirements for specific projects and buildings. Needs for future monitoring will be established by future permits issued pursuant to the applicable state and federal regulations. A number of liquid-effluent discharge systems serve the BOP facilities: sanitary sewer, process sewer, retention process sewer, and aquaculture system. Only the latter system discharges to the environment; the rest either discharge to treatment plants or to long-term storage. Routine compliance sampling of liquid effluents is only required at the Environmental Molecular Sciences Laboratory. Liquid effluents from other BOP facilities may be sampled or monitored to characterize facility effluents or to investigate discharges of concern. Effluent sampling and monitoring for the BOP facilities depends on the inventories, activities, and environmental permits in place for each facility. A description of routine compliance monitoring for BOP facilities is described in the BOP FEMP.

Ballinger, Marcel Y.; Gervais, Todd L.

2004-11-15

254

40 CFR 265.258 - Closure and post-closure care.  

Code of Federal Regulations, 2012 CFR

... INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.258 Closure and post-closure care. (a) At closure, the owner or operator must remove or...

2012-07-01

255

40 CFR 265.258 - Closure and post-closure care.  

Code of Federal Regulations, 2014 CFR

... INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.258 Closure and post-closure care. (a) At closure, the owner or operator must remove or...

2014-07-01

256

40 CFR 265.258 - Closure and post-closure care.  

Code of Federal Regulations, 2011 CFR

... INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.258 Closure and post-closure care. (a) At closure, the owner or operator must remove or...

2011-07-01

257

40 CFR 265.258 - Closure and post-closure care.  

Code of Federal Regulations, 2010 CFR

... INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.258 Closure and post-closure care. (a) At closure, the owner or operator must remove or...

2010-07-01

258

40 CFR 265.258 - Closure and post-closure care.  

Code of Federal Regulations, 2013 CFR

... INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.258 Closure and post-closure care. (a) At closure, the owner or operator must remove or...

2013-07-01

259

HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure Plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for the Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

K. Winterholler

2007-01-30

260

POST CLOSURE INSPECTION REPORT FOR CORRECTIVE ACTION UNIT 92: AREA 6 DECON PAD FACILITY, NEVADA TEST SITE NEVADA, FOR THE PERIOD JANUARY 2004 - DECEMBER 2004  

SciTech Connect

This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility, Nevada Test Site, Nevada. CAU 92 was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection, 1995) and the Federal Facility Agreement and Consent Order of 1996 on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs): CAS 06-04-01, Decon Pad oil/Water Separator; and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02, Decontamination Pond (RCRA), requires post-closure inspections. CAS 06-04-01, Decon Pad Oil/Water Separator, is located inside the fence at the Building 6-605 compound. This report covers the annual period January 2004 through December 2004.

BECHTEL NEVADA

2005-03-01

261

Education Facilities Sector-Specific Plan: An Annex to the Government Facilities Sector-Specific Plan  

ERIC Educational Resources Information Center

Critical infrastructure and key resources (CIKR) provide the essential services that support basic elements of American society. Compromise of these CIKR could disrupt key government and industry activities, facilities, and systems, producing cascading effects throughout the Nation's economy and society and profoundly affecting the national…

US Department of Homeland Security, 2010

2010-01-01

262

Resource Conservation and Recovery Act industrial site environmental restoration, site characterization plan: Area 6 Decontamination Pond Facility. Revision 1  

SciTech Connect

This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility at the Nevada Test Site which will be conducted for the US Department of Energy, Nevada Operations Office, Environmental Restoration Division. The objectives of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and around the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site characterization and waste management purposes.

NONE

1996-08-01

263

Woodbridge Army Research Facility RI/FS; volume 1. Field sampling plan. Report for 1995-1996  

SciTech Connect

U.S. Army Woodbridge Research Facility (WRF) was used in the past as a major military communications center and a research and development laboratory where electromagnetic pulse energy was tested on military and other equipment. WRF is presently an inactive facility pursuant to the 1991 Base Realignment and Closure list. Past investigation activities indicate that polychlorinated biphenyl compounds (PCBs) are primary chemicals of concern. The WRF is presently in the process of being turned over to the United States Fish and Wildlife Service (USFWS) to be used as a wildlife refuge and training facility. This task calls for provision of the necessary staff and equipment to provide remedial investigation/feasibility support for the USAEC BRAC Program investigation at WRF. The scope of work includes Focused Feasibility Studies, Remedial Investigations, Feasibility Studies, ecological assessments, risk assessments, proposed plans, RODs, and community relations support. This Field Sampling Plan contains a description of the site, sample location rationale, technical approach to field operations, site safety procedures, and methods for ecological assessments, analyses of samples, data management, and disposal of investigation-derived wastes. Information contained in other plans which accompany this submittal is identified.

Choynowski, J.; Ehlers, M.; Elias, M.; Garcia, M.; Henry, C.

1996-02-01

264

Environmental restoration plan for the transfer of surplus facilities to the Facility Transition Program at Oak Ridge National Laboratory  

SciTech Connect

This report will provide guidance on management, coordination, and integration of plans to transition facilities to the Facility Transition Program and activities as related to the Oak Ridge National Laboratory (ORNL) Environmental Restoration Program facilities. This report gives (1) guidance on the steps necessary for identifying ORNL surplus facilities, (2) interfaces of Surveillance and Maintenance (S and M) and Isotope Facility Deactivation program managers, (3) roles and responsibilities of the facility managers, and (4) initial S and M requirements upon acceptance into the Facility Transition Program.

NONE

1995-08-01

265

Grout for closure of the demonstration vault at the US DOE Hanford Facility. Final report  

SciTech Connect

The Waterways Experiment Station (WES) developed a grout to be used as a cold- (nonradioactive) cap or void-fill grout between the solidified low-level waste and the cover blocks of a demonstration vault for disposal of phosphate-sulfate waste (PSW) at the US Department of Energy (DOE) Hanford Facility. The project consisted of formulation and evaluation of candidate grouts and selection of the best candidate grout, followed by a physical scale-model test to verify grout performance under project-specific conditions. Further, the project provided data to verify numerical models (accomplished elsewhere) of stresses and isotherms inside the Hanford demonstration vault. Evaluation of unhardened grout included obtaining data on segregation, bleeding, flow, and working time. For hardened grout, strength, volume stability, temperature rise, and chemical compatibility with surrogate wasteform grout were examined. The grout was formulated to accommodate unique environmental boundary conditions (vault temperature = 45 C) and exacting regulatory requirements (mandating less than 0.1% shrinkage with no expansion and no bleeding); and to remain pumpable for a minimum of 2 hr. A grout consisting of API Class H oil-well cement, an ASTM C 618 Class F fly ash, sodium bentonite clay, and a natural sand from the Hanford area met performance requirements in laboratory studies. It is recommended for use in the DOE Hanford demonstration PSW vault.

Wakeley, L.D.; Ernzen, J.J.

1992-08-01

266

Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada  

SciTech Connect

This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and repair requirements will be remedied within 60 working days of discovery and documented in writing at the time of repair. Results of all inspections/repairs for a given year will be addressed in a single report submitted annually to the NDEP. Soil moisture will be monitored within the cover for a period of at least two years prior to establishing performance criteria for NDEP regulatory purposes.

T. M. Fitzmaurice

2000-08-01

267

A Comprehensive Laboratory Animal Facility Pandemic Response Plan  

PubMed Central

The potential of a severe influenza pandemic necessitates the development of an organized, rational plan for continued laboratory animal facility operation without compromise of the welfare of animals. A comprehensive laboratory animal program pandemic response plan was integrated into a university-wide plan. Preparation involved input from all levels of organizational hierarchy including the IACUC. Many contingencies and operational scenarios were considered based on the severity and duration of the influenza pandemic. Trigger points for systematic action steps were based on the World Health Organization's phase alert criteria. One extreme scenario requires hibernation of research operations and maintenance of reduced numbers of laboratory animal colonies for a period of up to 6 mo. This plan includes active recruitment and cross-training of volunteers for essential personnel positions, protective measures for employee and family health, logistical arrangements for delivery and storage of food and bedding, the removal of waste, and the potential for euthanasia. Strategies such as encouraging and subsidizing cryopreservation of unique strains were undertaken to protect valuable research assets and intellectual property. Elements of this plan were put into practice after escalation of the pandemic alerts due to influenza A (H1N1) in April 2009. PMID:20858365

Roble, Gordon S; Lingenhol, Naomi M; Baker, Bryan; Wilkerson, Amy; Tolwani, Ravi J

2010-01-01

268

Addendum to the Closure Report for Corrective Action Unit 113: Area 25 R-MAD Facility, Nevada National Security Site, Nevada  

SciTech Connect

This addendum to the Closure Report for Corrective Action Unit 113: Area 25, Reactor Maintenance, Assembly, and Disassembly Facility, Building 3110, Nevada Test Site, Nevada, DOE/NV--891-VOL I-Rev. 1, dated July 2003, provides details of demolition, waste disposal, and use restriction (UR) modification for Corrective Action Unit 113, Area 25 R-MAD Facility. Demolition was completed on July 15, 2010, when the last of the building debris was disposed. Final field activities were concluded on August 30, 2010, after all equipment was demobilized and UR signs were posted. This work was funded by the American Recovery and Reinvestment Act.

NSTec Environmental Restoration

2011-02-24

269

Evacuation/Transportation Checklist for Child Care Facilities Keeping Kids Safe: Emergency Planning for Child-Care Facilities  

E-print Network

Evacuation/Transportation Checklist for Child Care Facilities Keeping Kids Safe: Emergency Planning for Child-Care Facilities Evacuation/Transportation Checklist for Child-Care Facilities Name of child to transport Name & phone # of transportation provider (if used) Number of vehicles dispatched to evacuation

270

10 CFR 63.161 - Emergency plan for the geologic repository operations area through permanent closure.  

Code of Federal Regulations, 2012 CFR

...NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Emergency Planning Criteria § 63.161 Emergency plan for the geologic repository operations area...

2012-01-01

271

10 CFR 63.161 - Emergency plan for the geologic repository operations area through permanent closure.  

Code of Federal Regulations, 2014 CFR

...NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Emergency Planning Criteria § 63.161 Emergency plan for the geologic repository operations area...

2014-01-01

272

NASA's Planetary Aeolian Laboratory: Facilities and Plans for Future Availability  

NASA Astrophysics Data System (ADS)

The Planetary Aeolian Laboratory (PAL), supported by NASA's Planetary Geology and Geophysics (PG&G) program, is a unique facility used for conducting experiments and simulations of aeolian processes (windblown particles) under different planetary atmospheric environments, including Earth, Mars, and Saturn's moon Titan. With the death of PAL founder Ronald Greeley in 2011, there is concern in the planetary aeolian community whether the PAL will be maintained for continued use by planetary scientists. This presentation will review the PAL facilities, what are their current capabilities, how can interested scientists propose to NASA to use them, and what are the long-term plans for their continued use. The PAL includes one of the nation's largest pressure chambers for conducting low-pressure research. The primary purpose of the PAL is to enable scientific research into aeolian processes under controlled laboratory conditions, and enable testing and calibration of spacecraft instruments and components for NASA's solar system missions, including those requiring a large volume simulated Martian atmosphere. The PAL consists of: 1) the Mars Wind Tunnel (MARSWIT) and 2) Titan Wind Tunnel (TWT) located in the Structural Dynamics Building (N-242) at the NASA Ames Research Center (ARC) in Mountain View, California and administered by Arizona State University. Also available (although not officially part of the PAL facilities) is: 3) an ambient pressure/temperature wind tunnel (ASUWIT) and 4) a vortex (dust devil) generator (ASUVG) on the Tempe campus of Arizona State University (ASU), which is part of the ASU School of Earth and Space Exploration (SESE) and the Ronald Greeley Center for Planetary Studies. The TWT just came online in June 2012, and upgrades are underway to both the hardware and software of the MARSWIT and ASUWIT. Long-term plans are for ASU to continue to manage these facilities, to make them as capable as possible, so that they may be useful resources to NASA and the aeolian community for many years to come.

Williams, D. A.

2012-12-01

273

Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

Albert, R.

1992-06-30

274

40 CFR 355.10 - Must my facility comply with the emergency planning requirements of this subpart?  

Code of Federal Regulations, 2014 CFR

...my facility comply with the emergency planning requirements of this subpart? 355...CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Emergency...

2014-07-01

275

40 CFR 355.10 - Must my facility comply with the emergency planning requirements of this subpart?  

Code of Federal Regulations, 2012 CFR

...my facility comply with the emergency planning requirements of this subpart? 355...CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Emergency...

2012-07-01

276

40 CFR 355.10 - Must my facility comply with the emergency planning requirements of this subpart?  

Code of Federal Regulations, 2011 CFR

...my facility comply with the emergency planning requirements of this subpart? 355...CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Emergency...

2011-07-01

277

40 CFR 355.10 - Must my facility comply with the emergency planning requirements of this subpart?  

Code of Federal Regulations, 2010 CFR

...my facility comply with the emergency planning requirements of this subpart? 355...CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Emergency...

2010-07-01

278

40 CFR 355.10 - Must my facility comply with the emergency planning requirements of this subpart?  

Code of Federal Regulations, 2013 CFR

...my facility comply with the emergency planning requirements of this subpart? 355...CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Emergency...

2013-07-01

279

COEUR D'ALENE TRIBE TROUT PRODUCTION FACILITY MASTER PLAN1  

E-print Network

COEUR D'ALENE TRIBE TROUT PRODUCTION FACILITY MASTER PLAN1 April 9, 2003 Council document 2003-03 1 The master plan was prepared for Bonneville Power Administration by the Coeur d'Alene Tribe (Project 1990-044-02, Coeur D' Alene Tribe Trout Production Facility). You may obtain a copy of the master plan and support

280

Addendum to the Closure Report for Corrective Action Unit 92: Area 6 Decon Pond Facility, Nevada Test Site, Nevada  

SciTech Connect

The following is an addendum to the 'Closure Report for Corrective Action Unit 92: Area 6 Decontamination Pond, Nevada Test Site, Nevada', DOE/NV/11718--306, dated April 1999. This addendum includes Use Restriction Information forms and survey maps for CAS 06-04-01, Decon Pad Oil/Water Separator, and CAS 06-05-02, Decontamination Pond (RCRA), that were inadvertently left out of the Closure Report when it was published as a final document.

NSTec Environmental Restoration

2007-06-01

281

National Ignition Facility Quality Assurance Program Plan. Revision 1  

SciTech Connect

The National Ignition Facility (NIF) is a key constituent of the Department of Energy`s Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets, and will perform weapons physics and high-energy- density experiments in support of national security and civilian objectives. The NIF Project is a national facility involving the collaboration of several DOE laboratories and subcontractors, including Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Laser Energetics (UR/LLE). The primary mission of the NIF Project is the construction and start-up operation of laser-based facilities that will demonstrate fusion ignition in the laboratory to provide nuclear-weapons-related physics data, and secondarily, to propagate fusion burn aimed at developing a potential source of civilian energy. To support the accomplishment of this very important mission, the LLNL Laser Directorate created the NIF Project Office to organize and bring about the Project. The NIF Project Office has established this Quality Assurance Program to ensure its success. This issue of the Quality Assurance Program Plan (QAPP) adds the requirements for the conduct of Title 11 design, construction, procurement, and Title III engineering. This QAPP defines and describes the program-the management system-for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of the Laboratory and the Laser Directorate.

Wolfe, C.R.; Yatabe, J.

1996-09-01

282

Work plan, health and safety plan, and site characterization for the Waste Coolant Processing Facility (T-038)  

Microsoft Academic Search

As part of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of the Department of Energy's Y-12 Plant located in Oak Ridge, Tennessee, this work plan has been developed for theWaste Coolant Processing Facility (T-038). The work plan was developed by the Measurement Applications and Development Group (MAD) of the Health and Safety Research Division (HASRD) at Oak

D. E. Bohrman; M. S. Uziel; D. C. Landguth; S. W. Hawthorne

1990-01-01

283

POST CLOSURE INSPECTION REPORT FOR CORRECTIVE ACTION UNIT 92: AREA 6 DECON POND FACILITY, NEVADA TEST SITE, NEVADA; FOR CALENDAR YEAR 2005  

SciTech Connect

This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility, Nevada Test Site, Nevada. CAU 92 was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection (NDEP), 1995) and the Federal Facility Agreement and Consent Order of 1996. Closure activities were completed on February 16, 1999, and the Closure Report (U.S. Department of Energy, Nevada Operations Office, 1999) was approved and a Notice of Completion issued by the NDEP on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs): CAS 06-04-01, Decon Pad Oil/Water Separator; and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02 requires post-closure inspections. Visual inspections of the cover and fencing at CAS 06-05-02 are performed quarterly. Additional inspections are conducted if precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period. This report covers calendar year 2005. Quarterly site inspections were performed in March, June, September, and December of 2005. All observations indicated the continued integrity of the unit. No issues or concerns were noted, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A. Five additional inspections were performed after precipitation events that exceeded 1.28 cm (0.50 in) within a 24-hour period during 2005. No significant changes in site conditions were noted during these inspections, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A. Precipitation records for 2005 are included in Appendix C.

NA

2006-03-01

284

Design verification and validation plan for the cold vacuum drying facility  

SciTech Connect

The Cold Vacuum Drying Facility (CVDF) provides the required process systems, supporting equipment, and facilities needed for drying spent nuclear fuel removed from the K Basins. This document presents the both completed and planned design verification and validation activities.

NISHIKAWA, L.D.

1999-06-03

285

40 CFR Appendix G to Part 112 - Tier I Qualified Facility SPCC Plan  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Tier I Qualified Facility SPCC Plan G Appendix G to Part 112 Protection of Environment ENVIRONMENTAL...WATER PROGRAMS OIL POLLUTION PREVENTION Pt. 112, App. G Appendix G to Part 112—Tier I Qualified Facility...

2010-07-01

286

Using multi-disciplinary strategic master facilities planning for organizations experiencing programmatic re-direction  

SciTech Connect

Facility master planning is critical to the future productivity of a laboratory and the quality of worklife for the laboratory staff. For organizations undergoing programmatic re-direction, a master facility planning approach linked to the organization`s strategic planning process is even more important. Major changes in an organization such as programmatic re-direction can significantly impact a broad range of variables which exceed the expertise of traditional planning teams, e.g., capacity variability, work team organization, organizational culture, and work process simplification. By expanding the diversity of the participants of the planning team, there is a greater likelihood that a research organization`s scientific, organizational, economic, and employees` needs can be meshed in the strategic plan and facility plan. Recent recommendations from facility planners suggest drawing from diverse fields in building multi-disciplinary planning teams: Architecture, engineering, natural science, social psychology, and strategic planning (Gibson,1993). For organizations undergoing significant operational or culture change, the master facility planning team should also include members with expertise in organizational effectiveness, industrial engineering, human resources, and environmental psychology. A recent planning and design project provides an example which illustrates the use of an expanded multi-disciplinary team engaged in planning laboratory renovations for a research organization undergoing programmatic re-direction. The purpose of the proposed poster session is to present a multi-disciplinary master facility planning process linked to an organization`s strategic planning process or organizational strategies.

Heubach, J.G.; Weimer, W.C.; Bruce, W.A.

1993-12-01

287

Abbreviated sampling and analysis plan for planning decontamination and decommissioning at Test Reactor Area (TRA) facilities  

SciTech Connect

The objective is to sample and analyze for the presence of gamma emitting isotopes and hazardous constituents within certain areas of the Test Reactor Area (TRA), prior to D and D activities. The TRA is composed of three major reactor facilities and three smaller reactors built in support of programs studying the performance of reactor materials and components under high neutron flux conditions. The Materials Testing Reactor (MTR) and Engineering Test Reactor (ETR) facilities are currently pending D/D. Work consists of pre-D and D sampling of designated TRA (primarily ETR) process areas. This report addresses only a limited subset of the samples which will eventually be required to characterize MTR and ETR and plan their D and D. Sampling which is addressed in this document is intended to support planned D and D work which is funded at the present time. Biased samples, based on process knowledge and plant configuration, are to be performed. The multiple process areas which may be potentially sampled will be initially characterized by obtaining data for upstream source areas which, based on facility configuration, would affect downstream and as yet unsampled, process areas. Sampling and analysis will be conducted to determine the level of gamma emitting isotopes and hazardous constituents present in designated areas within buildings TRA-612, 642, 643, 644, 645, 647, 648, 663; and in the soils surrounding Facility TRA-611. These data will be used to plan the D and D and help determine disposition of material by D and D personnel. Both MTR and ETR facilities will eventually be decommissioned by total dismantlement so that the area can be restored to its original condition.

NONE

1994-10-01

288

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada Test Site, Nevada, Revision 1  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. The Test Cell C (TCC) Facility is located in Area 25 of the Nevada Test Site (NTS) approximately 25 miles northwest of Mercury, Nevada (Figure 1). CAU 116 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) of 1996 (as amended February 2008) and consists of two Corrective Action Sites (CASs): (1) CAS 25-23-20, Nuclear Furnace Piping; and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 is described in the FFACO as the TCC Facility but actually includes Building 3210 and attached concrete shield wall only. CAU 116 will be closed by demolishing Building 3210, the attached concrete shield wall, and the nuclear furnace piping. In addition, as a best management practice (BMP), Building 3211 (moveable shed) will be demolished due to its close proximity to Building 3210. This will aid in demolition and disposal operations. Radiological surveys will be performed on the demolition debris to determine the proper disposal pathway. As much of the demolition debris as space allows will be placed into the Building 3210 basement structure. After filling to capacity with demolition debris, the basement structure will be mounded or capped and closed with administrative controls. Prior to beginning demolition activities and according to an approved Sampling and Analysis Plan (SAP), representative sampling of surface areas that are known, suspected, or have the potential to contain hazardous constituents such as lead or polychlorinated biphenyls (PCBs) will be performed throughout all buildings and structures. Sections 2.3.2, 4.2.2.2, 4.2.2.3, 4.3, and 6.2.6.1 address the methodologies employed that assure the solid debris placed in the basement structure will not contain contaminants of concern (COCs) above hazardous waste levels. The anticipated post-closure-posting requirements for the mounded/capped basement structure, as well as for the entire CAU, are addressed in Section 4.2.10. The site contains radiologically impacted surfaces and hazardous materials. Based on review of the historical information for CAU 116 and recent site inspections, there is sufficient process knowledge to close CAU 116 using the SAFER process. CAUs that may be closed using the SAFER process have conceptual corrective actions that are clearly identified. Consequently, corrective action alternatives can be chosen prior to completing a corrective action investigation, given anticipated investigation results. The SAFER process combines elements of the data quality objective (DQO) process and the observational approach to plan and conduct closure activities. The DQOs are used to identify the problem and define the type and quality of data needed to complete the investigation phase of the SAFER process. The purpose of the investigation phase is to verify the adequacy of existing information used to determine the chosen corrective action. The observational approach provides a framework for managing uncertainty during the planning and decision-making phases of the project. The SAFER process allows for technical decisions to be made based on information gathered during site visits, interviews, meetings, research, and a consensus of opinion by the decontamination and decommissioning (D&D) team members. Any uncertainties are addressed by documented assumptions that are verified by sampling and analysis, data evaluation, onsite observations, and contingency plans, as necessary. Closure activities may proceed simultaneously with site characterization as sufficient data are gathered to confirm or disprove the assumptions made during selection of the corrective action. If, at any time during the closure process, new information is discovered that indicates that closure activities should be revised, closure activities will be reevaluated as appropriate. Based on a detailed review of historical documentation, there is sufficient process know

NSTec Environmental Restoration

2008-12-01

289

Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans  

NASA Astrophysics Data System (ADS)

The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

Pogorelsky, I. V.; Ben-Zvi, I.

2014-08-01

290

Proton Therapy Facility Planning From a Clinical and Operational Model.  

PubMed

This paper provides a model for planning a new proton therapy center based on clinical data, referral pattern, beam utilization and technical considerations. The patient-specific data for the depth of targets from skin in each beam angle were reviewed at our center providing megavoltage photon external beam and proton beam therapy respectively. Further, data on insurance providers, disease sites, treatment depths, snout size and the beam angle utilization from the patients treated at our proton facility were collected and analyzed for their utilization and their impact on the facility cost. The most common disease sites treated at our center are head and neck, brain, sarcoma and pediatric malignancies. From this analysis, it is shown that the tumor depth from skin surface has a bimodal distribution (peak at 12 and 26 cm) that has significant impact on the maximum proton energy, requiring the energy in the range of 130-230 MeV. The choice of beam angles also showed a distinct pattern: mainly at 90° and 270°; this indicates that the number of gantries may be minimized. Snout usage data showed that 70% of the patients are treated with 10 cm snouts. The cost of proton beam therapy depends largely on the type of machine, maximum beam energy and the choice of gantry versus fixed beam line. Our study indicates that for a 4-room center, only two gantry rooms could be needed at the present pattern of the patient cohorts, thus significantly reducing the initial capital cost. In the USA, 95% and 100% of patients can be treated with 200 and 230 MeV proton beam respectively. Use of multi-leaf collimators and pencil beam scanning may further reduce the operational cost of the facility. PMID:24988058

Das, I J; Moskvin, V P; Zhao, Q; Cheng, C-W; Johnstone, P A

2014-06-30

291

Life science payloads planning study integration facility survey results  

NASA Technical Reports Server (NTRS)

The integration facility survey effort described is structured to examine the facility resources needed to conduct life science payload (LSP) integration checkout activities at NASA-JSC. The LSP integration facility operations and functions are defined along with the LSP requirements for facility design. A description of available JSC life science facilities is presented and a comparison of accommodations versus requirements is reported.

Wells, G. W.; Brown, N. E.; Nelson, W. G.

1976-01-01

292

Closure report for N Reactor  

SciTech Connect

This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule.

Not Available

1994-01-01

293

The planning and design of a new PET radiochemistry facility.  

PubMed

The objectives of the Mayo positron emission tomography (PET) radiochemistry facility are the production of PET drugs for clinical service of our in-house patients, commercial distribution of PET drug products, and development of new PET drugs. The factors foremost in the planning and design phases were the current regulatory climate for PET drug production, radiation safety issues, and effective production flow. A medium-energy cyclotron was preferred for its small footprint to allow a compact vault, its high-proton energy to offer a higher product radioactivity; and its research capabilities. A vault installation was chosen instead of a self-shielded machine for improved access and ease of maintenance. Adjacent to the cyclotron is an area that houses the support equipment and a large dedicated workshop to support machine maintenance and targetry development. The total floor area of the PET radiochemistry facility is 344.2 m(2) (3,705.5 ft(2)), of which the radiochemistry laboratory occupies 130.7 m(2) (1,407 ft(2)). To reduce environmental contamination of PET drug products, the laboratory contains a controlled-air environment class 10,000 (M5.5) clean room with access via an interlocking entry change area. A fully shielded isolator (class 100 [M3.5]) is located in the clean room. The PET drugs are delivered via shielded tubing between the synthesizer and isolator. Inside the isolator, there is an automated device for dispensing the PET drug into either a bulk-activity vial or a unit-dose syringe. The dispensed PET radiopharmaceutical then passes through a hatch to a dedicated area where it is packaged for in-house use or commercial distribution. Unit doses for in-house patients are transported via pneumatic tube to the PET imaging area 76.2 m (250 ft) away. There is extensive radiation area monitoring throughout the facility that continuously measures radiation levels. We believe that our new PET radiochemistry facility not only meets overall objectives, but also provides an ergonomic, efficient working environment for the production and development of PET drugs. PMID:14537134

Jacobson, Mark S; Hung, Joseph C; Mays, Trenton L; Mullan, Brian P

2002-03-01

294

40 CFR 264.120 - Certification of completion of post-closure care.  

Code of Federal Regulations, 2010 CFR

... false Certification of completion of post-closure care. 264.120 Section 264...STORAGE, AND DISPOSAL FACILITIES Closure and Post-Closure § 264.120 Certification of completion of post-closure care. No later than 60...

2010-07-01

295

40 CFR 265.120 - Certification of completion of post-closure care.  

Code of Federal Regulations, 2010 CFR

... false Certification of completion of post-closure care. 265.120 Section 265...STORAGE, AND DISPOSAL FACILITIES Closure and Post-Closure § 265.120 Certification of completion of post-closure care. No later than 60...

2010-07-01

296

40 CFR 265.404 - Closure.  

Code of Federal Regulations, 2011 CFR

...STORAGE, AND DISPOSAL FACILITIES Chemical, Physical, and Biological Treatment § 265.404 Closure. At closure, all...be removed from treatment processes or equipment, discharge control equipment, and discharge confinement structures....

2011-07-01

297

40 CFR 265.404 - Closure.  

Code of Federal Regulations, 2010 CFR

...STORAGE, AND DISPOSAL FACILITIES Chemical, Physical, and Biological Treatment § 265.404 Closure. At closure, all...be removed from treatment processes or equipment, discharge control equipment, and discharge confinement structures....

2010-07-01

298

Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Tiger Team  

E-print Network

Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Tiger Team Bronis R Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger

Bailey, David H.

299

Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998  

SciTech Connect

This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

Haagenstad, T.

1999-01-15

300

Long Range Facilities Master Plan: 1986-2000, San Diego Unified School District.  

ERIC Educational Resources Information Center

The Long-Range Facilities Master Plan presents solution strategies and financing methods for accommodating a projected student enrollment increase of 45,000 between 1986 and 2000. This increase, plus limited financial resources, school use studies, and recent legislation, necessitated the plan. The issues include housing students, facility

Blair, Billie; And Others

301

Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility  

SciTech Connect

The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.

Lombard, K.H.

1994-08-01

302

Facilities for the Arts. School Planning Guide Series--6. Preliminary Draft.  

ERIC Educational Resources Information Center

Facility specifications for visual and performing arts areas are provided to guide and assist school officials, staff members, architects, and engineers plan suitable facilities for the arts in schools. The visual arts areas covered are studios, photographic laboratories, and galleries. Performing arts areas discussed are music facilities, drama…

North Carolina State Dept. of Public Instruction, Raleigh. Div. of School Planning.

303

Layout Planning Study for Off-Road Park Facilities Based on Complex System Theory  

Microsoft Academic Search

Urban off-road park facilities layout planning is an important component of the parking system planning and an integrated system engineering issue with multi-index and multi-constraint. This paper includes the study of the organizational mechanisms of parking facilities layout form and analysis of all factors that impact the public parking facilities layout. In this paper, the author established the simplified model

Xizhou Zhang; Ying Wen; Jun Liu; Dan Wan

2009-01-01

304

Closure plan for Corrective Action Unit 94: Building 650 Leachfield, Nevada Test Site, Nevada  

SciTech Connect

The Building 650 Leachfield, Corrective Action Unit (CAU) 94, will be clean closed by removal in accordance with the Resource Conservation and Recover Act (RCRA) operational permit and the Federal Facility Agreement and Consent Order. Historically, laboratory effluent was discharged through pipelines leading from the Radiochemistry Laboratory in Building 650 to a distribution box and a series of pipes dispersed across the leachfield. Effluent from the laboratory contained both hazardous and radioactive constituents. Discharge of hazardous and radioactive waste began in 1965. Discharge of radioactive waste ended in 1979 and hazardous waste discharge ended in 1987. From 1987 to 1993 the leachfield was used for the disposal of non-hazardous waste water. The piping leading to the leachfield was sealed in 1993.

NONE

1998-03-01

305

Work plan, health and safety plan, and site characterization for the Waste Coolant Processing Facility (T-038)  

Microsoft Academic Search

As part of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of the Department of Energy`s Y-12 Plant located in Oak Ridge, Tennessee, this work plan has been developed for theWaste Coolant Processing Facility (T-038). The work plan was developed by the Measurement Applications and Development Group (MAD) of the Health and Safety Research Division (HASRD) at Oak

D. E. Bohrman; M. S. Uziel; D. C. Landguth; S. W. Hawthorne

1990-01-01

306

75 FR 54025 - Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative...  

Federal Register 2010, 2011, 2012, 2013, 2014

On August 31, 2009, the Coast Guard amended its requirements for oil-spill removal equipment associated with vessel response plans and marine transportation-related facility response plans. The amendment triggered information collection requirements affecting vessel response planholders required to establish evidence that they have properly planned to mitigate oil outflow and to provide that......

2010-09-03

307

From Concept to Commissioning: Planning, Design, and Construction of Campus Facilities.  

ERIC Educational Resources Information Center

To address the growing interest in campus planning, design, and construction projects, this anthology compiles articles previously published in "Facilities Manager." The beginning chapters focus on campus architecture, master planning, and project planning. The mid-section of the book offers information on the critical issues of time management,…

Guckert, Donald, Ed.

308

7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control  

Code of Federal Regulations, 2012 CFR

...Alcohol Production Facilities Planning, Performing, Development...Alcohol Production Facilities Planning, Performing, Development...input quantities, conversion efficiency, rate of production and...at its rated capacity and efficiency and outline product...

2012-01-01

309

7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control  

Code of Federal Regulations, 2013 CFR

...Alcohol Production Facilities Planning, Performing, Development...Alcohol Production Facilities Planning, Performing, Development...input quantities, conversion efficiency, rate of production and...at its rated capacity and efficiency and outline product...

2013-01-01

310

7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control  

Code of Federal Regulations, 2014 CFR

...Alcohol Production Facilities Planning, Performing, Development...Alcohol Production Facilities Planning, Performing, Development...input quantities, conversion efficiency, rate of production and...at its rated capacity and efficiency and outline product...

2014-01-01

311

8. Launch closure, closure track apron, tracks and track beam, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

8. Launch closure, closure track apron, tracks and track beam, view towards west - Ellsworth Air Force Base, Delta Flight, Launch Facility D-6, 4 miles north of Badlands National Park Headquarters, 4.5 miles east of Jackson County line on county road, Interior, Jackson County, SD

312

Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF). User Test Planning Guide  

NASA Technical Reports Server (NTRS)

Test process, milestones and inputs are unknowns to first-time users of the ARMSEF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

2011-01-01

313

IDENTIFICATION OF DOE'S POST-CLOSURE MONITORING NEEDS AND REQUIREMENTS  

SciTech Connect

The 2006 plan sets an ambitious agenda for the U.S. Department of Energy (DOE), Office of Environmental Management (EM) and the remediation of sites contaminated by decades of nuclear weapons production activities. The plan's primary objective is to reduce overall clean up costs by first eliminating the environmental problems that are most expensive to control and safely maintain. In the context of the 2006 Plan, closure refers to the completion of area or facility specific cleanup projects. The cleanup levels are determined by the planned future use of the site or facility. Use restrictions are still undecided for most sites but are highly probable to exclude residential or agricultural activities. Most of the land will be remediated to ''industrial use'' levels with access restrictions and some areas will be closed-off through containment. Portions of the site will be reserved for waste disposal, either as a waste repository or the in-situ immobilization of contaminated soil and groundwater, and land use will be restricted to waste disposal only. The land used for waste disposal will require monitoring and maintenance activities after closure. Most of the land used for industrial use may also require such postclosure activities. The required postclosure monitoring and maintenance activities will be imposed by regulators and stakeholders. Regulators will not approve closure plans without clearly defined monitoring methods using approved technologies. Therefore, among all other more costly and labor-intensive closure-related activities, inadequate planning for monitoring and lack of appropriate monitoring technologies can prevent closure. The purpose of this project is to determine, document, and track the current and evolving postclosure monitoring requirements at DOE-EM sites. This information will aid CMST-CP in guiding its postclosure technology development and deployment efforts.

M.A. Ebadian, Ph.D.

1999-01-01

314

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada With Errata Sheets, Revision 0  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 117, Pluto Disassembly Facility, identified in the Federal Facility Agreement and Consent Order. Corrective Action Unit 117 consists of one Corrective Action Site (CAS), CAS 26-41-01, located in Area 26 of the Nevada Test Site. This plan provides the methodology for field activities needed to gather the necessary information for closing CAS 26-41-01. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 117 using the SAFER process. Additional information will be obtained by conducting a field investigation before finalizing the appropriate corrective action for this CAS. The results of the field investigation will support a defensible recommendation that no further corrective action is necessary following SAFER activities. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The site will be investigated to meet the data quality objectives (DQOs) developed on June 27, 2007, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAS 26-41-01 in CAU 117.

Pat Matthews

2007-09-01

315

Plans for Ignition Experiments on the National Ignition Facility  

Microsoft Academic Search

The National Ignition Facility (NIF) is a 192-beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) in support of inertial confinement fusion (ICF) and high-energy-density (HED) science. NIF will produce 1.8 MJ, 500 TW of ultraviolet light, making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for the

Edward I. Moses; Edward I

2009-01-01

316

Field Lysimeter Test Facility for protective barriers: Experimental plan  

SciTech Connect

This document was first written in October 1986 and has been used to guide the design of the Field Lysimeter Test Facility (FLTF) and to promote discussions between research and engineering staff regarding the selection of barrier treatments for inclusion in the FLTF. The construction of the lysimeter facility was completed June 28, 1987. This document describes the facility, the treatments placed in each lysimeter, types of measurements made in each lysimeter, and a brief discussion of project activities related to quality assurance, safety, and funding requirements. The treatment description and figures have been updated to reflect the lysimeter facility as constructed. 12 refs., 6 figs., 5 tabs.

Kirkham, R.R.; Gee, G.W.; Downs, J.L.

1987-12-01

317

33 CFR 106.405 - Format and content of the Facility Security Plan (FSP).  

Code of Federal Regulations, 2013 CFR

... Navigation and Navigable Waters 1 2013-07-01 2013-07-01...and content of the Facility Security Plan (FSP). 106.405... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY...

2013-07-01

318

33 CFR 105.405 - Format and content of the Facility Security Plan (FSP).  

Code of Federal Regulations, 2014 CFR

... Navigation and Navigable Waters 1 2014-07-01 2014-07-01...and content of the Facility Security Plan (FSP). 105.405... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY...

2014-07-01

319

33 CFR 106.405 - Format and content of the Facility Security Plan (FSP).  

Code of Federal Regulations, 2014 CFR

... Navigation and Navigable Waters 1 2014-07-01 2014-07-01...and content of the Facility Security Plan (FSP). 106.405... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY...

2014-07-01

320

33 CFR 106.405 - Format and content of the Facility Security Plan (FSP).  

Code of Federal Regulations, 2011 CFR

... Navigation and Navigable Waters 1 2011-07-01 2011-07-01...and content of the Facility Security Plan (FSP). 106.405... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY...

2011-07-01

321

33 CFR 106.405 - Format and content of the Facility Security Plan (FSP).  

Code of Federal Regulations, 2012 CFR

... Navigation and Navigable Waters 1 2012-07-01 2012-07-01...and content of the Facility Security Plan (FSP). 106.405... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY...

2012-07-01

322

33 CFR 105.405 - Format and content of the Facility Security Plan (FSP).  

Code of Federal Regulations, 2012 CFR

... Navigation and Navigable Waters 1 2012-07-01 2012-07-01...and content of the Facility Security Plan (FSP). 105.405... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY...

2012-07-01

323

33 CFR 105.405 - Format and content of the Facility Security Plan (FSP).  

Code of Federal Regulations, 2010 CFR

... Navigation and Navigable Waters 1 2010-07-01 2010-07-01...and content of the Facility Security Plan (FSP). 105.405... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY...

2010-07-01

324

33 CFR 106.405 - Format and content of the Facility Security Plan (FSP).  

Code of Federal Regulations, 2010 CFR

... Navigation and Navigable Waters 1 2010-07-01 2010-07-01...and content of the Facility Security Plan (FSP). 106.405... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY...

2010-07-01

325

Preliminary plan for testing a thermionic reactor in the Plum Brook Space Power Facility  

NASA Technical Reports Server (NTRS)

A preliminary plan is presented for testing a thermionic reactor in the Plum Brook Space Power Facility (SPF). A technical approach, cost estimate, manpower estimate, and schedule are presented to cover a 2 year full power reactor test.

Haley, F. A.

1972-01-01

326

PLANNING AREAS AND FACILITIES FOR HEALTH, PHYSICAL EDUCATION, AND RECREATION BY PARTICIPANTS IN NATIONAL FACILITIES CONFERENCE. REVISED 1965.  

ERIC Educational Resources Information Center

SPECIFIC INFORMATION IS PROVIDED IN THIS GUIDE TO PLANNERS OF AREAS AND FACILITIES FOR ATHLETICS, RECREATION, OUTDOOR EDUCATION, AND PHYSICAL AND HEALTH EDUCATION. PART ONE CONCERNS BASIC CONCEPTS PERTINENT TO THE AREA OF CONSIDERATION. THE AIMS OF PHYSICAL EDUCATION, HEALTH AND SAFETY EDUCATION, AND RECREATION ARE LISTED. PLANNING PRINCIPLES,…

American Association for Health, Physical Education, and Recreation, Washington, DC.

327

40 CFR 112.20 - Facility response plans.  

Code of Federal Regulations, 2012 CFR

...facility is located at a distance (as calculated using the appropriate formula in appendix C to this part or a comparable formula) such that a discharge...facility is located at a distance (as calculated using the appropriate formula in appendix C to...

2012-07-01

328

40 CFR 112.20 - Facility response plans.  

Code of Federal Regulations, 2014 CFR

...facility is located at a distance (as calculated using the appropriate formula in appendix C to this part or a comparable formula) such that a discharge...facility is located at a distance (as calculated using the appropriate formula in appendix C to...

2014-07-01

329

40 CFR 112.20 - Facility response plans.  

Code of Federal Regulations, 2013 CFR

...facility is located at a distance (as calculated using the appropriate formula in appendix C to this part or a comparable formula) such that a discharge...facility is located at a distance (as calculated using the appropriate formula in appendix C to...

2013-07-01

330

Literature Related to Planning, Design and Construction of Science Facilities.  

ERIC Educational Resources Information Center

A list of the articles and papers in the science facilities collection of the Architectural Services Staff is presented. It has been prepared to serve as a bibliography that may be useful to persons searching for data on the design of science facilities, and as a means of informing such persons of the material available for reference in the…

National Science Foundation, Washington, DC.

331

Risk management plan for the National Ignition Facility  

Microsoft Academic Search

The National Ignition Facility (NIF) is a U.S. Department of Energy inertial confinement laser fusion facility, currently under construction at the Lawrence Livermore National Laboratory (LLNL). NIF is a critical tool for the Department of Energy (DOE) science- based Stockpile Stewardship and Management Program. In addition, it represents a major step towards realizing inertial confinement fusion as a source of

S. Brereton; C. Smith; J. Yatabe

1998-01-01

332

Seismic Qualification Program Plan for continued operation at DOE-SRS Nuclear Material Processing facilities  

SciTech Connect

The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.1A requirements. In addition, any of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) has developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards for existing NMP facility structures to continue operation. Professionals involved in similar effort at other DOE facilities may find the program useful.

Talukdar, B.K.; Kennedy, W.N.

1991-01-01

333

Seismic Qualification Program Plan for continued operation at DOE-SRS Nuclear Material Processing facilities  

SciTech Connect

The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.1A requirements. In addition, any of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) has developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards for existing NMP facility structures to continue operation. Professionals involved in similar effort at other DOE facilities may find the program useful.

Talukdar, B.K.; Kennedy, W.N.

1991-12-31

334

Standard format and content for emergency plans for fuel cycle and materials facilities  

SciTech Connect

This regulatory guides is being developed to provide guidance acceptable to the NRC staff on the information to be included in emergency plans and to establish a format for presenting the information. Use of a standard format will help ensure uniformity and completeness in the preparation of emergency plans. An acceptable emergency plan should describe the licensed activities conducted at the facility and the types of accidents that might occur. It should provide information on classifying postulated accidents and the licensee's procedures for notifying and coordinating with offsite authorities. The plan should provide information on emergency response measures that might be necessary, the equipment and facilities available to respond to an emergency, and how the licensee will maintain emergency preparedness capability. It should describe the records and reports that will be maintained. There should also be a section on recovery after an accident and plans for restoring the facility to a safe condition. 4 refs.

Not Available

1990-09-01

335

Career Education Facilities: A Planning Guide for Space and Station Requirements. A Report  

ERIC Educational Resources Information Center

This publication provides the educational planner and the architect with some suggestions concerning models by which they may plan new flexible-use, shared-space facilities and supports the models with guidelines for the development of facilities and educational programs for occupational education. In addition to discussing the financial…

Woodruff, Alan P.

336

Planning Educational Facilities. [Course Outline for EDAD-6034, Virginia Polytechnic Institute].  

ERIC Educational Resources Information Center

School administrators need in-depth information to mount effective facility planning efforts, to develop and maintain satisfactory buildings for modern educational programs, to supervise the work of other professionals and technicians in designing and constructing facilities, and to evaluate such efforts. This document is an outline or syllabus…

Earthman, Glen I.

337

The Need for Facilities Planning at Pima Community College: A Working Paper.  

ERIC Educational Resources Information Center

Prepared for consideration by the administration and Board of Trustees of Pima Community College (PCC), this report presents data on the socioeconomic and educational trends that will affect the college's need for new facilities and offers recommendations for policy formation. Part I establishes the legal basis for facilities planning in Arizona…

Collmer, Russell C.; Harcleroad, Fred F.

338

Five Recession-Driven Strategies for Planning and Managing Campus Facilities  

ERIC Educational Resources Information Center

Colleges and universities continue to face significant fiscal challenges in the current recession. A review of ongoing campus facilities planning projects, coupled with a review of more than 30 recent campus master planning requests for proposals and the relevant literature, indicates that colleges and universities are finding innovative ways to…

Rudden, Michael S.

2010-01-01

339

The James Clerk Maxwell Telescope - Current Facilities and Future Plans  

Microsoft Academic Search

The James Clerk Maxwell Telescope (JCMT) is the largest telescope in the world specifically designed to work in the submm region of the astronomical spectrum. It is operated as a fully common-user facility, with heterodyne and continuum facility instrumentation covering all of the atmospheric windows from 1.3mm to 450mu m. The surface accuracy of the 15m primary is < 25mu

R. M. Prestage

1996-01-01

340

Endangered Species Act and energy facility planning: compliance and conflict  

Microsoft Academic Search

New energy facilities such as coal mines, gasification plants, refineries, and power plants--because of their severe environmental impacts--may, if sited haphazardly, jeopardize endangered species. By law, conflicts between energy-facility siting and endangered species occurrence must be minimized. To assess the likelihood of such conflicts arising, the authors used data from the Fish and Wildlife Service, Endangered Species Office, that describe

D. Shreeve; C. Calef; J. Nagy

1978-01-01

341

Physical Facilities, Illinois Institutions. Master Plan Study Committee I - Physical Facilities. Preliminary Report.  

ERIC Educational Resources Information Center

Enrollments, building planning and the utilization of space is discussed and a contribution toward the development of a master plan for higher education in Illinois is made. The first section presents information regarding limitations or ceilings which institutions now have or plan to have on their enrollments, the additional enrollment capacities…

Illinois State Board of Higher Education, Springfield. Master Plan Committee.

342

The Current Status and Planned Developments for Deep Underground Astro-particle Physics Science Facilities  

NASA Astrophysics Data System (ADS)

The rigorous radiation background constraints imposed by several studies in particle and astro-particle physics, such as Galactic dark matter searches, man-made, terrestrial, solar and supernova neutrino studies and 0???-decay studies, require deep underground science facilities to afford shielding from penetrating cosmic rays and their secondary by-products. New threads of research focused on deep sub-surface biology, chemistry, geology and engineering have also been developing rapidly at several sites, benefitting from the significant investment in underground access and infrastructure developed. In addition to planned, or completed, expansion at several of these deep underground facilities, additional new facilities are in early stages of construction or well advanced planning. These developments provide significant additional capability to these fields of study. This paper summarises the developments at these facilities, focused on those extremely deep uderground laboratories where expansion is underway or planned.

Smith, N. J. T.

2012-07-01

343

Federal Facility Compliance Act, Proposed Site Treatment Plan: Background Volume. Executive Summary  

SciTech Connect

This Federal Facility Compliance Act Site Treatment Plan discusses the options of radioactive waste management for Ames Laboratory. This is the background volume which discusses: site history and mission; framework for developing site treatment plans; proposed plan organization and related activities; characterization of mixed waste and waste minimization; low level mixed waste streams and the proposed treatment approach; future generation of TRU and mixed wastes; the adequacy of mixed waste storage facilities; and a summary of the overall DOE activity in the area of disposal of mixed waste treatment residuals.

NONE

1995-03-24

344

Plans for Constructing a Next-Generation ISOL Facility at ORNL  

SciTech Connect

The U.S. Nuclear Science Community in its 1996 Long Range Plan identified an advanced radioactive ion beam (RIB) facility based on the ISOL technique as the next major facility to be constructed for U.S. nuclear physics. The proposed SpaHation Neutron Source (SNS) for Oak Ridge National Laboratory, whose construction design funds have recently been appropriated, offers a unique opportunity for the construction of this new facility, Plans for extracting a proton beam from the SNS, transporting it to the RIB facility, and constructing the new RIB facility at the SNS site are discussed, as are the ISOL targets, radiation handling, isobaric separation, acceleration of beams of radioactive experimental areas.

Garrett, J.D.

1998-10-05

345

Status of U.S. Plans for an Advanced ISOL Facility, A Brief Report  

SciTech Connect

A brief discussion is provided of the current status of plans to build an advanced ISOL radioactive ion beam facility in the US. Designs for this new facility, which was recommended as the next major construction project of the DOE Nuclear Physics Program Office, have been proposed by two US national laboratories, Argonne National Laboratory and Oak Ridge National Laboratory. The new facility will provide orders-of-magnitude higher radioactive beam currents than existing facilities of this type and will cost in the range of $250 million.

Bertrand, F.E.

1998-11-13

346

FACILITY SAFETY PLAN Department of Chemical and Biological Engineering  

E-print Network

..............................................................................6 J. Emergency Evacuation Plan .................................................................7 Glover Building SAFETY OFFICE: ADMINISTRATIVE OFFICE ROOM 100 GLOVER PHONE 491-5252 Emergency Numbers Person on University Payroll: Health Care Contacts: Emergency Care- Poudre Valley Hospital Emergency Dept

347

Incorporating Carbon in Energy Planning at Industrial Facilities  

E-print Network

legislation is in effect. However, if capital projects are planned and financed without proper accommodation of the crediting rules, then bankable credits will not be claimable, and the capital spending will not be as efficiently used. This paper speaks...

Smith, K.

348

An overview of the planned advanced neutron source facility  

SciTech Connect

The Advanced Neutron Source (ANS), now in the conceptual design stage, will be a new user facility for neutron research, including neutron beam experiments, materials irradiation testing and materials analysis capabilities, and production facilities for transuranic and lighter isotopes. The neutron source is to be the world's highest flux beam reactor and is based on existing reactor technology to minimize safety issues. The preferred fuel, U{sub 3}Si{sub 2}, has been tested in operating reactors in the United States, Japan, and Europe. The core is cooled, moderated, and reflected by heavy water, common practice for research reactors. 3 refs., 9 figs., 3 tabs.

West, C.D.

1990-01-01

349

Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2  

SciTech Connect

This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or documented ? Provides instructions for implementing annual S&M inspections and activities The following facilities that were included in Revision 1 of this plan have reached final disposition and are no longer in the S&M program: ? Reactor Maintenance, Assembly, and Disassembly Facility, Building 25-3110 ? Test Cell A Facility, Building 25-3113 ? TCC Facility, Building 25-3210 ? Pluto Disassembly Facility, Building 26-2201 ? Super Kukla Facility, Building 27-5400

Poderis, Reed J. [NSTec] [NSTec; King, Rebecca A. [NSTec] [NSTec

2013-09-30

350

40 CFR 258.60 - Closure criteria.  

Code of Federal Regulations, 2012 CFR

...CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Closure and Post-Closure...inventory of wastes ever on-site over the active life of the landfill facility; and (4) A schedule...notation on the deed to the landfill facility property, or...

2012-07-01

351

40 CFR 258.60 - Closure criteria.  

Code of Federal Regulations, 2013 CFR

...CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Closure and Post-Closure...inventory of wastes ever on-site over the active life of the landfill facility; and (4) A schedule...notation on the deed to the landfill facility property, or...

2013-07-01

352

40 CFR 258.60 - Closure criteria.  

Code of Federal Regulations, 2014 CFR

...CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Closure and Post-Closure...inventory of wastes ever on-site over the active life of the landfill facility; and (4) A schedule...notation on the deed to the landfill facility property, or...

2014-07-01

353

75 FR 36773 - Pipeline Safety: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill  

Federal Register 2010, 2011, 2012, 2013, 2014

...Safety: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill AGENCY...response plan under 49 CFR part 194. In light of the Deepwater Horizon oil spill in the...Subject: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill....

2010-06-28

354

Integrating Sustainability Programs into the Facilities Capital Planning Process  

ERIC Educational Resources Information Center

With detailed information about the costs and benefits of potential green investments, educational facilities can effectively evaluate which initiatives will ultimately provide the greatest results over the short and long term. Based on its overall goals, every school, college, or university will have different values and therefore different…

Buchanan, Susan

2011-01-01

355

School Facility Planning System. User's Handbook: Computer Version.  

ERIC Educational Resources Information Center

A set of techniques is presented to assist administrators in forecasting the need for primary and secondary school facilities and in critically evaluating proposals to satisfy that need. Four basic components allow the analysis required to project future conditions and test alternative proposals. (1) The enrollment component forecasts the number…

Saint Louis Research Consortium, MO.

356

40 CFR 35.917-1 - Content of facilities plan.  

Code of Federal Regulations, 2010 CFR

...s) of which the treatment works is a part. The selection of...the choice of the treatment works for which construction drawings...and capacity of alternative works to the needs to be served...operation and maintenance and efficiency of existing facilities as...

2010-07-01

357

The Fast Flux Test Facility shutdown program plan  

Microsoft Academic Search

The Fast Flux Test Facility (FFTF) is a 400 MWt sodium-cooled research reactor owned by the US Department of Energy (DOE) and operated by the Westinghouse Hanford Company (WHC) on the Hanford Site in southeastern Washington State. The decision was made by the DOE in December, 1993, to initiate shutdown of the FFTF. This paper describes the FFTF Transition Project

S. Guttenberg; D. H. Jones; J. C. Midgett; D. L. Nielsen

1995-01-01

358

PRESSURE SUPPRESSION AND CONTAINMENT LABORATORY FACILITY. PHASE I. PLANNING  

Microsoft Academic Search

An experimental program to study the phenomena involved in loss-of-; coolant accidents of water cooled power reactors is proposed together with the ; preliminary design of a laboratory facility. The background of previous work by ; others on this problem is reviewed and a technical discussion is given for the ; various analytical models and phenomena which are, or may

1962-01-01

359

NSTA Guide to Planning School Science Facilities, Second Edition (e-book)  

NSDL National Science Digital Library

Science-learning spaces are different from general-purpose classrooms. So if your school is planning to build or renovate, you need the fully updated NSTA Guide to Planning School Science Facilities . It's the definitive resource for every K-12 school that seeks safe, effective science space without costly, time-consuming mistakes. New to this edition is a chapter on "green" schools, including how to think outside the traditional walls and use the entire grounds to encourage environmental responsibility in students. The revised guide also provides essential up-to-date coverage such as: ? Practical information on laboratory and general room design, budget priorities, space considerations, and furnishings. ? Stages of the planning process for new and renovated science facilities. ? Current trends and future directions in science education and safety, accessibility, and legal guidelines. ? Detailed appendices about equipment-needs planning, classroom dimensions, and new safety research, plus an updated science facilities audit. NSTA Guide to Planning School Science Facilities will help science teachers, district coordinators, school administrators, boards of education, and schoolhouse architects understand those differences and develop science facilities that will serve students for years to come.

James T. Biehle

2007-01-01

360

Successful completion of a RCRA closure for the Fernald Environmental Management Project  

SciTech Connect

This paper discusses the successful completion of a RCRA (Resource Conservation and Recovery Act) closure of a HF (hydrofluoric acid) tank car at FEMP, which is on the national priorities list of hazardous waste sites and is undergoing CERCLA remediation. The HF tank car closure was conducted by FERMCO. Through a combination of sound planning and team work, the HF tank car was closed safely and ahead of schedule. During > 22,000 hr field work required for construction modifications and neutralization of 9,600 gallons of HF and decontamination rinseates, there were no OSHA recordable incidents. The system design avoided additional costs by maximizing use of existing equipment and facilities. This successful closure of the HF tank car demonstrates FEMP`s commitment to reducing risks and cleaning up the facility in a manner consistent with objectives of RCRA regulations and the Ohio EPA hazardous waste rules. This in turn facilitated ongoing negotiations with Ohio EPA to integrate RCRA closure and the ongoing CERCLA remediation activities. This paper addresses why the unit was clean closed under an approved RCRA Closure Plan. Integration of EPA regulations for RCRA and CERCLA programs and the DOE-Orders impacting design, construction and operation of an acid neutralization system is also reviewed. The paper concludes with a discussion of lessons learned in the process in preparing the closure plant and through final project close out.

Lippitt, J.M.; Kolthoff, K.

1995-02-01

361

Wildlife Protection, Mitigation, and Enhancement Plans, Anderson Ranch and Black Canyon Facilities: Final Report.  

SciTech Connect

Under direction of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, and the subsequent Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, projects have been developed in Idaho to mitigate the impacts to wildlife habitat and production due to the development and operation of the Anderson Ranch and Black Canyon Facilities (i.e., dam, power plant, and reservoir areas). The Anderson Ranch Facility covered about 4812 acres of wildlife habitat while the Black Canyon Facility covered about 1115 acres. These acreages include dam and power plant staging areas. A separate mitigation plan has been developed for each facility. A modified Habitat Evaluation Procedure (HEP) was used to assess the benefits of the mitigation plans to wildlife. The interagency work group used the target species Habitat Units (HU's) lost at each facility as a guideline during the mitigation planning process, while considering the needs of wildlife in the areas. Totals of 9619 and 2238 target species HU's were estimated to be lost in the Anderson Ranch and Black Canyon Facility areas, respectively. Through a series of projects, the mitigation plans will provide benefits of 9620 target species HU's to replace Anderson Ranch wildlife impacts and benefits of 2195 target species HU's to replace Black Canyon wildlife impacts. Target species to be benefited by the Anderson Ranch and/or Black Canyon mitigation plans include the mallard, Canada goose, mink, yellow warbler, black-capped chickadee, ruffed grouse, mule deer, blue grouse, sharp-tailed grouse, ring-necked pheasant, and peregrine falcon.

Meuleman, G. Allyn

1987-06-01

362

Plutonium reclamation facility (PRF), building 236-Z layup plan  

SciTech Connect

This document reviews each system inside PRF to determine the operation and maintenance requirements necessary to maintain safe and predictable system performance for facility systems needed to remain operational while minimizing the maintenance and surveillance being performed. Also covered are the actions required to place PRF in a safe layup configuration while minimizing hazards and taking into account the need for reactivation of certain equipment when cleanup work commences in the future.

ANDERSON, R.N.

1999-04-06

363

Long-range Plans for the NASA Infrared Telescope Facility  

Microsoft Academic Search

The NASA Infrared Telescope Facility (IRTF) is a 3-meter optical\\/IR telescope dedicated to NASA-related programs of mission support and basic solar system research. All of the funding for IRTF operations comes from the Planetary Astronomy Program. The IRTF is unique in providing NASA with a dedicated telescope for mission support. Its aperture is sufficient for many kinds of solar system

A. T. Tokunaga; S. J. Bus; J. Rayner; E. V. Tollestrup

2004-01-01

364

West Valley College: Educational and Facilities Master Plan.  

ERIC Educational Resources Information Center

This report discusses the outcomes of West Valley College's (WVC) (California) planning process, which was based on an extensive community needs assessment. Statistics include: (1) the local county, Santa Clara, was estimated to be approximately 24% Hispanic and Asian, and 4% African American; (2) student enrollment at WVC was approximately 11,500…

West Valley Coll., Saratoga, CA.

365

Recommendations for Emergency Management Planning for School Facilities.  

ERIC Educational Resources Information Center

Numerous events, such as hurricanes, floods, and tornadoes, constitute a natural disaster for public schools. Human-caused disasters include hazardous-material emergencies, civil riots, fires, and nuclear accidents. This document contains emergency-management planning guidelines, developed by the Texas Education Agency, to help local school…

Texas Education Agency, Austin.

366

Engineering Task Plan for the Integrity Assessment Examination of Double Contained Receiver Tanks (DCRT) Catch Tanks and Ancillary facilities  

SciTech Connect

This Engineering Task Plan (ETP) presents the integrity assessment examination of three DCRTs, seven catch tanks, and two ancillary facilities located in the 200 East and West Areas of the Hanford Site. The integrity assessment examinations, as described in this ETP, will provide the necessary information to enable the independently qualified registered professional engineer (IQRPE) to assess the condition and integrity of these facilities. The plan is consistent with the Double-Shell Tank Waste Transfer Facilities Integrity Assessment Plan.

BECKER, D.L.

2000-05-23

367

Facility Effluent Monitoring Plan for the Spent Nuclear Fuel (SNF) Project  

SciTech Connect

A facility effluent monitoring plan is required by the US. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in Westinghouse Hanford Company (WHC)-EP-0438-1, ''A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans'', and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the third revision to the original annual report. This document is reviewed annually even if there are no operational changes, and it is updated as necessary.

HUNACEK, G.S.

2000-08-01

368

Pollution Prevention Plan for the Y-12 Analytical Chemistry Organization Off-Site Union Valley Facility  

SciTech Connect

The Y-12 Analytical Chemistry Organization (ACO) Off-Site Union Valley Facility (Union Valley Facility) is managed by Babcock and Wilcox Technical Services Y-12, L.L.C. (B and W Y-12) through the Y-12 National Security Complex organization. Accordingly, the Y-12 Pollution Prevention Program encompasses the operations conducted at the Union Valley Facility. The Y-12 Program is designed to fully comply with state, federal and U.S. Department of Energy (DOE) requirements concerning waste minimization/pollution prevention as documented in the Y-12 Pollution Prevention Program Plan. The Program is formulated to reduce the generation and toxicity of all Y-12 wastes in all media, including those wastes generated by the Union Valley Facility operations. All regulatory and DOE requirements are met by the Y-12 Program Plan.

Jackson, J. G.

2010-03-01

369

A checklist for planning and designing audiovisual facilities in health sciences libraries.  

PubMed Central

Developed by an MLA/HeSCA (Health Sciences Communications Association) joint committee, this checklist is intended to serve as a conceptual framework for planning a new or renovated audiovisual facility in a health sciences library. Emphasis is placed on the philosophical and organizational decisions that must be made about an audiovisual facility before the technical or spatial decisions can be wisely made. Specific standards for facilities or equipment are not included. The first section focuses on health sciences library settings. Ideas presented in the remaining sections could apply to academic learning resource center environments as well. A bibliography relating to all aspects of audiovisual facilities planning and design is included with references to specific sections of the checklist. PMID:6208957

Holland, G J; Bischoff, F A; Foxman, D S

1984-01-01

370

Computer software configuration management plan for 200 East/West Liquid Effluent Facilities  

SciTech Connect

This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System`s pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System.

Graf, F.A. Jr.

1995-02-27

371

Space Station Furnace Facility Preliminary Project Implementation Plan (PIP). Volume 2, Appendix 2  

NASA Technical Reports Server (NTRS)

The Space Station Furnace Facility (SSFF) is an advanced facility for materials research in the microgravity environment of the Space Station Freedom and will consist of Core equipment and various sets of Furnace Module (FM) equipment in a three-rack configuration. This Project Implementation Plan (PIP) document was developed to satisfy the requirements of Data Requirement Number 4 for the SSFF study (Phase B). This PIP shall address the planning of the activities required to perform the detailed design and development of the SSFF for the Phase C/D portion of this contract.

Perkey, John K.

1992-01-01

372

Overview of NSTX Facility Upgrades Status and Research Plans  

NASA Astrophysics Data System (ADS)

The National Spherical Torus eXperiment (NSTX) is undergoing a major facility upgrade. The major mission of NSTX-U is to develop physics basis for an ST-based Fusion Nuclear Science Facility (FNSF). The ST-based FNSF has a promise of achieving high neutron fluence needed for reactor component testing with a relatively modest tritium consumption. At the same time, the unique operating regimes of NSTX-U provide high leverage to address several important issues in the physics of burning plasmas to optimize the performance of ITER. The NSTX-U program further aims to determine the attractiveness of the compact ST for addressing key research needs on the path toward a fusion demonstration power plant (Demo). The upgrade project will double the toroidal field, plasma current, and NBI heating power and increase the pulse length from 1-1.5s to 5-8s. More tangential NBI system is designed to attain full non-inductive operation. Innovative plasma start-up and ramp-up techniques without the central solenoid operation which is needed for a compact FNSF design will be explored. With higher fields and heating power, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the transport trend toward the low collisionality regimes expected in FNSF, ITER, and Demo.

Ono, M.

2012-10-01

373

Strategically planning the successful delivery of highly technical facilities.  

SciTech Connect

Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico and is operated by the University of California (UC) for the U.S. Department of Energy (DOE). The primary mission of Los Alainos National Laboratory is to support the nuclear weapons program for the Department of Energy. There are over 10,000 personnel at Los Alamos employed by DOE, UC and various subcontractors. The Strategic Computing Complex (SCC) supports the weapons program by computer simulation of weapon detonations, taking the place of underground testing banned by international treaty. The SCC is a 300,000 square foot, three story facility that will hold approximately 300 personnel that perform the simulations required to certify the U.S. weapons stockpile. The SCC is basically a support system for up to two large computers, weapons designers, physicists, and computer scientists. The heart of the facility is a 43,500 square foot computer room that is designed to hold computers that did not yet exist.

Harris, M. S. (Mark S.)

2001-01-01

374

Identification of Selected Child-Resistant Closures (Continuous Thread, Lug-Bayonet, and Snap Closures).  

ERIC Educational Resources Information Center

This publication describes a selected group of child-resistant closures used in packaging five categories of medicine and household products. The material in the document was collected to train survey personnel to identify closures for a planned household study of the effectiveness of child-resistant packaging. The 39 closures described are of…

Gross, Rosalind L.; White, Harry E.

375

Geographic Access to Family Planning Facilities and the Risk of Unintended and Teenage Pregnancy  

Microsoft Academic Search

Objectives: This study tested the hypotheses that greater geographic access to family planning facilities is associated with lower rates\\u000a of unintended and teenage pregnancies. Methods: State Pregnancy Risk Assessment Monitoring System (PRAMS) and natality files in four states were used to locate unintended\\u000a and teenage births, respectively. Geographic availability was measured by cohort travel time to the nearest family planning

David C. Goodman; Lorraine V. Klerman; Kay A. Johnson; Chiang-hua Chang; Nancy Marth

2007-01-01

376

Site wide integration of the Rocky Flats closure project  

SciTech Connect

The prime contractor for the Rocky Flats Closure Project (RFCP), Kaiser-Hill, in concert with the Department of Energy--Rocky Flats Field Office (DOE-RFFO) has applied a fully integrated, life-cycle, critical path schedule and work planning system to manage the work that is required to close the Site. The closure of the Site is complex, in that it houses over 700 facilities, 19,600 kilograms of Special Nuclear Material (Plutonium and Uranium), and over 160,000 cubic meters of Transuranic, Low Level, and Hazardous Waste. The deactivation, decommissioning, decontaminating, and demolition of this large number of facilities, while at the same time accommodating difficult on-going activities, significantly increases the sophistication required in the planning process. The Rocky Flats team has overcome these difficulties by establishing a money oriented critical path process, to provide a least-cost avenue to supporting on-going activities and a line-of-balance process for production oriented activities. These processes, when integrated with a typical activity-based project planning system, guide the way to the shortest and most cost-effective course for the closure of the Rocky Flats Site.

Burdge, L.F.; Golan, P.

1998-06-01

377

Status and Plans for an SRF Accelerator Test Facility at Fermilab  

SciTech Connect

A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Church, M.; Leibfritz, J.; Nagaitsev, S.; /Fermilab

2011-07-29

378

40 CFR 265.143 - Financial assurance for closure.  

Code of Federal Regulations, 2012 CFR

... 2012-07-01 2012-07-01 false Financial assurance for closure. 265.143 Section...TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.143 Financial assurance for closure. By the...

2012-07-01

379

40 CFR 265.143 - Financial assurance for closure.  

Code of Federal Regulations, 2014 CFR

... 2014-07-01 2014-07-01 false Financial assurance for closure. 265.143 Section...TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.143 Financial assurance for closure. By the...

2014-07-01

380

40 CFR 264.143 - Financial assurance for closure.  

Code of Federal Regulations, 2012 CFR

... 2012-07-01 2012-07-01 false Financial assurance for closure. 264.143 Section...TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 264.143 Financial assurance for closure. An owner or...

2012-07-01

381

40 CFR 267.143 - Financial assurance for closure.  

Code of Federal Regulations, 2013 CFR

... 2013-07-01 2013-07-01 false Financial assurance for closure. 267.143 Section...FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Financial Requirements § 267.143 Financial assurance for closure. The owner or...

2013-07-01

382

40 CFR 267.143 - Financial assurance for closure.  

Code of Federal Regulations, 2014 CFR

... 2014-07-01 2014-07-01 false Financial assurance for closure. 267.143 Section...FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Financial Requirements § 267.143 Financial assurance for closure. The owner or...

2014-07-01

383

40 CFR 265.143 - Financial assurance for closure.  

Code of Federal Regulations, 2013 CFR

... 2013-07-01 2013-07-01 false Financial assurance for closure. 265.143 Section...TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.143 Financial assurance for closure. By the...

2013-07-01

384

40 CFR 267.143 - Financial assurance for closure.  

Code of Federal Regulations, 2011 CFR

... 2011-07-01 2011-07-01 false Financial assurance for closure. 267.143 Section...FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Financial Requirements § 267.143 Financial assurance for closure. The owner or...

2011-07-01

385

40 CFR 264.143 - Financial assurance for closure.  

Code of Federal Regulations, 2014 CFR

... 2014-07-01 2014-07-01 false Financial assurance for closure. 264.143 Section...TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 264.143 Financial assurance for closure. An owner or...

2014-07-01

386

40 CFR 267.143 - Financial assurance for closure.  

Code of Federal Regulations, 2012 CFR

... 2012-07-01 2012-07-01 false Financial assurance for closure. 267.143 Section...FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Financial Requirements § 267.143 Financial assurance for closure. The owner or...

2012-07-01

387

40 CFR 264.143 - Financial assurance for closure.  

Code of Federal Regulations, 2013 CFR

... 2013-07-01 2013-07-01 false Financial assurance for closure. 264.143 Section...TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 264.143 Financial assurance for closure. An owner or...

2013-07-01

388

TWENTY-YEAR PLANNING STUDY FOR THE RELATIVISTIC HEAVY ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY.  

SciTech Connect

At the request of DOE's Office of Nuclear Physics (ONP), Brookhaven National Laboratory (BNL) has created this planning document to assemble and summarize a planning exercise that addresses the core scientific thrust of the Relativistic Heavy Ion Collider (RHIC) for the next twenty years and the facilities operation plan that will support this program. The planning work was carried out by BNL in close collaboration with the RHIC user community and within budgetary guidelines for the next five years supplied by the ONP. The resulting plans were reviewed by the BNL High Energy and Nuclear Physics Program Advisory Committee (PAC) at a special RHIC planning meeting held in December 2003. Planning input from each of the four RHIC experimental collaborations was absolutely central to the preparation of this overall Laboratory plan. Each collaboration supplied two key documents, a five-year ''Beam Use Proposal'' and a ten-year ''Decadal Plan''. These plans are posted on the BNL website http://www.bnl.gov/henp/, along with other planning documents germane to this paper, such as the complete written reports from the August and December 2003 PAC meetings that considered the five-year and decadal planning documents of the four RHIC collaborations and offered advice and commentary on these plans. Only in these collaboration documents can the full physics impact of the RHIC program be seen and the full scope of the efforts put into this planning process be appreciated. For this reason, the maximum value of the present planning paper can only be realized by making frequent reference to the collaboration documents.

LUDLAM,T.ET AL.

2003-12-31

389

Multi-function Waste Tank Facility Qualification and Training Plan, Project W-236A  

SciTech Connect

The MWTF Qualification and Training Plan is being issued as a supporting document for Project W-236A. This plan sets forth the qualification and training requirements for personnel assigned to positions which have a functional impact on the Multi-Functional Waste Tank Facility (MWTF), Project W-236A. Guidance for employee training is provided in the Employee Training Policy, Rev. 0, dated August 12, 1994 and the Training Administration Manual, WHC-CM-2-15. This document contains training plans for Westinghouse Hanford Company (WHC) and ICF Kaiser Hanford Company (ICF KH). Management shall review/update the specific contents semi-annually.

Smith, L.K.

1994-12-01

390

Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, Nevada Test Site, Nevada  

SciTech Connect

This Closure Report documents the activities undertaken to close Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, according to the Federal Facility Agreement and Consent Order. Corrective Action Unit 335 was closed in accordance with the Nevada Division of Environmental Protection-approved Corrective Action Plan for Corrective Action Unit 335.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2003-06-01

391

Optimal Feeder Routing in Distribution System Planning Using Dynamic Programming Technique and GIS Facilities  

Microsoft Academic Search

Optimal feeder routing is an important part of the general optimal distribution network planning. This article proposes a new algorithm for the optimal feeder routing problem using the dynamic programming technique and GIS facilities. All practical issues, such as cost parameters (investments, line losses, reliability) and technical constraints (voltage drop and thermal limits), as well as physical routing constraints (obstacles,

N. G. Boulaxis; M. P. Papadopoulos

2001-01-01

392

Optimal feeder routing in distribution system planning using dynamic programming technique and GIS facilities  

Microsoft Academic Search

Optimal feeder routing is an important part of the general optimal distribution network planning. This paper proposes a new algorithm for the optimal feeder routing problem using the dynamic programming technique and geographical information systems (GIS) facilities. All practical issues, such as cost parameters (investments, line losses, reliability) and technical constraints (voltage drop and thermal limits), as well as physical

Nicholas G. Boulaxis; Michael P. Papadopoulos

2002-01-01

393

Master Plan for Educational Facilities: Saddle Brook, Bergen County, New Jersey.  

ERIC Educational Resources Information Center

Saddle Brook, New Jersey, one of the oldest townships in Bergen County, had an estimated population in 1979 of 15,975 persons residing within its 2.7 mile boundary. Present educational conditions, community characteristics, and educational facility requirements are considered indepth in this master plan. Maps, tables, and text present demographic…

Engelhardt and Engelhardt, Inc., Purdy Station, NY.

394

Master Plan for Educational Facilities: Midland Park, Bergen County, New Jersey.  

ERIC Educational Resources Information Center

Midland Park, New Jersey, is a small borough with an estimated population in 1978 of 8,500 persons. The first part of the master plan for educational facilities in the area begins with an overview using maps to illustrate characteristics including its topography, relationship to key population centers and major transportation routes, boundaries,…

Engelhardt and Engelhardt, Inc., Purdy Station, NY.

395

Master Plan for Educational Facilities: West New York, Hudson County, New Jersey.  

ERIC Educational Resources Information Center

West New York is a city in New Jersey with a land area of 1.02 square miles and a population estimated in 1978 to be 42,500 persons. This master plan for educational facilities begins with an overview of the district and utilizes a number of maps to illustrate characteristics of the area, including its topography, relationship to key population…

Engelhardt and Engelhardt, Inc., Purdy Station, NY.

396

Master Plan for Educational Facilities: City of Clifton, Passaic County, New Jersey.  

ERIC Educational Resources Information Center

Clifton, New Jersey, has a land area of just under 12 square miles with a population estimated in 1976 to be 83,592 persons. This master plan for educational facilities begins with an overview of the district and its historical background. A number of maps illustrate characteristics of the area, including its topography, relationship to key…

Engelhardt and Engelhardt, Inc., Purdy Station, NY.

397

Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities  

SciTech Connect

This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA{reg_sign} canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA{reg_sign}, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities.

Galloway, K.J.; Jolley, J.G.

1994-06-01

398

School Facility Logistics. A Study for Alberta Education Dealing with School Planning, Acquisition, and Funding Alternatives.  

ERIC Educational Resources Information Center

Alternatives to current provincial policies and procedures relating to school construction and its funding are identified and examined. The report sets out findings and recommendations in four sections. In the first section, School Facility Planning, Policies, and Procedures, school building is proposed as an integral part of shared community…

Woods, Gordon and Co., Toronto (Ontario).

399

SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) WARM LABORATORY ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) WARM LABORATORY ROOM, DECONTAMINATION ROOM, HOT CHEMISTRY LABORATORY, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-098-105066. ALTERNATE ID NUMBER 4272-14-103. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

400

Final Pantex Report - 2006 [Phase 1 plan for assessment of Former Workers at the Pantex Facility  

SciTech Connect

The purpose of this project was to develop a Phase 1 plan for assessment of Former Workers at the Pantex Facility in Amarillo, TX and to determine the suitability to start a medical surveillance program among former workers for this site.

Abdo, Ronna

2013-07-18

401

State of Alaska Plan for Construction of Facilities for the Mentally Retarded.  

ERIC Educational Resources Information Center

The 1970 Alaska State plan for construction of facilities for the mentally retarded is discussed. State agency organization charts, methods of administration, program goals and policies, an election district map showing catchment areas and Indian reservations, an explanation of inventories, and a survey of need and ranking of areas comprise the…

Betit, J. W.

402

Vehicle access and control planning document. Report for Oct 77-sep 79. [Nuclear facilities  

Microsoft Academic Search

This document has been prepared as an aid in planning a vehicle access and control system at nuclear fixed site facilities. In this document, various threats have been postulated and countermeasures proposed. Although many of the threats and countermeasures may exceed those presented in Title 10, Code of Federal Regulations, (CFR), Part 73, this was done to present an in-depth

J. E. Obermiller; H. J. Wait

1979-01-01

403

Sensitivities to source-term parameters of emergency planning zone boundaries for waste management facilities  

SciTech Connect

This paper reviews the key parameters comprising airborne radiological and chemical release source terms, discusses the ranges over which values of these parameters occur for plausible but severe waste management facility accidents, and relates the concomitant sensitivities of emergency planning zone boundaries predicted on calculated distances to early severe health effects.

Mueller, C.J.

1995-07-01

404

Policy Name: Golf Carts in Tunnels Originating/Responsible Department: Facilities Management and Planning  

E-print Network

Policy Name: Golf Carts in Tunnels Originating/Responsible Department: Facilities Management Management and Planning Policy: The operation of golf carts in tunnels is subject to the requirements of this policy. Failure to comply with these requirements may result in disciplinary action and/or loss of golf

Carleton University

405

National Biomedical Tracer Facility planning and feasibility study  

SciTech Connect

Since its establishment in mid-1989, the DOE Office of Isotope Production and Distribution has examined the recommendations of the Los Alamos Report and the Health and Environmental Research Advisory Committee (HERAC) Report. The main recommendation from these deliberations is for the DOE to establish an accelerator dedicated to biomedical radioisotope production. Representatives of the nuclear medicine community, meeting at a DOE workshop in August 1988, evaluated present and future needs for accelerator-produced radioisotopes. Workshop participants concluded in the Los Alamos Report that approximately 90% of their radioisotope needs could be met by a machine that delivers a 70 million electronic volts (MeV), 500-microamp proton beam. The HERAC Report provides more quantification of radioisotope needs, and included isotopes that can be produced effectively only at higher energies. An accelerator facility with an upper energy limit of 100 MeV and beam current of 750 to 1,000 microamps, could produce all important accelerator- produced radioisotopes in current use, as well as those isotopes judged to have future potential value in medical research and clinical practice. We therefore recommend that the NBTF have a 100-MeV proton beam accelerator with an extracted beam current of 750 to 1,000 microamps.

Ketchem, L. (ed.); Holmes, R.A.

1991-03-02

406

National Biomedical Tracer Facility planning and feasibility study. Revision 1  

SciTech Connect

Since its establishment in mid-1989, the DOE Office of Isotope Production and Distribution has examined the recommendations of the Los Alamos Report and the Health and Environmental Research Advisory Committee (HERAC) Report. The main recommendation from these deliberations is for the DOE to establish an accelerator dedicated to biomedical radioisotope production. Representatives of the nuclear medicine community, meeting at a DOE workshop in August 1988, evaluated present and future needs for accelerator-produced radioisotopes. Workshop participants concluded in the Los Alamos Report that approximately 90% of their radioisotope needs could be met by a machine that delivers a 70 million electronic volts (MeV), 500-microamp proton beam. The HERAC Report provides more quantification of radioisotope needs, and included isotopes that can be produced effectively only at higher energies. An accelerator facility with an upper energy limit of 100 MeV and beam current of 750 to 1,000 microamps, could produce all important accelerator- produced radioisotopes in current use, as well as those isotopes judged to have future potential value in medical research and clinical practice. We therefore recommend that the NBTF have a 100-MeV proton beam accelerator with an extracted beam current of 750 to 1,000 microamps.

Ketchem, L. [ed.] [ed.; Holmes, R.A.

1991-03-02

407

Calculation of parameters for inspection planning and evaluation: mixed-oxide fuel fabrication facilities  

SciTech Connect

As part of Task C.35 (Calculation of Parameters for Inspection Planning and Evaluation) of the US Program of Technical Assistance to IAEA Safeguards, Pacific Northwest Laboratory has performed some quantitative analyses of IAEA inspection activities for mixed-oxide fuel fabrication facilities. There were four distinct efforts involved in this task. These were as follows: show the effect on a material balance verification of using two variables measurement methods in some strata; perform additional calculations for the reference facility described in STR-89; modify the INSPECT computer programs to be used as an after-inspection analysis tool, as well as a preinspection planning tool; provide written comments and explantations of text and graphs of the first draft of STR-89, Safeguards Considerations for Mixed-Oxide Fuel Element Fabrication Facilities, by W. Bahm, T. Shea, and D. Tolchenkov, System Studies Section, IAEA.

Reardon, P.T.; Mullen, M.F.

1982-08-01

408

Incorporating Sustainability into Site Closure - A Field Example  

NASA Astrophysics Data System (ADS)

Long term management of former chemical production facilities can be a costly and time consuming element of site closure, however, implementation of creative measures to introduce sustainability and reduce the need for onsite presence can be successfully incorporated into the site closure process. A case study demonstrating this involves a facility located in Sarnia, Ontario, which was an active multi chemical production facility from the 1940s, until it was decommissioned and sold between 2005 and 2010. The facility consisted of 322 acres of production areas. Several elements which allowed for reduced onsite presence and lower management costs were incorporated into the site decommissioning plan, including; phased remediation planning, and selection of sustainable components as part of remediation, surface water management, and groundwater management. The sustainability and management modifications were successfully negotiated and approved by the local regulatory agency. Due to the size and complexity of the site, a holistic approach for the facility was needed and included the development of a comprehensive decision matrix. Each remediation alternative incorporated sustainable practices. Ex-situ remediation consisted of excavation of contaminated subsurface medium and consolidation at a 4.7 acre onsite soil treatment area designed specifically for the site closure process. In-situ remediation consisted of injection of amendment into the native soils using hydraulic fracture and injection. When the plant was an active operating facility, groundwater management required active pumping and groundwater treatment through a series of carbon treatment units. Active pumping has been replaced by passive hydraulic control through the use of tree plantations.

Austrins, L. M.; West, J.

2013-12-01

409

CPP-603 underwater fuel storage facility site integrated stabilization management plan (SISMP). Volume I  

SciTech Connect

The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been developed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety Board (DNFSB) remediation in the Defense Nuclear Facilities Complex. To date, 622 spent nuclear fuel units have been moved from the CPP-603 north and middle water basins, leaving 743 units in the south basin to be relocated from the facility by December 31, 2000. Besides moving fuels from the CPP-603, in 1993 and 1994 more than 300 fuel storage yokes in the north and middle basins were redundantly rigged because of corrosion problems. More than 200 fuel transfers within the north and middle basins were also made to ensure proper spacing of the fuels, and 104 corroded cans containing spent space reactor fuel were repackaged underwater to prevent potential release of their contents. This document is provided to address the relocation activities for the remaining 743 units in the south basin into wet storage pools at building CPP-666 or into dry storage at the Irradiation Fuel Storage Facility (IFSF).

Wachs, G.W.; Blake, H.M.; Cottam, R.E.; Denney, R.D.; Shiffern, R.A.

1996-09-01

410

Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California  

SciTech Connect

The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

Not Available

1993-10-01

411

Development and use of consolidated criteria for evaluation of emergency preparedness plans for DOE facilities  

SciTech Connect

Emergency preparedness at US Department of Energy (DOE) facilities is promoted by development and quality control of response plans. To promote quality control efforts, DOE has developed a review document that consolidates requirements and guidance pertaining to emergency response planning from various DOE and regulatory sources. The Criteria for Evaluation of Operational Emergency Plans (herein referred to as the Criteria document) has been constructed and arranged to maximize ease of use in reviewing DOE response plans. Although developed as a review instrument, the document also serves as a de facto guide for plan development, and could potentially be useful outside the scope of its original intended DOE clientele. As regulatory and DOE requirements are revised and added in the future, the document will be updated to stay current.

Lerner, K.; Kier, P.H.; Baldwin, T.E.

1995-07-01

412

Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)  

SciTech Connect

This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cells 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas.

SIMMONS, F.M.

2000-03-29

413

Implementation of a chemical hygiene plan at an R&D facility  

SciTech Connect

Implementation of a Chemical Hygiene Plan at an R&D facility is accomplished in an integrated approach with other programs. While the laboratory standard specifies the requirements of a Chemical Hygiene Plan, implementation requires innovation and creativity to effectively comply with the standard and to support R&D activities. While the Chemical Hygiene Plan is a unique entity, it must be integrated with other programs (e.g., Hazard Communication Program, Hazardous Waste Management Program, and Waste Minimization Program) so that complementary activities can minimize duplication of effort. The Morgantown Energy Technology Center (METC) has implemented a Chemical Hygiene Plan using an integrated approach. The overall plan is described, and decisions on key issues and the criteria used to determine the implementation approach are discussed.

Kovach, J.J.

1994-08-01

414

Project Hanford management contract quality assurance program implementation plan for nuclear facilities  

SciTech Connect

During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

Bibb, E.K.

1997-10-15

415

An exploratory shaft facility in SALT: Draft shaft study plan  

SciTech Connect

This draft Shaft Study Plan describes a program of testing and monitoring in the Exploratory Shafts of a candidate high-level nuclear waste repository site in Deaf Smith County, Texas. The purpose of the programs to assist with site characterization in support of a determination of site suitability for development as a repository design and performance assessment evaluations. The program includes a variety of geological, geophysical, geomechanical, thermomechanical, and geohydrological testing and monitoring. The program is presented as a series of separate studies concerned with geological, geomechanical, and geohydrological site characterization, and with evaluating the mechanical and hydrological response of the site to construction of the shafts. The various studies, and associated test or monitoring methods are shown. The procedure used in developing the test program has been to initially identify the information necessary to satisfy (1) federal, state, and local requirements, and (2) repository program requirements. These information requirements have then been assessed to determine which requirements can be addressed wholly or in significant part by monitoring and testing from within the shafts. Test methods have been identified to address specific information requirements. 67 refs., 39 figs., 31 tabs.

Not Available

1987-03-01

416

Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory  

SciTech Connect

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

NONE

1995-05-01

417

Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

NONE

1995-08-01

418

Planning of public healthcare facility using a location allocation modelling: A case study  

NASA Astrophysics Data System (ADS)

Finding the correct location of any facility and determining the demands which are to be assigned to it is very crucial in public health service. This is to ensure that the public gain maximum benefits. This article analyzes the previous location decisions of public primary healthcare (PHC) facilities in the district of Kuala Langat, Malaysia. With total population of 220214 (in 2010), the PHC in the district is currently served by 28 facilities. The percentages of total population covered (in 2007) within the maximum allowable distance of 3km and 5km are 69.7 percent and 77.8 percent respectively. This is very low compared to the Malaysian National Health Policy of Health for All or 100 percent coverage. The determination of health facility location should be planned carefully to further increase effective primary health service to the nation that is required for economic sustainability.

Shariff, S. Sarifah Radiah; Moin, Noor Hasnah; Omar, Mohd

2014-09-01

419

WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern  

SciTech Connect

This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-03-05

420

WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern  

SciTech Connect

his 2002 Facility Work Plan (FWP) has been prepared as required by Module VII,Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received onDecember 6, 2000 (NMED, 2000a). This February 2002 FWP describes the program-matic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the mostrecent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA)Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may beused for any SWMU or AOC (NMED, 1998). This accelerated approach is used toreplace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-03-05

421

Preparing for the downsizing and closure of Letterman Army Medical Center: a case study.  

PubMed

Letterman Army Medical Center (LAMC) began a phased downsizing in July 1991 which will lead to closure by June 30, 1994. An analysis of the downsizing and closure process has yielded information which can be valuable to medical treatment facility managers faced with similar challenges in the future. By review and analysis of documentation, this case study extracted and interpreted pertinent information from historical records and from personnel involved in planning for the downsizing and closure of LAMC. This study provides managers of military hospitals that are downsizing or closing with a summary of issues for planning, compiled by their relative importance, and a description of methods employed by LAMC for managing these issues. PMID:8441503

Bales, J D

1993-02-01

422

Composite Analysis Monitoring Plan for the E-Area Low-Level Waste Facility and the Z-Area Saltstone Disposal Facility  

SciTech Connect

This monitoring plan has been developed to meet the requirements for monitoring low-level waste (LLW) disposal facilities according to the United States Department of Energy (USDOE) Order 435.1 (USDOE 1999) and its associated implementation guidance with regard to actual performance versus projected performance based on the Composite Analysis (CA) for the E-Area Low-Level Waste Facility (LLWF) and the Z-Area Saltstone Disposal Facility (SDT).

Cook, J.R.

2000-08-23

423

Implementation Plans for a Systems Microbiology and Extremophile Research Facility  

SciTech Connect

Introduction Biological organisms long ago solved many problems for which scientists and engineers seek solutions. Microbes in particular offer an astonishingly diverse set of capabilities that can help revolutionize our approach to solving many important DOE problems. For example, photosynthetic organisms can generate hydrogen from light while simultaneously sequestering carbon. Others can produce enzymes that break down cellulose and other biomass to produce liquid fuels. Microbes in water and soil can capture carbon and store it in the earth and ocean depths. Understanding the dynamic interaction between living organisms and the environment is critical to predicting and mitigating the impacts of energy-production-related activities on the environment and human health. Collectively, microorganisms contain most of the biochemical diversity on Earth and they comprise nearly one-half of its biomass. They primary impact the planet by acting as catalysts of biogeochemical cycles; they capture light energy and fix CO2 in the worlds oceans, they degrade plant polymers and convert them to humus in soils, they weather rocks and facilitate mineral precipitation. Although the ability of selected microorganisms to participate in these processes is known, they rarely live in monoculture but rather function within communities. In spite of this, little is known about the composition of microbial communities and how individual species function within them. We lack an understanding of the nature of the individual organisms and their genes, how they interact to perform complex functions such as energy and materials exchange, how they sense and respond to their environment and how they evolve and adapt to environmental change. Understanding these aspects of microbes and their communities would be transformational with far-reaching impacts on climate, energy and human health. This knowledge would create a foundation for predicting their behavior and, ultimately, manipulating them to solve DOE problems. Recent advances in whole-genome sequencing for a variety of organisms and improvements in high-throughput instrumentation have contributed to a rapid transition of the biological research paradigm towards understanding biology at a systems level. As a result, biology is evolving from a descriptive to a quantitative, ultimately predictive science where the ability to collect and productively use large amounts of biological data is crucial. Understanding how the ensemble of proteins in cells gives rise to biological outcomes is fundamental to systems biology. These advances will require new technologies and approaches to measure and track the temporal and spatial disposition of proteins in cells and how networks of proteins and other regulatory molecules give rise to specific activities. The DOE has a strong interest in promoting the application of systems biology to understanding microbial function and this comprises a major focus of its Genomics:GTL program. A major problem in pursuing what has been termed “systems microbiology” is the lack of the facilities and infrastructure for conducting this new style of research. To solve this problem, the Genomics:GTL program has funded a number of large-scale research centers focused on either mission-oriented outcomes, such as bioenergy, or basic technologies, such as gene sequencing, high-throughput proteomics or the identification of protein complexes. Although these centers generate data that will be useful to the research community, their scientific goals are relatively narrow and are not designed to accommodate the general community need for advanced capabilities for systems microbiology research.

Wiley, H. S.

2009-04-20

424

Pacific Northwest Laboratory FY 1993 Site Maintenance Plan for maintenance of DOE nonnuclear facilities  

SciTech Connect

This Site Maintenance Plan has been developed for Pacific Northwest Laboratory's (PNL) Nonnuclear Facilities. It is based on requirements specified by US Department of Energy (DOE) Order 4330.4A, Chapter I, Change No. 4. The objective of this maintenance plan is to provide baseline information for compliance to the DOE Order 4330.4A, to identify needed improvements, and to document the planned maintenance budget for Fiscal Year (FY) 1993 and to estimate maintenance budgets for FY 1994 and FY 1995 for all PNL facilities. Using the results of the self-assessment, PNL has selected 12 of the 36 elements of the Maintenance Program defined by DOE Order 4330.4A, Chapter I, for improvement. The elements selected for improvement are: Facility Condition Inspections; Work Request (Order) System; Formal Job Planning and Estimating; Work Performance (Time) Standards; Priority System; Maintenance Procedures and Other Work-Related Documents; Scheduling System; Post Maintenance Testing; Backlog Work Control; Equipment Repair History and Vendor Information; Work Sampling; and Identification and Control. Based upon a graded approach and current funding, those elements considered most important have been selected as goals for earliest compliance. Commitment dates for these elements have been established for compliance. The remaining elements of noncompliance will be targeted for implementation during later budget periods.

Bright, J.D.

1992-09-28

425

Pacific Northwest Laboratory FY 1993 Site Maintenance Plan for maintenance of DOE nonnuclear facilities  

SciTech Connect

This Site Maintenance Plan has been developed for Pacific Northwest Laboratory`s (PNL) Nonnuclear Facilities. It is based on requirements specified by US Department of Energy (DOE) Order 4330.4A, Chapter I, Change No. 4. The objective of this maintenance plan is to provide baseline information for compliance to the DOE Order 4330.4A, to identify needed improvements, and to document the planned maintenance budget for Fiscal Year (FY) 1993 and to estimate maintenance budgets for FY 1994 and FY 1995 for all PNL facilities. Using the results of the self-assessment, PNL has selected 12 of the 36 elements of the Maintenance Program defined by DOE Order 4330.4A, Chapter I, for improvement. The elements selected for improvement are: Facility Condition Inspections; Work Request (Order) System; Formal Job Planning and Estimating; Work Performance (Time) Standards; Priority System; Maintenance Procedures and Other Work-Related Documents; Scheduling System; Post Maintenance Testing; Backlog Work Control; Equipment Repair History and Vendor Information; Work Sampling; and Identification and Control. Based upon a graded approach and current funding, those elements considered most important have been selected as goals for earliest compliance. Commitment dates for these elements have been established for compliance. The remaining elements of noncompliance will be targeted for implementation during later budget periods.

Bright, J.D.

1992-09-28

426

Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

NONE

1995-01-01

427

Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio  

SciTech Connect

On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and strategies to reduce uranium concentration in the leachate.

Hazen, Terry

2002-08-26

428

Duct closure  

DOEpatents

A closure for an inclined duct having an open upper end and defining downwardly extending passageway. The closure includes a cap for sealing engagement with the open upper end of the duct. Associated with the cap are an array of vertically aligned plug members, each of which has a cross-sectional area substantially conforming to the cross-sectional area of the passageway at least adjacent the upper end of the passageway. The plug members are interconnected in a manner to provide for free movement only in the plane in which the duct is inclined. The uppermost plug member is attached to the cap means and the cap means is in turn connected to a hoist means which is located directly over the open end of the duct.

Vowell, Kennison L. (Canoga Park, CA)

1987-01-01

429

Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0  

SciTech Connect

This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

Alfred Wickline

2008-01-01

430

Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab  

SciTech Connect

The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

2012-05-01

431

CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 214: BUNKERS AND STORAGE AREAS NEVADA TEST SITE, NEVADA  

SciTech Connect

The purpose of this Closure Report is to document that the closure of CAU 214 complied with the Nevada Division of Environmental Protection-approved Corrective Action Plan closure requirements. The closure activities specified in the Corrective Action Plan were based on the approved corrective action alternatives presented in the CAU 214 Corrective Action Decision Document.

NONE

2006-09-01

432

ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

433

Operations and Maintenance Concept Plan for the Immobilized High Level Waste (IHLW) Interim Storage Facility  

SciTech Connect

This O&M Concept looks at the future operations and maintenance of the IHLW/CSB interim storage facility. It defines the overall strategy, objectives, and functional requirements for the portion of the building to be utilized by Project W-464. The concept supports the tasks of safety basis planning, risk mitigation, alternative analysis, decision making, etc. and will be updated as required to support the evolving design.

JANIN, L.F.

2000-08-30

434

Cross-sector emergency planning for water supply utilities and healthcare facilities.  

PubMed

The purpose of this article is to outline the criticality of water supply in sustained operations of healthcare facilities, particularly during community emergencies, and to advocate for enhanced cross-sector support from the water utilities in meeting this need. Information and ideas presented here were developed in the course of a regional project sponsored by the Metropolitan Washington Council of Governments (MWCOG) for development of emergency water supply operations plans for critical water uses in the Washington, DC, area. PMID:23609972

Welter, Gregory; Socher, Myra; Needham, Patricia; Bieber, Steve; Bonnaffon, Heidi

2013-01-01

435

LPT. Shield test facility (TAN646). Floor plan for water treatment ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

LPT. Shield test facility (TAN-646). Floor plan for water treatment room on west facade, tank and filter locations in basement along service tunnel and in coupling station. Ralph M. Parsons 1229-17 ANP/GE-6-646-P-2. April 1957. INEEL Index code no. 037-0645/0646-51-693-107387 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

436

Management plan for a penaeid shrimp larviculture facility in Belize, Central America  

E-print Network

Proforma statement of savings 20 25 Proforma statement of monthly cash flows 30 Initial capital outlay Itemized list of general equipment Itemized list of lab equipment 31 33 35 The effect that facility utilization and larval survival have... . . ~ . ~ ~ PRODUCTION REQUIREMENTS POTENTIAL FOR POSTLARVAE SALES STOCKING AND HARVESTING PLAN STOCKING AND HARVESTING SCHEDULE EXPECTED SURVIVAL OF LARVAE 19 19 20 21 22 23 iX TABLE OF CONTENTS (Continued) FINANCIAL ANALYSIS NOTES TO PROFORMA STATEMENT...

Skidmore,John D.

1991-01-01

437

National facilities study. Volume 4: Space operations facilities task group  

NASA Technical Reports Server (NTRS)

The principal objectives of the National Facilities Study (NFS) were to: (1) determine where U.S. facilities do not meet national aerospace needs; (2) define new facilities required to make U.S. capabilities 'world class' where such improvements are in the national interest; (3) define where consolidation and phase-out of existing facilities is appropriate; and (4) develop a long-term national plan for world-class facility acquisition and shared usage. The Space Operations Facilities Task Group defined discrete tasks to accomplish the above objectives within the scope of the study. An assessment of national space operations facilities was conducted to determine the nation's capability to meet the requirements of space operations during the next 30 years. The mission model used in the study to define facility requirements is described in Volume 3. Based on this model, the major focus of the Task Group was to identify any substantive overlap or underutilization of space operations facilities and to identify any facility shortfalls that would necessitate facility upgrades or new facilities. The focus of this initial study was directed toward facility recommendations related to consolidations, closures, enhancements, and upgrades considered necessary to efficiently and effectively support the baseline requirements model. Activities related to identifying facility needs or recommendations for enhancing U.S. international competitiveness and achieving world-class capability, where appropriate, were deferred to a subsequent study phase.

1994-01-01

438

Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

NONE

1996-03-01

439

Panel Closure Redesign: August 2011  

E-print Network

represented in Performance Assessment · Salado Mass Concrete NMED Hazardous Waste Facility Permit (operational Salado Mass Concrete with generic salt-based concrete. (EPA/NMED) 2. Replace isolation wall) ·Run Performance Assessment with the new panel closure design represented in the models. (EPA

440

Repository Closure and Sealing Approach  

Microsoft Academic Search

The scope of this analysis will be to develop the conceptual design of the closure seals and their locations in the Subsurface Facilities. The design will be based on the recently established program requirements for transitioning to the Site Recommendation (SR) design as outlined by ''Approach to Implementing the Site Recommendation Baseline'' (Stroupe 2000) and the ''Monitored Geologic Repository Project

A. T. Watkins

2000-01-01

441

Final work plan : investigation of potential contamination at the former USDA facility in Ramona, Kansas.  

SciTech Connect

This Work Plan outlines the scope of work that will be conducted to investigate the subsurface contaminant conditions at the property formerly leased by the Commodity Credit Corporation (CCC) in Ramona, Kansas (Figure 1.1). Data obtained during this event will be used to (1) evaluate potential source areas on the property, (2) determine the vertical and horizontal extent of potential contamination, and (3) provide recommendations for future actions, with the ultimate goal of assigning this site No Further Action status. The planned investigation includes groundwater monitoring requested by the Kansas Department of Health and Environment (KDHE), in accordance with Section V of the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the United States Department of Agriculture (USDA). The work is being performed on behalf of the CCC/USDA by the Environmental Research Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy. Under the Intergovernmental Agreement, Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne has issued a Master Work Plan (Argonne 2002) that describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. The Master Work Plan was approved by the KDHE. It contains materials common to investigations at locations in Kansas and should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Ramona.

LaFreniere, L. M.

2006-01-27

442

A spatial national health facility database for public health sector planning in Kenya in 2008  

PubMed Central

Background Efforts to tackle the enormous burden of ill-health in low-income countries are hampered by weak health information infrastructures that do not support appropriate planning and resource allocation. For health information systems to function well, a reliable inventory of health service providers is critical. The spatial referencing of service providers to allow their representation in a geographic information system is vital if the full planning potential of such data is to be realized. Methods A disparate series of contemporary lists of health service providers were used to update a public health facility database of Kenya last compiled in 2003. These new lists were derived primarily through the national distribution of antimalarial and antiretroviral commodities since 2006. A combination of methods, including global positioning systems, was used to map service providers. These spatially-referenced data were combined with high-resolution population maps to analyze disparity in geographic access to public health care. Findings The updated 2008 database contained 5,334 public health facilities (67% ministry of health; 28% mission and nongovernmental organizations; 2% local authorities; and 3% employers and other ministries). This represented an overall increase of 1,862 facilities compared to 2003. Most of the additional facilities belonged to the ministry of health (79%) and the majority were dispensaries (91%). 93% of the health facilities were spatially referenced, 38% using global positioning systems compared to 21% in 2003. 89% of the population was within 5 km Euclidean distance to a public health facility in 2008 compared to 71% in 2003. Over 80% of the population outside 5 km of public health service providers was in the sparsely settled pastoralist areas of the country. Conclusion We have shown that, with concerted effort, a relatively complete inventory of mapped health services is possible with enormous potential for improving planning. Expansion in public health care in Kenya has resulted in significant increases in geographic access although several areas of the country need further improvements. This information is key to future planning and with this paper we have released the digital spatial database in the public domain to assist the Kenyan Government and its partners in the health sector. PMID:19267903

Noor, Abdisalan M; Alegana, Victor A; Gething, Peter W; Snow, Robert W

2009-01-01

443

Utilizing Divers in Support of Spent Fuel Basin Closure Subproject  

SciTech Connect

A number of nuclear facilities in the world are aging and with this comes the fact that we have to either keep repairing them or decommission them. At the Department of Energy Idaho Site (DOEID) there are a number of facilities that are being decommissioned, but the facilities that pose the highest risk to the large aquifer that flows under the site are given highest priorities. Aging spent nuclear fuel pools at DOE-ID are among the facilities that pose the highest risk, therefore four pools were targeted for decommissioning in Fiscal Year 2004. To accomplish this task the Idaho Completion Project (ICP) of Bechtel BWXT Idaho, LLC, put together an integrated Basin Closure Subproject team. The team was assigned a goal to look beyond traditional practices at the Idaho National Engineering and Environmental Laboratory (INEEL) to find ways to get the basin closure work done safer and more efficiently. The Idaho Completion Project (ICP) was faced with a major challenge – cleaning and preparing aging spent nuclear fuel basins for closure by removing sludge and debris, as necessary, and removing water to eliminate a potential risk to the Snake River Plain Aquifer. The project included cleaning and removing water from four basins. Two of the main challenges to a project like this is the risk of contamination from the basin walls and floors becoming airborne as the water is removed and keeping personnel exposures ALARA. ICP’s baseline plan had workers standing at the edges of the basins and on rafts or bridge cranes and then using long-handled tools to manually scrub the walls of basin surfaces. This plan had significant risk of skin contamination events, workers falling into the water, or workers sustaining injuries from the awkward working position. Analysis of the safety and radiation dose risks presented by this approach drove the team to look for smarter ways to get the work done.

Allen Nellesen

2005-01-01

444

The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)  

SciTech Connect

The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration.

NONE

1994-12-01

445

77 FR 50165 - Escape and Evacuation Plans for Surface Coal Mines, Surface Facilities and Surface Work Areas of...  

Federal Register 2010, 2011, 2012, 2013, 2014

...DEPARTMENT OF LABOR Mine Safety and Health Administration Escape and Evacuation Plans for Surface Coal Mines, Surface Facilities and Surface Work Areas of Underground Coal Mines AGENCY: Mine Safety and Health...

2012-08-20

446

30 CFR 254.50 - Spill response plans for facilities located in State waters seaward of the coast line.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false Spill response plans for facilities...BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT...INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS...SEAWARD OF THE COAST LINE Oil-Spill Response...

2011-07-01

447

Safety at the End of a Nuclear Facility's Life  

Microsoft Academic Search

The objective of this paper is to capture the changes that are caused by the transition from nuclear operation through closure of defense nuclear facilities and convey lessons learned from their deactivation, decontamination and demolition. The specific area of discussion is focused on the planned reduction of safety equipment and consequent shift in hazard controls and safety management programs as

John A. Geis; Patrice McEahern; Brad Evans

2004-01-01

448

Hanford facility dangerous waste permit application, general information portion  

SciTech Connect

The `Hanford Facility Dangerous Waste Permit Application` is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit- Specific Portion. The scope of the General Information Portion includes information that could be used to discuss operating units, units undergoing closure, or units being dispositioned through other options. Documentation included in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units. A checklist indicating where information is contained in the General Information Portion, in relation to the Washington State Department of Ecology guidance documentation, is located in the Contents Section. The intent of the General Information Portion is: (1) to provide an overview of the Hanford Facility; and (2) to assist in streamlining efforts associated with treatment, storage, and/or disposal unit-specific Part B permit application, preclosure work plan, closure work plan, closure plan, closure/postclosure plan, or postclosure permit application documentation development, and the `Hanford Facility Resource Conservation and Recovery Act Permit` modification process. Revision 2 of the General Information Portion of the `Hanford Facility Dangerous Waste Permit Application` contains information current as of May 1, 1996. This document is a complete submittal and supersedes Revision 1.

Price, S.M., Westinghouse Hanford

1996-07-29

449

Material balance and diet in bioregenerative life support systems: Connection with coefficient of closure  

NASA Astrophysics Data System (ADS)

Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive.

Manukovsky, N. S.; Kovalev, V. S.; Somova, L. A.; Gurevich, Yu. L.; Sadovsky, M. G.

450

Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

SciTech Connect

This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

NSTec Environmental Restoration

2008-01-01

451

Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility  

SciTech Connect

The 216-B-3 Pond system was a series of ponds used for disposal of liquid effluent from past Hanford production facilities. In operation from 1945 to 1997, the B Pond System has been a Resource Conservation and Recovery Act (RCRA) facility since 1986, with RCRA interim-status groundwater monitoring in place since 1988. In 1994 the expansion ponds of the facility were clean closed, leaving only the main pond and a portion of the 216-B-3-3 ditch as the currently regulated facility. In 2001, the Washington State Department of Ecology (Ecology) issued a letter providing guidance for a two-year, trial evaluation of an alternate, intrawell statistical approach to contaminant detection monitoring at the B Pond system. This temporary variance was allowed because the standard indicator-parameters evaluation (pH, specific conductance, total organic carbon, and total organic halides) and accompanying interim status statistical approach is ineffective for detecting potential B-Pond-derived contaminants in groundwater, primarily because this method fails to account for variability in the background data and because B Pond leachate is not expected to affect the indicator parameters. In July 2003, the final samples were collected for the two-year variance period. An evaluation of the results of the alternate statistical approach is currently in progress. While Ecology evaluates the efficacy of the alternate approach (and/or until B Pond is incorporated into the Hanford Facility RCRA Permit), the B Pond system will return to contamination-indicator detection monitoring. Total organic carbon and total organic halides were added to the constituent list beginning with the January 2004 samples. Under this plan, the following wells will be monitored for B Pond: 699-42-42B, 699-43-44, 699-43-45, and 699-44-39B. The wells will be sampled semi-annually for the contamination indicator parameters (pH, specific conductance, total organic carbon, and total organic halides) and annually for water quality parameters (chloride, iron, manganese, phenols, sodium, and sulfate). This plan will remain in effect until superseded by another plan or until B Pond is incorporated into the Hanford Facility RCRA Permit.

Barnett, D BRENT.; Smith, Ronald M.; Chou, Charissa J.; McDonald, John P.

2005-11-01

452

200 Area effluent treatment facility process control plan 98-02  

SciTech Connect

This Process Control Plan (PCP) provides a description of the background information, key objectives, and operating criteria defining Effluent Treatment Facility (ETF) Campaign 98-02 as required per HNF-IP-0931 Section 37, Process Control Plans. Campaign 98-62 is expected to process approximately 18 millions gallons of groundwater with an assumption that the UP-1 groundwater pump will be shut down on June 30, 1998. This campaign will resume the UP-1 groundwater treatment operation from Campaign 97-01. The Campaign 97-01 was suspended in November 1997 to allow RCRA waste in LERF Basin 42 to be treated to meet the Land Disposal Restriction Clean Out requirements. The decision to utilize ETF as part of the selected interim remedial action of the 200-UP-1 Operable Unit is documented by the Declaration of the Record of Decision, (Ecology, EPA and DOE 1997). The treatment method was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Hanford Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement or TPA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP).

Le, E.Q.

1998-01-30

453

Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility  

NASA Technical Reports Server (NTRS)

The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

1986-01-01

454

Transcript of the workshop to discuss plans for a National High Intensity Radioactive Nuclear Beam Facility  

SciTech Connect

Following the First International Conference on Radioactive Nuclear Beams'' in Berkeley, a workshop was held on October 19, 1989 at the Lawrence Berkeley Laboratory to discuss plans for a National High Intensity Radioactive Nuclear Beam (RNB) Facility. The purpose of the workshop was -- after having discussed during the conference the physics question that can be addressed with RNBs -- to evaluate more concretely the possibilities for actually constructing such a facility in this country. It is becoming increasingly apparent that facility producing beams of radioactive nuclei with extreme neutron-to-proton ratios is of high scientific interest and technically feasible. It would allow the study of nuclear structure and astrophysical reactions very far from the line of stable nuclei, and could provide new possibilities of reaching the long-sought island of stability of superheavy nuclei. Such facilities are under advanced consideration in Japan and at CERN in Europe. This paper contains a slightly edited transcript of the tape recording that was made of the workshop.

Nitschke, J.M. (ed.)

1989-10-19

455

3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan  

SciTech Connect

The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluation plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.

Ku, J.H.; Choung, W.M.; You, G.S.; Moon, S.I.; Park, S.H.; Kim, H.D. [Korea Atomic Energy Research Institute - KAERI, 989-111 Daeduk-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2013-07-01

456

Wiltech Component Cleaning and Refurbishment Facility CFC Elimination Plan at NASA Kennedy Space Center  

NASA Technical Reports Server (NTRS)

The Wiltech Component Cleaning & Refurbishment Facility (WT-CCRF) at NASA Kennedy Space Center performs precision cleaning on approximately 200,000 metallic and non metallic components every year. WT-CCRF has developed a CFC elimination plan consisting of aqueous cleaning and verification and an economical dual solvent strategy for alternative solvent solution. Aqueous Verification Methodologies were implemented two years ago on a variety of Ground Support Equipment (GSE) components and sampling equipment. Today, 50% of the current workload is verified using aqueous methods and 90% of the total workload is degreased aqueously using, Zonyl and Brulin surfactants in ultrasonic baths. An additional estimated 20% solvent savings could be achieved if the proposed expanded use of aqueous methods are approved. Aqueous cleaning has shown to be effective, environmentally friendly and economical (i.e.. cost of materials, equipment, facilities and labor).

Williamson, Steve; Aman, Bob; Aurigema, Andrew; Melendez, Orlando

1999-01-01

457

Planning and managing future space facility projects. [management by objectives and group dynamics  

NASA Technical Reports Server (NTRS)

To learn how ground-based personnel of a space project plan and organize their work and how such planning and organizing relate to work outcomes, longitudinal study of the management and execution of the Space Lab Mission Development Test 3 (SMD 3) was performed at NASA Ames Research Center. A view of the problems likely to arise in organizations and some methods of coping with these problems are presented as well as the conclusions and recommendations that pertain strictly to SMD 3 management. Emphasis is placed on the broader context of future space facility projects and additional problems that may be anticipated. A model of management that may be used to facilitate problem solving and communication - management by objectives (MBO) is presented. Some problems of communication and emotion management that MBO does not address directly are considered. Models for promoting mature, constructive and satisfying emotional relationships among group members are discussed.

Sieber, J. E.; Wilhelm, J. A.; Tanner, T. A.; Helmreich, R. L.; Burgenbauch, S. F.

1979-01-01

458

Delayed Macular Hole Closure  

PubMed Central

Purpose The presented case raises questions regarding the favorable scheduling of planned postoperative care and the ideal observation interval to decide for reoperations in macular hole surgery. Furthermore a discussion about the use of short- and long-acting gas tamponades in macular hole surgery is encouraged. Methods We present an interventional case report and a short review of the pertinent literature. Results We report a case of spontaneous delayed macular hole closure after vitreoretinal surgery had been performed initially without the expected success. A 73-year-old male Caucasian patient presented at our clinic with a stage 2 macular hole in his left eye. He underwent 23-gauge pars plana vitrectomy and internal limiting membrane peeling with a 20% C2F6-gas tamponade. Sixteen days after the procedure, an OCT scan revealed a persistent stage 2 macular hole, and the patient was scheduled for reoperation. Surprisingly, at the date of planned surgery, which was another 11 days later, the macular hole had resolved spontaneously without any further intervention. Conclusions So far no common opinion exists regarding the use of short- or long-acting gas in macular hole surgery. Our case of delayed macular hole closure after complete resorption of the gas tamponade raises questions about the need and duration of strict prone positioning after surgery. Furthermore short-acting gas might be as efficient as long-acting gas. We suggest to wait with a second intervention at least 4 weeks after the initial surgery, since a delayed macular hole closure is possible. PMID:24847257

Distelmaier, Peter; Meyer, Linda M.; Fischer, Marie T.; Philipp, Sebastian; Paquet, Patrick; Mammen, Antje; Haller, Katharina; Schönfeld, Carl-Ludwig

2014-01-01

459

Program Plan for Revision of the Z-Area Saltstone Disposal Facility Performance Assessment  

SciTech Connect

Savannah River National Laboratory (SRNL) and the Saltstone Project, are embarking on the next revision to the Saltstone Disposal Facility (SDF) performance assessment (PA). This program plan has been prepared to outline the general approach, scope, schedule and resources for the PA revision. The plan briefly describes the task elements of the PA process. It discusses critical PA considerations in the development of conceptual models and interpretation of results. Applicable quality assurance (QA) requirements are identified and the methods for implementing QA for both software and documentation are described. The plan identifies project resources supporting the core team and providing project oversight. Program issues and risks are identified as well as mitigation of those risks. Finally, a preliminary program schedule has been developed and key deliverables identified. A number of significant changes have been implemented since the last PA revision resulting in a new design for future SDF disposal units. This revision will encompass the existing and planned disposal units, PA critical radionuclides and exposure pathways important to SDF performance. An integrated analysis of the overall facility layout, including all disposal units, will be performed to assess the impact of plume overlap on PA results. Finally, a rigorous treatment of uncertainty will be undertaken using probabilistic simulations. This analysis will be reviewed and approved by DOE-SR, DOE-HQ and potentially the Nuclear Regulatory Commission (NRC). This revision will be completed and ready for the start of the DOE review at the end of December 2006. This work supports a Saltstone Vault 2 fee-bearing milestone. This milestone includes completion of the Vault 2 module of the PA revision by the end of FY06.

Cook, James R.

2005-12-07

460

Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1997  

SciTech Connect

This Mitigation Action Plan Annual Report (MAPAR) has been prepared by the US Department of Energy (DOE) as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP). This MAPAR provides a status on specific DARHT facility design- and construction-related mitigation actions that have been initiated in order to fulfill DOE`s commitments under the DARHT MAP. The functions of the DARHT MAP are to (1) document potentially adverse environmental impacts of the Phased Containment Option delineated in the Final EIS, (2) identify commitments made in the Final EIS and ROD to mitigate those potential impacts, and (3) establish Action Plans to carry out each commitment (DOE 1996). The DARHT MAP is divided into eight sections. Sections 1--5 provide background information regarding the NEPA review of the DARHT project and an introduction to the associated MAP. Section 6 references the Mitigation Action Summary Table which summaries the potential impacts and mitigation measures; indicates whether the mitigation is design-, construction-, or operational-related; the organization responsible for the mitigation measure; and the projected or actual completion data for each mitigation measure. Sections 7 and 8 discuss the Mitigation Action Plan Annual Report and Tracking System commitment and the Potential Impacts, Commitments, and Action Plans respectively. Under Section 8, potential impacts are categorized into five areas of concern: General Environment, including impacts to air and water; Soils, especially impacts affecting soil loss and contamination; Biotic Resources, especially impacts affecting threatened and endangered species; Cultural/Paleontological Resources, especially impacts affecting the archeological site known as Nake`muu; and Human Health and Safety, especially impacts pertaining to noise and radiation. Each potential impact includes a brief statement of the nature of the impact and its cause(s). The commitment made to mitigate the potential impact is identified and the Action Plan for each commitment is described in detail, with a description of actions to be taken, pertinent time frames for the actions, verification of mitigation activities, and identification of agencies/organizations responsible for satisfying the requirements of the commitment.

Haagenstad, H.T.

1998-01-15