Note: This page contains sample records for the topic facility closure plans from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

3718-F Alkali Metal Treatment and Storage Facility Closure Plan  

SciTech Connect

Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

none,

1991-12-01

2

Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan  

Microsoft Academic Search

This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply

2000-01-01

3

105-DR Large Sodium Fire Facility closure plan. Revision 1  

SciTech Connect

The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, and activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide a means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950`s and is located in the 100-D Area of the Hanford Site. The building housed the 105-DR defense reactor, which was shut down in 1964. The LSFF was initially used only for engineering-scale alkali metal reaction studies. In addition, the Fusion Safety Support Studies program sponsored intermediate-size safety reaction tests in the LSFF with lithium and lithium lead compounds. The facility has also been used to store and treat alkali metal waste, therefore the LSFF is subject to the regulatory requirements for the storage and treatment of dangerous waste. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610. This closure plan presents a description of the facility, the history of waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected.

Not Available

1993-05-01

4

Closure Plan for the E-Area Low-Level Waste Facility  

SciTech Connect

A closure plan has been developed to comply with the applicable requirements of the U.S. Department of Energy Order 435.2 Manual and Guidance. The plan is organized according to the specifications of the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans.

Cook, J.R.

2000-10-30

5

Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility  

SciTech Connect

This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

BURBANK, D.A.

2000-08-31

6

Closure Plan for the E-Area Low-Level Waste Facility.  

National Technical Information Service (NTIS)

To comply with the applicable requirements of the U.S. Department of Energy (US DOE), this closure plan has been developed for the E-Area Low-Level Waste Facility(LLWF). The plan is organized according to the specifications of the Format and Content Guide...

J. R. Cook M. A. Phifer E. L. Wilhite K. E. Young W. E. Jones

2004-01-01

7

State Environmental Policy Act (SEPA) Checklist for the 105-DR Large Sodium Fire Facility Closure Plan  

SciTech Connect

The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950's and is located in the 100-D Area of the Hanford Site. The building housed the DR defense reactor, which was shut down in 1964. The LSFF is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Clean closure is the proposed method of closure for the LSFF. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989). This closure plan presents a description of the facility, the history of wastes managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected.

Not Available

1990-09-01

8

3718-F Alkali Metal Treatment and Storage Facility Closure Plan.  

National Technical Information Service (NTIS)

Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed i...

1991-01-01

9

HWMA closure plan for the Waste Calcining Facility at the Idaho National Engineering Laboratory  

SciTech Connect

The Waste Calcining Facility (WCF) calcined and evaporated aqueous wastes generated from the reprocessing of spent nuclear fuel. The calciner operated from 1963 to 1981, primarily processing high level waste from the first cycle of spent fuel extraction. Following the calciner shutdown the evaporator system concentrated high activity aqueous waste from 1983 until 1987. In 1988, US Department of Energy Idaho Operations Office (DOE-ID) requested interim status for the evaporator system, in anticipation of future use of the evaporator system. The evaporator system has not been operated since it received interim status. At the present time, DOE-ID is completing construction on a new evaporator at the New Waste Calcining Facility (NWCF) and the evaporator at the WCF is not needed. The decision to not use the WCF evaporator requires Lockheed Idaho Technologies Company (LITCO) and DOE-ID to close these units. After a detailed evaluation of closure options, LITCO and DOE-ID have determined the safest option is to fill the voids (grout the vessels, cells and waste pile) and close the WCF to meet the requirements applicable to landfills. The WCF will be covered with a concrete cap that will meet the closure standards. In addition, it was decided to apply these closure standards to the calcining system since it is contained within the WCF building. The paper describes the site, waste inventory, closure activities, and post-closure care plans.

NONE

1996-05-01

10

Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility  

SciTech Connect

The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. This review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.

Bamberger, Judith A; Burks, Barry L; Quigley, Keith D; Falter, Diedre D

2001-09-28

11

HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

K. Winterholler

2007-01-31

12

Phase 1 sampling and analysis plan for the 304 Concretion Facility closure activities  

Microsoft Academic Search

This document provides guidance for the initial (Phase 1) sampling and analysis activities associated with the proposed Resource Conservation and Recovery Act of 1976 (RCRA) clean closure of the 304 Concretion Facility. Over its service life, the 304 Concretion Facility housed the pilot plants associated with cladding uranium cores, was used to store engineering equipment and product chemicals, was used

Adler

1994-01-01

13

Soil sampling and analysis plan for the 3718-F Alkali Metal Treatment and Storage Facility closure activities  

SciTech Connect

Amendment V.13.B.b to the approved closure plan (DOE-RL 1995a) requires that a soil sampling and analysis plan be prepared and submitted to the Washington State Department of Ecology (Ecology) for review and approval. Amendment V.13.B.c requires that a diagram of the 3718-F Alkali Metal Treatment and Storage Facility unit (the treatment, storage, and disposal [TSD] unit) boundary that is to be closed, including the maximum extent of operation, be prepared and submitted as part is of the soil sampling and analysis plan. This document describes the sampling and analysis that is to be performed in response to these requirements and amends the closure plan. Specifically, this document supersedes Section 6.2, lines 43--46, and Section 7.3.6 of the closure plan. Results from the analysis will be compared to cleanup levels identified in the closure plan. These cleanup levels will be established using residential exposure assumptions in accordance with the Model Toxics Control Act (MTCA) Cleanup Regulation (Washington Administrative Code [WAC] 173-340) as required in Amendment V.13.B.I. Results of all sampling, including the raw analytical data, a summary of analytical results, a data validation package, and a narrative summary with conclusions will be provided to Ecology as specified in Amendment V.13.B.e. The results and process used to collect and analyze the soil samples will be certified by a licensed professional engineer. These results and a certificate of closure for the balance of the TSD unit, as outlined in Chapter 7.0 of the approved closure plan (storage shed, concrete pad, burn building, scrubber, and reaction tanks), will provide the basis for a closure determination.

Sonnichsen, J.C.

1997-05-01

14

Soil sampling and analysis plan for the 3718-F Alkali Metal Treatment and Storage Facility closure activities  

Microsoft Academic Search

Amendment V.13.B.b to the approved closure plan (DOE-RL 1995a) requires that a soil sampling and analysis plan be prepared and submitted to the Washington State Department of Ecology (Ecology) for review and approval. Amendment V.13.B.c requires that a diagram of the 3718-F Alkali Metal Treatment and Storage Facility unit (the treatment, storage, and disposal [TSD] unit) boundary that is to

Sonnichsen

1997-01-01

15

Phase 1 sampling and analysis plan for the 304 Concretion Facility closure activities  

SciTech Connect

This document provides guidance for the initial (Phase 1) sampling and analysis activities associated with the proposed Resource Conservation and Recovery Act of 1976 (RCRA) clean closure of the 304 Concretion Facility. Over its service life, the 304 Concretion Facility housed the pilot plants associated with cladding uranium cores, was used to store engineering equipment and product chemicals, was used to treat low-level radioactive mixed waste, recyclable scrap uranium generated during nuclear fuel fabrication, and uranium-titanium alloy chips, and was used for the repackaging of spent halogenated solvents from the nuclear fuels manufacturing process. The strategy for clean closure of the 304 Concretion Facility is to decontaminate, sample (Phase 1 sampling), and evaluate results. If the evaluation indicates that a limited area requires additional decontamination for clean closure, the limited area will be decontaminated, resampled (Phase 2 sampling), and the result evaluated. If the evaluation indicates that the constituents of concern are below action levels, the facility will be clean closed. Or, if the evaluation indicates that the constituents of concern are present above action levels, the condition of the facility will be evaluated and appropriate action taken. There are a total of 37 sampling locations comprising 12 concrete core, 1 concrete chip, 9 soil, 11 wipe, and 4 asphalt core sampling locations. Analysis for inorganics and volatile organics will be performed on the concrete core and soil samples. Separate concrete core samples will be required for the inorganic and volatile organic analysis (VOA). Analysis for inorganics only will be performed on the concrete chip, wipe, and asphalt samples.

Adler, J.G.

1994-09-14

16

Final closure plan for the high-explosives open burn treatment facility at Lawrence Livermore National Laboratory Experimental Test Site 300  

SciTech Connect

This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration of site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.

Mathews, S.

1997-04-01

17

HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

Evans, S. K.

2007-11-07

18

CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) HISTORY & STATUS & FUTURE PLANS  

SciTech Connect

In 1993, the US Department of Energy (DOE) decided to shut down the Fast Flux Test Facility (FFTF) due to lack of national missions that justified the annual operating budget of approximately $88M/year. The initial vision was to ''deactive'' the facility to an industrially and radiologically safe condition to allow long-term, minimal surveillance storage until approximately 2045. This approach would minimize near term cash flow and allow the radioactive decay of activated components. The final decontamination and decommissioning (D and D) would then be performed using then-current methodology in a safe and efficient manner. the philosophy has now changed to close coupling the initial deactivation with final D and D. This paper presents the status of the facility and focuses on the future challenge of sodium removal.

FARABEE, O.A.

2006-02-24

19

CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS  

SciTech Connect

Deactivation activities are currently in progress at the Fast Flux Test Facility. These deactivation activities are intended to remove most hazardous materials and prepare the facility for final disposition. The two major hazards to be removed are the nuclear fuel and the alkali metal (most sodium) coolant. The fuel and coolant removal activities are proceeding well and are expected to complete in 2006. Plant systems are being shut down as allowed by completion of various fuel and coolant removal actions. A Decommissioning Environmental Impact Statement is in progress to evaluate a range of potential final disposition end states.

BURKE, T.M.

2005-04-13

20

303-K Storage Facility report on FY98 closure activities  

SciTech Connect

This report summarizes and evaluates the decontamination activities, sampling activities, and sample analysis performed in support of the closure of the 303-K Storage Facility. The evaluation is based on the validated data included in the data validation package (98-EAP-346) for the 303-K Storage Facility. The results of this evaluation will be used for assessing contamination for the purpose of closing the 303-K Storage Facility as described in the 303-K Storage Facility Closure Plan, DOE/RL-90-04. The closure strategy for the 303-K Storage Facility is to decontaminate the interior of the north half of the 303-K Building to remove known or suspected dangerous waste contamination, to sample the interior concrete and exterior soils for the constituents of concern, and then to perform data analysis, with an evaluation to determine if the closure activities and data meet the closure criteria. The closure criteria for the 303-K Storage Facility is that the concentrations of constituents of concern are not present above the cleanup levels. Based on the evaluation of the decontamination activities, sampling activities, and sample data, determination has been made that the soils at the 303-K Storage Facility meet the cleanup performance standards (WMH 1997) and can be clean closed. The evaluation determined that the 303-K Building cannot be clean closed without additional closure activities. An additional evaluation will be needed to determine the specific activities required to clean close the 303-K Storage Facility. The radiological contamination at the 303-K Storage Facility is not addressed by the closure strategy.

Adler, J.G.

1998-07-17

21

Facility Planning.  

ERIC Educational Resources Information Center

This article reviews recommendations on policies for leasing surplus school space made during the Council of Educational Facility Planners/International conference. A case study presentation of a Seattle district's use of lease agreements is summarized. (MJL)

Graves, Ben E.

1984-01-01

22

303-K Storage facility sampling and analysis plan  

Microsoft Academic Search

This document describes the cleanup, sampling, and analysis activities associated with the closure of the 303-K Storage Facility under the Washington Administrative Code (WAC) 173-303-610, ``Dangerous Waste Regulations.`` this document is a supplement to the 303-K Storage Facility Closure Plan (DOE-RL 1995a) (Closure Plan). The objective of these activities is to support clean closure of the 303 K Storage Facility.

Adler

1997-01-01

23

PLAN FOR CLOSURE OF HANFORDS CENTRAL PLATEAU  

SciTech Connect

This paper summarizes an approach to reduce risk to the public and environment through accelerated closure of Hanford's Central Plateau, based on a plan developed by Fluor Hanford and submitted to the Department of Energy (DOE)-Richland Office, for consideration, in September, 2004. This plan provides a framework and starting point for discussions with regulators and further planning for closure activities on the Plateau. The closure strategy and approach required developing a full inventory of items needing closure as well as identifying and defining technical and regulatory approaches that were compatible with current regulatory processes, reduce risks, and met DOE objectives. This effort, and the paper that follows, integrates closure activities among several contractors and two DOE field offices.

AUSTIN, B.A.

2004-12-15

24

Calcined solids storage facility closure study  

SciTech Connect

The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others] [and others

1998-02-01

25

Oak Ridge National Laboratory Old Hydrofracture Facility Tank Closure Plan and Grout Development Status Report for FY 1999  

Microsoft Academic Search

U.S. Department of Energy (DOE) facilities across the country have radioactive waste underground storage tanks, which will require either complete removal of the tank contents and tank shells or in-place stabilization of sludge heels. Complete removal of the sludge and tank shells can become costly while providing little benefit to health, safety, and the environment. An alternative to the removal

B. E. Lewis; R. D. Spence; J. V. Draper; R. E. Norman; J. L. Kauschinger

2000-01-01

26

Development of an arid site closure plan  

SciTech Connect

This document describes the development of a prototype plan for the effective closure and stabilization of an arid low-level waste disposal site. This plan will provide demonstrated closure techniques for a trench in a disposal site at Los Alamos. The accuracy of modeling soil water storage by two hydrologic models, CREAMS and HELP, was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that CREAMS generally represented soil moisture more accurately than HELP simulations. Precautions for determining parameter values for model input and for interpreting simulation results are discussed. A specific example is presented showing how the field-validated hydrologic models can be used to develop a final prototype closure plan. 15 refs., 13 figs., 3 tabs.

Nyhan, J.W.; Barnes, F.J.

1987-01-01

27

40 CFR 265.112 - Closure plan; amendment of plan.  

Code of Federal Regulations, 2013 CFR

...surface impoundments and waste piles who intended to remove all hazardous wastes at closure but are required...to the plan under the conditions described in paragraph...surface impoundment, waste pile, land treatment...closure of a boiler or industrial furnace. The...

2013-07-01

28

2401-W Waste storage building closure plan  

SciTech Connect

This plan describes the performance standards met and closure activities conducted to achieve clean closure of the 2401-W Waste Storage Building (2401-W) (Figure I). In August 1998, after the last waste container was removed from 2401-W, the U.S. Department of Energy, Richland Operations Office (DOE-RL) notified Washington State Department of Ecology (Ecology) in writing that the 2401-W would no longer receive waste and would be closed as a Resource Conservation and Recovery Act (RCRA) of 1976 treatment, storage, and/or disposal (TSD) unit (98-EAP-475). Pursuant to this notification, closure activities were conducted, as described in this plan, in accordance with Washington Administrative Code (WAC) 173-303-610 and completed on February 9, 1999. Ecology witnessed the closure activities. Consistent with clean closure, no postclosure activities will be necessary. Because 2401-W is a portion of the Central Waste Complex (CWC), these closure activities become the basis for removing this building from the CWC TSD unit boundary. The 2401-W is a pre-engineered steel building with a sealed concrete floor and a 15.2-centimeter concrete curb around the perimeter of the floor. This building operated from April 1988 until August 1998 storing non-liquid containerized mixed waste. All waste storage occurred indoors. No potential existed for 2401-W operations to have impacted soil. A review of operating records and interviews with cognizant operations personnel indicated that no waste spills occurred in this building (Appendix A). After all waste containers were removed, a radiation survey of the 2401-W floor for radiological release of the building was performed December 17, 1998, which identified no radiological contamination (Appendix B).

LUKE, S.M.

1999-07-15

29

Facility response plan  

SciTech Connect

The Oil Pollution Act of 1990 (OPA 90) strengthened and increased the requirements on ships and facilities handling, storing, and transporting oil. One of those requirements is the preparation of Facility Response Plans (FRPs) by ships or facilities which meet specific operating capacities. The Facility Response Plan is intended to be an all-inclusive guide for responding to and cleaning up any size spill, including a facilitys's or ship's worst case discharge. Although Navy ships are exempt from preparing FRPs, Navy facilities are required to submit plans. The requirements for the FRPs were expanded and clarified in four separate regulations which address different types of facilities. Since most Navy facilities are affected by at least one set of FRP regulations, a comprehensive guidebook detailing all of the requirements streamlines preparation of a facility's FRP.

Addison, I.; McCarthy, K.

1992-10-06

30

Master Plan for Facilities.  

ERIC Educational Resources Information Center

Contains a planning prospectus a consultant group might utilize in serving the planning needs of a medium size school district. Includes the types of tasks and data which need to be performed and analyzed for the effective completion of a facility planning effort. Planning prospectus content was obtained from Tuba City School District, Arizona's…

Glass, Thomas E.

1998-01-01

31

Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect

The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

NSTec Environmental Management

2008-09-01

32

Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary  

SciTech Connect

This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

Not Available

1990-06-01

33

Facility Planning and Management.  

ERIC Educational Resources Information Center

This chapter of "Principles of School Business Management" reviews the extensive range of activities associated with planning for and constructing school facilities. These activities include (1) organizing the staff and organizing the task; (2) conducting long-range planning (involving the gathering of data, the development of a planning document,…

Earthman, Glen I.

34

Mixed Waste Management Facility closure at the Savannah River Site  

SciTech Connect

The Mixed Waste Management Facility of the Savannah River Plant received hazardous and solid low level radioactive wastes from 1972 until 1986. Because this facility did not have a permit to receive hazardous wastes, a Resource Conservation and Recovery Act closure was performed between 1987 and 1990. This closure consisted of dynamic compaction of the waste trenches and placement of a 3-foot clay cap, a 2-foot soil cover, and a vegetative layer. Operations of the waste disposal facility, tests performed to complete the closure design, and the construction of the closure cap are discussed herein.

Bittner, M.F.

1991-08-01

35

Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray  

SciTech Connect

This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

Vigil-Holterman, Luciana R. [Los Alamos National Laboratory

2012-05-07

36

Community Facilities Plan, Foley, Alabama.  

National Technical Information Service (NTIS)

The Community Facilities Plan includes an inventory of existing community facilities. The plan evaluates the existing community facilities and based upon the projection in the population and economic study proposes needed community-wide facilities for mee...

1973-01-01

37

Strategic facility planning (SFP)  

Microsoft Academic Search

Outlines the evolution of facilities design to the point where it is capable of supporting an organisation’s strategic content. Explains the key principles of strategic facility planning (SFP) and details the key stages of the design process. Outlines seven steps including elements such as determining space requirements and generating macro layouts. Concludes that SFP can provide the process to turn

Frank Kerns

1999-01-01

38

Closure plan for Solid Waste Storage Area 6: Volume 1, Closure plan  

SciTech Connect

This Closure Plan for Solid Waste Storage Area 6 (SWSA 6) a disposal area for low-level radioactive wastes and hazardous materials, of the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) describes how portions of SWSA 6 will be closed under Resource Conservation and Recovery Act (RCRA) Interim Status per 40 CFR 265 Subpart G (TN Rule 1200-1-11-.05(7)). An overview is provided of activities necessary for final closure and corrective measures for all of SWSA 6. Results of surface waters and groundwater sampling are provided.

Not Available

1988-09-01

39

303-K Storage facility sampling and analysis plan  

SciTech Connect

This document describes the cleanup, sampling, and analysis activities associated with the closure of the 303-K Storage Facility under the Washington Administrative Code (WAC) 173-303-610, ``Dangerous Waste Regulations.`` this document is a supplement to the 303-K Storage Facility Closure Plan (DOE-RL 1995a) (Closure Plan). The objective of these activities is to support clean closure of the 303 K Storage Facility. This document defines the information and activities needed to meet this objective, including: constituents of concern, cleanup performance standards, cleanup activities, sampling locations and methods, field screening locations and methods, field quality control requirements, laboratory analytical methods, and data validation methodology. This document supersedes the Closure Plan if the two conflict

Adler, J.G.

1997-07-01

40

Development of a prototype plan for the effective closure of a waste disposal site in Los Alamos, New Mexico  

Microsoft Academic Search

The purpose of this study was to develop a prototype plan for the effective closure and stabilization of a semiarid low-level waste disposal site. This prototype plan will provide demonstrated closure techniques for a trench in a disposal site at Los Alamos based on previous shallow land burial (SLB) field research both at the Los Alamos Experimental Engineered Test Facility

J. Nyhan; F. Barnes

1989-01-01

41

Calibration facility safety plan  

NASA Technical Reports Server (NTRS)

A set of requirements is presented to insure the highest practical standard of safety for the Apollo 17 Calibration Facility in terms of identifying all critical or catastrophic type hazard areas. Plans for either counteracting or eliminating these areas are presented. All functional operations in calibrating the ultraviolet spectrometer and the testing of its components are described.

Fastie, W. G.

1971-01-01

42

Facility Closure Report for T-Tunnel (U12t), Area 12, Nevada Test Site, Nevada  

SciTech Connect

This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD.

NSTec Environmental Restoration

2008-08-01

43

Hanford Site Strategic Facilities Plan: Site planning  

SciTech Connect

This plan revises the Hanford Site Strategic Facilities Plan submitted by Westinghouse Hanford Company in 1988. It separates the Hanford Site facilities into two categories: ''strategically required'' facilities and ''marginal'' facilities. It provides a comparison of future facility requirements against existing capacities and proposed projects to eliminate or consolidate marginal facilities (i.e., those facilities that are not fully utilized or are no longer required to accomplish programmatic missions). The objective is to enhance the operating efficiency of the Hanford Site by maximizing facility use and minimizing unnecessary facility operating and maintenance costs. 11 refs.

Not Available

1989-03-01

44

216-B-3 expansion ponds closure plan  

SciTech Connect

This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

Not Available

1994-10-01

45

300 Area waste acid treatment system closure plan. Revision 1  

SciTech Connect

This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

NONE

1996-03-01

46

Systematic Planning for Educational Facilities.  

ERIC Educational Resources Information Center

This monograph provides a systematic approach to the problem of planning educational facilities. It first presents a conceptual framework for a general facilities planning and management system called Facilities Resource Allocation Management Evaluation System (FRAMES). The main components of FRAMES are identified as: (1) needs assessment, (2)…

McGuffey, Carroll W.

47

Achieving and documenting closure in plant growth facilities  

NASA Astrophysics Data System (ADS)

As NASA proceeds with its effort to develop a Controlled Ecological Life Support System (CELSS) that will provide life support to crews during long duration space missions, it must address the question of facility and system closure. Here we discuss the concept of closure as it pertains to CELSS and describe engineering specifications, construction problems and monitoring procedures used in the development and operation of a closed plant growth facility for the CELSS program. A plant growth facility is one of several modules required for a CELSS. A prototype of this module at Kennedy Space Center is the large (7m tall × 3.5m diameter) Biomass Production Chamber (BPC), the central facility of the CELSS Breadboard Project. The BPC is atmospherically sealed to a leak rate of approximately 5% of its total volume per 24 hours. This paper will discuss the requirements for atmospheric closure in this facility, present CO2 and trace gas data from initial tests of the BPC with and without plants, and describe how the chamber was sealed atmospherically. Implications that research conducted in this type of facility will have for the CELSS program are discussed.

Knott, William M.; Sager, John C.; Wheeler, Ray

48

Achieving and documenting closure in plant growth facilities  

NASA Technical Reports Server (NTRS)

As NASA proceeds with its effort to develop a Controlled Ecological Life Support System (CELSS) that will provide life support to crews during long duration space missions, it must address the question of facility and system closure. The concept of closure as it pertains to CELSS and engineering specifications, construction problems and monitoring procedures used in the development and operation of a closed plant growth facility for the CELSS program are described. A plant growth facility is one of several modules required for a CELSS. A prototype of this module at Kennedy Space Center is the large (7m tall x 3.5m diameter) Biomass Production Chamber (BPC), the central facility of the CELSS Breadboard Project. The BPC is atmospherically sealed to a leak rate of approximately 5 percent of its total volume per 24 hours. This paper will discuss the requirements for atmospheric closure in the facility, present CO2 and trace gas data from initial tests of the BPC with and without plants, and describe how the chamber was sealed atmospherically. Implications that research conducted in this type of facility will have for the CELSS program are discussed.

Knott, W. M.; Sager, John C.; Wheeler, Ray

1992-01-01

49

Grout Facilities standby plan  

SciTech Connect

This plan defines how the Grout Facilities will be deactivated to meet the intent of the recently renegotiated Tri-Party Agreement (TPA). The TPA calls for the use of the grout process as an emergency option only in the event that tank space is not available to resolve tank safety issues. The availability of new tanks is expected by 1997. Since a grout startup effort would take an estimated two years, a complete termination of the Grout Disposal Program is expected in December 1995. The former Tank Waste Remediation (TWRS) Strategy, adopted in 1988, called for the contents of Hanford`s 28 newer double-shell waste tanks to be separated into high-level radioactive material to be vitrified and disposed of in a geologic repository; low-level wastes were to be sent to the Grout Facility to be made into a cement-like-mixture and poured into underground vaults at Hanford for disposal. The waste in the 149 older single-shell tanks (SST) were to undergo further study and analysis before a disposal decision was made.

Claghorn, R.D.; Kison, P.F.; Nunamaker, D.R.; Yoakum, A.K.

1994-09-29

50

Regulatory review of closure, post-closure and perpetual care funds at the energy solutions, LLC mixed waste facility  

SciTech Connect

EnergySolutions, LLC operates its Mixed Waste Facility at Clive, Utah under the provisions of its State-issued Part B Permit. The facility accepts waste that contains both hazardous and radioactive contaminants. Utah is an EPA Agreement State and therefore the Utah Division of Solid and Hazardous Waste (DSHW) is authorized to regulate the hazardous waste operations at the facility. The radioactive portion of the waste is regulated by the Utah Division of Radiation Control. 40 CFR 264.142 outlines the facility requirements for Closure Costs. The owner or operator must have a detailed written estimate of the cost of closing the facility in accordance with the rules. For many years the State of Utah had relied on the facility's estimate of closure costs as the amount that needed to be funded. This amount is reviewed annually and adjusted for inflation and for changes at the facility. In 2004 the agency and the facility requested bids from independent contractors to provide their estimate for closure costs. Three engineering firms bid on the project. The facility funded the project and both the agency and the facility chose one of the firms to provide an independent estimate. The engineering firms met with both parties and toured the facility. They were also provided with the current closure cost line items. Each firm provided an estimated cost for closure of the facility at the point in the facility's active life that would make the closure most expensive. Included with the direct costs were indirect line items such as overhead, profit, mobilization, hazardous working conditions and regulatory oversight. The agency and the facility reviewed the independent estimates and negotiated a final Closure and Post-Closure Cost Estimate for the Mixed Waste Facility. There are several mechanisms allowed under the rules to fund the Closure and Post- Closure Care Funds. EnergySolutions has chosen to fund their costs through the use of an insurance policy. Changing mechanisms from an irrevocable trust to an insurance policy required extensive review by the DSHW and the Utah Attorney General's Office. The duration of the Post-Closure Care Period is generally designated as 30 years under the hazardous waste rules. The Legislature of the State of Utah commissioned a review of the need for Perpetual Care Funds for hazardous waste facilities. This fund would provide funds for maintenance and monitoring of facilities following termination of the Post-Closure Permit. The DSHW has recommended to the legislature that a perpetual care fund be created. The legislature will study the recommendation and take appropriate action. (authors)

Willoughby III, O.H.; Lukes, G.C. [Utah Department of Environmental Quality, Div. of Solid and Hazardous Waste, Salt Lake City, UT (United States)

2007-07-01

51

Pediatrics Facilities Plan: Genesee Region.  

National Technical Information Service (NTIS)

A plan for the development of hospital pediatric services and facilities in Monroe County, New York, is presented. The plan represents the first step in the development of an overall plan for pediatric services for the 10-county Genesee Region. An invento...

1974-01-01

52

Guidance for Facility Management Planning (Draft).  

National Technical Information Service (NTIS)

The draft guidance addresses the first two planning steps (screening and facility analysis) in Facility Management Planning. It provides guidance on how facility management planning should be conducted. The draft should be used to establish the general ob...

1985-01-01

53

Hanford site strategic facilities plan: Site planning  

SciTech Connect

This plan revises the first Hanford Site Strategic Facilities Plan submitted by Rockwell Hanford Operations in 1987. A methodology is provided and supporting projects are proposed to enhance the operating efficiency of the Hanford Site as required by the Strategic Facilities Initiative (SFI), Detailed Guidance for Execution of the FY 1990 Program. Mission changes (Basalt Waste Isolation Project, 100-N Area Reactor/Fuels Fabrication, and the SP-100 Program) occurred during the preparation of this plan. All the Basalt Waste Isolation Project and some of the 100-N Reactor/Fuels Fabrication Facility impacts were incorporated. Approximately 1270 facilities consisting of buildings (e.g., shops, warehouses, plants, offices) and other structures (e.g., roads, transformers, water lines) were evaluated. Of these 1270 facilities, 186 were underutilized and classified as ''marginal.'' Each marginal (underutilized) facility is provided with a recommendation for disposition. Of the 186 marginal facilities, 57 are recommended for SFI action (conversion, consolidation, deactivation, disposal, demolition, or other) and 129 are recommended for no SFI action. 15 refs.

Not Available

1988-04-01

54

Planning and Designing Safe Facilities  

ERIC Educational Resources Information Center

Those who manage physical education, athletic, and recreation programs have a number of legal duties that they are expected to carry out. Among these are an obligation to take reasonable precautions to ensure safe programs and facilities for all participants, spectators, and staff. Physical education and sports facilities that are poorly planned,…

Seidler, Todd

2006-01-01

55

Closure plan for Solid Waste Storage Area 6: Volume 1, Closure plan. Remedial investigation/feasibility study  

SciTech Connect

This Closure Plan for Solid Waste Storage Area 6 (SWSA 6) a disposal area for low-level radioactive wastes and hazardous materials, of the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) describes how portions of SWSA 6 will be closed under Resource Conservation and Recovery Act (RCRA) Interim Status per 40 CFR 265 Subpart G [TN Rule 1200-1-11-.05(7)]. An overview is provided of activities necessary for final closure and corrective measures for all of SWSA 6. Results of surface waters and groundwater sampling are provided.

Not Available

1988-09-01

56

Facility Effluent Monitoring Plan determinations for the 600 Area facilities  

SciTech Connect

This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

Nickels, J.M.

1991-08-01

57

105DR Large Sodium Fire Facility decontamination, sampling, and analysis plan  

Microsoft Academic Search

This is the decontamination, sampling, and analysis plan for the closure activities at the 105-DR Large Sodium Fire Facility at Hanford Reservation. This document supports the 105-DR Large Sodium Fire Facility Closure Plan, DOE-RL-90-25. The 105-DR LSFF, which operated from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of

Knaus

1995-01-01

58

Saltstone Disposal Facility Closure Cap Configuration and Degradation Base Case: Institutional Control to Pine Forest Scenario  

Microsoft Academic Search

The Performance Assessment (PA) for the Saltstone Disposal Facility (SDF) is currently under revision. As part of the PA revision and as documented herein, the closure cap configuration has been reevaluated and closure cap degradation mechanisms and their impact upon infiltration through the closure cap have been evaluated for the institutional control to pine forest, land use scenario. This land

Phifer

2004-01-01

59

Cad Graphics in Facilities Planning.  

ERIC Educational Resources Information Center

By applying a computer-aided drafting system to a range of facilities layouts and plans, a division of Tektronix, Inc., Oregon, is maintaining staffing levels with an added workload. The tool is also being used in other areas of the company for illustration, design, and administration. (MLF)

Collier, Linda M.

1984-01-01

60

105-DR Large Sodium Fire Facility decontamination, sampling, and analysis plan  

SciTech Connect

This is the decontamination, sampling, and analysis plan for the closure activities at the 105-DR Large Sodium Fire Facility at Hanford Reservation. This document supports the 105-DR Large Sodium Fire Facility Closure Plan, DOE-RL-90-25. The 105-DR LSFF, which operated from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility in the 100-D Area of the Hanford Site. The LSFF was established to investigate fire fighting and safety associated with alkali metal fires in the liquid metal fast breeder reactor facilities. The decontamination, sampling, and analysis plan identifies the decontamination procedures, sampling locations, any special handling requirements, quality control samples, required chemical analysis, and data validation needed to meet the requirements of the 105-DR Large Sodium Fire Facility Closure Plan in compliance with the Resource Conservation and Recovery Act.

Knaus, Z.C.

1995-06-12

61

48 CFR 2452.237-77 - Temporary closure of HUD facilities.  

Code of Federal Regulations, 2013 CFR

...Facilities (DEC 2012) Observance of Legal Holidays and Closure of HUD Facilities (FEB 2006) New Year's Day Martin Luther King's Birthday Washington's Birthday Memorial Day Independence Day Labor Day Columbus Day Veterans...

2013-10-01

62

Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect

The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure cover has been placed on unit U-3ax/bl (Corrective Action Unit 110) at the Area 3 RWMS. Monolayer-evapotranspirative closure cover designs for the U-3ah/at and U-3bh units are provided in this plan. The current-design closure cover thickness is 3 meters (10 feet). The final design cover will have an optimized cover thickness, which is expected to be less than 3 m (10 ft). Although waste operations at the Area 3 RWMS have ceased at the end of June 2006, disposal capacity is available for future disposals at the U-3ah/at and U-3bh units. The Area 3 RWMS is expected to start closure activities in fiscal year 2025, which include the development of final performance assessment and composite analysis documents, closure plan, closure cover design for construction, cover construction, and initiation of the post-closure care and monitoring activities. Current monitoring at the Area 3 RWMS includes monitoring the cover of the closed mixed waste unit U-3ax/bl as required by the Nevada Department of Environmental Protection, and others required under federal regulations and DOE orders. Monitoring data, collected via sensors and analysis of samples, are needed to evaluate radiation doses to the general public, for performance assessment maintenance, to demonstrate regulatory compliance, and to evaluate the actual performance of the RWMSs. Monitoring provides data to ensure the integrity and performance of waste disposal units. The monitoring program is designed to forewarn management and regulators of any failure and need for mitigating actions. The plan describes the program for monitoring direct radiation, air, vadose zone, biota, groundwater, meteorology, and subsidence. The requirements of post-closure cover maintenance and monitoring will be determined in the final closure plan.

NSTec Environmental Management

2007-09-01

63

Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs.

Nickels, J.M.

1991-06-01

64

Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

Frazier, T.P.

1994-10-20

65

South Dakota State Medical Facilities Plan.  

National Technical Information Service (NTIS)

The document supplements the South Dakota State Health Plan in the area of medical facilities. Medical facilities are defined as those entities which provide institutional health services. This includes hospitals, long-term care facilities, kidney disease...

1985-01-01

66

Closure Report for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada with ROTC 1, Revision 0  

SciTech Connect

This CR provides documentation and justification for the closure of CAU 118 without further corrective action. This justification is based on process knowledge and the results of the investigative and closure activities conducted in accordance with the CAU 118 SAFER Plan: Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada (NNSA/NSO, 2006). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. This CR also provides the analytical and radiological survey data to confirm that the remediation goals were met as specified in the CAU 118 SAFER Plan (NNSA/NSO, 2006). The Nevada Division of Environmental Protection (NDEP) approved the CAU 118 SAFER Plan (Murphy, 2006), which recommends closure in place with use restrictions (URs).

Mark Burmeister

2007-09-01

67

Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system  

SciTech Connect

This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs).

LUKE, S.N.

1999-02-01

68

RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Closure/post-closure (40 CFR parts 264/265, subpart G) updated as of July 1995  

SciTech Connect

The module explains the difference between closure and post-closure and lists the types of facilities that are subject to closure/post-closure. It defines the difference between partial and final closure. It specifies who submits a closure plan and when a closure plan must be submitted, listed the steps in the process, states the time frame for submittal and identifies when and how a closure must be amended. It explains the time frame for notification of closure and the deadlines for beginning and completing closure. It specifies which facilities need contingent post-closure plans, lists the elements of post-closure, and cites the requirements. It specifies the conditions and timing for amending a post-closure plan, and states who must certify closure/post-closure.

NONE

1995-11-01

69

RCRA, superfund and EPCRA hotline training module. Introduction to: Closure/post-closure (40 cfr parts 264/265, subpart g) updated July 1996  

SciTech Connect

The module explains the difference between closure and post-closure. It lists the types of facilities that are subject to closure/post-closures and defines the difference between partial and final closure. It specifies who submits a closure plan and when a closure plan must be submitted, lists the steps in the process, and states the time frame for submittal. It identifies when and how a closure must be amended. It explains the time frame for notification of closure and the deadlines for beginning and completing closure. It specifies which facilities need contingent post-closure plans and lists and the elements of post-closure and cites the requirements. It specifies the conditions and timing for amending a post-closure plan and states who must certify closure/post-closure.

NONE

1996-07-01

70

Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility at the INL Site  

SciTech Connect

The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center. In 1998, the WCF was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the WCF to ensure continued protection of human health and the environment. The post-closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report.

Idaho Cleanup Project

2006-06-01

71

324 Building radiochemical engineering cells, high-level vault, low-level vault, and associated areas closure plan  

SciTech Connect

The Hanford Site, located adjacent to and north of Richland, Washington, is operated by the US Department of Energy, Richland Operations Office (RL). The 324 Building is located in the 300 Area of the Hanford Site. The 324 Building was constructed in the 1960s to support materials and chemical process research and development activities ranging from laboratory/bench-scale studies to full engineering-scale pilot plant demonstrations. In the mid-1990s, it was determined that dangerous waste and waste residues were being stored for greater than 90 days in the 324 Building Radiochemical Engineering Cells (REC) and in the High-Level Vault/Low-Level Vault (HLV/LLV) tanks. [These areas are not Resource Conservation and Recovery Act of 1976 (RCRA) permitted portions of the 324 Building.] Through the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-89, agreement was reached to close the nonpermitted RCRA unit in the 324 Building. This closure plan, managed under TPA Milestone M-20-55, addresses the identified building areas targeted by the Tri-Party Agreement and provides commitments to achieve the highest degree of compliance practicable, given the special technical difficulties of managing mixed waste that contains high-activity radioactive materials, and the physical limitations of working remotely in the areas within the subject closure unit. This closure plan is divided into nine chapters. Chapter 1.0 provides the introduction, historical perspective, 324 Building history and current mission, and the regulatory basis and strategy for managing the closure unit. Chapters 2.0, 3.0, 4.0, and 5.0 discuss the detailed facility description, process information, waste characteristics, and groundwater monitoring respectively. Chapter 6.0 deals with the closure strategy and performance standard, including the closure activities for the B-Cell, D-Cell, HLV, LLV; piping and miscellaneous associated building areas. Chapter 7.0 addresses the closure activities identified in Chapter 6.0, and also adds information on closure activities for the soil directly beneath the unit, regulated material removed during closure, and the schedule for closure. Chapter 8.0 provides Surveillance, monitoring and post-closure information and Chapter 9.0 provides a list of references used throughout the document.

Barnett, J.M.

1998-03-25

72

Facility effluent monitoring plan for the fast flux test facility  

SciTech Connect

A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

Nickels, J M; Dahl, N R

1992-11-01

73

Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site  

SciTech Connect

The U.S. Department of Energy, National Security Administration Nevada Site Office (NNSA/NSO) is planning to close the 92-Acre Area of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada. Closure planning for this facility must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. This paper provides a brief background of the Area 5 RWMS, identifies key closure issues, and presents the closure strategy. Disposals have been made in 25 shallow excavated pits and trenches and 13 Greater Confinement Disposal (GCD) boreholes at the 92-Acre Area since 1961. The pits and trenches have been used to dispose unclassified low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform waste, and to store classified low-level and low-level mixed materials. The GCD boreholes are intermediate-depth disposal units about 10 feet (ft) in diameter and 120 ft deep. Classified and unclassified high-specific activity LLW, transuranic (TRU), and mixed TRU are disposed in the GCD boreholes. TRU waste was also disposed inadvertently in trench T-04C. Except for three disposal units that are active, all pits and trenches are operationally covered with 8-ft thick alluvium. The 92-Acre Area also includes a Mixed Waste Disposal Unit (MWDU) operating under Resource Conservation and Recovery Act (RCRA) Interim Status, and an asbestiform waste unit operating under a state of Nevada Solid Waste Disposal Site Permit. A single final closure cover is envisioned over the 92-Acre Area. The cover is the evapotranspirative-type cover that has been successfully employed at the NTS. Closure, post-closure care, and monitoring must meet the requirements of the following regulations: U.S. Department of Energy Order 435.1, Title 40 Code of Federal Regulations (CFR) Part 191, Title 40 CFR Part 265, Nevada Administrative Code (NAC) 444.743, RCRA requirements as incorporated into NAC 444.8632, and the Federal Facility Agreement and Consent Order (FFACO). A grouping of waste disposal units according to waste type, location, and similarity in regulatory requirements identified six closure units: LLW Unit, Corrective Action Unit (CAU) 111 under FFACO, Asbestiform LLW Unit, Pit 3 MWDU, TRU GCD Borehole Unit, and TRU Trench Unit. The closure schedule of all units is tied to the closure schedule of the Pit 3 MWDU under RCRA.

L. Desotell; D. Wieland; V. Yucel; G. Shott; J. Wrapp

2008-03-01

74

Radiation Dose Calculation for Fuel Handling Facility Closure Cell Equipment.  

National Technical Information Service (NTIS)

This calculation evaluates the energy deposition rates in silicon, gamma and neutron flux spectra at various locations of interest throughout FHF closure cell. The physical configuration features a complex geometry, with particle flux attenuation of many ...

D. Musat

2005-01-01

75

Community Facilities Plan, 1969, Erwin, Tennessee.  

National Technical Information Service (NTIS)

The study consists of a community facilities plan for the city of Erwin, Tennessee. Included in the study is an inventory and analysis of all public and private community facilities. Where deficiencies exist, recommendations are made for improving these f...

1969-01-01

76

Revised RCRA closure plan for the Interim Drum Yard (S-030) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect

The Interim Drum Yard (IDY) facility is a containerized waste storage area located in the Y-12 exclusion area. It was used to store waste materials which are regulated by RCRA (Resource Conservation and Recovery Act); uranyl nitrate solutions were also stored there. The closure plan outlines the actions required to achieve closure of IDY and is being submitted in accordance with TN Rule 1200-1-11.05(7) and 40 CFR 265.110.

Smith, C.M.

1994-09-01

77

HWMA/RCRA Closure Plan for the Fluorinel Dissolution Process Makeup and Cooling and Heating Systems Voluntary Consent Order SITE-TANK-005 Action Plan Tank Systems INTEC-066, INTEC-067, INTEC-068, and INTEC-072  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the fluorinel dissolution process makeup and cooling and heating systems located in the Fluorinel Dissolution Process and Fuel Storage Facility (CPP-666), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory Site, was developed to meet milestones established under the Voluntary Consent Order. The systems to be closed include waste piping associated with the fluorinel dissolution process makeup systems. This closure plan presents the closure performance standards and methods of achieving those standards.

M.E. Davis

2007-05-01

78

Strategic facility planning improves capital decision making.  

PubMed

A large, Midwestern IDS undertook a strategic facility-planning process to evaluate its facility portfolio and determine how best to allocate future investments in facility development. The IDS assembled a facility-planning team, which initiated the planning process with a market analysis to determine future market demands and identify service areas that warranted facility expansion. The team then analyzed each of the IDS's facilities from the perspective of uniform capacity measurements, highest and best use compared with needs, building condition and investment-worthiness, and facility growth and site development opportunities. Based on results of the analysis, the strategy adopted entailed, in part, shifting some space from inpatient care to ambulatory care services and demolishing and replacing the 11 percent of facilities deemed to be in the worst condition. PMID:11258269

Reeve, J R

2001-03-01

79

Facilities Planning for Interactive Distance Education.  

ERIC Educational Resources Information Center

Provides basic information relating to the different aspects of facilities planning for interactive distance education, including site selection, acoustics, lighting, environmental considerations, and electrical power. The importance of facilities planning during the developmental stages of an interactive distance education project is emphasized.…

Carter, Alex

1997-01-01

80

Planning and Managing School Facilities. Second Edition.  

ERIC Educational Resources Information Center

This book addresses the administrative procedures associated with planning and managing school facilities. As noted at the outset, practitioner interest in school facilities has been growing rapidly in recent years because decades of neglect, poor planning, and cost cutting have created a situation in which large numbers of America's school…

Kowalski, Theodore J.

81

Plan for Future Land Use: Development Plan, Thoroughfare Plan, Community Facilities Plan, Lancaster, S.C.  

National Technical Information Service (NTIS)

The report, with the accompanying maps which illustrate it, contains statements about: (1) the future use of land, (2) the location of existing and proposed community facilities, and (3) a preliminary thoroughfare plan for the Lancaster Planning Area. Its...

1968-01-01

82

State Environmental Policy Act (SEPA) Environmental Checklist Form 216-B-3 Expansion Ponds Closure Plan. Revision 1  

SciTech Connect

The 216-B-3 Expansion Ponds Closure Plan (Revision 1) consists of a Part A Dangerous Waste Permit Application and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and five appendices. The 216-B-3 Pond System consists of a series of four earthen, unlined, interconnected ponds and the 216-B-3-3 Ditch that receive waste water from various 200 East Area operating facilities. These four ponds, collectively. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the 216-B-3-3 Ditch. Water discharged to the 216-8-3-3 Ditch flows directly into the 216-B-3 Pond. In the past, waste water discharges to B Pond and the 216-B-3-3 Ditch contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous portion of mixed waste is regulated under RCRA. Mixed waste also may be considered a hazardous substance under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) when considering remediation of waste sites.

Not Available

1993-12-01

83

2727-S Nonradioactive Dangerous Waste Storage Facility clean closure evaluation report  

SciTech Connect

This report presents the analytical results of 2727-S NRDWS facility closure verification soil sampling and compares these results to clean closure criteria. The results of this comparison will determine if clean closure of the unit is regulatorily achievable. This report also serves to notify regulators that concentrations of some analytes at the site exceed sitewide background threshold levels (DOE-RL 1993b) and/or the limits of quantitation (LOQ). This report also presents a Model Toxics Control Act Cleanup (MTCA) (WAC 173-340) regulation health-based closure standard under which the unit can clean close in lieu of closure to background levels or LOQ in accordance with WAC 173-303-610. The health-based clean closure standard will be closure to MTCA Method B residential cleanup levels. This report reconciles all analyte concentrations reported above background or LOQ to this health-based cleanup standard. Regulator acceptance of the findings presented in this report will qualify the TSD unit for clean closure in accordance with WAC 173-303-610 without further TSD unit soil sampling, or soil removal and/or decontamination. Nondetected analytes require no further evaluation.

Luke, S.N.

1994-07-14

84

Facility effluent monitoring plan for the tank farm facility  

SciTech Connect

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

Crummel, G.M.

1998-05-18

85

Facility Safety Plan CMS Complexes CMS410  

SciTech Connect

Laboratory management requires that the controls specified in this Facility Safety Plan (FSP) be applied to efficiently and safely perform operations within these facilities. Any operation conducted in these facilities that involves activities not commonly performed by the public, requires an Integrated Work Sheet to determine the appropriate level of safety documentation.

Cooper, G

2007-06-14

86

Planning Requirements for Small School Facilities.  

ERIC Educational Resources Information Center

The unique requirements of small school facilities, designed to handle multiple curricular functions within the same operational space, necessitate the creation of educational specifications tying the curriculum to that portion of the facility in which each curriculum component will be implemented. Thus, in planning the facility the major concern…

Davis, J. Clark; McQueen, Robert

87

Pave It or Save It: Widelife Protection Planning Under the Base Closure and Realignment Acts.  

National Technical Information Service (NTIS)

This dissertation addresses the following question: 'What factors appear most closely associated with successfull wildlife protection planning at Air Force bases closed under the Base Closure and Realignment Acts'. Six factors were investigated: local env...

T. N. Williams

1999-01-01

88

Saltstone Disposal Facility Mechanically Stabilized Earth Vault Closure Cap Degradation Base Case: Institutional Control To Pine Forest Scenario  

Microsoft Academic Search

As part of the current Saltstone Disposal Facility (SDF) Performance Assessment (PA) revision, the closure cap configuration was reevaluated and closure cap degradation mechanisms and their impact upon infiltration through the closure cap was evaluated for the existing SDF concrete vaults (i.e. vaults 1 and 4) for the base case land use scenario (i.e. institutional control to pine forest scenario)

Phifer

2004-01-01

89

Facility Effluent Monitoring Plan for the uranium trioxide facility  

SciTech Connect

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, Inc., NM (United States)

1993-12-01

90

Facility effluent monitoring plan for 242-A evaporator facility  

SciTech Connect

A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

Crummel, G.M.; Gustavson, R.D.

1995-02-01

91

Planning the Facilities for Business Education.  

ERIC Educational Resources Information Center

In addition to space and equipment requirements, guidelines are suggested for layouts and facilities. Detailed equipment lists are given for each area. Sample questionnaires for use in planning are included. (FS)

Selden, William

92

Projecting Educational Programs and Planning Educational Facilities.  

ERIC Educational Resources Information Center

Reviews how the educational planner can examine trends in society and education and relate them to facility planning. The following trends are examined: (1) societal; (2) school curriculum; (3) instruction; and (4) educational technology. (MLF)

Babineau, Raymond E.

1989-01-01

93

Maintenance Implementation Plan for the Grout Facility  

SciTech Connect

The objective of the Maintenance Implementation Plan (MIP) is to describe how the Grout Treatment Facility will implement the requirements established by US Department of Energy (DOE) Order 4330.4A, Maintenance Management Program, Chapter 2.0 Nuclear Facilities (DOE 1990). The plan provides a blueprint for a disciplined approach to implementation and compliance. Each element of the order is prioritized, categorized, and then placed into one of three phases for implementation.

Yoakum, A.K.

1993-08-01

94

Closure Report for Corrective Action Unit 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada, Revision 0  

Microsoft Academic Search

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE,

Mark Burmeister

2009-01-01

95

National Science Foundation Facility Plan  

NSF Publications Database

Our investments range from modest laboratory instruments and information technology (IT) resources to the sorts of world- class projects that make up a special category of NSF funding designated as Major Research Equipment and Facilities Construction (MREFC). To that end, the National Science Board (NSB) and the Director, in their joint report Setting Priorities for Large Research Facility Projects Supported by the National Science Foundation, define the process used by the NSF for developing...

96

Planning and Equipping Industrial Arts Instructional Facilities.  

ERIC Educational Resources Information Center

This guide is intended to assist industrial arts teachers, school administrators, and architects in planning and designing functional facilities for instructional purposes or in remodeling existing facilities. It was developed under the auspices of the Council for Industrial Arts Education and published by the Missouri State Department of…

Missouri State Dept. of Education, Jefferson City.

97

Planning Educational Facilities: The New Environment.  

ERIC Educational Resources Information Center

The new environment implies a new structure for both planning and designing school facilities. Such an environment is the manifested difference between those buildings designed for learning and those designed for teaching, which becomes evident by the measure of flexibility of the facility itself and of the people within it. This new environment…

Hasenpflug, Thomas R.

98

42 CFR 488.446 - Administrator sanctions: long-term care facility closures.  

Code of Federal Regulations, 2013 CFR

42 Public Health 5 2013-10-01 2013-10-01...Administrator sanctions: long-term care facility closures. 488...Section 488.446 Public Health CENTERS FOR MEDICARE...participation in any Federal health care program (as defined in...

2013-10-01

99

Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report  

SciTech Connect

This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

Not Available

1988-02-26

100

Fall Semiannual Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility at the INL Site  

SciTech Connect

The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center. In 1998, the WCF was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the WCF to ensure continued protection of human health and the environment.

D. F. Gianotto N. C. Hutten

2007-01-12

101

Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site  

SciTech Connect

Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

S. E. Rawlinson

2001-09-01

102

Implementing change in the facilities planning process  

SciTech Connect

In the post-Cold War climate of reduced budgets at the national laboratories, the Sites Planning Department at Sandia National Laboratories was faced with the problem of securing funding for capital construction projects in a very competitive environment. The Department of Energy (DOE), felt that requests for new facilities were not always well coordinated with its mission needs. The Sites Planning Department needed to revolutionize the way they were doing business. To be successful in obtaining approval and funding for future facilities, they recognized the need to concentrate their efforts on project proposals that tap strategic programs at DOE. The authors developed a series of new processes to identify, evaluate, prioritize, and develop line item project proposals to request approval and obtain funding. A matrixed group of sites and facilities directors was formed to establish criteria and make preliminary recommendations to upper management. Matrixed working groups were also established at the staff level to develop and prepare projects for the prioritization process. Ultimately, similar processes will be applied to all project types, and a prioritized plan generated for each. These plans will become the blueprint for an overarching strategic site plan. What started as a means of increasing success in obtaining approval and funding of capital projects has launched a whole new approach to project development that permits incorporation of facilities planning into overall corporate strategic planning.

Williams, J.L. [Sandia National Labs., Albuquerque, NM (United States). Sites Planning Dept.

1995-08-01

103

Facility effluent monitoring plan for the 325 Facility  

SciTech Connect

The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1998-12-31

104

Fast Flux Test Facility emergency planning  

Microsoft Academic Search

This paper describes the emergency planning structure and experience at the Fast Flux Test Facility (FFTF). The FFTF is a 400-MW thermal sodium-cooled, three-loop, fast test reactor operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE) as part of the Hanford Engineering Development Laboratory facilities twelve miles north of Richland, Washington on the Hanford Reservation. The

W. C. Moffitt; D. J. Newland

1983-01-01

105

Decommissioning plan for the National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF) is a US Department of Energy inertial confinement laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). To ensure that decontamination and decommissioning (D&D) issues at the end-of-life are manageable, this subject has received attention from an early stage. This paper summarizes the NIF D&D issues, and the status of the D&D plan.

Brereton, S., LLNL

1998-05-27

106

Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site  

SciTech Connect

The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep Tanks System Phase 1. These monitoring wells are intended to monitor for the occurrence of contaminants of concern in the perched water beneath and adjacent to the CPP-601/627/640 Landfill. The wells were constructed to satisfy requirements of the HWMA/RCRA Post-Closure Plan for the CPP 601/627/640 Landfill.

Boehmer, Ann

2010-11-01

107

Planning Tool for Strategic Evaluation of Facility Plans - 13570  

SciTech Connect

Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility was needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)

Magoulas, Virginia; Cercy, Michael [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Hall, Irin [Newport News Shipbuilding, 4101 Washington Ave., Newport News, VA 23607 (United States)] [Newport News Shipbuilding, 4101 Washington Ave., Newport News, VA 23607 (United States)

2013-07-01

108

PLANNING WASTEWATER MANAGEMENT FACILITIES FOR SMALL COMMUNITIES  

EPA Science Inventory

This manual presents a set of procedures for planning wastewater management facilities for small communities and is directed at areas with populations of under 10,000. It is designed to aid engineers and the communities they serve in evaluating various options for treatment and d...

109

National Ignition Facility Title II Design Plan  

SciTech Connect

This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

Kumpan, S

1997-03-01

110

National Ignition Facility wet weather construction plan  

SciTech Connect

This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

Kugler, A N

1998-01-01

111

CONSIDERATIONS FOR GROUT FORMULATIONS FOR FACILITY CLOSURES USING IN SITU STRATEGIES  

SciTech Connect

The U.S. Department of Energy (DOE) is conducting in situ closures (entombment) at a large number of facilities throughout the complex. Among the largest closure actions currently underway are the closures of the P and R Reactors at the Savannah River Site (SRS), near Aiken, South Carolina. In these facilities, subgrade open spaces are being stabilized with grout; this ensures the long term structural integrity of the facilities and permanently immobilizes and isolates residual contamination. The large size and structural complexity of these facilities present a wide variety of challenges for the identification and selection of appropriate fill materials. Considerations for grout formulations must account for flowability, long term stability, set times, heat generation and interactions with materials within the structure. The large size and configuration of the facility necessitates that grout must be pumped from the exterior to the spaces to be filled, which requires that the material must retain a high degree of flowability to move through piping without clogging while achieving the required leveling properties at the pour site. Set times and curing properties must be controlled to meet operations schedules, while not generating sufficient heat to compromise the properties of the fill material. The properties of residual materials can result in additional requirements for grout formulations. If significant quantities of aluminum are present in the facility, common formulations of highly alkaline grouts may not be appropriate because of the potential for hydrogen generation with the resultant risks. SRS is developing specialized inorganic grout formulations that are designed to address this issue. One circum-neutral chemical grout formulation identified for initial consideration did not possess the proper chemical characteristics, having exceptionally short set times and high heat of hydration. Research efforts are directed toward developing grout formulations that can meet operational requirements for chemical compatibility, extended set times and reduced heat generation.

Gladden, J.; Serrato, M.; Langton, C.; Long, T.; Blankenship, J.; Hannah, G.; Stubblefield, R.; Szilagyi, A.

2010-08-25

112

Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility  

SciTech Connect

Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States); Suttora, L.C. [U.S. Department of Energy, Washington, D.C. (United States); Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Stanisich, N. [Portage Environmental, Inc., Idaho Falls, ID (United States)

2007-07-01

113

Post-Closure RCRA Groundwater Monitoring Plan for the 216-S-10 Pond and Ditch  

Microsoft Academic Search

The purpose of this plan is to provide a post-closure groundwater monitoring program for the 216-S-10 Pond and Ditch (S-10) treatment, storage, and\\/or disposal (TSD) unit. The plan incorporates the sum of knowledge about the potential for groundwater contamination to originate from the S-10, including groundwater monitoring results, hydrogeology, and operational history. The S-10 has not received liquid waste since

D BRENT. Barnett; Bruce A. Williams; Charissa J. Chou; Mary J. Hartman

2006-01-01

114

Final Draft Guidance for Subpart G of the Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage and Disposal Facilities.  

National Technical Information Service (NTIS)

The purpose of this guidance document is to assist in implementing closure and post-closure plans. The document concentrates on the closure plans specific to six types of Treatment, Storage, or Disposal Facilities (TSDF): tanks; surface impoundments; land...

K. Chrisman, N. Leggett, P. P. Neill, R. E. Burt, R. R. Severn

1981-01-01

115

Care Planning Integrity in Nursing Facilities  

PubMed Central

Background Although there is some evidence of improved quality in nursing home care after the implementation of the 1987 Omnibus Budget Reconciliation Act regulations, the nursing processes that contribute to that improvement are not well understood. Assumptions that the mandated tools for resident assessment and care planning account for the change remain uninvestigated. Objectives To generate an empirically supported conceptual model of care planning integrity, incorporating five subconstructs: coordination, integration, interdisciplinary team, restorative perspective, and quality. Methods A correlational, model generation-model selection design guided the study. Using a random sample of 107 facilities, the research team combined primary data collected from care planning team members (n = 508) via a telephone survey, with variables extracted from the Medicaid Cost Reports and the Centers for Medicaid and Medicare Services Online Survey, Certification, and Reporting System (OSCAR) database. Primary and alternative models of care planning integrity were examined for fit to the data using structural equation modeling procedures. Results Using preliminary analyses, 18 observed indicators to represent the five latent subconstructs were identified. Fit indices for the primary model were borderline (comparative fit index = .892; root mean square error of approximation = .048), but were excellent for the alternative model (comparative fit index = .972; root mean square error of approximation = .026). Care planning integrity is demonstrated within nursing facilities through direct relationships with coordination, integration, and quality, and indirect relationships through integration with interdisciplinary team and restorative perspective. Discussion Care planning integrity captures differences in the way nursing facilities implement the care planning process, using the mandated standardized tools, that may make a difference in resident outcomes. Subsequent research is indicated to address those dynamics.

Taunton, Roma Lee; Piamjariyakul, Ubolrat; Gajewski, Byron; Lee, Robert H.; Bott, Marjorie J.

2013-01-01

116

Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site  

SciTech Connect

The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

Boehmer, Ann M.

2009-05-31

117

2101-M pond closure plan. Volume 1, Revision 2  

SciTech Connect

This document describes activities for the closure of a surface impoundment (2101-M Pond) at the Hanford Site. The 2101-H Pond was initially constructed in 1953 to serve as a drainage collection area for the 2101-H Building. (Until the Basalt Waste Isolation Project (BWIP) Laboratory was constructed in the 2101-M Building in 1979--1981, the only source contributing discharge to the pond was condensate water from the 2101-H Building heating, ventilation, and air conditioning (HVAC) system. The drains for the BWIP Laboratory rooms were plumbed into a 4-in., cast-iron, low-pressure drain pipe that carries waste water from the HVAC system to the pond. During the active life of the BWIP Laboratory, solutions of dissolved barium in groundwater samples were discharged to the 2101-M Pond via the laboratory drains. As a result of the discharges, a Part A permit application was initially submitted to the Washington State Department of Ecology (Ecology) in August 1986 which designates the 2101-M Pond as a surface impoundment.

Not Available

1993-06-01

118

National Ignition Facility project acquisition plan  

SciTech Connect

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

Callaghan, R.W.

1996-04-01

119

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: Area 25 EMAD Facility Nevada Test Site, Nevada  

Microsoft Academic Search

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 114, Area 25 EMAD Facility, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 114 comprises the following corrective action site (CAS) located in Area 25 of the Nevada Test Site:;\\u000a;\\u000a 25-41-03, EMAD Facility;\\u000a;

Mark Krauss

2010-01-01

120

Management plan for Facility Effluent Monitoring Plan activities  

SciTech Connect

The DOE/RL 89-19, United States Department of Energy-Richland Operations Office Environmental Protection Implementation Plan (1989), requires the Hanford Site to prepare an Environmental Monitoring Plan (EMP) by November 9, 1991. The DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (1991), provides additional guidance and requires implementation of the EMP within 36 months of the effective data of the rule. DOE Order 5400.1, General Environmental Protection Program, requires each US Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials to prepare an EMP. This EMP is to identify and discuss two major activities: (1) effluent monitoring and (2) environmental surveillance. At the Hanford Site, the site-wide EMP will consist of the following elements: (1) A conceptual plan addressing effluent monitoring and environmental surveillance; (2) Pacific Northwest Laboratory (PNL) site-wide environmental surveillance program; (3) Westinghouse Hanford Company (Westinghouse Hanford) effluent monitoring program consisting of the near-field operations environmental monitoring activities and abstracts of each Facility Effluent Monitoring Plan (FEMP). This management plan addresses the third of these three elements of the EMP, the FEMPs.

Nickels, J.M.; Pratt, D.R.

1991-08-01

121

Remedial Action Work Plan Amchitka Island Mud Pit Closures  

Microsoft Academic Search

This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for

2001-01-01

122

Post-Closure Inspection Report for Corrective Action Unit 92: Area 6 Decon Pond Facility  

SciTech Connect

This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility. CAU 92 was closed according to the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP], 1995) and the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996; as amended January 2007). Closure activities were completed on February 16, 1999, and the Closure Report (U.S. Department of Energy, Nevada Operations Office, 1999) was approved and a Notice of Completion issued by NDEP on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs): CAS 06-04-01, Decon Pad Oil/Water Separator, and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02 requires post-closure inspections. Visual inspections of the cover and fencing at CAS 06-05-02 are performed quarterly. Additional inspections are conducted if precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in.]) in a 24-hour period. This report covers calendar year 2007. Quarterly site inspections were performed in March, June, September, and December of 2007. All observations indicated the continued integrity of the unit. No issues or concerns were noted, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A of this report, and photographs taken during the site inspections are included in Appendix B of this report. Two additional inspections were performed after precipitation events that exceeded 1.28 cm (0.50 in.) within a 24-hour period during 2007. No significant changes in site conditions were noted during these inspections, and no corrective actions were necessary. A copy of the inspection checklists and field notes completed during these additional inspections are included in Appendix A. Precipitation records for 2007 are included in Appendix C.

NSTec Environmental Restoration

2008-03-01

123

National Ignition Facility project acquisition plan revision 1  

SciTech Connect

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager.

Clobes, A.R.

1996-10-01

124

Development of a prototype plan for the effective closure of a waste disposal site in Los Alamos, New Mexico  

SciTech Connect

The purpose of this study was to develop a prototype plan for the effective closure and stabilization of a semiarid low-level waste disposal site. This prototype plan will provide demonstrated closure techniques for a trench in a disposal site at Los Alamos based on previous shallow land burial (SLB) field research both at the Los Alamos Experimental Engineered Test Facility (EETF), and at a waste disposal area at Los Alamos. The accuracy of modeling soil water storage by two hydrologic models was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems at Waste Disposal Area B having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that one of the two models tested represented soil moisture more accurately than the second model. The accuracy of modeling all of the parameters of the water balance equation was then evaluated using field data from the Integrated Systems Demonstration plots at the EETF. Optimized parameters were developed for one model to describe observed values of deep percolation, evapotranspiration, and runoff from the field plots containing an SLB trench cap configuration.

Nyhan, J.; Barnes, F.

1989-02-01

125

Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0  

SciTech Connect

This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D&D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities.

Olson, A.L.; Nacht, S.J.

1997-11-01

126

Sampling and analysis plan for site assessment during the closure or replacement of nonradioactive underground storage tanks  

Microsoft Academic Search

The Tank Management Program is responsible for closure or replacement of nonradioactive underground storage tanks throughout the Idaho National Engineering Laboratory (INEL). A Sampling and Analysis Plan (SAP) has been developed that complies with EPA regulations and with INEL Tank Removal Procedures for sampling activities associated with site assessment during these closure or replacement activities. The SAP will ensure that

Gitt

1990-01-01

127

Recommended management practices for operation and closure of shallow injection wells at DOE facilities  

SciTech Connect

The Safe Drinking Water Act established the Underground Injection Control (UIC) program to ensure that underground injection of wastes does not endanger an underground source of drinking water. Under UIC regulations, an injection well is a hole in the ground, deeper than it is wide, that receives wastes or other fluid substances. Types of injection wells range from deep cased wells to shallow sumps, drywells, and drainfields. The report describes the five classes of UIC wells and summarizes relevant regulations for each class of wells and for the UIC program. The main focus of the report is Class IV and V shallow injection wells. Class IV wells are prohibited and should be closed when they are identified. Class V wells are generally authorized by rule, but EPA or a delegated state may require a permit for a Class V well. This report provides recommendations on sound operating and closure practices for shallow injection wells. In addition the report contains copies of several relevant EPA documents that provide additional information on well operation and closure. Another appendix contains information on the UIC programs in 21 states in which there are DOE facilities discharging to injection wells. The appendix includes the name of the responsible regulatory agency and contact person, a summary of differences between the state`s regulations and Federal regulations, and any closure guidelines for Class IV and V wells.

Not Available

1993-07-01

128

Emergency evacuation/transportation plan update: Traffic model development and evaluation of early closure procedures. Final report  

SciTech Connect

Prolonged delays in traffic experienced by Laboratory personnel during a recent early dismissal in inclement weather, coupled with reconstruction efforts along NM 502 east of the White Rock Wye for the next 1 to 2 years, has prompted Los Alamos National Laboratory (LANL) to re-evaluate and improve the present transportation plan and its integration with contingency plans maintained in other organizations. Facilities planners and emergency operations staff need to evaluate the transportation system`s capability to inefficiently and safely evacuate LANL under different low-level emergency conditions. A variety of potential procedures governing the release of employees from the different technical areas (TAs) requires evaluation, perhaps with regard to multiple emergency-condition scenarios, with one or more optimal procedures ultimately presented for adoption by Lab Management. The work undertaken in this project will hopefully lay a foundation for an on-going, progressive transportation system analysis capability. It utilizes microscale simulation techniques to affirm, reassess and validate the Laboratory`s Early Dismissal/Closure/Delayed Opening Plan. The Laboratory is required by Federal guidelines, and compelled by prudent practice and conscientious regard for the welfare of employees and nearby residents, to maintain plans and operating procedures for evacuation if the need arises. The tools developed during this process can be used outside of contingency planning. It is anticipated that the traffic models developed will allow site planners to evaluate changes to the traffic network which could better serve the normal traffic levels. Changes in roadway configuration, control strategies (signalization and signing), response strategies to traffic accidents, and patterns of demand can be modelled using the analysis tools developed during this project. Such scenarios typically are important considerations in master planning and facilities programming.

NONE

1993-10-28

129

National Ignition Facility Configuration Management Plan  

SciTech Connect

This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and approved changes are implemented according to the change requirements documents.

Cabral, S G; Moore, T L

2002-10-01

130

Proposed plan for the Tank 105-C Hazardous Waste Management Facility. Revision 1  

SciTech Connect

This Proposed Plan was developed to describe the remedial action selected at the Tank 105-C Hazardous Waste Management Facility (HWMF) source-specific unit within the C-Area Fundamental Study Area (FSA) at the Savannah River Site (SRS) and to fulfill Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. This 8,400 gallon capacity tank was certified and accepted closed according to a closure plan approved by the state of South Carolina under the Resource Conservation and Recovery Act (RCRA) authority in January 1991. As a result of the closure, previously performed under RCRA, the unit poses no current or potential threat to human health or the environment. Accordingly, no further remedial action is necessary under CERCLA.

Miles, W.C. Jr.

1994-06-24

131

Facility Effluent Monitoring Plan determination for the Liquid Effluent Retention Facility.  

National Technical Information Service (NTIS)

The purpose of this document is to determine whether the Liquid Effluent Retention Facility meets the criteria for requiring a Facility Effluent Monitoring Plan. This document contains a brief facility description, the source term (i.e., inventory) of rad...

G. M. Crummel

1991-01-01

132

Shutdown plan for the 300 area fuel supply facilities  

SciTech Connect

The 300 Area Fuel Supply Shutdown (FSS) facility is progressing toward shut down and ultimate decontamination and decommissioning. This plan identifies the steps to be taken to transition to a stabilized, shutdown facility ready for turn over to the ERC organization. This revision provides an update of the plan to reflect the facility status at the end of fiscal year 1996.

Metcalf, I.L., Westinghouse Hanford

1996-08-28

133

The Regional Planning of Selected Public Facilities Systems. Volume I: Planning for Action.  

National Technical Information Service (NTIS)

This study of the regional planning of public facilities systems is concerned with the economic characteristics of selected public facilities systems and the approaches to planning and action that can bring such systems into being. The basic objective of ...

1968-01-01

134

ICPP calcined solids storage facility closure study. Volume III: Engineering design files  

SciTech Connect

The following information was calculated to support cost estimates and radiation exposure calculations for closure activities at the Calcined Solids Storage Facility (CSSF). Within the estimate, volumes were calculated to determine the required amount of grout to be used during closure activities. The remaining calcine on the bin walls, supports, piping, and floor was also calculated to approximate the remaining residual calcine volumes at different stages of the removal process. The estimates for remaining calcine and vault void volume are higher than what would actually be experienced in the field, but are necessary for bounding purposes. The residual calcine in the bins may be higher than was is experienced in the field as it was assumed that the entire bin volume is full of calcine before removal activities commence. The vault void volumes are higher as the vault roof beam volumes were neglected. The estimations that follow should be considered rough order of magnitude, due to the time constraints as dictated by the project`s scope of work. Should more accurate numbers be required, a new analysis would be necessary.

NONE

1998-02-01

135

Health and Safety Plan, Woodbridge Research Facility, Woodbridge, Virginia. Addendum.  

National Technical Information Service (NTIS)

This document is an addendum to the Final Health and Safety Plan for the Woodbridge Research Facility, Virginia, September 1993. Delivery Order Number DA0014 entitled Woodbridge Research Facility Biota Sampling, provides details and rationale for the envi...

K. McCreanor G. Barrett C. Long K. Janiga

1994-01-01

136

A throughput-maximizing facility planning and layout model  

Microsoft Academic Search

This paper presents a throughput-maximizing algorithm for facility planning and layout of flexible manufacturing systems. It uses a computationally efficient mean-value analysis model to analyse system configurations, and extends the methodology of CRAFT in layout planning.

HENRY CO; ALBERT WU; ARNOLD REISMAN

1989-01-01

137

NSTX: Facility/Research Highlights and Near Term Facility Plans  

SciTech Connect

The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

M. Ono

2008-11-19

138

Planning Physical Education and Athletic Facilities in Schools.  

ERIC Educational Resources Information Center

This book is primarily designed for a course in planning physical education and athletic facilities and as a supplementary textbook for administration courses. It illustrates the skills necessary for designing and planning facilities, stresses the need for effective communication between planners and users, and covers elementary through college…

Penman, Kenneth A.

139

Merging Program, Budget and Facilities Planning.  

ERIC Educational Resources Information Center

A strategic approach to institutional planning is proposed that integrates three usually isolated planning efforts as a means of making planning more manageable and of minimizing turf problems, favoritism charges, and other threats to morale and commitment to decisions. The approach includes breadth of representation on the planning team and…

Goode, John M.

1984-01-01

140

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: Area 25 EMAD Facility Nevada Test Site, Nevada, Revision 0  

Microsoft Academic Search

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 114, Area 25 EMAD Facility, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 114 comprises the following corrective action sites (CASs) located in Area 25 of the Nevada Test Site:;\\u000a;\\u000a 25-41-03, EMAD Facility;\\u000a 25-99-20,

Mark Burmeister

2009-01-01

141

Community Facilities Plan and Public Improvements Program: Elbert County, Georgia.  

National Technical Information Service (NTIS)

The report is documented in two parts. The first part is an analysis and plan for a twenty-year period of community facilities. It not only deals with those facilities administered by Elbert County, but includes such facilities as schools, hospitals, and ...

S. Carter

1969-01-01

142

Planning and Managing the Campus Facilities Portfolio  

ERIC Educational Resources Information Center

The campus and facilities of a college should be managed using the same principles as any other investment in an institution's financial portfolio. Stemming from the APPA/National Association of College & University Business Officers (NACUBO) Institute for Facilities Finance, this book addresses the totality of managing the facilities investment…

Daigneau, William A., Ed.

2003-01-01

143

Development plan for the Nucleon Physics Laboratory Facility at LAMPF  

SciTech Connect

A 3- to 4-year plan is described for upgrading the LAMPF Nucleon Physics Laboratory including a neutron time-of-flight facility for the (p,n) reaction, a medium-resolution spectrometer for (p,p') and n,p) studies, and a dedicated facility for atomic beam studies. Development of these facilities and relationships to other ongoing developments are detailed. The scope of the new physics programs supported by such a facility is discussed.

McClelland, J.B.; Bacher, A.; Boudrie, R.L.; Carey, T.A.; Donahue, J.; Goodman, C.D.; McNaufhton, M.W.; Tanaka, N.; van Dyck, O.B.; Werbeck, R.

1986-02-01

144

200 Area Liquid Effluent Facilities -- Quality assurance program plan  

SciTech Connect

This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements.

Fernandez, L.

1995-03-13

145

Selected Bibliographies and State-of-the-Art Review for Health Facilities Planning. Volume 6: Health Facility Planning References. International Health Planning Reference Series.  

ERIC Educational Resources Information Center

Intended as a companion piece to volume 5 in the Method Series, Health Facilities Planning (CE 024 233), this sixth of six volumes in the International Health Planning Reference Series is a combined literature review and annotated bibliography dealing with health facilities planning for developing countries. The review identifies literature…

White (E.H.) Co., San Francisco, CA.

146

Radiant Heat Test Facility (RHTF): User Test Planning Guide  

NASA Technical Reports Server (NTRS)

Test process, milestones and inputs are unknowns to first-time users of the RHTF. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

DelPapa, Steven

2011-01-01

147

Antenna Test Facility (ATF): User Test Planning Guide  

NASA Technical Reports Server (NTRS)

Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

Lin, Greg

2011-01-01

148

Vibration and Acoustic Test Facility (VATF): User Test Planning Guide  

NASA Technical Reports Server (NTRS)

Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

Fantasia, Peter M.

2011-01-01

149

Ensuring Functional Closure of a Multi-core SoC through Verification Planning, Implementation and Execution  

Microsoft Academic Search

This paper addresses the verification of a modern multi-core SoC using an approach that quantifies the verification problem and defines its solution. We show how to analyze a specification to create a verification plan that describes the verification problem, quantifies it using measurable metrics, specifies the solution to the problem, and facilitates automation of functional closure. Specifically, we show how

Alan Hunter; Andrew Piziali; Avi Ziv; Kelly Larson; Shankar Hemmady

2008-01-01

150

Technical and Sampling/Analysis Plan for Fort Meade Base Closure Parcel Site Inspection and Phase II Remedial Investigation Studies.  

National Technical Information Service (NTIS)

This Technical and Sampling/Analysis Plan (T & S/A) supports the environmental studies to be completed by EA Engineering, Science and Technology, Inc. (EA) at specific sites located within the area identified for Base Closure at Fort Meade, Maryland. EA i...

1990-01-01

151

Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities. Revision 2.  

National Technical Information Service (NTIS)

The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facil...

M. Y. Ballinger T. L. Gervais

2004-01-01

152

Grout treatment facility land disposal restriction management plan  

Microsoft Academic Search

This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig.

Hendrickson

1991-01-01

153

Evaluation of Nuclear Facility Decommissioning Projects: Program Plan.  

National Technical Information Service (NTIS)

This Program plan describes a multi-year program initiated by the Nuclear Regulatory Commission (NRC) to assess and evaluate the methods, radiation exposure and costs associated with decommissioning of retired nuclear facilities. The objective of this pro...

R. L. Miller R. A. Paasch

1982-01-01

154

Evaluation of Nuclear Facility Decommissioning Projects: Program Plan.  

National Technical Information Service (NTIS)

This Program plan describes a multi-year program to assess and evaluate the methods, radiation exposure and costs associated with decommissioning of retired nuclear facilities. The objective of this program is to provide the NRC licensing staff with compa...

R. L. Miller

1983-01-01

155

Fast Flux Test Facility project plan. Revision 2  

SciTech Connect

The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

Hulvey, R.K.

1995-11-01

156

Radiological Planning and Implementation for Nuclear-Facility Decommissioning.  

National Technical Information Service (NTIS)

The need and scope of radiological planning required to support nuclear facility decommissioning are issues addressed in this paper. The role of radiation protection engineering and monitoring professionals during project implementation and closeout is al...

A. M. Valentine

1982-01-01

157

Accelerated Tank Closure Demonstration Project  

SciTech Connect

Among the highest priorities for action under the ''Hanford Federal Facility and Agreement and Consent Order'', hereafter referred to as the Tri-Party Agreement, is the retrieval, treatment and disposal of Hanford Site tank waste. Tank waste is recognized as one of the primary threats to the Columbia River and one of the most complex technical challenges. Progress has been made in resolving safety issues, characterizing tank waste and past tank leaks, enhancing double-shell tank waste transfer and operations systems, retrieving single-shell tank waste, deploying waste treatment facilities, and planning for the disposal of immobilized waste product. However, limited progress has been made in developing technologies and providing a sound technical basis for tank system closure. To address this limitation the Accelerated Tank Closure Demonstration Project was created to develop information through technology demonstrations in support of waste retrieval and closure decisions. To complete its mission the Accelerated Tank Closure Demonstration Project has adopted performance objectives that include: protecting human health and the environment; minimizing/eliminating potential waste releases to the soil and groundwater; preventing water infiltration into the tank; maintaining accessibility of surrounding tanks for future closure; maintaining tank structural integrity; complying with applicable waste retrieval, disposal, and closure regulations; and maintaining flexibility for final closure options in the future.

SAMS, T.L.

2003-02-01

158

Planning Guide for Secondary School Music Facilities.  

ERIC Educational Resources Information Center

This planning guide focuses on the fundamental requirements for planning and designing school music suites. The guide provides brief explanations of critical factors affecting music suites so that music directors and other stakeholders can more quickly and clearly communicate music area fundamentals to architects and administrators. Topics cover…

Wenger Corp., Owatonna, MN.

159

GUIDE FOR PLANNING COMMUNITY COLLEGE FACILITIES.  

ERIC Educational Resources Information Center

DISCUSSION OF THE PLACE OF PLANNING IN THE DEVELOPMENT OF AN EDUCATIONAL ENVIRONMENT IS FOLLOWED BY CONSIDERATION OF FACTORS RELATED TO SITE (LOCATION, SIZE, MASTER PLANNING, PHYSICAL PROPERTIES, SHAPE, ZONING, PARKING, LIGHTING, ROADS AND WALKS), BUILDINGS (THE BASIC BUILDINGS, CALCULATION OF SPACE NEEDS, STUDENT CAPACITIES, LOCATION ON THE SITE,…

MERLO, FRANK P.; WALLING, W. DONALD

160

Near-facility environmental monitoring quality assurance project plan  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site.

McKinney, S.M.

1997-11-24

161

40 CFR 300.211 - OPA facility and vessel response plans.  

Code of Federal Regulations, 2010 CFR

...Environment 27 2010-07-01 2010-07-01 false OPA facility and vessel response plans. 300.211 Section 300...CONTINGENCY PLAN Planning and Preparedness § 300.211 OPA facility and vessel response plans. This...

2010-07-01

162

40 CFR 300.211 - OPA facility and vessel response plans.  

Code of Federal Regulations, 2010 CFR

...Environment 27 2009-07-01 2009-07-01 false OPA facility and vessel response plans. 300.211 Section 300...CONTINGENCY PLAN Planning and Preparedness § 300.211 OPA facility and vessel response plans. This...

2009-07-01

163

GEO Facilities Plan: 1999-2003.  

National Technical Information Service (NTIS)

Facilities and instrumentation for observation, experimentation, analysis, and computation are essential to carry out cutting edge research in all fields of the geosciences. As we enter the twenty-first century, one important priority for the Directorate ...

1999-01-01

164

Readiness Assessment Plan, Hanford 200 areas treated effluent disposal facilities  

SciTech Connect

This Readiness Assessment Plan documents Liquid Effluent Facilities review process used to establish the scope of review, documentation requirements, performance assessment, and plant readiness to begin operation of the Treated Effluent Disposal system in accordance with DOE-RLID-5480.31, Startup and Restart of Facilities Operational Readiness Review and Readiness Assessments.

Ulmer, F.J.

1995-02-06

165

Hydrologic test plan for the Environmental Remediation Disposal Facility  

Microsoft Academic Search

Hydrologic tests are planned at seven wells that will be drilled at the proposed Environmental Remediation Disposal Facility (ERDF). These wells are supporting hydrologic, geologic, and hydrochemical characterization at this new facility. Hydrologic testing will consist of instantaneous slug tests, slug interference tests, step-drawdown tests, and constant rate discharge tests (generally single-well). These test results and later groundwater monitoring data

1993-01-01

166

Application of fuzzy decision-making in facilities layout planning  

Microsoft Academic Search

This paper establishes a vigorous methodology, based on the fuzzy set theory, to improve the facilities layout process that has occupied scholars and practitioners for more than four decades. Fuzzy set theory is an appropriate tool which uses the natural language that humans use to control complex systems such as facilities planning. The closeness rating between departments in a plant

F. Dweiri; F. A. MEIER

1996-01-01

167

Planning and Designing Facilities. Facility Design and Development--Part 1  

ERIC Educational Resources Information Center

Before one begins the planning process for a new facility, it is important to determine if there is a need for a new facility. The demand for a new facility can be drawn from increases in the number of users, the type of users, and the type of events to be conducted in the facility. A feasibility study should be conducted to analyze the legal…

Hypes, Michael G.

2006-01-01

168

Federal Facilities Compliance Act, Draft Site Treatment Plan: Compliance Plan Volume. Part 2, Volume 2  

SciTech Connect

This document presents the details of the implementation of the Site Treatment Plan developed by Ames Laboratory in compliance with the Federal Facilities Compliance Act. Topics discussed in this document include: implementation of the plan; milestones; annual updates to the plan; inclusion of new waste streams; modifications of the plan; funding considerations; low-level mixed waste treatment plan and schedules; and TRU mixed waste streams.

NONE

1994-08-31

169

HWMA/RCRA Closure Plan for the Materials Test Reactor Wing (TRA-604) Laboratory Components Voluntary Consent Order Action Plan VCO-5.8 D Revision 2.  

National Technical Information Service (NTIS)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the R...

K. Winterholler

2008-01-01

170

The mixed waste management facility, FY95 plan  

SciTech Connect

This document contains the Fiscal Year 1995 Plan for the Mixed Waste Management Facility (MWMF) at Lawrence Livermore National Laboratory. Major objectives to be completed during FY 1995 for the MWMF project are listed and described. This report also contains a budget plan, project task summaries, a milestone control log, and a responsibility assignment matrix for the MWMF project.

Streit, R.

1994-12-01

171

National Ignition Facility Cryogenic Target Systems Interim Management Plan  

Microsoft Academic Search

Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in

2002-01-01

172

Creative Facilities Planning for Occupational Education, and Supplement.  

ERIC Educational Resources Information Center

This comprehensive manual deals with the problems of planning vocational facilities. Volume I provides floor layouts and specialized designs that interpret educational concepts, equipment needs, and services into functional units for architectural adaptation. Additional planning guidelines clarify purchasing policies and procedures, explain the…

Finsterbach, Fred C.; McNeice, William C.

173

National Ignition Facility risk management plan, rev. 1  

Microsoft Academic Search

The initial release of the National Ignition Facility (AUF) Risk Management Plan (LLNL, 1997a) was prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide (DOE, 1996a) and supported Critical Decision 3 (CD3), Approval to Initiate Construction (DOE, 1997a). The objectives of the plan were to: (1) Identify the risks to the completion of the Project in

S J Brereton

1998-01-01

174

National Ignition Facility Risk Management Plan, Revision 2  

Microsoft Academic Search

The National Ignition Facility (NIF) Risk Management Plan (LLNL, 1997a) was originally prepared in 1997 in accordance with the Department of Energy (DOE) Life Cycle Asset Management Good Practice Guide (DOE, 1996a) and supported NIF Critical Decision 3, approval to initiate construction (DOE, 1997a). The plan was updated in 1998 to reflect realized risks such as the finding and successful

Brereton

2002-01-01

175

Safer Work Plan for CAUs 452, 454, 456, and 464 Closure of Historical UST Release Sites Nevada Test Site  

SciTech Connect

This plan addresses characterization and closure of nine underground storage tank petroleum hydrocarbon release sites. The sites are located at the Nevada Test Site in Areas 2, 9, 12, 23, and 25. The underground storage tanks associated with the release sites and addressed by this plan were closed between 1990 and 1996 by the U. S. Department of Energy, Nevada Operations Office. One underground storage tank was closed in place (23-111-1) while the remaining eight were closed by removal. Hydrocarbon releases were identified at each of the sites based upon laboratory analytical data samples collected below the tank bottoms. The objective of this plan is to provide a method for implementing characterization and closure of historical underground storage tank hydrocarbon release sites.

Jerry Bonn

1997-08-01

176

Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1  

SciTech Connect

This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

NONE

1993-10-29

177

Development of Facilities Master Plan and Laboratory Renovation Project  

SciTech Connect

Funding from this grant has allowed Morehouse School of Medicine to complete its first professionally developed, comprehensive campus master plan that is in alignment with the recently completed strategic plan. In addition to master planning activities, funds were used for programming and designing research renovations, and also to supplement other research facility upgrades by providing lighting and equipment. The activities funded by this grant will provide the catalyst for substantial improvement in the Schoolâ??s overall facilities for biomedical education and research, and will also provide much of the information needed to conduct a successful campaign to raise funds for proposed buildings and renovations.

Andrea D. Fox

2011-10-03

178

Oak Ridge National Laboratory Facilities Revitalization Project - Project Management Plan  

SciTech Connect

The Facilities Revitalization Project (FRP) has been established at Oak Ridge National Laboratory (ORNL) to provide new and/or refurbished research and support facilities for the Laboratory's science mission. The FRP vision is to provide ORNL staff with world-class facilities, consolidated at the X-10 site, with the first phase of construction to be completed within five years. The project will utilize a combination of U.S. Department of Energy (DOE), State of Tennessee, and private-sector funds to accomplish the new construction, with the facilities requirements to be focused on support of the ORNL Institutional Plan. This FRP Project Management Plan has been developed to provide the framework under which the project will be conducted. It is intended that the FRP will be managed as a programmatic office, with primary resources for execution of the project to be obtained from the responsible organizations within ORNL (Engineering, Procurement, Strategic Planning, etc.). The FRP Project Management Plan includes a definition of the project scope, the organizational responsibilities, and project approach, including detailed Work Breakdown Structure (WBS), followed by more detailed discussions of each of the main WBS elements: Project Planning Basis, Facility Deactivation and Consolidation, and New Facilities Development. Finally, a general discussion of the overall project schedule and cost tracking approach is provided.

Myrick, T.E.

2000-06-06

179

Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators. (authors)

Wrapp, J.; Yucel, V.; Desotell, L.; Shott, G. [National Security Technologies, LLC, Sponsored by: J. Carilli, U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (United States)

2008-07-01

180

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect

This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

Washington TRU Solutions LLC

2001-02-25

181

Planning for a Healthier School Facility  

ERIC Educational Resources Information Center

One might assume that, within the walls of a school, it is the shared responsibility of the school nurse, guidance counselor, physical fitness instructor, and food services staff to protect student health. In truth, such an important responsibility also belongs, in very large part, to the educational facility planner and school maintenance staff.…

Belew, Rachel

2012-01-01

182

Master Planning School District Facility Needs  

ERIC Educational Resources Information Center

Most educational entities confront any number of facility issues. Upgrading the physical infrastructure to meet current and future demands can be intimidating. The quantity and magnitude of capital issues in a changing environment can be overwhelming. How can all this complexity be made coherent to assure that decisions are sound and limited…

Prager, Gary; Matschulat, Robert

2010-01-01

183

Hanford Surplus Facilities Program plan, Fiscal year 1991  

SciTech Connect

The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Environmental Restoration Division, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition. 12 refs., 2 figs., 4 tabs.

Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

1990-09-01

184

Planning for Education: Space Guidelines for Planning Educational Facilities. Revised.  

ERIC Educational Resources Information Center

This booklet provides guidelines for school planners and designers on the state requirements for space allocation in its K-12 public schools. Recommendations are included for various specialized facilities to assure that proper spaces can be provided beyond the typical classroom space. Guidelines are arranged under the categories of instructional,…

Oklahoma State Dept. of Education, Oklahoma City.

185

Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1  

SciTech Connect

A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

Lewis, C.J.

1995-10-01

186

Image-based mass-spring model of mitral valve closure for surgical planning  

NASA Astrophysics Data System (ADS)

Surgical repair of the mitral valve is preferred in most cases over valve replacement, but replacement is often performed instead due to the technical difficulty of repair. A surgical planning system based on patient-specific medical images that allows surgeons to simulate and compare potential repair strategies could greatly improve surgical outcomes. In such a surgical simulator, the mathematical model of mechanics used to close the valve must be able to compute the closed state quickly and to handle the complex boundary conditions imposed by the chords that tether the valve leaflets. We have developed a system for generating a triangulated mesh of the valve surface from volumetric image data of the opened valve. We then compute the closed position of the mesh using a mass-spring model of dynamics. The triangulated mesh is produced by fitting an isosurface to the volumetric image data, and boundary conditions, including the valve annulus and chord endpoints, are identified in the image data using a graphical user interface. In the mass-spring model, triangle sides are treated as linear springs, and sides shared by two triangles are treated as bending springs. Chords are treated as nonlinear springs, and self-collisions are detected and resolved. Equations of motion are solved using implicit numerical integration. Accuracy was assessed by comparison of model results with an image of the same valve taken in the closed state. The model exhibited rapid valve closure and was able to reproduce important features of the closed valve.

Hammer, Peter E.; Perrin, Douglas P.; del Nido, Pedro J.; Howe, Robert D.

2008-04-01

187

TRA Closure Plan REV 0-9-20-06 HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump were characterized as having managed hazardous waste. The reactor drain tank and canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

Winterholler, K.

2007-01-31

188

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect

This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED’s guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A Phase I RFI was completed at WIPP as part of a Voluntary Release Assessment (VRA). The risk-based decision criteria recommended by EPA for the VRA were contained in a proposed Corrective Action rule for SWMUs (EPA, 1990). EPA Region VI has issued new risk-based screening criteria applicable to the WIPP SWMUs and AOCs.

Washington TRU Solutions LLC

2000-02-25

189

Strategic Petroleum Reserve: Facilities development project plan  

SciTech Connect

While the Strategic Petroleum Reserve (SPR) project is subject to future Administration policy decisions, budget proposals and Congressional actions, this Project Plan sets forth a feasible technical, cost, and schedule plan associated with the development of 750 million barrels of SPR crude oil storage and for enhancement of the SPR's distribution system to achieve a distribution capability of 4.5 million barrels per day. Assuming future adoption by the Administration and Congress of the project schedule identified in this Project Plan, The Total Project Cost (TPC) in program year dollars is $2,500,000,000. The TPC excludes post-development operations, capital improvement projects, terminal standby services, and oil acquisition. Under the same assumption, the schedule objectives of this project are: completion of the 750-million-barrel reserve, excluding oil fill, by September 30, 1992 in accordance with the storage capacity development schedule presented in Attachment 1. Completion of distribution enhancements to provide a distribution capability of 4.5 million barrels per day by September 30, 1992 in accordance with the following schedule: 3.0 million barrels per day by July 31, 1987; 3.5 million barrels per day by September 30, 1989; and 4.5 million barrels per day by September 30, 1992.

Not Available

1986-10-01

190

Facility Effluent Monitoring Plan for the Plutonium Finishing Plant (PFP)  

SciTech Connect

A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years.

FRAZIER, T.P.

1999-10-01

191

National transonic facility shakedown test results and calibration plans  

NASA Technical Reports Server (NTRS)

The results of the shakedown tests and the calibration plan of the National Transonic Facility (NTF) are presented. The facility is designed to operate in both air and nitrogen modes, cover Mach numbers from 0.2 to 1.2, pressures up to 8.8 atm and temperatures between 77 and 339 K. The facility data system is built around four 16-bit minicomputers with a total memory of three megabytes. A portable cryogenic chamber is available. The tunnel systems were operated in a series of tests in Mach number range of 0.2 to 1.17, pressures up to 8.5 atm, and temperatures down to 100 K. The calibration plan includes steady-state and dynamic calibration, as well as wall interference studies. The facility underwent the checkout of the model attitude, plenum isolation, and model access systems, followed by aerodynamic calibration in 1984. Schematic drawings and diagrams are included.

Bruce, W. E., Jr.; Fuller, D. E.; Igoe, W. B.

1984-01-01

192

Near Facility Environmental Monitoring Quality Assurance Project Plan  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards.

MCKINNEY, S.M.

2000-05-01

193

Certification Plan, low-level waste Hazardous Waste Handling Facility  

Microsoft Academic Search

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste;

1992-01-01

194

Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

Ballinger, M.Y.; Shields, K.D.

1999-04-02

195

Cross-facility management of production and transportation planning problem  

Microsoft Academic Search

This paper studies an integrated production and transportation planning problem in a two-stage supply chain. This supply chain consists of a number of facilities, each capable of producing the final product, and a number of retailers. We assume that retailers’ demands are known deterministically and there are no production or transportation capacity constraints. We formulate the problem as a network

Sandra Duni Eksioglu; H. Edwin Romeijn; Panos M. Pardalos

2006-01-01

196

Evaluation of nuclear facility decommissioning projects. Program plan. Revision 1  

Microsoft Academic Search

This Program Plan describes a multi-year program initiated by the Nuclear Regulatory Commission (NRC) to assess and evaluate the methods, radiation exposure and costs associated with decommissioning of retired nuclear facilities. The objective of this program is to provide the NRC licensing staff with comparative data that will allow assessment of decommissioning alternatives for regulatory and ALARA implementation of future

1983-01-01

197

123. Back side technical facilities passageways, "key plan" architectural, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

123. Back side technical facilities passageways, "key plan" - architectural, AS-BLT AW 36-25-13, sheet 1 of 40, dated 23 November, 1960. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

198

Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility  

SciTech Connect

Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Butterworth, St.W. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States)

2008-07-01

199

Integrating disaster preparedness and surge capacity in emergency facility planning.  

PubMed

The ability to adapt and utilize emergency facilities is a critical element in responding to surges resulting from man-made and natural events. The current stresses on emergency services throughout the country find few adequately prepared to effectively absorb a sudden increase in patients along with some of the potential special requirements, such as quarantining of epidemic patients and mass decontamination. This article reviews major findings of the federally funded ER One project, a research initiative that has described a number of facility strategies, which should be considered in planning new emergency facilities. An early case study in the application of these principles at the recently completed Tampa General Hospital emergency service is provided, illustrating how, when integrated into the early planning and design, many of the ER One recommendations can be implemented at modest capital cost increases. PMID:18806597

Zilm, Frank; Berry, Robert; Pietrzak, Michael P; Paratore, Amy

2008-01-01

200

The Bricks-and-Mortar Trusteeship: School Boards and School Facilities Planning. A Position Paper.  

ERIC Educational Resources Information Center

Guidance is provided in the area of facilities planning, design, and management. Facilities directly influence learning in physical as well as psychological ways. In facilities development, long-range plannning is critical. Strategic and tactical planning characterize an effective planning process. Facilities advisory committees should be involved…

New York State School Boards Association, Albany.

201

Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility  

SciTech Connect

A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

DAVIS, W.E.

2000-03-08

202

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect

This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-02-14

203

Developing radiation emergency plans for academic, medical or industrial facilities  

SciTech Connect

The objective of this report is to provide emergency response planners guidance in the preparation and development of an effective plan to manage accidents involving radiation. The type of facilities addressed are academic, medical and industrial. Information on preparing and implementing an effective plan is provided. A scheme for classification of radiation emergencies is developed and examples of the classification approach are given in the appendices. Numerical guidance is proposed to assist in the classification process. The classification scheme is intended for use in the planning process and is not a substitute for accurate dosimetry following an actual emergency. Practical considerations in handling an emergency are discussed with emphasis on recovery, restoration and preventing a recurrence. Advice is included on the testing of the plan and evaluation of exercise scenarios. 35 refs., 3 figs., 5 tabs.

Not Available

1991-08-30

204

KSC facilities status and planned management operations. [for Shuttle launches  

NASA Technical Reports Server (NTRS)

A status report is presented on facilities and planned operations at the Kennedy Space Center with reference to Space Shuttle launch activities. The facilities are essentially complete, with all new construction and modifications to existing buildings almost finished. Some activity is still in progress at Pad A and on the Mobile Launcher due to changes in requirements but is not expected to affect the launch schedule. The installation and testing of the ground checkout equipment that will be used to test the flight hardware is now in operation. The Launch Processing System is currently supporting the development of the applications software that will perform the testing of this flight hardware.

Gray, R. H.; Omalley, T. J.

1979-01-01

205

Woodbridge research facility remedial investigation\\/feasibility study. Sampling and analysis plan vol 1: Field sampling plan vol II: Quality assurance project plan. Addendum 1  

Microsoft Academic Search

U.S. Army Woodbridge Research Facility (WRF) was used in the past as a major military communications center and a research and development laboratory where electromagnetic pulse energy was tested on military and other equipment. WRF is presently an inactive facility pursuant to the 1991 Base Realignment and Closure list. Past investigation activities indicate that polychlorinated biphenyl compounds (PCBs) are the

D. Wisbeck; P. Thompson; T. Williams; M. Ehlers; M. Eliass

1996-01-01

206

National Transonic Facility: A review of the operational plan  

NASA Technical Reports Server (NTRS)

The proposed National Transonic Facility (NTF) operational plan is reviewed. The NTF will provide an aerodynamic test capability significantly exceeding that of other transonic regime wind tunnels now available. A limited number of academic research program that might use the NTF are suggested. It is concluded that the NTF operational plan is useful for management, technical, instrumentation, and model building techniques available in the specialized field of aerodynamic analysis and simulation. It is also suggested that NASA hold an annual conference to discuss wind tunnel research results and to report on developments that will further improve the utilization and cost effectiveness of the NTF and other wind tunnels.

Liepmann, H. W.; Black, R. E.; Dietz, R. O.; Kirchner, M. E.; Sears, W. R.

1980-01-01

207

Linkage Between Post-Closure Safety Case Review and the Authorization Process for Radioactive Waste Disposal Facilities  

SciTech Connect

The Environment Agency (the Agency) has responsibilities under the Radioactive Substances Act of 1993 for regulating the disposal and storage of radioactive wastes in England and Wales, including regulation of the disposal site for UK solid low-level waste (LLW) at Drigg in Cumbria, NW England. To help inform the next review of the Drigg disposal authorization, the Agency has required the operator, British Nuclear Fuels plc to submit a Post-Closure Safety Case which will assess the potential long-term impacts from the site. With the aim of using best practice to determine authorization conditions, the Agency contracted Galson Sciences, Ltd to undertake an international survey of authorization procedures for comparable facilities in other countries. This paper provides an overview of the findings from the international survey.

Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.; Bennett, D. G.

2003-02-27

208

Technical data summary: Plan for closure of the 643-G burial ground  

SciTech Connect

This report involves the actions of closing the 643-G burial ground which involves waste removal, stabilization, and capping. Remedial action involves the removing of the transuranic waste and closing of the grid wells. The closure cap for the burial site will consist of native soil, clay, and gravel. This will assure long-term physical and chemical stability. (MB)

Cook, J R

1987-08-17

209

HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

S. K. Evans

2006-08-15

210

38. Photograph of plans for alterations to IBM facilities, drawn ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

38. Photograph of plans for alterations to IBM facilities, drawn by U.S. Navy Bureau of Yards and Docks, c. 1960. Drawing on file at Caretaker Site Office, Naval Undersea Warfare Center, New London. Copyright-free. - Naval Undersea Warfare Center, Bowditch Hall, 600 feet east of Smith Street & 350 feet south of Columbia Cove, West bank of Thames River, New London, New London County, CT

211

40 CFR Appendix B to Subpart I of... - Allowance for Facilities Planning and Design  

Code of Federal Regulations, 2013 CFR

...Facilities Planning and Design Building cost Allowance as a percentage... Table 2âAllowance for Design Only Building cost Allowance as a percentage...Facilities Planning for Design/Build Projects Building cost (dollars)...

2013-07-01

212

Closure of 324 Facility potential HEPA filter failure unreviewed safety questions  

SciTech Connect

This document summarizes the activities which occurred to resolve an Unreviewed Safety Question (USQ) for the 324 Facility [Waste Technology Engineering Laboratory] involving Potential HEPA Filter Breach. The facility ventilation system had the capacity to fail the HEPA filters during accident conditions which would totally plug the filters. The ventilation system fans were modified which lowered fan operating parameters and prevented HEPA filter failures which might occur during accident conditions.

Enghusen, M.B.

1997-11-07

213

New Concepts in Planning and Funding Athletic, Physical Education, and Recreational Facilities.  

ERIC Educational Resources Information Center

The major purpose of this book is to provide information needed to plan, design, equip, and finance a sports-related facility. Planning and financing are discussed and guidelines offered for securing and compiling data for analysis in justifying new facilities. Other chapters discuss determining facility needs and eventual plans, selection of the…

Bronzan, Robert T.

214

33 CFR 105.405 - Format and content of the Facility Security Plan (FSP).  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Format and content of the Facility Security Plan (FSP). 105.405 Section 105.405...Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARITIME SECURITY: FACILITIES Facility...

2013-07-01

215

10 CFR Appendix E to Part 50 - Emergency Planning and Preparedness for Production and Utilization Facilities  

Code of Federal Regulations, 2010 CFR

...Planning Zones 1 (EPZs) for facilities other than power reactors...onsite areas and the EPZs, with facility design features, site layout, and site location with respect...emergency. D. Features of the facility to be provided for...

2009-01-01

216

Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are located downstream of control technologies and just before discharge to the atmosphere. The need for monitoring airborne emissions of hazardous chemicals is established in the Hanford Site Air Operating Permit and in notices of construction. Based on the current potential-to-emit, the Hanford Site Air Operating Permit does not contain general monitoring requirements for BOP facilities. However, the permit identifies monitoring requirements for specific projects and buildings. Needs for future monitoring will be established by future permits issued pursuant to the applicable state and federal regulations. A number of liquid-effluent discharge systems serve the BOP facilities: sanitary sewer, process sewer, retention process sewer, and aquaculture system. Only the latter system discharges to the environment; the rest either discharge to treatment plants or to long-term storage. Routine compliance sampling of liquid effluents is only required at the Environmental Molecular Sciences Laboratory. Liquid effluents from other BOP facilities may be sampled or monitored to characterize facility effluents or to investigate discharges of concern. Effluent sampling and monitoring for the BOP facilities depends on the inventories, activities, and environmental permits in place for each facility. A description of routine compliance monitoring for BOP facilities is described in the BOP FEMP.

Ballinger, Marcel Y.; Gervais, Todd L.

2004-11-15

217

HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure Plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for the Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

K. Winterholler

2007-01-30

218

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30

219

A Comprehensive Laboratory Animal Facility Pandemic Response Plan  

PubMed Central

The potential of a severe influenza pandemic necessitates the development of an organized, rational plan for continued laboratory animal facility operation without compromise of the welfare of animals. A comprehensive laboratory animal program pandemic response plan was integrated into a university-wide plan. Preparation involved input from all levels of organizational hierarchy including the IACUC. Many contingencies and operational scenarios were considered based on the severity and duration of the influenza pandemic. Trigger points for systematic action steps were based on the World Health Organization's phase alert criteria. One extreme scenario requires hibernation of research operations and maintenance of reduced numbers of laboratory animal colonies for a period of up to 6 mo. This plan includes active recruitment and cross-training of volunteers for essential personnel positions, protective measures for employee and family health, logistical arrangements for delivery and storage of food and bedding, the removal of waste, and the potential for euthanasia. Strategies such as encouraging and subsidizing cryopreservation of unique strains were undertaken to protect valuable research assets and intellectual property. Elements of this plan were put into practice after escalation of the pandemic alerts due to influenza A (H1N1) in April 2009.

Roble, Gordon S; Lingenhol, Naomi M; Baker, Bryan; Wilkerson, Amy; Tolwani, Ravi J

2010-01-01

220

Material balance and diet in bioregenerative life support systems: Connection with coefficient of closure  

Microsoft Academic Search

Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in “BIOS-3” facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6–93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant

N. S. Manukovsky; V. S. Kovalev; L. A. Somova; Yu. L. Gurevich; M. G. Sadovsky

2005-01-01

221

Material balance and diet in bioregenerative life support systems: Connection with coefficient of closure  

Microsoft Academic Search

Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in ``BIOS-3'' facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6 93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base

N. S. Manukovsky; V. S. Kovalev; L. A. Somova; Yu. L. Gurevich; M. G. Sadovsky

2005-01-01

222

Resource Conservation and Recovery Act industrial site environmental restoration, site characterization plan: Area 6 Decontamination Pond Facility. Revision 1  

SciTech Connect

This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility at the Nevada Test Site which will be conducted for the US Department of Energy, Nevada Operations Office, Environmental Restoration Division. The objectives of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and around the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site characterization and waste management purposes.

NONE

1996-08-01

223

NASA's Planetary Aeolian Laboratory: Facilities and Plans for Future Availability  

NASA Astrophysics Data System (ADS)

The Planetary Aeolian Laboratory (PAL), supported by NASA's Planetary Geology and Geophysics (PG&G) program, is a unique facility used for conducting experiments and simulations of aeolian processes (windblown particles) under different planetary atmospheric environments, including Earth, Mars, and Saturn's moon Titan. With the death of PAL founder Ronald Greeley in 2011, there is concern in the planetary aeolian community whether the PAL will be maintained for continued use by planetary scientists. This presentation will review the PAL facilities, what are their current capabilities, how can interested scientists propose to NASA to use them, and what are the long-term plans for their continued use. The PAL includes one of the nation's largest pressure chambers for conducting low-pressure research. The primary purpose of the PAL is to enable scientific research into aeolian processes under controlled laboratory conditions, and enable testing and calibration of spacecraft instruments and components for NASA's solar system missions, including those requiring a large volume simulated Martian atmosphere. The PAL consists of: 1) the Mars Wind Tunnel (MARSWIT) and 2) Titan Wind Tunnel (TWT) located in the Structural Dynamics Building (N-242) at the NASA Ames Research Center (ARC) in Mountain View, California and administered by Arizona State University. Also available (although not officially part of the PAL facilities) is: 3) an ambient pressure/temperature wind tunnel (ASUWIT) and 4) a vortex (dust devil) generator (ASUVG) on the Tempe campus of Arizona State University (ASU), which is part of the ASU School of Earth and Space Exploration (SESE) and the Ronald Greeley Center for Planetary Studies. The TWT just came online in June 2012, and upgrades are underway to both the hardware and software of the MARSWIT and ASUWIT. Long-term plans are for ASU to continue to manage these facilities, to make them as capable as possible, so that they may be useful resources to NASA and the aeolian community for many years to come.

Williams, D. A.

2012-12-01

224

Risk management plan for the National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF) is a U.S. Department of Energy inertial confinement laser fusion facility, currently under construction at the Lawrence Livermore National Laboratory (LLNL). NIF is a critical tool for the Department of Energy (DOE) science- based Stockpile Stewardship and Management Program. In addition, it represents a major step towards realizing inertial confinement fusion as a source of energy. The NIF will focus 192 laser beams onto spherical targets containing a mixture of deuterium and tritium, causing them to implode. This will create the high temperatures and pressures necessary for these targets to undergo fusion. The plan is for NIF to achieve ignition (i.e., self-heating of the fuel) and energy gain (i.e., more fusion energy produced than laser energy deposited) in the laboratory for the first time. A Risk Management Plan was prepared for the NIF design and construction Project. The plan was prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide. The objectives of the plan were to: (1) identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule, (2) assess the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES&H (environment, safety and health), costs, and schedule, and (3) address each risk in terms of suitable risk management measures. Major risk elements were identified for the NIF Project. A risk assessment methodology was developed, which was utilized to rank the Project risks with respect to one another. Those elements presenting greater risk were readily identified by this process. This paper describes that methodology and the results.

Brereton, S.; Lane, M.; Smith, C.; Yatabe, J.

1998-04-02

225

Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

Albert, R.

1992-06-30

226

Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada  

SciTech Connect

This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and repair requirements will be remedied within 60 working days of discovery and documented in writing at the time of repair. Results of all inspections/repairs for a given year will be addressed in a single report submitted annually to the NDEP. Soil moisture will be monitored within the cover for a period of at least two years prior to establishing performance criteria for NDEP regulatory purposes.

T. M. Fitzmaurice

2000-08-01

227

Environmental restoration plan for the transfer of surplus facilities to the Facility Transition Program at Oak Ridge National Laboratory  

SciTech Connect

This report will provide guidance on management, coordination, and integration of plans to transition facilities to the Facility Transition Program and activities as related to the Oak Ridge National Laboratory (ORNL) Environmental Restoration Program facilities. This report gives (1) guidance on the steps necessary for identifying ORNL surplus facilities, (2) interfaces of Surveillance and Maintenance (S and M) and Isotope Facility Deactivation program managers, (3) roles and responsibilities of the facility managers, and (4) initial S and M requirements upon acceptance into the Facility Transition Program.

NONE

1995-08-01

228

The Revised Low Temperature Microgravity Physics Facility Configuration and Plans  

NASA Astrophysics Data System (ADS)

The Jet Propulsion Laboratory (JPL) is building the Low Temperature Microgravity Physics Facility (LTMPF) as a multi-user Facility-class Attached Payload for the International Space Station. The LTMPF is a multiple flight facility that will provide a long duration low temperature environment for performing state of the art experiments that need to be performed in microgravity. During the first mission, two distinct primary experiments can be accommodated. Secondary experiments utilizing the hardware built for the primary experiments will also be accommodated during the mission. The LTMPF will fly attached to the Japanese Experiment Module (KIBO) Exposed Facility on the outside of the ISS. Much progress and change have occurred recently on the LTMPF. Some of the flight hardware has been built, and prototypes of much of the remainder of the facility have been developed and successfully tested. During the summer of 2002, the initial flight of the LTMPF was delayed from late 2005 until early 2008 by a two years slip in the ISS manifest due to budget overruns. Further delays have occurred since because of the Columbia accident grounding the Shuttle fleet, but the LTMPF is still being developed for a launch readiness of early 2008. Also in early 2003, the experiments that will fly as part of the first mission were modified so that one Gravitational and Relativistic experiment and one Low Temperature Condensed Matter experiment will fly on the initial flight of the LTMPF. The experiments that will fly on the initial mission of the LTMPF will be DYNAMX and the Superconducting Microwave Oscillator Experiment (SUMO). The SUMO experiment will provide a ultra stable reference oscillator signal to the Primary Atomic Reference Clock Experiment, another JEM-EF payload, which will allow for additional science from both experiments. Significant progress on the accommodation of the new experiment (SUMO) has been performed in the LTMPF design over the last year. In this presentation we will discuss the latest configurations and plans for the first mission of the LTMPF.

Pensinger, J.; Larson, M.; Liu, F.-C.; Langford, D.; Dick, G. J.

229

State Plan: Vocational Education for Youth in Juvenile Justice Commitment Facilities.  

ERIC Educational Resources Information Center

In 2000, a multi-agency plan was developed for the vocational education of youth in juvenile commitment facilities. Part 1 of the plan describes the Plan Narrative, which provides contextual information and describes events leading up to the development of the plan, the rationale for creating the plan, and the characteristics of vocational…

Florida State Dept. of Education, Tallahassee.

230

40 CFR 355.10 - Must my facility comply with the emergency planning requirements of this subpart?  

Code of Federal Regulations, 2010 CFR

...my facility comply with the emergency planning requirements of this subpart? 355...CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Emergency...

2010-07-01

231

CPP603 underwater fuel storage facility site integrated stabilization management plan (SISMP). Volume I  

Microsoft Academic Search

The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been developed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety

G. W. Wachs; H. M. Blake; R. E. Cottam; R. D. Denney; R. A. Shiffern

1996-01-01

232

Abbreviated sampling and analysis plan for planning decontamination and decommissioning at Test Reactor Area (TRA) facilities  

SciTech Connect

The objective is to sample and analyze for the presence of gamma emitting isotopes and hazardous constituents within certain areas of the Test Reactor Area (TRA), prior to D and D activities. The TRA is composed of three major reactor facilities and three smaller reactors built in support of programs studying the performance of reactor materials and components under high neutron flux conditions. The Materials Testing Reactor (MTR) and Engineering Test Reactor (ETR) facilities are currently pending D/D. Work consists of pre-D and D sampling of designated TRA (primarily ETR) process areas. This report addresses only a limited subset of the samples which will eventually be required to characterize MTR and ETR and plan their D and D. Sampling which is addressed in this document is intended to support planned D and D work which is funded at the present time. Biased samples, based on process knowledge and plant configuration, are to be performed. The multiple process areas which may be potentially sampled will be initially characterized by obtaining data for upstream source areas which, based on facility configuration, would affect downstream and as yet unsampled, process areas. Sampling and analysis will be conducted to determine the level of gamma emitting isotopes and hazardous constituents present in designated areas within buildings TRA-612, 642, 643, 644, 645, 647, 648, 663; and in the soils surrounding Facility TRA-611. These data will be used to plan the D and D and help determine disposition of material by D and D personnel. Both MTR and ETR facilities will eventually be decommissioned by total dismantlement so that the area can be restored to its original condition.

NONE

1994-10-01

233

Cold Vacuum Drying (CVD) Facility Sampling and Analysis Plan  

SciTech Connect

The Cold Vacuum Drying (CVD) Facility provides the required process systems, supporting equipment, and facilities needed for the conditioning of spent nuclear fuel (SNF) from the Hanford K-Basins prior to storage at the Canister Storage Building (CSB). The process water conditioning (PWC) system collects and treats the selected liquid effluent streams generated by the CVD process. The PWC system uses ion exchange modules (IXMs) and filtration to remove radioactive ions and particulate from CVD effluent streams. Water treated by the PWC is collected in a 5000-gallon storage tank prior to shipment to an on-site facility for additional treatment and disposal. The purpose of this sampling and analysis plan is to document the basis for achieving the following data quality objectives: (1) Measurement of the radionuclide content of the water transferred from the multi-canister overpack (MCO), vacuum purge system (VPS) condensate tank, MCO/Cask annulus and deionized water flushes to the PWC system receiver tanks. (2) Trending the radionuclide inventory of IXMs to assure that they do not exceed the limits prescribed in HNF-2760, Rev. 0-D, ''Safety Analysis Report for Packaging (Onsite) Ion Exchange Modules,'' and HNF-EP-0063 Rev. 5, ''Hanford Site Solid Waste Acceptance Criteria'' for Category 3, non-TRU, low level waste (LLW). (3) Determining the radionuclide content of the PWC system bulk water storage tank to assure that it meets the limits set forth in HNF-3 172, Rev. 0, ''Hanford Site Liquid Waste Acceptance Criteria,'' to permit transfer and disposal at the Effluent Treatment Facility (ETF) located at the 200 East Area.

IRWIN, J.J.

2000-09-22

234

EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY  

SciTech Connect

Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

Michelle D. Shinn

2007-08-26

235

National ignition facility environment, safety, and health management plan  

SciTech Connect

The ES&H Management Plan describes all of the environmental, safety, and health evaluations and reviews that must be carried out in support of the implementation of the National Ignition Facility (NIF) Project. It describes the policy, organizational responsibilities and interfaces, activities, and ES&H documents that will be prepared by the Laboratory Project Office for the DOE. The only activity not described is the preparation of the NIF Project Specific Assessment (PSA), which is to be incorporated into the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (PEIS). This PSA is being prepared by Argonne National Laboratory (ANL) with input from the Laboratory participants. As the independent NEPA document preparers ANL is directly contracted by the DOE, and its deliverables and schedule are agreed to separately with DOE/OAK.

NONE

1995-11-01

236

Addendum to the Closure Report for Corrective Action Unit 113: Area 25 R-MAD Facility, Nevada National Security Site, Nevada  

SciTech Connect

This addendum to the Closure Report for Corrective Action Unit 113: Area 25, Reactor Maintenance, Assembly, and Disassembly Facility, Building 3110, Nevada Test Site, Nevada, DOE/NV--891-VOL I-Rev. 1, dated July 2003, provides details of demolition, waste disposal, and use restriction (UR) modification for Corrective Action Unit 113, Area 25 R-MAD Facility. Demolition was completed on July 15, 2010, when the last of the building debris was disposed. Final field activities were concluded on August 30, 2010, after all equipment was demobilized and UR signs were posted. This work was funded by the American Recovery and Reinvestment Act.

NSTec Environmental Restoration

2011-02-24

237

76 FR 80777 - Approval and Promulgation of State Plans for Designated Facilities and Pollutants; State of...  

Federal Register 2010, 2011, 2012, 2013

...Facilities and Pollutants; State of Florida; Control of Hospital/ Medical/Infectious...state plan (the Plan) submitted by the Florida Department of Environmental Protection (FDEP) for the State of Florida on December 21, 2010, for...

2011-12-27

238

78 FR 34973 - Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana  

Federal Register 2010, 2011, 2012, 2013

...EPA-R05-OAR-2013-0372; FRL-9820-9] Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and...Indiana's State Plan to control air pollutants from Sewage Sludge Incinerators (SSI). The Indiana Department of...

2013-06-11

239

Life science payloads planning study integration facility survey results  

NASA Technical Reports Server (NTRS)

The integration facility survey effort described is structured to examine the facility resources needed to conduct life science payload (LSP) integration checkout activities at NASA-JSC. The LSP integration facility operations and functions are defined along with the LSP requirements for facility design. A description of available JSC life science facilities is presented and a comparison of accommodations versus requirements is reported.

Wells, G. W.; Brown, N. E.; Nelson, W. G.

1976-01-01

240

Addendum to the Closure Report for Corrective Action Unit 92: Area 6 Decon Pond Facility, Nevada Test Site, Nevada  

SciTech Connect

The following is an addendum to the 'Closure Report for Corrective Action Unit 92: Area 6 Decontamination Pond, Nevada Test Site, Nevada', DOE/NV/11718--306, dated April 1999. This addendum includes Use Restriction Information forms and survey maps for CAS 06-04-01, Decon Pad Oil/Water Separator, and CAS 06-05-02, Decontamination Pond (RCRA), that were inadvertently left out of the Closure Report when it was published as a final document.

NSTec Environmental Restoration

2007-06-01

241

Resource Conservation and Recovery Act Industrial Site Environmental Restoration Site Characterization Plan, Area 6 Decontamination Pond Facility, Revision 1  

SciTech Connect

This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility (DPF) at the Nevada Test Site (NTS) which will be conducted for the U.S. Department of Energy, Nevada Operations OffIce (DOE/NV), Environmental Restoration Division (ERD). The objectives of the planned activities are to: o Obtain sufficient, ample analytical data from which further assessment, remediation, and/or closure strategies maybe developed for the site. o Obtain sufficient, sample analytical data for management of investigation-derived waste. All references to regulations contained in this plan are to the versions of the regulations that are current at the time of publication of this plan. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and Mound the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site . . characterization and waste management purposes.

NONE

1996-08-12

242

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada Test Site, Nevada, Revision 1  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. The Test Cell C (TCC) Facility is located in Area 25 of the Nevada Test Site (NTS) approximately 25 miles northwest of Mercury, Nevada (Figure 1). CAU 116 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) of 1996 (as amended February 2008) and consists of two Corrective Action Sites (CASs): (1) CAS 25-23-20, Nuclear Furnace Piping; and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 is described in the FFACO as the TCC Facility but actually includes Building 3210 and attached concrete shield wall only. CAU 116 will be closed by demolishing Building 3210, the attached concrete shield wall, and the nuclear furnace piping. In addition, as a best management practice (BMP), Building 3211 (moveable shed) will be demolished due to its close proximity to Building 3210. This will aid in demolition and disposal operations. Radiological surveys will be performed on the demolition debris to determine the proper disposal pathway. As much of the demolition debris as space allows will be placed into the Building 3210 basement structure. After filling to capacity with demolition debris, the basement structure will be mounded or capped and closed with administrative controls. Prior to beginning demolition activities and according to an approved Sampling and Analysis Plan (SAP), representative sampling of surface areas that are known, suspected, or have the potential to contain hazardous constituents such as lead or polychlorinated biphenyls (PCBs) will be performed throughout all buildings and structures. Sections 2.3.2, 4.2.2.2, 4.2.2.3, 4.3, and 6.2.6.1 address the methodologies employed that assure the solid debris placed in the basement structure will not contain contaminants of concern (COCs) above hazardous waste levels. The anticipated post-closure-posting requirements for the mounded/capped basement structure, as well as for the entire CAU, are addressed in Section 4.2.10. The site contains radiologically impacted surfaces and hazardous materials. Based on review of the historical information for CAU 116 and recent site inspections, there is sufficient process knowledge to close CAU 116 using the SAFER process. CAUs that may be closed using the SAFER process have conceptual corrective actions that are clearly identified. Consequently, corrective action alternatives can be chosen prior to completing a corrective action investigation, given anticipated investigation results. The SAFER process combines elements of the data quality objective (DQO) process and the observational approach to plan and conduct closure activities. The DQOs are used to identify the problem and define the type and quality of data needed to complete the investigation phase of the SAFER process. The purpose of the investigation phase is to verify the adequacy of existing information used to determine the chosen corrective action. The observational approach provides a framework for managing uncertainty during the planning and decision-making phases of the project. The SAFER process allows for technical decisions to be made based on information gathered during site visits, interviews, meetings, research, and a consensus of opinion by the decontamination and decommissioning (D&D) team members. Any uncertainties are addressed by documented assumptions that are verified by sampling and analysis, data evaluation, onsite observations, and contingency plans, as necessary. Closure activities may proceed simultaneously with site characterization as sufficient data are gathered to confirm or disprove the assumptions made during selection of the corrective action. If, at any time during the closure process, new information is discovered that indicates that closure activities should be revised, closure activities will be reevaluated as appropriate. Based on a detailed review of historical documentation, there is sufficient process know

NSTec Environmental Restoration

2008-12-01

243

POST CLOSURE INSPECTION REPORT FOR CORRECTIVE ACTION UNIT 92: AREA 6 DECON POND FACILITY, NEVADA TEST SITE, NEVADA; FOR CALENDAR YEAR 2005  

SciTech Connect

This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility, Nevada Test Site, Nevada. CAU 92 was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection (NDEP), 1995) and the Federal Facility Agreement and Consent Order of 1996. Closure activities were completed on February 16, 1999, and the Closure Report (U.S. Department of Energy, Nevada Operations Office, 1999) was approved and a Notice of Completion issued by the NDEP on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs): CAS 06-04-01, Decon Pad Oil/Water Separator; and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02 requires post-closure inspections. Visual inspections of the cover and fencing at CAS 06-05-02 are performed quarterly. Additional inspections are conducted if precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period. This report covers calendar year 2005. Quarterly site inspections were performed in March, June, September, and December of 2005. All observations indicated the continued integrity of the unit. No issues or concerns were noted, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A. Five additional inspections were performed after precipitation events that exceeded 1.28 cm (0.50 in) within a 24-hour period during 2005. No significant changes in site conditions were noted during these inspections, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A. Precipitation records for 2005 are included in Appendix C.

NA

2006-03-01

244

Higher Education Facilities Planning and Management Manuals, Nos. 1-7. Revised.  

ERIC Educational Resources Information Center

This document comprises seven manuals that update and supersede a field review edition previously cited under ED 057 751. The first manual, an overview of the complete set, discusses the facilities planning cycle and the possible effects of currently changing instruction techniques on the facilities planning processes. The next four manuals…

Dahnke, Harold L.; And Others

245

Family and Consumer Sciences: A Facility Planning and Design Guide for School Systems.  

ERIC Educational Resources Information Center

This document presents design concepts and considerations for planning and developing middle and high school family and consumer sciences education facilities. It includes discussions on family and consumer sciences education trends and the facility planning process. Design concepts explore multipurpose laboratories and spaces for food/nutrition…

Maryland State Dept. of Education, Baltimore.

246

Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998  

SciTech Connect

This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

Haagenstad, T.

1999-01-15

247

200 area liquid effluent facility quality assurance program plan. Revision 1  

SciTech Connect

Direct revision of Supporting Document WHC-SD-LEF-QAPP-001, Rev. 0. 200 Area Liquid Effluent Facilities Quality Assurance Program Plan. Incorporates changes to references in tables. Revises test to incorporate WHC-SD-LEF-CSCM-001, Computer Software Configuration Management Plan for 200 East/West Liquid Effluent Facilities

Sullivan, N.J.

1995-10-10

248

75 FR 54025 - Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative...  

Federal Register 2010, 2011, 2012, 2013

...includes name and contact information for oil spill responders for each vessel or facility...permission to be included in the plan. Oil Spill Removal Organizations (ORSOs...contracts and their own records to add dispersant capabilities when appropriate. The Coast...Vessel and Facility Response Plans for Oil: 2003 Removal Equipment...

2010-09-03

249

A GIS-based decision-support tool for public facility planning  

Microsoft Academic Search

The installation and operation of public facilities, such as schools or hospitals, involve important amounts of public spending, and therefore need to be carefully planned. Research efforts made since the early 1960s led to the development of a rich collection of optimization models and solution methods for public facility planning problems. It must be recognized, however, that the practical impact

Alexandra Ribeiro; António Pais Antunes

2002-01-01

250

Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility  

SciTech Connect

The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.

Lombard, K.H.

1994-08-01

251

Overview of Recent NSTX Research Facility Upgrades and Plans  

NASA Astrophysics Data System (ADS)

The 2010 NSTX experimental campaign started with the Liquid Lithium Divertor (LLD) and the Beam Emission Spectroscopy (BES) commissioning. With lithium coating, ELM-free discharges were obtained over a wide range of lower triangularity and strike-point including on the LLD surface. Initial BES data was taken where coherent MHD activity was evident in spectrograms. For FY 2011, a second switching power amplifier for the non-axisymmetric coils, extra channels for the multi-pulse Thomson scattering, the MSE diagnostic based on laser-induced fluorescence, the tangential Fast Ion D-alpha and the tangential soft-x-ray diagnostics are being prepared. For a longer term NSTX facility upgrade, a new center-stack is being designed to double the toroidal field and plasma current while increasing the plasma pulse length from the present ˜ 1 s at 0.5 T to 5 s at 1 T. The second more tangential neutral beam is also planned to double the NBI heating power while improving NBI current drive efficiency. The upgrade will reduce the plasma collisionality toward those expected for the next step STs, and enable a demonstration of the fully non-inductive operation required for next-step applications.

Ono, Masayuki

2010-11-01

252

Space Allocation and Capital Improvement Plan, Northern State Multi-Service Facility for Skagit Regional Planning Council.  

National Technical Information Service (NTIS)

The report provides a Space Allocation and Capital Improvement Plan for the state of Washington. The state is scheduling facilities for Alcoholism Treatment and for chronically ill Adults. The Capital Budget for this multi-service facility is set at $3.51...

1977-01-01

253

Higher Education Facilities Planning and Management Manuals. Preliminary Field Review Edition.  

ERIC Educational Resources Information Center

This volume comprises a series of 6 manuals which provide an exhaustive reference on methods and procedures for the evaluation, planning, and management of all types of college and university facilities. Specific topics covered are: (1) the impact of curriculum changes on physical facilities; (2) classroom and class laboratory facilities; (3)…

Dahnke, Harold L.; And Others

254

From Concept to Commissioning: Planning, Design, and Construction of Campus Facilities.  

ERIC Educational Resources Information Center

To address the growing interest in campus planning, design, and construction projects, this anthology compiles articles previously published in "Facilities Manager." The beginning chapters focus on campus architecture, master planning, and project planning. The mid-section of the book offers information on the critical issues of time management,…

Guckert, Donald, Ed.

255

Department of Defense Facilities Sustainment, Restoration, & Modernization Program Plan.  

National Technical Information Service (NTIS)

The Department of Defense FSRM Program helps to ensure that Department facilities are maintained and comply with standards necessary for meeting national security objectives and provide, operate, and sustain suitable housing, medical, and base facilities ...

2009-01-01

256

The NTF as a national facility. [project planning  

NASA Technical Reports Server (NTRS)

Activities which led to the definition of the National Transonic Facility and the general agreements reached regarding its use and operations are reviewed. Topics discussed include: redefinition of test requirements, development of low cost options, consideration of a single transonic facility using existing hardware if feasible, facility concept recommendations, and acquisition schedule proposals.

Nicks, O. W.

1977-01-01

257

Energy Considerations in Strategic Planning for Health Facilities.  

National Technical Information Service (NTIS)

This monograph assists health care managers to cope successfully with the energy-induced transition era we are entering. It also provides a strategic planning framework and rationale for taking immediate action. Energy conservation planning, as an integra...

S. I. de Trinidad M. Camhi

1982-01-01

258

Strategic planning and marketing research for older, inner-city health care facilities: a case study.  

PubMed

Numerous health care facilities, located in downtown metropolitan areas, now find themselves surrounded by a decaying inner-city environment. Consumers may perceive these facilities as "old," and catering to an "urban poor" consumer. These same consumers may, therefore, prefer to patronize more modern facilities located in suburban areas. This paper presents a case study of such a health care facility and how strategic planning and marketing research were conducted in order to identify market opportunities and new strategic directions. PMID:10122747

Wood, V R; Robertson, K R

1992-01-01

259

Closure report for N Reactor  

SciTech Connect

This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule.

Not Available

1994-01-01

260

Housekeeping Closure Report for Corrective Action Unit 288: Area 25 Engine Maintenance, Assembly, and Disassembly/Treatability Test Facility Chemicals Sites, Nevada Test Site, Nevada  

SciTech Connect

The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts to the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purposes of determining corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 11 CASs within CAU 288 on the NTS. The Housekeeping Closure Verification Form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Housekeeping activities at these sites included removal of debris, crates containing contaminated materials, chemicals, and other material. Based on these activities, no further action is required at these CASs.

U.S. Department of Energy, Nevada Operations Office

2000-04-24

261

Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF). User Test Planning Guide  

NASA Technical Reports Server (NTRS)

Test process, milestones and inputs are unknowns to first-time users of the ARMSEF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

2011-01-01

262

Field Lysimeter Test Facility for protective barriers: Experimental plan  

SciTech Connect

This document was first written in October 1986 and has been used to guide the design of the Field Lysimeter Test Facility (FLTF) and to promote discussions between research and engineering staff regarding the selection of barrier treatments for inclusion in the FLTF. The construction of the lysimeter facility was completed June 28, 1987. This document describes the facility, the treatments placed in each lysimeter, types of measurements made in each lysimeter, and a brief discussion of project activities related to quality assurance, safety, and funding requirements. The treatment description and figures have been updated to reflect the lysimeter facility as constructed. 12 refs., 6 figs., 5 tabs.

Kirkham, R.R.; Gee, G.W.; Downs, J.L.

1987-12-01

263

Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan  

SciTech Connect

This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs.

Not Available

1981-12-01

264

Field Investigation Plan for 1301-N and 1325-N FacilitiesSampling to Support Remedial Design  

SciTech Connect

This field investigation plan (FIP) provides for the sampling and analysis activities supporting the remedial design planning for the planned removal action for the 1301-N and 1325-N Liquid Waste Disposal Facilities (LWDFs), which are treatment, storage,and disposal (TSD) units (cribs/trenches). The planned removalaction involves excavation, transportation, and disposal of contaminated material at the Environmental Restoration Disposal Facility (ERDF).An engineering study (BHI 1997) was performed to develop and evaluate various options that are predominately influenced by the volume of high- and low-activity contaminated soil requiring removal. The study recommended that additional sampling be performed to supplement historical data for use in the remedial design.

S. G. Weiss.

1998-12-04

265

Final closure assessment work plan for sites 2 and 10, 119th Fighter-Interceptor Group, North Dakota Air National Guard Base, Hector Field, Fargo, North Dakota  

SciTech Connect

This Work Plan (WP) outlines closure assessment activities to be conducted at two sites at the North Dakota Air National Guard (NDANG) Base, Hector International Airport (also known as Hector Field), Fargo, North Dakota. The sites to be assessed include one 300-gal nominal capacity waste oil underground storage tank (UST) which is scheduled to be removed (Site 2), and a former fire training area (Site 10) where removal of contaminated soils is scheduled. The objectives of the assessment are to provide documentation of soil and water conditions following excavation of the UST at Site 2 and excavation of contaminated soils at Site 10 in order to support closure in accordance with applicable North Dakota State Department of Health and Consolidated Laboratories requirements.

NONE

1994-06-01

266

Plans for the Facility for Rare Isotope Beams  

NASA Astrophysics Data System (ADS)

The Facility for Rare Isotope Beams (FRIB) will be a new National User Facility for nuclear science, funded by the Department of Energy (DOE), Office of Nuclear Physics (NP) and operated by Michigan State University (MSU). FRIB will cost approximately $550 million to establish and take about a decade to design and build.

Thoennessen, M.

2010-03-01

267

Cold Vacuum Drying (CVD) Facility Sampling and Analysis Plan  

Microsoft Academic Search

The Cold Vacuum Drying (CVD) Facility provides the required process systems, supporting equipment, and facilities needed for the conditioning of spent nuclear fuel (SNF) from the Hanford K-Basins prior to storage at the Canister Storage Building (CSB). The process water conditioning (PWC) system collects and treats the selected liquid effluent streams generated by the CVD process. The PWC system uses

2000-01-01

268

Risk management plan for the National Ignition Facility  

Microsoft Academic Search

The National Ignition Facility (NIF) is a U.S. Department of Energy inertial confinement laser fusion facility, currently under construction at the Lawrence Livermore National Laboratory (LLNL). NIF is a critical tool for the Department of Energy (DOE) science- based Stockpile Stewardship and Management Program. In addition, it represents a major step towards realizing inertial confinement fusion as a source of

S. Brereton; C. Smith; J. Yatabe

1998-01-01

269

Currituck County Community Facilities Plan and Public Improvements Program, 1978.  

National Technical Information Service (NTIS)

The primary purpose of this report is to assess the community facilities and services of Currituck County and to make projections on future needs during the next ten years. This report is intended to provide local officials with community facility backgro...

1978-01-01

270

The Next Step: A Computer Facilities Master Plan for Saddleback College.  

National Technical Information Service (NTIS)

The needs of Saddleback College for computer facilities were assessed to develop a master plan for an integrated data processing system that would satisfy both student educational needs and the administrative needs of the community college district. The f...

D. A. Campbell

1979-01-01

271

Study of Facilities and Infrastructure Planning, Prioritization, and Assessment at Federal Security Laboratories.  

National Technical Information Service (NTIS)

This report explores planning, prioritization, and assessment of facilities and infrastructure (F&I) at a set of Federal laboratories from the Department of Defense, Department of Energy, and Department of Homeland Security that conduct national security ...

J. A. Scott K. A. Koopman S. S. Shipp S. V. Howieson V. Pena

2012-01-01

272

33 CFR 106.405 - Format and content of the Facility Security Plan (FSP).  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Format and content of the Facility Security Plan (FSP). 106.405 Section 106.405...Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARINE SECURITY: OUTER CONTINENTAL...

2013-07-01

273

Sampling and analysis plan for the preoperational environmental survey of the spent nuclear fuel project facilities.  

National Technical Information Service (NTIS)

This document represents the sampling analysis plan for conducting environmental sampling of soil, vegetation, litter, cryptogams, and small mammals at the Spent Nuclear Fuel Project facilities in support of the preoperational environmental survey.

R. M. Mitchell

1999-01-01

274

76 FR 22861 - Approval and Promulgation of State Plans for Designated Facilities and Pollutants: Florida...  

Federal Register 2010, 2011, 2012, 2013

...Approval and Promulgation of State Plans for Designated Facilities...negative declarations for Other Solid Waste Incinerator (OSWI) units from the State of Florida; Large Municipal...LMWC and HMIWI units from the State of South Carolina. These...

2011-04-25

275

Business continuity planning as a facilities management tool  

Microsoft Academic Search

The inevitability of crises within the business environment suggests that the majority of organisations should have a business continuity plan (BCP). This work highlights those organisations that do not plan in this way and those which focus on information technology rather than utilising a holistic, integrated approach. Through extensive primary research this paper explores the current uptake and scope of

Michael Pitt; Sonia Goyal

2004-01-01

276

The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan  

Microsoft Academic Search

The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have

2000-01-01

277

Assistive Devices in Public Schools Which Aid the Understanding of Verbal Language: A Guide for Facility Planning. Facility Guidelines.  

ERIC Educational Resources Information Center

The guide is intended to help in planning facilities for students with hearing impairments by acquainting the reader with assistive devices that help in the understanding of verbal language. An initial section reviews the prevalence of individuals with hearing impairments in Maryland. Assistive devices are then described, including induction loop…

Maryland State Dept. of Education, Baltimore. Office of School Facilities.

278

Academic Support Facilities. Higher Education Facilities Planning and Management Manual Four. Revised.  

ERIC Educational Resources Information Center

This manual analyzes procedures for determining needs for academic support facilities (i.e., library, audio/visual, exhibition, and computer facilities). In general, these facilities house programs that have similar objectives and purposes; acquisition, preservation, maintenance, transformation, retrieval, interpretation, and display of recorded…

Dahnke, Harold L.; And Others

279

Forging the strategic linkage between facilities management and the corporation -- Production of a sites comprehensive plan  

SciTech Connect

In 1996, Sandia National Laboratories (SNL) undertook a major effort to develop, produce, and execute a Sites Comprehensive Plan. Fundamentally, this document is intended to serve as a tool to clarify the strategic link between (1) current and future mission needs and responsibilities, and (2) the condition, capacity, and required amount of facilities space and infrastructure. It documents the Facilities Group`s response to programmatic requests for capability and makes the case for the required facilities investments through integrated master plans that document SNL`s short- and long-range needs. This paper outlines the history and business environment that led to the writing of the plan, the organizations and committees involved, the steps required to develop and produce it, the challenges encountered in selling it, both internally and externally, and the issues involved in executing the proposed actions set forth in the plan. The paper also articulates the benefits gained by Facilities Management (FM) and the corporation, as well as the lessons learned in producing the plan. SNL has concluded that the Sites Comprehensive Plan was a worthwhile effort in terms of retained facilities investment funding, increased awareness of facility needs, and other measures, despite the significant effort and cost required to produce it.

Petersen, T.P.; Williams, J.L.; Reyes, C.M.

1997-06-01

280

Bioterrorism Readiness Plan: A Template for Healthcare Facilities.  

National Technical Information Service (NTIS)

The Association for Professionals in Infection Control and Epidemiology (APIC) recognizes the importance of awareness and preparation for bioterrorism on the part of healthcare facilities. In cooperation with the Centers for Disease Control and Prevention...

J. A. Pfeiffer J. D. Malone J. F. English J. M. Miller L. Steel M. Bell M. Y. Cundiff

1999-01-01

281

Endangered Species Act and energy facility planning: compliance and conflict  

Microsoft Academic Search

New energy facilities such as coal mines, gasification plants, refineries, and power plants--because of their severe environmental impacts--may, if sited haphazardly, jeopardize endangered species. By law, conflicts between energy-facility siting and endangered species occurrence must be minimized. To assess the likelihood of such conflicts arising, the authors used data from the Fish and Wildlife Service, Endangered Species Office, that describe

D. Shreeve; C. Calef; J. Nagy

1978-01-01

282

Seismic Qualification Program Plan for continued operation at DOE-SRS Nuclear Material Processing facilities  

SciTech Connect

The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.1A requirements. In addition, any of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) has developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards for existing NMP facility structures to continue operation. Professionals involved in similar effort at other DOE facilities may find the program useful.

Talukdar, B.K.; Kennedy, W.N.

1991-12-31

283

Seismic Qualification Program Plan for continued operation at DOE-SRS Nuclear Material Processing facilities  

SciTech Connect

The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.1A requirements. In addition, any of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) has developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards for existing NMP facility structures to continue operation. Professionals involved in similar effort at other DOE facilities may find the program useful.

Talukdar, B.K.; Kennedy, W.N.

1991-01-01

284

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada With Errata Sheets, Revision 0  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 117, Pluto Disassembly Facility, identified in the Federal Facility Agreement and Consent Order. Corrective Action Unit 117 consists of one Corrective Action Site (CAS), CAS 26-41-01, located in Area 26 of the Nevada Test Site. This plan provides the methodology for field activities needed to gather the necessary information for closing CAS 26-41-01. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 117 using the SAFER process. Additional information will be obtained by conducting a field investigation before finalizing the appropriate corrective action for this CAS. The results of the field investigation will support a defensible recommendation that no further corrective action is necessary following SAFER activities. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The site will be investigated to meet the data quality objectives (DQOs) developed on June 27, 2007, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAS 26-41-01 in CAU 117.

Pat Matthews

2007-09-01

285

Statewide Planning for Vocational Rehabilitation Workshops and Facilities, Connecticut. Final Report.  

ERIC Educational Resources Information Center

This study focuses on the nature of rehabilitation facilities, the need for an expansion of those already in existence, and a possible increase in number so that the state can serve all of its handicapped persons by 1975. The general objective was to develop a statewide plan for workshops and rehabilitation facilities. Specific objectives were to…

Connecticut State Dept. of Education, Hartford. Div. of Vocational Rehabilitation.

286

Plans for constructing a next-generation ISOL facility at ORNL  

Microsoft Academic Search

The U.S. Nuclear Science Community in its 1996 Long Range Plan identified an advanced radioactive ion beam (RIB) facility based on the ISOL technique as the next major facility to be constructed for U.S. nuclear physics. The proposed Spallation Neutron Source (SNS) for Oak Ridge National Laboratory, whose construction design funds have recently been appropriated, offers a unique opportunity for

J. D. Garrett; G. D. Alton; R. L. Auble; C. Baktash; J. R. Beene; F. E. Bertrand; J. D. Fox; R. A. Gough; M. L. Halbert; J. G. Kalnins; Y. Liu; M. W. Ogan; F. Plasil; D. Shapira; P. T. Spampinato; J. W. Staples; H. Wollnik; M. S. Zisman

1999-01-01

287

Facilities Planning for School Library Media and Technology Centers. Professional Growth Series.  

ERIC Educational Resources Information Center

Increased student enrollment, collection growth, the need for multimedia workspace, and other technology changes are all reasons for embarking on a facilities project in a library media center. This book describes the keys to success for library media centers of the future, and addresses the need for developing support for the facilities plan.…

Baule, Steven M.

288

Career Education Facilities: A Planning Guide for Space and Station Requirements. A Report  

ERIC Educational Resources Information Center

This publication provides the educational planner and the architect with some suggestions concerning models by which they may plan new flexible-use, shared-space facilities and supports the models with guidelines for the development of facilities and educational programs for occupational education. In addition to discussing the financial…

Woodruff, Alan P.

289

77 FR 75676 - Standard Review Plan for Review of Fuel Cycle Facility License Applications  

Federal Register 2010, 2011, 2012, 2013

...Standard Review Plan for Review of Fuel Cycle Facility License Applications AGENCY...Review of a License Application for a Fuel Cycle Facility.'' The NRC is extending the...Bailey, Deputy Director, Division of Fuel Cycle Safety and Safeguards, Office of...

2012-12-21

290

The final chapter. Sound management procedures facilitate a hospital's closure.  

PubMed

The closure of a healthcare institution affects employees, patients, and the community. When St. Mary's Health Center, Emporia, KS, closed in 1991, those who administered the closure followed a procedure that lessened the burden on all involved. Because of the health center's deteriorating financial picture, CSJ Health System of Wichita (of which St. Mary's was a member) decided to close the facility. Once the system's board of trustees and the ordinary of the Archdiocese of Kansas City, KS (in which Emporia is located), approved the closure, facility and system leaders planned the procedures for announcing the closure and helping employees and patients through the difficult times ahead. On announcement day the CSJ Health System president and St. Mary's chief executive officer met with department heads to inform them that no new patients would be accepted and to explain the dismissal and transfer processes. Department heads were also asked to tell those they supervised about the closure and about meetings for employees later that day. Counselors were available to help department heads and employees through that emotional day and during the weeks and months ahead. Employees received packets of information describing severance benefits. Human resources personnel sponsored a job fair at which many former employees found jobs. A closing ceremony was held at a local chapel. During the ceremony employees voiced their appreciation of the way in which the closure had been completed and the openness and supportiveness of the sisters, the system, and St. Mary's administrators.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10119537

Bush, C

1992-01-01

291

Program Plan for Revision of the Z-Area Saltstone Disposal Facility Performance Assessment  

Microsoft Academic Search

Savannah River National Laboratory (SRNL) and the Saltstone Project, are embarking on the next revision to the Saltstone Disposal Facility (SDF) performance assessment (PA). This program plan has been prepared to outline the general approach, scope, schedule and resources for the PA revision. The plan briefly describes the task elements of the PA process. It discusses critical PA considerations in

Cook; James R

2005-01-01

292

Five Recession-Driven Strategies for Planning and Managing Campus Facilities  

ERIC Educational Resources Information Center

Colleges and universities continue to face significant fiscal challenges in the current recession. A review of ongoing campus facilities planning projects, coupled with a review of more than 30 recent campus master planning requests for proposals and the relevant literature, indicates that colleges and universities are finding innovative ways to…

Rudden, Michael S.

2010-01-01

293

8. Launch closure, closure track apron, tracks and track beam, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

8. Launch closure, closure track apron, tracks and track beam, view towards west - Ellsworth Air Force Base, Delta Flight, Launch Facility D-6, 4 miles north of Badlands National Park Headquarters, 4.5 miles east of Jackson County line on county road, Interior, Jackson County, SD

294

An overview of the planned advanced neutron source facility  

SciTech Connect

The Advanced Neutron Source (ANS), now in the conceptual design stage, will be a new user facility for neutron research, including neutron beam experiments, materials irradiation testing and materials analysis capabilities, and production facilities for transuranic and lighter isotopes. The neutron source is to be the world's highest flux beam reactor and is based on existing reactor technology to minimize safety issues. The preferred fuel, U{sub 3}Si{sub 2}, has been tested in operating reactors in the United States, Japan, and Europe. The core is cooled, moderated, and reflected by heavy water, common practice for research reactors. 3 refs., 9 figs., 3 tabs.

West, C.D.

1990-01-01

295

The Current Status and Planned Developments for Deep Underground Astro-particle Physics Science Facilities  

NASA Astrophysics Data System (ADS)

The rigorous radiation background constraints imposed by several studies in particle and astro-particle physics, such as Galactic dark matter searches, man-made, terrestrial, solar and supernova neutrino studies and 0???-decay studies, require deep underground science facilities to afford shielding from penetrating cosmic rays and their secondary by-products. New threads of research focused on deep sub-surface biology, chemistry, geology and engineering have also been developing rapidly at several sites, benefitting from the significant investment in underground access and infrastructure developed. In addition to planned, or completed, expansion at several of these deep underground facilities, additional new facilities are in early stages of construction or well advanced planning. These developments provide significant additional capability to these fields of study. This paper summarises the developments at these facilities, focused on those extremely deep uderground laboratories where expansion is underway or planned.

Smith, N. J. T.

2012-07-01

296

IDENTIFICATION OF DOE'S POST-CLOSURE MONITORING NEEDS AND REQUIREMENTS  

SciTech Connect

The 2006 plan sets an ambitious agenda for the U.S. Department of Energy (DOE), Office of Environmental Management (EM) and the remediation of sites contaminated by decades of nuclear weapons production activities. The plan's primary objective is to reduce overall clean up costs by first eliminating the environmental problems that are most expensive to control and safely maintain. In the context of the 2006 Plan, closure refers to the completion of area or facility specific cleanup projects. The cleanup levels are determined by the planned future use of the site or facility. Use restrictions are still undecided for most sites but are highly probable to exclude residential or agricultural activities. Most of the land will be remediated to ''industrial use'' levels with access restrictions and some areas will be closed-off through containment. Portions of the site will be reserved for waste disposal, either as a waste repository or the in-situ immobilization of contaminated soil and groundwater, and land use will be restricted to waste disposal only. The land used for waste disposal will require monitoring and maintenance activities after closure. Most of the land used for industrial use may also require such postclosure activities. The required postclosure monitoring and maintenance activities will be imposed by regulators and stakeholders. Regulators will not approve closure plans without clearly defined monitoring methods using approved technologies. Therefore, among all other more costly and labor-intensive closure-related activities, inadequate planning for monitoring and lack of appropriate monitoring technologies can prevent closure. The purpose of this project is to determine, document, and track the current and evolving postclosure monitoring requirements at DOE-EM sites. This information will aid CMST-CP in guiding its postclosure technology development and deployment efforts.

M.A. Ebadian, Ph.D.

1999-01-01

297

TIES - an engineering and planning methodology for deactivation and decommissioning of nuclear facilities  

SciTech Connect

Task integrated evaluation and sequencing (TIES) is a methodology developed by Fluor Daniel for the disciplined planning of complex deactivation and decommissioning (D&D) projects. TIES was developed for the deactivation and transition planning of the ROVER facility at the Idaho National Engineering Laboratory and is consistent with the U.S. Department of Energy`s strategy for deactivation of surplus facilities. The TIES methodology is particularly effective during the deactivation period of facility transition where hazards are reduced, systems are isolated, and equipment is removed. The use of TIES results in the overall planning of the deactivation effort and focuses on the achievement of the desired end points. Because it is task oriented and sequenced, TIES forms a basis for a rolling window of detailed design planning, which provides flexibility in dealing with unforeseen problems that potentially could arise during the project.

Divona, C.J.; Marchetti, S. [Fluor Engineers, Inc., Irvine, CA (United States)

1995-12-31

298

A Simplified Approach To Include Essential Facilities In Risk Scenarios For Civil Defence Plans.  

NASA Astrophysics Data System (ADS)

Given the importance of essential facilities in an earthquake crisis, it is recommended that detailed studies for assessing their functional vulnerability should be carried out. Although there have been many experiences in past earthquakes showing the problems associated to the damages to these facilities, like hospitals and police and firemen departments, many civil defence plans do not take into account their vulnerability. In some cases the reason is that there has not been opportunity to perform detailed vulnerability studies for these buildings before the issue of the prevention plans. A simplified statistical approach for the quick evaluation of the functional vulnerability of firemen stations and hospitals has been developed. This method allows these building to be at least considered in a first approach within the emergency plans. The method has been applied to facilities in Catalonia, Spain and have been incorporated to the recent developed plans of the Civil Defence department.

González, M.; Susagna, T.; Goula, X.; Roca, A.; Safina, S.

299

Facility Planning for 21st Century. Technology, Industry, and Education.  

ERIC Educational Resources Information Center

When the Orange County School Board (Orlando, Florida) decided to build a new high school, they recognized Central Florida's high technology emphasis as a special challenge. The new facility needed to meet present instructional demands while being flexible enough to incorporate 21st century technologies. The final result is a new $30 million high…

Hill, Franklin

300

Life science payloads planning study integration facility survey: Executive summary  

NASA Technical Reports Server (NTRS)

Analyses of proposed life science shuttle era payload operations are discussed. A summary of results from a survey conducted to: (1) examine facility and equipment resources needed for life science payload integration, checkout, test and mission support activities; (2) identify presently available resources; and (3) determine methods by which operational era status may be implemented based on currently available resources, is presented.

Wells, G. W.; Brown, N. E.

1976-01-01

301

Integrating Sustainability Programs into the Facilities Capital Planning Process  

ERIC Educational Resources Information Center

With detailed information about the costs and benefits of potential green investments, educational facilities can effectively evaluate which initiatives will ultimately provide the greatest results over the short and long term. Based on its overall goals, every school, college, or university will have different values and therefore different…

Buchanan, Susan

2011-01-01

302

Plans for Constructing a Next-Generation ISOL Facility at ORNL  

SciTech Connect

The U.S. Nuclear Science Community in its 1996 Long Range Plan identified an advanced radioactive ion beam (RIB) facility based on the ISOL technique as the next major facility to be constructed for U.S. nuclear physics. The proposed SpaHation Neutron Source (SNS) for Oak Ridge National Laboratory, whose construction design funds have recently been appropriated, offers a unique opportunity for the construction of this new facility, Plans for extracting a proton beam from the SNS, transporting it to the RIB facility, and constructing the new RIB facility at the SNS site are discussed, as are the ISOL targets, radiation handling, isobaric separation, acceleration of beams of radioactive experimental areas.

Garrett, J.D.

1998-10-05

303

Electromagnetic Interference/Compatibility (EMI/EMC) Control Test and Measurement Facility: User Test Planning Guide  

NASA Technical Reports Server (NTRS)

Test process, milestones and inputs are unknowns to first-time users of the EMI/EMC Test Facility. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

Scully, Robert C.

2011-01-01

304

Basalt near-surface test facility test plans  

Microsoft Academic Search

The NSTF is under construction at Gable Mountain for in-situ testing, which will be conducted in two phases: Phase I, using electric heaters to simulate nuclear waste canisters in order to study the thermomechanical response of basalt; and Phase II, using spent fuel canisters. The tests planned for Phases I and II are described. (DLC)

Krug

1979-01-01

305

Recommendations for Emergency Management Planning for School Facilities.  

ERIC Educational Resources Information Center

Numerous events, such as hurricanes, floods, and tornadoes, constitute a natural disaster for public schools. Human-caused disasters include hazardous-material emergencies, civil riots, fires, and nuclear accidents. This document contains emergency-management planning guidelines, developed by the Texas Education Agency, to help local school…

Texas Education Agency, Austin.

306

The Planning and Implementation of Test Facility Improvements  

NASA Technical Reports Server (NTRS)

As engineering programs develop, and product testing begins, ideas for process improvement soon become obvious. Engineers envision new holding and handling fixtures. Additional custom-made support equipment may be needed. Perhaps modifications to the building or modifications to facility hardware are the order of the day. This is where a flexible creative test organization is needed. We need not be content with the status quo. All of these desired test innovations can make the difficult easy and improve the work flow. At times, implementing these new ideas demands more time or specialized expertise than test team members have. Through the coordinated use of labor resources, the needed improvements can still be made and in a timely fashion that supports program schedules. This presentation provides practical advice and a method whereby test personnel can creatively develop facility improvements and manage them from start to finish. You can control just how much time you invest and what part of your concepts you will personally design. By wisely defining the requirements and presenting them to the appropriate help sources (vendors, contractors, coworkers, and support departments), you can get the help you need to bring the improvements you have conceived, into fruition. Aspects of this presentation include defining requirements for test facility improvements, choosing labor resources, writing a statement of work, determining cost and benefits, securing department approval, coordinating procurement, managing the project, and training the end users. The process of successfully implementing test facility improvements is thoroughly explained. It has been tried, proven and improved over nearly 25 years of use. Whether considering a $50 improvement or a $50 million dollar improvement, this discussion will provide helpful pointers. Examples of improvements made through this process and their illustration will be included.

Oberlander, Larry

2008-01-01

307

Plutonium reclamation facility (PRF), building 236-Z layup plan  

SciTech Connect

This document reviews each system inside PRF to determine the operation and maintenance requirements necessary to maintain safe and predictable system performance for facility systems needed to remain operational while minimizing the maintenance and surveillance being performed. Also covered are the actions required to place PRF in a safe layup configuration while minimizing hazards and taking into account the need for reactivation of certain equipment when cleanup work commences in the future.

ANDERSON, R.N.

1999-04-06

308

75 FR 36773 - Pipeline Safety: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill  

Federal Register 2010, 2011, 2012, 2013

...Safety: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill AGENCY...response plan under 49 CFR part 194. In light of the Deepwater Horizon oil spill in the...Subject: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill....

2010-06-28

309

Wildlife Protection, Mitigation, and Enhancement Plans, Anderson Ranch and Black Canyon Facilities: Final Report.  

SciTech Connect

Under direction of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, and the subsequent Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, projects have been developed in Idaho to mitigate the impacts to wildlife habitat and production due to the development and operation of the Anderson Ranch and Black Canyon Facilities (i.e., dam, power plant, and reservoir areas). The Anderson Ranch Facility covered about 4812 acres of wildlife habitat while the Black Canyon Facility covered about 1115 acres. These acreages include dam and power plant staging areas. A separate mitigation plan has been developed for each facility. A modified Habitat Evaluation Procedure (HEP) was used to assess the benefits of the mitigation plans to wildlife. The interagency work group used the target species Habitat Units (HU's) lost at each facility as a guideline during the mitigation planning process, while considering the needs of wildlife in the areas. Totals of 9619 and 2238 target species HU's were estimated to be lost in the Anderson Ranch and Black Canyon Facility areas, respectively. Through a series of projects, the mitigation plans will provide benefits of 9620 target species HU's to replace Anderson Ranch wildlife impacts and benefits of 2195 target species HU's to replace Black Canyon wildlife impacts. Target species to be benefited by the Anderson Ranch and/or Black Canyon mitigation plans include the mallard, Canada goose, mink, yellow warbler, black-capped chickadee, ruffed grouse, mule deer, blue grouse, sharp-tailed grouse, ring-necked pheasant, and peregrine falcon.

Meuleman, G. Allyn

1987-06-01

310

Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan  

Microsoft Academic Search

This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory

R. B. Cook; S. M. Adams; J. J. Beauchamp; M. S. Bevelhimer; B. G. Blaylock; C. C. Brandt; E. L. Etnier; C. J. Ford; M. L. Frank; M. J. Gentry; M. S. Greeley; R. S. Halbrook; R. A. Harris; S. K. Holladay; L. A. Hook; P. L. Howell; L. A. Kszos; D. A. Levine; J. L. Skiles; G. W. Suter

1992-01-01

311

Facility Effluent Monitoring Plan for the Spent Nuclear Fuel (SNF) Project  

SciTech Connect

A facility effluent monitoring plan is required by the US. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in Westinghouse Hanford Company (WHC)-EP-0438-1, ''A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans'', and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the third revision to the original annual report. This document is reviewed annually even if there are no operational changes, and it is updated as necessary.

HUNACEK, G.S.

2000-08-01

312

Closure device  

Microsoft Academic Search

A closure device connectible to a well head through which the polished rod of a rod string extends into a well tubing for operating pump means for moving well fluids to a surface flow conductor, the closure device having a tubular ram provided with a packing or plug for closing an annular passage between the polished rod and a tubular

Sable

1985-01-01

313

Overview of NSTX Facility Upgrades Status and Research Plans  

NASA Astrophysics Data System (ADS)

The National Spherical Torus eXperiment (NSTX) is undergoing a major facility upgrade. The major mission of NSTX-U is to develop physics basis for an ST-based Fusion Nuclear Science Facility (FNSF). The ST-based FNSF has a promise of achieving high neutron fluence needed for reactor component testing with a relatively modest tritium consumption. At the same time, the unique operating regimes of NSTX-U provide high leverage to address several important issues in the physics of burning plasmas to optimize the performance of ITER. The NSTX-U program further aims to determine the attractiveness of the compact ST for addressing key research needs on the path toward a fusion demonstration power plant (Demo). The upgrade project will double the toroidal field, plasma current, and NBI heating power and increase the pulse length from 1-1.5s to 5-8s. More tangential NBI system is designed to attain full non-inductive operation. Innovative plasma start-up and ramp-up techniques without the central solenoid operation which is needed for a compact FNSF design will be explored. With higher fields and heating power, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the transport trend toward the low collisionality regimes expected in FNSF, ITER, and Demo.

Ono, M.

2012-10-01

314

Waste management planned for the advanced fuel cycle facility  

SciTech Connect

The U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) program has been proposed to develop and employ advanced technologies to increase the proliferation resistance of spent nuclear fuels, recover and reuse nuclear fuel resources, and reduce the amount of wastes requiring permanent geological disposal. In the initial GNEP fuel cycle concept, spent nuclear fuel is to be reprocessed to separate re-usable transuranic elements and uranium from waste fission products, for fabricating new fuel for fast reactors. The separated wastes would be converted to robust waste forms for disposal. The Advanced Fuel Cycle Facility (AFCF) is proposed by DOE for developing and demonstrating spent nuclear fuel recycling technologies and systems. The AFCF will include capabilities for receiving and reprocessing spent fuel and fabricating new nuclear fuel from the reprocessed spent fuel. Reprocessing and fuel fabrication activities will generate a variety of radioactive and mixed waste streams. Some of these waste streams are unique and unprecedented. The GNEP vision challenges traditional U.S. radioactive waste policies and regulations. Product and waste streams have been identified during conceptual design. Waste treatment technologies have been proposed based on the characteristics of the waste streams and the expected requirements for the final waste forms. Results of AFCF operations will advance new technologies that will contribute to safe and economical commercial spent fuel reprocessing facilities needed to meet the GNEP vision. As conceptual design work and research and design continues, the waste management strategies for the AFCF are expected to also evolve. (authors)

Soelberg, Nick; Gombert, Dirk; Haefner, Daryl [Idaho National Laboratory PO Box 1625 Idaho Falls, ID 83415-3710 (United States)

2007-07-01

315

300 Area Treated Effluent Disposal Facility permit reopener run plan  

SciTech Connect

The 300 Area Treated Effluent Disposal Facility (TEDF) is authorized to discharge treated effluent to the Columbia River by National Pollutant Discharge Elimination System permit WA-002591-7. The letter accompanying the final permit noted the following: EPA recognizes that the TEDF is a new waste treatment facility for which full scale operation and effluent data has not been generated. The permit being issued by EPA contains discharge limits that are intended to force DOE`s treatment technology to the limit of its capability.`` Because of the excessively tight limits the permit contains a reopener clause which may allow limits to be renegotiated after at least one year of operation. The restrictions for reopening the permit are as follows: (1) The permittee has properly operated and maintained the TEDF for a sufficient period to stabilize treatment plant operations, but has nevertheless been unable to achieve the limitation specified in the permit. (2) Effluent data submitted by the permittee supports the effluent limitation modifications(s). (3) The permittee has submitted a formal request for the effluent limitation modification(s) to the Director. The purpose of this document is to guide plant operations for approximately one year to ensure appropriate data is collected for reopener negotiations.

Olander, A.R.

1995-03-10

316

Future Plans for the Mainz Real Photon Facility  

NASA Astrophysics Data System (ADS)

In the last year an upgrade of the Mainz electron accelerator MAMI has been started to reach a beam energy of 1.5GeV. Therefore a fourth stage (MAMI C), a harmonic double sided microtron (HDSM) with four normal conducting dipole magnets and two antiparallel linear accelerators is under construction. The A2-Glasgow-Mainz tagger can presently handle only electrons with an energy of 855MeV, so also here an upgrade of the existing systems is necessary to cope with the electrons from MAMI C. After the first successful round 1,2,3 to measure helicity dependent photoabsorption cross sections in the year 1998 with a polarized proton target from Bonn and the DAPHNE detector this measurement will be continued soon with a polarized deuterium target. For future experiments, the Crystal Ball detector with its nearly 4pi acceptance, a polar and azimuthal symmetry and a high efficiency for multi photon final states will be available in Mainz. It is planned to continue the experimental program with polarized photon and polarized targets with this detector, since DAPHNE is mainly a charged particle tracking detector. Due to the fact that the Bonn Polarized Target will be needed for experiments at the Bonn accelerator ELSA at that time, it has been started to build up a polarized target for Mainz. In this talk a short overview on plans for future experiments in the A2 taggerhall will be given.

Thomas, Andreas

2003-06-01

317

CPP-603 Underwater Fuel Storage Facility Site Integrated Stabilization Management Plan (SISMP), Volume I  

SciTech Connect

The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been constructed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 to the Secretary of Energy regarding an improved schedule for remediation in the Defense Nuclear Facilities Complex. As described in the DNFSB Recommendation 94-1 Implementation Plan, issued February 28, 1995, an INEL Spent Nuclear Fuel Management Plan is currently under development to direct the placement of SNF currently in existing INEL facilities into interim storage, and to address the coordination of intrasite SNF movements with new receipts and intersite transfers that were identified in the DOE SNF Programmatic and INEL Environmental Restoration and Waste Management Environmental Impact Statement Record, of Decision. This SISMP will be a subset of the INEL Spent Nuclear Fuel Management Plan and the activities described are being coordinated with other INEL SNF management activities. The CPP-603 relocation activities have been assigned a high priority so that established milestones will be meet, but there will be some cases where other activities will take precedence in utilization of available resources. The Draft INEL Site Integrated Stabilization Management Plan (SISMP), INEL-94/0279, Draft Rev. 2, dated March 10, 1995, is being superseded by the INEL Spent Nuclear Fuel Management Plan and this CPP-603 specific SISMP.

Denney, R.D.

1995-10-01

318

Waste Encapsulation and Storage Facility (WESF) Quality Assurance Program Plan (QAPP)  

SciTech Connect

This Quality Assurance Plan describes how the Waste Encapsulation and Storage Facility (WESF) implements the quality assurance (QA) requirements of the Quality Assurance Program Description (QAPD) (HNF-Mp-599) for Project Hanford activities and products. This QAPP also describes the organizational structure necessary to successfully implement the program. The QAPP provides a road map of applicable Project Hanford Management System Procedures, and facility specific procedures, that may be utilized by WESF to implement the requirements of the QAPD.

ROBINSON, P.A.

2000-04-17

319

Computer software configuration management plan for 200 East/West Liquid Effluent Facilities  

SciTech Connect

This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System`s pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System.

Graf, F.A. Jr.

1995-02-27

320

Planetary Protection, Biocontainment and Societal Issues: Planning a Sample Receiving Facility for Returned Martian Materials  

NASA Astrophysics Data System (ADS)

In planning for a Sample Receiving Facility (SRF), space agencies must ensure that COSPAR planetary protection requirements are met to avoid back contamination of Earth. In the United States, environmental, health and safety requirements will also apply regardless of where a facility is eventually built. The U.S. National Environmental Policy Act (NEPA, requires that NASA must prepare an environmental impact statement in advance of SRF construction to inform the public about all the potential risks, plans and reviews that will be involved. Since an SRF will likely include a BSL-4 biocontainment lab, it is instructive to examine public concerns about biocontainment that have arisen at relevant analogue facilities in order to extract lessons learned for an SRF. This paper describes findings of a recent multi-year study of 18 high-level biocontainment facilities and suggests lessons learned that are applicable to any future facilty designed to handle returned martian materials. Regardless where the SRF may be built, it will be important to develop a risk communication plan that ensures the public is informed openly, honestly, and throughout the planning, construction and operational phases of the facility.

Race, Margaret

321

Space Station Furnace Facility Preliminary Project Implementation Plan (PIP). Volume 2, Appendix 2  

NASA Technical Reports Server (NTRS)

The Space Station Furnace Facility (SSFF) is an advanced facility for materials research in the microgravity environment of the Space Station Freedom and will consist of Core equipment and various sets of Furnace Module (FM) equipment in a three-rack configuration. This Project Implementation Plan (PIP) document was developed to satisfy the requirements of Data Requirement Number 4 for the SSFF study (Phase B). This PIP shall address the planning of the activities required to perform the detailed design and development of the SSFF for the Phase C/D portion of this contract.

Perkey, John K.

1992-01-01

322

Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility  

SciTech Connect

This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished.

NONE

1995-01-01

323

TWENTY-YEAR PLANNING STUDY FOR THE RELATIVISTIC HEAVY ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY.  

SciTech Connect

At the request of DOE's Office of Nuclear Physics (ONP), Brookhaven National Laboratory (BNL) has created this planning document to assemble and summarize a planning exercise that addresses the core scientific thrust of the Relativistic Heavy Ion Collider (RHIC) for the next twenty years and the facilities operation plan that will support this program. The planning work was carried out by BNL in close collaboration with the RHIC user community and within budgetary guidelines for the next five years supplied by the ONP. The resulting plans were reviewed by the BNL High Energy and Nuclear Physics Program Advisory Committee (PAC) at a special RHIC planning meeting held in December 2003. Planning input from each of the four RHIC experimental collaborations was absolutely central to the preparation of this overall Laboratory plan. Each collaboration supplied two key documents, a five-year ''Beam Use Proposal'' and a ten-year ''Decadal Plan''. These plans are posted on the BNL website http://www.bnl.gov/henp/, along with other planning documents germane to this paper, such as the complete written reports from the August and December 2003 PAC meetings that considered the five-year and decadal planning documents of the four RHIC collaborations and offered advice and commentary on these plans. Only in these collaboration documents can the full physics impact of the RHIC program be seen and the full scope of the efforts put into this planning process be appreciated. For this reason, the maximum value of the present planning paper can only be realized by making frequent reference to the collaboration documents.

LUDLAM,T.ET AL.

2003-12-31

324

An exploratory shaft facility in SALT: Draft shaft study plan  

SciTech Connect

This draft Shaft Study Plan describes a program of testing and monitoring in the Exploratory Shafts of a candidate high-level nuclear waste repository site in Deaf Smith County, Texas. The purpose of the programs to assist with site characterization in support of a determination of site suitability for development as a repository design and performance assessment evaluations. The program includes a variety of geological, geophysical, geomechanical, thermomechanical, and geohydrological testing and monitoring. The program is presented as a series of separate studies concerned with geological, geomechanical, and geohydrological site characterization, and with evaluating the mechanical and hydrological response of the site to construction of the shafts. The various studies, and associated test or monitoring methods are shown. The procedure used in developing the test program has been to initially identify the information necessary to satisfy (1) federal, state, and local requirements, and (2) repository program requirements. These information requirements have then been assessed to determine which requirements can be addressed wholly or in significant part by monitoring and testing from within the shafts. Test methods have been identified to address specific information requirements. 67 refs., 39 figs., 31 tabs.

Not Available

1987-03-01

325

Areawide Plan for Health. Supplement I, Health Services and Facilities Plan.  

National Technical Information Service (NTIS)

The report is a supplement to an areawide plan for health care services as a basic guide in developing hospital and other health services in California's Imperial, Riverside, and San Diego counties. Data presented serve as guidelines in reviewing proposal...

1973-01-01

326

Acceptance criteria for the evaluation of Category 1 fuel cycle facility physical security plans  

SciTech Connect

This NUREG document presents criteria developed from US Nuclear Regulatory Commission regulations for the evaluation of physical security plans submitted by Category 1 fuel facility licensees. Category 1 refers to those licensees who use or possess a formula quantity of strategic special nuclear material.

Dwyer, P.A.

1991-10-01

327

Areawide Health Facilities Plan for County of Kauai - 1966-1985.  

National Technical Information Service (NTIS)

By 1985, the population in the county of Kauai is expected to increase from its present level of 26,200 to a minimum of 31,400 or a maximum of 41,000. This report evaluates existing resources and facilities and presents a plan to provide medical facilitie...

1966-01-01

328

Final Pantex Report - 2006 [Phase 1 plan for assessment of Former Workers at the Pantex Facility  

SciTech Connect

The purpose of this project was to develop a Phase 1 plan for assessment of Former Workers at the Pantex Facility in Amarillo, TX and to determine the suitability to start a medical surveillance program among former workers for this site.

Abdo, Ronna

2013-07-18

329

SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) WARM LABORATORY ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) WARM LABORATORY ROOM, DECONTAMINATION ROOM, HOT CHEMISTRY LABORATORY, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-098-105066. ALTERNATE ID NUMBER 4272-14-103. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

330

Sampling and analysis plan for the preoperational environmental survey of the spent nuclear fuel project facilities  

Microsoft Academic Search

This sampling and analysis plan will support the preoperational environmental monitoring for construction, development, and operation of the Spent Nuclear Fuel (SNF) Project facilities, which have been designed for the conditioning and storage of spent nuclear fuels; particularly the fuel elements associated with the operation of N-Reactor. The SNF consists principally of irradiated metallic uranium, and therefore includes plutonium and

1999-01-01

331

200 Area Treated Effluent Disposal Facility (TEDF) Effluent Sampling and Analysis Plan  

Microsoft Academic Search

This Sampling and Analysis Plan (SAP) has been developed to comply with effluent monitoring requirements at the 200 Area Treated Effluent Disposal Facility (TEDF), as stated in Washington State Waste Discharge Permit No. ST 4502 (Ecology 2000). This permit, issued by the Washington State Department of Ecology (Ecology) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and

2000-01-01

332

Implementation of a chemical hygiene plan at an R&D facility  

SciTech Connect

Implementation of a Chemical Hygiene Plan at an R&D facility is accomplished in an integrated approach with other programs. While the laboratory standard specifies the requirements of a Chemical Hygiene Plan, implementation requires innovation and creativity to effectively comply with the standard and to support R&D activities. While the Chemical Hygiene Plan is a unique entity, it must be integrated with other programs (e.g., Hazard Communication Program, Hazardous Waste Management Program, and Waste Minimization Program) so that complementary activities can minimize duplication of effort. The Morgantown Energy Technology Center (METC) has implemented a Chemical Hygiene Plan using an integrated approach. The overall plan is described, and decisions on key issues and the criteria used to determine the implementation approach are discussed.

Kovach, J.J.

1994-08-01

333

Calculation of parameters for inspection planning and evaluation: mixed-oxide fuel fabrication facilities  

SciTech Connect

As part of Task C.35 (Calculation of Parameters for Inspection Planning and Evaluation) of the US Program of Technical Assistance to IAEA Safeguards, Pacific Northwest Laboratory has performed some quantitative analyses of IAEA inspection activities for mixed-oxide fuel fabrication facilities. There were four distinct efforts involved in this task. These were as follows: show the effect on a material balance verification of using two variables measurement methods in some strata; perform additional calculations for the reference facility described in STR-89; modify the INSPECT computer programs to be used as an after-inspection analysis tool, as well as a preinspection planning tool; provide written comments and explantations of text and graphs of the first draft of STR-89, Safeguards Considerations for Mixed-Oxide Fuel Element Fabrication Facilities, by W. Bahm, T. Shea, and D. Tolchenkov, System Studies Section, IAEA.

Reardon, P.T.; Mullen, M.F.

1982-08-01

334

Implementation Plans for a Systems Microbiology and Extremophile Research Facility  

SciTech Connect

Introduction Biological organisms long ago solved many problems for which scientists and engineers seek solutions. Microbes in particular offer an astonishingly diverse set of capabilities that can help revolutionize our approach to solving many important DOE problems. For example, photosynthetic organisms can generate hydrogen from light while simultaneously sequestering carbon. Others can produce enzymes that break down cellulose and other biomass to produce liquid fuels. Microbes in water and soil can capture carbon and store it in the earth and ocean depths. Understanding the dynamic interaction between living organisms and the environment is critical to predicting and mitigating the impacts of energy-production-related activities on the environment and human health. Collectively, microorganisms contain most of the biochemical diversity on Earth and they comprise nearly one-half of its biomass. They primary impact the planet by acting as catalysts of biogeochemical cycles; they capture light energy and fix CO2 in the worlds oceans, they degrade plant polymers and convert them to humus in soils, they weather rocks and facilitate mineral precipitation. Although the ability of selected microorganisms to participate in these processes is known, they rarely live in monoculture but rather function within communities. In spite of this, little is known about the composition of microbial communities and how individual species function within them. We lack an understanding of the nature of the individual organisms and their genes, how they interact to perform complex functions such as energy and materials exchange, how they sense and respond to their environment and how they evolve and adapt to environmental change. Understanding these aspects of microbes and their communities would be transformational with far-reaching impacts on climate, energy and human health. This knowledge would create a foundation for predicting their behavior and, ultimately, manipulating them to solve DOE problems. Recent advances in whole-genome sequencing for a variety of organisms and improvements in high-throughput instrumentation have contributed to a rapid transition of the biological research paradigm towards understanding biology at a systems level. As a result, biology is evolving from a descriptive to a quantitative, ultimately predictive science where the ability to collect and productively use large amounts of biological data is crucial. Understanding how the ensemble of proteins in cells gives rise to biological outcomes is fundamental to systems biology. These advances will require new technologies and approaches to measure and track the temporal and spatial disposition of proteins in cells and how networks of proteins and other regulatory molecules give rise to specific activities. The DOE has a strong interest in promoting the application of systems biology to understanding microbial function and this comprises a major focus of its Genomics:GTL program. A major problem in pursuing what has been termed “systems microbiology” is the lack of the facilities and infrastructure for conducting this new style of research. To solve this problem, the Genomics:GTL program has funded a number of large-scale research centers focused on either mission-oriented outcomes, such as bioenergy, or basic technologies, such as gene sequencing, high-throughput proteomics or the identification of protein complexes. Although these centers generate data that will be useful to the research community, their scientific goals are relatively narrow and are not designed to accommodate the general community need for advanced capabilities for systems microbiology research.

Wiley, H. S.

2009-04-20

335

Project Hanford management contract quality assurance program implementation plan for nuclear facilities  

SciTech Connect

During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

Bibb, E.K.

1997-10-15

336

CPP-603 underwater fuel storage facility site integrated stabilization management plan (SISMP). Volume I  

SciTech Connect

The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been developed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety Board (DNFSB) remediation in the Defense Nuclear Facilities Complex. To date, 622 spent nuclear fuel units have been moved from the CPP-603 north and middle water basins, leaving 743 units in the south basin to be relocated from the facility by December 31, 2000. Besides moving fuels from the CPP-603, in 1993 and 1994 more than 300 fuel storage yokes in the north and middle basins were redundantly rigged because of corrosion problems. More than 200 fuel transfers within the north and middle basins were also made to ensure proper spacing of the fuels, and 104 corroded cans containing spent space reactor fuel were repackaged underwater to prevent potential release of their contents. This document is provided to address the relocation activities for the remaining 743 units in the south basin into wet storage pools at building CPP-666 or into dry storage at the Irradiation Fuel Storage Facility (IFSF).

Wachs, G.W.; Blake, H.M.; Cottam, R.E.; Denney, R.D.; Shiffern, R.A.

1996-09-01

337

Long Range Facilities Planning and Design Implementation for Students with Disabilities: A Guide for New Jersey School Districts  

ERIC Educational Resources Information Center

The long range facilities planning (LRFP) process presents a wonderful opportunity for New Jersey's school districts to re-examine and strengthen their long term planning for educational adequacy in 21st century school facilities. It provides an opportunity for districts to work closely with the special education community to ensure that New…

Lowenkron, Ruth; Ponessa, Joan

2005-01-01

338

Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

NONE

1995-08-01

339

WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern  

SciTech Connect

This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-03-05

340

WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern  

SciTech Connect

his 2002 Facility Work Plan (FWP) has been prepared as required by Module VII,Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received onDecember 6, 2000 (NMED, 2000a). This February 2002 FWP describes the program-matic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the mostrecent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA)Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may beused for any SWMU or AOC (NMED, 1998). This accelerated approach is used toreplace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-03-05

341

A survey of emergency response planning as practiced in boiler/industrial furnace facilities burning hazard waste derived fuels  

SciTech Connect

Federal regulations require Boiler/Industrial Furnace (BIF) facilities which burn hazardous waste derived fuels (HWDF) to prepare contingency plans for dealing with on-site emergencies such as fires and explosions. Oklahoma environmental regulations broaden the scope of this planning to that of emergency response plans which include provisions for dealing with hazards that migrate off-site, such as hazardous materials releases. In developing specific guidelines to be used by permit applicants and reviewers in evaluating such response plans, a survey was conducted to identify current emergency response planning practices at BIF facilities burning HWDF. Contingency plans for 21 plants in 16 states were reviewed in detail, and it was concluded that: (1) the quality and completeness of plans varied greatly; (2) essentially all plans met minimum federal requirements, although to varying degrees of depth and detail; and (3) few plans included specific provisions for hazard assessment and response or for coordination with off-site agencies and affected communities; and (4) this planning gap could contribute to uncoordinated and ineffective response by supporting agencies, with unnecessary exposure of responders or the general population to potentially hazardous materials. Several exceptionally good plans addressed many planning considerations not required by federal regulations, and appeared to reflect the state-of-the-art in emergency planning at these facilities. These results support efforts to establish clear and specific emergency response planning guidelines for permit applicants and reviewers and to thereby ensure that adequate planning and coordination are achieved before operating permits are issued.

Johnson, D.L. [Univ. of Oklahoma, Oklahoma City, OK (United States); Sullivan, S.P.; Jones, G.W.

1996-07-01

342

Health Risk Assessment for Area 514 RCRA Closure  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL) is a USDOE research and development institution for science and technology applied to national security. The specific area that is the subject of this document, Area 514, was the location of active LLNL waste treatment facilities until November 2003, and the operations there were authorized under interim status. The site is being closed pursuant to the requirements of the Resource Conservation Recovery Act. The DTSC-approved ''Closure Plan for Area 514 Treatment and Storage Facility, LLNL 2004'', states clean closure concentrations for certain organic compounds, metals and metalloids. if all soil samples contained measured concentrations less than these levels, it was agreed that the site would meet the requirements for clean closure. However, if the samples had measured concentrations greater than the clean closure levels, a more detailed risk assessment could be prepared to evaluate the potential effects of the actual measured levels. Soil samples collected from 33 locations in Area 514 were analyzed for 37 constituents of potential concern, as identified by the Closure Plan. Many of these compounds and elements were not detected. However, 10 metals or metalloids were present at levels above the clean closure requirements, and 19 organic compounds were identified as contaminants of potential concern. Following the guidance in the Closure Plan, a health risk assessment is presented in this document to demonstrate the low level of potential health effects from the remaining constituents and to support clean closure of the site. Three types of hypothetical receptors were identified: an intrusive construction worker conducting trenching in the area, a bystander worker in a nearby building, and a future resident. Of the worker receptors, the intrusive construction worker was found to have the greater overall chronic exposure, with a theoretical calculated carcinogenic risk of 4 x 10{sup -8}, a chronic hazard index of 8 x 10{sup -3}, and an acute hazard index of 9 x 10{sup -1}. The estimated incremental cancer risk for the residential receptor, 1 x 10{sup -6}, was calculated by adjusting contaminant concentrations to account for background levels of metals at the Livermore LLNL site. When no adjustments for background concentrations are made, the estimated incremental cancer risk is 3 x 10{sup -6}. The chronic hazard index for the residential receptor, 2 x 10{sup -1}, was developed without accounting for background concentrations of metals. These values are all below levels associated with health concerns, and support the conclusion that further cleanup of the area is not necessary.

Gallegos, G M; Hall, L C

2005-05-26

343

Quality assurance project plan for the UMTRA technical assistance contractor hydrochemistry facility. Final report  

SciTech Connect

The Uranium Mill Tailings Remedial Action (UMTRA) hydrochemistry facility is used to perform a limited but important set of services for the UMTRA Project. Routine services include support of field-based hydrological and geochemical operations and water sampling activities. Less commonly, the hydrology and geochemistry staff undertake special studies and site characterization studies at this facility. It is also used to train hydrologists, geochemists, and groundwater sampling crews. A review of this Quality Assurance Project Plan (QAPP) shall be accomplished once each calendar year. This review will be targeted to be accomplished not sooner than 6 months and not later than 18 months after the last review.

NONE

1993-07-01

344

Site wide integration of the Rocky Flats closure project  

SciTech Connect

The prime contractor for the Rocky Flats Closure Project (RFCP), Kaiser-Hill, in concert with the Department of Energy--Rocky Flats Field Office (DOE-RFFO) has applied a fully integrated, life-cycle, critical path schedule and work planning system to manage the work that is required to close the Site. The closure of the Site is complex, in that it houses over 700 facilities, 19,600 kilograms of Special Nuclear Material (Plutonium and Uranium), and over 160,000 cubic meters of Transuranic, Low Level, and Hazardous Waste. The deactivation, decommissioning, decontaminating, and demolition of this large number of facilities, while at the same time accommodating difficult on-going activities, significantly increases the sophistication required in the planning process. The Rocky Flats team has overcome these difficulties by establishing a money oriented critical path process, to provide a least-cost avenue to supporting on-going activities and a line-of-balance process for production oriented activities. These processes, when integrated with a typical activity-based project planning system, guide the way to the shortest and most cost-effective course for the closure of the Rocky Flats Site.

Burdge, L.F.; Golan, P.

1998-06-01

345

An alternative format for Category I fuel cycle facility physical protection plans  

SciTech Connect

This document provides an alternative format for physical protection plans designed to meet the requirements of Title 10 of the Code of Federal Regulations, Sections 73.20, 73.45, and 73.46. These requirements apply to licensees who operate Category I fuel cycle facilities. Such licensees are authorized to use or possess a formula quantity of strategic special nuclear material. The format described is an alternative to that found under Regulatory Guide 5.52, Rev. 2 ``Standard Format and Content of a Licensee Physical Protection Plan for Strategic Special Nuclear Material at Fixed Sites (Other than Nuclear Power Plants).``

Dwyer, P.A.

1992-06-01

346

An alternative format for Category I fuel cycle facility physical protection plans  

SciTech Connect

This document provides an alternative format for physical protection plans designed to meet the requirements of Title 10 of the Code of Federal Regulations, Sections 73.20, 73.45, and 73.46. These requirements apply to licensees who operate Category I fuel cycle facilities. Such licensees are authorized to use or possess a formula quantity of strategic special nuclear material. The format described is an alternative to that found under Regulatory Guide 5.52, Rev. 2 Standard Format and Content of a Licensee Physical Protection Plan for Strategic Special Nuclear Material at Fixed Sites (Other than Nuclear Power Plants).''

Dwyer, P.A.

1992-06-01

347

Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

NONE

1995-01-01

348

Hanford tanks initiative work plan -- subsurface characterization to support the closure-readiness demonstration for tank 241AX104  

Microsoft Academic Search

This document presents a plan for subsurface investigation near 241-AX-104 Single-Shell tank. Objectives of the investigation are soil sampling and analyses (physical and chemical), local stratigraphic correlation, groundwater background characterization, and geophysical surveys. The primary purpose of the investigation is to supply physical and hydraulic properties for numerical modeling of vadose zone flow and transport.

Barnett

1996-01-01

349

Operations and Maintenance Concept Plan for the Immobilized High Level Waste (IHLW) Interim Storage Facility  

SciTech Connect

This O&M Concept looks at the future operations and maintenance of the IHLW/CSB interim storage facility. It defines the overall strategy, objectives, and functional requirements for the portion of the building to be utilized by Project W-464. The concept supports the tasks of safety basis planning, risk mitigation, alternative analysis, decision making, etc. and will be updated as required to support the evolving design.

JANIN, L.F.

2000-08-30

350

ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

351

Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab  

SciTech Connect

The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

2012-05-01

352

H-1NF: The Australian National Plasma Fusion Facility: Results and Upgrade Plans  

NASA Astrophysics Data System (ADS)

The H-1 National Plasma Fusion Research Facility will be upgraded to support the development of world-class diagnostic systems for application to international facilities in preparation for ITER. The upgrade will include new heating systems and deliver access to new magnetic configurations relevant to development of edge and divertor plasma diagnostics for next generation devices. The Facility plan will be presented, including target parameters and configurations, modelling results and the relation to the strategic plan for Australian fusion research, developed by the Australian ITER Forum. New results from some of the optical imaging and magnetic diagnostics underpinning the upgrade plans will be presented, including a new method of coherence imaging of ion temperatures and flows. Synchronous imaging of MHD mode structure using fast optical emission imaging promises to supplement data from two poloidal arrays of Mirnov coils and a precision step-scanned interferometer to provide detailed information about radial and toroidal mode structure. Comparisons with theory will include a CAS3D study.

Blackwell, B. D.; Howard, J.; Hole, M. J.; Pretty, D. G.; Read, J. W.; Punzmann, H.; Kumar, S. T. A.; McGann, M.; Dewar, R. L.; Nuehrenberg, C. A.

2009-11-01

353

Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, Nevada Test Site, Nevada  

SciTech Connect

This Closure Report documents the activities undertaken to close Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, according to the Federal Facility Agreement and Consent Order. Corrective Action Unit 335 was closed in accordance with the Nevada Division of Environmental Protection-approved Corrective Action Plan for Corrective Action Unit 335.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2003-06-01

354

Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

NONE

1996-03-01

355

Pre-Design Radiation Safety Plan for the Operational Test of the Pulsed Fast Neutron Analysis (PFNA) Cargo Inspection System at Ysleta Port of Entry Commercial Cargo Facility.  

National Technical Information Service (NTIS)

This document provides the radiation safety plan for the Pulsed Fast Neutron Analysis (PFNA) Cargo Inspection System facility at Ysleta Port of Entry Commercial Cargo Facility located in El Paso, Texas. It describes the PFNA facility and accelerator, disc...

J. Spacco S. Haimbach

2003-01-01

356

The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)  

SciTech Connect

The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration.

NONE

1994-12-01

357

Capacity planning for batch and perfusion bioprocesses across multiple biopharmaceutical facilities.  

PubMed

Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fed-batch or perfusion culture processes such as sequence-dependent changeover times, continuous culture constraints, and decoupled upstream and downstream operations that permit independent scheduling of each. Strategic inventory levels were accounted for by applying cost penalties when they were not met. A rolling time horizon methodology was utilized in conjunction with the MILP model and was shown to obtain solutions with greater optimality in less computational time than the full-scale model. The model was applied to an industrial case study to illustrate how the framework aids decisions regarding outsourcing capacity to third party manufacturers or building new facilities. The impact of variations on key parameters such as demand or titres on the optimal production plans and costs was captured. The analysis identified the critical ratio of in-house to contract manufacturing organization (CMO) manufacturing costs that led the optimization results to favor building a future facility over using a CMO. The tool predicted that if titres were higher than expected then the optimal solution would allocate more production to in-house facilities, where manufacturing costs were lower. Utilization graphs indicated when capacity expansion should be considered. © 2013 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:594-606, 2014. PMID:24376262

Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S

2014-05-01

358

Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2  

SciTech Connect

In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation`s generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO`s quality standards during the software maintenance phase. 8 refs., 1 tab.

Peterson, B.L.; Lundeen, A.S.

1996-02-01

359

Duct closure  

DOEpatents

A closure for an inclined duct having an open upper end and defining downwardly extending passageway. The closure includes a cap for sealing engagement with the open upper end of the duct. Associated with the cap are an array of vertically aligned plug members, each of which has a cross-sectional area substantially conforming to the cross-sectional area of the passageway at least adjacent the upper end of the passageway. The plug members are interconnected in a manner to provide for free movement only in the plane in which the duct is inclined. The uppermost plug member is attached to the cap means and the cap means is in turn connected to a hoist means which is located directly over the open end of the duct.

Vowell, Kennison L. (Canoga Park, CA)

1987-01-01

360

Guide to Assessing Patient Needs and Planning Nursing Care. A Reference for Nurses in Health Care Facilities.  

National Technical Information Service (NTIS)

Guidelines are presented for use by nurses in health care facilities in the assessment of patient needs and the development of nursing care plans. Nursing care is viewed as a continuing process of observing, evaluating, reporting, and recording physiologi...

M. Ayers M. E. Adams M. O'Boyle

1972-01-01

361

Transit. Planning, Intermodal Facilities, Management, and Marketing. Public Transit. Transportation Research Record. Journal of the Transportation Research Board No. 1735.  

National Technical Information Service (NTIS)

Partial Contents: Planning (Asking Transit Users About Transit-Oriented Design, Keeping Passenger Surveys Up to Date: A Fuzzy Approach); Intermodal Facilities (Moving Crowds in Chicago: Baseball and the Fourth of July, Yosemite Regional Transportation Str...

2000-01-01

362

77 FR 50165 - Escape and Evacuation Plans for Surface Coal Mines, Surface Facilities and Surface Work Areas of...  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF LABOR Mine Safety and Health Administration Escape and Evacuation Plans for Surface Coal Mines, Surface Facilities and Surface Work Areas of Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor....

2012-08-20

363

Contingency plan for the Old Hydrofracture Facility Tanks Sluicing Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee.  

National Technical Information Service (NTIS)

This revised contingency plan addresses potential scenarios involving the release of radioactively contaminated waste from the Old Hydrofracture Facility Tanks Contents Removal project to the environment. The tanks are located at the Oak Ridge National La...

1998-01-01

364

Closure: It's More than Just Lining Up  

ERIC Educational Resources Information Center

The value of effective lesson planning for optimized learning is a well researched and established concept in education. Although different formats exist for lesson planning, most contain common components, including a structured ending. One common term for a planned ending to a lesson is closure. Unfortunately, not all lessons are well planned

Duncan, Charles A.; Clemons, James M.

2012-01-01

365

Factors Associated with Increasing Nursing Home Closures  

PubMed Central

Purpose We determine the rate of nursing home closures for 7 years (1999–2005) and examine internal (e.g., quality), organizational (e.g., chain membership), and external (e.g., competition) factors associated with these closures. Design and Method The names of the closed facilities and dates of closure from state regulators in all 50 states were obtained. This information was linked to the Online Survey, Certification, and Reporting data, which contains information on internal, organizational, and market factors for almost all nursing homes in the United States. Results One thousand seven hundred and eighty-nine facilities closed over this time period (1999–2005). The average annual rate of closure was about 2 percent of facilities, but the rate of closure was found to be increasing. Nursing homes with higher rates of deficiency citations, hospital-based facilities, chain members, small bed size, and facilities located in markets with high levels of competition were more likely to close. High Medicaid occupancy rates were associated with a high likelihood of closure, especially for facilities with low Medicaid reimbursement rates. Implications As states actively debate about how to redistribute long-term care services/dollars, our findings show that they should be cognizant of the potential these decisions have for facilitating nursing home closures.

Castle, Nicholas G; Engberg, John; Lave, Judith; Fisher, Andrew

2009-01-01

366

Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2  

SciTech Connect

This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

Hall, L.R.

1995-05-30

367

PLANNING TOOLS FOR ESTIMATING RADIATION EXPOSURE AT THE NATIONAL IGNITION FACILITY  

SciTech Connect

A set of computational tools was developed to help estimate and minimize potential radiation exposure to workers from material activation in the National Ignition Facility (NIF). AAMI (Automated ALARA-MCNP Interface) provides an efficient, automated mechanism to perform the series of calculations required to create dose rate maps for the entire facility with minimal manual user input. NEET (NIF Exposure Estimation Tool) is a web application that combines the information computed by AAMI with a given shot schedule to compute and display the dose rate maps as a function of time. AAMI and NEET are currently used as work planning tools to determine stay-out times for workers following a given shot or set of shots, and to help in estimating integrated doses associated with performing various maintenance activities inside the target bay. Dose rate maps of the target bay were generated following a low-yield 10{sup 16} D-T shot and will be presented in this paper.

Verbeke, J; Young, M; Brereton, S; Dauffy, L; Hall, J; Hansen, L; Khater, H; Kim, S; Pohl, B; Sitaraman, S

2010-10-22

368

Calculation of parameters for inspection planning and evaluation: low enriched uranium conversion and fuel fabrication facilities  

SciTech Connect

As part of Task C.35 (Calculation of Parameters for Inspection Planning and Evaluation) of the US Program of Technical Assistance to IAEA Safeguards, Pacific Northwest Laboratory has performed some quantitative analyses of IAEA inspection activities at low-enriched uranium (LEU) conversion and fuel fabrication facilities. This report presents the results and conclusions of those analyses. Implementation of IAEA safeguards at LEU conversion and fuel fabrication facilities must take into account a variety of practical problems and constraints. One of the key concerns is the problem of flow verification, especially product verification. The objective of this report is to help put the problem of flow verification in perspective by presenting the results of some specific calculations of inspection effort and probability of detection for various product measurement strategies. In order to provide quantitative information about the advantages and disadvantages of the various strategies, eight specific cases were examined.

Reardon, P.T.; Mullen, M.F.; Harms, N.L.

1981-02-01

369

Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility  

NASA Technical Reports Server (NTRS)

The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

1986-01-01

370

Emergency planning lessons learned from TMI-2: Potential applications for fuel facilities  

SciTech Connect

Proposed American National Standard on Nuclear Criticality Accident Emergency PLanning and Response, ANSI/ANS-8.23, is being prepared to provide guidance on the important subject area indicated by it`s title. The accident at Three Mile Island unit 2 (TMI-2) reactor provided many valuable lessons to be learned in emergency preparedness. A workshop conducted by GPU Nuclear Corporation, the company operating TMI-2, identified a number of lessons, several of which provide insights for nuclear facilities as described in this paper.

Knief, R.A. [Ogden Environmental and Energy Services, Albuquerque, NM (United States)

1995-12-31

371

Review of past experiments at the FELIX facility and future plans for ITER applications  

SciTech Connect

FELIX is an experimental test facility at Argonne National Laboratory (ANL) for the study of electromagnetic effects in first wall, blanket, shield systems of fusion reactors. From 1983 to 1986 five major test series, including static and dynamic tests, were conducted and are reviewed in this paper. The dynamic tests demonstrated an important coupling effect between eddy currents and motion in a conducting structure. Recently the US has proposed to the ITER Joint Central Team to use FELIX for testing mock-up components to study electromagnetic effects encountered during plasma disruptions and other off-normal events. The near and long term plans for ITER applications are discussed.

Hua, T.Q.; Turner, L.R.

1993-10-01

372

Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0  

SciTech Connect

This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

Alfred Wickline

2008-01-01

373

Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1997  

SciTech Connect

This Mitigation Action Plan Annual Report (MAPAR) has been prepared by the US Department of Energy (DOE) as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP). This MAPAR provides a status on specific DARHT facility design- and construction-related mitigation actions that have been initiated in order to fulfill DOE`s commitments under the DARHT MAP. The functions of the DARHT MAP are to (1) document potentially adverse environmental impacts of the Phased Containment Option delineated in the Final EIS, (2) identify commitments made in the Final EIS and ROD to mitigate those potential impacts, and (3) establish Action Plans to carry out each commitment (DOE 1996). The DARHT MAP is divided into eight sections. Sections 1--5 provide background information regarding the NEPA review of the DARHT project and an introduction to the associated MAP. Section 6 references the Mitigation Action Summary Table which summaries the potential impacts and mitigation measures; indicates whether the mitigation is design-, construction-, or operational-related; the organization responsible for the mitigation measure; and the projected or actual completion data for each mitigation measure. Sections 7 and 8 discuss the Mitigation Action Plan Annual Report and Tracking System commitment and the Potential Impacts, Commitments, and Action Plans respectively. Under Section 8, potential impacts are categorized into five areas of concern: General Environment, including impacts to air and water; Soils, especially impacts affecting soil loss and contamination; Biotic Resources, especially impacts affecting threatened and endangered species; Cultural/Paleontological Resources, especially impacts affecting the archeological site known as Nake`muu; and Human Health and Safety, especially impacts pertaining to noise and radiation. Each potential impact includes a brief statement of the nature of the impact and its cause(s). The commitment made to mitigate the potential impact is identified and the Action Plan for each commitment is described in detail, with a description of actions to be taken, pertinent time frames for the actions, verification of mitigation activities, and identification of agencies/organizations responsible for satisfying the requirements of the commitment.

Haagenstad, H.T.

1998-01-15

374

Planning considerations for a Mars Sample Receiving Facility: summary and interpretation of three design studies.  

PubMed

It has been widely understood for many years that an essential component of a Mars Sample Return mission is a Sample Receiving Facility (SRF). The purpose of such a facility would be to take delivery of the flight hardware that lands on Earth, open the spacecraft and extract the sample container and samples, and conduct an agreed-upon test protocol, while ensuring strict containment and contamination control of the samples while in the SRF. Any samples that are found to be non-hazardous (or are rendered non-hazardous by sterilization) would then be transferred to long-term curation. Although the general concept of an SRF is relatively straightforward, there has been considerable discussion about implementation planning. The Mars Exploration Program carried out an analysis of the attributes of an SRF to establish its scope, including minimum size and functionality, budgetary requirements (capital cost, operating costs, cost profile), and development schedule. The approach was to arrange for three independent design studies, each led by an architectural design firm, and compare the results. While there were many design elements in common identified by each study team, there were significant differences in the way human operators were to interact with the systems. In aggregate, the design studies provided insight into the attributes of a future SRF and the complex factors to consider for future programmatic planning. PMID:19845446

Beaty, David W; Allen, Carlton C; Bass, Deborah S; Buxbaum, Karen L; Campbell, James K; Lindstrom, David J; Miller, Sylvia L; Papanastassiou, Dimitri A

2009-10-01

375

Weapons of mass destruction events with contaminated casualties: effective planning for health care facilities.  

PubMed

Biological and chemical terrorism is a growing concern for the emergency preparedness community. While health care facilities (HCFs) are an essential component of the emergency response system, at present they are poorly prepared for such incidents. The greatest challenge for HCFs may be the sudden presentation of large numbers of contaminated individuals. Guidelines for managing contaminated patients have been based on traditional hazardous material response or military experience, neither of which is directly applicable to the civilian HCF. We discuss HCF planning for terrorist events that expose large numbers of people to contamination. Key elements of an effective HCF response plan include prompt recognition of the incident, staff and facility protection, patient decontamination and triage, medical therapy, and coordination with external emergency response and public health agencies. Controversial aspects include the optimal choice of personal protective equipment, establishment of patient decontamination procedures, the role of chemical and biological agent detectors, and potential environmental impacts on water treatment systems. These and other areas require further investigation to improve response strategies. PMID:10634341

Macintyre, A G; Christopher, G W; Eitzen, E; Gum, R; Weir, S; DeAtley, C; Tonat, K; Barbera, J A

2000-01-12

376

Regional health care planning: a methodology to cluster facilities using community utilization patterns  

PubMed Central

Background Community-based health care planning and regulation necessitates grouping facilities and areal units into regions of similar health care use. Limited research has explored the methodologies used in creating these regions. We offer a new methodology that clusters facilities based on similarities in patient utilization patterns and geographic location. Our case study focused on Hospital Groups in Michigan, the allocation units used for predicting future inpatient hospital bed demand in the state’s Bed Need Methodology. The scientific, practical, and political concerns that were considered throughout the formulation and development of the methodology are detailed. Methods The clustering methodology employs a 2-step K-means + Ward’s clustering algorithm to group hospitals. The final number of clusters is selected using a heuristic that integrates both a statistical-based measure of cluster fit and characteristics of the resulting Hospital Groups. Results Using recent hospital utilization data, the clustering methodology identified 33 Hospital Groups in Michigan. Conclusions Despite being developed within the politically charged climate of Certificate of Need regulation, we have provided an objective, replicable, and sustainable methodology to create Hospital Groups. Because the methodology is built upon theoretically sound principles of clustering analysis and health care service utilization, it is highly transferable across applications and suitable for grouping facilities or areal units.

2013-01-01

377

Final master work plan : environmental investigations at former CCC/USDA facilities in Kansas, 2002 revision.  

SciTech Connect

The Commodity Credit Corporation (CCC) of the U.S. Department of Agriculture (USDA) has entered into an interagency agreement with the U.S. Department of Energy (DOE) under which Argonne National Laboratory provides technical assistance for hazardous waste site characterization and remediation for the CCC/USDA. Carbon tetrachloride is the contaminant of primary concern at sites in Kansas where former CCC/USDA grain storage facilities were located. Argonne applies its QuickSite(reg sign) Expedited Site Characterization (ESC) approach to these former facilities. The QuickSite environmental site characterization methodology is Argonne's proprietary implementation of the ESC process (ASTM 1998). Argonne has used this approach at several former CCC/USDA facilities in Kansas, including Agenda, Agra, Everest, and Frankfort. The Argonne ESC approach revolves around a multidisciplinary, team-oriented approach to problem solving. The basic features and steps of the QuickSite methodology are as follows: (1) A team of scientists with diverse expertise and strong field experience is required to make the process work. The Argonne team is composed of geologists, geochemists, geophysicists, hydrogeologists, chemists, biologists, engineers, computer scientists, health and safety personnel, and regulatory staff, as well as technical support staff. Most of the staff scientists are at the Ph.D. level; each has on average, more than 15 years of experience. The technical team works together throughout the process. In other words, the team that plans the program also implements the program in the field and writes the reports. More experienced scientists do not remain in the office while individuals with lesser degrees or experience carry out the field work. (2) The technical team reviews, evaluates, and interprets existing data for the site and the contaminants there to determine which data sets are technically valid and can be used in initially designing the field program. A basic mistake sometimes made in the site characterization process is failure to use technically sound available data to form working hypotheses on hydrogeology, contaminant distribution, etc. for initial testing. (3) After assembling and interpreting existing data for the site, the entire technical team visits the site to identify as a group the site characteristics that might prohibit or enhance any particular technological approach. Logistic and community constraints are also identified at this point. (4) After the field visit, the team selects a suite of technologies appropriate to the problem and completes the design of the field program. No one technique works well at all sites, and a suite of techniques is necessary to delineate site features fully. In addition, multiple technologies are employed to increase confidence in conclusions about site features. Noninvasive and minimally invasive technologies are emphasized to minimize risk to the environment, the community, and the staff. In no case is the traditional approach of installing a massive number of monitoring wells followed. A dynamic work plan that outlines the program is produced for the sponsoring and regulatory agencies. The word ''dynamic'' is emphasized because the work plan is viewed as a guide, subject to modification, for the site characterization activity, rather than a document that is absolute and unchangeable. Therefore, the health and safety plan and the quality assurance/quality control plan must be broad and encompass all possible alterations to the plan. The cooperation of the regulating agency is essential in successful implementation of this process. The sponsoring and regulatory agencies are notified if significant changes to the site-specific work plan are necessary. (5) The entire team participates in the technical field program. Several technical activities are undertaken simultaneously. These may range from different surface geophysics investigations to vegetation sampling. Data from the various activities are reduced and interpreted each day by the technical staff. Various computer prog

Burton, J. C.; Environmental Research

2003-01-23

378

Hanford facility dangerous waste permit application, general information portion  

SciTech Connect

The `Hanford Facility Dangerous Waste Permit Application` is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit- Specific Portion. The scope of the General Information Portion includes information that could be used to discuss operating units, units undergoing closure, or units being dispositioned through other options. Documentation included in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units. A checklist indicating where information is contained in the General Information Portion, in relation to the Washington State Department of Ecology guidance documentation, is located in the Contents Section. The intent of the General Information Portion is: (1) to provide an overview of the Hanford Facility; and (2) to assist in streamlining efforts associated with treatment, storage, and/or disposal unit-specific Part B permit application, preclosure work plan, closure work plan, closure plan, closure/postclosure plan, or postclosure permit application documentation development, and the `Hanford Facility Resource Conservation and Recovery Act Permit` modification process. Revision 2 of the General Information Portion of the `Hanford Facility Dangerous Waste Permit Application` contains information current as of May 1, 1996. This document is a complete submittal and supersedes Revision 1.

Price, S.M., Westinghouse Hanford

1996-07-29

379

Acceptance inspection plan 105KE Facility modifications for fuel retrieval subproject  

SciTech Connect

The acceptance inspection of construction by Fluor Daniel Hanford (FDH) is performed to provide assurance that fabrication, construction, and installation are in accordance with approved contract documents. Approved contract documents used to perform inspections may include specifications, drawings, and contractor submittals such as fabrication drawings, procedures, etc. The amount or degree of inspection activity is tailored to the project as determined by the project team so that the effort and cost expended are commensurate with the importance of the facility in terms of function and safety. Inspections are documented to provide verification of the acceptability of the work performed. This document identifies the inspections and documentation forms to be provided. It is prepared and implemented with the understanding that the construction contractor is fully responsible for compliance with contract documents and for the quality of work performed. Inspections performed are in accordance with approved procedures. The Manager of Acceptance Inspection is responsible for the implementation of this plan and assignment of personnel for the work. Inspections are conducted by personnel who are qualified and certified, to perform their assigned task. The Acceptance Inspection Plan is organized in the Construction Specification Institute (CSI) format to cross reference design specification sections with sections of the AI Plan. In each AI Plan section the applicable specification section subject will be identified followed by the appropriate inspection requirements. General surveillances will be listed when applicable. Acceptance Inspection Reports are provided to document inspections not documented on a test report (i.e., Soil Test Data, Concrete Test Report, NDE/Weld Record, Leak/Pressure Test Certification, Backflow Device Test Report, Nonconformance Report, Deficiency Report, and/or Contractors testing forms).

Shen, E.J.

1998-01-09

380

Acceptance inspection plan 105KW Facility modifications for fuel retrieval subproject  

SciTech Connect

The acceptance inspection of construction by Fluor Daniel Hanford (FDH) is performed to provide assurance that fabrication, construction, and installation are in accordance with approved contract documents. Approved contract documents used to perform inspections may include specifications, drawings, and contractor submittals such as fabrication drawings, procedures, etc. The amount or degree of inspection activity is tailored to the project as determined by the project team so that the effort and cost expended are commensurate with the importance of the facility in terms of function and safety. Inspections are documented to provide verification of the acceptability of the work performed. This document identifies the inspections and documentation forms to be provided. It is prepared and implemented with the understanding that the construction contractor is fully responsible for compliance with contract documents and for the quality of.work performed. Inspections performed are in accordance with approved procedures. The Manager of Acceptance Inspection is responsible for the implementation of this plan and assignment of personnel for the work. Inspections are conducted by personnel who are qualified and certified to perform their assigned task. The Acceptance Inspection Plan is organized in the Construction Specification Institute (CSI) format to cross reference design specification sections with sections of the AI Plan. In each AI Plan section the applicable specification section subject will be identified followed by the appropriate inspection requirements. General surveillances will be listed when applicable. Acceptance Inspection Reports are provided to document inspections not documented on a test report (i.e., Soil Test Data, Concrete Test Report, NDE/Weld Record, Leak/Pressure Test Certification, Backflow Device Test Report, Nonconformance Report, Deficiency Report, and/or Contractors testing forms).

Shen, E.J.

1998-01-09

381

Delayed Macular Hole Closure  

PubMed Central

Purpose The presented case raises questions regarding the favorable scheduling of planned postoperative care and the ideal observation interval to decide for reoperations in macular hole surgery. Furthermore a discussion about the use of short- and long-acting gas tamponades in macular hole surgery is encouraged. Methods We present an interventional case report and a short review of the pertinent literature. Results We report a case of spontaneous delayed macular hole closure after vitreoretinal surgery had been performed initially without the expected success. A 73-year-old male Caucasian patient presented at our clinic with a stage 2 macular hole in his left eye. He underwent 23-gauge pars plana vitrectomy and internal limiting membrane peeling with a 20% C2F6-gas tamponade. Sixteen days after the procedure, an OCT scan revealed a persistent stage 2 macular hole, and the patient was scheduled for reoperation. Surprisingly, at the date of planned surgery, which was another 11 days later, the macular hole had resolved spontaneously without any further intervention. Conclusions So far no common opinion exists regarding the use of short- or long-acting gas in macular hole surgery. Our case of delayed macular hole closure after complete resorption of the gas tamponade raises questions about the need and duration of strict prone positioning after surgery. Furthermore short-acting gas might be as efficient as long-acting gas. We suggest to wait with a second intervention at least 4 weeks after the initial surgery, since a delayed macular hole closure is possible.

Distelmaier, Peter; Meyer, Linda M.; Fischer, Marie T.; Philipp, Sebastian; Paquet, Patrick; Mammen, Antje; Haller, Katharina; Schonfeld, Carl-Ludwig

2014-01-01

382

Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

SciTech Connect

This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

NSTec Environmental Restoration

2008-01-01

383

D-Side: A Facility and Workforce Planning Group Multi-criteria Decision Support System for Johnson Space Center  

NASA Technical Reports Server (NTRS)

"To understand and protect our home planet, to explore the universe and search for life, and to inspire the next generation of explorers" is NASA's mission. The Systems Management Office at Johnson Space Center (JSC) is searching for methods to effectively manage the Center's resources to meet NASA's mission. D-Side is a group multi-criteria decision support system (GMDSS) developed to support facility decisions at JSC. D-Side uses a series of sequential and structured processes to plot facilities in a three-dimensional (3-D) graph on the basis of each facility alignment with NASA's mission and goals, the extent to which other facilities are dependent on the facility, and the dollar value of capital investments that have been postponed at the facility relative to the facility replacement value. A similarity factor rank orders facilities based on their Euclidean distance from Ideal and Nadir points. These similarity factors are then used to allocate capital improvement resources across facilities. We also present a parallel model that can be used to support decisions concerning allocation of human resources investments across workforce units. Finally, we present results from a pilot study where 12 experienced facility managers from NASA used D-Side and the organization's current approach to rank order and allocate funds for capital improvement across 20 facilities. Users evaluated D-Side favorably in terms of ease of use, the quality of the decision-making process, decision quality, and overall value-added. Their evaluations of D-Side were significantly more favorable than their evaluations of the current approach. Keywords: NASA, Multi-Criteria Decision Making, Decision Support System, AHP, Euclidean Distance, 3-D Modeling, Facility Planning, Workforce Planning.

Tavana, Madjid

2005-01-01

384

Physics Goals for the Planned Next Linear Collider Engineering Test Facility  

NASA Astrophysics Data System (ADS)

The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

Raubenheimer, T. O.

2001-10-01

385

River Corridor Cleanup Contract Fiscal Year 2006 Detailed Work Plan: D4 Project/Reactor ISS Closure Projects Field Remediation Project Waste Operations Project End State and Final Closure Project Mission/General Support, Volume 2  

SciTech Connect

The Hanford Site contains many surplus facilities and waste sites that remain from plutonium production activities. These contaminated facilities and sites must either be stabilized and maintained, or removed, to prevent the escape of potentially hazardous contaminants into the environment and exposure to workers and the public.

Project Integration

2005-09-26

386

Navigation and Vessel Inspection Circular No. 7-92. Interim Guidelines for the Development and Review of Response Plans for Marine Transportation-Related Facilities Including Deepwater Ports.  

National Technical Information Service (NTIS)

The purpose of this circular is to provide guidance on the development and review of response plans for marine transportation-related facilities, including deepwater ports, certain onshore facilities, marinas, tank trucks, and railroad tank cars, as requi...

1992-01-01

387

Simulation of cryogenic He spills as basis for planning of experimental campaign in the EVITA facility  

NASA Astrophysics Data System (ADS)

Code validation activities have been promoted inside the European fusion development agreement (EFDA) to test the capability of codes in simulating accident phenomena in fusion facilities and, specifically, in the International thermonuclear experimental reactor (ITER). This work includes a comparison between three different computer codes (CONSEN, MAGS and MELCOR) and one analytical model (ITER Model) in simulating cryogenic helium releases into the vacuum vessel (VV) which contains hot structures. The scope was the evaluation of the transient pressure inside the VV. The results will be used to design a vent duct (equivalent diameter, length and roughness) to allow pressure relief for the protection of the VV, which has a maximum design pressure of 200 kPa. The model geometry is a simplified scheme preserving the main features of the ITER design. Based on the results of the simulations, a matrix of experiments was developed to validate the calculated results and to design the vent duct for the ITER VV. The experiments are planned to be performed in the EVITA test facility, located in the CEA Cadarache research centre (France).

Caruso, G.; Bartels, H. W.; Iseli, M.; Meyder, R.; Nordlinder, S.; Pasler, V.; Porfiri, M. T.

2006-01-01

388

Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Team  

SciTech Connect

The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfilll our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.

de Supinski, Bronis R. [Lawrence Livermore National Laboratory (LLNL); Alam, Sadaf R [ORNL; Bailey, David [Lawrence Berkeley National Laboratory (LBNL); Carrington, Laura [University of California, San Diego; Daley, Christopher [University of Chicago; Dubey, Anshu [University of Chicago; Gamblin, Todd [Lawrence Livermore National Laboratory (LLNL); Gunter, Dan [Lawrence Berkeley National Laboratory (LBNL); Hovland, Paul [Argonne National Laboratory (ANL); Jagode, Heike [ORNL; Karavanic, Karen [Portland State University; Marin, Gabriel [ORNL; Mellor-Crummey, John [Rice University; Moore, Shirley [University of Tennessee, Knoxville (UTK); Norris, Boyana [Argonne National Laboratory (ANL); Oliker, Leonid [Lawrence Berkeley National Laboratory (LBNL); Olschanowsky, Cathy [San Diego Supercomputer Center; Roth, Philip C [ORNL; Schulz, Martin [Lawrence Livermore National Laboratory (LLNL); Shende, Sameer [University of Oregon; Snavely, Allan [University of California, San Diego; Spea, Wyatt [University of Oregon; Tikir, Mustafa [San Diego Supercomputer Center; Vetter, Jeffrey S [ORNL; Worley, Patrick H [ORNL; Wright, Nicholas [San Diego Supercomputer Center

2009-01-01

389

Chestnut Ridge Sediment Disposal Basin (D-025): Summary of closure under Rules Governing Hazardous Waste Management in Tennessee  

SciTech Connect

On February 29, 1988, the Revised Closure Plan for Chestnut Ridge Sediment Disposal Basin,'' Y/TS-390 (Reference 1) was submitted to the United States Department of Energy (DOE) for review and transmittal to the Tennessee Department of Health and Environment (TDHE). The closure activities described in the closure plan have been performed. The purpose of this document is to summarize the closure activities for the Chestnut Ridge Sediment Disposal (CRSDB). The closure of CRSDB is a final closure. The Chestnut Ridge Sediment Disposal Basin (CRSDB), Unit D-025, was an unlined, man-made sediment disposal facility on Chestnut Ridge, south of New Hope Pond (NHP). The CRSDB was constructed during 1972--73 for the disposal of sediments hydraulically dredged from NHP. It was designed to hold approximately 30,000 cubic yards of sediments. Since 1973, the basin had been used for the periodic disposal of sediments excavated from NHP and its appurtenant structures. NHP has previously received discharges form RCRA-related waste streams. 19 refs., 3 figs., 1 tab.

Stone, J.E.

1989-07-01

390

Technical Approach and Plan for Transitioning Spent Nuclear Fuel (SNF) Project Facilities to the Environmental Restoration Program  

SciTech Connect

This document describes the approach and process in which the 100-K Area Facilities are to be deactivated and transitioned over to the Environmental Restoration Program after spent nuclear fuel has been removed from the K Basins. It describes the Transition Project's scope and objectives, work breakdown structure, activity planning, estimated cost, and schedule. This report will be utilized as a planning document for project management and control and to communicate details of project content and integration.

SKELLY, W.A.

1999-10-06

391

Mission planning and scheduling concept for the Advanced X-ray Astrophysics Facility (AXAF)  

NASA Technical Reports Server (NTRS)

Projected for launch in the latter part of 1998, the Advanced X-ray Astrophysics Facility (AXAF), the third satellite in the Great Observatory series, promises to dramatically open the x-ray sky as the Hubble and Compton observatories have done in their respective realms. Unlike its companions, however, AXAF will be placed in a high altitude, highly elliptical orbit (10,000 x 100,000 km), and will therefore be subject to its own unique environment, spacecraft and science instrument constraints and communication network interactions. In support of this mission, ground operations personnel have embarked on the development of the AXAF Offline System (OFLS), a body of software divided into four basic functional elements: (1) Mission Planning and Scheduling, (2) Command Management, (3) Altitude Determination and Sensor Calibration and (4) Spacecraft Support and Engineering Analysis. This paper presents an overview concept for one of these major elements, the Mission Planning and Scheduling subsystem (MPS). The derivation of this concept is described in terms of requirements driven by spacecraft and science instrument characteristics, orbital environment and ground system capabilities. The flowdown of these requirements through the systems analysis process and the definition of MPS interfaces has resulted in the modular grouping of functional subelements depicted in the design implementation approach. The rationale for this design solution is explained and capabilities for the initial prototype system are proposed from the user perspective.

Newhouse, M.; Guffin, O. T.

1994-01-01

392

Closure Report for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada  

SciTech Connect

The purpose of this closure report is to document that the closure of CAU 322 complied with the Nevada Department of Environmental Protection-approved Corrective Action Plan closure requirements. The closure activities specified in the Corrective Action Plan were based on the approved corrective action alternatives presented in the CAU 322 Corrective Action Decision Document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2006-06-01

393

33 CFR 154.1325 - Response plan development and evaluation criteria for facilities that handle, store, or transport...  

Code of Federal Regulations, 2010 CFR

...handle, store, or transport other non-petroleum oils. 154.1325 Section 154.1325...BULK Response Plans for Other Non-Petroleum Oil Facilities § 154.1325 Response...handle, store, or transport other non-petroleum oils. (a) An owner or...

2009-07-01

394

33 CFR 154.1325 - Response plan development and evaluation criteria for facilities that handle, store, or transport...  

Code of Federal Regulations, 2010 CFR

...handle, store, or transport other non-petroleum oils. 154.1325 Section 154.1325...BULK Response Plans for Other Non-Petroleum Oil Facilities § 154.1325 Response...handle, store, or transport other non-petroleum oils. (a) An owner or...

2010-07-01

395

33 CFR 154.1325 - Response plan development and evaluation criteria for facilities that handle, store, or transport...  

Code of Federal Regulations, 2013 CFR

...handle, store, or transport other non-petroleum oils. 154.1325 Section 154.1325...BULK Response Plans for Other Non-Petroleum Oil Facilities § 154.1325 Response...handle, store, or transport other non-petroleum oils. (a) An owner or...

2013-07-01

396

FAQs about Facilities: Practical Tips for Planning Renovations and New School Library Media Centers.  

ERIC Educational Resources Information Center

Answers frequently asked questions (FAQs) related to planning for renovating or building school library media centers (SLMCs). Topics include the role of the school library media specialist, advance planning, importance of a written long-range plan, library consultants, courses on planning, design compromises, planning resources, professional…

Lenk, Mary Anne

2002-01-01

397

STREAMLINED APPROACH FOR ENVIRONMENTAL RESTORATION PLAN FOR CORRECTIVE ACTION UNIT 116: AREA 25 TEST CELL C FACILITYNEVADA TEST SITE, NEVADA  

SciTech Connect

This Streamlined Approach for Environmental Restoration Plan identifies the activities required for the closure of Corrective Action Unit 116, Area 25 Test Cell C Facility. The Test Cell C Facility is located in Area 25 of the Nevada Test Site approximately 25 miles northwest of Mercury, Nevada.

NONE

2006-07-01

398

The Removal Action Work Plan for CPP-603A Basin Facility  

SciTech Connect

This revised Removal Action Work Plan describes the actions to be taken under the non-time-critical removal action recommended in the Action Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center, as evaluated in the Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center. The regulatory framework outlined in this Removal Action Work Plan has been modified from the description provided in the Engineering Evaluation/Cost Analysis (DOE/NE-ID-11140, Rev. 1, August 2004). The modification affects regulation of sludge removal, treatment, and disposal, but the end state and technical approaches have not changed. Revision of this document had been delayed until the basin sludge was successfully managed. This revision (Rev. 1) has been prepared to provide information that was not previously identified in Rev. 0 to describe the removal, treatment, and disposal of the basin water at the Idaho National Laboratory (INL) CERCLA Disposal Facility evaporation ponds and fill the basins with grout/controlled low strength material (CLSM) was developed. The Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center - conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act - evaluated risks associated with deactivation of the basins and alternatives for addressing those risks. The decision to remove and dispose of the basin water debris not containing uranium grouted in place after the sludge has been removed and managed under the Hazardous Waste Management Act/Resource Conservation and Recovery Act has been documented in the Act Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center.

B. T. Richards

2006-06-05

399

Repository Closure and Sealing Approach  

SciTech Connect

The scope of this analysis will be to develop the conceptual design of the closure seals and their locations in the Subsurface Facilities. The design will be based on the recently established program requirements for transitioning to the Site Recommendation (SR) design as outlined by ''Approach to Implementing the Site Recommendation Baseline'' (Stroupe 2000) and the ''Monitored Geologic Repository Project Description Document'' (CRWMS M&O 1999b). The objective of this analysis will be to assist in providing a description for the Subsurface Facilities System Description Document, Section 2 and finally to document any conclusions reached in order to contribute and provide support to the SR. This analysis is at a conceptual level and is considered adequate to support the SR design. The final closure barriers and seals for the ventilation shafts, and the north and south ramps will require these openings to be permanently sealed to limit excessive air and water inflows and prevent human intrusion. The major tasks identified with closure in this analysis are: (1) Developing the overall subsurface seal layout and identifying design and operational interfaces for the Subsurface Facilities. (2) Summarizing the general site conditions and general rock characteristic with respect to seal location and describing the seal selected. (3) Identify seal construction materials, methodology of construction and strategic locations including design of the seal and plugs. (4) Discussing methods to prevent human intrusion.

A.T. Watkins

2000-06-28

400

Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee  

SciTech Connect

The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The HASP is written to make use of past experience and best management practices to eliminate or minimize hazards to workers or the environment from events such as fires, falls, mechanical hazards, or any unplanned release to the environment.

Flynn, N.C. Bechtel Jacobs

2008-04-21

401

The National Ignition Facility Status and Plans for Laser Fusion and High Energy Density Experimental Studies  

NASA Astrophysics Data System (ADS)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory is 192-beam, 1.8 Megajoule, 500 Terawatt, 351 nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program to ensure the country’s nuclear deterrent without underground nuclear testing. The experimental program for NIF will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% of the shots will be dedicated to basic science research. Additionally, most of the shots on NIF will be conducted in unclassified configurations that will allow participation from the greater scientific community in planned applied physics experiments. This presentation will provide a look at the status of the construction project as well as a description of the scientific uses of NIF. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Wuest, Craig R.

2001-03-01

402

Brookhaven Double MP Facility - recent developments and plans for the future  

SciTech Connect

The Brookhaven Tandem Van de Graaff facility consists of two model MP accelerators which have been extensively modified and improved over the years. Recent accelerator developments leading to a maximum terminal voltage of 16.5 MV for one of the machines include an increase of the active length of the acceleration tubes, installation of vacuum pumps at intermediate field-free sections, installation of smooth high-voltage-terminal shields and the implementation of a system for individual acceleration-tube conditioning. A new cylindrical voltage-divider resistor-shield arrangement has been tested and will be installed. A novel 4-stage mode of operating the tandems provides variable low-energy highly-charged heavy ions used for atomic-physics experiments. This type of operation has been improved by the addition of a removable gridded lens at the exit of the last acceleration tube. Plans for the future include the production of relativistic heavy ions by injecting beams from the tandems into the AGS 30-GeV proton accelerator at BNL either directly or via a tandem booster cyclotron. For this purpose, a high-intensity pulsed-beam system was developed and tested.

Thieberger, P.

1983-01-01

403

Risk and Performance Analyses Supporting Closure of WMA C at the Hanford Site in Southeast Washington  

SciTech Connect

The Office of River Protection under the U.S. Department of Energy (DOE) is pursuing closure of the Single-Shell Tank (SST) Waste Management Area 0NMA) C as stipulated by the Hanford Federal Facility Agreement and Consent Order (HFFACO) under federalrequirements and work tasks will be done under the State-approved closure plans and permits. An initial step in meeting the regulatory requirements is to develop a baseline risk assessment representing current conditions based on available characterization data and information collected at the WMA C location. The baseline risk assessment will be supporting a Resource Conservation and Recovery Act of 1976 (RCRA) Field Investigation (RFI)/Corrective Measures Study (CMS) for WMA closure and RCRA corrective action. Complying with the HFFACO conditions also involves developing a long-term closure Performance Assessment (PA) that evaluates human health and environmental impacts resulting from radionuclide inventories in residual wastes remaining in WMA C tanks and ancillary equipment. This PAis being developed to meet the requirements necessary for closure authorization under DOE Order 435.1 and Washington State Hazardous Waste Management Act. To meet the HFFACO conditions, the long-term closure risk analysis will include an evaluation of human health and environmental impacts from hazardous chemical inventories along with other performance Comprehensive Environmental Response, Compensation, and Liability Act Appropriate and Applicable Requirements (CERCLA ARARs) in residualwastes left in WMA C facilities after retrieval and removal. This closure risk analysis is needed to needed to comply with the requirements for permitted closure. Progress to date in developing a baseline risk assessment of WMA C has involved aspects of an evaluation of soil characterization and groundwater monitoring data collected as a part of the RFI/CMS and RCRA monitoring. Developing the long-term performance assessment aspects has involved the construction of detailed numericalmodels of WMA C using the Subsurface Transport Over Multiple Phases (STOMP(C)) computer code, the development of a technical approach for abstraction of a range of representative STOMP(C) simulations into a system-level modelbased on the GoldSim0 system-levelmodelsoftware. The STOMP(C)-based models will be used to evaluate local-scale impacts and closed facility performance over a sufficient range of simulations to allow for development of the system-level model of the WMA C. The GoldSim0-based system-level model will be used to evaluate overall sensitivity of modeled parameters and the estimate the uncertainty in potentialfuture impacts from a closed WMA C facility.

Eberlein, Susan J.; Bergeron, Marcel P.; Kemp, Christopher J.

2013-11-11

404

78 FR 21846 - Approval and Promulgation of State Plans for Designated Facilities and Pollutants: Connecticut...  

Federal Register 2010, 2011, 2012, 2013

...Plans? V. Why did Connecticut DEEP revise the MWC State Plan? VI...is EPA approving Connecticut DEEP's revised State Plan? VIII...bioaccumulates through the food web. Serious human health effects...What history does Connecticut DEEP have with MWC state plans?...

2013-04-12

405

Review of Crack Closure.  

National Technical Information Service (NTIS)

A comprehensive review and critique of the literature on fatigue crack closure is presented. The elements of closure; its mechanisms, experimental procedures for its determination; the phenomenological study of its dependence on different variables, and m...

S. Banerjee

1984-01-01

406

40 CFR 264.145 - Financial assurance for post-closure care.  

Code of Federal Regulations, 2010 CFR

... 2010-07-01 2010-07-01 false Financial assurance for post-closure care. 264...TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 264.145 Financial assurance for post-closure care....

2010-07-01

407

Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

NONE

1995-01-10

408

Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): {sm_bullet} CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536 Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure

NSTec Environmental Restoration

2007-06-01

409

CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 528: POLYCHLORINATED BIPHENYLS CONTAMINATION NEVADA TEST SITE, NEVADA  

SciTech Connect

This Closure Report (CR) describes the closure activities performed at CAU 528, Polychlorinated Biphenyls Contamination, as presented in the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) (US. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSAINSO], 2005). The approved closure alternative was closure in place with administrative controls. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

BECHTEL NEVADA

2006-09-01

410

FY-80 RESEARCH PLAN FOR IERL-CI ACTIVITIES AT THE T AND E FACILITY  

EPA Science Inventory

The Office of Research and Development of the U.S. Environmental Protection Agency has recently begun (March 1, 1979) operation of a new facility in Cincinnati, Ohio known as the Test and Evaluation (T&E) Facility. The purpose of this facility is to house a variety of bench- and ...

411

Corrective Action Plan for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility Nevada Test Site, Nevada  

SciTech Connect

The Area 25 Reactor Maintenance, Assembly, and Disassembly Decontamination Facility is identified in the Federal Facility Agreement and Consent Order (FFACO) as Corrective Action Unit (CAU) 254. CAU 254 is located in Area 25 of the Nevada Test Site and consists of a single Corrective Action Site CAS 25-23-06. CAU 254 will be closed, in accordance with the FFACO of 1996. CAU 254 was used primarily to perform radiological decontamination and consists of Building 3126, two outdoor decontamination pads, and surrounding soil within an existing perimeter fence. The site was used to decontaminate nuclear rocket test-car hardware and tooling from the early 1960s through the early 1970s, and to decontaminate a military tank in the early 1980s. The site characterization results indicate that, in places, the surficial soil and building materials exceed clean-up criteria for organic compounds, metals, and radionuclides. Closure activities are expected to generate waste streams consisting of nonhazardous construction waste. petroleum hydrocarbon waste, hazardous waste, low-level radioactive waste, and mixed waste. Some of the wastes exceed land disposal restriction limits and will require off-site treatment before disposal. The recommended corrective action was revised to Alternative 3- ''Unrestricted Release Decontamination, Verification Survey, and Dismantle Building 3126,'' in an addendum to the Correction Action Decision Document.

C. M. Obi

2000-12-01

412

A Microsoft Project-Based Planning, Tracking, and Management Tool for the National Transonic Facility's Model Changeover Process  

NASA Technical Reports Server (NTRS)

The removal and installation of sting-mounted wind tunnel models in the National Transonic Facility (NTF) is a multi-task process having a large impact on the annual throughput of the facility. Approximately ten model removal and installation cycles occur annually at the NTF with each cycle requiring slightly over five days to complete. The various tasks of the model changeover process were modeled in Microsoft Project as a template to provide a planning, tracking, and management tool. The template can also be used as a tool to evaluate improvements to this process. This document describes the development of the template and provides step-by-step instructions on its use and as a planning and tracking tool. A secondary role of this document is to provide an overview of the model changeover process and briefly describe the tasks associated with it.

Vairo, Daniel M.

1998-01-01

413

Facility Operations 1993 fiscal year work plan: WBS 1.3.1  

SciTech Connect

The Facility Operations program is responsible for the safe, secure, and environmentally sound management of several former defense nuclear production facilities, and for the nuclear materials in those facilities. As the mission for Facility Operations plants has shifted from production to support of environmental restoration, each plant is making a transition to support the new mission. The facilities include: K Basins (N Reactor fuel storage); N Reactor; Plutonium-Uranium Reduction Extraction (PUREX) Plant; Uranium Oxide (UO{sub 3}) Plant; 300 Area Fuels Supply (N Reactor fuel supply); Plutonium Finishing Plant (PFP).

Not Available

1992-11-01

414

Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan. Energy Systems Environmental Restoration Program; Clinch River Environmental Restoration Program  

Microsoft Academic Search

This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory

R. B. Cook; S. M. Adams; J. J. Beauchamp; M. S. Bevelhimer; B. G. Blaylock; C. C. Brandt; E. L. Etnier; C. J. Ford; M. L. Frank; M. J. Gentry; M. S. Greeley; R. S. Halbrook; R. A. Harris; S. K. Holladay; L. A. Hook; P. L. Howell; L. A. Kszos; D. A. Levine; J. L. Skiles; G. W. Suter

1992-01-01

415

Closure Report for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada  

SciTech Connect

This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 [as amended March 2010]). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

NSTec Environmental Restoration

2012-02-21

416

Comprehensive Health Plan for the Counties of Clinton, Eaton, and Ingham. Acute Care Facilities: Obstetric Care.  

National Technical Information Service (NTIS)

A five-year obstetric care plan for three Michigan counties (Clinton, Eaton, and Ingham) is presented by the Capitol Area Wide Comprehensive Health Planning Association. The plan is designed for a projected 5,760 deliveries in the year 1980, with an avera...

1975-01-01

417

Closure Report for Corrective Action Unit 481: Area 12 T-Tunnel Conditional Release Storage Yard, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 481 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Area 12 T-Tunnel Conditional Release Storage Yard. CAU 481 is located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. This CAU consists of one Corrective Action Site (CAS), CAS 12-42-05, Housekeeping Waste. CAU 481 closure activities were conducted by the Defense Threat Reduction Agency from August 2007 through July 2008 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites. Closure activities included removal and disposal of construction debris and low-level waste. Drained fluids, steel, and lead was recycled as appropriate. Waste generated during closure activities was appropriately managed and disposed.

NSTec Environmental Restoration

2008-11-01

418

Closure of the Oak Ridge National Laboratory Hydrofracture Facility: An opportunity to study the fate of radioactive wastes disposed of by subsurface injection  

SciTech Connect

At Oak Ridge National Laboratory, subsurface injection has been used to dispose of liquid low-level nuclear waste for the past two decades. The process consists of mixing the liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of approximately 300 m (1000 ft). The slurry spreads from the well along hydraulic fractures and sets to form irregularly shaped grout sheets of up to 200 m (650 ft) in radius. Closure-related site characterization provides a unique opportunity to study the fate of the injected wastes. A series of monitoring wells are in place to measure groundwater chemistries within the injection strata and within overlying and underlying confining units. Initial results indicate that contaminated groundwater surrounds the grout sheets in the injection zone, extending at least as far as 300 m (1000 ft) from the injection well; contaminated groundwater is largely and perhaps exclusively confined to the host formation; and of the /sup 90/Sr and /sup 137/Cs radionuclides disposed of, only /sup 90/Sr is present in the contaminated groundwater. The illite-rich mineralogy of the injection formation strongly absorbs /sup 137/Cs and greatly retards its migration. Movement of /sup 90/Sr is not as greatly retarded by the injection formation. Geochemical modeling is being used to identify and to evaluate hydrogeological controls on /sup 90/Sr behavior. Preliminary results suggest that the groundwaters within the injection formation are saturated with Sr from natural sources, and that /sup 90/Sr mobility may be lessened by precipitation/dissolution reactions associated with such a saturated condition. 27 refs., 4 figs., 2 tabs.

Haase, C.S.; Von Damm, K.L.; Stow, S.H.

1987-01-01

419

Facilities Planning for the Neuroscience Curriculum at a Primarily Undergraduate Institution: St. Olaf College's Regents Hall of Natural and Mathematical Sciences  

PubMed Central

Planning for new science facilities at your institution is an exciting, challenging, and rewarding endeavor. Perhaps most significantly, it also embodies a rare opportunity to provide new infrastructure to support a programmatic vision for the future. Here, we describe St. Olaf’s new Regents Hall of Natural and Mathematical Sciences, beginning with an outline of the planning/design process, then an overview of the features of the building - with particular regard to the Neuroscience Program facilities - and finally a discussion of lessons learned. We hope our experiences may benefit those engaged in the facilities planning process at their own institutions.

Muir, Gary M.; Van Wylen, David G.L.

2009-01-01

420

Catheter-based closure of paravalvular leak.  

PubMed

Paravalvular leak (PVL) is a serious complication from surgical and percutaneous valve replacement procedures. The most common manifestations include congestive heart failure and hemolytic anemia, which may cause considerable morbidity and mortality. Repeat surgery for PVL closure is often complicated and carries a reduced probability of success. As such, catheter-based techniques to eliminate PVL have been developed. Percutaneous PVL closure procedures rely heavily on multimodality imaging techniques such as echocardiography, fluoroscopy and computed tomography for diagnosis, technical planning and procedural guidance. Evidence demonstrates that catheter-based closure of PVL boasts high procedural success rates and favorable clinical outcomes. Given the rapidly advancing nature of this field, this review summarizes the contemporary diagnosis of PVL, common techniques used for percutaneous closure and the latest data on patient outcomes following this procedure. PMID:24779991

Reed, Grant W; Tuzcu, E Murat; Kapadia, Samir R; Krishnaswamy, Amar

2014-06-01

421

Molten Salt Reactor Experiment Facility (Building 7503) standards/requirements identification document adherence assessment plan at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This is the Phase 2 (adherence) assessment plan for the Building 7503 Molten Salt Reactor Experiment (MSRE) Facility standards/requirements identification document (S/RID). This document outlines the activities to be conducted from FY 1996 through FY 1998 to ensure that the standards and requirements identified in the MSRE S/RID are being implemented properly. This plan is required in accordance with the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 90-2, November 9, 1994, Attachment 1A. This plan addresses the major aspects of the adherence assessment and will be consistent with Energy Systems procedure QA-2. 7 ``Surveillances.``

NONE

1996-02-01

422

PLANNING TOOLS FOR ESTIMATING RADIATION EXPOSURE AT THE NATIONAL IGNITION FACILITY  

Microsoft Academic Search

A set of computational tools was developed to help estimate and minimize potential radiation exposure to workers from material activation in the National Ignition Facility (NIF). AAMI (Automated ALARA-MCNP Interface) provides an efficient, automated mechanism to perform the series of calculations required to create dose rate maps for the entire facility with minimal manual user input. NEET (NIF Exposure Estimation

J Verbeke; M Young; S Brereton; L Dauffy; J Hall; L Hansen; H Khater; S Kim; B Pohl; S Sitaraman

2010-01-01

423

Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility  

Microsoft Academic Search

Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with

DB Barnett

2000-01-01

424

Design of a Standardized Kitchen and Equipment Plan for Long Term Care Facilities  

Microsoft Academic Search

LEARNING OUTCOME: To identify key concepts in designing kitchens and specifying equipment for long term care facility food service.Kitchens in long term care are often designed by architects who have limited knowledge of food service needs. There is little in the literature to support the design requirements of smaller kitchens needed in 120-160 bed facilities. During a major expansion of

L. A. Gluch; S. J. Emley; P. G. Sieben

1997-01-01

425

Application of expert systems and pattern recognition methodologies to facilities layout planning  

Microsoft Academic Search

This paper deals with two basic concepts of artificial intelligence (AI), from a facilities layout problem domain perspective. In this work, the facilities layout problem is treated as a multi-objective situation. From conventional multi-objective perspective, the philosophy underlying this work is not a different one. However, the qualitative constraints are handled via a symbolic manipulation structure. The two conceptualizations are:

SOUNDAR R. T. KUMARA; R. L. KASHYAP; C L. MOODIE

1988-01-01

426

New Construction, Renovation and Remodeling: What School Nurses Have Learned from Planning New Health Office Facilities  

ERIC Educational Resources Information Center

Many school nurses across the nation have had the opportunity to be involved with school renovation and new construction projects in their districts. Renovation and new construction projects allow school nurses the opportunity to work with facilities planners, school officials, and architects to design school health office facilities that enhance…

Cooper, Leslie

2005-01-01

427

Closure of colostomy.  

PubMed Central

We analyzed the records of 77 cases of loop colostomy closure in Vietnam War Casualties. All records were complete from the date of injury to discharge following colostomy closure. Simple of the loop colostomy was performed in 44 patients and resection of the stoma and reanastomosis of bowel segments was performed in 33 patients. Average operating time for simple closure of the loop was 70 minutes compared to 115 minutes for resection and anastomosis. Nasogastric suction was used less frequently and for a shorter time with simple loop closure. The total postoperative complication rate was 9% with simple loop closure as compared to 24% for resection and anastomosis. Simple closure of the loop described in this report is technically easier and as safe as resection of the stoma and reanastomosis. Images Fig. 1.

Beck, P H; Conklin, H B

1975-01-01

428

Old hydrofracture facility tanks contents removal action operations plan at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Text. Volume 2: Checklists and work instructions.  

National Technical Information Service (NTIS)

This Operations Plan summarizes the operating activities for transferring contents of five low-level (radioactive) liquid waste storage tanks associated with the Old Hydrofracture Facility (OHF) to the Melton Valley Storage Tanks (MVST) for secure storage...

1998-01-01

429

Preconstruction Planning for Educational Facilities: A Handbook for School Business Officials. Research Bulletin No. 13.  

ERIC Educational Resources Information Center

Each of 16 authors treats a technical aspect of preconstruction planning in this bulletin. Application of systems logic appears in the organization of the chapters. The problem is defined as a survey procedure in chapters discussing the school business official, planning terminology, and staff structure. Variations of objective synthesis are…

Strevell, Wallace H.

430

Risk analysis and risk acceptance criteria in the planning processes of hazardous facilities—A case of an LNG plant in an urban area  

Microsoft Academic Search

Planning of hazardous facilities is usually carried out on the basis of a risk-informed decision-making and planning process making use of risk analysis. This practice is well established in Norway under petroleum legislation but less so for onshore facilities under non-petroleum legislation. The present paper focuses on the use of risk analysis studies for risk evaluation against risk acceptance criteria,

Jan Erik Vinnem

2010-01-01

431

7. Launch closure, view towards northwest Ellsworth Air Force ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

7. Launch closure, view towards northwest - Ellsworth Air Force Base, Delta Flight, Launch Facility D-6, 4 miles north of Badlands National Park Headquarters, 4.5 miles east of Jackson County line on county road, Interior, Jackson County, SD

432

10 CFR Appendix E to Part 50 - Emergency Planning and Preparedness for Production and Utilization Facilities  

Code of Federal Regulations, 2011 CFR

...governmental authorities; c. Offsite emergency response...notification system; and/or e. Emergency facilities...system configuration (i.e., hardware and software...must comply with appendix E to part 50, section V. c. Licensees that have...

2011-01-01

433

A Comprehensive Plan for Waterworks and Sanitary Sewerage Facilities, Ridgeland, Mississippi.  

National Technical Information Service (NTIS)

The report presents the recommendations resulting from a comprehensive water works and sanitary sewage study concerning existing conditions; adequacy of water and sewer facilities for present and future requirements; presentation of recommendations for sh...

1971-01-01

434

Weapons of Mass Destruction Events With Contaminated Casualties: Effective Planning for Health Care Facilities.  

National Technical Information Service (NTIS)

Biological and chemical terrorism is a growing concern for the emergency preparedness community. While health care facilities (HCFs) are an essential component of the emergency response system, at present they are poorly prepared for such incidents. The g...

A. G. Macintyre G. W. Christopher J. E. Eitzen R. Gum S. Weir

2000-01-01

435

76 FR 22822 - Approval and Promulgation of State Plans for Designated Facilities and Pollutants: Florida...  

Federal Register 2010, 2011, 2012, 2013

...negative declarations for Other Solid Waste Incinerator (OSWI) units from...designated pollutants) at existing solid waste combustion facilities (designated...Air Emissions From Existing Other Solid Waste Incinerators (OSWI)--...

2011-04-25

436

Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility  

SciTech Connect

This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement.

Quinn, G.J. [Wastren, Inc. (United States)

1992-01-01

437

Risk-Based Disposal Plan for PCB Paint in the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Canal  

SciTech Connect

This Toxic Substances Control Act Risk-Based Polychlorinated Biphenyl Disposal plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex, Idaho National Laboratory Site, to address painted surfaces in the empty canal under 40 CFR 761.62(c) for paint, and under 40 CFR 761.61(c) for PCBs that may have penetrated into the concrete. The canal walls and floor will be painted with two coats of contrasting non-PCB paint and labeled as PCB. The canal is covered with open decking; the access grate is locked shut and signed to indicate PCB contamination in the canal. Access to the canal will require facility manager permission. Protective equipment for personnel and equipment entering the canal will be required. Waste from the canal, generated during ultimate Decontamination and Decommissioning, shall be managed and disposed as PCB Bulk Product Waste.

R. A. Montgomery

2008-05-01

438

Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure Verification Forms for CAS 03-23-06 and CAS 19-19-01 are included as Appendix C of this report. These forms include before and after photographs of the sites, descriptions and removal status of waste, and waste disposal information. CAU 537, Waste Sites, was closed by characterizing and disposing of debris. The purpose of this CR is to summarize the completed closure activities, document appropriate waste disposal, and confirm that the closure standards were met.

NSTec Envirornmental Restoration

2007-07-01

439

78 FR 34918 - Direct Final Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and...  

Federal Register 2010, 2011, 2012, 2013

...FRL-9821-1] Direct Final Approval of Sewage Sludge Incinerators State Plan for Designated...control air pollutants from ``Sewage Sludge Incinerators'' (SSI). The...as any device that combusts sewage sludge for the purpose of reducing...

2013-06-11

440

75 FR 73967 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...  

Federal Register 2010, 2011, 2012, 2013

...discovered in the future, all the requirements of the Federal Plan (including revisions or amendments), part 62, subpart HHH, will be applicable to the affected unit. III. Statutory and Executive Order Reviews A. General Requirements Under...

2010-11-30

441

75 FR 78916 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...  

Federal Register 2010, 2011, 2012, 2013

...discovered in the future, all the requirements of the Federal Plan (including revisions or amendments), part 62, subpart HHH, will be applicable to the affected unit. III. Statutory and Executive Order Reviews A. General Requirements Under...

2010-12-17

442

Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Septic Systems” and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: · CAS 03-04-02, Area 3 Subdock Septic Tank · CAS 03-59-05, Area 3 Subdock Cesspool · CAS 12-59-01, Drilling/Welding Shop Septic Tanks · CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives included No Further Action and Clean Closure.

NSTec Environmental Restoration

2010-02-28

443

Site Characterization Plan for the Old Hydrofracture Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect

The aboveground structures of the Old Hydrofracture Facility (OHF) at Oak Ridge National Laboratory (ORNL) are scheduled for decontamination and decommissioning (D&D). This Site Characterization Plan presents the strategy and techniques to be used to characterize the OHF D&D structures in support of D&D planning, design, and implementation. OHF is located approximately 1 mile southwest of the main ORNL complex. From 1964 to 1979, OHF was used in the development and full-scale application of hydrofracture operations in which 969,000 gal of liquid low-level waste (LLLW) was mixed with grout and then injected under high pressure into a low-permeability shale formation approximately 1/6 mile underground.

Not Available

1994-01-01

444

Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission. [project planning  

NASA Technical Reports Server (NTRS)

Project planning for two series of simple experiments on the effect of zero gravity on the melting and freezing of metals and nonmetals is described. The experiments will be performed in the Long Duration Exposure Facility, and their purpose will be to study: (1) the general morphology of metals and nonmetals during solidification, (2) the location of ullage space (liquid-vapor interfaces), and (3) the magnitude of surface tension driven convection during solidification of metals and nonmetals. The preliminary design of the experiments is presented. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given. In addition a work plan and cost analysis are provided.

Bailey, J. A.

1976-01-01

445

Fast Action Optic Closure.  

National Technical Information Service (NTIS)

The purpose of the project is to develop an optic closure with a function time of less than one mirror period for high speed cameras. This closure will prevent rewrite or bleed-through from a light source in excess of 300 million candle power. (ERA citati...

L. L. Wooten

1979-01-01