Sample records for facility closure plans

  1. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    SciTech Connect

    SIMMONS, F.M.

    2000-12-01

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  2. Hanford Facility Dangerous Waste Closure Plan - Plutonium Finishing Plant Treatment Unit Glovebox HA20MB

    Microsoft Academic Search

    2003-01-01

    This closure plan describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) glovebox HA-20MB that housed an interim status ''Resource Conservation and Recovery Act'' (RCRA) of 1976 treatment unit. This closure plan is certified and submitted to Ecology for incorporation into the Hanford Facility RCRA Permit (HF RCRA Permit) in accordance with Hanford Federal Facility

  3. Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility

    SciTech Connect

    BURBANK, D.A.

    2000-08-31

    This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

  4. Hanford Facility Dangerous Waste Closure Plan - Plutonium Finishing Plant Treatment Unit Glovebox HA-20MB

    SciTech Connect

    PRIGNANO, A.L.

    2003-06-25

    This closure plan describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) glovebox HA-20MB that housed an interim status ''Resource Conservation and Recovery Act'' (RCRA) of 1976 treatment unit. This closure plan is certified and submitted to Ecology for incorporation into the Hanford Facility RCRA Permit (HF RCRA Permit) in accordance with Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement; TPA) Milestone M-83-30 requiring submittal of a certified closure plan for ''glovebox HA-20MB'' by July 31, 2003. Glovebox HA-20MB is located within the 231-5Z Building in the 200 West Area of the Hanford Facility. Currently glovebox HA-20MB is being used for non-RCRA analytical purposes. The schedule of closure activities under this plan supports completion of TPA Milestone M-83-44 to deactivate and prepare for dismantlement the above grade portions of the 234-5Z and ZA, 243-Z, and 291-Z and 291-Z-1 stack buildings by September 30, 2015. Under this closure plan, glovebox HA-20MB will undergo clean closure to the performance standards of Washington Administrative Code (WAC) 173-303-610 with respect to all dangerous waste contamination from glovebox HA-20MB RCRA operations. Because the intention is to clean close the PFP treatment unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. Any information on radionuclides is provided only for general knowledge. Clearance form only sent to RHA.

  5. The 4843 Alkali Metal Storage Facility Closure Plan

    SciTech Connect

    Not Available

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows.

  6. Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility

    SciTech Connect

    Bamberger, Judith A; Burks, Barry L; Quigley, Keith D; Falter, Diedre D

    2001-09-28

    The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. This review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.

  7. Mobilization plan for the Y-12 9409-5 tank storage facility RCRA closure plan. Final report. Revision 1

    SciTech Connect

    NONE

    1993-11-01

    This mobilization plan identifies the activities and equipment necessary to begin the field sampling for the Oak Ridge Y-12 9409-5 Diked Tank Storage Facility (DTSF) Resource Conservation and Recovery Act (RCRA) closure. Elements of the plan outline the necessary components of each mobilization task and identify whether SAIC or the Martin Marietta Energy Systems, Inc. Y-12 Environmental Restoration Division will be responsible for task coordination. Field work will be conducted in two phases: mobilization phase and soil sampling phase. Training and medical monitoring, access, permits and passes, decontamination/staging area, equipment, and management are covered in this document.

  8. 100-D Ponds closure plan. Revision 1

    SciTech Connect

    Petersen, S.W.

    1997-09-01

    The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit is clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure.

  9. FINAL CLOSURE PLAN SURFACE IMPOUNDMENTS CLOSURE, SITE 300

    SciTech Connect

    Lane, J E; Scott, J E; Mathews, S E

    2004-09-29

    Lawrence Livermore National Laboratory of the University of California (LLNL) operates two Class II surface impoundments that store wastewater that is discharged from a number of buildings located on the Site 300 Facility (Site 300). The wastewater is the by-product of explosives processing. Reduction in the volume of water discharged from these buildings over the past several years has significantly reduced the wastewater storage needs. In addition, the impoundments were constructed in 1984, and the high-density polyethylene (HDPE) geomembrane liners are nearing the end of their service life. The purpose of this project is to clean close the surface impoundments and provide new wastewater storage using portable, above ground storage tanks at six locations. The tanks will be installed prior to closure of the impoundments and will include heaters for allowing evaporation during relatively cool weather. Golder Associates (Golder) has prepared this Final Closure Plan (Closure Plan) on behalf of LLNL to address construction associated with the clean closure of the impoundments. This Closure Plan complies with State Water Resources Control Board (SWRCB) Section 21400 of the California Code of Regulations Title 27 (27 CCR {section}21400). As required by these regulations and guidance, this Plan provides the following information: (1) A site characterization, including the site location, history, current operations, and geology and hydrogeology; (2) The regulatory requirements relevant to clean closure of the impoundments; (3) The closure procedures; and, (4) The procedures for validation and documentation of clean closure.

  10. Closure of the Fast Flux Test Facility: current status and future plans

    SciTech Connect

    Lesperance, C. P.; Doebler, S. V.; Burke, T. M. [Fluor Hanford inc., P.O. Box 1000, Richland, Washington (United States)

    2007-07-01

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been de-fueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D and D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D and D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009. (authors)

  11. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS

    SciTech Connect

    LESPERANCE, C.P.

    2007-05-23

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been defueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D&D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D&D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009.

  12. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS

    SciTech Connect

    BURKE, T.M.

    2005-04-13

    Deactivation activities are currently in progress at the Fast Flux Test Facility. These deactivation activities are intended to remove most hazardous materials and prepare the facility for final disposition. The two major hazards to be removed are the nuclear fuel and the alkali metal (most sodium) coolant. The fuel and coolant removal activities are proceeding well and are expected to complete in 2006. Plant systems are being shut down as allowed by completion of various fuel and coolant removal actions. A Decommissioning Environmental Impact Statement is in progress to evaluate a range of potential final disposition end states.

  13. Hanford Patrol Academy demolition sites closure plan

    SciTech Connect

    Not Available

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  14. 303-K Storage Facility report on FY98 closure activities

    SciTech Connect

    Adler, J.G.

    1998-07-17

    This report summarizes and evaluates the decontamination activities, sampling activities, and sample analysis performed in support of the closure of the 303-K Storage Facility. The evaluation is based on the validated data included in the data validation package (98-EAP-346) for the 303-K Storage Facility. The results of this evaluation will be used for assessing contamination for the purpose of closing the 303-K Storage Facility as described in the 303-K Storage Facility Closure Plan, DOE/RL-90-04. The closure strategy for the 303-K Storage Facility is to decontaminate the interior of the north half of the 303-K Building to remove known or suspected dangerous waste contamination, to sample the interior concrete and exterior soils for the constituents of concern, and then to perform data analysis, with an evaluation to determine if the closure activities and data meet the closure criteria. The closure criteria for the 303-K Storage Facility is that the concentrations of constituents of concern are not present above the cleanup levels. Based on the evaluation of the decontamination activities, sampling activities, and sample data, determination has been made that the soils at the 303-K Storage Facility meet the cleanup performance standards (WMH 1997) and can be clean closed. The evaluation determined that the 303-K Building cannot be clean closed without additional closure activities. An additional evaluation will be needed to determine the specific activities required to clean close the 303-K Storage Facility. The radiological contamination at the 303-K Storage Facility is not addressed by the closure strategy.

  15. Engineering study for closure of 209E facility

    SciTech Connect

    Brevick, C.H.; Heys, W.H.; Johnson, E.D.

    1997-07-07

    This document is an engineering study for evaluating alternatives to determine the most cost effective closure plan for the 209E Facility, Critical Mass Laboratory. This laboratory is located in the 200 East Area of the Hanford Site and contains a Critical Assembly Room and a Mix room were criticality experiments were once performed.

  16. 300 Area waste acid treatment system closure plan

    SciTech Connect

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  17. Calcined solids storage facility closure study

    SciTech Connect

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others] [and others

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

  18. Closure Plan for Active Low Level Burial Grounds

    SciTech Connect

    SKELLY, W.A.

    2000-11-16

    This plan has been prepared in response to direction from the U.S. Department of Energy. The purpose of the plan is to define approaches that will be implemented to ensure protection of the public and the environment when active Low-Level Burial Grounds (LLBGs) at the Hanford Site are closed. Performance assessments for active burial grounds in the 200 East and West 200 Areas provide current estimates of potential environmental contamination and doses to the ''maximum exposed individual'' from burial ground operation and closure and compare dose estimates to performance objective dose limits for the facilities. This is an Operational Closure Plan. The intent of the guidance in DOE Order 435.1 is that this plan will be a living document, like the facility performance assessments, and will be revised periodically through the operational life of the LLBGs to reflect updated information on waste inventory. management practices, facility transition planning, schedule dates, assessments of post-closure performance, and environmental consequences. Out year dates identified in this plan are tentative. A Final Closure Plan will be prepared in the future when the timing and extent of closure-related activities for LLBGs can be established with greater certainty. After current operations at the LLBGs are concluded, this plan proposes transitioning of these facilities to the Environmental Restoration Program. This action will enable the Environmental Restoration Program to design and implement consistent and coordinated final remedial actions for active and inactive LLBGs. Active and inactive burial grounds in the 200 West and 200 East Areas are commingled. This plan describes approaches that will be implemented during Interim Closure, Final Closure, and Institutional Control Periods to prepare LLBGs for surface barriers, and the construction of barriers, as well as the scope of inspection, monitoring and maintenance practices that will be performed during and after closure. Environmental monitoring is briefly discussed in this plan. However, a more comprehensive discussion of monitoring issues is provided in a separate performance assessment monitoring plan for LLBGs. Supporting information is provided regarding the geography, climate, hydrogeology, geochemistry and land-use practices of adjacent land areas.

  19. PLAN FOR CLOSURE OF HANFORDS CENTRAL PLATEAU

    SciTech Connect

    AUSTIN, B.A.

    2004-12-15

    This paper summarizes an approach to reduce risk to the public and environment through accelerated closure of Hanford's Central Plateau, based on a plan developed by Fluor Hanford and submitted to the Department of Energy (DOE)-Richland Office, for consideration, in September, 2004. This plan provides a framework and starting point for discussions with regulators and further planning for closure activities on the Plateau. The closure strategy and approach required developing a full inventory of items needing closure as well as identifying and defining technical and regulatory approaches that were compatible with current regulatory processes, reduce risks, and met DOE objectives. This effort, and the paper that follows, integrates closure activities among several contractors and two DOE field offices.

  20. COMPREHENSIVE CLOSURE PLAN FOR THE HANFORD CENTRAL PLATEAU

    SciTech Connect

    LACKEY, M.B.

    2005-05-31

    This paper describes a comprehensive and strategic plan that has been recently developed for the environmental closure of the Central Plateau area of the Hanford Site, a former weapons-production complex managed by the U.S. Department of Energy (DOE). This approach was submitted to the DOE Richland Operations Office by Fluor Hanford to provide a framework and roadmap to integrate ongoing operations with closure of facilities that are no longer actively used--all with a view to closing the Central Plateau by 2035. The plan is currently under consideration by the DOE.

  1. Development of an arid site closure plan

    SciTech Connect

    Nyhan, J.W.; Barnes, F.J.

    1987-01-01

    This document describes the development of a prototype plan for the effective closure and stabilization of an arid low-level waste disposal site. This plan will provide demonstrated closure techniques for a trench in a disposal site at Los Alamos. The accuracy of modeling soil water storage by two hydrologic models, CREAMS and HELP, was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that CREAMS generally represented soil moisture more accurately than HELP simulations. Precautions for determining parameter values for model input and for interpreting simulation results are discussed. A specific example is presented showing how the field-validated hydrologic models can be used to develop a final prototype closure plan. 15 refs., 13 figs., 3 tabs.

  2. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    SciTech Connect

    Not Available

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

  3. 300 Area Process Trenches Closure Plan

    SciTech Connect

    Luke, S.N.

    1994-08-15

    Since 1987, Westinghouse Hanford Company has been a major contractor to the US Department of Energy, Richland Operations Office and has served as co-operator of the 300 Area Process Trenches, the waste management unit addressed in this closure plan. For the purposes of the Resource Conservation and Recovery Act, Westinghouse Hanford Company is identified as ``co-operator.`` The 300 Area Process Trenches Closure Plan (Revision 0) consists of a Resource Conservation and Recovery Act Part A Dangerous Waste Permit Application, Form 3 and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A Permit Application, Form 3 submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and six appendices. The 300 Area Process Trenches received dangerous waste discharges from research and development laboratories in the 300 Area and from fuels fabrication processes. This waste consisted of state-only toxic (WT02), corrosive (D002), chromium (D007), spent halogenated solvents (F001, F002, and F003), and spent nonhalogented solvent (F005). Accurate records are unavailable concerning the amount of dangerous waste discharged to the trenches. The estimated annual quantity of waste (item IV.B) reflects the total quantity of both regulated and nonregulated waste water that was discharged to the unit.

  4. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  5. Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray

    SciTech Connect

    Vigil-Holterman, Luciana R. [Los Alamos National Laboratory

    2012-05-07

    This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

  6. Simple Case Treatment Planning: Diastema Closure.

    PubMed

    Calamia, Vincent; Pantzis, Alexandria

    2015-07-01

    This article demonstrates the use of a smile evaluation form as an adjunct in arriving at diagnosis and developing a treatment plan for a patient desiring Diastema closure. It also shows the importance of the diagnostic wax-up for temporization and visualization of case outcome. The case also demonstrates the use of soft tissue lasers to create a gingival harmony that enhanced the resulting esthetics. Feldspathic porcelain was used for the final restorations because they provide optimal esthetics and translucency. PMID:26140972

  7. 324 Building REC and HLV Tank Closure Plan

    SciTech Connect

    Becker-Khaleel, B; Schlick, K. [Scienfific Ecology Group, Inc. Richland, WA (United States)

    1995-12-01

    This closure plan describes the activities necessary to close the 324 Radiochemical Engineering Cells (REC) and High-Level Vault (HLV) in accordance with the Washington State Dangerous Waste regulations. To provide a complete description of the activities required, the closure plan relies on information contained in the 324 Building B-Cell Safety Cleanout Project (BCCP) plans, the 324 Building REC HLV Interim Waste Management Plan (IWMP), the Project Management Plan for Nuclear Facilities Management 300 Area Compliance Program, and the 324 High Level Vault Interim Removal Action Project (project management plan [PMP]). The IWMP addresses the management of mixed waste in accordance with state and federal hazardous waste regulations. It provides a strategy for managing high-activity mixed waste in compliance with Resource Conservation and Recovery Act (RCRA) requirements or provides for an alternative management approach for the waste. The BCCP outlines the past, present, and future activities necessary for removing from B-Cell the solid waste, including mixed waste generated as a result of historical research and development (R&D) activities conducted in the cell. The BCCP also includes all records and project files associated with the B-Cell cleanout. This information is referenced throughout the closure plan. The PMP sets forth the plans, organization, and systems that Pacific Northwest National Laboratory (PNNL) will use to direct and control the 324 High-Level Vault Interim Removal Action Project. This project will develop and implement a treatment strategy that will remove and stabilize the inventory of liquid waste from the 324 HLV tanks. The PMP also provides for flushing and sampling the flush solution.

  8. 303-K Storage facility sampling and analysis plan

    SciTech Connect

    Adler, J.G.

    1997-07-01

    This document describes the cleanup, sampling, and analysis activities associated with the closure of the 303-K Storage Facility under the Washington Administrative Code (WAC) 173-303-610, ``Dangerous Waste Regulations.`` this document is a supplement to the 303-K Storage Facility Closure Plan (DOE-RL 1995a) (Closure Plan). The objective of these activities is to support clean closure of the 303 K Storage Facility. This document defines the information and activities needed to meet this objective, including: constituents of concern, cleanup performance standards, cleanup activities, sampling locations and methods, field screening locations and methods, field quality control requirements, laboratory analytical methods, and data validation methodology. This document supersedes the Closure Plan if the two conflict

  9. Facility Closure Report for T-Tunnel (U12t), Area 12, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2008-08-01

    This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD.

  10. Hanford facility contingency plan

    SciTech Connect

    Sutton, L.N.

    1996-07-01

    The Hanford Facility Contingency Plan, together with each TSD unit- specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. Applicability of this plan to Hanford Facility activities is described in the Hanford Facility RCRA Permit, Dangerous Waste Portion, General Condition II.A. General Condition II.A applies to Part III TSD units, Part V TSD units, and to releases of hazardous substances which threaten human health or the environment. Additional information about the applicability of this document may also be found in the Hanford Facility RCRA Permit Handbook (DOE/RL-96-10). This plan includes descriptions of responses to a nonradiological hazardous substance spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. The term hazardous substances is defined in WAC 173-303-040 as: ``any liquid, solid, gas, or sludge, including any material, substance, product, commodity, or waste, regardless of quantity, that exhibits any of the physical, chemical or biological properties described in WAC 173-303-090 or 173-303-100.`` Whenever the term hazardous substances is used in this document, it will be used in the context of this definition. This plan includes descriptions of responses for spills or releases of hazardous substances occurring at areas between TSD units that may, or may not, threaten human health or the environment.

  11. Plutonium-Uranium Extraction (PUREX) facility preclosure work plan

    SciTech Connect

    Bhatia, R.K., Westinghouse Hanford

    1996-07-09

    The dangerous waste permit identification number (WA7890008967)was issued by the U.S. Environmental Protection Agency and the Washington State Department of Ecology. This identification number encompasses a number of treatment, storage, and/or disposal units within the Hanford Facility. One of these treatment, storage, and/or disposal units is the PUREX Facility,currently undergoing a phased closure. The PUREX Facility Preclosure Work Plan submittal differs from closure plans previously submitted by the U.S. Department of Energy, Richland Operations Office to the Washington State Department of Ecology,in that the closure process occurs in three distinct phases as part of the decommissioning process (i.e., transition,surveillance and maintenance, and disposition). Final closure will occur during the disposition phase. This phased decommissioning process is implemented because development of a complete closure plan during the transition phase is impractical and future land use determinations have not been identified. The objective of the transition phase is to place the PUREX Facility in a safe configuration with respect to human health and the environment. Following the transition phase activities, the PUREX Facility will begin the surveillance and maintenance phase of 10 or more years until disposition phase activities commence. The closure plan for the PUREX facility will be prepared during the disposition phase. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels. The PUREX Storage Tunnels are an operating storage unit(DOE/RL-94-24).

  12. Comprehensive facilities plan

    SciTech Connect

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  13. Achieving and documenting closure in plant growth facilities

    NASA Technical Reports Server (NTRS)

    Knott, W. M.; Sager, John C.; Wheeler, Ray

    1992-01-01

    As NASA proceeds with its effort to develop a Controlled Ecological Life Support System (CELSS) that will provide life support to crews during long duration space missions, it must address the question of facility and system closure. The concept of closure as it pertains to CELSS and engineering specifications, construction problems and monitoring procedures used in the development and operation of a closed plant growth facility for the CELSS program are described. A plant growth facility is one of several modules required for a CELSS. A prototype of this module at Kennedy Space Center is the large (7m tall x 3.5m diameter) Biomass Production Chamber (BPC), the central facility of the CELSS Breadboard Project. The BPC is atmospherically sealed to a leak rate of approximately 5 percent of its total volume per 24 hours. This paper will discuss the requirements for atmospheric closure in the facility, present CO2 and trace gas data from initial tests of the BPC with and without plants, and describe how the chamber was sealed atmospherically. Implications that research conducted in this type of facility will have for the CELSS program are discussed.

  14. 216-B-3 expansion ponds closure plan

    SciTech Connect

    Not Available

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

  15. 300 Area waste acid treatment system closure plan. Revision 1

    SciTech Connect

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  16. The Mixed Waste Management Facility closure and expansion at the Savannah River Site

    SciTech Connect

    Bittner, M.F.; Frye-O`Bryant, R.C.

    1992-07-01

    Process wastes containing radioactive and hazardous constituents have been generated throughout the operational history of the Savannah River Site. Solid wastes containing low level radionuclides were buried in Low Level Radioactive Disposal Facility (LLRWDF). Until 1986, waste containing lead and cadmium was disposed of in the Mixed Waste Management Facility (MWMF) portion of LLRWDF. Between 1986 and 1990, waste containing F-listed hazardous rags were buried. Current Resource Conservation and Recovery Act (RCRA) regulations prohibit the disposal of these hazardous wastes at nonpermitted facilities. This paper describes the closure activities for the MWMF, completed in 1990 and plans proposed for the expansion of this closure to include the LLRWDF suspect solvent rag trenches.

  17. The Mixed Waste Management Facility closure and expansion at the Savannah River Site

    SciTech Connect

    Bittner, M.F.; Frye-O'Bryant, R.C.

    1992-01-01

    Process wastes containing radioactive and hazardous constituents have been generated throughout the operational history of the Savannah River Site. Solid wastes containing low level radionuclides were buried in Low Level Radioactive Disposal Facility (LLRWDF). Until 1986, waste containing lead and cadmium was disposed of in the Mixed Waste Management Facility (MWMF) portion of LLRWDF. Between 1986 and 1990, waste containing F-listed hazardous rags were buried. Current Resource Conservation and Recovery Act (RCRA) regulations prohibit the disposal of these hazardous wastes at nonpermitted facilities. This paper describes the closure activities for the MWMF, completed in 1990 and plans proposed for the expansion of this closure to include the LLRWDF suspect solvent rag trenches.

  18. Facility pollution prevention planning

    SciTech Connect

    Evers, D.P. [Battelle Memorial Inst., Columbus, OH (United States)

    1995-09-01

    Pollution prevention planning is a comprehensive and continual evaluation of business operations. The results pollution prevention program affects many functional areas within a company, such as the production line, accounting practices, and management. It has much in common with the planning already conducted for other aspects of business operations, but it looks at the facility as an integrated whole instead of as a series of disjoint parts or operations. A flowchart is presented illustrating the major elements in the pollution prevention program. This section describes the elements of pollution prevention program planning and design. These elements include building support for pollution prevention throughout the company, organizing the program, setting goals and objectives, performing a preliminary assessment of pollution prevention opportunities, and identifying potential problems and their solutions.

  19. HWMA/RCRA Closure Plan for the CPP-602 Laboratory Lines

    SciTech Connect

    Idaho Cleanup Project

    2009-09-30

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure (HWMA/RCRA) Plan for the CPP-602 laboratory lines was developed to meet the tank system closure requirements of the Idaho Administrative Procedures Act 58.01.05.008 and 40 Code of Federal Regulations 264, Subpart G. CPP-602 is located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The lines in CPP-602 were part of a liquid hazardous waste collection system included in the Idaho Nuclear Technology and Engineering Center Liquid Waste Management System Permit. The laboratory lines discharged to the Deep Tanks System in CPP-601 that is currently being closed under a separate closure plan. This closure plan presents the closure performance standards and the methods for achieving those standards. The closure approach for the CPP-602 laboratory lines is to remove the lines, components, and contaminants to the extent practicable. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Site CPP-117 includes the CPP-602 waste trench and the area beneath the basement floor where waste lines are direct-buried. Upon completion of rinsing or mopping to remove contamination to the extent practicable from the waste trench and rinsing the intact buried lines (i.e., stainless steel sections), these areas will be managed as part of CERCLA Site CPP-117 and will not be subject to further HWMA/RCRA closure activities. The CPP-602 building is being decontaminated and decommissioned under CERCLA as a non-time critical removal action in accordance with the Federal Facility Agreement/Consent Order. As such, all waste generated by this CERCLA action, including closure-generated waste, will be managed in coordination with that CERCLA action in substantive compliance with HWMA/RCRA regulations. All waste will be subject to a hazardous waste determination for the purpose of supporting appropriate management and will be managed in accordance with this plan. ii

  20. Plutonium Finishing Plan (PFP) Treatment and Storage Unit Interim Status Closure Plan

    SciTech Connect

    PRIGNANO, A.L.

    2000-07-01

    This document describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) Treatment and Storage Unit. The PFP Treatment and Storage Unit is located within the 234-52 Building in the 200 West Area of the Hanford Facility. Although this document is prepared based upon Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the PFP Treatment and Storage Unit manages transuranic mixed (TRUM) waste, there are many controls placed on management of the waste. Based on the many controls placed on management of TRUM waste, releases of TRUM waste are not anticipated to occur in the PFP Treatment and Storage Unit. Because the intention is to clean close the PFP Treatment and Storage Unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. The PFP Treatment and Storage Unit will be operated to immobilize and/or repackage plutonium-bearing waste in a glovebox process. The waste to be processed is in a solid physical state (chunks and coarse powder) and will be sealed into and out of the glovebox in closed containers. The containers of immobilized waste will be stored in the glovebox and in additional permitted storage locations at PFP. The waste will be managed to minimize the potential for spills outside the glovebox, and to preclude spills from reaching soil. Containment surfaces will be maintained to ensure integrity. In the unlikely event that a waste spill does occur outside the glovebox, operating methods and administrative controls will require that waste spills be cleaned up promptly and completely, and a notation will be made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  1. Idaho HWMA/RCRA Closure Plan for Idaho Nuclear Technology and Engineering Center Tanks WM-182 and WM-183 - Rev. 2

    SciTech Connect

    Evans, Susan Kay; unknown

    2000-12-01

    This document presents the plan for the closure of the Idaho Nuclear Technology and Engineering Center Tank Farm Facility tanks WM-182 and WM-183 in accordance with Idaho Hazardous Waste Management Act/Resource Conservation and Recovery Act interim status closure requirements. Closure of these two tanks is the first in a series of closures leading to the final closure of the eleven 300,000-gal tanks in the Tank Farm Facility. As such, closure of tanks WM-182 and WM-183 will serve as a proof-of-process demonstration of the waste removal, decontamination, and sampling techniques for the closure of the remaining Tank Farm Facility tanks. Such an approach is required because of the complexity and uniqueness of the Tank Farm Facility closure. This plan describes the closure units, objectives, and compliance strategy as well as the operational history and current status of the tanks. Decontamination, closure activities, and sampling and analysis will be performed with the goal of achieving clean closure of the tanks. Coordination with other regulatory requirements, such as U.S. Department of Energy closure requirements, is also discussed.

  2. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 115: AREA 25 TEST CELL A FACILITY, NEVADA TEST SITE, NEVADA

    SciTech Connect

    NA

    2006-03-01

    This Closure Report (CR) describes the activities performed to close CAU 115, Area 25 Test Cell A Facility, as presented in the NDEP-approved SAFER Plan (NNSA/NSO, 2004). The SAFER Plan includes a summary of the site history, process knowledge, and closure standards. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical and radiological data to confirm that the remediation goals were met and to document final site conditions. The approved closure alternative as presented in the SAFER Plan for CAU 115 (NNSA/NSO, 2004) was clean closure; however, closure in place was implemented under a Record of Technical Change (ROTC) to the SAFER Plan when radiological surveys indicated that the concrete reactor pad was radiologically activated and could not be decontaminated to meet free release levels. The ROTC is included as Appendix G of this report. The objectives of closure were to remove any trapped residual liquids and gases, dispose regulated and hazardous waste, decontaminate removable radiological contamination, demolish and dispose aboveground structures, remove the dewar as a best management practice (BMP), and characterize and restrict access to all remaining radiological contamination. Radiological contaminants of concern (COCs) included cobalt-60, cesium-137, strontium-90, uranium-234/235/236/238, and plutonium-239/240. Additional COCs included Resource Conservation and Recovery Act (RCRA) metals, polychlorinated biphenyls (PCBs), and asbestos.

  3. Closure plan evaluation for risk of acid rock drainage

    SciTech Connect

    Dwire, D.L.; Krause, A.J.; Russell, L.J.

    1999-07-01

    Control of acid rock drainage (ARD) is a long-term issue for many mine sites and is often a primary objective of remediation efforts. Some sites continue to require monitoring and management of ARD long after mine operation has ceased and closure is complete. In New Zealand, an innovative and quantitative approach was applied to evaluate the expected risk of ARD after implementation of the closure plan for the Golden Cross Mine. In addition, this future risk was compared to current operating conditions to provide an estimate of the reduction in risk provided by the remediation activities. This approach was useful to both the mine proponent and the regulatory agencies in assessing the effectiveness of the existing closure plan and providing focus on the components of greatest risk. Mine components remaining on site after closure that could potentially generate ARD under various failure scenarios were identified and evaluated. These components included the tailings decant pond, waste rock, stockpiles, open pit mine and water treatment systems. For each component, a series of initiating events and failure scenarios were identified, and a decision tree methodology was utilized to estimate the probability of ARD generation for both current and closure conditions. Due to the implementation of closure plans designed to minimize or eliminate ARD through regarding, construction of engineered covers and water management designs, the risk of ARD generation will be significantly reduced over time.

  4. Supporting Fernald Site Closure with Integrated Health and Safety Plans as Documented Safety Analyses

    SciTech Connect

    Kohler, S.; Brown, T.; Fisk, P.; Krach, F.; Klein, B.

    2004-03-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D&D) of over 200 structures, including eight major nuclear production plants. There is one of twelve nuclear facilities still remaining (Silos containing uranium ore residues) with its own safety basis documentation. This paper presents the status of the FCP's safety basis documentation program, illustrating that all of the former nuclear facilities and activities have now replaced. Basis of Interim Operations (BIOs) with I-HASPs as their safety basis during the closure process.

  5. School Nutrition Facility Planning Guide.

    ERIC Educational Resources Information Center

    Pannell, Dorothy VanEgmond

    This publication is designed to help superintendents, local facilities coordinators, and food-service directors in planning the remodeling of an outdated food-service facility or the building of a new one. The introduction describes the roles of the local facility coordinator, the local child-nutrition director, the architect, the food-service…

  6. Appended health and safety plan for task order 1 for the RCRA Facility investigation/corrective measures study (RFI/CMS) and base closure environmental study for the Lexington-Blue Grass Army Depot. Final report

    SciTech Connect

    NONE

    1991-10-24

    Metcalf Eddy, Inc. (ME), under contract to the United States Army Toxic and Hazardous Materials Agency (USATHAMA), contract number DAAA15-90-D-0016, Task Order number 4, has appended the plans prepared for the RFI/CMS base closure at Lexington-Blue Grass Army Depot, Kentucky. This document is one of these appendices -- the appendix to the Health and Safety Plan. The appended document Task Order 1, Health and Safety Plan Lexington-Blue Grass Army Depot, Kentucky (USATHAMA, 1991) is henceforth called the `original document`. USEPA review comments of July 31, 1991, on the original document were incorporated into this appended document unless the comment requested work outside the Task Order Number 4 scope of work. Work outside the scope will be conducted at a later date, as deemed necessary by the COR.

  7. 48 CFR 2452.237-77 - Temporary closure of HUD facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...Facilities (DEC 2012) Observance of Legal Holidays and Closure of HUD Facilities (FEB 2006) New Year's Day Martin Luther King's Birthday Washington's Birthday Memorial Day Independence Day Labor Day Columbus Day...

  8. Planning and Designing Safe Facilities

    ERIC Educational Resources Information Center

    Seidler, Todd

    2006-01-01

    Those who manage physical education, athletic, and recreation programs have a number of legal duties that they are expected to carry out. Among these are an obligation to take reasonable precautions to ensure safe programs and facilities for all participants, spectators, and staff. Physical education and sports facilities that are poorly planned,…

  9. Facilities Management Floor Plans

    E-print Network

    Veiga, Pedro Manuel Barbosa

    for a certain room: o Select the building name on the Index Page o Then select a room number and you by building and then by room type o Select the floor plan link on the left to be directed to that floor plan o room to room. 9'11" 4'4" 4'6" 5'1" #12;Stout Room Number 103 201 249 318 374 461 104 203 250 319 375

  10. Preparing a base realignment and closure cleanup plan

    SciTech Connect

    Diecidue, A.M.; Bandrowsky, M.; Wooldridge, P. [PRC Environmental Management, Inc., McLean, VA (United States)

    1994-12-31

    Every Department of Defense (DoD) installation subject to closure or realignment is evaluating and implementing strategies for environmental response actions to facilitate the transfer of real property at the installation. The closure and realignment process is conducted pursuant to the Base Closure and Realignment Act of 1988 (Public Law 100-526, 102 Stat. 2623) (BRAC 88) or the Defense Base Closure and Realignment Act of 1990 (Public Law 101-510, 104 Stat. 1808) (BRAC 91, 93, and 95). On July 2, 1993, the President announced a five-part program to speed the economic recovery of communities where military bases are slated to close. DoD subsequently issued a policy memorandum on September 9, 1993 that provides guidance on implementing ``fast-track`` cleanup initiatives at those bases. The guidance introduces the use of BRAC cleanup teams (BCT) and the development of BRAC cleanup plans (BCP) as part of fast-track cleanup. The BCT is responsible for developing the BCP. The BCP serves as the road map for expeditious cleanup. This paper will focus on two areas: forming and working with the BCT and preparing the BCP. The paper will discuss the make-up of the BCT and how to build trust and achieve early consensus on the many issues to be addressed by the BCT. The paper also will discuss tips for forming the BCT and preparing the BCP based on the authors` experiences.

  11. Decontamination and inspection plan for phase 2 closure of the 300-Area waste acid treatment system

    SciTech Connect

    Hays, C.B.

    1998-02-06

    This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 2 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 2, the second phase of three proposed phases of closure for WATS, provides for closure of all WATS portions of the 334-A Building and some, but not all, WATS portions of the 333 and 303-F Buildings. Closure of the entire unit will not occur until all three closure phases have been completed. The DIP also describes the designation and management-process for waste and debris generated during Phase 2 closure activities. Information regarding the decontamination and verification methods for Phase 1 closure can be found in Decontamination and Inspection Plan, for Phase 1 closure of the 300 Area Waste Acid Treatment System, 21 WHC-SD-ENV-AP-001. Information regarding Phase 3 closure will be provided in later documents.

  12. Fall Semiannual Report for the HWMA\\/RCRA Post Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    Microsoft Academic Search

    D. F. Gianotto; N. C. Hutten

    2007-01-01

    The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center. In 1998, the WCF was closed under an approved Hazardous Waste Management Act\\/Resource Conservation and Recovery Act (HWMA\\/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA\\/RCRA post-closure permit on

  13. Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect

    Idaho Cleanup Project

    2006-06-01

    The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center. In 1998, the WCF was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the WCF to ensure continued protection of human health and the environment. The post-closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report.

  14. Closure Report for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada with ROTC 1, Revision 0

    SciTech Connect

    Mark Burmeister

    2007-09-01

    This CR provides documentation and justification for the closure of CAU 118 without further corrective action. This justification is based on process knowledge and the results of the investigative and closure activities conducted in accordance with the CAU 118 SAFER Plan: Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada (NNSA/NSO, 2006). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. This CR also provides the analytical and radiological survey data to confirm that the remediation goals were met as specified in the CAU 118 SAFER Plan (NNSA/NSO, 2006). The Nevada Division of Environmental Protection (NDEP) approved the CAU 118 SAFER Plan (Murphy, 2006), which recommends closure in place with use restrictions (URs).

  15. Closure plan for Corrective Action Unit 109: U-2bu subsidence crater, Nevada Test Site, Nevada

    SciTech Connect

    NONE

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facility Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). Based on the results of the analyses reported in the site characterization report, the only constituents of concern in the U-2bu subsidence crater include leachable lead and total petroleum hydrocarbons. Closure activities will include the excavation and disposal of impacted soil from the top of the crater. Upon completion of excavation, verification samples will be collected to show that the leachable lead has been removed to concentrations below the regulatory action level. After sample results show that the lead has been removed, the excavated area will be backfilled and a soil flood diversion berm will be constructed as a best management practice. An independent registered professional engineer will certify the site was closed following the approved Closure Plan. Post-closure care is not warranted for this site because closure activities will involve removal of the Resource Conservation and Recovery Act constituents of concern.

  16. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

  17. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect

    L. Desotell; D. Wieland; V. Yucel; G. Shott; J. Wrapp

    2008-03-01

    The U.S. Department of Energy, National Security Administration Nevada Site Office (NNSA/NSO) is planning to close the 92-Acre Area of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada. Closure planning for this facility must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. This paper provides a brief background of the Area 5 RWMS, identifies key closure issues, and presents the closure strategy. Disposals have been made in 25 shallow excavated pits and trenches and 13 Greater Confinement Disposal (GCD) boreholes at the 92-Acre Area since 1961. The pits and trenches have been used to dispose unclassified low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform waste, and to store classified low-level and low-level mixed materials. The GCD boreholes are intermediate-depth disposal units about 10 feet (ft) in diameter and 120 ft deep. Classified and unclassified high-specific activity LLW, transuranic (TRU), and mixed TRU are disposed in the GCD boreholes. TRU waste was also disposed inadvertently in trench T-04C. Except for three disposal units that are active, all pits and trenches are operationally covered with 8-ft thick alluvium. The 92-Acre Area also includes a Mixed Waste Disposal Unit (MWDU) operating under Resource Conservation and Recovery Act (RCRA) Interim Status, and an asbestiform waste unit operating under a state of Nevada Solid Waste Disposal Site Permit. A single final closure cover is envisioned over the 92-Acre Area. The cover is the evapotranspirative-type cover that has been successfully employed at the NTS. Closure, post-closure care, and monitoring must meet the requirements of the following regulations: U.S. Department of Energy Order 435.1, Title 40 Code of Federal Regulations (CFR) Part 191, Title 40 CFR Part 265, Nevada Administrative Code (NAC) 444.743, RCRA requirements as incorporated into NAC 444.8632, and the Federal Facility Agreement and Consent Order (FFACO). A grouping of waste disposal units according to waste type, location, and similarity in regulatory requirements identified six closure units: LLW Unit, Corrective Action Unit (CAU) 111 under FFACO, Asbestiform LLW Unit, Pit 3 MWDU, TRU GCD Borehole Unit, and TRU Trench Unit. The closure schedule of all units is tied to the closure schedule of the Pit 3 MWDU under RCRA.

  18. Facility planning as a component of strategic planning.

    PubMed

    Manevich, M B

    1985-02-01

    Facility planning is an important component of health care strategic planning, for it provides an accurate assessment of the institution's physical environment and its development potential. This article, the second in HCSM's series on the organizational components of strategic planning, reviews the role of facilities planning, the functional and physical evaluation, space programming, and facilities master plan in the development and implementation of the strategic plan. PMID:10299918

  19. Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system

    SciTech Connect

    LUKE, S.N.

    1999-02-01

    This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs).

  20. 324 Building radiochemical engineering cells, high-level vault, low-level vault, and associated areas closure plan

    SciTech Connect

    Barnett, J.M.

    1998-03-25

    The Hanford Site, located adjacent to and north of Richland, Washington, is operated by the US Department of Energy, Richland Operations Office (RL). The 324 Building is located in the 300 Area of the Hanford Site. The 324 Building was constructed in the 1960s to support materials and chemical process research and development activities ranging from laboratory/bench-scale studies to full engineering-scale pilot plant demonstrations. In the mid-1990s, it was determined that dangerous waste and waste residues were being stored for greater than 90 days in the 324 Building Radiochemical Engineering Cells (REC) and in the High-Level Vault/Low-Level Vault (HLV/LLV) tanks. [These areas are not Resource Conservation and Recovery Act of 1976 (RCRA) permitted portions of the 324 Building.] Through the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-89, agreement was reached to close the nonpermitted RCRA unit in the 324 Building. This closure plan, managed under TPA Milestone M-20-55, addresses the identified building areas targeted by the Tri-Party Agreement and provides commitments to achieve the highest degree of compliance practicable, given the special technical difficulties of managing mixed waste that contains high-activity radioactive materials, and the physical limitations of working remotely in the areas within the subject closure unit. This closure plan is divided into nine chapters. Chapter 1.0 provides the introduction, historical perspective, 324 Building history and current mission, and the regulatory basis and strategy for managing the closure unit. Chapters 2.0, 3.0, 4.0, and 5.0 discuss the detailed facility description, process information, waste characteristics, and groundwater monitoring respectively. Chapter 6.0 deals with the closure strategy and performance standard, including the closure activities for the B-Cell, D-Cell, HLV, LLV; piping and miscellaneous associated building areas. Chapter 7.0 addresses the closure activities identified in Chapter 6.0, and also adds information on closure activities for the soil directly beneath the unit, regulated material removed during closure, and the schedule for closure. Chapter 8.0 provides Surveillance, monitoring and post-closure information and Chapter 9.0 provides a list of references used throughout the document.

  1. Strategic facilities planning from the top down.

    PubMed

    Freed, D H; Ferri, E L

    1992-05-01

    An institution's strategic plan can serve as a blueprint on which to build department goals. The authors discuss how they developed a master facilities plan that was closely coordinated with their institution's strategic plan. PMID:10117775

  2. Revised RCRA closure plan for the Interim Drum Yard (S-030) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Smith, C.M.

    1994-09-01

    The Interim Drum Yard (IDY) facility is a containerized waste storage area located in the Y-12 exclusion area. It was used to store waste materials which are regulated by RCRA (Resource Conservation and Recovery Act); uranyl nitrate solutions were also stored there. The closure plan outlines the actions required to achieve closure of IDY and is being submitted in accordance with TN Rule 1200-1-11.05(7) and 40 CFR 265.110.

  3. Simplifying documentation while approaching site closure: integrated health & safety plans as documented safety analysis

    SciTech Connect

    Brown, Tulanda

    2003-06-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D&D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D&D I-HASP as an example.

  4. 2727-S Nonradioactive Dangerous Waste Storage Facility clean closure evaluation report

    SciTech Connect

    Luke, S.N.

    1994-07-14

    This report presents the analytical results of 2727-S NRDWS facility closure verification soil sampling and compares these results to clean closure criteria. The results of this comparison will determine if clean closure of the unit is regulatorily achievable. This report also serves to notify regulators that concentrations of some analytes at the site exceed sitewide background threshold levels (DOE-RL 1993b) and/or the limits of quantitation (LOQ). This report also presents a Model Toxics Control Act Cleanup (MTCA) (WAC 173-340) regulation health-based closure standard under which the unit can clean close in lieu of closure to background levels or LOQ in accordance with WAC 173-303-610. The health-based clean closure standard will be closure to MTCA Method B residential cleanup levels. This report reconciles all analyte concentrations reported above background or LOQ to this health-based cleanup standard. Regulator acceptance of the findings presented in this report will qualify the TSD unit for clean closure in accordance with WAC 173-303-610 without further TSD unit soil sampling, or soil removal and/or decontamination. Nondetected analytes require no further evaluation.

  5. HWMA/RCRA Closure Plan for the Fluorinel Dissolution Process Makeup and Cooling and Heating Systems Voluntary Consent Order SITE-TANK-005 Action Plan Tank Systems INTEC-066, INTEC-067, INTEC-068, and INTEC-072

    SciTech Connect

    M.E. Davis

    2007-05-01

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the fluorinel dissolution process makeup and cooling and heating systems located in the Fluorinel Dissolution Process and Fuel Storage Facility (CPP-666), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory Site, was developed to meet milestones established under the Voluntary Consent Order. The systems to be closed include waste piping associated with the fluorinel dissolution process makeup systems. This closure plan presents the closure performance standards and methods of achieving those standards.

  6. National Ignition Facility project acquisition plan

    Microsoft Academic Search

    Callaghan

    1996-01-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds:

  7. Facility effluent monitoring plan for the tank farms facilities

    Microsoft Academic Search

    G. M. Crummel; R. D. Gustavson; J. L. Kenoyer; M. P. Moeller

    1991-01-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility

  8. Closure Report for Corrective Action Unit 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada, Revision 0

    Microsoft Academic Search

    Mark Burmeister

    2009-01-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE,

  9. The 324 building radiochemical engineering scales and high-level vault closure plan

    SciTech Connect

    Prignano, A.L.

    1997-05-29

    This closure plan incorporates the requirements and decisions made during a Data Quality Objectives process held in 1996 by the State of Washington Department of Ecology, US Department of Energy Richland Operations Office, and contractors associated with closure of the 324 Building.

  10. Transuranic Storage Area (TSA)-3 container storage unit RCRA closure plan

    Microsoft Academic Search

    G. A. Barry; D. L. Lodman; M. J. Spry; K. J. Poor

    1992-01-01

    This document describes the proposed plan for closure of the Transuranic Storage Area (TSA)-3 container storage unit at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act closure requirements. The location, size, capacity, history, and current status of the unit are described. The unit will be closed by decontaminating structures and equipment that may have

  11. RADIATION DOSE CALCULATION FOR FUEL HANDLING FACILITY CLOSURE CELL EQUIPMENT

    SciTech Connect

    D. Musat

    2005-03-07

    This calculation evaluates the energy deposition rates in silicon, gamma and neutron flux spectra at various locations of interest throughout FHF closure cell. The physical configuration features a complex geometry, with particle flux attenuation of many orders of magnitude that cannot be modeled by computer codes that use deterministic methods. Therefore, in this calculation the Monte Carlo method was used to solve the photon and neutron transport. In contrast with the deterministic methods, Monte Carlo does not solve an explicit transport equation, but rather obtain answers by simulating individual particles, recording the aspects of interest of their average behavior, and estimates the statistical precision of the results.

  12. Planning for emission reduction credit allocation in Naval base closure and realignment actions in the San Francisco Bay region

    SciTech Connect

    Peoples, C. [Radian International LLC, Sacramento, CA (United States); Kannapel, P. [EFA West, San Bruno, CA (United States); Heroy-Rogalski, K. [Radian International LLC, Walnut Creek, CA (United States)

    1997-12-31

    Several Naval bases in the California San Francisco Bay Area are closing due to the Defense Base Closure and Realignment Acts recently passed by the US Congress. These were home to significant manufacturing and repair facilities that, when fully operating, generated over 100 tons per year of nitrogen oxide and ozone precursor compound emissions. As the bases close, these emissions are dropping, and there is an opportunity to gain credit for them through emissions banking. In order to distribute these emission reductions to meet both the needs of the government and the local redevelopment objectives, an allocation plan was developed. The allocation plan included generating emission reduction credits from the shutdown of permitted air emission sources. This paper highlights the benefits of early planning for emission reductions and subsequent allocation of those emission reductions in the case of the closure of Naval facilities in the San Francisco Bay Area. It illustrates that early planning can ensure that the needs of the military and local community are satisfied and that the highest quantity of bankable emission reductions are identified, and properly quantified and documented, and that emission reduction credits (ERCs) are generated. This paper also presents lessons learned from the experience of banking emissions from closing Navy facilities.

  13. Underground storage tank 291-D1U1: Closure plan

    SciTech Connect

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

  14. 10 CFR 63.161 - Emergency plan for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN...161 Emergency plan for the geologic repository operations area...accidents that may occur at the geologic repository operations area, at any time before permanent closure...

  15. 10 CFR 63.161 - Emergency plan for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN...161 Emergency plan for the geologic repository operations area...accidents that may occur at the geologic repository operations area, at any time before permanent closure...

  16. Facility effluent monitoring plan for the tank farm facility

    SciTech Connect

    Crummel, G.M.

    1998-05-18

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  17. Fall Semiannual Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect

    D. F. Gianotto

    2007-01-12

    The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center. In 1998, the WCF was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the WCF to ensure continued protection of human health and the environment.

  18. Planning Requirements for Small School Facilities.

    ERIC Educational Resources Information Center

    Davis, J. Clark; McQueen, Robert

    The unique requirements of small school facilities, designed to handle multiple curricular functions within the same operational space, necessitate the creation of educational specifications tying the curriculum to that portion of the facility in which each curriculum component will be implemented. Thus, in planning the facility the major concern…

  19. Loop based facility planning and material handling

    Microsoft Academic Search

    Ardavan Asef-vaziri; Gilbert Laporte

    2005-01-01

    A sizeable proportion of manufacturing expenses can be attributed to facility layout and material handling. Facility layout decisions involve designing the arrangement of elements in manufacturing systems. Among the most critical material handling decisions in this area are the arrangement and design of material flow patterns. This survey article reviews loop based facility planning and material handling decisions for trip

  20. Closure Plan for Corrective Action Unit 109: U-2bu Subsidence Crater Nevada Test Site, Nevada

    SciTech Connect

    Shannon Parsons

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facilities Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). The subsidence crater was used as a land disposal unit for radioactive and hazardous waste from 1973 to 1988. Site disposal history is supported by memorandums, letters, and personnel who worked at the Nevada Test Site at the time of active disposal. Closure activities will include the excavation and disposal of impacted soil form the tip of the crater. Upon completion of excavation, verification samples will be collected to show that lead has been removed to concentrations be low regulatory action level. The area will then be backfilled and a soil flood diversion berm will be constructed, and certified by an independent professional engineer as to having followed the approved Closure Plan.

  1. Facility Effluent Monitoring Plan for the uranium trioxide facility

    SciTech Connect

    Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, Inc., NM (United States)

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  2. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    SciTech Connect

    DOE/NV

    2001-04-05

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  3. Facility Closure Report for Tunnel U16a, Area 16, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-07-01

    U16a is not listed in the Federal Facility Agreement and Consent Order. The closure of U16a was sponsored by the Defense Threat Reduction Agency (DTRA) and performed with the cooperation of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the Nevada Division of Environmental Protection. This report documents closure of this site as identified in the DTRA Fiscal Year 2008 Statement of Work, Task 6.3. Closure activities included: · Removing and disposing of a shack and its contents · Disposing of debris from within the shack and in the vicinity of the tunnel entrance · Verifying that the tunnel is empty · Welding screened covers over tunnel vent holes to limit access and allow ventilation · Constructing a full-tunnel cross-section fibercrete bulkhead to prevent access to the tunnel Field activities were conducted from July to August 2008.

  4. Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site

    SciTech Connect

    Boehmer, Ann

    2010-11-01

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep Tanks System Phase 1. These monitoring wells are intended to monitor for the occurrence of contaminants of concern in the perched water beneath and adjacent to the CPP-601/627/640 Landfill. The wells were constructed to satisfy requirements of the HWMA/RCRA Post-Closure Plan for the CPP 601/627/640 Landfill.

  5. Integrated Planning: Consolidating Annual Facility Planning - More Time for Execution

    SciTech Connect

    Nelson, J. G.; R., L. Morton; Ramirez, C.; Morris, P. S.; McSwain, J. T.

    2011-02-02

    Previously, annual planning for Readiness in Technical Base and Facilities (RTBF) at the Nevada National Security Site (NNSS) was fragmented, disconnected, circular, and occurred constantly throughout the fiscal year (FY) comprising 9 of the 12 months, reducing the focus on implementation and execution. This required constant “looking back” instead of “looking forward.” In FY 2009, annual planning was consolidated into one comprehensive integrated plan (IP) for each facility/project, which comprised annual task planning/outyear budgeting, AMPs, and investment planning (i.e., TYIP). In FY 2010, the Risk Management Plans were added to the IPs. The integrated planning process achieved the following: 1) Eliminated fragmented, circular, planning and moved the plan to be more forward-looking; 2) Achieved a 90% reduction in schedule planning timeframe from 40 weeks (9 months) to 6 weeks; 3) Achieved an 80% reduction in cost from just under $1.0M to just over $200K, for a cost savings of nearly $800K (reduced combined effort from over 200 person-weeks to less than 40); 4) Reduced the number of plans generated from 21 plans (1 per facility per plan) per year to 8 plans per year (1 per facility plus 1 program-level IP); 5) Eliminated redundancy in common content between plans and improved consistency and overall quality; 6) Reduced the preparation time and cost of the FY 2010 SEP by 50% due to information provided in the IP; 7) Met the requirements for annual task planning, annual maintenance planning, ten-year investment planning, and risk management plans.

  6. Associate Vice President Facilities Planning & Operations

    E-print Network

    Kostic, Milivoje M.

    Associate Vice President Facilities Planning & Operations Space Administrator I (Office Support) Human Resources Associate Space Administrator II Space Administrator I Architect II (Director) Electrician (11) Storekeeper II Carpenter (7) Roofer Foreman Locksmith Foreman Sheet-Metal Worker (2) Elevator

  7. Maintenance Implementation Plan for the Grout Facility

    SciTech Connect

    Yoakum, A.K.

    1993-08-01

    The objective of the Maintenance Implementation Plan (MIP) is to describe how the Grout Treatment Facility will implement the requirements established by US Department of Energy (DOE) Order 4330.4A, Maintenance Management Program, Chapter 2.0 Nuclear Facilities (DOE 1990). The plan provides a blueprint for a disciplined approach to implementation and compliance. Each element of the order is prioritized, categorized, and then placed into one of three phases for implementation.

  8. PLANNING THE INDOOR PHYSICAL EDUCATION FACILITIES.

    ERIC Educational Resources Information Center

    HASE, GERALD J.; HICK, BASIL L.

    THIS PAMPHLET IS DESIGNED TO HELP ARCHITECTS AND LOCAL SCHOOL OFFICIALS IN THE PREPARATION OF PLANS FOR PHYSICAL EDUCATION FACILITIES IN NEW AND EXISTING BUILDINGS. FACILITIES MENTIONED INCLUDE--(1) GYMNASIUM, (2) SWIMMING POOL, (3) SMALL GROUP ACTIVITY ROOM, (4) DRESSING AND SHOWERING ROOMS, (5) TEAM ROOM, (6) EQUIPMENT DRYING ROOM, (7) LAUNDRY…

  9. PLANS FOR FUTURE MEGAWATT FACILITIES.

    SciTech Connect

    ROSER,T.

    2004-10-13

    Proton accelerators producing beam powers of up to 1 MW are presently either operating or under construction and designs for Multi-Megawatt facilities are being developed. High beam power has applications in the production of high intensity secondary beams of neutrons, muons, kaons and neutrinos as well as in nuclear waste transmutation and accelerator-driven sub-critical reactors. Each of these applications has additional requirements on beam energy and duty cycle. This paper will review how present designs for future Multi-Megawatt facilities meet these requirements and will also review the experience with present high power facilities.

  10. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect

    Boehmer, Ann M.

    2009-05-31

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  11. Mission College Educational and Facilities Master Plan.

    ERIC Educational Resources Information Center

    Mission Coll., Santa Clara, CA.

    This document details Mission College's 2001 master plan for education and facilities. The plan makes several recommendations. (1) It is imperative to stay on the "cutting edge" in high-demand fields; (2) With a changing student population (45% ESL and 85% first-generation college students), it is also important to provide a strong, basic…

  12. Site and facility transportation services planning documents

    SciTech Connect

    Ratledge, J.E. (Oak Ridge National Lab., TN (USA)); Danese, L.; Schmid, S. (Science Applications International Corp., Oak Ridge, TN (USA))

    1990-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab.

  13. Liquid effluent retention facility final-status groundwater monitoring plan

    SciTech Connect

    Sweeney, M.D.; Chou, C.J.; Bjornstad, B.N.

    1997-09-01

    The following sections describe the groundwater-monitoring program for the Liquid Effluent Retention Facility (LERF). The LERF is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The LERF is included in the {open_quotes}Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit WA890008967{close_quotes}, (referred to herein as the Permit) (Ecology 1994) and is subject to final-status requirements for groundwater monitoring (WAC 173-303-645). This document describes a RCRA/WAC groundwater detection-monitoring program for groundwater in the uppermost aquifer system at the LERF. This plan describes the LERF monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the LERF. This plan will be used to meet the groundwater monitoring requirements from the time the LERF becomes part of the Permit and through the post-closure care period, until certification of final closure.

  14. Implementing change in the facilities planning process

    SciTech Connect

    Williams, J.L. [Sandia National Labs., Albuquerque, NM (United States). Sites Planning Dept.

    1995-08-01

    In the post-Cold War climate of reduced budgets at the national laboratories, the Sites Planning Department at Sandia National Laboratories was faced with the problem of securing funding for capital construction projects in a very competitive environment. The Department of Energy (DOE), felt that requests for new facilities were not always well coordinated with its mission needs. The Sites Planning Department needed to revolutionize the way they were doing business. To be successful in obtaining approval and funding for future facilities, they recognized the need to concentrate their efforts on project proposals that tap strategic programs at DOE. The authors developed a series of new processes to identify, evaluate, prioritize, and develop line item project proposals to request approval and obtain funding. A matrixed group of sites and facilities directors was formed to establish criteria and make preliminary recommendations to upper management. Matrixed working groups were also established at the staff level to develop and prepare projects for the prioritization process. Ultimately, similar processes will be applied to all project types, and a prioritized plan generated for each. These plans will become the blueprint for an overarching strategic site plan. What started as a means of increasing success in obtaining approval and funding of capital projects has launched a whole new approach to project development that permits incorporation of facilities planning into overall corporate strategic planning.

  15. Post-Closure Inspection Report for Corrective Action Unit 92: Area 6 Decon Pond Facility

    SciTech Connect

    NSTec Environmental Restoration

    2008-03-01

    This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility. CAU 92 was closed according to the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP], 1995) and the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996; as amended January 2007). Closure activities were completed on February 16, 1999, and the Closure Report (U.S. Department of Energy, Nevada Operations Office, 1999) was approved and a Notice of Completion issued by NDEP on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs): CAS 06-04-01, Decon Pad Oil/Water Separator, and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02 requires post-closure inspections. Visual inspections of the cover and fencing at CAS 06-05-02 are performed quarterly. Additional inspections are conducted if precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in.]) in a 24-hour period. This report covers calendar year 2007. Quarterly site inspections were performed in March, June, September, and December of 2007. All observations indicated the continued integrity of the unit. No issues or concerns were noted, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A of this report, and photographs taken during the site inspections are included in Appendix B of this report. Two additional inspections were performed after precipitation events that exceeded 1.28 cm (0.50 in.) within a 24-hour period during 2007. No significant changes in site conditions were noted during these inspections, and no corrective actions were necessary. A copy of the inspection checklists and field notes completed during these additional inspections are included in Appendix A. Precipitation records for 2007 are included in Appendix C.

  16. Fernald - Developing and Executing an Accelerated Closure Plan

    SciTech Connect

    Nixon, D.A. [Fluor Fernald, Inc., P.O. Box 538704, Cincinnati, OH 45253 (United States)

    2006-07-01

    In November 2000 the Department of Energy (DOE) and Fluor Fernald entered into a closure contract that incited Fluor Fernald to reduce the cost and schedule of the Fernald site cleanup. The contract established a target schedule and target cost and how Fluor Fernald performs against these targets determines the amount of fee the company earns. In response to these new challenges, Fluor Fernald developed a 13-part strategy to safely accelerate work and more efficiently utilize the available funding. Implementation of this strategy required a dramatic culture change at Fernald - from a 'government job mind set' to an entrepreneurial/commercial model. Fluor Fernald's strategy and culture change has proved to be successful as the company is on track to close the site ahead of the target schedule at a total project cost less than the target cost. The elements of Fluor Fernald's strategy and the lessons learned during implementation provide valuable information that could be utilized by other DOE sites that will be undergoing closure over the next decade. (authors)

  17. Lessons Learned from the On-Site Disposal Facility at Fernald Closure Project

    SciTech Connect

    Kumthekar, U.A.; Chiou, J.D. [Fluor Fernald, Inc., 7400 Willey Road, Hamilton, Ohio 45013 (United States)

    2006-07-01

    The On-Site Disposal Facility (OSDF) at the U.S. Department of Energy's (DOE) Fernald Closure Project near Cincinnati, Ohio is an engineered above-grade waste disposal facility being constructed to permanently store low level radioactive waste (LLRW) and treated mixed LLRW generated during Decommissioning and Demolition (D and D) and soil remediation performed in order to achieve the final land use goal at the site. The OSDF is engineered to store 2.93 million cubic yards of waste derived from the remediation activities. The OSDF is intended to isolate its LLRW from the environment for at least 200 years and for up to 1,000 years to the extent practicable and achievable. Construction of the OSDF started in 1997 and waste placement activities will complete by the middle of April 2006 with the final cover (cap) placement over the last open cell by the end of Spring 2006. An on-site disposal alternative is considered critical to the success of many large-scale DOE remediation projects throughout the United States. However, for various reasons this cost effective alternative is not readily available in many cases. Over the last ten years Fluor Fernald Inc. has cumulated many valuable lessons learned through the complex engineering, construction, operation, and closure processes of the OSDF. Also in the last several years representatives from other DOE sites, State agencies, as well as foreign government agencies have visited the Fernald site to look for proven experiences and practices, which may be adapted for their sites. This paper present a summary of the major issues and lessons leaned at the Fernald site related to engineering, construction, operation, and closure processes for the disposal of remediation waste. The purpose of this paper is to share lessons learned and to benefit other projects considering or operating similar on-site disposal facilities from our successful experiences. (authors)

  18. SURF II: Characteristics, facilities, and plans

    SciTech Connect

    Madden, R.P.; Canfield, R.; Furst, M.; Hamilton, A.; Hughey, L. (National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States))

    1992-01-01

    This facility report describes the Synchrotron Ultraviolet Radiation Facility (SURF II) operated by the National Institute of Standards and Technology, Gaithersburg, Maryland. SURF II is a 300-MeV electron storage ring which provides well characterized continuum radiation from the far infrared to the soft x-ray region with the critical wavelength at 17.4 nm. Brief descriptions are given of the user facilities, the characteristics of the synchrotron radiation, the main storage ring, the injector system and each of the operating beam lines, and associated instruments. Further description is given of expansion plans for additional beam lines.

  19. High-energy facility development plan

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Roberts, W. T.; Dabbs, J. R.

    1988-01-01

    Approaches to the deployment of instruments for the study of high-energy solar emissions alone or in conjunction with other solar instruments are considered. The Space Station has been identified as the preferred mode for the deployment of the Advanced Solar Observatory, and it is suggested that a proposed High-Energy Facility could be on a coorbiting platform. The implementation plan for the High-Energy Facility involves the definition of the interface structures required to mount the facility instruments to the Space Station and the development of hard X-ray and gamma-ray imaging, spectroscopic, and polarimetric instruments.

  20. PLANNING WASTEWATER MANAGEMENT FACILITIES FOR SMALL COMMUNITIES

    EPA Science Inventory

    This manual presents a set of procedures for planning wastewater management facilities for small communities and is directed at areas with populations of under 10,000. It is designed to aid engineers and the communities they serve in evaluating various options for treatment and d...

  1. National Ignition Facility Title II Design Plan

    SciTech Connect

    Kumpan, S

    1997-03-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

  2. PREMISES--PLANNING STUDENT PERSONNEL FACILITIES.

    ERIC Educational Resources Information Center

    COLLINS, CHARLES C.

    STUDENT PERSONNEL FACILITIES PLANNING MUST BE BASED ON 14 FUNCTIONS--(1) PRECOLLEGE INFORMATION, (2) REGISTRATION AND RECORDS, (3) APPRAISAL, (4) COUNSELING, (5) ORIENTATION, (6) REMEDIATION, (7) COCURRICULAR ACTIVITIES, (8) HEALTH SERVICES, (9) FINANCIAL ASSISTANCE, (10) PLACEMENT SERVICES, (11) HOUSING, (12) FOOD SERVICES, (13) RESEARCH AND…

  3. Planning and Design of Outdoor Sports Facilities.

    ERIC Educational Resources Information Center

    Department of the Army, Washington, DC.

    Information required for the planning and design of outdoor sports facilities is provided in the format of an outline text and design criteria placed opposite an accompanying page of definitive drawings. Scope of the manual covers those outdoor sports and games most commonly played for competition and/or recreation by military and civilian…

  4. Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0

    SciTech Connect

    Olson, A.L.; Nacht, S.J.

    1997-11-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D&D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities.

  5. Planning Tool for Strategic Evaluation of Facility Plans - 13570

    SciTech Connect

    Magoulas, Virginia; Cercy, Michael [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Hall, Irin [Newport News Shipbuilding, 4101 Washington Ave., Newport News, VA 23607 (United States)] [Newport News Shipbuilding, 4101 Washington Ave., Newport News, VA 23607 (United States)

    2013-07-01

    Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility was needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)

  6. National Ignition Facility wet weather construction plan

    SciTech Connect

    Kugler, A N

    1998-01-01

    This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

  7. Development of a prototype plan for the effective closure of a waste disposal site in Los Alamos, New Mexico

    SciTech Connect

    Nyhan, J.; Barnes, F.

    1989-02-01

    The purpose of this study was to develop a prototype plan for the effective closure and stabilization of a semiarid low-level waste disposal site. This prototype plan will provide demonstrated closure techniques for a trench in a disposal site at Los Alamos based on previous shallow land burial (SLB) field research both at the Los Alamos Experimental Engineered Test Facility (EETF), and at a waste disposal area at Los Alamos. The accuracy of modeling soil water storage by two hydrologic models was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems at Waste Disposal Area B having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that one of the two models tested represented soil moisture more accurately than the second model. The accuracy of modeling all of the parameters of the water balance equation was then evaluated using field data from the Integrated Systems Demonstration plots at the EETF. Optimized parameters were developed for one model to describe observed values of deep percolation, evapotranspiration, and runoff from the field plots containing an SLB trench cap configuration.

  8. 2101-M pond closure plan. Volume 1, Revision 2

    SciTech Connect

    Izatt, R. D.; Lerch, R. E.

    1993-06-01

    This document describes activities for the closure of a surface impoundment (2101-M Pond) at the Hanford Site. The 2101-H Pond was initially constructed in 1953 to serve as a drainage collection area for the 2101-H Building. (Until the Basalt Waste Isolation Project (BWIP) Laboratory was constructed in the 2101-M Building in 1979--1981, the only source contributing discharge to the pond was condensate water from the 2101-H Building heating, ventilation, and air conditioning (HVAC) system. The drains for the BWIP Laboratory rooms were plumbed into a 4-in., cast-iron, low-pressure drain pipe that carries waste water from the HVAC system to the pond. During the active life of the BWIP Laboratory, solutions of dissolved barium in groundwater samples were discharged to the 2101-M Pond via the laboratory drains. As a result of the discharges, a Part A permit application was initially submitted to the Washington State Department of Ecology (Ecology) in August 1986 which designates the 2101-M Pond as a surface impoundment.

  9. Post-Closure RCRA Groundwater Monitoring Plan for the 216-S-10 Pond and Ditch

    SciTech Connect

    Barnett, D BRENT.; Williams, Bruce A.; Chou, Charissa J.; Hartman, Mary J.

    2006-03-17

    The purpose of this plan is to provide a post-closure groundwater monitoring program for the 216-S-10 Pond and Ditch (S-10) treatment, storage, and/or disposal (TSD) unit. The plan incorporates the sum of knowledge about the potential for groundwater contamination to originate from the S-10, including groundwater monitoring results, hydrogeology, and operational history. The S-10 has not received liquid waste since October 1991. The closure of S-10 has been coordinated with the 200-CS-1 source operable unit in accordance with the Tri-Party Agreement interim milestones M-20-39 and M-15-39C. The S-10 is closely situated among other waste sites of very similar operational histories. The proximity of the S-10 to the other facilities (216-S-17 pond, 216-S-11 Pond, 216-S-5,6 cribs, 216-S-16 ditch and pond, and 216-U-9 ditch) indicate that at least some observed groundwater contamination beneath and downgradient of S-10 could have originated from waste sites other than S-10. Hence, it may not be feasible to strictly discriminate between the contributions of each waste site to groundwater contamination beneath the S-10. A post-closure groundwater monitoring network is proposed that will include the drilling of three new wells to replace wells that have gone dry. When completed, the revised network will meet the intent for groundwater monitoring network under WAC 173-303-645, and enable an improved understanding of groundwater contamination at the S-10. Site-specific sampling constituents are based on the dangerous waste constituents of concern relating to RCRA TSD unit operations (TSD unit constituents) identified in the Part A Permit Application. Thus, a constituent is selected for monitoring if it is: A dangerous waste constituent identified in the Part A Permit Application, or A mobile decomposition product (i.e., nitrate from nitrite) of a Part A constituent, or A reliable indicator of the site-specific contaminants (i.e., specific conductance). Using these criteria, the following constituent list and sampling schedule is proposed: Constituent; Sampling Frequency Site-Specific Parameters; Hexavalent chromium (a); Semiannual Chloride; Semiannual Fluoride; Semiannual Nitrate; Semiannual Nitrite; Semiannual Specific conductance (field)(a); Semiannual Ancillary Parameters; Anions; Annual Alkalinity Annual Metals, (in addition to chromium); Annual pH (field) Semiannual Temperature (field); Semiannual Turbidity (field) Semiannual (a). These constituents will be subject to statistical tests after background is established. It will be necessary to install new monitoring wells and accumulate background data on the groundwater from those wells before statistical comparisons can be made. Until then, the constituents listed above will be evaluated by tracking and trending concentrations in all wells and comparing these results with the corresponding DWS or Hanford Site background concentration for each constituent. If a comparison value (background or DWS) for a constituent is exceeded, DOE will notify Ecology per WAC 173-303-645 (9) (g) requirements (within seven days or a time agreed to between DOE and Ecology).

  10. 40 CFR 112.20 - Facility response plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...and submission of response plans —Animal fat and vegetable oil facilities. The owner or operator of any non-transportation-related...that handles, stores, or transports animal fats and vegetable oils must prepare and submit a facility response plan...

  11. 40 CFR 112.20 - Facility response plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...and submission of response plans —Animal fat and vegetable oil facilities. The owner or operator of any non-transportation-related...that handles, stores, or transports animal fats and vegetable oils must prepare and submit a facility response plan...

  12. 40 CFR 112.20 - Facility response plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...and submission of response plans —Animal fat and vegetable oil facilities. The owner or operator of any non-transportation-related...that handles, stores, or transports animal fats and vegetable oils must prepare and submit a facility response plan...

  13. 40 CFR 112.20 - Facility response plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...and submission of response plans —Animal fat and vegetable oil facilities. The owner or operator of any non-transportation-related...that handles, stores, or transports animal fats and vegetable oils must prepare and submit a facility response plan...

  14. 40 CFR 112.20 - Facility response plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...and submission of response plans —Animal fat and vegetable oil facilities. The owner or operator of any non-transportation-related...that handles, stores, or transports animal fats and vegetable oils must prepare and submit a facility response plan...

  15. Emergency evacuation/transportation plan update: Traffic model development and evaluation of early closure procedures. Final report

    SciTech Connect

    NONE

    1993-10-28

    Prolonged delays in traffic experienced by Laboratory personnel during a recent early dismissal in inclement weather, coupled with reconstruction efforts along NM 502 east of the White Rock Wye for the next 1 to 2 years, has prompted Los Alamos National Laboratory (LANL) to re-evaluate and improve the present transportation plan and its integration with contingency plans maintained in other organizations. Facilities planners and emergency operations staff need to evaluate the transportation system`s capability to inefficiently and safely evacuate LANL under different low-level emergency conditions. A variety of potential procedures governing the release of employees from the different technical areas (TAs) requires evaluation, perhaps with regard to multiple emergency-condition scenarios, with one or more optimal procedures ultimately presented for adoption by Lab Management. The work undertaken in this project will hopefully lay a foundation for an on-going, progressive transportation system analysis capability. It utilizes microscale simulation techniques to affirm, reassess and validate the Laboratory`s Early Dismissal/Closure/Delayed Opening Plan. The Laboratory is required by Federal guidelines, and compelled by prudent practice and conscientious regard for the welfare of employees and nearby residents, to maintain plans and operating procedures for evacuation if the need arises. The tools developed during this process can be used outside of contingency planning. It is anticipated that the traffic models developed will allow site planners to evaluate changes to the traffic network which could better serve the normal traffic levels. Changes in roadway configuration, control strategies (signalization and signing), response strategies to traffic accidents, and patterns of demand can be modelled using the analysis tools developed during this project. Such scenarios typically are important considerations in master planning and facilities programming.

  16. Groundwater Monitoring Plan for the 1301-N, 1324-N/NA, and 1325-N RCRA Facilities

    SciTech Connect

    Hartman, Mary J.

    2002-06-08

    The 1301-N and 1325-N Liquid Waste Disposal Facilities, the 1324-N Surface Impoundment, and the 1324-NA Percolation Pond, located in the 100 N Area of the Hanford Site, are regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The closure plans for these facilities stipulate that groundwater is monitored according to the 100-N Pilot Project: Proposed Consolidated Groundwater Monitoring Program (BHI-00725). This document supplements the consolidated plan by providing information on sampling and analysis protocols, quality assurance, data management, and a conceptual model for the RCRA sites. Monitoring well networks, constituents, and sampling frequency remain the same as in the consolidated plan or the previous groundwater monitoring plan (Hartman 1996).

  17. Draft environmental assessment -- Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    SciTech Connect

    Braun, J.B.; Irving, J.S.; Staley, C.S.; Stanley, N.

    1996-04-01

    The DOE-Idaho Operations Office has prepared an environmental assessment (EA) to analyze the environmental impacts of closing the Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory (INEL). The purpose of the action is to reduce the risk of radioactive exposure and release of radioactive and hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce these risks to human health and the environment and to comply with Resource Conservation and Recovery Act requirements. The WCF closure project is described in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (Programmatic EIS). DOE determined in the Programmatic EIS Record of Decision (ROD) that certain actions would be implemented and other actions deferred. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality Regulations. Based on the analysis in the EA, the action will not have a significant effect on the human environment.

  18. Management plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Nickels, J.M.; Pratt, D.R.

    1991-08-01

    The DOE/RL 89-19, United States Department of Energy-Richland Operations Office Environmental Protection Implementation Plan (1989), requires the Hanford Site to prepare an Environmental Monitoring Plan (EMP) by November 9, 1991. The DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (1991), provides additional guidance and requires implementation of the EMP within 36 months of the effective data of the rule. DOE Order 5400.1, General Environmental Protection Program, requires each US Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials to prepare an EMP. This EMP is to identify and discuss two major activities: (1) effluent monitoring and (2) environmental surveillance. At the Hanford Site, the site-wide EMP will consist of the following elements: (1) A conceptual plan addressing effluent monitoring and environmental surveillance; (2) Pacific Northwest Laboratory (PNL) site-wide environmental surveillance program; (3) Westinghouse Hanford Company (Westinghouse Hanford) effluent monitoring program consisting of the near-field operations environmental monitoring activities and abstracts of each Facility Effluent Monitoring Plan (FEMP). This management plan addresses the third of these three elements of the EMP, the FEMPs.

  19. Proposed plan for the Tank 105-C Hazardous Waste Management Facility. Revision 1

    SciTech Connect

    Miles, W.C. Jr.

    1994-06-24

    This Proposed Plan was developed to describe the remedial action selected at the Tank 105-C Hazardous Waste Management Facility (HWMF) source-specific unit within the C-Area Fundamental Study Area (FSA) at the Savannah River Site (SRS) and to fulfill Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. This 8,400 gallon capacity tank was certified and accepted closed according to a closure plan approved by the state of South Carolina under the Resource Conservation and Recovery Act (RCRA) authority in January 1991. As a result of the closure, previously performed under RCRA, the unit poses no current or potential threat to human health or the environment. Accordingly, no further remedial action is necessary under CERCLA.

  20. HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2

    SciTech Connect

    KIRK WINTERHOLLER

    2008-02-25

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards.

  1. 340 waste handling facility deactivation plan

    SciTech Connect

    Stordeur, R.T.; Berneski, L.D., Westinghouse Hanford

    1996-08-01

    This document provides an overview of both the present status of the 340 Complex (within Hanford`s 300 Area), and of tasks associated with the deactivation of those segments dealing with radioactive, mixed liquid waste receipt, storage, and shipping.The plan also outlines actions needed to de-couple portions of the 340 Complex that will remain in service, including a replacement facility for required functions now fulfilled by systems proposed for deactivation. Task descriptions are presented, along with a detailed schedule for fiscal years 1997 through 2001, a companion preliminary budget (focused more on the near term), and a list of key assumptions.

  2. Facility Planning for Physical Education, Recreation, and Athletics.

    ERIC Educational Resources Information Center

    Flynn, Richard B., Ed.

    This publication reflects the composite knowledge of many professionals on the topic of the planning and construction of facilities for athletics, physical education, and recreation. The text is organized into nine chapters: (1) "Facility Planning Process: Factors To Consider" (H. R. White and J. D. Karabetsos); (2) "Indoor Facilities" (E.…

  3. Accelerated radioactive nuclear beams: Existing and planned facilities

    SciTech Connect

    Nitschke, J.M.

    1992-07-01

    An over-view of existing and planned radioactive nuclear beam facilities world-wide. Two types of production methods are distinguished: projectile fragmentation and the on-line isotope separator (ISOL) method. While most of the projectile fragmentation facilities are already in operation, almost all the ISOL-based facilities are in still the planning stage.

  4. UNIVERSITY OF MISSOURI -COLUMBIA PLANT GROWTH FACILITIES MASTER PLAN

    E-print Network

    Noble, James S.

    UNIVERSITY OF MISSOURI - COLUMBIA PLANT GROWTH FACILITIES MASTER PLAN PROJECT NO 400771 July 3 - COLUMBIA PLANT GROWTH FACILITIES MASTER PLAN 2 1.1 Executive Summary Plant Sciences have a fundamental role and continued success of plant growth based research on campus has led to the efforts of this master plan

  5. Outcome-Based Planning-Hanford's Shift Towards Closure and Shrinking the Hanford Site

    SciTech Connect

    Ballard, W. W.; Holten, R.; Johnson, W.; Reichmuth, B.; White, M.; Wood, T.

    2002-02-26

    Over the past two years, the U.S. Department of Energy (DOE) Richland Operations Office (RL) has formulated a focused, outcomes-based vision for accelerated cleanup of the Hanford Site. The primary elements, or outcomes, of this vision are to (1) accelerate restoration of the Columbia River Corridor, (2) transition the Central Plateau to long-term waste management, thereby shrinking the footprint of active site cleanup and operations, and (3) prepare for the future. The third outcome includes operation of the Pacific Northwest National Laboratory (PNNL), a key element of the foundation for Hanford's future; leveraging DOE's assets; and working with the community to understand their vision and reflect it as appropriate in the execution of the Hanford 2012 Vision. The purpose of these three outcomes is to provide a near term focus, aimed at achieving definitive end points over the next decade, while not precluding any long-term end-state associated with the completion of the Environmental Management (EM) mission at Hanford. The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make the Hanford Site arguably the world's largest and most complex environmental cleanup project. Current projections are that it will cost over $80 billion and take over four decades to complete the cleanup at Hanford. Accelerated cleanup of the River Corridor portion of the Site will allow the remediation effort to focus on specific, near-term outcomes. Hanford's success in achieving these outcomes will reduce urgent risk, shrink the Site, remove contamination and wastes from the proximity of the river, and consolidate waste management activities on the Central Plateau. Hanford has begun implementation of this vision. Performance-based contracts are being realigned to reflect the outcome orientation, including issuing a new River Corridor closure contract. This paper summarizes the outcome-based planning approach for other sites and interested parties. A brief introduction to the Hanford Site, along with detailed descriptions of the three outcomes is provided. This paper also summarizes the analyses and resulting products that were prepared in shifting to an outcome-based approach for closing the Hanford Site.

  6. 30 CFR 550.303 - Facilities described in a new or revised Exploration Plan or Development and Production Plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Facilities described in a new or revised Exploration Plan or Development and Production...Facilities described in a new or revised Exploration Plan or Development and Production Plan. (a) New plans. All Exploration Plans and Development and...

  7. 30 CFR 550.303 - Facilities described in a new or revised Exploration Plan or Development and Production Plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Facilities described in a new or revised Exploration Plan or Development and Production...Facilities described in a new or revised Exploration Plan or Development and Production Plan. (a) New plans. All Exploration Plans and Development and...

  8. 30 CFR 550.303 - Facilities described in a new or revised Exploration Plan or Development and Production Plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Facilities described in a new or revised Exploration Plan or Development and Production...Facilities described in a new or revised Exploration Plan or Development and Production Plan. (a) New plans. All Exploration Plans and Development and...

  9. Facility Effluent Monitoring Plan determination for the Liquid Effluent Retention Facility

    Microsoft Academic Search

    Crummel

    1991-01-01

    The purpose of this document is to determine whether the Liquid Effluent Retention Facility meets the criteria for requiring a Facility Effluent Monitoring Plan. This document contains a brief facility description, the source term (i.e., inventory) of radioactive and nonradioactive materials at the facility, and a determination of the annual effective dose equivalent that would be received by members of

  10. Treatment planning for the heavy-ion facility at GSI.

    PubMed

    Jäkel, O; Krämer, M; Hartmann, G H; Heeg, P; Karger, C P; Kraft, G

    1999-06-01

    A new treatment planning program was developed for the heavy-ion therapy facility at GSI. In addition, a concise quality standard for treatment planning has been set up. It covers acceptance and constancy checks of all critical aspects in treatment planning. Dose verification measurements done during the commissioning phase show an overall good agreement with the treatment planning calculations. PMID:10394387

  11. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    SciTech Connect

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin [Office of Groundwater and Soil Remediation, U.S. Department of Energy, Washington, DC 20585 (United States); Wellman, Dawn [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Deeb, Rula; Hawley, Elisabeth [ARCADIS U.S., Inc., Emeryville, CA 94608 (United States)

    2012-07-01

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites. (authors)

  12. Resource Conservation and Recovery Act (RCRA) Closure Plan Summary for Interim reasctive Waste Treatment Area (IRWTA)

    SciTech Connect

    Collins, E.T.

    1997-07-01

    This closure plan has been prepared for the interim Reactive Waste Treatment Area (IRWT'A) located at the Y-12 Pkmt in oak Ridge, Tennessee (Environmental Protection Agency [EPA] Identification TN 389-009-0001). The actions required to achieve closure of the IRWTA are outlined in this plan, which is being submitted in accordance with Tennessee Ruie 1200- 1-1 1-.0S(7) and Title 40, Code of Federal Regulations (CFR), Part 265, Subpart G. The IRWTA was used to treat waste sodium and potassium (NaK) that are regulated by the Resource Conservation and Recovery Act (RCRA). The location of the IRWT'A is shown in Figures 1 and 2, and a diagram is shown in Figure 3. This pkm details all steps that wdi be petiormed to close the IRWTA. Note that this is a fmai ciosure.and a diagram is shown in Figure 3. This pkm details all steps that wdi be petiormed to close the IRWTA. Note that this is a fmai ciosure.

  13. Safety Plan for County and District Personnel and Facilities

    E-print Network

    Collins, Gary S.

    Safety Plan for County and District Personnel and Facilities Table of Contents Purpose and Scope of the Plan 2 Governance and Safety Committees Defined 2 Part I: Accident Reporting and Investigation 4 Processes 5 · Additional Training Resources 6 Part III: Safety Requirements for WSU Extension Facilities 7

  14. Sport Facility Planning and Management. Sport Management Library.

    ERIC Educational Resources Information Center

    Farmer, Peter J.; Mulrooney, Aaron L.; Ammon, Rob, Jr.

    Students of sports facilities management will need to acquire a wide variety of managerial skills and knowledge in order to be adequately prepared to plan and manage these facilities. This textbook offers students a mix of practical examples and recognized theory to help them in the planning, constructing, promoting, and managing of sports…

  15. MSU Bid Proposal Short Form 098 FACILITIES PLANNING, DESIGN & CONSTRUCTION

    E-print Network

    Dyer, Bill

    MSU Bid Proposal Short Form 098 FACILITIES PLANNING, DESIGN & CONSTRUCTION Sixth Avenue and Grant, Design, and Construction Attn: Walt Banziger, Director Plew Building, 6th PO Box 172760 & Grant Bozeman or FACILITIES PLANNING, DESIGN, AND CONSTRUCTION by submission of this Bid Proposal, hereby agrees to provide

  16. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: Area 25 EMAD Facility Nevada Test Site, Nevada

    SciTech Connect

    Mark Krauss

    2010-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 114, Area 25 EMAD Facility, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 114 comprises the following corrective action site (CAS) located in Area 25 of the Nevada Test Site: • 25-41-03, EMAD Facility This plan provides the methodology for field activities needed to gather the necessary information for closing CAS 25-41-03. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 114 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for CAS 25-41-03. It is anticipated that the results of the field investigation and implementation of corrective actions will support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The CAS will be investigated based on the data quality objectives (DQOs) developed on April 30, 2009, by representatives of NDEP and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAS 25-41-03. The following text summarizes the SAFER activities that will support the closure of CAU 114: • Perform site preparation activities (e.g., utilities clearances, radiological surveys). • Collect samples of materials to determine whether potential source material (PSM) is present that may cause the future release of a contaminant of concern to environmental media. • If no PSMs are present at the CAS, establish no further action as the corrective action. • If a PSM is present at the CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed and disposed of as waste, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. • Confirm the selected closure option is sufficient to protect human health and the environment.

  17. Post-Closure Groundwater Monitoring Plan for the 1324-N Surface Impoundment and 1324-NA Percolation Pond

    SciTech Connect

    Hartman, Mary J.

    2004-04-02

    The 1324-N Surface Impoundment and the 1324-NA Percolation Pond, located in the 100-N Area of the Hanford Site, are regulated under the Resource Consevation and Recovery Act (RCRA). Surface and underground features of the facilities have been removed and laboratory analyses showed that soil met the closure performance standards. These sites have been backfilled and revegetated.

  18. Waste Encapsulation and Storage Facility (WESF) Design Reconstitution Plan

    SciTech Connect

    HERNANDEZ, R.

    1999-08-31

    The purpose of Design Reconstitution is to establish a Design Baseline appropriate to the current facility mission. The scope of this plan is to ensure that Systems, Structures and Components (SSC) identified in the WESF Basis for Interim Operation (HNF-SDWM-BIO-002) are adequately described and documented, in order to support facility operations. In addition the plan addresses the adequacy of selected Design Topics which are also crucial for support of the facility Basis for Interim Operation (BIO).

  19. Development plan for the Nucleon Physics Laboratory Facility at LAMPF

    SciTech Connect

    McClelland, J.B.; Bacher, A.; Boudrie, R.L.; Carey, T.A.; Donahue, J.; Goodman, C.D.; McNaufhton, M.W.; Tanaka, N.; van Dyck, O.B.; Werbeck, R.

    1986-02-01

    A 3- to 4-year plan is described for upgrading the LAMPF Nucleon Physics Laboratory including a neutron time-of-flight facility for the (p,n) reaction, a medium-resolution spectrometer for (p,p') and n,p) studies, and a dedicated facility for atomic beam studies. Development of these facilities and relationships to other ongoing developments are detailed. The scope of the new physics programs supported by such a facility is discussed.

  20. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    SciTech Connect

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  1. Final closure cover for a Hanford radioactive mixed waste disposal facility

    SciTech Connect

    Johnson, K.D.

    1996-02-06

    This study provides a preliminary design for a RCRA mixed waste landfill final closure cover. The cover design was developed by a senior class design team from Seattle University. The design incorporates a layered design of indigenous soils and geosynthetics in a layered system to meet final closure cover requirements for a landfill as imposed by the Washington Administrative Code WAC-173-303 implementation of the Resource Conservation and Recovery Act.

  2. Planning Facilities for Physically Handicapped Children. Fifth Annual Conference.

    ERIC Educational Resources Information Center

    Tennessee Univ., Knoxville. School Planning Lab.

    The conference report on planning usable, accessible educational facilities for physically handicapped (orthopedically, visually, and aurally impaired) children features guidelines for eliminating indoor and outdoor architectural barriers. In developing and evaluating the guidelines, the Tennessee School Planning Laboratory analyzed plans of other…

  3. UNIVERSITY OF MARYLAND, BALTIMORE / FACILITIES MASTER PLAN UPDATE EXECUTIVE SUMMARY

    E-print Network

    Weber, David J.

    UNIVERSITY OF MARYLAND, BALTIMORE / FACILITIES MASTER PLAN UPDATE 2010 #12;EXECUTIVE SUMMARY 1.0 Introduction 1.1 Purpose of the Report 1.2 Master Planning Process INSTITUTIONAL PROFILE AND SPACE NEEDS ANALYSIS 2.1 Campus Mission 2.2 Strategic Plan 2.3 History of the Institution 2.4 Campus Enrollment 2

  4. A Guide for Planning School Facilities for Science Education.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Education, Trenton.

    This guide discusses the people involved in facility planning and the formulation of program plans. Consideration is given to space requirements, equipment, furniture, and utilities, and to the special needs of different branches of science. A bibliography and planning aids are appended. (RH)

  5. A Report on a New School Facilities Capital Plan by the School Facilities Task Force.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    This report reflects the recommendations of the School Facilities Task Force (appointed for Alberta in February 1997) regarding the development of a new school facilities capital plan. Guiding principles included the needs of students, local decision making, and long-range planning. Nine appendixes include a sample school capital funding scenario;…

  6. A Guide for Planning and Construction of Public School Facilities in Georgia. School Food Service Facilities.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Education, Atlanta. Office of School Administrative Services.

    It is the purpose of this guide to provide established, well-tested guidelines for planning and constructing food service facilities. These guidelines attempt to get the most efficient and economical operation from a school's food service facilities by providing pertinent information for expanding and remodeling existing facilities, as well as…

  7. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect

    D. Wieland, V. Yucel, L. Desotell, G. Shott, J. Wrapp

    2008-04-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.

  8. Vibration and Acoustic Test Facility (VATF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Fantasia, Peter M.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  9. Antenna Test Facility (ATF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Lin, Greg

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  10. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect

    Evans, S.K.

    2002-01-31

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  11. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  12. Fast Flux Test Facility project plan. Revision 2

    SciTech Connect

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  13. 40 CFR 35.917 - Facilities planning (step 1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Construction of Treatment Works-Clean Water Act § 35.917 Facilities planning...meeting established effluent and water quality goals while recognizing...totals and disaggregations in approved water quality management (WQM)...

  14. www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION

    E-print Network

    Slatton, Clint

    www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION PDC PROJECT MANAGEMENT GUIDE = (Construction cost x 0.07) / (365) A/E fee (Architect's construction administration phase fee) / (contract's temporary facilities costs for the duration of construction completion delay or the cost of an extension

  15. JESS facility modification and environmental/power plans

    NASA Technical Reports Server (NTRS)

    Bordeaux, T. A.

    1984-01-01

    Preliminary plans for facility modifications and environmental/power systems for the JESS (Joint Exercise Support System) computer laboratory and Freedom Hall are presented. Blueprints are provided for each of the facilities and an estimate of the air conditioning requirements is given.

  16. Exceptional Children Facilities Planner. Sample Plans, Accessibility Guidelines.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh.

    Educational facility designers have few challenges greater than planning facilities that support programs for exceptional children. These programs are intended to ensure that students with disabilities develop mentally, physically, emotionally, and vocationally to the fullest extent possible in the least restrictive educational environment. This…

  17. PROJECT INITIATION FORM FACILITY SERVICES PLANNING, DESIGN AND CONSTRUCTION

    E-print Network

    Stephens, Jacqueline

    PROJECT INITIATION FORM FACILITY SERVICES ­ PLANNING, DESIGN AND CONSTRUCTION 202 Facility Services would like an appointment to discuss the project. Department: College: Requestor's Name: E-mail : Phone: Project Contact: (if other than requestor): E-mail : Phone: B. PROJECT INFORMATION Project Location

  18. Planning the School Food Service Facilities. Revised 1967.

    ERIC Educational Resources Information Center

    Utah State Board of Education, Salt Lake City.

    Evaluations of food service equipment, kitchen design and food service facilities are comprehensively reviewed for those concerned with the planning and equipping of new school lunchrooms or the remodeling of existing facilities. Information is presented in the form of general guides adaptable to specific local situations and needs, and is…

  19. High School Educational Specifications: Facilities Planning Standards. Edition I.

    ERIC Educational Resources Information Center

    Jefferson County School District R-1, Denver, CO.

    The Jefferson County School District (Colorado) has developed a manual of high school specifications for Design Advisory Groups and consultants to use for planning and designing the district's high school facilities. The specifications are provided to help build facilities that best meet the educational needs of the students to be served.…

  20. Facility effluent monitoring plan for the 222-S Laboratory

    SciTech Connect

    Nickels, J.M.; Warwick, G.J.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable Federal, State, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

  1. Facile construction of the oxaphenalene skeleton by peri ring closure. Formal synthesis of mansonone F

    E-print Network

    Suh, Young-Ger

    . (94% in 3 steps); iv, PhB(OH)2, (CHO)n, propionic acid, PhH, reflux, 1 h, then H2O2, THF; v, 10% PFacile construction of the oxaphenalene skeleton by peri ring closure. Formal synthesis and divergent total synthesis of mansonone F has been accomplished via an efficient construction

  2. Interim Closure Activities at Corrective Action Unit 114: Area 25 EMAD Facility, Nevada National Security Site, Nevada

    SciTech Connect

    Boehlecke, R. F.

    2011-10-24

    This letter report documents interim activities that have been completed at CAU 114 to support ongoing access and generate information necessary to plan future closure activities. General housekeeping and cleanup of debris was conducted in the EMAD yard, cold bays, support areas of Building 3900, and postmortem cell tunnel area of the hot bay. All non-asbestos ceiling tiles and loose and broken non-friable asbestos floor tiles were removed from support galleries and office areas. Non-radiologically contaminated piping and equipment in the cold areas of the building and in the two 120-ton locomotives in the yard were tapped, characterized, drained, and verified free of contents.

  3. 40 CFR 35.2030 - Facilities planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...forecasting in the analysis shall be consistent...Needs Survey. A cost-effectiveness analysis must include...construction of new facilities...consideration of systems with revenue... (vii) Cost information... (5) An analysis of the...

  4. The mixed waste management facility, FY95 plan

    SciTech Connect

    Streit, R.

    1994-12-01

    This document contains the Fiscal Year 1995 Plan for the Mixed Waste Management Facility (MWMF) at Lawrence Livermore National Laboratory. Major objectives to be completed during FY 1995 for the MWMF project are listed and described. This report also contains a budget plan, project task summaries, a milestone control log, and a responsibility assignment matrix for the MWMF project.

  5. Guidance for Preparing a Facility Plan. Revised Edition.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document provides information to assist with preparing a preliminary facility plan for construction of municipal sewage treatment works. The text describes the requirements in the applicable laws and regulations and suggests a planning process by which they can be met. (CS)

  6. Multi-facilities tactical planning robustness with experimental design

    Microsoft Academic Search

    P. Genin; S. Lamouri; A. Thomas

    2008-01-01

    This paper addresses the problem of tactical planning robustness of a three-level multi-facilities supply chain. Robustness to uncontrollable factors such as demand is an increasing concern because of the key role played in supply chain planning. This study aims at proposing an approach based on an experimental design and the use of signal to noise ratio as developed by Taguchi

  7. Chemical Hygiene Plan for the MRL TEMPO Facility

    E-print Network

    Akhmedov, Azer

    a Chemical Hygiene Plan, its scope is not limited to chemical hazards. We have tried to include every topic1 Chemical Hygiene Plan for the MRL TEMPO Facility September 25, 2009 Update and Revision Table) Emergency Assistance Fire, Police, Medical, Hazardous Materials, etc. 15 4) Required Safety Training 16 5

  8. DFL, Canada's Space AIT Facilities - Current and Planned Capabilities

    NASA Astrophysics Data System (ADS)

    Singhal, R.; Mishra, S.; Choueiry, E.; Dumoulin, J.; Ahmed, S.

    2004-08-01

    The David Florida Laboratory (DFL) of the Canadian Space Agency is the Canadian national ISO 9001:2000 registered facility for the assembly, integration, and (environmental) testing of space hardware. This paper briefly describes the three main qualification facilities: Structural Qualification Facilities (SQF); Radio Frequency Qualification Facilities (RFQF); and Thermal Qualification Facilities (TQF). The paper also describes the planned/new upgrades/improvements to the DFL's existing capabilities. These include: cylindrical near-field antenna measurement system, current capabilities in multi-frequency multi-band passive intermodulation (PIM) measurement; combined thermal/vibration test facility, improvement in efficiency and performance of the photogrammetry capability, acquisition of an additional mass properties measurement system for small and micro-satellites; combined control and data acquisition system for all existing thermal vacuum facilities, plus a new automatic thermal control system and hypobaric chamber.

  9. GUIDE FOR PLANNING COMMUNITY COLLEGE FACILITIES.

    ERIC Educational Resources Information Center

    MERLO, FRANK P.; WALLING, W. DONALD

    DISCUSSION OF THE PLACE OF PLANNING IN THE DEVELOPMENT OF AN EDUCATIONAL ENVIRONMENT IS FOLLOWED BY CONSIDERATION OF FACTORS RELATED TO SITE (LOCATION, SIZE, MASTER PLANNING, PHYSICAL PROPERTIES, SHAPE, ZONING, PARKING, LIGHTING, ROADS AND WALKS), BUILDINGS (THE BASIC BUILDINGS, CALCULATION OF SPACE NEEDS, STUDENT CAPACITIES, LOCATION ON THE SITE,…

  10. Instructional Television Facilities: A Planning Guide.

    ERIC Educational Resources Information Center

    Witherspoon, John P.; Kessler, William J.

    When planning an instructional television (ITV) system, it is suggested that educational objectives should outweigh technological considerations and that expert advice be secured before the planning process is far advanced. In line with the latter suggestion, the book offers a background of technical knowledge aimed at educational administrators…

  11. Planning and implementing nuclear emergency response facilities

    Microsoft Academic Search

    1983-01-01

    After Three Mile Island, Arkansas Nuclear One produced a planning document called TMI-2 Response Program. Phase I of the program defined action plans in nine areas: safety assessment, training, organization, public information, communication, security, fiscal-governmental, technical and logistical support. Under safety assessment, the staff was made even better prepared to handle radioactive material. Under training, on site simulators for each

  12. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect

    Evans, S.K.

    2002-01-31

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  13. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  14. Development of Facilities Master Plan and Laboratory Renovation Project

    SciTech Connect

    Andrea D. Fox

    2011-10-03

    Funding from this grant has allowed Morehouse School of Medicine to complete its first professionally developed, comprehensive campus master plan that is in alignment with the recently completed strategic plan. In addition to master planning activities, funds were used for programming and designing research renovations, and also to supplement other research facility upgrades by providing lighting and equipment. The activities funded by this grant will provide the catalyst for substantial improvement in the Schoolâ??s overall facilities for biomedical education and research, and will also provide much of the information needed to conduct a successful campaign to raise funds for proposed buildings and renovations.

  15. Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1

    SciTech Connect

    Lewis, C.J.

    1995-10-01

    A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  16. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    SciTech Connect

    Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, NM (United States)

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  17. Hanford Site waste tank farm facilities design reconstitution program plan

    SciTech Connect

    Vollert, F.R.

    1994-09-06

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

  18. The ORNL Surplus Facilities Management Program Long Range Plan

    SciTech Connect

    Myrick, T.E.

    1984-09-01

    The Surplus Facilities Management Program (SFMP) at Oak Ridge National Laboratory (ORNL) is part of the Department of Energy`s (DOE) National SFMP, administered by the Richland Operations Office. This program was established to provide for the management of DOE surplus radioactively contaminated facilities from the end of their operating life until final facility disposition is completed. As part of this program, the ORNL SFMP oversees some 76 individual surplus facilities, ranging in complexity from abandoned waste storage tanks to large experimental reactors. The ORNL SFMP has prepared this Long Range Plan to outline the long-term management strategy for those facilities included in the program. The primary objective of this plan are to: (1) develop a base of information for each ORNL SFMP facility, (2) conduct preliminary decommissioning analyses to identify feasible alternatives, (3) assess the current and future risk of each facility, (4) establish a priority list for the decommissioning projects, and (5) integrate the individual project costs and schedules into an overall program schedule and cost estimate for the ORNL site. The Long Range Plan also provides an overview of the ORNL SFMP management structure, specifies the decommissioning criteria to be employed, and identifies special technical problems, research and development needs, and special facilities and equipment that may be required for decommissioning operations.

  19. Hanford Surplus Facilities Program plan, Fiscal year 1991

    SciTech Connect

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1990-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Environmental Restoration Division, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition. 12 refs., 2 figs., 4 tabs.

  20. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect

    Washington TRU Solutions LLC

    2001-02-25

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  1. TRA Closure Plan REV 0-9-20-06 HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    SciTech Connect

    Winterholler, K.

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump were characterized as having managed hazardous waste. The reactor drain tank and canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  2. Mixed waste management facility FY94 plan

    SciTech Connect

    Streit, R.

    1994-01-01

    This document is a progress report detailing the different aspects of the project plan. Included are the topics of quality assurance, safety and cost as they relate to the processing and storage of hazardous materials and radioactive waste.

  3. Coal cleaning test facility: 1985 plan

    Microsoft Academic Search

    E. R. Torak; J. W. Parkinson; R. G. Moorhead; N. Hoffman; J. R. Cavalet; A. K. Bhowmick; D. J. Akers; R. J. Jenko

    1985-01-01

    The activities at EPRI's Coal Cleaning Test Facility (CCTF) are divided into two major categories: a standard suite of tests which define Coal Cleanability Characterization and Development and Demonstration (D and D) projects. EPRI began conducting Coal Cleanability Characterizations on nationally important steam coals in 1983. These characterizations are a series of laboratory and pilot-scale investigations designed to determine a

  4. Facility effluent monitoring plan for WESF

    SciTech Connect

    SIMMONS, F.M.

    1999-09-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  5. National Ignition Facility Project Execution Plan

    Microsoft Academic Search

    Moses

    2000-01-01

    The ''National Ignition Facility (NIF) Justification of Mission Need'', which was approved by the Secretary of Energy in January 1993, defines the mission of the National Inertial Confinement Fusion (ICF) Program and discusses the specific mission of the NIF Project. The NIF experimental capability will allow nuclear-weapons scientists to assess stockpile problems, verify computational tools, test for nuclear-weapons effects, and

  6. Master Planning School District Facility Needs

    ERIC Educational Resources Information Center

    Prager, Gary; Matschulat, Robert

    2010-01-01

    Most educational entities confront any number of facility issues. Upgrading the physical infrastructure to meet current and future demands can be intimidating. The quantity and magnitude of capital issues in a changing environment can be overwhelming. How can all this complexity be made coherent to assure that decisions are sound and limited…

  7. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect

    Washington TRU Solutions LLC

    2000-02-25

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED’s guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A Phase I RFI was completed at WIPP as part of a Voluntary Release Assessment (VRA). The risk-based decision criteria recommended by EPA for the VRA were contained in a proposed Corrective Action rule for SWMUs (EPA, 1990). EPA Region VI has issued new risk-based screening criteria applicable to the WIPP SWMUs and AOCs.

  8. Certification plan transuranic waste: Hazardous Waste Handling Facility

    SciTech Connect

    Not Available

    1992-06-01

    The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification.

  9. Facility Effluent Monitoring Plan for the 3720 Building

    SciTech Connect

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the Environmental Science Laboratory (3720 Facility) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs'' This FEMP has been prepared for the 3720 Facility primarily because it has a major (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The 3720 Facility provides office and laboratory space for PNNL scientific and engineering staff conducting multidisciplinary research in the areas of materials characterization and testing and waste management. The facility is designed to accommodate the use of radioactive and hazardous materials to conduct these activities. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, and dispersible particulate. The facility is in the process of being vacated for shutdown, but is considered a Major Emission Point as of the date of this document approval.

  10. Emergency Planning for Municipal Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Lemon, R. A.; And Others

    This manual for the development of emergency operating plans for municipal wastewater treatment systems was compiled using information provided by over two hundred municipal treatment systems. It covers emergencies caused by natural disasters, civil disorders and strikes, faulty maintenance, negligent operation, and accidents. The effects of such…

  11. Biomedical computing facility interface design plan

    NASA Technical Reports Server (NTRS)

    Puckett, R. D.

    1971-01-01

    The results are presented of a design study performed to establish overall system interface requirements for the Biomedical Laboratories Division's Sigma-3 computer system. Emphasis has been placed upon the definition of an overall implementation plan and associated schedule to meet both near-term and long-range requirements within the constraints at available resources.

  12. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant (PFP)

    SciTech Connect

    FRAZIER, T.P.

    1999-10-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years.

  13. Plans for National Ignition Facility operations training and operations procedures

    SciTech Connect

    Mantrom, D.D., LLNL

    1998-06-01

    A preliminary plan for National Ignition Facility (NIF) Operations training developed for the 200+ staff anticipated to operate the NIF facility is discussed. We also address the development and implementation of NIF Operations procedures. These procedures serve as an essential part of the staff training program. A special aspect of NIF Operations procedures is that they will be on-line with electronic links to design, operations, and test databases, and will likely incorporate electronic checklists and archiving capabilities.

  14. Linkage Between Post-Closure Safety Case Review and the Authorization Process for Radioactive Waste Disposal Facilities

    SciTech Connect

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.; Bennett, D. G.

    2003-02-27

    The Environment Agency (the Agency) has responsibilities under the Radioactive Substances Act of 1993 for regulating the disposal and storage of radioactive wastes in England and Wales, including regulation of the disposal site for UK solid low-level waste (LLW) at Drigg in Cumbria, NW England. To help inform the next review of the Drigg disposal authorization, the Agency has required the operator, British Nuclear Fuels plc to submit a Post-Closure Safety Case which will assess the potential long-term impacts from the site. With the aim of using best practice to determine authorization conditions, the Agency contracted Galson Sciences, Ltd to undertake an international survey of authorization procedures for comparable facilities in other countries. This paper provides an overview of the findings from the international survey.

  15. Risk-Based Decision Process for Accelerated Closure of a Nuclear Weapons Facility

    SciTech Connect

    Butler, L.; Norland, R. L.; DiSalvo, R.; Anderson, M.

    2003-02-25

    Nearly 40 years of nuclear weapons production at the Rocky Flats Environmental Technology Site (RFETS or Site) resulted in contamination of soil and underground systems and structures with hazardous substances, including plutonium, uranium and hazardous waste constituents. The Site was placed on the National Priority List in 1989. There are more than 370 Individual Hazardous Substance Sites (IHSSs) at RFETS. Accelerated cleanup and closure of RFETS is being achieved through implementation and refinement of a regulatory framework that fosters programmatic and technical innovations: (1) extensive use of ''accelerated actions'' to remediate IHSSs, (2) development of a risk-based screening process that triggers and helps define the scope of accelerated actions consistent with the final remedial action objectives for the Site, (3) use of field instrumentation for real time data collection, (4) a data management system that renders near real time field data assessment, and (5) a regulatory agency consultative process to facilitate timely decisions. This paper presents the process and interim results for these aspects of the accelerated closure program applied to Environmental Restoration activities at the Site.

  16. Double-shell tank waste transfer facilities integrity assessment plan

    SciTech Connect

    Hundal, T.S.

    1998-09-30

    This document presents the integrity assessment plan for the existing double-shell tank waste transfer facilities system in the 200 East and 200 West Areas of Hanford Site. This plan identifies and proposes the integrity assessment elements and techniques to be performed for each facility. The integrity assessments of existing tank systems that stores or treats dangerous waste is required to be performed to be in compliance with the Washington State Department of Ecology Dangerous Waste Regulations, Washington Administrative Code WAC-173-303-640 requirements.

  17. Planning and implementing nuclear emergency response facilities

    SciTech Connect

    Williams, D.H.

    1983-01-01

    After Three Mile Island, Arkansas Nuclear One produced a planning document called TMI-2 Response Program. Phase I of the program defined action plans in nine areas: safety assessment, training, organization, public information, communication, security, fiscal-governmental, technical and logistical support. Under safety assessment, the staff was made even better prepared to handle radioactive material. Under training, on site simulators for each unit at ANO were installed. The other seven topics interface closely with each other. An emergency control center is diagrammed. A habitable technical support system was created. A media center, with a large media area, and an auditorium, was built. Electric door strike systems increased security. Phone networks independently run via microwave were installed. Until Three Mile Island, logistical problems were guesswork. That incident afforded an opportunity to better identify and prepare for these problems.

  18. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    SciTech Connect

    Ballinger, M.Y.; Shields, K.D.

    1999-04-02

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

  19. 6. Launch closure, close up of closure motor, view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Launch closure, close up of closure motor, view towards north - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  20. X-231B oil biodegradation plot: Closure Options Study

    SciTech Connect

    Not Available

    1989-11-01

    The purpose of this Closure Option Study (COS) is to satisfy the environmental documentation requirements for the US Department of Energy (DOE) and the Ohio Environmental Protection Agency (OEPA). The documentation is required to proceed with closure of the X-231B Oil Biodegradation Plot (X-231B), at the Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio. The concept for performance of a COS was set forth in the closure plan for the site. The Closure Plan states that the final closure action at X-231B shall be determined by the Closure Option Study. This closure Option Study is not intended to be a Feasibility Study as defined in the National Contingency Plan, nor is it a Corrective Measures Study as defined in the Resource Conservation and Recovery Act (RCRA) regulations. Performance of this study fulfills the requirements mandated by OEPA for completion of the closure plan for X-231B. This study was conducted prior to the initiation of the RCRA Facility Investigation (RFI) for Quadrant I of the site. Information generated during the RFI could modify the analysis and recommendations presented in this report.

  1. The Planning and Design of a New PET Radiochemistry Facility

    Microsoft Academic Search

    Mark S Jacobson; Joseph C Hung; Trenton L Mays; Brian P Mullan

    2002-01-01

    The objectives of the Mayo positron emission tomography (PET) radiochemistry facility are the production of PET drugs for clinical service of our in-house patients, commercial distribution of PET drug products, and development of new PET drugs. The factors foremost in the planning and design phases were the current regulatory climate for PET drug production, radiation safety issues, and effective production

  2. Elementary School Educational Specifications: Facilities Planning Standards. Edition III.

    ERIC Educational Resources Information Center

    Jefferson County School District R-1, Denver, CO.

    The Jefferson County School District (Denver, Colorado) has published this model standard for the planning and designing of new elementary schools, and the remodeling and modernizing existing schools. It describes the facility requirements to accommodate the instructional program, activities, and support functions to assist architects, school…

  3. Middle School Educational Specifications: Facilities Planning Standards. Edition II.

    ERIC Educational Resources Information Center

    Jefferson County School District R-1, Denver, CO.

    The Jefferson County School District (Denver, Colorado) has published this document as a model standard for the planning and designing of new middle schools and remodeling and modernizing existing schools. It describes the facility requirements to accommodate the instructional program, activities, and support functions to assist architects, school…

  4. State Education Department Facilities Planning Unit. Report 96-D-4.

    ERIC Educational Resources Information Center

    New York State Office of the Comptroller, Albany. Div. of Management Audit.

    Generally, construction projects undertaken by school districts in New York State are financed in part by state aid. The Education Department's Facilities Planning unit approves state aid for school-district construction projects outside New York City. This report presents findings of an audit that evaluated whether the Unit management's oversight…

  5. Division of Administration and Finance Facilities Planning and Construction

    E-print Network

    Bittner, Eric R.

    Division of Administration and Finance Facilities Planning and Construction News Release the construction fence into the Entrance 6 roadway to accommodate new landscaping and site work for the Cougar will be present to assist with traffic flow during construction work hours, typically 7 a.m. to 5 p.m., Monday

  6. 123. Back side technical facilities passageways, "key plan" architectural, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    123. Back side technical facilities passageways, "key plan" - architectural, AS-BLT AW 36-25-13, sheet 1 of 40, dated 23 November, 1960. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect

    Washington TRU Solutions LLC

    2002-02-14

    This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

  8. Draft environmental assessment -- Closure of the Waste Calcining Facility (CPP633), Idaho National Engineering Laboratory

    Microsoft Academic Search

    J. B. Braun; J. S. Irving; C. S. Staley

    1996-01-01

    The DOE-Idaho Operations Office has prepared an environmental assessment (EA) to analyze the environmental impacts of closing the Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory (INEL). The purpose of the action is to reduce the risk of radioactive exposure and release of radioactive and hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE

  9. 40 CFR 256.41 - Recommendations for assessing the need for facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...other constraints on continued operation of facilities should be assessed. (7) Diversion of wastes due to closure of open dumps should be anticipated. (8) Facilities and practices planned or provided for by the private sector should be...

  10. HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)

    SciTech Connect

    S. K. Evans

    2006-08-15

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

  11. Evacuation/Transportation Checklist for Child Care Facilities Keeping Kids Safe: Emergency Planning for Child-Care Facilities

    E-print Network

    Evacuation/Transportation Checklist for Child Care Facilities Keeping Kids Safe: Emergency Planning for Child-Care Facilities Evacuation/Transportation Checklist for Child-Care Facilities Name of child-care facility Address Name of person/persons responsible for transportation of children Phone number

  12. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    SciTech Connect

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  13. Physics Experiments Planned for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Verdon, Charles P.

    1998-11-01

    This talk will review the current status and plans for high energy density physics experiments to be conducted on the National Ignition Facility (NIF). The NIF a multi-laboratory effort, presently under construction at the Lawrence Livermore National Laboratory, is a 192 beam solid state glass laser system designed to deliver 1.8MJ (at 351nm) in temporal shaped pulses. This review will begin by introducing the NIF in the context of its role in the overall United States Stockpile Stewardship Program. The major focus of this talk will be to describe the physics experiments planned for the NIF. By way of introduction to the experiments a short review of the NIF facility design and projected capabilities will be presented. In addition the current plans and time line for the activation of the laser and experimental facilities will also be reviewed. The majority of this talk will focus on describing the national inertial confinement fusion integrated theory and experimental target ignition plan. This national plan details the theory and experimental program required for achieving ignition and modest thermonuclear gain on the NIF. This section of the presentation will include a status of the current physics basis, ignition target designs, and target fabrication issues associated with the indirect-drive and direct-drive approaches to ignition. The NIF design provides the capabilities to support experiments for both approaches to ignition. Other uses for the NIF, including non ignition physics relevant to the national security mission, studies relevant to Inertial Fusion Energy, and basic science applications, will also be described. The NIF offers the potential to generate new basic scientific understanding about matter under extreme conditions by making available a unique facility for research into: astrophysics and space physics, hydrodynamics, condensed matter physics, material properties, plasma physics and radiation sources, and radiative properties. Examples of experiments, already proposed for the NIF, in a number of these areas will be presented.

  14. Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan

    SciTech Connect

    SIMMONS, F.M.

    2000-12-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  15. KSC facilities status and planned management operations. [for Shuttle launches

    NASA Technical Reports Server (NTRS)

    Gray, R. H.; Omalley, T. J.

    1979-01-01

    A status report is presented on facilities and planned operations at the Kennedy Space Center with reference to Space Shuttle launch activities. The facilities are essentially complete, with all new construction and modifications to existing buildings almost finished. Some activity is still in progress at Pad A and on the Mobile Launcher due to changes in requirements but is not expected to affect the launch schedule. The installation and testing of the ground checkout equipment that will be used to test the flight hardware is now in operation. The Launch Processing System is currently supporting the development of the applications software that will perform the testing of this flight hardware.

  16. 30 CFR 254.3 - May I cover more than one facility in my response plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES...for a response plan in Subpart B, Oil Spill Response Plans for Outer Continental Shelf Facilities, or Subpart D, Oil Spill Response Requirements for...

  17. 30 CFR 254.3 - May I cover more than one facility in my response plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES...for a response plan in Subpart B, Oil Spill Response Plans for Outer Continental Shelf Facilities, or Subpart D, Oil Spill Response Requirements for...

  18. 30 CFR 254.3 - May I cover more than one facility in my response plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES...for a response plan in Subpart B, Oil Spill Response Plans for Outer Continental Shelf Facilities, or Subpart D, Oil Spill Response Requirements for...

  19. 30 CFR 254.3 - May I cover more than one facility in my response plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES...for a response plan in Subpart B, Oil Spill Response Plans for Outer Continental Shelf Facilities, or Subpart D, Oil Spill Response Requirements for...

  20. 30 CFR 254.3 - May I cover more than one facility in my response plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES...for a response plan in Subpart B, Oil Spill Response Plans for Outer Continental Shelf Facilities, or Subpart D, Oil Spill Response Requirements for...

  1. 74 FR 45004 - Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2009-08-31

    ...155 Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and...Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and...Coast Guard is updating its requirements for oil-spill removal equipment associated...

  2. Experimental area plans for an advanced hadron facility

    SciTech Connect

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs. (LEW)

  3. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    SciTech Connect

    Ballinger, Marcel Y.; Gervais, Todd L.

    2004-11-15

    The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are located downstream of control technologies and just before discharge to the atmosphere. The need for monitoring airborne emissions of hazardous chemicals is established in the Hanford Site Air Operating Permit and in notices of construction. Based on the current potential-to-emit, the Hanford Site Air Operating Permit does not contain general monitoring requirements for BOP facilities. However, the permit identifies monitoring requirements for specific projects and buildings. Needs for future monitoring will be established by future permits issued pursuant to the applicable state and federal regulations. A number of liquid-effluent discharge systems serve the BOP facilities: sanitary sewer, process sewer, retention process sewer, and aquaculture system. Only the latter system discharges to the environment; the rest either discharge to treatment plants or to long-term storage. Routine compliance sampling of liquid effluents is only required at the Environmental Molecular Sciences Laboratory. Liquid effluents from other BOP facilities may be sampled or monitored to characterize facility effluents or to investigate discharges of concern. Effluent sampling and monitoring for the BOP facilities depends on the inventories, activities, and environmental permits in place for each facility. A description of routine compliance monitoring for BOP facilities is described in the BOP FEMP.

  4. Pinellas Plant contingency plan for the hazardous waste management facility

    SciTech Connect

    NONE

    1988-04-01

    Subpart D of Part 264 (264.50 through .56) of the Resource Conservation and Recovery Act (RCRA) regulations require that each facility maintain a contingency plan detailing procedures to {open_quotes}minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water.{close_quotes}

  5. 38. Photograph of plans for alterations to IBM facilities, drawn ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photograph of plans for alterations to IBM facilities, drawn by U.S. Navy Bureau of Yards and Docks, c. 1960. Drawing on file at Caretaker Site Office, Naval Undersea Warfare Center, New London. Copyright-free. - Naval Undersea Warfare Center, Bowditch Hall, 600 feet east of Smith Street & 350 feet south of Columbia Cove, West bank of Thames River, New London, New London County, CT

  6. Planned storage ring facilities in Japan and in China

    NASA Astrophysics Data System (ADS)

    Tanihata, Isao

    1997-02-01

    Two accumulators are proposed in Asia. One is the MUSES in the RI Beam Factory in RIKEN and the other is the CSR at HIRFL in Lanzhou. Both of them aim at storing heavy-ions and radioactive nuclear beams. In this paper, a brief introduction to the two facilities is presented and then the planned nuclear physics experiments are introduced based on the proposal of the RI Beam Factory.

  7. POST CLOSURE INSPECTION REPORT FOR CORRECTIVE ACTION UNIT 92: AREA 6 DECON PAD FACILITY, NEVADA TEST SITE NEVADA, FOR THE PERIOD JANUARY 2004 - DECEMBER 2004

    SciTech Connect

    BECHTEL NEVADA

    2005-03-01

    This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility, Nevada Test Site, Nevada. CAU 92 was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection, 1995) and the Federal Facility Agreement and Consent Order of 1996 on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs): CAS 06-04-01, Decon Pad oil/Water Separator; and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02, Decontamination Pond (RCRA), requires post-closure inspections. CAS 06-04-01, Decon Pad Oil/Water Separator, is located inside the fence at the Building 6-605 compound. This report covers the annual period January 2004 through December 2004.

  8. HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    SciTech Connect

    K. Winterholler

    2007-01-30

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure Plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for the Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  9. Facility Effluent Monitoring Plan determination for the Liquid Effluent Retention Facility

    SciTech Connect

    Crummel, G.M.

    1991-10-01

    The purpose of this document is to determine whether the Liquid Effluent Retention Facility meets the criteria for requiring a Facility Effluent Monitoring Plan. This document contains a brief facility description, the source term (i.e., inventory) of radioactive and nonradioactive materials at the facility, and a determination of the annual effective dose equivalent that would be received by members of the public (offsite) as calculated from conversion factors generated from the US Environmental Protection Agency-approved CAP-88 computer program. This document was developed under the guidance given in WHC-EP-0438, A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. The source terms used in this document were developed from various referenced sources. Because of insufficient characterization of the 200 Area Tank Farm waste, the source terms developed within this document may not be identical to the source terms used throughout other documents. As this document was being developed, an effort was underway to standardize the source terms within the Tank Farms. The conversion factors used in this evaluation to convert projected radionuclide releases to offsite doses were developed by Pacific Northwest Laboratory (Rhoades 1990). Airborne releases were assumed to occur from ground level at a central location in the 200 East Area. The distance from the 200 East release point to individuals at the offsite location (i.e., at the Ringold) is assumed to be 16,000 m. 21 refs., 9 tabs.

  10. Education Facilities Sector-Specific Plan: An Annex to the Government Facilities Sector-Specific Plan

    ERIC Educational Resources Information Center

    US Department of Homeland Security, 2010

    2010-01-01

    Critical infrastructure and key resources (CIKR) provide the essential services that support basic elements of American society. Compromise of these CIKR could disrupt key government and industry activities, facilities, and systems, producing cascading effects throughout the Nation's economy and society and profoundly affecting the national…

  11. Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    Microsoft Academic Search

    D. S. Tobiason

    2003-01-01

    This Closure Report (CR) documents the activities undertaken to close Corrective Action Unit (CAU) 262: Area 25 Septic Systems and Underground Discharge Point, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Site closure was performed in accordance with the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 262 (U.S. Department of

  12. Resource Conservation and Recovery Act industrial site environmental restoration, site characterization plan: Area 6 Decontamination Pond Facility. Revision 1

    SciTech Connect

    NONE

    1996-08-01

    This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility at the Nevada Test Site which will be conducted for the US Department of Energy, Nevada Operations Office, Environmental Restoration Division. The objectives of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and around the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site characterization and waste management purposes.

  13. Addendum to the Closure Report for Corrective Action Unit 113: Area 25 R-MAD Facility, Nevada National Security Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2011-02-24

    This addendum to the Closure Report for Corrective Action Unit 113: Area 25, Reactor Maintenance, Assembly, and Disassembly Facility, Building 3110, Nevada Test Site, Nevada, DOE/NV--891-VOL I-Rev. 1, dated July 2003, provides details of demolition, waste disposal, and use restriction (UR) modification for Corrective Action Unit 113, Area 25 R-MAD Facility. Demolition was completed on July 15, 2010, when the last of the building debris was disposed. Final field activities were concluded on August 30, 2010, after all equipment was demobilized and UR signs were posted. This work was funded by the American Recovery and Reinvestment Act.

  14. Environmental restoration plan for the transfer of surplus facilities to the Facility Transition Program at Oak Ridge National Laboratory

    SciTech Connect

    NONE

    1995-08-01

    This report will provide guidance on management, coordination, and integration of plans to transition facilities to the Facility Transition Program and activities as related to the Oak Ridge National Laboratory (ORNL) Environmental Restoration Program facilities. This report gives (1) guidance on the steps necessary for identifying ORNL surplus facilities, (2) interfaces of Surveillance and Maintenance (S and M) and Isotope Facility Deactivation program managers, (3) roles and responsibilities of the facility managers, and (4) initial S and M requirements upon acceptance into the Facility Transition Program.

  15. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    SciTech Connect

    T. M. Fitzmaurice

    2000-08-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and repair requirements will be remedied within 60 working days of discovery and documented in writing at the time of repair. Results of all inspections/repairs for a given year will be addressed in a single report submitted annually to the NDEP. Soil moisture will be monitored within the cover for a period of at least two years prior to establishing performance criteria for NDEP regulatory purposes.

  16. Waste sampling and characterization facility (WSCF) maintenance implementation plan

    SciTech Connect

    Heinemann, J.L.

    1997-08-13

    This Maintenance Implementation Plan (MIP) is written to satisfy the requirements of the US Department of Energy (DOE) Order 4330.4B, Maintenance Management Program that specifies the general policy and objectives for the establishment of the DOE controlled maintenance programs. These programs provide for the management and performance of cost effective maintenance and repair of the DOE property, which includes facilities. This document outlines maintenance activities associated with the facilities operated by Waste Management Hanford, Inc. (WMH). The objective of this MIP is to provide baseline information for the control and execution of WMH Facility Maintenance activities relative to the requirements of Order 4330.4B, assessment of the WMH maintenance programs, and actions necessary to maintain compliance with the Order. Section 2.0 summarizes the history, mission and description of the WMH facilities. Section 3.0 describes maintenance scope and requirements, and outlines the overall strategy for implementing the maintenance program. Specific elements of DOE Order 4330.4B are addressed in Section 4.0, listing the objective of each element, a discussion of the WMH compliance methodology, and current implementation requirements with references to WMH and HNF policies and procedures. Section 5.0 addresses deviations from policy requirements, and Section 6.0 is a schedule for specific improvements in support of this MIP.

  17. Maintenance implementation plan for the Fast Flux Test Facility

    SciTech Connect

    Boyd, J.A.

    1997-01-30

    This plan implements the U.S. Department of Energy (DOE) 4330.4B, Maintenance Management Program (1994), at the Fast Flux Test Facility (FFTF). The FFTF is a research and test reactor located near Richland, Washington, and is operated under contract for the DOE by the B&W Hanford Company (BWHC). The intent of this Maintenance Implementation Plan (MIP) is to describe the manner in which the activities of the maintenance function are executed and controlled at the FFTF and how this compares to the requirements of DOE 4330.4B. The MIP ii a living document that is updated through a Facility Maintenance Self- Assessment Program. During the continuing self-assessment program, any discrepancies found are resolved to meet DOE 4330.4B requirements and existing practices. The philosophy of maintenance management at the FFTF is also describe within this MIP. This MIP has been developed based on information obtained from various sources including the following: * A continuing self-assessment against the requirements of the Conduct of Maintenance Order * In-depth reviews conducted by the members of the task team that assembled this MIP * Inputs from routine audits and appraisals conducted at the facility The information from these sources is used to identify those areas in which improvements could be made in the manner in which the facility conducts maintenance activities. The action items identified in Rev. 1 of the MIP have been completed. The MIP is arranged in six sections. Section I is this Executive Summary. Section 2 describes the facility and its 0683 history. Section 3 describes the philosophy of the graded approach and how it is applied at FFTF. Section 3 also discusses the strategy and the basis for the prioritizing resources. Section 4 contains the detailed discussion of `the elements of DOE 4330.4B and their state of implementation. Section 5 is for waivers and requested deviations from the requirements of the order. Section 6 contains a copy of the Maintenance Self-Assessment Schedule for the FFTF. In January 1997, the Secretary of Energy declared that DOE-HQ planned to place the FFTF in a hot standby condition.

  18. NESD CAE facility minimal implementation plan (June 1982)

    SciTech Connect

    Ames, H. S.

    1983-08-04

    In conjunction with other divisions in the EE Department, the Nuclear Energy Systems Division is developing a Computer-Aided Engineering (CAE) capability. Some of our needs in areas such as drafting, PC design, and IC design can be satisfied with existing turnkey systems. Many of our other needs, including modeling, analysis, document management and communication, software development, project management, and project communication will require the gradual development of an expanded computing environment. The purpose of this document is to describe our initial plans to implement a CAE facility.

  19. Recertification analysis and inspection planning for environmental test facilities

    NASA Technical Reports Server (NTRS)

    Rebeck, K. J.; Danna, R.; Miller, G. S.; Hollingsworth, R. T.

    1984-01-01

    Program development and implementation for recertification of pressure vessels used at NASA facilities are outlined, together with inspection procedures. The recertification is carried out in three phases: analysis, inspection planning, and long term inspection plans and management. A data base was developed for each piece of equipment and the associated performance parameters. Either documentation was obtained or NDT was performed on the vessels to confirm design and Code compliance. A Failure Modes and Effects Analysis technique was used to target recurring inspection items and guidelines were drawn up for inspections of parts and systems and intervals between inspections. The steps taken in establishing the program are considered applicable in both research and industrial situations.

  20. Risk management plan for the National Ignition Facility

    SciTech Connect

    Brereton, S.; Lane, M.; Smith, C.; Yatabe, J.

    1998-04-02

    The National Ignition Facility (NIF) is a U.S. Department of Energy inertial confinement laser fusion facility, currently under construction at the Lawrence Livermore National Laboratory (LLNL). NIF is a critical tool for the Department of Energy (DOE) science- based Stockpile Stewardship and Management Program. In addition, it represents a major step towards realizing inertial confinement fusion as a source of energy. The NIF will focus 192 laser beams onto spherical targets containing a mixture of deuterium and tritium, causing them to implode. This will create the high temperatures and pressures necessary for these targets to undergo fusion. The plan is for NIF to achieve ignition (i.e., self-heating of the fuel) and energy gain (i.e., more fusion energy produced than laser energy deposited) in the laboratory for the first time. A Risk Management Plan was prepared for the NIF design and construction Project. The plan was prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide. The objectives of the plan were to: (1) identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule, (2) assess the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES&H (environment, safety and health), costs, and schedule, and (3) address each risk in terms of suitable risk management measures. Major risk elements were identified for the NIF Project. A risk assessment methodology was developed, which was utilized to rank the Project risks with respect to one another. Those elements presenting greater risk were readily identified by this process. This paper describes that methodology and the results.

  1. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    SciTech Connect

    Albert, R.

    1992-06-30

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

  2. National Ignition Facility Quality Assurance Program Plan. Revision 1

    SciTech Connect

    Wolfe, C.R.; Yatabe, J.

    1996-09-01

    The National Ignition Facility (NIF) is a key constituent of the Department of Energy`s Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets, and will perform weapons physics and high-energy- density experiments in support of national security and civilian objectives. The NIF Project is a national facility involving the collaboration of several DOE laboratories and subcontractors, including Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Laser Energetics (UR/LLE). The primary mission of the NIF Project is the construction and start-up operation of laser-based facilities that will demonstrate fusion ignition in the laboratory to provide nuclear-weapons-related physics data, and secondarily, to propagate fusion burn aimed at developing a potential source of civilian energy. To support the accomplishment of this very important mission, the LLNL Laser Directorate created the NIF Project Office to organize and bring about the Project. The NIF Project Office has established this Quality Assurance Program to ensure its success. This issue of the Quality Assurance Program Plan (QAPP) adds the requirements for the conduct of Title 11 design, construction, procurement, and Title III engineering. This QAPP defines and describes the program-the management system-for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of the Laboratory and the Laser Directorate.

  3. RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk- In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-01-01

    In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Subsequently, this plan was modified again and approved as Y/TS-395, Revised RCRA Closure Plan for the Bear Creek Burial Grounds (February 29, 1988). Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. The plan was presented to the state of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. This amended closure plan goes further to include inspection and maintenance criteria along with other details.

  4. 40 CFR Appendix G to Part 112 - Tier I Qualified Facility SPCC Plan

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Tier I Qualified Facility SPCC Plan G Appendix G to Part 112 Protection of Environment ENVIRONMENTAL...WATER PROGRAMS OIL POLLUTION PREVENTION Pt. 112, App. G Appendix G to Part 112—Tier I Qualified Facility...

  5. 40 CFR Appendix G to Part 112 - Tier I Qualified Facility SPCC Plan

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Tier I Qualified Facility SPCC Plan G Appendix G to Part 112 Protection of Environment ENVIRONMENTAL...WATER PROGRAMS OIL POLLUTION PREVENTION Pt. 112, App. G Appendix G to Part 112—Tier I Qualified Facility...

  6. 40 CFR Appendix G to Part 112 - Tier I Qualified Facility SPCC Plan

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Tier I Qualified Facility SPCC Plan G Appendix G to Part 112 Protection of Environment ENVIRONMENTAL...WATER PROGRAMS OIL POLLUTION PREVENTION Pt. 112, App. G Appendix G to Part 112—Tier I Qualified Facility...

  7. 40 CFR Appendix G to Part 112 - Tier I Qualified Facility SPCC Plan

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Tier I Qualified Facility SPCC Plan G Appendix G to Part 112 Protection of Environment ENVIRONMENTAL...WATER PROGRAMS OIL POLLUTION PREVENTION Pt. 112, App. G Appendix G to Part 112—Tier I Qualified Facility...

  8. 40 CFR Appendix G to Part 112 - Tier I Qualified Facility SPCC Plan

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2013-07-01 true Tier I Qualified Facility SPCC Plan G Appendix G to Part 112 Protection of Environment ENVIRONMENTAL...WATER PROGRAMS OIL POLLUTION PREVENTION Pt. 112, App. G Appendix G to Part 112—Tier I Qualified Facility...

  9. Abbreviated sampling and analysis plan for planning decontamination and decommissioning at Test Reactor Area (TRA) facilities

    SciTech Connect

    NONE

    1994-10-01

    The objective is to sample and analyze for the presence of gamma emitting isotopes and hazardous constituents within certain areas of the Test Reactor Area (TRA), prior to D and D activities. The TRA is composed of three major reactor facilities and three smaller reactors built in support of programs studying the performance of reactor materials and components under high neutron flux conditions. The Materials Testing Reactor (MTR) and Engineering Test Reactor (ETR) facilities are currently pending D/D. Work consists of pre-D and D sampling of designated TRA (primarily ETR) process areas. This report addresses only a limited subset of the samples which will eventually be required to characterize MTR and ETR and plan their D and D. Sampling which is addressed in this document is intended to support planned D and D work which is funded at the present time. Biased samples, based on process knowledge and plant configuration, are to be performed. The multiple process areas which may be potentially sampled will be initially characterized by obtaining data for upstream source areas which, based on facility configuration, would affect downstream and as yet unsampled, process areas. Sampling and analysis will be conducted to determine the level of gamma emitting isotopes and hazardous constituents present in designated areas within buildings TRA-612, 642, 643, 644, 645, 647, 648, 663; and in the soils surrounding Facility TRA-611. These data will be used to plan the D and D and help determine disposition of material by D and D personnel. Both MTR and ETR facilities will eventually be decommissioned by total dismantlement so that the area can be restored to its original condition.

  10. Using multi-disciplinary strategic master facilities planning for organizations experiencing programmatic re-direction

    SciTech Connect

    Heubach, J.G.; Weimer, W.C.; Bruce, W.A.

    1993-12-01

    Facility master planning is critical to the future productivity of a laboratory and the quality of worklife for the laboratory staff. For organizations undergoing programmatic re-direction, a master facility planning approach linked to the organization`s strategic planning process is even more important. Major changes in an organization such as programmatic re-direction can significantly impact a broad range of variables which exceed the expertise of traditional planning teams, e.g., capacity variability, work team organization, organizational culture, and work process simplification. By expanding the diversity of the participants of the planning team, there is a greater likelihood that a research organization`s scientific, organizational, economic, and employees` needs can be meshed in the strategic plan and facility plan. Recent recommendations from facility planners suggest drawing from diverse fields in building multi-disciplinary planning teams: Architecture, engineering, natural science, social psychology, and strategic planning (Gibson,1993). For organizations undergoing significant operational or culture change, the master facility planning team should also include members with expertise in organizational effectiveness, industrial engineering, human resources, and environmental psychology. A recent planning and design project provides an example which illustrates the use of an expanded multi-disciplinary team engaged in planning laboratory renovations for a research organization undergoing programmatic re-direction. The purpose of the proposed poster session is to present a multi-disciplinary master facility planning process linked to an organization`s strategic planning process or organizational strategies.

  11. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada Test Site, Nevada, Revision 1

    SciTech Connect

    NSTec Environmental Restoration

    2008-12-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. The Test Cell C (TCC) Facility is located in Area 25 of the Nevada Test Site (NTS) approximately 25 miles northwest of Mercury, Nevada (Figure 1). CAU 116 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) of 1996 (as amended February 2008) and consists of two Corrective Action Sites (CASs): (1) CAS 25-23-20, Nuclear Furnace Piping; and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 is described in the FFACO as the TCC Facility but actually includes Building 3210 and attached concrete shield wall only. CAU 116 will be closed by demolishing Building 3210, the attached concrete shield wall, and the nuclear furnace piping. In addition, as a best management practice (BMP), Building 3211 (moveable shed) will be demolished due to its close proximity to Building 3210. This will aid in demolition and disposal operations. Radiological surveys will be performed on the demolition debris to determine the proper disposal pathway. As much of the demolition debris as space allows will be placed into the Building 3210 basement structure. After filling to capacity with demolition debris, the basement structure will be mounded or capped and closed with administrative controls. Prior to beginning demolition activities and according to an approved Sampling and Analysis Plan (SAP), representative sampling of surface areas that are known, suspected, or have the potential to contain hazardous constituents such as lead or polychlorinated biphenyls (PCBs) will be performed throughout all buildings and structures. Sections 2.3.2, 4.2.2.2, 4.2.2.3, 4.3, and 6.2.6.1 address the methodologies employed that assure the solid debris placed in the basement structure will not contain contaminants of concern (COCs) above hazardous waste levels. The anticipated post-closure-posting requirements for the mounded/capped basement structure, as well as for the entire CAU, are addressed in Section 4.2.10. The site contains radiologically impacted surfaces and hazardous materials. Based on review of the historical information for CAU 116 and recent site inspections, there is sufficient process knowledge to close CAU 116 using the SAFER process. CAUs that may be closed using the SAFER process have conceptual corrective actions that are clearly identified. Consequently, corrective action alternatives can be chosen prior to completing a corrective action investigation, given anticipated investigation results. The SAFER process combines elements of the data quality objective (DQO) process and the observational approach to plan and conduct closure activities. The DQOs are used to identify the problem and define the type and quality of data needed to complete the investigation phase of the SAFER process. The purpose of the investigation phase is to verify the adequacy of existing information used to determine the chosen corrective action. The observational approach provides a framework for managing uncertainty during the planning and decision-making phases of the project. The SAFER process allows for technical decisions to be made based on information gathered during site visits, interviews, meetings, research, and a consensus of opinion by the decontamination and decommissioning (D&D) team members. Any uncertainties are addressed by documented assumptions that are verified by sampling and analysis, data evaluation, onsite observations, and contingency plans, as necessary. Closure activities may proceed simultaneously with site characterization as sufficient data are gathered to confirm or disprove the assumptions made during selection of the corrective action. If, at any time during the closure process, new information is discovered that indicates that closure activities should be revised, closure activities will be reevaluated as appropriate. Based on a detailed review of historical documentation, there is sufficient process know

  12. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  13. Life science payloads planning study integration facility survey results

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Brown, N. E.; Nelson, W. G.

    1976-01-01

    The integration facility survey effort described is structured to examine the facility resources needed to conduct life science payload (LSP) integration checkout activities at NASA-JSC. The LSP integration facility operations and functions are defined along with the LSP requirements for facility design. A description of available JSC life science facilities is presented and a comparison of accommodations versus requirements is reported.

  14. Resource Conservation and Recovery Act Industrial Site Environmental Restoration Site Characterization Plan, Area 6 Decontamination Pond Facility, Revision 1

    SciTech Connect

    NONE

    1996-08-12

    This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility (DPF) at the Nevada Test Site (NTS) which will be conducted for the U.S. Department of Energy, Nevada Operations OffIce (DOE/NV), Environmental Restoration Division (ERD). The objectives of the planned activities are to: o Obtain sufficient, ample analytical data from which further assessment, remediation, and/or closure strategies maybe developed for the site. o Obtain sufficient, sample analytical data for management of investigation-derived waste. All references to regulations contained in this plan are to the versions of the regulations that are current at the time of publication of this plan. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and Mound the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site . . characterization and waste management purposes.

  15. MSU Performance Bond Form 112 Page 1 of 1 FACILITIES PLANNING, DESIGN & CONSTRUCTION

    E-print Network

    Dyer, Bill

    cost of such alterations cause the total project cost to exceed the original contract sum by more thanMSU Performance Bond Form 112 Page 1 of 1 FACILITIES PLANNING, DESIGN & CONSTRUCTION Sixth Avenue by and through its Director, Montana State University, Facilities Planning, Design, & Construction dated

  16. Policy Name: Domestic Animals on Campus Originating Department: Assistant Vice-President (Facilities Management and Planning)

    E-print Network

    Carleton University

    Policy Name: Domestic Animals on Campus Originating Department: Assistant Vice-President (Facilities Management and Planning) Approval Authority: Senior Management Committee Date of Original Policy-President (Facilities Management and Planning) Policy: To protect the safety and health of students, faculty and staff

  17. 33 CFR 150.50 - What are the requirements for a facility spill response plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false What are the requirements for a facility spill response plan? 150.50 Section 150.50 Navigation and...General § 150.50 What are the requirements for a facility spill response plan? (a) Each deepwater port which...

  18. Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Tiger Team

    E-print Network

    Bailey, David H.

    Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Tiger Team Bronis R Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger

  19. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    SciTech Connect

    Haagenstad, T.

    1999-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

  20. Family and Consumer Sciences: A Facility Planning and Design Guide for School Systems.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    This document presents design concepts and considerations for planning and developing middle and high school family and consumer sciences education facilities. It includes discussions on family and consumer sciences education trends and the facility planning process. Design concepts explore multipurpose laboratories and spaces for food/nutrition…

  1. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    Microsoft Academic Search

    K. J. Galloway; J. G. Jolley

    1994-01-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two

  2. Facilities for the Arts. School Planning Guide Series--6. Preliminary Draft.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of School Planning.

    Facility specifications for visual and performing arts areas are provided to guide and assist school officials, staff members, architects, and engineers plan suitable facilities for the arts in schools. The visual arts areas covered are studios, photographic laboratories, and galleries. Performing arts areas discussed are music facilities, drama…

  3. H-1NF: The Australian National Plasma Fusion Facility: Results and Upgrade Plans

    Microsoft Academic Search

    B. D. Blackwell; J. Howard; M. J. Hole; D. G. Pretty; J. W. Read; H. Punzmann; S. T. A. Kumar; M. McGann; R. L. Dewar; C. A. Nuehrenberg

    2009-01-01

    The H-1 National Plasma Fusion Research Facility will be upgraded to support the development of world-class diagnostic systems for application to international facilities in preparation for ITER. The upgrade will include new heating systems and deliver access to new magnetic configurations relevant to development of edge and divertor plasma diagnostics for next generation devices. The Facility plan will be presented,

  4. Readiness assessment plan for the Radioactive Mixed Waste Land Disposal Facility (Trench 31)

    Microsoft Academic Search

    Irons

    1994-01-01

    This document provides the Readiness Assessment Plan (RAP) for the Project W-025 (Radioactive Mixed Waste Land Disposal Facility) Readiness Assessment (RA). The RAP documents prerequisites to be met by the operating organization prior to the RA. The RAP is to be implemented by the RA Team identified in the RAP. The RA Team is to verify the facility`s compliance with

  5. Using multi-disciplinary strategic master facilities planning for organizations experiencing programmatic re-direction

    Microsoft Academic Search

    J. G. Heubach; W. C. Weimer; W. A. Bruce

    1993-01-01

    Facility master planning is critical to the future productivity of a laboratory and the quality of worklife for the laboratory staff. For organizations undergoing programmatic re-direction, a master facility planning approach linked to the organization`s strategic planning process is even more important. Major changes in an organization such as programmatic re-direction can significantly impact a broad range of variables which

  6. 40 CFR 265.143 - Financial assurance for closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 265.143 Financial assurance for closure...each facility must establish financial assurance for closure of...He must choose from the options as specified in...

  7. 40 CFR 264.143 - Financial assurance for closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 264.143 Financial assurance for closure...each facility must establish financial assurance for closure of...He must choose from the options as specified in...

  8. 40 CFR 264.143 - Financial assurance for closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 264.143 Financial assurance for closure...each facility must establish financial assurance for closure of...He must choose from the options as specified in...

  9. 40 CFR 265.143 - Financial assurance for closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 265.143 Financial assurance for closure...each facility must establish financial assurance for closure of...He must choose from the options as specified in...

  10. 40 CFR 264.143 - Financial assurance for closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 264.143 Financial assurance for closure...each facility must establish financial assurance for closure of...He must choose from the options as specified in...

  11. 40 CFR 265.143 - Financial assurance for closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 265.143 Financial assurance for closure...each facility must establish financial assurance for closure of...He must choose from the options as specified in...

  12. 40 CFR 264.143 - Financial assurance for closure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 264.143 Financial assurance for closure...each facility must establish financial assurance for closure of...He must choose from the options as specified in...

  13. 40 CFR 265.143 - Financial assurance for closure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 265.143 Financial assurance for closure...each facility must establish financial assurance for closure of...He must choose from the options as specified in...

  14. 40 CFR 265.143 - Financial assurance for closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 265.143 Financial assurance for closure...each facility must establish financial assurance for closure of...He must choose from the options as specified in...

  15. 40 CFR 264.143 - Financial assurance for closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 264.143 Financial assurance for closure...each facility must establish financial assurance for closure of...He must choose from the options as specified in...

  16. Criticality assessment of LLRWDF closure

    SciTech Connect

    Sarrack, A.G.; Weber, J.H.; Woody, N.D.

    1992-10-06

    During the operation of the Low Level Radioactive Waste Disposal Facility (LLRWDF), large amounts (greater than 100 kg) of enriched uranium (EU) were buried. This EU came primarily from the closing and decontamination of the Naval Fuels Facility in the time period from 1987--1989. Waste Management Operations (WMO) procedures were used to keep the EU boxes separated to prevent possible criticality during normal operation. Closure of the LLRWDF is currently being planned, and waste stabilization by Dynamic Compaction (DC) is proposed. Dynamic compaction will crush the containers in the LLRWDF and result in changes in their geometry. Research of the LLRWDF operations and record keeping practices have shown that the EU contents of trenches are known, but details of the arrangement of the contents cannot be proven. Reviews of the trench contents, combined with analysis of potential critical configurations, revealed that some portions of the LLRWDF can be expected to be free of criticality concerns while other sections have credible probabilities for the assembly of a critical mass, even in the uncompacted configuration. This will have an impact on the closure options and which trenches can be compacted.

  17. Community Facilities Planning; A Selected Interdisciplinary Bibliography. Exchange Bibliography No. 188.

    ERIC Educational Resources Information Center

    Stanley, T. Brock

    This bibliography was prepared for a lecture series on community facilities planning. The lectures emphasized an interdisciplinary approach by bringing together the major disciplines and subject areas related to planning. The references are organized by (1) general planning text and references; (2) history, principles, theories, and goals; (3)…

  18. IDENTIFICATION OF DOE'S POST-CLOSURE MONITORING NEEDS AND REQUIREMENTS

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    The 2006 plan sets an ambitious agenda for the U.S. Department of Energy (DOE), Office of Environmental Management (EM) and the remediation of sites contaminated by decades of nuclear weapons production activities. The plan's primary objective is to reduce overall clean up costs by first eliminating the environmental problems that are most expensive to control and safely maintain. In the context of the 2006 Plan, closure refers to the completion of area or facility specific cleanup projects. The cleanup levels are determined by the planned future use of the site or facility. Use restrictions are still undecided for most sites but are highly probable to exclude residential or agricultural activities. Most of the land will be remediated to ''industrial use'' levels with access restrictions and some areas will be closed-off through containment. Portions of the site will be reserved for waste disposal, either as a waste repository or the in-situ immobilization of contaminated soil and groundwater, and land use will be restricted to waste disposal only. The land used for waste disposal will require monitoring and maintenance activities after closure. Most of the land used for industrial use may also require such postclosure activities. The required postclosure monitoring and maintenance activities will be imposed by regulators and stakeholders. Regulators will not approve closure plans without clearly defined monitoring methods using approved technologies. Therefore, among all other more costly and labor-intensive closure-related activities, inadequate planning for monitoring and lack of appropriate monitoring technologies can prevent closure. The purpose of this project is to determine, document, and track the current and evolving postclosure monitoring requirements at DOE-EM sites. This information will aid CMST-CP in guiding its postclosure technology development and deployment efforts.

  19. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada With Errata Sheets, Revision 0

    SciTech Connect

    Pat Matthews

    2007-09-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 117, Pluto Disassembly Facility, identified in the Federal Facility Agreement and Consent Order. Corrective Action Unit 117 consists of one Corrective Action Site (CAS), CAS 26-41-01, located in Area 26 of the Nevada Test Site. This plan provides the methodology for field activities needed to gather the necessary information for closing CAS 26-41-01. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 117 using the SAFER process. Additional information will be obtained by conducting a field investigation before finalizing the appropriate corrective action for this CAS. The results of the field investigation will support a defensible recommendation that no further corrective action is necessary following SAFER activities. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The site will be investigated to meet the data quality objectives (DQOs) developed on June 27, 2007, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAS 26-41-01 in CAU 117.

  20. 75 FR 73996 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ...for Designated Facilities and Pollutants; State of Delaware; Control of Emissions From Existing Hospital/Medical/Infectious Waste Incinerator (HMIWI) Units, Negative Declaration and Withdrawal of EPA Plan Approval AGENCY:...

  1. 75 FR 78952 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...Designated Facilities and Pollutants; Commonwealth of Virginia; Control of Emissions From Existing Hospital/Medical/Infectious Waste Incinerator (HMIWI) Units, Negative Declaration and Withdrawal of EPA Plan Approval AGENCY:...

  2. A GUIDE FOR PLANNING PHYSICAL EDUCATION AND ATHLETIC FACILITIES.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Education, Trenton.

    THIS STUDY EXAMINES PHYSICAL EDUCATION FACILITIES, THEIR PHYSICAL NEEDS, AND RELATED DESIGN CONSIDERATIONS. A SYSTEM OF DETERMINING THE TOTAL NUMBER OF TEACHING STATIONS NEEDED IS GIVEN TO AID INITIAL REQUIREMENT ANALYSIS. INDOOR FACILITIES ANALYZED INCLUDE--(1) THE GYMNASIUM, IN TERMS OF LOCATION, SIZE, DESIGN FEATURES, AND RELATED COMPONENTS,…

  3. 40 CFR 355.10 - Must my facility comply with the emergency planning requirements of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...false Must my facility comply with the emergency planning requirements of this subpart...PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION...

  4. 40 CFR 355.10 - Must my facility comply with the emergency planning requirements of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...false Must my facility comply with the emergency planning requirements of this subpart...PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION...

  5. 40 CFR 355.10 - Must my facility comply with the emergency planning requirements of this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...false Must my facility comply with the emergency planning requirements of this subpart...PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION...

  6. 40 CFR 355.10 - Must my facility comply with the emergency planning requirements of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...false Must my facility comply with the emergency planning requirements of this subpart...PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION...

  7. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    SciTech Connect

    Not Available

    1981-12-01

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs.

  8. Standard format and content for emergency plans for fuel cycle and materials facilities

    SciTech Connect

    Not Available

    1990-09-01

    This regulatory guides is being developed to provide guidance acceptable to the NRC staff on the information to be included in emergency plans and to establish a format for presenting the information. Use of a standard format will help ensure uniformity and completeness in the preparation of emergency plans. An acceptable emergency plan should describe the licensed activities conducted at the facility and the types of accidents that might occur. It should provide information on classifying postulated accidents and the licensee's procedures for notifying and coordinating with offsite authorities. The plan should provide information on emergency response measures that might be necessary, the equipment and facilities available to respond to an emergency, and how the licensee will maintain emergency preparedness capability. It should describe the records and reports that will be maintained. There should also be a section on recovery after an accident and plans for restoring the facility to a safe condition. 4 refs.

  9. Plans for constructing a next-generation ISOL facility at ORNL

    Microsoft Academic Search

    J. D. Garrett; G. D. Alton; R. L. Auble; C. Baktash; J. R. Beene; F. E. Bertrand; J. D. Fox; R. A. Gough; M. L. Halbert; J. G. Kalnins; Y. Liu; M. W. Ogan; F. Plasil; D. Shapira; P. T. Spampinato; J. W. Staples; H. Wollnik; M. S. Zisman

    1999-01-01

    The U.S. Nuclear Science Community in its 1996 Long Range Plan identified an advanced radioactive ion beam (RIB) facility based on the ISOL technique as the next major facility to be constructed for U.S. nuclear physics. The proposed Spallation Neutron Source (SNS) for Oak Ridge National Laboratory, whose construction design funds have recently been appropriated, offers a unique opportunity for

  10. The Next Step: A Computer Facilities Master Plan for Saddleback College. Final Technical Report.

    ERIC Educational Resources Information Center

    Campbell, Dave A.; And Others

    The needs of Saddleback College for computer facilities were assessed to develop a master plan for an integrated data processing system that would satisfy both student educational needs and the administrative needs of the community college district. An analysis of computer facilities indicated that each individual division of the college had…

  11. A Simplified Approach To Include Essential Facilities In Risk Scenarios For Civil Defence Plans

    Microsoft Academic Search

    M. González; T. Susagna; X. Goula; A. Roca; S. Safina

    2002-01-01

    Given the importance of essential facilities in an earthquake crisis, it is recommended that detailed studies for assessing their functional vulnerability should be carried out. Although there have been many experiences in past earthquakes showing the problems associated to the damages to these facilities, like hospitals and police and firemen departments, many civil defence plans do not take into account

  12. Forging the strategic linkage between facilities management and the corporation -- Production of a sites comprehensive plan

    Microsoft Academic Search

    T. P. Petersen; J. L. Williams; C. M. Reyes

    1997-01-01

    In 1996, Sandia National Laboratories (SNL) undertook a major effort to develop, produce, and execute a Sites Comprehensive Plan. Fundamentally, this document is intended to serve as a tool to clarify the strategic link between (1) current and future mission needs and responsibilities, and (2) the condition, capacity, and required amount of facilities space and infrastructure. It documents the Facilities

  13. Sampling and analyses plan for tank 103 at the 219-S waste handling facility

    SciTech Connect

    FOWLER, K.D.

    1999-06-23

    This document describes the sampling and analysis activities associated with taking a Resource Conservation and Recovery Act (RCRA) protocol sample of the waste from Tank 103 at the 21 9-S Waste Handling Facility treatment storage, andlor disposal (TSD) unit at the 2224 Laboratory complex. This sampling and analyses is required based on negotiations between the State of Washington Department of Ecology (Ecology) and the Department of Energy, Richland Operations, (RL) in letters concerning the TPA Change Form M-32-98-01. In a letter from George H. Sanders, RL to Moses N. Jaraysi, Ecology, dated January 28,1999, it was noted that ''Prior to the Tank 103 waste inventory transfer, a RCRA protocol sample of the waste will be obtained and tested for the constituents contained on the Part A, Form 3 Permit Application for the 219-S Waste Handling Facility.'' In the April 2, 1999 letter, from Brenda L. Becher-Khaleel, Ecology to James, E. Rasmussen, RL, and William O. Adair, FDH, Ecology states that the purpose of these analyses is to provide information and justification for leaving Tank 103 in an isolated condition in the 2194 TSD unit until facility closure. The data may also be used at some future date in making decisions regarding closure methodology for Tank 103. Ecology also notes that As Low As Reasonably Achievable (ALARA) concerns may force deviations from some SW-846 protocol. Every effort will be made to accommodate requirements as specified. Deviations from SW-846 will be documented in accordance with HASQARD.

  14. 40 CFR 265.1102 - Closure and post-closure care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...containment system components (liners, etc.), contaminated subsoils, and structures and equipment contaminated with waste and leachate, and manage them as hazardous waste unless § 261.3(d) of this chapter applies. The closure plan, closure...

  15. 40 CFR 264.1102 - Closure and post-closure care.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...containment system components (liners, etc.) contaminated subsoils, and structures and equipment contaminated with waste and leachate, and manage them as hazardous waste unless § 261.3(d) of this chapter applies. The closure plan, closure...

  16. 40 CFR 265.1102 - Closure and post-closure care.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...containment system components (liners, etc.), contaminated subsoils, and structures and equipment contaminated with waste and leachate, and manage them as hazardous waste unless § 261.3(d) of this chapter applies. The closure plan, closure...

  17. 40 CFR 264.1102 - Closure and post-closure care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...containment system components (liners, etc.) contaminated subsoils, and structures and equipment contaminated with waste and leachate, and manage them as hazardous waste unless § 261.3(d) of this chapter applies. The closure plan, closure...

  18. Plans for Ignition Experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2009-07-01

    The National Ignition Facility (NIF) is a 192-beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) in support of inertial confinement fusion (ICF) and high-energy-density (HED) science. NIF will produce 1.8 MJ, 500 TW of ultraviolet light, making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for the study of matter at extreme temperatures and densities and for producing and developing ICF. The ignition studies will be the next important step in developing inertial fusion energy.

  19. Interstitial space in health care facilities : planning for change & evolution

    E-print Network

    Garcia Alvarez, Angel

    1989-01-01

    Hospitals are most useful material for architectural research for they exhibit all the problems encountered in other building types in an acute and easily measurable form. Health Care Facilities house the greatest range ...

  20. The James Clerk Maxwell Telescope - Current Facilities and Future Plans

    Microsoft Academic Search

    R. M. Prestage

    1996-01-01

    The James Clerk Maxwell Telescope (JCMT) is the largest telescope in the world specifically designed to work in the submm region of the astronomical spectrum. It is operated as a fully common-user facility, with heterodyne and continuum facility instrumentation covering all of the atmospheric windows from 1.3mm to 450mu m. The surface accuracy of the 15m primary is < 25mu

  1. The New IEEE Standard 739: Energy Conservation and Cost Effective Planning in Industrial Facilities

    Microsoft Academic Search

    Carl E. Becker

    1985-01-01

    The ``IEEE Recommended Practice for Energy Conservation and Cost Effective Planning in Industrial Facilities'' (IEEE 739-The Bronze Book) is reviewed. The book, published in 1984, was sponsored by the Industrial and Commercial Power Systems Department of the Industry Applications Society. The paper highlights the contents of the book. The topics include energy planning, auditing, economics, lighting design, efficiency in equipment,

  2. A Guide for Planning Facilities for Occupational Preparation Programs for Medical Secretaries. Research Series No. 33.

    ERIC Educational Resources Information Center

    Macconnell, James D., And Others

    The major purpose of this facility planning guide is to develop the necessary information for the writing of educational specifications to house medical secretary programs by (1) assisting planners in the formation of creative housing solutions for desired programs, (2) preventing important considerations from being overlooked in the planning

  3. Athletic Facilities: Planning, Designing, and Operating Today's Physical-Education Centers.

    ERIC Educational Resources Information Center

    Spoor, Dana L.

    1998-01-01

    Examines what should be featured in an athletic facility, how to plan for the many different sports and activities that will be housed, and how to get the community involved. Areas addressed include planning for locker rooms and storage, flooring and lighting, building code adherence, spectator seating, building security, and outdoor recreation…

  4. Electromagnetic Interference/Compatibility (EMI/EMC) Control Test and Measurement Facility: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the EMI/EMC Test Facility. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  5. Readiness assessment plan for the Radioactive Mixed Waste Land Disposal Facility (Trench 31)

    SciTech Connect

    Irons, L.G.

    1994-11-22

    This document provides the Readiness Assessment Plan (RAP) for the Project W-025 (Radioactive Mixed Waste Land Disposal Facility) Readiness Assessment (RA). The RAP documents prerequisites to be met by the operating organization prior to the RA. The RAP is to be implemented by the RA Team identified in the RAP. The RA Team is to verify the facility`s compliance with criteria identified in the RAP. The criteria are based upon the {open_quotes}Core Requirements{close_quotes} listed in DOE Order 5480.31, {open_quotes}Startup and Restart of Nuclear Facilities{close_quotes}.

  6. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    SciTech Connect

    Poderis, Reed J. [NSTec] [NSTec; King, Rebecca A. [NSTec] [NSTec

    2013-09-30

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or documented ? Provides instructions for implementing annual S&M inspections and activities The following facilities that were included in Revision 1 of this plan have reached final disposition and are no longer in the S&M program: ? Reactor Maintenance, Assembly, and Disassembly Facility, Building 25-3110 ? Test Cell A Facility, Building 25-3113 ? TCC Facility, Building 25-3210 ? Pluto Disassembly Facility, Building 26-2201 ? Super Kukla Facility, Building 27-5400

  7. An overview of the planned advanced neutron source facility

    SciTech Connect

    West, C.D.

    1990-01-01

    The Advanced Neutron Source (ANS), now in the conceptual design stage, will be a new user facility for neutron research, including neutron beam experiments, materials irradiation testing and materials analysis capabilities, and production facilities for transuranic and lighter isotopes. The neutron source is to be the world's highest flux beam reactor and is based on existing reactor technology to minimize safety issues. The preferred fuel, U{sub 3}Si{sub 2}, has been tested in operating reactors in the United States, Japan, and Europe. The core is cooled, moderated, and reflected by heavy water, common practice for research reactors. 3 refs., 9 figs., 3 tabs.

  8. 40 CFR 35.917 - Facilities planning (step 1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...established effluent and water quality goals while recognizing...population projection totals and disaggregations in approved water quality management (WQM) plans...necessary to achieve water quality goals of the Act....

  9. 40 CFR 35.917 - Facilities planning (step 1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...established effluent and water quality goals while recognizing...population projection totals and disaggregations in approved water quality management (WQM) plans...necessary to achieve water quality goals of the Act....

  10. 40 CFR 35.917 - Facilities planning (step 1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...established effluent and water quality goals while recognizing...population projection totals and disaggregations in approved water quality management (WQM) plans...necessary to achieve water quality goals of the Act....

  11. Mirror fusion test facility electrical systems, status and plans

    Microsoft Academic Search

    1981-01-01

    The Mirror Fusion Test Facility (MFTR), a single cell, large scale mirror machine has been under construction at Lawrence Livermore National Laboratory (LLNL) sine October 1977 and was due to be completed October 1981. New machine has been designed to make maximum use of the systems constructed for MFTR with minimum modification. The electrical systems required for MFTF included; magnet

  12. Groundwater Monitoring Plan for the Z-Area Saltstone Facility

    Microsoft Academic Search

    2002-01-01

    Groundwater monitoring has been conducted at the Z-Area Saltstone Disposal Facility since 1987. At that time, groundwater monitoring was not required by the industrial landfill regulations, but a modest monitoring program was required by the operating permit. In 1996 SRS proposed a program based on direct push sampling. This program called for biennial direct push sampling within 25 feet of

  13. NSTA Guide to Planning School Science Facilities, Second Edition (e-book)

    NSDL National Science Digital Library

    James T. Biehle

    2007-01-01

    Science-learning spaces are different from general-purpose classrooms. So if your school is planning to build or renovate, you need the fully updated NSTA Guide to Planning School Science Facilities . It's the definitive resource for every K-12 school that seeks safe, effective science space without costly, time-consuming mistakes. New to this edition is a chapter on "green" schools, including how to think outside the traditional walls and use the entire grounds to encourage environmental responsibility in students. The revised guide also provides essential up-to-date coverage such as: ? Practical information on laboratory and general room design, budget priorities, space considerations, and furnishings. ? Stages of the planning process for new and renovated science facilities. ? Current trends and future directions in science education and safety, accessibility, and legal guidelines. ? Detailed appendices about equipment-needs planning, classroom dimensions, and new safety research, plus an updated science facilities audit. NSTA Guide to Planning School Science Facilities will help science teachers, district coordinators, school administrators, boards of education, and schoolhouse architects understand those differences and develop science facilities that will serve students for years to come.

  14. Wildlife Protection, Mitigation, and Enhancement Plans, Anderson Ranch and Black Canyon Facilities: Final Report.

    SciTech Connect

    Meuleman, G. Allyn

    1987-06-01

    Under direction of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, and the subsequent Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, projects have been developed in Idaho to mitigate the impacts to wildlife habitat and production due to the development and operation of the Anderson Ranch and Black Canyon Facilities (i.e., dam, power plant, and reservoir areas). The Anderson Ranch Facility covered about 4812 acres of wildlife habitat while the Black Canyon Facility covered about 1115 acres. These acreages include dam and power plant staging areas. A separate mitigation plan has been developed for each facility. A modified Habitat Evaluation Procedure (HEP) was used to assess the benefits of the mitigation plans to wildlife. The interagency work group used the target species Habitat Units (HU's) lost at each facility as a guideline during the mitigation planning process, while considering the needs of wildlife in the areas. Totals of 9619 and 2238 target species HU's were estimated to be lost in the Anderson Ranch and Black Canyon Facility areas, respectively. Through a series of projects, the mitigation plans will provide benefits of 9620 target species HU's to replace Anderson Ranch wildlife impacts and benefits of 2195 target species HU's to replace Black Canyon wildlife impacts. Target species to be benefited by the Anderson Ranch and/or Black Canyon mitigation plans include the mallard, Canada goose, mink, yellow warbler, black-capped chickadee, ruffed grouse, mule deer, blue grouse, sharp-tailed grouse, ring-necked pheasant, and peregrine falcon.

  15. Achieving closure at Fernald

    SciTech Connect

    Bradburne, John; Patton, Tisha C.

    2001-02-25

    When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.

  16. Plans for an ERL Test Facility at CERN

    SciTech Connect

    Jensen, Erik [CERN; Bruning, O S [CERN; Calaga, Buchi Rama Rao [CERN; Schirm, Karl-Martin [CERN; Torres-Sanchez, R [CERN; Valloni, Alessandra [CERN; Aulenbacher, Kurt [Mainz; Bogacz, Slawomir [JLAB; Hutton, Andrew [JLAB; Klein, M [University of Liverpool

    2014-12-01

    The baseline electron accelerator for LHeC and one option for FCC-he is an Energy Recovery Linac. To prepare and study the necessary key technologies, CERNhas started – in collaboration with JLAB and Mainz University – the conceptual design of an ERL Test Facility (ERL-TF). Staged construction will allow the study under different conditions with up to 3 passes, beam energies of up to about 1 GeV and currents of up to 50 mA. The design and development of superconducting cavity modules, including coupler and HOM damper designs, are also of central importance for other existing and future accelerators and their tests are at the heart of the current ERL-TF goals. However, the ERL-TF could also provide a unique infrastructure for several applications that go beyond developing and testing the ERL technology at CERN. In addition to experimental studies of beam dynamics, operational and reliability issues in an ERL, it could equally serve for quench tests of superconducting magnets, as physics experimental facility on its own right or as test stand for detector developments. This contribution will describe the goals and the concept of the facility and the status of the R&D.

  17. Engineering Task Plan for the Integrity Assessment Examination of Double Contained Receiver Tanks (DCRT) Catch Tanks and Ancillary facilities

    SciTech Connect

    BECKER, D.L.

    2000-05-23

    This Engineering Task Plan (ETP) presents the integrity assessment examination of three DCRTs, seven catch tanks, and two ancillary facilities located in the 200 East and West Areas of the Hanford Site. The integrity assessment examinations, as described in this ETP, will provide the necessary information to enable the independently qualified registered professional engineer (IQRPE) to assess the condition and integrity of these facilities. The plan is consistent with the Double-Shell Tank Waste Transfer Facilities Integrity Assessment Plan.

  18. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan

    Microsoft Academic Search

    R. B. Cook; S. M. Adams; J. J. Beauchamp; M. S. Bevelhimer; B. G. Blaylock; C. C. Brandt; E. L. Etnier; C. J. Ford; M. L. Frank; M. J. Gentry; M. S. Greeley; R. S. Halbrook; R. A. Harris; S. K. Holladay; L. A. Hook; P. L. Howell; L. A. Kszos; D. A. Levine; J. L. Skiles; G. W. Suter

    1992-01-01

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory

  19. www.facilities.ufl.edu BUSINESS AFFAIRS PLANNING DESIGN & CONSTRUCTION

    E-print Network

    Slatton, Clint

    PMG-E01: SHAREPOINT SYSTEM PURPOSE: To describe the Owner's (UF/PDC) project collaboration and document-sharing system, outline the process for gaining access, and briefly describe the use of SharePoint. A. Introduction UF Planning Design & Construction (PDC) uses Microsoft SharePoint to create, store

  20. Waste Encapsulation and Storage Facility (WESF) Quality Assurance Program Plan (QAPP)

    SciTech Connect

    ROBINSON, P.A.

    2000-04-17

    This Quality Assurance Plan describes how the Waste Encapsulation and Storage Facility (WESF) implements the quality assurance (QA) requirements of the Quality Assurance Program Description (QAPD) (HNF-Mp-599) for Project Hanford activities and products. This QAPP also describes the organizational structure necessary to successfully implement the program. The QAPP provides a road map of applicable Project Hanford Management System Procedures, and facility specific procedures, that may be utilized by WESF to implement the requirements of the QAPD.

  1. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    SciTech Connect

    Graf, F.A. Jr.

    1995-02-27

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System`s pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System.

  2. Identification of Selected Child-Resistant Closures (Continuous Thread, Lug-Bayonet, and Snap Closures).

    ERIC Educational Resources Information Center

    Gross, Rosalind L.; White, Harry E.

    This publication describes a selected group of child-resistant closures used in packaging five categories of medicine and household products. The material in the document was collected to train survey personnel to identify closures for a planned household study of the effectiveness of child-resistant packaging. The 39 closures described are of…

  3. Closedure - Mine Closure Technologies Resource

    NASA Astrophysics Data System (ADS)

    Kauppila, Päivi; Kauppila, Tommi; Pasanen, Antti; Backnäs, Soile; Liisa Räisänen, Marja; Turunen, Kaisa; Karlsson, Teemu; Solismaa, Lauri; Hentinen, Kimmo

    2015-04-01

    Closure of mining operations is an essential part of the development of eco-efficient mining and the Green Mining concept in Finland to reduce the environmental footprint of mining. Closedure is a 2-year joint research project between Geological Survey of Finland and Technical Research Centre of Finland that aims at developing accessible tools and resources for planning, executing and monitoring mine closure. The main outcome of the Closedure project is an updatable wiki technology-based internet platform (http://mineclosure.gtk.fi) in which comprehensive guidance on the mine closure is provided and main methods and technologies related to mine closure are evaluated. Closedure also provides new data on the key issues of mine closure, such as performance of passive water treatment in Finland, applicability of test methods for evaluating cover structures for mining wastes, prediction of water effluents from mine wastes, and isotopic and geophysical methods to recognize contaminant transport paths in crystalline bedrock.

  4. CPP-603 Underwater Fuel Storage Facility Site Integrated Stabilization Management Plan (SISMP), Volume I

    SciTech Connect

    Denney, R.D.

    1995-10-01

    The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been constructed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 to the Secretary of Energy regarding an improved schedule for remediation in the Defense Nuclear Facilities Complex. As described in the DNFSB Recommendation 94-1 Implementation Plan, issued February 28, 1995, an INEL Spent Nuclear Fuel Management Plan is currently under development to direct the placement of SNF currently in existing INEL facilities into interim storage, and to address the coordination of intrasite SNF movements with new receipts and intersite transfers that were identified in the DOE SNF Programmatic and INEL Environmental Restoration and Waste Management Environmental Impact Statement Record, of Decision. This SISMP will be a subset of the INEL Spent Nuclear Fuel Management Plan and the activities described are being coordinated with other INEL SNF management activities. The CPP-603 relocation activities have been assigned a high priority so that established milestones will be meet, but there will be some cases where other activities will take precedence in utilization of available resources. The Draft INEL Site Integrated Stabilization Management Plan (SISMP), INEL-94/0279, Draft Rev. 2, dated March 10, 1995, is being superseded by the INEL Spent Nuclear Fuel Management Plan and this CPP-603 specific SISMP.

  5. National Ignition Facility quality assurance program plan revision 2

    SciTech Connect

    Wolfe, C R

    1998-06-01

    NIF Project activities will be conducted in a manner consistent with the guidance and direction of the DOE Order on Quality Assurance (414.1), the LLNL QA Program, and the Laser Directorate QA Plan. Quality assurance criteria will be applied in a graded manner to achieve a balance between the rigor of application of QA measures and the scale, cost, and complexity of the work involved. Accountability for quality is everyone? s, extending from the Project Manager through established lines of authority to all Project personnel, who are responsible for the requisite quality of their own work. The NLF QA Program will be implemented by personnel conducting their activities to meet requirements and expectations, according to established plans and procedures that reflect the way business is to be conducted on the Project.

  6. RCRA Facility Investigation Plan, Waste Coolant Processing Facility (T-038), Y-12 Plant, Oak Ridge, Tennessee

    Microsoft Academic Search

    Allison

    1987-01-01

    Within the confines of the Oak Ridge Y-12 Plant are both active and inactive hazardous waste treatment, storage, and disposal facilities. These solid waste management units (SWMUs) are subject to assessment by the US Environmental Protection Agency, as required by the 1984 Hazardous and solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA). This document is the

  7. Status and Plans for an SRF Accelerator Test Facility at Fermilab

    E-print Network

    Church, M; Nagaitsev, S

    2012-01-01

    A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  8. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    SciTech Connect

    NONE

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished.

  9. Groundwater Monitoring Plan for the Z-Area Saltstone Facility

    SciTech Connect

    Wells (Contact), D.

    2002-07-23

    Groundwater monitoring has been conducted at the Z-Area Saltstone Disposal Facility since 1987. At that time, groundwater monitoring was not required by the industrial landfill regulations, but a modest monitoring program was required by the operating permit. In 1996 SRS proposed a program based on direct push sampling. This program called for biennial direct push sampling within 25 feet of each waste-containing cell with additional samples being taken in areas where excessive cracking had been observed. The direct push proposal was accepted by The South Carolina Department of Health and Environmental Control (SCDHEC). The Industrial Solid Waste Landfill Regulations were revised in 1998 and now include requirements for groundwater monitoring. The major elements of those regulations and their application at Z-Area are discussed. These are a point of compliance, groundwater protection standards, the groundwater monitoring system, sampling and analysis, and data evaluation and reporting.

  10. RCRA Facility Investigation Plan, Spoil Area I (D-107), Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1987-12-01

    In November 1984, Congress passed the Hazardous and Solid Waste Amendments (HSWA) to the 1976 Resource Conservation and Recovery Act (RCRA). If any solid waste management unit (SWMU) at the facility is a potential source of a contaminant release to the environment, the facility's owner or operator may be required to perform a RCRA Facility Investigation (RFI) to define the nature and extent of the release. Within the confines of the Oak Ridge Y-12 Plant are hazardous waste treatment, storage, and disposal facilities defined as SWMUs. This document is the site-specific RFI plan for the Spoil Area 1 SWMU. It includes site-specific geographical, historical, operational, and, where available, geological and hydrological data specific to Spoil Area 1 and addresses the potential for release of contamination through the various media to receptors. A sampling and analysis plan is proposed to determine the extent (if any) of release of contamination to the surrounding environment. Also included in this document are health, safety, quality assurance, and quality control procedures to be followed when implementing the sampling plan and procedures for managing and displaying data collected from the RCRA Facility Investigation. 9 refs., 6 figs., 4 tabs.

  11. RCRA Facility Investigation Plan, Rust Spoil Area (D-106), Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1987-11-01

    In November 1984, Congress passed the Hazardous and Solid Waste Amendments (HSWA) to the 1976 Resource Conservation and Recovery Act (RCRA). Section 3004(u) of these amendments specifically addresses corrective action for continuing releases from hazardous waste treatment, storage, or disposal facilities. If any solid waste management unit (SWMU) at the facility is suspected to be the source of a contaminant release to the environment, the facility's owner or operator may be required to perform a RCRA Facility Investigation (RFI) to define the nature and extent of the release. This information will be used to determine the need for corrective measures and to aid in their formulation and implementation. This document is the site-specific RFI plan for the Rust Spoil Area (D-106) SWMU. It includes site-specific geographical, historical, operational, and, where available, geological and hydrological data specific to the Rust Spoil Area and addresses the potential for release of contamination through the various media to receptors. A sampling and sample analysis plan is proposed to determine the extent (if any) of release of contamination to the surrounding environment. Also included in this document are health, safety, quality assurance, and quality control procedures to be followed when implementing the sampling plan and procedures for managing and displaying data collected from the RCRA Facility Investigation. 4 refs., 6 figs., 4 tabs.

  12. MSU Certificate of Substantial Completion Form 107 Page 1 of 2 FACILITIES PLANNING, DESIGN & CONSTRUCTION

    E-print Network

    Dyer, Bill

    : Project Location: TO: Montana State University Facilities Planning, Design & Construction 6th & Grant, PO Material (e.g. masonry, metal panel, wood, etc.) Total Construction Cost Fire Sprinklers Installed (yes & CONSTRUCTION Sixth Avenue and Grant Street · PO Box 172760 · Bozeman, Montana 59717-2760 Phone: (406) 994

  13. Transition Plan for Improving Facility Accessibility by Handicapped Students at Amarillo College.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    In compliance with the Rehabilitation Act of 1973, Section 504, this transition report identifies architectural barriers at two Amarillo College campuses, recommends modifications to improve facility accessibility for the handicapped, presents an implementation schedule and estimated costs for the modifications, and provides a plan for publicizing…

  14. 40 CFR 35.917-7 - State review and certification of facilities plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    40 ? Protection of Environment ? 1 ? 2014-07-01 ? 2014-07-01 ? false ? State review and certification of facilities plan. ? 35.917-7 ? Section 35.917-7 ? Protection of Environment ? ENVIRONMENTAL PROTECTION AGENCY ? GRANTS AND OTHER FEDERAL ASSISTANCE ? STATE AND LOCAL ASSISTANCE ? Grants...

  15. Policy Name: Asbestos Management Policy Originating/Responsible Department: Facilities Management and Planning

    E-print Network

    Carleton University

    for its students, faculty, staff, contractors and visitors by ensuring that an Asbestos Management ProgramPolicy Name: Asbestos Management Policy Originating/Responsible Department: Facilities Management and Planning Approval Authority: Senior Management Committee Date of Original Policy: 2006 Last Updated

  16. 76 FR 52966 - Kawailoa Wind Energy Generation Facility, Oahu, HI; Draft Habitat Conservation Plan and Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ...10120-1112-0000-F2] Kawailoa Wind Energy Generation Facility, Oahu, HI; Draft Habitat Conservation Plan and Draft Environmental Assessment...Service, 300 Ala Moana Boulevard, Room 3-122, Honolulu, HI 96850. You may also send comments by facsimile to (808)...

  17. Facility Programming and Construction Criteria [Planning Guide]. 702 KAR 4:170.

    ERIC Educational Resources Information Center

    Kentucky State Dept. of Education, Frankfort. Div. of Facilities Management.

    This facility construction planning guide presents the minimum instructional space standards for Kentucky's public school system. It provides definitions of terms found in the regulations; presents space requirements for every type of instructional space within a public school, including circulation areas, storage, and mechanical/electrical areas;…

  18. 67 FR 63331 - Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2002-10-11

    ...2115-AG05 Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and...proposes changes to its requirements for oil- spill removal equipment under vessel response...methods and procedures for responding to oil spills in coastal waters. DATES:...

  19. MSU Construction Change Directive Form 109 Page 1 of 1 FACILITIES PLANNING, DESIGN & CONSTRUCTION

    E-print Network

    Dyer, Bill

    MSU Construction Change Directive Form 109 Page 1 of 1 FACILITIES PLANNING, DESIGN & CONSTRUCTION: (406) 994-5665 CONSTRUCTION CHANGE DIRECTIVE Project Name: PPA No.: Location: Montana State University, Design & Construction 6th & Grant, Po Box 172760 Bozeman, Mt 59717-2760 Architect

  20. Final Pantex Report - 2006 [Phase 1 plan for assessment of Former Workers at the Pantex Facility

    SciTech Connect

    Abdo, Ronna

    2013-07-18

    The purpose of this project was to develop a Phase 1 plan for assessment of Former Workers at the Pantex Facility in Amarillo, TX and to determine the suitability to start a medical surveillance program among former workers for this site.

  1. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    SciTech Connect

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA{reg_sign} canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA{reg_sign}, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities.

  2. National Biomedical Tracer Facility planning and feasibility study

    SciTech Connect

    Ketchem, L. (ed.); Holmes, R.A.

    1991-03-02

    Since its establishment in mid-1989, the DOE Office of Isotope Production and Distribution has examined the recommendations of the Los Alamos Report and the Health and Environmental Research Advisory Committee (HERAC) Report. The main recommendation from these deliberations is for the DOE to establish an accelerator dedicated to biomedical radioisotope production. Representatives of the nuclear medicine community, meeting at a DOE workshop in August 1988, evaluated present and future needs for accelerator-produced radioisotopes. Workshop participants concluded in the Los Alamos Report that approximately 90% of their radioisotope needs could be met by a machine that delivers a 70 million electronic volts (MeV), 500-microamp proton beam. The HERAC Report provides more quantification of radioisotope needs, and included isotopes that can be produced effectively only at higher energies. An accelerator facility with an upper energy limit of 100 MeV and beam current of 750 to 1,000 microamps, could produce all important accelerator- produced radioisotopes in current use, as well as those isotopes judged to have future potential value in medical research and clinical practice. We therefore recommend that the NBTF have a 100-MeV proton beam accelerator with an extracted beam current of 750 to 1,000 microamps.

  3. National Biomedical Tracer Facility planning and feasibility study. Revision 1

    SciTech Connect

    Ketchem, L. [ed.] [ed.; Holmes, R.A.

    1991-03-02

    Since its establishment in mid-1989, the DOE Office of Isotope Production and Distribution has examined the recommendations of the Los Alamos Report and the Health and Environmental Research Advisory Committee (HERAC) Report. The main recommendation from these deliberations is for the DOE to establish an accelerator dedicated to biomedical radioisotope production. Representatives of the nuclear medicine community, meeting at a DOE workshop in August 1988, evaluated present and future needs for accelerator-produced radioisotopes. Workshop participants concluded in the Los Alamos Report that approximately 90% of their radioisotope needs could be met by a machine that delivers a 70 million electronic volts (MeV), 500-microamp proton beam. The HERAC Report provides more quantification of radioisotope needs, and included isotopes that can be produced effectively only at higher energies. An accelerator facility with an upper energy limit of 100 MeV and beam current of 750 to 1,000 microamps, could produce all important accelerator- produced radioisotopes in current use, as well as those isotopes judged to have future potential value in medical research and clinical practice. We therefore recommend that the NBTF have a 100-MeV proton beam accelerator with an extracted beam current of 750 to 1,000 microamps.

  4. Calculation of parameters for inspection planning and evaluation: mixed-oxide fuel fabrication facilities

    SciTech Connect

    Reardon, P.T.; Mullen, M.F.

    1982-08-01

    As part of Task C.35 (Calculation of Parameters for Inspection Planning and Evaluation) of the US Program of Technical Assistance to IAEA Safeguards, Pacific Northwest Laboratory has performed some quantitative analyses of IAEA inspection activities for mixed-oxide fuel fabrication facilities. There were four distinct efforts involved in this task. These were as follows: show the effect on a material balance verification of using two variables measurement methods in some strata; perform additional calculations for the reference facility described in STR-89; modify the INSPECT computer programs to be used as an after-inspection analysis tool, as well as a preinspection planning tool; provide written comments and explantations of text and graphs of the first draft of STR-89, Safeguards Considerations for Mixed-Oxide Fuel Element Fabrication Facilities, by W. Bahm, T. Shea, and D. Tolchenkov, System Studies Section, IAEA.

  5. CPP-603 underwater fuel storage facility site integrated stabilization management plan (SISMP). Volume I

    SciTech Connect

    Wachs, G.W.; Blake, H.M.; Cottam, R.E.; Denney, R.D.; Shiffern, R.A.

    1996-09-01

    The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been developed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety Board (DNFSB) remediation in the Defense Nuclear Facilities Complex. To date, 622 spent nuclear fuel units have been moved from the CPP-603 north and middle water basins, leaving 743 units in the south basin to be relocated from the facility by December 31, 2000. Besides moving fuels from the CPP-603, in 1993 and 1994 more than 300 fuel storage yokes in the north and middle basins were redundantly rigged because of corrosion problems. More than 200 fuel transfers within the north and middle basins were also made to ensure proper spacing of the fuels, and 104 corroded cans containing spent space reactor fuel were repackaged underwater to prevent potential release of their contents. This document is provided to address the relocation activities for the remaining 743 units in the south basin into wet storage pools at building CPP-666 or into dry storage at the Irradiation Fuel Storage Facility (IFSF).

  6. Long Range Facilities Planning and Design Implementation for Students with Disabilities: A Guide for New Jersey School Districts

    ERIC Educational Resources Information Center

    Lowenkron, Ruth; Ponessa, Joan

    2005-01-01

    The long range facilities planning (LRFP) process presents a wonderful opportunity for New Jersey's school districts to re-examine and strengthen their long term planning for educational adequacy in 21st century school facilities. It provides an opportunity for districts to work closely with the special education community to ensure that New…

  7. Facility Planning in the Construction Grants Program. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Buskirk, E. Drannon, Jr.; Cole, Charles A.

    Wastewater facility planning is an essential component of the federal construction grants process. Presented in this instructor's guide is a one-hour presentation on facility planning intended for citizen advisory groups. The guide is part of the Working for Clean Water Project, which also includes a supplementary audiovisual presentation.…

  8. Final work plan : investigation of potential contamination at the former USDA facility in Powhattan, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2007-02-02

    This Work Plan outlines the scope of work to be conducted to investigate the subsurface contaminant conditions at the property formerly leased by the Commodity Credit Corporation (CCC) in Powhattan, Kansas (Figure 1.1). Data obtained during this event will be used to (1) evaluate potential contaminant source areas on the property; (2) determine the vertical and horizontal extent of potential contamination; and (3) provide recommendations for future action, with the ultimate goal of assigning this site No Further Action status. The planned investigation includes groundwater monitoring requested by the Kansas Department of Health and Environment (KDHE), in accordance with Section V of the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the U.S. Department of Agriculture (USDA). The work is being performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. A nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy, Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne issued a Master Work Plan (Argonne 2002) that has been approved by the KDHE. The Master Work Plan describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. It should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Powhattan.

  9. Visual Closure.

    ERIC Educational Resources Information Center

    Groffman, Sidney

    An experimental test of visual closure based on an information-theory concept of perception was devised to test the ability to discriminate visual stimuli with reduced cues. The test is to be administered in a timed individual situation in which the subject is presented with sets of incomplete drawings of simple objects that he is required to name…

  10. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    SciTech Connect

    SIMMONS, F.M.

    2000-03-29

    This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cells 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas.

  11. Transition plan: Project C-018H, 200-E Area Effluent Treatment Facility

    SciTech Connect

    Connor, M.D.

    1994-09-29

    The purpose of this transition plan is to ensure an orderly transfer of project information to operations to satisfy Westinghouse Hanford Company (WHC) operational requirements and objectives, and ensure safe and efficient operation of Project C-018H, the 200-E Area Effluent Treatment Facility (ETF). This plan identifies the deliverables for Project C-018H upon completion of construction and turnover to WHC for operations, and includes acceptance criteria to objectively assess the adequacy of the contract deliverables in relation to present requirements. The scope of this plan includes a general discussion of the need for complete and accurate design basis documentation and design documents as project deliverables. This plan also proposes that a configuration management plan be prepared to protect and control the transferred design documents and reconstitute the design basis and design requirements, in the event that the deliverables and project documentation received from the contractor are less than adequate at turnover.

  12. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  13. An exploratory shaft facility in SALT: Draft shaft study plan

    SciTech Connect

    Not Available

    1987-03-01

    This draft Shaft Study Plan describes a program of testing and monitoring in the Exploratory Shafts of a candidate high-level nuclear waste repository site in Deaf Smith County, Texas. The purpose of the programs to assist with site characterization in support of a determination of site suitability for development as a repository design and performance assessment evaluations. The program includes a variety of geological, geophysical, geomechanical, thermomechanical, and geohydrological testing and monitoring. The program is presented as a series of separate studies concerned with geological, geomechanical, and geohydrological site characterization, and with evaluating the mechanical and hydrological response of the site to construction of the shafts. The various studies, and associated test or monitoring methods are shown. The procedure used in developing the test program has been to initially identify the information necessary to satisfy (1) federal, state, and local requirements, and (2) repository program requirements. These information requirements have then been assessed to determine which requirements can be addressed wholly or in significant part by monitoring and testing from within the shafts. Test methods have been identified to address specific information requirements. 67 refs., 39 figs., 31 tabs.

  14. Overview of NSTX Facility Upgrades Status and Research Plans

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki; NSTX-U Team

    2014-10-01

    NSTX is undergoing a major device upgrade as well as an addition of a second more tangential Neutral Beam Injection (NBI) heating and current drive system. NSTX upgrade will double the toroidal field from 0.5 T to 1 T, the plasma current from 1 MA to 2 MA, the NBI heating and current drive power from 7 MW to 14 MW, and increase the peak field plasma pulse length from 1 sec to 7 sec. More tangential NBI system is designed to achieve 100% non-inductive operation needed for a compact FNSF design. Innovative plasma start-up and ramp-up techniques without the central solenoid operation which is needed for a compact FNSF design will be explored. A major physics/technology goal for NSTX-U is to develop an attractive divertor solution for the very high steady-state divertor heat flux expected for FNSF. With doubling of the heat flux and plasma current, the peak divertor heat flux in NSTX-U could quadruple to about 40 MW/m2 compared to up to 10 MW / m2 of NSTX. For divertor heat mitigation, snow-flake divertor configuration and liquid lithium divertor are being considered. The first plasma operation of NSTX-U is planned in January 2015. This work supported by DoE Contract No. DE-AC02-09CH11466.

  15. Planning of public healthcare facility using a location allocation modelling: A case study

    NASA Astrophysics Data System (ADS)

    Shariff, S. Sarifah Radiah; Moin, Noor Hasnah; Omar, Mohd

    2014-09-01

    Finding the correct location of any facility and determining the demands which are to be assigned to it is very crucial in public health service. This is to ensure that the public gain maximum benefits. This article analyzes the previous location decisions of public primary healthcare (PHC) facilities in the district of Kuala Langat, Malaysia. With total population of 220214 (in 2010), the PHC in the district is currently served by 28 facilities. The percentages of total population covered (in 2007) within the maximum allowable distance of 3km and 5km are 69.7 percent and 77.8 percent respectively. This is very low compared to the Malaysian National Health Policy of Health for All or 100 percent coverage. The determination of health facility location should be planned carefully to further increase effective primary health service to the nation that is required for economic sustainability.

  16. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    SciTech Connect

    Washington TRU Solutions LLC

    2002-03-05

    This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

  17. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    SciTech Connect

    Washington TRU Solutions LLC

    2002-03-05

    his 2002 Facility Work Plan (FWP) has been prepared as required by Module VII,Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received onDecember 6, 2000 (NMED, 2000a). This February 2002 FWP describes the program-matic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the mostrecent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA)Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may beused for any SWMU or AOC (NMED, 1998). This accelerated approach is used toreplace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

  18. 77 FR 60319 - Harbor Porpoise Take Reduction Plan; Coastal Gulf of Maine Closure Area Established With a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ...fully complying with the Plan's pinger requirements (i.e., proper number of fully functional pingers present on each net string) to reduce harbor porpoise bycatch. Pingers are still required on gillnet fishing gear in the Mid-Coast Management...

  19. Quality assurance project plan for the UMTRA technical assistance contractor hydrochemistry facility. Final report

    SciTech Connect

    NONE

    1993-07-01

    The Uranium Mill Tailings Remedial Action (UMTRA) hydrochemistry facility is used to perform a limited but important set of services for the UMTRA Project. Routine services include support of field-based hydrological and geochemical operations and water sampling activities. Less commonly, the hydrology and geochemistry staff undertake special studies and site characterization studies at this facility. It is also used to train hydrologists, geochemists, and groundwater sampling crews. A review of this Quality Assurance Project Plan (QAPP) shall be accomplished once each calendar year. This review will be targeted to be accomplished not sooner than 6 months and not later than 18 months after the last review.

  20. ORNL Strategic Facilities Plan for Making ORNL a 21st Century Laboratory

    SciTech Connect

    ORNL Management

    2001-02-13

    Oak Ridge National Laboratory (ORNL) is the nation's largest and most diverse energy research and development (R&D) institution in the U.S. Department of Energy (DOE) laboratory complex. To accomplish its mission of scientific research, ORNL staff are dependent upon the availability of a wide variety of buildings and equipment, including specialized experimental laboratories, user facilities, hot cells and nuclear reactors, and a large complement of office space and associated utility systems. ORNL's physical facilities are, however, quite old, and many have reached the end of their safe operating life. The poor condition of facilities is a key environmental, safety and health (ES&H) concern and adds considerably to the overhead costs of research in terms of energy consumption, increased maintenance costs, and research inefficiencies. Revitalization of the ORNL campus is a key initiative of the new ORNL prime contractor, UT-Battelle LLC, and this ORNL Strategic Facilities Plan describes the details of UT-Battelle's approach to upgrading the scientific resources and supporting infrastructure of the Laboratory. The facilities upgrade needs at ORNL are not unique, however, within the DOE Office of Science (DOE-SC) multiprogram laboratory system. DOE-SC's goal is to accomplish full modernization of its laboratories by 2012, as part of its ''Laboratories of the 21st Century'' initiative. This ORNL plan meets the planning objectives put forth by the Office of Science for that initiative. As detailed in the following sections, ORNL has developed a Master Plan for site development that (1) responds to the expected programmatic mission activities during the planning period; (2) establishes a safe, high-quality, energy-efficient working environment for research and support staff in a research-campus setting; and (3) addresses the long-term maintenance and ultimate disposition of retired facilities in an environmentally acceptable manner. As shown in Figure 1, this plan results in consolidation of ORNL space from the current occupied levels of over 4.5 million square feet, to slightly over 3.2 million square feet (including almost 1 million square feet of newly constructed space) with the consolidated staff residing almost exclusively at ORNL's primary location at the main ORNL site. This consolidation would occur over a 5- to 7-year period, involving the movement of approximately 400 staff from off-site locations (Y-12 Plant and commercial leased space) and would result in the need for safe shutdown and demolition of 118 buildings. The Master Plan outlines a phased approach to the facilities revitalization effort, with the primary emphasis in the first 5 years being establishment of the East Campus infrastructure, construction and refurbishment of critical mission-oriented research facilities, and consolidation of research staff from the Y-12 Plant. The second phase of the facilities upgrade program would be completion of the East Campus core construction, consolidation of off-site staff to the main ORNL site, and primary development of the ORNL West Campus for environmental and life sciences research. A plan view of the resulting 21st Century Laboratory at ORNL is provided in Figure 2, with construction phasing noted by color.

  1. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    SciTech Connect

    Hazen, Terry

    2002-08-26

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and strategies to reduce uranium concentration in the leachate.

  2. Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    SciTech Connect

    Alfred Wickline

    2008-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

  3. 40 CFR 265.381 - Closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...TREATMENT, STORAGE, AND DISPOSAL FACILITIES Thermal Treatment § 265.381 Closure. ...including, but not limited to, ash) from the thermal treatment process or equipment. [Comment...that any solid waste removed from his thermal treatment process or equipment is not...

  4. 40 CFR 265.381 - Closure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...TREATMENT, STORAGE, AND DISPOSAL FACILITIES Thermal Treatment § 265.381 Closure. ...including, but not limited to, ash) from the thermal treatment process or equipment. [Comment...that any solid waste removed from his thermal treatment process or equipment is not...

  5. 40 CFR 265.381 - Closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...TREATMENT, STORAGE, AND DISPOSAL FACILITIES Thermal Treatment § 265.381 Closure. ...including, but not limited to, ash) from the thermal treatment process or equipment. [Comment...that any solid waste removed from his thermal treatment process or equipment is not...

  6. 40 CFR 265.381 - Closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...TREATMENT, STORAGE, AND DISPOSAL FACILITIES Thermal Treatment § 265.381 Closure. ...including, but not limited to, ash) from the thermal treatment process or equipment. [Comment...that any solid waste removed from his thermal treatment process or equipment is not...

  7. 40 CFR 265.381 - Closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...TREATMENT, STORAGE, AND DISPOSAL FACILITIES Thermal Treatment § 265.381 Closure. ...including, but not limited to, ash) from the thermal treatment process or equipment. [Comment...that any solid waste removed from his thermal treatment process or equipment is not...

  8. YYY, Vol. X, No. X, Month 2005, xxxxxx Multi-facilities tactical planning robustness with experimental design

    E-print Network

    Boyer, Edmond

    YYY, Vol. X, No. X, Month 2005, xxx­xxx Multi-facilities tactical planning robustness *Corresponding author. Email: patrick.genin@supmeca.fr This paper addresses the problem of tactical planning such as demand is an increasing concern because of the key role played in supply chain planning. This study aims

  9. Implementation plan for the Defense Nuclear Facilities Safety Board Recommendation 90-7. Revision 1

    SciTech Connect

    Borsheim, G.L.; Cash, R.J.; Dukelow, G.T.

    1992-12-01

    This document revises the original plan submitted in March 1991 for implementing the recommendations made by the Defense Nuclear Facilities Safety Board in their Recommendation 90-7 to the US Department of Energy. Recommendation 90-7 addresses safety issues of concern for 24 single-shell, high-level radioactive waste tanks containing ferrocyanide compounds at the Hanford Site. The waste in these tanks is a potential safety concern because, under certain conditions involving elevated temperatures and low concentrations of nonparticipating diluents, ferrocyanide compounds in the presence of oxidizing materials can undergo a runaway (propagating) chemical reaction. This document describes those activities underway by the Hanford Site contractor responsible for waste tank safety that address each of the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7. This document also identifies the progress made on these activities since the beginning of the ferrocyanide safety program in September 1990. Revised schedules for planned activities are also included.

  10. Closure: It's More than Just Lining Up

    ERIC Educational Resources Information Center

    Duncan, Charles A.; Clemons, James M.

    2012-01-01

    The value of effective lesson planning for optimized learning is a well researched and established concept in education. Although different formats exist for lesson planning, most contain common components, including a structured ending. One common term for a planned ending to a lesson is closure. Unfortunately, not all lessons are well planned

  11. ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Operations and Maintenance Concept Plan for the Immobilized High Level Waste (IHLW) Interim Storage Facility

    SciTech Connect

    JANIN, L.F.

    2000-08-30

    This O&M Concept looks at the future operations and maintenance of the IHLW/CSB interim storage facility. It defines the overall strategy, objectives, and functional requirements for the portion of the building to be utilized by Project W-464. The concept supports the tasks of safety basis planning, risk mitigation, alternative analysis, decision making, etc. and will be updated as required to support the evolving design.

  13. LPT. Shield test facility (TAN646). Floor plan for water treatment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-646). Floor plan for water treatment room on west facade, tank and filter locations in basement along service tunnel and in coupling station. Ralph M. Parsons 1229-17 ANP/GE-6-646-P-2. April 1957. INEEL Index code no. 037-0645/0646-51-693-107387 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  14. Facilities Planning Guide for Special Education Programs: Planning Accessibility for the Handicapped in Public Schools.

    ERIC Educational Resources Information Center

    Brooks, Kenneth W.

    The guide details characteristics to provide architecturally accessible special education programs for handicapped students. Impetus for the accessibility movement is traced to legislation, including the Architectural Barriers Act and Sections 503 and 504 of the Rehabilitation Act of 1973. Planning features considered are the development of a…

  15. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    NONE

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  16. Utilizing Divers in Support of Spent Fuel Basin Closure Subproject

    SciTech Connect

    Allen Nellesen

    2005-01-01

    A number of nuclear facilities in the world are aging and with this comes the fact that we have to either keep repairing them or decommission them. At the Department of Energy Idaho Site (DOEID) there are a number of facilities that are being decommissioned, but the facilities that pose the highest risk to the large aquifer that flows under the site are given highest priorities. Aging spent nuclear fuel pools at DOE-ID are among the facilities that pose the highest risk, therefore four pools were targeted for decommissioning in Fiscal Year 2004. To accomplish this task the Idaho Completion Project (ICP) of Bechtel BWXT Idaho, LLC, put together an integrated Basin Closure Subproject team. The team was assigned a goal to look beyond traditional practices at the Idaho National Engineering and Environmental Laboratory (INEEL) to find ways to get the basin closure work done safer and more efficiently. The Idaho Completion Project (ICP) was faced with a major challenge – cleaning and preparing aging spent nuclear fuel basins for closure by removing sludge and debris, as necessary, and removing water to eliminate a potential risk to the Snake River Plain Aquifer. The project included cleaning and removing water from four basins. Two of the main challenges to a project like this is the risk of contamination from the basin walls and floors becoming airborne as the water is removed and keeping personnel exposures ALARA. ICP’s baseline plan had workers standing at the edges of the basins and on rafts or bridge cranes and then using long-handled tools to manually scrub the walls of basin surfaces. This plan had significant risk of skin contamination events, workers falling into the water, or workers sustaining injuries from the awkward working position. Analysis of the safety and radiation dose risks presented by this approach drove the team to look for smarter ways to get the work done.

  17. Capacity planning for batch and perfusion bioprocesses across multiple biopharmaceutical facilities.

    PubMed

    Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S

    2014-01-01

    Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fed-batch or perfusion culture processes such as sequence-dependent changeover times, continuous culture constraints, and decoupled upstream and downstream operations that permit independent scheduling of each. Strategic inventory levels were accounted for by applying cost penalties when they were not met. A rolling time horizon methodology was utilized in conjunction with the MILP model and was shown to obtain solutions with greater optimality in less computational time than the full-scale model. The model was applied to an industrial case study to illustrate how the framework aids decisions regarding outsourcing capacity to third party manufacturers or building new facilities. The impact of variations on key parameters such as demand or titres on the optimal production plans and costs was captured. The analysis identified the critical ratio of in-house to contract manufacturing organization (CMO) manufacturing costs that led the optimization results to favor building a future facility over using a CMO. The tool predicted that if titres were higher than expected then the optimal solution would allocate more production to in-house facilities, where manufacturing costs were lower. Utilization graphs indicated when capacity expansion should be considered. PMID:24376262

  18. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    SciTech Connect

    Peterson, B.L.; Lundeen, A.S.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation`s generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO`s quality standards during the software maintenance phase. 8 refs., 1 tab.

  19. 33 CFR 105.405 - Format and content of the Facility Security Plan (FSP).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Facility Security Assessment (FSA) report; and (18) Facility Vulnerability and Security Measures...part 105-Facility Vulnerability and Security Measures... (c) The Facility Vulnerability and Security...

  20. 33 CFR 105.405 - Format and content of the Facility Security Plan (FSP).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Facility Security Assessment (FSA) report; and (18) Facility Vulnerability and Security Measures...part 105-Facility Vulnerability and Security Measures... (c) The Facility Vulnerability and Security...

  1. 33 CFR 105.405 - Format and content of the Facility Security Plan (FSP).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Facility Security Assessment (FSA) report; and (18) Facility Vulnerability and Security Measures...part 105-Facility Vulnerability and Security Measures... (c) The Facility Vulnerability and Security...

  2. 33 CFR 105.405 - Format and content of the Facility Security Plan (FSP).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Facility Security Assessment (FSA) report; and (18) Facility Vulnerability and Security Measures...part 105-Facility Vulnerability and Security Measures... (c) The Facility Vulnerability and Security...

  3. RCRA Facility Investigation Plan, Building 9418-3 Uranium Vault (D-115), Y-12 Plant, Oak Ridge, Tennessee

    Microsoft Academic Search

    Allison

    1987-01-01

    Within the confines of the Oak Ridge Y-12 Plant are active and inactive hazardous waste treatment, storage, and disposal facilities. These solid waste management units (SWMUs) are subject to assessment by the US Environmental Protection Agency, as required by the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA). RCRA Facility Investigation (RFI) Plans

  4. SCIENCE AND TECHNOLOGY FACILITIES COUNCIL November 2008 SCIENCE IN SOCIETY STRATEGY 2008: A PLAN FOR PUBLIC ENGAGEMENT

    E-print Network

    and overseas facilities for a wide range of physical, life and heritage science research; R&D programmes over a wide range of technologies; research units at the laboratories; e-science; and a strong programmeSCIENCE AND TECHNOLOGY FACILITIES COUNCIL November 2008 SCIENCE IN SOCIETY STRATEGY 2008: A PLAN

  5. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    SciTech Connect

    Barnett, D BRENT.; Smith, Ronald M.; Chou, Charissa J.; McDonald, John P.

    2005-11-01

    The 216-B-3 Pond system was a series of ponds used for disposal of liquid effluent from past Hanford production facilities. In operation from 1945 to 1997, the B Pond System has been a Resource Conservation and Recovery Act (RCRA) facility since 1986, with RCRA interim-status groundwater monitoring in place since 1988. In 1994 the expansion ponds of the facility were clean closed, leaving only the main pond and a portion of the 216-B-3-3 ditch as the currently regulated facility. In 2001, the Washington State Department of Ecology (Ecology) issued a letter providing guidance for a two-year, trial evaluation of an alternate, intrawell statistical approach to contaminant detection monitoring at the B Pond system. This temporary variance was allowed because the standard indicator-parameters evaluation (pH, specific conductance, total organic carbon, and total organic halides) and accompanying interim status statistical approach is ineffective for detecting potential B-Pond-derived contaminants in groundwater, primarily because this method fails to account for variability in the background data and because B Pond leachate is not expected to affect the indicator parameters. In July 2003, the final samples were collected for the two-year variance period. An evaluation of the results of the alternate statistical approach is currently in progress. While Ecology evaluates the efficacy of the alternate approach (and/or until B Pond is incorporated into the Hanford Facility RCRA Permit), the B Pond system will return to contamination-indicator detection monitoring. Total organic carbon and total organic halides were added to the constituent list beginning with the January 2004 samples. Under this plan, the following wells will be monitored for B Pond: 699-42-42B, 699-43-44, 699-43-45, and 699-44-39B. The wells will be sampled semi-annually for the contamination indicator parameters (pH, specific conductance, total organic carbon, and total organic halides) and annually for water quality parameters (chloride, iron, manganese, phenols, sodium, and sulfate). This plan will remain in effect until superseded by another plan or until B Pond is incorporated into the Hanford Facility RCRA Permit.

  6. Program for closure of an inactive radioactive waste disposal site at the Savannah River Plant

    SciTech Connect

    Cook, J.R.

    1987-01-01

    The 643-G Radioactive Waste Disposal Facility was operated at the Savannah River Plant from 1952 through 1974, and has been inactive since that time. The actions leading to closure of 643-G will involve a combination of activities consisting of limited waste removal, stabilization, capping, and monitoring. The overall effect of these closure actions will be to place the 643-G site in a physically and chemically stable state which will remain stable over a long period of time. During a one-hundred year institutional control period surveillance and monitoring of the site will be carried out to verify that the performance of the system is acceptable, and access of the general public to the site will be restricted. The program described in this paper is a recommendation; the actual closure plan will be negotiated with regulatory authorities. 2 figs., 1 tab.

  7. 200 Area effluent treatment facility process control plan 98-02

    SciTech Connect

    Le, E.Q.

    1998-01-30

    This Process Control Plan (PCP) provides a description of the background information, key objectives, and operating criteria defining Effluent Treatment Facility (ETF) Campaign 98-02 as required per HNF-IP-0931 Section 37, Process Control Plans. Campaign 98-62 is expected to process approximately 18 millions gallons of groundwater with an assumption that the UP-1 groundwater pump will be shut down on June 30, 1998. This campaign will resume the UP-1 groundwater treatment operation from Campaign 97-01. The Campaign 97-01 was suspended in November 1997 to allow RCRA waste in LERF Basin 42 to be treated to meet the Land Disposal Restriction Clean Out requirements. The decision to utilize ETF as part of the selected interim remedial action of the 200-UP-1 Operable Unit is documented by the Declaration of the Record of Decision, (Ecology, EPA and DOE 1997). The treatment method was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Hanford Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement or TPA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP).

  8. 40 CFR 265.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure...unit as long as it remains in service as a munitions or explosives magazine or storage unit....

  9. 40 CFR 265.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure...unit as long as it remains in service as a munitions or explosives magazine or storage unit....

  10. 40 CFR 264.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure...unit as long as it remains in service as a munitions or explosives magazine or storage unit....

  11. 40 CFR 264.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure...unit as long as it remains in service as a munitions or explosives magazine or storage unit....

  12. 40 CFR 264.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure...unit as long as it remains in service as a munitions or explosives magazine or storage unit....

  13. 40 CFR 264.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure...unit as long as it remains in service as a munitions or explosives magazine or storage unit....

  14. 40 CFR 265.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure...unit as long as it remains in service as a munitions or explosives magazine or storage unit....

  15. 40 CFR 265.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure...unit as long as it remains in service as a munitions or explosives magazine or storage unit....

  16. 40 CFR 265.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure...unit as long as it remains in service as a munitions or explosives magazine or storage unit....

  17. 40 CFR 264.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure...unit as long as it remains in service as a munitions or explosives magazine or storage unit....

  18. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  19. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    SciTech Connect

    Hall, L.R.

    1995-05-30

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

  20. PLANNING TOOLS FOR ESTIMATING RADIATION EXPOSURE AT THE NATIONAL IGNITION FACILITY

    SciTech Connect

    Verbeke, J; Young, M; Brereton, S; Dauffy, L; Hall, J; Hansen, L; Khater, H; Kim, S; Pohl, B; Sitaraman, S

    2010-10-22

    A set of computational tools was developed to help estimate and minimize potential radiation exposure to workers from material activation in the National Ignition Facility (NIF). AAMI (Automated ALARA-MCNP Interface) provides an efficient, automated mechanism to perform the series of calculations required to create dose rate maps for the entire facility with minimal manual user input. NEET (NIF Exposure Estimation Tool) is a web application that combines the information computed by AAMI with a given shot schedule to compute and display the dose rate maps as a function of time. AAMI and NEET are currently used as work planning tools to determine stay-out times for workers following a given shot or set of shots, and to help in estimating integrated doses associated with performing various maintenance activities inside the target bay. Dose rate maps of the target bay were generated following a low-yield 10{sup 16} D-T shot and will be presented in this paper.

  1. Project management plan for the isotopes facilities deactivation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    NONE

    1996-08-01

    Purpose of the deactivation project is to place former isotopes production facilities at ORNL in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance. This management plan was prepared to document project objectives, define organizational relationships and responsibilities, and outline the management control systems. The project has adopted the strategy of deactivating the simple facilities first. The plan provides a road map for the quality assurance program and identifies other documents supporting the Isotopes Facilities Deactivation Project.

  2. Review of past experiments at the FELIX facility and future plans for ITER applications

    SciTech Connect

    Hua, T.Q.; Turner, L.R.

    1993-10-01

    FELIX is an experimental test facility at Argonne National Laboratory (ANL) for the study of electromagnetic effects in first wall, blanket, shield systems of fusion reactors. From 1983 to 1986 five major test series, including static and dynamic tests, were conducted and are reviewed in this paper. The dynamic tests demonstrated an important coupling effect between eddy currents and motion in a conducting structure. Recently the US has proposed to the ITER Joint Central Team to use FELIX for testing mock-up components to study electromagnetic effects encountered during plasma disruptions and other off-normal events. The near and long term plans for ITER applications are discussed.

  3. Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) System Configuration Management Plan

    SciTech Connect

    Carter, R.L. Jr.

    1994-06-01

    The Treated Effluent Disposal Facility Operator Training Station (TEDF OTS) is a computer based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS). It consists of PC compatible computers and a Programmable Logic Controller (PLC) designed to emulate the responses of various plant components connected to or under the control of the CCS. The system trains operators by simulating the normal operation but also has the ability to force failures of different equipment allowing the operator to react and observe the events. The paper describes organization, responsibilities, system configuration management activities, software, and action plans for fully utilizing the simulation program.

  4. Emergency planning lessons learned from TMI-2: Potential applications for fuel facilities

    SciTech Connect

    Knief, R.A. [Ogden Environmental and Energy Services, Albuquerque, NM (United States)

    1995-12-31

    Proposed American National Standard on Nuclear Criticality Accident Emergency PLanning and Response, ANSI/ANS-8.23, is being prepared to provide guidance on the important subject area indicated by it`s title. The accident at Three Mile Island unit 2 (TMI-2) reactor provided many valuable lessons to be learned in emergency preparedness. A workshop conducted by GPU Nuclear Corporation, the company operating TMI-2, identified a number of lessons, several of which provide insights for nuclear facilities as described in this paper.

  5. Planning and managing future space facility projects. [management by objectives and group dynamics

    NASA Technical Reports Server (NTRS)

    Sieber, J. E.; Wilhelm, J. A.; Tanner, T. A.; Helmreich, R. L.; Burgenbauch, S. F.

    1979-01-01

    To learn how ground-based personnel of a space project plan and organize their work and how such planning and organizing relate to work outcomes, longitudinal study of the management and execution of the Space Lab Mission Development Test 3 (SMD 3) was performed at NASA Ames Research Center. A view of the problems likely to arise in organizations and some methods of coping with these problems are presented as well as the conclusions and recommendations that pertain strictly to SMD 3 management. Emphasis is placed on the broader context of future space facility projects and additional problems that may be anticipated. A model of management that may be used to facilitate problem solving and communication - management by objectives (MBO) is presented. Some problems of communication and emotion management that MBO does not address directly are considered. Models for promoting mature, constructive and satisfying emotional relationships among group members are discussed.

  6. Facility Upgrade/Replacement Tasks ('planned') at the NASA Glenn Research Center 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Giriunas, Julius A.

    2012-01-01

    Facility upgrades and large maintenance tasks needed at the NASA Glenn 10x10 Supersonic Wind Tunnel requires significant planning to make sure implementation proceeds in an efficiently and cost effective manner. Advanced planning to secure the funding, complete design efforts and schedule the installation needs to be thought out years in advance to avoid interference with wind tunnel testing. This presentation describes five facility tasks planned for implementation over the next few years. The main focus of the presentation highlights the efforts on possible replacement of the diesel generator and the rationale behind the effort.

  7. Program Plan for Revision of the Z-Area Saltstone Disposal Facility Performance Assessment

    SciTech Connect

    Cook, James R.

    2005-12-07

    Savannah River National Laboratory (SRNL) and the Saltstone Project, are embarking on the next revision to the Saltstone Disposal Facility (SDF) performance assessment (PA). This program plan has been prepared to outline the general approach, scope, schedule and resources for the PA revision. The plan briefly describes the task elements of the PA process. It discusses critical PA considerations in the development of conceptual models and interpretation of results. Applicable quality assurance (QA) requirements are identified and the methods for implementing QA for both software and documentation are described. The plan identifies project resources supporting the core team and providing project oversight. Program issues and risks are identified as well as mitigation of those risks. Finally, a preliminary program schedule has been developed and key deliverables identified. A number of significant changes have been implemented since the last PA revision resulting in a new design for future SDF disposal units. This revision will encompass the existing and planned disposal units, PA critical radionuclides and exposure pathways important to SDF performance. An integrated analysis of the overall facility layout, including all disposal units, will be performed to assess the impact of plume overlap on PA results. Finally, a rigorous treatment of uncertainty will be undertaken using probabilistic simulations. This analysis will be reviewed and approved by DOE-SR, DOE-HQ and potentially the Nuclear Regulatory Commission (NRC). This revision will be completed and ready for the start of the DOE review at the end of December 2006. This work supports a Saltstone Vault 2 fee-bearing milestone. This milestone includes completion of the Vault 2 module of the PA revision by the end of FY06.

  8. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1997

    SciTech Connect

    Haagenstad, H.T.

    1998-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared by the US Department of Energy (DOE) as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP). This MAPAR provides a status on specific DARHT facility design- and construction-related mitigation actions that have been initiated in order to fulfill DOE`s commitments under the DARHT MAP. The functions of the DARHT MAP are to (1) document potentially adverse environmental impacts of the Phased Containment Option delineated in the Final EIS, (2) identify commitments made in the Final EIS and ROD to mitigate those potential impacts, and (3) establish Action Plans to carry out each commitment (DOE 1996). The DARHT MAP is divided into eight sections. Sections 1--5 provide background information regarding the NEPA review of the DARHT project and an introduction to the associated MAP. Section 6 references the Mitigation Action Summary Table which summaries the potential impacts and mitigation measures; indicates whether the mitigation is design-, construction-, or operational-related; the organization responsible for the mitigation measure; and the projected or actual completion data for each mitigation measure. Sections 7 and 8 discuss the Mitigation Action Plan Annual Report and Tracking System commitment and the Potential Impacts, Commitments, and Action Plans respectively. Under Section 8, potential impacts are categorized into five areas of concern: General Environment, including impacts to air and water; Soils, especially impacts affecting soil loss and contamination; Biotic Resources, especially impacts affecting threatened and endangered species; Cultural/Paleontological Resources, especially impacts affecting the archeological site known as Nake`muu; and Human Health and Safety, especially impacts pertaining to noise and radiation. Each potential impact includes a brief statement of the nature of the impact and its cause(s). The commitment made to mitigate the potential impact is identified and the Action Plan for each commitment is described in detail, with a description of actions to be taken, pertinent time frames for the actions, verification of mitigation activities, and identification of agencies/organizations responsible for satisfying the requirements of the commitment.

  9. Planning considerations for a Mars Sample Receiving Facility: summary and interpretation of three design studies.

    PubMed

    Beaty, David W; Allen, Carlton C; Bass, Deborah S; Buxbaum, Karen L; Campbell, James K; Lindstrom, David J; Miller, Sylvia L; Papanastassiou, Dimitri A

    2009-10-01

    It has been widely understood for many years that an essential component of a Mars Sample Return mission is a Sample Receiving Facility (SRF). The purpose of such a facility would be to take delivery of the flight hardware that lands on Earth, open the spacecraft and extract the sample container and samples, and conduct an agreed-upon test protocol, while ensuring strict containment and contamination control of the samples while in the SRF. Any samples that are found to be non-hazardous (or are rendered non-hazardous by sterilization) would then be transferred to long-term curation. Although the general concept of an SRF is relatively straightforward, there has been considerable discussion about implementation planning. The Mars Exploration Program carried out an analysis of the attributes of an SRF to establish its scope, including minimum size and functionality, budgetary requirements (capital cost, operating costs, cost profile), and development schedule. The approach was to arrange for three independent design studies, each led by an architectural design firm, and compare the results. While there were many design elements in common identified by each study team, there were significant differences in the way human operators were to interact with the systems. In aggregate, the design studies provided insight into the attributes of a future SRF and the complex factors to consider for future programmatic planning. PMID:19845446

  10. Computer mapping and visualization of facilities for planning of D and D operations

    SciTech Connect

    Wuller, C.E.; Gelb, G.H.; Cramond, R.; Cracraft, J.S. [TRW, Redondo Beach, CA (United States)

    1995-12-31

    The lack of as-built drawings for many old nuclear facilities impedes planning for decontamination and decommissioning. Traditional manual walkdowns subject workers to lengthy exposure to radiological and other hazards. The authors have applied close-range photogrammetry, 3D solid modeling, computer graphics, database management, and virtual reality technologies to create geometrically accurate 3D computer models of the interiors of facilities. The required input to the process is a set of photographs that can be acquired in a brief time. They fit 3D primitive shapes to objects of interest in the photos and, at the same time, record attributes such as material type and link patches of texture from the source photos to facets of modeled objects. When they render the model as either static images or at video rates for a walk-through simulation, the phototextures are warped onto the objects, giving a photo-realistic impression. The authors have exported the data to commercial CAD, cost estimating, robotic simulation, and plant design applications. Results from several projects at old nuclear facilities are discussed.

  11. STREAMLINED APPROACH FOR ENVIRONMENTAL RESTORATION PLAN FOR CORRECTIVE ACTION UNIT 116: AREA 25 TEST CELL C FACILITYNEVADA TEST SITE, NEVADA

    SciTech Connect

    NONE

    2006-07-01

    This Streamlined Approach for Environmental Restoration Plan identifies the activities required for the closure of Corrective Action Unit 116, Area 25 Test Cell C Facility. The Test Cell C Facility is located in Area 25 of the Nevada Test Site approximately 25 miles northwest of Mercury, Nevada.

  12. Risk and Performance Analyses Supporting Closure of WMA C at the Hanford Site in Southeast Washington

    SciTech Connect

    Eberlein, Susan J. [Washington River Protection Systems, Richland, WA (United States); Bergeron, Marcel P. [Washington River Protection Systems, Richland, WA (United States); Kemp, Christopher J. [USDOE Office of River Protection, Richland, WA (United States); Hildebrand, R. Douglas [USDOE Office of River Protection, Richland, WA (United States); Aly, Alaa [INTERA, Inc., Richland, WA (United States); Kozak, Matthew [INTERA, Inc., Richland, WA (United States); Mehta, Sunil [INTERA, Inc., Richland, WA (United States); Connelly, Michael [Freestone Environmental Services, Richland, WA (United States)

    2013-11-11

    The Office of River Protection under the U.S. Department of Energy (DOE) is pursuing closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C as stipulated by the Hanford Federal Facility Agreement and Consent Order (HFFACO) under federal requirements and work tasks will be done under the State-approved closure plans and permits. An initial step in meeting the regulatory requirements is to develop a baseline risk assessment representing current conditions based on available characterization data and information collected at the WMA C location. The baseline risk assessment will be supporting a Resource Conservation and Recovery Act of 1976 (RCRA) Field Investigation (RFI)/Corrective Measures Study (CMS) for WMA closure and RCRA corrective action. Complying with the HFFACO conditions also involves developing a long-term closure Performance Assessment (PA) that evaluates human health and environmental impacts resulting from radionuclide inventories in residual wastes remaining in WMA C tanks and ancillary equipment. This PA is being developed to meet the requirements necessary for closure authorization under DOE Order 435.1 and Washington State Hazardous Waste Management Act. To meet the HFFACO conditions, the long-term closure risk analysis will include an evaluation of human health and environmental impacts from hazardous chemical inventories along with other performance Comprehensive Environmental Response, Compensation, and Liability Act Appropriate and Applicable Requirements (CERCLA ARARs) in residual wastes left in WMA C facilities after retrieval and removal. This closure risk analysis is needed to needed to comply with the requirements for permitted closure. Progress to date in developing a baseline risk assessment of WMA C has involved aspects of an evaluation of soil characterization and groundwater monitoring data collected as a part of the RFI/CMS and RCRA monitoring. Developing the long-term performance assessment aspects has involved the construction of detailed numerical models of WMA C using the Subsurface Transport Over Multiple Phases (STOMP©) computer code, the development of a technical approach for abstraction of a range of representative STOMP© simulations into a system-level model based on the GoldSim© system-level model software.The STOMP©-based models will be used to evaluate local-scale impacts and closed facility performance over a sufficient range of simulations to allow for development of the system-level model of the WMA C. The GoldSim©-based system-level model will be used to evaluate overall sensitivity of modeled parameters and the estimate the uncertainty in potential future impacts from a closed WMA C facility.

  13. 40 CFR 264.145 - Financial assurance for post-closure care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 264.145 Financial assurance for post-closure...264.144 must establish financial assurance for post-closure...choose from the following options: (a)...

  14. 40 CFR 264.145 - Financial assurance for post-closure care.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 264.145 Financial assurance for post-closure...264.144 must establish financial assurance for post-closure...choose from the following options: (a)...

  15. 40 CFR 264.145 - Financial assurance for post-closure care.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 264.145 Financial assurance for post-closure...264.144 must establish financial assurance for post-closure...choose from the following options: (a)...

  16. 40 CFR 264.145 - Financial assurance for post-closure care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 264.145 Financial assurance for post-closure...264.144 must establish financial assurance for post-closure...choose from the following options: (a)...

  17. 40 CFR 264.145 - Financial assurance for post-closure care.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...AND DISPOSAL FACILITIES Financial Requirements § 264.145 Financial assurance for post-closure...264.144 must establish financial assurance for post-closure...choose from the following options: (a)...

  18. Repository Closure and Sealing Approach

    SciTech Connect

    A.T. Watkins

    2000-06-28

    The scope of this analysis will be to develop the conceptual design of the closure seals and their locations in the Subsurface Facilities. The design will be based on the recently established program requirements for transitioning to the Site Recommendation (SR) design as outlined by ''Approach to Implementing the Site Recommendation Baseline'' (Stroupe 2000) and the ''Monitored Geologic Repository Project Description Document'' (CRWMS M&O 1999b). The objective of this analysis will be to assist in providing a description for the Subsurface Facilities System Description Document, Section 2 and finally to document any conclusions reached in order to contribute and provide support to the SR. This analysis is at a conceptual level and is considered adequate to support the SR design. The final closure barriers and seals for the ventilation shafts, and the north and south ramps will require these openings to be permanently sealed to limit excessive air and water inflows and prevent human intrusion. The major tasks identified with closure in this analysis are: (1) Developing the overall subsurface seal layout and identifying design and operational interfaces for the Subsurface Facilities. (2) Summarizing the general site conditions and general rock characteristic with respect to seal location and describing the seal selected. (3) Identify seal construction materials, methodology of construction and strategic locations including design of the seal and plugs. (4) Discussing methods to prevent human intrusion.

  19. D-Side: A Facility and Workforce Planning Group Multi-criteria Decision Support System for Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tavana, Madjid

    2005-01-01

    "To understand and protect our home planet, to explore the universe and search for life, and to inspire the next generation of explorers" is NASA's mission. The Systems Management Office at Johnson Space Center (JSC) is searching for methods to effectively manage the Center's resources to meet NASA's mission. D-Side is a group multi-criteria decision support system (GMDSS) developed to support facility decisions at JSC. D-Side uses a series of sequential and structured processes to plot facilities in a three-dimensional (3-D) graph on the basis of each facility alignment with NASA's mission and goals, the extent to which other facilities are dependent on the facility, and the dollar value of capital investments that have been postponed at the facility relative to the facility replacement value. A similarity factor rank orders facilities based on their Euclidean distance from Ideal and Nadir points. These similarity factors are then used to allocate capital improvement resources across facilities. We also present a parallel model that can be used to support decisions concerning allocation of human resources investments across workforce units. Finally, we present results from a pilot study where 12 experienced facility managers from NASA used D-Side and the organization's current approach to rank order and allocate funds for capital improvement across 20 facilities. Users evaluated D-Side favorably in terms of ease of use, the quality of the decision-making process, decision quality, and overall value-added. Their evaluations of D-Side were significantly more favorable than their evaluations of the current approach. Keywords: NASA, Multi-Criteria Decision Making, Decision Support System, AHP, Euclidean Distance, 3-D Modeling, Facility Planning, Workforce Planning.

  20. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    SciTech Connect

    Renfro, G.G.

    1994-12-20

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices.

  1. Physics goals for the planned next linear collider engineering test facility

    SciTech Connect

    Courtlandt L Bohn et al.

    2001-06-26

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

  2. Closure Report for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2012-02-21

    This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 [as amended March 2010]). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

  3. Modeling the Office of Science Ten Year FacilitiesPlan: The PERI Architecture Tiger Team

    SciTech Connect

    de Supinski, B R; Alam, S R; Bailey, D H; Carrington, L; Daley, C

    2009-05-27

    The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort to the optimization of key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.

  4. Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Tiger Team

    SciTech Connect

    de Supinski, Bronis R.; Alam, Sadaf; Bailey, David H.; Carrington, Laura; Daley, Chris; Dubey, Anshu; Gamblin, Todd; Gunter, Dan; Hovland, Paul D.; Jagode, Heike; Karavanic, Karen; Marin, Gabriel; Mellor-Crummey, John; Moore, Shirley; Norris, Boyana; Oliker, Leonid; Olschanowsky, Catherine; Roth, Philip C.; Schulz, Martin; Shende, Sameer; Snavely, Allan; Spear, Wyatt; Tikir, Mustafa; Vetter, Jeff; Worley, Pat; Wright, Nicholas

    2009-06-26

    The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.

  5. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    SciTech Connect

    Barnett, D. Brent; Smith, Ronald M.; Chou, Charissa J.

    2000-11-28

    The 216-B-3 Pond was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In 1990, groundwater monitoring at B Pond was elevated from "detection" to assessment status because total organic halides and total organic carbon were found to exceed critical means in two wells. Groundwater quality assessment, which ended in 1996, failed to find any specific hazardous waste contaminant that could have accounted for the isolated occurrences of elevated total organic halides and total organic carbon. Hence, the facility was subsequently returned to detection-level monitoring in 1998. Exhaustive groundwater analyses during the assessment period indicated that only two contaminants, tritium and nitrate, could be positively attributed to the B Pond System, with two others (arsenic and I-129) possibly originating from B Pond. Chemical and radiological analyses of soil at the main pond and 216-B-3-3 ditch has not revealed significant contamination. Based on the observed, minor contamination in groundwater and in the soil column, three parameters were selected for site-specific, semiannual monitoring; gross alpha, gross beta, and specific conductance. Total organic halides and total organic carbon are included as constituents because of regulatory requirements. Nitrate, tritium, arsenic, and iodine-129 will be monitored under the aegis of Hanford site-wide monitoring. Although the B Pond System is not scheduled to advance from RCRA interim status to final status until the year 2003, a contingency plan for an improved monitoring strategy, which will partially emulate final status requirements, will be contemplated before the official change to final status. This modification will allow a more sensible and effective screening of groundwater for the facility.

  6. RCRA Facility Investigation Plan, Waste Z-Oil Tank (S-121), Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Allison, W.S. (H and R Technical Associates, Inc., Oak Ridge, TN (USA))

    1987-11-01

    Within the confines of the Oak Ridge Y-12 Plant are both active and inactive hazardous waste treatment, storage, and disposal facilities. These solid waste management units (SWMUs) are subject to assessment by the US Environmental Protection Agency, as required by the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA). RCRA Facility Investigation (RFI) Plans for SWMUs at the Y-12 Plant are scheduled to be submitted during the calendar years 1987 through 1990. The RCRA Facility Investigation Plan-General Document includes information applicable to all SWMU's and serves as a reference document for the site- specific RFI Plans. This document is the site-specific RFI plan for the Waste Z-Oil Tank (S-121) and contains historical information, operational information, and sampling data specific to the tank. The potential for the release of contaminants through the various media and potential receptors are addressed. A sampling and analysis plan is proposed to further determine the extent, if any, of contaminant release to the surrounding environment. Included are health, safety, quality assurance, and quality control procedures to be followed when implementing the sampling plan. 7 figs., 6 tabs.

  7. RCRA Facility Investigation Plan, Building 9418-3 Uranium Vault (D-115), Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Allison, W.S. (H and R Technical Associates, Inc., Oak Ridge, TN (USA))

    1987-11-01

    Within the confines of the Oak Ridge Y-12 Plant are active and inactive hazardous waste treatment, storage, and disposal facilities. These solid waste management units (SWMUs) are subject to assessment by the US Environmental Protection Agency, as required by the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA). RCRA Facility Investigation (RFI) Plans for SWMUs at the Y-12 Plant are scheduled to be submitted during the calendar years 1987 through 1990. The RCRA Facility Investigation Plan -- General Document includes information applicable to all SWMU's and serves as a reference document for the site-specific RFI Plans. This document is the site-specific RFI plan for the Building 9418-3 Uranium Vault (D-115) and contains historical information, operational information, and sampling data specific to the vault. The potential for release of contaminants through the various media and potential receptors are addressed. A sampling and analysis plan is proposed to determine the extent, if any, of contaminant releases to the surrounding environment. Included are health, safety, quality assurance, and quality control procedures to be followed when implementing the sampling plan. 7 figs., 4 tabs.

  8. Closure Report for Corrective Action Unit 481: Area 12 T-Tunnel Conditional Release Storage Yard, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2008-11-01

    Corrective Action Unit (CAU) 481 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Area 12 T-Tunnel Conditional Release Storage Yard. CAU 481 is located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. This CAU consists of one Corrective Action Site (CAS), CAS 12-42-05, Housekeeping Waste. CAU 481 closure activities were conducted by the Defense Threat Reduction Agency from August 2007 through July 2008 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites. Closure activities included removal and disposal of construction debris and low-level waste. Drained fluids, steel, and lead was recycled as appropriate. Waste generated during closure activities was appropriately managed and disposed.

  9. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

  10. Educational Facilities Study Manual and Design; Flint-Genesee County Comprehensive Land Use-Transportation Planning Study.

    ERIC Educational Resources Information Center

    Genesee County Metropolitan Planning Commission, Flint, MI.

    The Educational Facilities Study Item of the Flint-Genesee County (Michigan) Comprehensive Land Use-Transportation Planning Study is implementing a program to identify present and future educational problems and needs in Genesee County. This report is a technical document to guide the execution of the research and analysis of the study. The study…

  11. Estimation of permeability for cap design in MWMF (Mixed Waste Management Facility)

    SciTech Connect

    Yau, W.W.F.; Wilhite, E.L.

    1987-02-09

    To close the Mixed Waste Management Facility (MWMF), use of a clay cap to shield the wastes from precipitation is under consideration by Waste Management at the Savannah River Plant. The MWMF closure plan is subject to review and concurrence by the State of South Carolina. As part of the closure plan, SRP Waste Management is to supply information to the state concerning its engineering feasibility. By request of SRP Waste Technology, we have estimated the range of soil permeability and studied the practicability of a shielding cap to the MWMF; this memorandum reports our findings. 6 refs.

  12. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    Microsoft Academic Search

    Hazen

    2002-01-01

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was

  13. Comprehensive work plan for the Well Driller`s Steam Cleaning Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    NONE

    1997-02-01

    The purpose of this Comprehensive Work Plan is to address the history of the site as well as the scope, roles and responsibilities, documentation, training, environmental compliance requirements, and field actions needed to close the Oak Ridge National Laboratory (ORNL) Well Driller`s Steam Cleaning Facility, hereinafter referred to as the Facility. The Facility was constructed in 1989 to provide a central area suitable to conduct steam cleaning operations associated with cleaning drilling equipment, containment boxes, and related accessories. Three basins were constructed of crushed stone (with multiple plastic and fabric liners) over a soil foundation to collect drill cuttings and wastewater generated by the cleaning activities. The scope of this task will be to demolish the Facility by using a bulldozer and backhoe to recontour and dismantle the area.

  14. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect

    L. O. Nelson

    2003-09-01

    This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

  15. 3. Launch closure, close up of motor and controls, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Launch closure, close up of motor and controls, view towards west - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  16. 5. Launch closure, close up of track and concrete apron, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Launch closure, close up of track and concrete apron, view towards north - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  17. FIELD ASSESSMENT OF SITE CLOSURE, BOONE COUNTY, KENTUCKY

    EPA Science Inventory

    The current project was undertaken before the scheduled site closure to obtain information useful to designers of future landfill facilities. Information was developed on cover soils, refuse, leachate collection systems, lining materials, and contaminant migration from the test c...

  18. The Removal Action Work Plan for CPP-603A Basin Facility

    SciTech Connect

    B. T. Richards

    2006-06-05

    This revised Removal Action Work Plan describes the actions to be taken under the non-time-critical removal action recommended in the Action Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center, as evaluated in the Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center. The regulatory framework outlined in this Removal Action Work Plan has been modified from the description provided in the Engineering Evaluation/Cost Analysis (DOE/NE-ID-11140, Rev. 1, August 2004). The modification affects regulation of sludge removal, treatment, and disposal, but the end state and technical approaches have not changed. Revision of this document had been delayed until the basin sludge was successfully managed. This revision (Rev. 1) has been prepared to provide information that was not previously identified in Rev. 0 to describe the removal, treatment, and disposal of the basin water at the Idaho National Laboratory (INL) CERCLA Disposal Facility evaporation ponds and fill the basins with grout/controlled low strength material (CLSM) was developed. The Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center - conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act - evaluated risks associated with deactivation of the basins and alternatives for addressing those risks. The decision to remove and dispose of the basin water debris not containing uranium grouted in place after the sludge has been removed and managed under the Hazardous Waste Management Act/Resource Conservation and Recovery Act has been documented in the Act Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center.

  19. On freeway traffic control by a lane closure

    E-print Network

    Henderson, Donald Manson

    1971-01-01

    Engineering August 1971 ON FREEWAY TRAFFIC CONTROL BY A LANE CLOSURE A Thesis by DONALD MANSON HENDERSON Approved as to style and content by: (Chairman of ommittee) (Head of Departmen (Member) (Member) (Member) ember) (Member) August 1971 ABSTRACT... On Freeway Traffic Control By a Lane Closure (August 1971) Donald Manson Henderson, B. Sc. C. E. , University of Manitoba; Directed by: Dr. D. L. Woods The efficient use of existing traffic facilities is contingent upon operation of the facility in a...

  20. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    SciTech Connect

    Flynn, N.C. Bechtel Jacobs

    2008-04-21

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The HASP is written to make use of past experience and best management practices to eliminate or minimize hazards to workers or the environment from events such as fires, falls, mechanical hazards, or any unplanned release to the environment.

  1. Brookhaven Double MP Facility - recent developments and plans for the future

    SciTech Connect

    Thieberger, P.

    1983-01-01

    The Brookhaven Tandem Van de Graaff facility consists of two model MP accelerators which have been extensively modified and improved over the years. Recent accelerator developments leading to a maximum terminal voltage of 16.5 MV for one of the machines include an increase of the active length of the acceleration tubes, installation of vacuum pumps at intermediate field-free sections, installation of smooth high-voltage-terminal shields and the implementation of a system for individual acceleration-tube conditioning. A new cylindrical voltage-divider resistor-shield arrangement has been tested and will be installed. A novel 4-stage mode of operating the tandems provides variable low-energy highly-charged heavy ions used for atomic-physics experiments. This type of operation has been improved by the addition of a removable gridded lens at the exit of the last acceleration tube. Plans for the future include the production of relativistic heavy ions by injecting beams from the tandems into the AGS 30-GeV proton accelerator at BNL either directly or via a tandem booster cyclotron. For this purpose, a high-intensity pulsed-beam system was developed and tested.

  2. Status and Plans for the National Spherical Torus Experimental Research Facility

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki; Bell, M. G.; Bell, R. E.; Bernabei, S.; Bialek, J. M.; Bigelow, T.; Bitter, M.; Biewer, T. M.; Blanchard, W.; Boedo, J.; Bush, C.; Chrzanowski, J.; Darrow, D. S.; Dudek, L.; Feder, R.; Ferron, J. R.; Foley, J.; Fredrickson, E. D.; Gates, D. A.; Gettelfinger, G.; Gibney, T.; Harvey, R.; Hatcher, R.; Heidbrink, W.; Jarboe, T. R.; Johnson, D. W.; Kalish, M.; Kaita, R.; Kaye, S. M.; Kessel, C.; Kubota, S.; Kugel, H. W.; Labik, G.; Leblanc, B. P.; Lee, K. C.; Levinton, F. M.; Lowrance, J.; Maingi, R.; Manickam, J.; Maqueda, R.; Marsala, R.; Mastravito, D.; Mazzucato, E.; Medley, S. S.; Menard, J.; Mueller, D.; Munsat, T.; Nelson, B. A.; Neumeyer, C.; Nishino, N.; Park, H. K.; Paul, S. F.; Peebles, T.; Perry, E.; Peng, Y.-K. M.; Phillips, C. K.; Pinsker, R.; Ramakrishnan, S.; Raman, R.; Roney, P.; Roquemore, A. L.; Ryan, P. M.; Sabbagh, S. A.; Schneider, H.; Skinner, C. H.; Smith, D. R.; Sontag, A. C.; Soukhanovskii, V.; Stevenson, T.; Stotler, D.; Stratton, B. C.; Stutman, D.; Swain, D. W.; Synakowski, E.; Takase, Y.; Taylor, G.; Tritz, K. L.; Halle, A. Von; Wilgen, J.; Williams, M.; Wilson, J. R.; Zatz, I.; Zhu, W.; Zweben, S. J.; Akers, R.; Beiersdorfer, P.; Bonoli, P. T.; Bourdelle, C.; Carter, M. D.; Chang, C. S.; Choe, W.; Davis, W.; Diem, S. J.; Domier, C.; Ellis, R.; Efthimion, P. C.; Field, A.; Finkenthal, M.; Fredd, E.; Fu, G. Y.; Glasser, A.; Goldston, R. J.; Grisham, L. R.; Gorelenkov, N.; Guazzotto, L.; Hawryluk, R. J.; Heitzenroeder, P.; Hill, K. W.; Houlberg, W.; Hosea, J. C.; Humphreys, D.; Jun, C.; Kim, J. H.; Krasheninnikov, S.; Lao, L. L.; Lee, S. G.; Lawson, J.; Luhmann, N. C.; Mau, T. K.; Menon, M. M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Pacella, D.; Parsells, R.; Pigarov, A.; Porter, G. D.; Ram, A. K.; Rasmussen, D.; Redi, M.; Rewoldt, G.; Robinson, J.; Ruskov, E.; Schmidt, J.; Semenov, I.; Shaing, K.; Shinohara, K.; Schaffer, M.; Sichta, P.; Tang, X.; Timberlake, J.; Wade, M.; Wampler, W. R.; Wang, Z.; Woolley, R.; Wurden, G. A.; Xu, X.

    An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high ?, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high ? Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high ? and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.

  3. Status and Plans for the National Spherical Torus Experimental Research Facility

    SciTech Connect

    M. Ono; M.G. Bell; R.E. Bell; J.M. Bialek; T. Bigelow; M. Bitter; plus 148 additional authors

    2005-07-27

    An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.

  4. Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    NONE

    1997-11-01

    This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

  5. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    SciTech Connect

    Spata, Michael F. [JLAB

    2014-12-01

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  6. Decontamination Study for Mixed Waste Storage Tanks RCRA Closure

    Microsoft Academic Search

    D. M. Leaphart; S. R. Reed; W. N. Rankin

    1995-01-01

    The Savannah River Site (SRS) plans to close six underground tanks storing mixed waste under RCRA regulations. In support of this closure effort, a study was performed to determine the optimal method of decontaminating these tanks to meet the closure requirements. Items consaidered in the evaluation of the decontamination methods included effectiveness, compatibility with existing waste residues, possible cleaning solution

  7. The Facilities Condition Index: A Useful Tool for Capital Asset Planning.

    ERIC Educational Resources Information Center

    Briselden, Don J.; Cain, David A.

    2001-01-01

    Describes the development and history of the Facilities Condition Index (FCI) and its use in rating a facility's condition and measuring the amount of deferred maintenance needed. Also discusses the FCI's position within the Strategic Assessment Model and its usefulness to facilities managers. (GR)

  8. 76 FR 9276 - Tank Vessel and Marine Transportation-Related Facility Response Plans for Hazardous Substances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ...2115-AE88 Tank Vessel and Marine Transportation-Related Facility Response...USCG-1998-4354) and Marine Transportation-Related Facility Response...States, as well as marine transportation-related facilities, that...substantial harm to the environment by discharging a...

  9. CURRENT STATUS AND RECLAMATION PLAN OF FORMER URANIUM MINING AND MILLING FACILITIES AT NINGYO-TOGE IN JAPAN

    SciTech Connect

    Sato, Kazuhiko; Tokizawa, Takayuki

    2003-02-27

    The Japan Nuclear Cycle Development Institute (JNC) conducted research and development projects on uranium exploration in Japan from 1956 to 1987. Several mine facilities, such as waste rock yards and a mill tailing pond, were retained around Ningyo-toge after the projects ended. Although there is no legal issue in the mine in accordance with related law and agreements at present, JNC has a notion that it is important to reduce the burden of waste management on future generations. Thus, the Ningyo-toge Environmental Engineering Center of JNC proposed a reclamation plan for these facilities with fundamental policy, an example of safety analysis and timetables. The plan has mainly three phases: Phase I is the planning stage, and this paper corresponds to this: Phase II is the stage to perform various tests for safety analysis and site designing: Phase III is the stage to accomplish measures. Preliminarily safety analyses suggested that our supposed cover designs for both waste rock and m ill tailing are enough to keep dose limit of 1mSv/y at site boundaries. The plan is primarily based on the Japanese Mine Safety Law, also refers to ICRP recommendations, IAEA reports, measures implemented overseas, etc. because this is the first case in Japan. For the accomplishment of this plan, it is important to establish a close relationship with local communities and governments, and to maintain a policy of open-to-public.

  10. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan. Energy Systems Environmental Restoration Program; Clinch River Environmental Restoration Program

    Microsoft Academic Search

    R. B. Cook; S. M. Adams; J. J. Beauchamp; M. S. Bevelhimer; B. G. Blaylock; C. C. Brandt; E. L. Etnier; C. J. Ford; M. L. Frank; M. J. Gentry; M. S. Greeley; R. S. Halbrook; R. A. Harris; S. K. Holladay; L. A. Hook; P. L. Howell; L. A. Kszos; D. A. Levine; J. L. Skiles; G. W. Suter

    1992-01-01

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory

  11. Final Clean Closure Report Site 300 Surface Impoundments Closure Lawrence Livermore National Laboratory Livermore, California

    SciTech Connect

    Haskell, K

    2006-02-14

    Lawrence Livermore National Laboratory operated two Class II surface impoundments that stored wastewater that was discharged from a number of buildings located on the Site 300 Facility (Site 300). The wastewater was the by-product of explosives processing. Reduction in the volume of water discharged from these buildings over the past several years significantly reduced the wastewater storage needs. In addition, the impoundments were constructed in 1984, and the high-density polyethylene (HDPE) geomembrane liners were nearing the end of their service life. The purpose of this project was to clean close the surface impoundments and provide new wastewater storage using above ground storage tanks at six locations. The tanks were installed and put into service prior to closure of the impoundments. This Clean Closure Report (Closure Report) complies with State Water Resources Control Board (SWRCB) Section 21400 of the California Code of Regulations Title 27 (27 CCR section 21400). As required by these regulations and guidance, this Closure Report provides the following information: (1) a brief site description; (2) the regulatory requirements relevant to clean closure of the impoundments; (3) the closure procedures; and (4) the findings and documentation of clean closure.

  12. Groundwater screening evaluation\\/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    Microsoft Academic Search

    D. B. Barnett; J. D. Davis; L. B. Collard; P. B. Freeman; C. J. Chou

    1995-01-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0:

  13. Managing Complex Environmental Remediation amidst Aggressive Facility Revitalization Milestones

    SciTech Connect

    Richter Pack, S. [PMP Science Applications International Corporation, Oak Ridge, TN (United States)

    2008-07-01

    Unlike the final closure projects at Rocky Flats and Fernald, many of the Department of Energy's future CERCLA and RCRA closure challenges will take place at active facilities, such as the Oak Ridge National Laboratory (ORNL) central campus. ORNL has aggressive growth plans for a Research Technology Park and cleanup must address and integrate D and D, soil and groundwater remediation, and on-going and future business plans for the Park. Different planning and tracking tools are needed to support closures at active facilities. To support some large Airport redevelopment efforts, we created tools that allowed the Airline lease-holder to perform environmental remediation on the same schedule as building D and D and new building construction, which in turn allowed them to migrate real estate from unusable to usable within an aggressive schedule. In summary: The FIM and OpenGate{sup TM} spatial analysis system were two primary tools developed to support simultaneous environmental remediation, D and D, and construction efforts at an operating facility. These tools helped redevelopers to deal with environmental remediation on the same schedule as building D and D and construction, thereby meeting their goals of opening gates, restarting their revenue streams, at the same time complying with all environmental regulations. (authors)

  14. RCRA (Resource Conservation and Recovery Act) Facility Investigation (RFI) guidance. Volume 1. Development of an RFI work plan and general considerations for RCRA facility investigations. Draft report

    SciTech Connect

    Not Available

    1987-07-01

    This document, presented in four volumes, provides guidance to owners or operators of hazardous waste management facilities as to the conduct of the second phase of the RCRA Corrective Action Program, the RCRA Facility Investigation (RFI). The document provides such owners or operators with guidance on conducting a RFI, based on release determinations made by the regulatory agency. The owner or operator of a facility is notified, through an enforcement order or permit conditions, of those unit(s) and releases (known or suspected) that must be further investigated. Media of concern include: soil, ground water, subsurface gas, air, and surface water. Volume I presents the procedures and rationale that should be used to develop a work plan for conducting the investigation, a general strategy for release investigations, other aspects of the investigation, and the means by which the data collected during the RFI will be interpreted by the regulatory agency. Volumes II and III describe media-specific methods for conducting an RFI. Volume IV presents case study illustrations of various aspects of the RFI process.

  15. Corrective Action Decision Document/Closure Report for Corrective Action Unit 370: T-4 Atmospheric Test Site, Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Patrick Matthews

    2009-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 370, T-4 Atmospheric Test Site, located in Area 4 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 370 is comprised of Corrective Action Site (CAS) 04-23-01, Atmospheric Test Site T-4. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 370 due to the implementation of the corrective action of closure in place with administrative controls. To achieve this, corrective action investigation (CAI) activities were performed from June 25, 2008, through April 2, 2009, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 370: T-4 Atmospheric Test Site and Record of Technical Change No. 1.

  16. GUIDELINES FOR ESTABLISHING CENTER/CORE FACILITY BUDGETS & COST STUDIES STEP 1 BUSINESS PLAN

    E-print Network

    STEP 1 ­ BUSINESS PLAN A business plan is a crucial element elements: revenue sources such as recharge activity, sponsored projects, and support upon the revenue and expenses associated with the recharge account (160 chart

  17. Closure Report for Corrective Action Unit 130: Storage Tanks Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Alfred Wickline

    2009-03-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 130: Storage Tanks, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 130 are located within Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site. Corrective Action Unit 130 is comprised of the following CASs: • 01-02-01, Underground Storage Tank • 07-02-01, Underground Storage Tanks • 10-02-01, Underground Storage Tank • 20-02-03, Underground Storage Tank • 20-99-05, Tar Residue • 22-02-02, Buried UST Piping • 23-02-07, Underground Storage Tank This CR provides documentation supporting the completed corrective action investigations and provides data confirming that the closure objectives for CASs within CAU 130 were met. To achieve this, the following actions were performed: • Reviewed the current site conditions, including the concentration and extent of contamination. • Implemented any corrective actions necessary to protect human health and the environment. • Properly disposed of corrective action and investigation-derived wastes. From August 4 through September 30, 2008, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 130, Storage Tanks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, confirm that no residual contamination is present, and properly dispose of wastes. Constituents detected during the closure activities were evaluated against final action levels to identify COCs for CAU 130. Assessment of the data generated from closure activities indicates that no further action is necessary because no COCs were identified at any CAU 130 CAS. Debris removal from these CASs was considered a best management practice because no contamination was detected. The DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • No further corrective action is required at all CAU 130 CASs. • A Notice of Completion to DOE, National Nuclear Security Administration Nevada Site Office, is requested from the Nevada Division of Environmental Protection for closure of CAU 130. • Corrective Action Unit 130 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

  18. Let's Plan First-Class Facilities! A Planner Looks at New Shops Here and There

    ERIC Educational Resources Information Center

    Campbell, Edward A.

    1974-01-01

    Four steps in planning an industrial laboratory (hire an educational planner, prepare a community analysis, analyze curriculum and develop educational specifications) ensure a functional, pleasing learning atmosphere at no extra cost. Basic planning factors, recent design innovations, six detailed floor plans, and considerations for achieving…

  19. The Integration of the 241-Z Building Decontamination and Decommissioning Under Cercla with RCRA Closure at the Plutonium Finishing Plant

    SciTech Connect

    Mattlin, E.; Charboneau, S. [U.S. Department of Energy, Richland Operations Office, Richland WA (United States); Johnston, G.; Hopkins, A.; Bloom, R.; Skeels, B.; Klos, D.B. [Fluor Hanford, Inc., Richland WA (United States)

    2007-07-01

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA) and Washington State Hazardous Waste Management Act, RCW 70.105, , have been deactivated and are being actively decommissioned under the provisions of the Hanford Federal Facility Agreement and Consent Order (HFFACO), RCRA and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 42 U.S.C. 9601 et seq. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground piping from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions will address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the Hanford Facility Dangerous Waste Closure Plan, 241-Z Treatment and Storage Tanks. Under the RCRA closure plan, the 241-Z TSD unit is anticipated to undergo clean closure to the performance standards of the State of Washington with respect to dangerous waste contamination from RCRA operations. The TSD unit will be clean closed if physical closure activities identified in the plan achieve clean closure standards for all 241-Z locations. Clean closed 241-Z treatment and storage tanks, equipment and/or structures will remain after RCRA clean closure for future disposition in conjunction with PFP decommissioning activities which are integrated with CERCLA. (authors)

  20. West Contra Costa Unified School District Assessment and Improvement Plan: Facilities Management.

    ERIC Educational Resources Information Center

    2001

    This report analyzes the conditions of school facilities in Contra Costa Unified School District, California. The district had been prohibited from participating in the state's school facilities funding program because of a very heavy debt burden and near-bankruptcy of the district. The report begins by summarizing findings in the areas of…

  1. 7 CFR 1942.18 - Community facilities-Planning, bidding, contracting, constructing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...Lead base paints. Lead base paints shall not be used in facilities...must comply with the Lead Base Paints Poisoning and Prevention Act...94-317) with reference to paint specifications used according... (7) Fire protection. Water facilities must have...

  2. 7 CFR 1942.18 - Community facilities-Planning, bidding, contracting, constructing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...Lead base paints. Lead base paints shall not be used in facilities...must comply with the Lead Base Paints Poisoning and Prevention Act...94-317) with reference to paint specifications used according... (7) Fire protection. Water facilities must have...

  3. Strategy and plan for siting and licensing a Rocky Mountain low-level radioactive waste facility

    Microsoft Academic Search

    Whitman

    1983-01-01

    In 1979, the States of Nevada and Washington temporarily closed their commercial low-level radioactive waste (LLW) disposal facilities and South Carolina, the only other state hosting such a facility, restricted the amount of waste it would accept. All three states then announced that they did not intend to continue the status quo of accepting all of the country's commercial low-level

  4. INTEGRATING PUBLIC TRANSPORTATION FACILITIES AND EQUIPMENT MANAGEMENT SYSTEMS INTO CAPITAL IMPROVEMENT PLANNING PROCESS

    Microsoft Academic Search

    James Chang; John Collura

    1998-01-01

    A Public Transportation Facilities and Equipment Management System (PTMS), as proposed in the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA), is a tool to assist in the management and utilization of transit facilities and equipment so as to ensure the efficient and effective use of resources. A framework for the application of PTMS elements in the public transit capital

  5. Mixed and Low-Level Waste Treatment Facility project. Appendix A, Environmental and regulatory planning and documentation: Draft

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental & Regulatory Planning & Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL`s waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  6. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    SciTech Connect

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  7. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 489: WWII UXO Sites, Tonopah Test Range, Nevada; May 2005

    SciTech Connect

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-05-01

    This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 489: WWII UXO Sites, Tonopah Test Range. CAU 489 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996.

  8. Corrective Action Plan for Corrective Action Unit 271: Areas 25, 26, and 27 Septic Systems, Nevada Test Site, Nevada

    Microsoft Academic Search

    R. B. Jackson

    2003-01-01

    The Areas 25, 26 and 27 Septic Systems are in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Corrective Action Unit (CAU) 271. This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for CAU 271. CAU 271 is located on the Nevada Test Site (NTS) approximately 105 kilometers (65 miles) northwest

  9. Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    Microsoft Academic Search

    K. B. Campbell

    2002-01-01

    This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25

  10. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2008-04-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.

  11. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    SciTech Connect

    LEBARON, G.J.

    1999-12-03

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units, and the < 90 day accumulation areas.

  12. Strategic Plan for Patient Care and Prevention Facilities – Design & Construction; Engineering Strategic Business Unit

    E-print Network

    Wangia, Peter Odongo

    2009-07-31

    The UTMDACC (University of Texas MD Anderson Cancer Center) will realize net savings of $1.6 million in five years by utilizing the PCPF-E SBU (Patient Care and Prevention Facilities – Design & Construction; Engineering ...

  13. Risk-Based Disposal Plan for PCB Paint in the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Canal

    SciTech Connect

    R. A. Montgomery

    2008-05-01

    This Toxic Substances Control Act Risk-Based Polychlorinated Biphenyl Disposal plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex, Idaho National Laboratory Site, to address painted surfaces in the empty canal under 40 CFR 761.62(c) for paint, and under 40 CFR 761.61(c) for PCBs that may have penetrated into the concrete. The canal walls and floor will be painted with two coats of contrasting non-PCB paint and labeled as PCB. The canal is covered with open decking; the access grate is locked shut and signed to indicate PCB contamination in the canal. Access to the canal will require facility manager permission. Protective equipment for personnel and equipment entering the canal will be required. Waste from the canal, generated during ultimate Decontamination and Decommissioning, shall be managed and disposed as PCB Bulk Product Waste.

  14. 75 FR 54025 - Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ...Plans for Oil: 2003 Removal Equipment Requirements and Alternative...requirements for oil-spill removal equipment associated with vessel response...approved by the Office of Management and Budget (OMB) and may...Plans for Oil: 2003 Removal Equipment Requirements and...

  15. B Plant Complex preclosure work plan

    SciTech Connect

    ADLER, J.G.

    1999-02-02

    This preclosure work plan describes the condition of the dangerous waste treatment storage, and/or disposal (TSD) unit after completion of the B Plant Complex decommissioning Transition Phase preclosure activities. This description includes waste characteristics, waste types, locations, and associated hazards. The goal to be met by the Transition Phase preclosure activities is to place the TSD unit into a safe and environmentally secure condition for the long-term Surveillance and Maintenance (S&M) Phase of the facility decommissioning process. This preclosure work plan has been prepared in accordance with Section 8.0 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1996). The preclosure work plan is one of three critical Transition Phase documents, the other two being: B Plant End Points Document (WHC-SD-WM-TPP-054) and B Plant S&M plan. These documents are prepared by the U.S. Department of Energy, Richland Operations Office (DOE-RL) and its contractors with the involvement of Washington State Department of Ecology (Ecology). The tanks and vessels addressed by this preclosure work plan are limited to those tanks end vessels included on the B Plant Complex Part A, Form 3, Permit Application (DOE/RL-88-21). The criteria for determining which tanks or vessels are in the Part A, Form 3, are discussed in the following. The closure plan for the TSD unit will not be prepared until the Disposition Phase of the facility decommissioning process is initiated, which follows the long-term S&M Phase. Final closure will occur during the Disposition Phase of the facility decommissioning process. The Waste Encapsulation Storage Facility (WESF) is excluded from the scope of this preclosure work plan.

  16. CLOSURE OF A DIOXIN INCINERATION FACILITY

    EPA Science Inventory

    The U.S. Environmental Protection Agency Mobile Incineration System, whihc was operated at the Denney Farm site in southwestern Miissouri between October 1985 and June 1989, treated almost six million kilograms of dioxin-contaminated wastes from eight area sites. At the conclusi...

  17. CLOSURE OF A DIOXIN INCINERATION FACILITY

    EPA Science Inventory

    The U.S. Environmental Protection Agency Mobile Incineration System, which was operated at the Denney Farm site in southwestern Missouri between October 1985 and June 1989, treated almost six million kilograms of dioxin-contaminated wastes from eight area sites. t the conclusion ...

  18. NASA's plans for life sciences research facilities on a Space Station

    NASA Technical Reports Server (NTRS)

    Arno, R.; Heinrich, M.; Mascy, A.

    1984-01-01

    A Life Sciences Research Facility on a Space Station will contribute to the health and well-being of humans in space, as well as address many fundamental questions in gravitational and developmental biology. Scientific interests include bone and muscle attrition, fluid and electrolyte shifts, cardiovascular deconditioning, metabolism, neurophysiology, reproduction, behavior, drugs and immunology, radiation biology, and closed life-support system development. The life sciences module will include a laboratory and a vivarium. Trade-offs currently being evaluated include (1) the need for and size of a 1-g control centrifuge; (2) specimen quantities and species for research; (3) degree of on-board analysis versus sample return and ground analysis; (4) type and extent of equipment automation; (5) facility return versus on-orbit refurbishment; (6) facility modularity, isolation, and system independence; and (7) selection of experiments, design, autonomy, sharing, compatibility, and integration.

  19. Waste minimization and the goal of an environmentally benign plutonium processing facility: A strategic plan

    SciTech Connect

    Pillay, K.K.S.

    1994-02-01

    To maintain capabilities in nuclear weapons technologies, the Department of Energy (DOE) has to maintain a plutonium processing facility that meets all the current and emerging standards of environmental regulations. A strategic goal to transform the Plutonium Processing Facility at Los Alamos into an environmentally benign operation is identified. A variety of technologies and systems necessary to meet this goal are identified. Two initiatives now in early stages of implementation are described in some detail. A highly motivated and trained work force and a systems approach to waste minimization and pollution prevention are necessary to maintain technical capabilities, to comply with regulations, and to meet the strategic goal.

  20. 77 FR 3422 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ...Control of Emissions From Existing Hospital/Medical/Infectious Waste Incinerator Units, Plan Revision AGENCY: Environmental...approve a revision to the West Virginia hospital/medical/infectious waste incinerator (HMIWI) Section 111(d)/...

  1. 77 FR 3389 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ...From Existing Hospital/Medical/Infectious Waste Incinerator Units, Plan...West Virginia hospital/medical/infectious waste incinerator (HMIWI) Section...Solid Waste in Hospital/Medical/Infectious Waste Incinerators,...

  2. 40 CFR 112.8 - Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.8 Spill Prevention, Control, and Countermeasure Plan requirements for...

  3. 40 CFR 112.8 - Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.8 Spill Prevention, Control, and Countermeasure Plan requirements for...

  4. 40 CFR 112.8 - Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.8 Spill Prevention, Control, and Countermeasure Plan requirements for...

  5. 40 CFR 112.8 - Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.8 Spill Prevention, Control, and Countermeasure Plan requirements for...

  6. 40 CFR 112.8 - Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.8 Spill Prevention, Control, and Countermeasure Plan requirements for...

  7. Policy Name: Chemical Pesticide Use Originating / Responsible Department: Facilities Management and Planning

    E-print Network

    Carleton University

    and Planning Approval Authority: Senior Management Committee Date of Original Policy: September 1999 Last that chemical pesticides such as fungicides, herbicides and insecticides are used only as solutions of last

  8. Wanaket Wildlife Area Management Plan : Five-Year Plan for Protecting, Enhancing, and Mitigating Wildlife Habitat Losses for the McNary Hydroelectric Facility.

    SciTech Connect

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2001-09-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to continue to protect, enhance, and mitigate wildlife and wildlife habitat at the Wanaket Wildlife Area. The Wanaket Wildlife Area was approved as a Columbia River Basin Wildlife Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1993. This management plan will provide an update of the original management plan approved by BPA in 1995. Wanaket will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the McNary Hydroelectric facility on the Columbia River. By funding the enhancement and operation and maintenance of the Wanaket Wildlife Area, BPA will receive credit towards their mitigation debt. The purpose of the Wanaket Wildlife Area management plan update is to provide programmatic and site-specific standards and guidelines on how the Wanaket Wildlife Area will be managed over the next five years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management. Specific project objectives are related to protection and enhancement of wildlife habitats and are expressed in terms of habitat units (HU's). Habitat units were developed by the US Fish and Wildlife Service's Habitat Evaluation Procedures (HEP), and are designed to track habitat gains and/or losses associated with mitigation and/or development projects. Habitat Units for a given species are a product of habitat quantity (expressed in acres) and habitat quality estimates. Habitat quality estimates are developed using Habitat Suitability Indices (HSI). These indices are based on quantifiable habitat features such as vegetation height, shrub cover, or other parameters, which are known to provide life history requisites for mitigation species. Habitat Suitability Indices range from 0 to 1, with an HSI of 1 providing optimum habitat conditions for the selected species. One acre of optimum habitat provides one Habitat Unit. The objective of continued management of the Wanaket Wildlife Mitigation Area, including protection and enhancement of upland and wetland/wetland associated cover types, is to provide and maintain 2,334 HU's of protection credit and generate 2,495 HU's of enhancement credit by the year 2004.

  9. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2012-08-15

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  10. Closure Report for Corrective Action Unit 224: Decon Pad and Septic Systems, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2007-10-01

    Corrective Action Unit (CAU) 224 is located in Areas 02, 03, 05, 06, 11, and 23 of the Nevada Test Site, which is situated approximately 65 miles northwest of Las Vegas, Nevada. CAU 224 is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Decon Pad and Septic Systems and is comprised of the following nine Corrective Action Sites (CASs): CAS 02-04-01, Septic Tank (Buried); CAS 03-05-01, Leachfield; CAS 05-04-01, Septic Tanks (4)/Discharge Area; CAS 06-03-01, Sewage Lagoons (3); CAS 06-05-01, Leachfield; CAS 06-17-04, Decon Pad and Wastewater Catch; CAS 06-23-01, Decon Pad Discharge Piping; CAS 11-04-01, Sewage Lagoon; and CAS 23-05-02, Leachfield. The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 02-04-01, 03-05-01, 06-03-01, 11-04-01, and 23-05-02 is no further action. As a best management practice, the septic tanks and distribution box were removed from CASs 02-04-01 and 11-04-01 and disposed of as hydrocarbon waste. The NDEP-approved correction action alternative for CASs 05-04-01, 06-05-01, 06-17-04, and 06-23-01 is clean closure. Closure activities for these CASs included removing and disposing of radiologically and pesticide-impacted soil and debris. CAU 224 was closed in accordance with the NDEP-approved CAU 224 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 224 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2005). This Closure Report documents CAU 224 closure activities. During closure activities, approximately 60 cubic yards (yd3) of mixed waste in the form of soil and debris; approximately 70 yd{sup 3} of sanitary waste in the form of soil, liquid from septic tanks, and concrete debris; approximately 10 yd{sup 3} of hazardous waste in the form of pesticide-impacted soil; approximately 0.5 yd{sup 3} of universal waste in the form of fluorescent light bulbs; and approximately 0.5 yd{sup 3} of low-level waste in the form of a radiologically impacted fire hose rack were generated, managed, and disposed of appropriately. Waste minimization techniques, such as the utilization of laboratory analysis and field screening to guide the extent of excavations, were employed during the performance of closure work.

  11. Student Control as a Planning and Design Factor in Educational Facilities.

    ERIC Educational Resources Information Center

    Lilley, H. Edward

    Appropriate school facility design promotes a balance between student freedom and control. This report evaluates research on architectural approaches affecting student control and offers design recommendations. Since 1960, school discipline and vandalism problems have exploded. Senator Birch Bayh's committee reported that certain crimes are…

  12. The Influence of Economic Factors in Urban Sports Facility Planning: A Study on Spanish Regions

    Microsoft Academic Search

    Pablo Burillo; Ángel Barajas; Leonor Gallardo; Marta García-Tascón

    2011-01-01

    Sports infrastructure development signals a major economic development in regional and local areas. It has considered one of the main policies related to promoting public health, by various studies. However, economic factors also come into play in the design and location of sports facilities. Our research aims to examine whether the economic development in the regions in Spain helps promote

  13. An implementation plan for integrated control and asset management of petroleum production facilities

    Microsoft Academic Search

    Atalla F. Sayda; James H. Taylor

    2006-01-01

    This paper addresses innovative issues of asset management for the petroleum industry, which is very crucial for profitable oil and gas facilities operations and maintenance. A research project was initiated to study the feasibility of an intelligent asset management system. Having proposed a conceptual model for such a system in previous work [1], [2], we describe its behavior in terms

  14. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    SciTech Connect

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  15. RCRA Facility Investigation Plan, Tank 2064-U (S-205), Y-12 Plant, Oak Ridge, Tennessee

    Microsoft Academic Search

    Allison

    1987-01-01

    Within the confines of the Oak Ridge Y-12 Plant are both active and inactive hazardous waste treatment, storage, and disposal facilities. These solid waste management units (SWMUs) are subject to assessment by the US Environmental Protections Agency, as required by the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA). This document is the

  16. 77 FR 6681 - Approval and Promulgation of State Plans for Designated Facilities and Pollutants; State of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ...EGs apply to municipal waste combustors with a capacity...day of municipal solid waste (MSW). This action...Daniel Garver, Air Toxics Assessment and Implementation...Air, Pesticides and Toxics Management Division...facilities with a municipal waste combustor (MWC)...

  17. Closure Report for Corrective Action Unit 396: Area 20 Spill Sites, Nevada Test Site, Nevada

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2004-06-01

    Corrective Action Unit (CAU) 396, Area 20 Spill Sites, is located on the Nevada Test Site approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada. CAU 396 is listed in Appendix II of the Federal Facility Agreement and Consent Order of 1996 and consists of the following four Corrective Action Sites (CASs) located in Area 20 of the Nevada Test Site: CAS 20-25-01, Oil Spills (2); CAS 20-25-02, Oil Spills; CAS 20-25-03, Oil Spill; CAS 20-99-08, Spill. Closure activities for CAU 396 were conducted in accordance with the Federal Facility Agreement and Consent Order and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 396.

  18. Light Microscopy Module: An On-Orbit Microscope Planned for the Fluids and Combustion Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Griffin, DeVon W.

    2001-01-01

    The Light Microscopy Module (LMM) is planned as a fully remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within NASA Glenn Research Center's Fluids and Combustion Facility on the International Space Station. Within the Fluids and Combustion Facility, four fluids physics experiments will utilize an instrument built around a light microscope. These experiments are the Constrained Vapor Bubble experiment (Peter C. Wayner of Rensselaer Polytechnic Institute), the Physics of Hard Spheres Experiment-2 (Paul M. Chaikin of Princeton University), the Physics of Colloids in Space-2 experiment (David A. Weitz of Harvard University), and the Low Volume Fraction Colloidal Assembly experiment (Arjun G. Yodh of the University of Pennsylvania). The first experiment investigates heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties. Key diagnostic capabilities for meeting the science requirements of the four experiments include video microscopy to observe sample features including basic structures and dynamics, interferometry to measure vapor bubble thin film thickness, laser tweezers for colloidal particle manipulation and patterning, confocal microscopy to provide enhanced three-dimensional visualization of colloidal structures, and spectrophotometry to measure colloidal crystal photonic properties.

  19. Measuring client satisfaction and the quality of family planning services: A comparative analysis of public and private health facilities in Tanzania, Kenya and Ghana

    PubMed Central

    2011-01-01

    Background Public and private family planning providers face different incentive structures, which may affect overall quality and ultimately the acceptability of family planning for their intended clients. This analysis seeks to quantify differences in the quality of family planning (FP) services at public and private providers in three representative sub-Saharan African countries (Tanzania, Kenya and Ghana), to assess how these quality differentials impact upon FP clients' satisfaction, and to suggest how quality improvements can improve contraceptive continuation rates. Methods Indices of technical, structural and process measures of quality are constructed from Service Provision Assessments (SPAs) conducted in Tanzania (2006), Kenya (2004) and Ghana (2002) using direct observation of facility attributes and client-provider interactions. Marginal effects from multivariate regressions controlling for client characteristics and the multi-stage cluster sample design assess the relative importance of different measures of structural and process quality at public and private facilities on client satisfaction. Results Private health facilities appear to be of higher (interpersonal) process quality than public facilities but not necessarily higher technical quality in the three countries, though these differentials are considerably larger at lower level facilities (clinics, health centers, dispensaries) than at hospitals. Family planning client satisfaction, however, appears considerably higher at private facilities - both hospitals and clinics - most likely attributable to both process and structural factors such as shorter waiting times and fewer stockouts of methods and supplies. Conclusions Because the public sector represents the major source of family planning services in developing countries, governments and Ministries of Health should continue to implement and to encourage incentives, perhaps performance-based, to improve quality at public sector health facilities, as well as to strengthen regulatory and monitoring structures to ensure quality at both public and private facilities. In the meantime, private providers appear to be fulfilling an important gap in the provision of FP services in these countries. PMID:21864335

  20. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2011-08-31

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for closure of Corrective Action Unit (CAU) 574, Neptune. CAU 574 is included in the Federal Facility Agreement and Consent Order (FFACO) (1996 [as amended March 2010]) and consists of the following two Corrective Action Sites (CASs) located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); (2) CAS 12-45-01, U12e.05 Crater (Blanca). This plan provides the methodology for the field activities that will be performed to gather the necessary information for closure of the two CASs. There is sufficient information and process knowledge regarding the expected nature and extent of potential contaminants to recommend closure of CAU 574 using the SAFER process. Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, field screening, analytical results, the results of the data quality objective (DQO) process (Section 3.0), and an evaluation of corrective action alternatives (Appendix B), closure in place with administrative controls is the expected closure strategy for CAU 574. Additional information will be obtained by conducting a field investigation to verify and support the expected closure strategy and provide a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.