Science.gov

Sample records for factor b1 mediates

  1. Nuclear Factor κB1/RelA Mediates Inflammation in Human Lung Epithelial Cells at Atmospheric Oxygen Levels.

    PubMed

    Jagannathan, Lakshmanan; Jose, Cynthia C; Arita, Adriana; Kluz, Thomas; Sun, Hong; Zhang, Xiaoru; Yao, Yixin; Kartashov, Andrey V; Barski, Artem; Costa, Max; Cuddapah, Suresh

    2016-07-01

    Oxygen levels range from 2% to 9% in vivo. Atmospheric O2 levels (21%) are known to induce cell proliferation defects and cellular senescence in primary cell cultures. However, the mechanistic basis of the deleterious effects of higher O2 levels is not fully understood. On the other hand, immortalized cells including cancer cell lines, which evade cellular senescence are normally cultured at 21% O2 and the effects of higher O2 on these cells are understudied. Here, we addressed this problem by culturing immortalized human bronchial epithelial (BEAS-2B) cells at ambient atmospheric, 21% O2 and lower, 10% O2. Our results show increased inflammatory response at 21% O2 but not at 10% O2. We found higher RelA binding at the NF-κB1/RelA target gene promoters as well as upregulation of several pro-inflammatory cytokines in cells cultured at 21% O2. RelA knockdown prevented the upregulation of the pro-inflammatory cytokines at 21% O2, suggesting NF-κB1/RelA as a major mediator of inflammatory response in cells cultured at 21% O2. Interestingly, unlike the 21% O2 cultured cells, exposure of 10% O2 cultured cells to H2O2 did not elicit inflammatory response, suggesting increased ability to tolerate oxidative stress in cells cultured at lower O2 levels. PMID:26588041

  2. UNC93B1 mediates differential trafficking of endosomal TLRs

    PubMed Central

    Lee, Bettina L; Moon, Joanne E; Shu, Jeffrey H; Yuan, Lin; Newman, Zachary R; Schekman, Randy; Barton, Gregory M

    2013-01-01

    UNC93B1, a multipass transmembrane protein required for TLR3, TLR7, TLR9, TLR11, TLR12, and TLR13 function, controls trafficking of TLRs from the endoplasmic reticulum (ER) to endolysosomes. The mechanisms by which UNC93B1 mediates these regulatory effects remain unclear. Here, we demonstrate that UNC93B1 enters the secretory pathway and directly controls the packaging of TLRs into COPII vesicles that bud from the ER. Unlike other COPII loading factors, UNC93B1 remains associated with the TLRs through post-Golgi sorting steps. Unexpectedly, these steps are different among endosomal TLRs. TLR9 requires UNC93B1-mediated recruitment of adaptor protein complex 2 (AP-2) for delivery to endolysosomes while TLR7, TLR11, TLR12, and TLR13 utilize alternative trafficking pathways. Thus, our study describes a mechanism for differential sorting of endosomal TLRs by UNC93B1, which may explain the distinct roles played by these receptors in certain autoimmune diseases. DOI: http://dx.doi.org/10.7554/eLife.00291.001 PMID:23426999

  3. UNC93B1 mediates differential trafficking of endosomal TLRs.

    PubMed

    Lee, Bettina L; Moon, Joanne E; Shu, Jeffrey H; Yuan, Lin; Newman, Zachary R; Schekman, Randy; Barton, Gregory M

    2013-01-01

    UNC93B1, a multipass transmembrane protein required for TLR3, TLR7, TLR9, TLR11, TLR12, and TLR13 function, controls trafficking of TLRs from the endoplasmic reticulum (ER) to endolysosomes. The mechanisms by which UNC93B1 mediates these regulatory effects remain unclear. Here, we demonstrate that UNC93B1 enters the secretory pathway and directly controls the packaging of TLRs into COPII vesicles that bud from the ER. Unlike other COPII loading factors, UNC93B1 remains associated with the TLRs through post-Golgi sorting steps. Unexpectedly, these steps are different among endosomal TLRs. TLR9 requires UNC93B1-mediated recruitment of adaptor protein complex 2 (AP-2) for delivery to endolysosomes while TLR7, TLR11, TLR12, and TLR13 utilize alternative trafficking pathways. Thus, our study describes a mechanism for differential sorting of endosomal TLRs by UNC93B1, which may explain the distinct roles played by these receptors in certain autoimmune diseases.DOI:http://dx.doi.org/10.7554/eLife.00291.001. PMID:23426999

  4. Tiam1 mediates neurite outgrowth induced by ephrin-B1 and EphA2

    PubMed Central

    Tanaka, Masamitsu; Ohashi, Riuko; Nakamura, Ritsuko; Shinmura, Kazuya; Kamo, Takaharu; Sakai, Ryuichi; Sugimura, Haruhiko

    2004-01-01

    Bidirectional signals mediated by Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, play pivotal roles in the formation of neural networks by induction of both collapse and elongation of neurites. However, the downstream molecular modules to deliver these cues are largely unknown. We report here that the interaction of a Rac1-specific guanine nucleotide-exchanging factor, Tiam1, with ephrin-B1 and EphA2 mediates neurite outgrowth. In cells coexpressing Tiam1 and ephrin-B1, Rac1 is activated by the extracellular stimulation of clustered soluble EphB2 receptors. Similarly, soluble ephrin-A1 activates Rac1 in cells coexpressing Tiam1 and EphA2. Cortical neurons from the E14 mouse embryos and neuroblastoma cells significantly extend neurites when placed on surfaces coated with the extracellular domain of EphB2 or ephrin-A1, which were abolished by the forced expression of the dominant-negative mutant of ephrin-B1 or EphA2. Furthermore, the introduction of a dominant-negative form of Tiam1 also inhibits neurite outgrowth induced by the ephrin-B1 and EphA2 signals. These results indicate that Tiam1 is required for neurite outgrowth induced by both ephrin-B1-mediated reverse signaling and EphA2-mediated forward signaling. PMID:14988728

  5. Increased susceptibility to atrial fibrillation secondary to atrial fibrosis in transgenic goats expressing transforming growth factor - B1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in people with significant morbidity and mortality. There is a strong association between atrial fibrosis and AF. Transforming growth factor B1 (TGF-B1) is an essential mediator of atrial fibrosis in animal models and human pat...

  6. Effects of CYP7B1-mediated catalysis on estrogen receptor activation.

    PubMed

    Pettersson, Hanna; Lundqvist, Johan; Norlin, Maria

    2010-09-01

    Most of the many biological effects of estrogens are mediated via the estrogen receptors ERalpha and beta. The current study examines the role of CYP7B1-mediated catalysis for activation of ER. Several reports suggest that CYP7B1 may be important for hormonal action but previously published studies are contradictory concerning the manner in which CYP7B1 affects ERbeta-mediated response. In the current study, we examined effects of several CYP7B1-related steroids on ER activation, using an estrogen response element (ERE) reporter system. Our studies showed significant stimulation of ER by 5-androstene-3beta,17beta-diol (Aene-diol) and 5alpha-androstane-3beta,17beta-diol (3beta-Adiol). In contrast, the CYP7B1-formed metabolites from these steroids did not activate the receptor, indicating that CYP7B1-mediated metabolism abolishes the ER-stimulating effect of these compounds. The mRNA level of HEM45, a gene known to be stimulated by estrogens, was strongly up-regulated by Aene-diol but not by its CYP7B1-formed metabolite, further supporting this concept. We did not observe stimulation by dehydroepiandrosterone (DHEA) or 7alpha-hydroxy-DHEA, previously suggested to affect ERbeta-mediated response. As part of these studies we examined metabolism of Aene-diol in pig liver which is high in CYP7B1 content. These experiments indicate that CYP7B1-mediated metabolism of Aene-diol is of a similar rate as the metabolism of the well-known CYP7B1 substrates DHEA and 3beta-Adiol. CYP7B1-mediated metabolism of 3beta-Adiol has been proposed to influence ERbeta-mediated growth suppression. Our results indicate that Aene-diol also might be important for ER-related pathways. Our data indicate that low concentrations of Aene-diol can trigger ER-mediated response equally well for both ERalpha and beta and that CYP7B1-mediated conversion of Aene-diol into a 7alpha-hydroxymetabolite will result in loss of action. PMID:20553962

  7. Proangiogenic role of ephrinB1/EphB1 in basic fibroblast growth factor-induced corneal angiogenesis.

    PubMed

    Kojima, Takashi; Chang, Jin-Hong; Azar, Dimitri T

    2007-02-01

    Corneal neovascularization is a vision-threatening condition caused by various ocular pathological conditions. The aim of this study was to evaluate the function of the ephrin ligands and Eph receptors in vitro and in vivo in corneal angiogenesis in a mouse model. The Eph tyrosine kinase receptors and their ligands, ephrins, are expressed on the cell surface. The functions of Eph and ephrins have been shown to regulate axonal guidance, segmentation, cell migration, and angiogenesis. Understanding the roles of Eph and ephrin in corneal angiogenesis may provide a therapeutic intervention for the treatment of angiogenesis-related disorders. Immunohistochemical studies demonstrated that ephrinB1 and EphB1 were expressed in basic fibroblast growth factor (bFGF)-induced vascularized corneas. EphB1 was specifically colocalized with vascular endothelial marker CD31 surrounded by type IV collagen. EphrinB1 was expressed in corneal-resident keratocytes and neutrophils. Recombinant ephrinB1-Fc, which induces EphB receptor activation, enhanced bFGF-induced tube formation in an in vitro aortic ring assay and promoted bFGF-induced corneal angiogenesis in vivo in a corneal pocket assay. Synergistically enhanced and sustained activation of extracellular signal-regulated kinase was noted in vascular endothelial cell lines after stimulation with ephrin B1 and bFGF combinations. These results suggest that ephrinB1 plays a synergistic role in corneal neovascularization. PMID:17255342

  8. A novel method for determination of aflatoxin B1 mediated by FCLA + BSA

    NASA Astrophysics Data System (ADS)

    Chen, WenLi; Xing, Da

    2005-02-01

    As a chemiluminescence (CL) probe, 3,7-dihydro-6-{4-{2-(N"-(5-fluoresceinyl) thioureido)ethoxy}phenyl}-2-met -hylimi-dazo{1,2-a}pyrazin-3-one dosium salt (FCLA) can sensitively and specifically react with singlet oxygen (1O2 ) and superoxide(O2""). BSA (Bovine Serum Albumin) can enlarge the CL intensity of FCLA to 860%. This report presents a novel method for determination of Aflatoxin B1 (AfB1) mediated by FCLA+BSA. The concentration of AFB1 showed an obvious positive correlation with the CL intensity mediated by FCLA+BSA. This method could measure accurately ng/ml of AfB1 concentration. At the same time, the fluorescence spectrum of FCLA+BSA and FCLA+BSA+AfB1 were measured respectively, which showed that the fluorescence intensity of FCLA+BSA+AfB1 was higher than FCLA+BSA. Comparing the peak value of FCLA, FCLA+BSA and FCLA+BSA+AfB1 had a 6nm Einstein shift (red shift). The study suggested that CL method mediated by FCLA+BSA might be applicable to the determination of AfB1 concentration.

  9. Kinin B1 receptor mediates memory impairment in the rat hippocampus.

    PubMed

    Dong-Creste, Káris Ester; Baraldi-Tornisielo, Ticiana; Caetano, Ariadiny Lima; Gobeil, Fernand; Montor, Wagner Ricardo; Viel, Tania Araujo; Buck, Hudson Sousa

    2016-04-01

    The bradykinin (BK) receptors B1R and B2R are involved in inflammatory responses and their activation can enhance tissue damage. The B2R is constitutively expressed and mediates the physiologic effects of BK, whereas B1R expression is induced after tissue damage. Recently, they have been involved with Alzheimer's disease, ischemic stroke and traumatic brain injury (TBI). In this study, we investigated the role of bradykinin in short and long-term memory consolidation (STM and LTM). It was observed that bilateral injection of BK (300 pmol/μl) disrupted the STM consolidation but not LTM, both evaluated by inhibitory avoidance test. The STM disruption due to BK injection was blocked by the previous injection of the B1R antagonist des-Arg10-HOE140 but not by the B2R antagonist HOE140. Additionally, the injection of the B1 agonist desArg9-BK disrupted STM and LTM consolidation at doses close to physiological concentration of the peptide (2.3 and 37.5 pmol, respectively) which could be reached during tissue injury. The presence of B1R located on glial cells around the implanted guide cannula used for peptide injection was confirmed by immunofluorescence. These data imply in a possible participation of B1R in the STM impairment observed in TBI, neuroinflammation and neurodegeneration. PMID:26669247

  10. Chronic Moderate Alcohol Intakes Accelerate SR-B1 Mediated Reverse Cholesterol Transport.

    PubMed

    Li, Menghua; Diao, Yan; Liu, Ying; Huang, Hui; Li, Yanze; Tan, Peizhu; Liang, Huan; He, Qi; Nie, Junhui; Dong, Xingli; Wang, Yang; Zhou, Lingyun; Gao, Xu

    2016-01-01

    Cholesterol is essential for all animal life. However, a high level of cholesterol in the body is strongly associated with the progression of various severe diseases. In our study, the potential involvement of alcohol in the regulation of high density lipoprotein (HDL) receptor scavenger receptor class B and type I (SR-B1)-mediated reverse cholesterol transport was investigated. We separated male C57BL/6 mice into four diets: control, alcohol, Control + HC and alcohol + HC. The SR-B1 level and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate- high- density lipoprotein (DiI-HDL) uptake were also measured in AML12 cells and HL7702 cells treated with alcohol. The control + HC diet led to increased hepatic triglyceride and cholesterol levels while alcohol + HC led no significant change. Compared with that of the control group, the SR-B1 mRNA level was elevated by 27.1% (P < 0.05), 123.8% (P < 0.001) and 343.6% (P < 0.001) in the alcohol, control + HC and alcohol + HC groups, respectively. In AML12 and HL7702 cells, SR-B1 level and DiI-HDL uptake were repressed by SR-B1 siRNA or GW9662. However, these effects were reversed through alcohol treatment. These data suggest that a moderate amount of alcohol plays a novel role in reverse cholesterol transport, mainly mediated by PPARγ and SR-B1. PMID:27618957

  11. CYP1B1 expression, a potential risk factor for breast cancer

    SciTech Connect

    Goth-Goldstein, Regine; Erdmann, Christine A.; Russell, Marion

    2001-05-31

    CYP1B1 expression in non-tumor breast tissue from breast cancer patients and cancer-free individuals was determined to test the hypothesis that high CYP1B1 expression is a risk factor for breast cancer. Large interindividual variations in CYP1B1 expression were found with CYP1B1 levels notably higher in breast cancer patients than cancer-free individuals. The results indicate that CYP1B1 might play a role in breast cancer either through increased PAH activation or through metabolism of endogenous estrogen to a carcinogenic derivative.

  12. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma

    PubMed Central

    Harbour, J. William; Roberson, Elisha D. O.; Anbunathan, Hima; Onken, Michael D.; Worley, Lori A.; Bowcock, Anne M.

    2013-01-01

    Uveal melanoma is the most common primary cancer of the eye and often results in fatal metastasis. Here, we describe mutations occurring exclusively at arginine-625 in splicing factor 3B subunit 1 (SF3B1) in low-grade uveal melanomas with good prognosis. Thus, uveal melanoma is among a small group of cancers associated with SF3B1 mutation, and these mutations denote a distinct molecular subset of uveal melanomas. PMID:23313955

  13. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma.

    PubMed

    Harbour, J William; Roberson, Elisha D O; Anbunathan, Hima; Onken, Michael D; Worley, Lori A; Bowcock, Anne M

    2013-02-01

    Uveal melanoma is the most common primary cancer of the eye and often results in fatal metastasis. Here, we describe mutations occurring exclusively at codon 625 of the SF3B1 gene, encoding splicing factor 3B subunit 1, in low-grade uveal melanomas with good prognosis. Thus, uveal melanoma is among a small group of cancers associated with SF3B1 mutations, and these mutations denote a distinct molecular subset of uveal melanomas. PMID:23313955

  14. Co-repressor activity of scaffold attachment factor B1 requires sumoylation

    SciTech Connect

    Garee, Jason P.; Meyer, Rene; Systems Biology of Signal Transduction, German Cancer Research Center , INF 280, 69120 Heidelberg ; Oesterreich, Steffi

    2011-05-20

    Highlights: {yields} SAFB1 is sumoylated to two lysine residues K231 and K294. {yields} SAFB1 sumoylation is regulated by PIAS1 and SENP1. {yields} Sumoylation of SAFB1 regulates its transcriptional repressor activity. {yields} Mutation of sumoylation sites leads to decreased SAFB1 binding to HDAC3. -- Abstract: Sumoylation is an emerging modification associated with a variety of cellular processes including the regulation of transcriptional activities of nuclear receptors and their coregulators. As SUMO modifications are often associated with transcriptional repression, we examined if sumoylation was involved in modulation of the transcriptional repressive activity of scaffold attachment factor B1. Here we show that SAFB1 is modified by both the SUMO1 and SUMO2/3 family of proteins, on lysine's K231 and K294. Further, we demonstrate that SAFB1 can interact with PIAS1, a SUMO E3 ligase which mediates SAFB1 sumoylation. Additionally, SENP1 was identified as the enzyme desumoylating SAFB1. Mutation of the SAFB1 sumoylation sites lead to a loss of transcriptional repression, at least in part due to decreased interaction with HDAC3, a known transcriptional repressor and SAFB1 binding partner. In summary, the transcriptional repressor SAFB1 is modified by both SUMO1 and SUMO2/3, and this modification is necessary for its full repressive activity.

  15. Cyp1b1 Mediates Periostin Regulation of Trabecular Meshwork Development by Suppression of Oxidative Stress

    PubMed Central

    Zhao, Yun; Wang, Shoujian; Sorenson, Christine M.; Teixeira, Leandro; Dubielzig, Richard R.; Peters, Donna M.; Conway, Simon J.; Jefcoate, Colin R.

    2013-01-01

    Mutation in CYP1B1 has been reported for patients with congenital glaucoma. However, the underlying mechanisms remain unknown. Here we show increased diurnal intraocular pressure (IOP) in Cyp1b1-deficient (Cyp1b1−/−) mice. Cyp1b1−/− mice presented ultrastructural irregular collagen distribution in their trabecular meshwork (TM) tissue along with increased oxidative stress and decreased levels of periostin (Postn). Increased levels of oxidative stress and decreased levels of Postn were also detected in human glaucomatous TM tissues. Furthermore, Postn-deficient mice exhibited TM tissue ultrastructural abnormalities similar to those of Cyp1b1−/− mice. Administration of the antioxidant N-acetylcysteine (NAC) restored structural abnormality of TM tissue in Cyp1b1−/− mice. In addition, TM cells prepared from Cyp1b1−/− mice exhibited increased oxidative stress, altered adhesion, and decreased levels of Postn. These aberrant cellular responses were reversed in the presence of NAC or by restoration of Cyp1b1 expression. Cyp1b1 knockdown or inhibition of CYP1B1 activity in Cyp1b1+/+ TM cells resulted in a Cyp1b1−/− phenotype. Thus, metabolic activity of CYP1B1 contributes to oxidative homeostasis and ultrastructural organization and function of TM tissue through modulation of Postn expression. PMID:23979599

  16. HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events.

    PubMed

    Alarcón, Claudio R; Goodarzi, Hani; Lee, Hyeseung; Liu, Xuhang; Tavazoie, Saeed; Tavazoie, Sohail F

    2015-09-10

    N(6)-methyladenosine (m(6)A) is the most abundant internal modification of messenger RNA. While the presence of m(6)A on transcripts can impact nuclear RNA fates, a reader of this mark that mediates processing of nuclear transcripts has not been identified. We find that the RNA-binding protein HNRNPA2B1 binds m(6)A-bearing RNAs in vivo and in vitro and its biochemical footprint matches the m(6)A consensus motif. HNRNPA2B1 directly binds a set of nuclear transcripts and elicits similar alternative splicing effects as the m(6)A writer METTL3. Moreover, HNRNPA2B1 binds to m(6)A marks in a subset of primary miRNA transcripts, interacts with the microRNA Microprocessor complex protein DGCR8, and promotes primary miRNA processing. Also, HNRNPA2B1 loss and METTL3 depletion cause similar processing defects for these pri-miRNA precursors. We propose HNRNPA2B1 to be a nuclear reader of the m(6)A mark and to mediate, in part, this mark's effects on primary microRNA processing and alternative splicing. PAPERCLIP. PMID:26321680

  17. Inflammatory mediators accelerate metabolism of benzo[a]pyrene in rat alveolar type II cells: the role of enhanced cytochrome P450 1B1 expression.

    PubMed

    Smerdová, Lenka; Neča, Jiří; Svobodová, Jana; Topinka, Jan; Schmuczerová, Jana; Kozubík, Alois; Machala, Miroslav; Vondráček, Jan

    2013-12-01

    Long-term deregulated inflammation represents one of the key factors contributing to lung cancer etiology. Previously, we have observed that tumor necrosis factor-α (TNF-α), a major pro-inflammatory cytokine, enhances genotoxicity of benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon, in rat lung epithelial RLE-6TN cells, a model of alveolar type II cells. Therefore, we analyzed B[a]P metabolism in RLE-6TN cells under inflammatory conditions, simulated using either recombinant TNF-α, or a mixture of inflammatory mediators derived from activated alveolar macrophage cell line. Inflammatory conditions significantly accelerated BaP metabolism, as evidenced by decreased levels of both parent B[a]P and its metabolites. TNF-α altered production of the metabolites associated with dihydrodiol-epoxide and radical cation pathways of B[a]P metabolism, especially B[a]P-dihydrodiols, and B[a]P-diones. We then evaluated the role of cytochrome P450 1B1 (CYP1B1), which is strongly up-regulated in cells treated with B[a]P under inflammatory conditions, in the observed effects. The siRNA-mediated CYP1B1 knock-down increased levels of B[a]P and reduced formation of stable DNA adducts, thus confirming the essential role of CYP1B1 in B[a]P metabolism under inflammatory conditions. TNF-α also reduced expression of aldo-keto reductase 1C14, which may compete with CYP1B1 for B[a]P-7,8-dihydrodiol and divert it from the formation of ultimate B[a]P dihydrodiol epoxide. Together, the present data suggests that the CYP1B1-catalyzed metabolism of polycyclic aromatic hydrocarbons might contribute to their enhanced bioactivation and genotoxic effects under inflammatory conditions. PMID:24025706

  18. The phospholipid flippase ATP8B1 mediates apical localization of the cystic fibrosis transmembrane regulator.

    PubMed

    van der Mark, Vincent A; de Jonge, Hugo R; Chang, Jung-Chin; Ho-Mok, Kam S; Duijst, Suzanne; Vidović, Dragana; Carlon, Marianne S; Oude Elferink, Ronald P J; Paulusma, Coen C

    2016-09-01

    Progressive familial intrahepatic cholestasis type 1 (PFIC1) is caused by mutations in the gene encoding the phospholipid flippase ATP8B1. Apart from severe cholestatic liver disease, many PFIC1 patients develop extrahepatic symptoms characteristic of cystic fibrosis (CF), such as pulmonary infection, sweat gland dysfunction and failure to thrive. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel essential for epithelial fluid transport. Previously it was shown that CFTR transcript levels were strongly reduced in livers of PFIC1 patients. Here we have investigated the hypothesis that ATP8B1 is important for proper CFTR expression and function. We analyzed CFTR expression in ATP8B1-depleted intestinal and pulmonary epithelial cell lines and assessed CFTR function by measuring short-circuit currents across transwell-grown ATP8B1-depleted intestinal T84 cells and by a genetically-encoded fluorescent chloride sensor. In addition, we studied CFTR surface expression upon induction of CFTR transcription. We show that CFTR protein levels are strongly reduced in the apical membrane of human ATP8B1-depleted intestinal and pulmonary epithelial cell lines, a phenotype that coincided with reduced CFTR activity. Apical membrane insertion upon induction of ectopically-expressed CFTR was strongly impaired in ATP8B1-depleted cells. We conclude that ATP8B1 is essential for correct apical localization of CFTR in human intestinal and pulmonary epithelial cells, and that impaired CFTR localization underlies some of the extrahepatic phenotypes observed in ATP8B1 deficiency. PMID:27301931

  19. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events

    PubMed Central

    Alarcón, Claudio R.; Goodarzi, Hani; Lee, Hyeseung; Liu, Xuhang; Tavazoie, Saeed; Tavazoie, Sohail F.

    2015-01-01

    SUMMARY N6-methyladenosine (m6A) is the most abundant internal modification of messenger RNA. While the presence of m6A on transcripts can impact alternative splicing, a nuclear reader of this mark that mediates the processing of nuclear transcripts has not been identified. We find that the RNA-binding HNRNPA2B1 protein binds m6A-bearing RNAs in vivo and in vitro and its biochemical footprint matches the m6A consensus motif. HNRNPA2B1 directly binds a set of nuclear transcripts and modulates their alternative splicing in a similar manner as the m6A ‘writer’ METTL3. Moreover, HNRNPA2B1 binds to m6A marks in a subset of primary-miRNA transcripts, interacts with the microRNA Microprocessor complex protein DGCR8, and promotes primary miRNA processing—phenocopying the effect of METTL3 depletion on the processing of these precursor transcripts. We propose HNRNPA2B1 to be a nuclear reader of the m6A mark and to mediate, in part, this mark’s effects on primary microRNA processing and alternative splicing. PMID:26321680

  20. ATP8B1-mediated spatial organization of Cdc42 signaling maintains singularity during enterocyte polarization

    PubMed Central

    Bruurs, Lucas J.M.; Donker, Lisa; Zwakenberg, Susan; Zwartkruis, Fried J.; Begthel, Harry; Knisely, A.S.; Posthuma, George; van de Graaf, Stan F.J.; Paulusma, Coen C.

    2015-01-01

    During yeast cell polarization localization of the small GTPase, cell division control protein 42 homologue (Cdc42) is clustered to ensure the formation of a single bud. Here we show that the disease-associated flippase ATPase class I type 8b member 1 (ATP8B1) enables Cdc42 clustering during enterocyte polarization. Loss of this regulation results in increased apical membrane size with scattered apical recycling endosomes and permits the formation of more than one apical domain, resembling the singularity defect observed in yeast. Mechanistically, we show that to become apically clustered, Cdc42 requires the interaction between its polybasic region and negatively charged membrane lipids provided by ATP8B1. Disturbing this interaction, either by ATP8B1 depletion or by introduction of a Cdc42 mutant defective in lipid binding, increases Cdc42 mobility and results in apical membrane enlargement. Re-establishing Cdc42 clustering, by tethering it to the apical membrane or lowering its diffusion, restores normal apical membrane size in ATP8B1-depleted cells. We therefore conclude that singularity regulation by Cdc42 is conserved between yeast and human and that this regulation is required to maintain healthy tissue architecture. PMID:26416959

  1. Organic anion transporter 3- and organic anion transporting polypeptides 1B1- and 1B3-mediated transport of catalposide.

    PubMed

    Jeong, Hyeon-Uk; Kwon, Mihwa; Lee, Yongnam; Yoo, Ji Seok; Shin, Dae Hee; Song, Im-Sook; Lee, Hye Suk

    2015-01-01

    We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1), OAT3, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 1 (OCT1), OCT2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 cells overexpressing the relevant transporters. The uptake of catalposide was 319-, 13.6-, and 9.3-fold greater in HEK293 cells overexpressing OAT3, OATP1B1, and OATP1B3 transporters, respectively, than in HEK293 control cells. The increased uptake of catalposide via the OAT3, OATP1B1, and OATP1B3 transporters was decreased to basal levels in the presence of representative inhibitors such as probenecid, furosemide, and cimetidine (for OAT3) and cyclosporin A, gemfibrozil, and rifampin (for OATP1B1 and OATP1B3). The concentration-dependent OAT3-mediated uptake of catalposide revealed the following kinetic parameters: Michaelis constant (K m) =41.5 μM, maximum uptake rate (V max) =46.2 pmol/minute, and intrinsic clearance (CL int) =1.11 μL/minute. OATP1B1- and OATP1B3-mediated catalposide uptake also showed concentration dependency, with low CL int values of 0.035 and 0.034 μL/minute, respectively. However, the OCT1, OCT2, OAT1, P-gp, and BCRP transporters were apparently not involved in the uptake of catalposide into cells. In addition, catalposide inhibited the transport activities of OAT3, OATP1B1, and OATP1B3 with half-maximal inhibitory concentration values of 83, 200, and 235 μM, respectively. However, catalposide did not significantly inhibit the transport activities of OCT1, OCT2, OAT1, P-gp, or BCRP. In conclusion, OAT3, OATP1B1, and OATP1B3 are major transporters that may regulate the pharmacokinetic properties and may cause herb-drug interactions of catalposide, although their clinical relevance awaits further evaluation. PMID:25653502

  2. Organic anion transporter 3- and organic anion transporting polypeptides 1B1- and 1B3-mediated transport of catalposide

    PubMed Central

    Jeong, Hyeon-Uk; Kwon, Mihwa; Lee, Yongnam; Yoo, Ji Seok; Shin, Dae Hee; Song, Im-Sook; Lee, Hye Suk

    2015-01-01

    We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1), OAT3, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 1 (OCT1), OCT2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 cells overexpressing the relevant transporters. The uptake of catalposide was 319-, 13.6-, and 9.3-fold greater in HEK293 cells overexpressing OAT3, OATP1B1, and OATP1B3 transporters, respectively, than in HEK293 control cells. The increased uptake of catalposide via the OAT3, OATP1B1, and OATP1B3 transporters was decreased to basal levels in the presence of representative inhibitors such as probenecid, furosemide, and cimetidine (for OAT3) and cyclosporin A, gemfibrozil, and rifampin (for OATP1B1 and OATP1B3). The concentration-dependent OAT3-mediated uptake of catalposide revealed the following kinetic parameters: Michaelis constant (Km) =41.5 μM, maximum uptake rate (Vmax) =46.2 pmol/minute, and intrinsic clearance (CLint) =1.11 μL/minute. OATP1B1- and OATP1B3-mediated catalposide uptake also showed concentration dependency, with low CLint values of 0.035 and 0.034 μL/minute, respectively. However, the OCT1, OCT2, OAT1, P-gp, and BCRP transporters were apparently not involved in the uptake of catalposide into cells. In addition, catalposide inhibited the transport activities of OAT3, OATP1B1, and OATP1B3 with half-maximal inhibitory concentration values of 83, 200, and 235 μM, respectively. However, catalposide did not significantly inhibit the transport activities of OCT1, OCT2, OAT1, P-gp, or BCRP. In conclusion, OAT3, OATP1B1, and OATP1B3 are major transporters that may regulate the pharmacokinetic properties and may cause herb–drug interactions of catalposide, although their clinical relevance awaits further evaluation. PMID:25653502

  3. Montelukast Disposition: No Indication of Transporter-Mediated Uptake in OATP2B1 and OATP1B1 Expressing HEK293 Cells.

    PubMed

    Brännström, Marie; Nordell, Pär; Bonn, Britta; Davis, Andrew M; Palmgren, Anna-Pia; Hilgendorf, Constanze; Rubin, Katarina; Grime, Ken

    2015-01-01

    Clinical studies with montelukast show variability in effect and polymorphic OATP2B1-dependent absorption has previously been implicated as a possible cause. This claim has been challenged with conflicting data and here we used OATP2B1-transfected HEK293 cells to clarify the mechanisms involved. For montelukast, no significant difference in cell uptake between HEK-OATP2B1 and empty vector cell lines was observed at pH 6.5 or pH 7.4, and no concentration-dependent uptake was detected. Montelukast is a carboxylic acid, a relatively potent inhibitor of OATP1B1, OATP1B3, and OATP2B1, and has previously been postulated to be actively transported into human hepatocytes. Using OATP1B1-transfected HEK293 cells and primary human hepatocytes in the presence of OATP inhibitors we demonstrate for the first time that active OATP-dependent transport is unlikely to play a significant role in the human disposition of montelukast. PMID:26694455

  4. Montelukast Disposition: No Indication of Transporter-Mediated Uptake in OATP2B1 and OATP1B1 Expressing HEK293 Cells

    PubMed Central

    Brännström, Marie; Nordell, Pär; Bonn, Britta; Davis, Andrew M.; Palmgren, Anna-Pia; Hilgendorf, Constanze; Rubin, Katarina; Grime, Ken

    2015-01-01

    Clinical studies with montelukast show variability in effect and polymorphic OATP2B1-dependent absorption has previously been implicated as a possible cause. This claim has been challenged with conflicting data and here we used OATP2B1-transfected HEK293 cells to clarify the mechanisms involved. For montelukast, no significant difference in cell uptake between HEK-OATP2B1 and empty vector cell lines was observed at pH 6.5 or pH 7.4, and no concentration-dependent uptake was detected. Montelukast is a carboxylic acid, a relatively potent inhibitor of OATP1B1, OATP1B3, and OATP2B1, and has previously been postulated to be actively transported into human hepatocytes. Using OATP1B1-transfected HEK293 cells and primary human hepatocytes in the presence of OATP inhibitors we demonstrate for the first time that active OATP-dependent transport is unlikely to play a significant role in the human disposition of montelukast. PMID:26694455

  5. E3B1, a human homologue of the mouse gene product Abi-1, sensitizes activation of Rap1 in response to epidermal growth factor

    SciTech Connect

    Jenei, Veronika; Andersson, Tommy; Jakus, Judit; Dib, Karim . E-mail: k.dib@qub.ac.uk

    2005-11-01

    E3B1, a human homologue of the mouse gene product Abi-1, has been implicated in growth-factor-mediated regulation of the small GTPases p21{sup Ras} and Rac. E3b1 is a regulator of Rac because it can form a complex with Sos-1 and eps8, and such a Sos-1-e3B1-eps8 complex serves as a guanine nucleotide exchange factor for Rac. In the present study, we found that overexpression of e3B1 in NIH3T3/EGFR cells sensitized EGF-induced activation of Rac1, whereas it had no impact on EGF-induced activation of p21{sup Ras}. Remarkably, we found that EGF-induced activation of the p21{sup Ras}-related GTPase Rap1 was also sensitized in NIH3T3/EGFR-e3B1 cells. Thus, in NIH3T3/EGFR-e3B1 cells, maximal EGF-induced activation of Rap1 occurs with a dose of EGF much lower than in NIH3T3/EGFR cells. We also report that overexpression of e3B1 in NIH3T3/EGFR cells renders EGF-induced activation of Rap1 completely dependent on Src tyrosine kinases but not on c-Abl. However, EGF-induced tyrosine phosphorylation of the Rap GEF C3G occurred regardless of whether e3B1 was overexpressed or not, and this did not involve Src tyrosine kinases. Accordingly, we propose that overexpression of e3B1 in NIH3T3/EGFR cells leads to mobilization of Src tyrosine kinases that participate in EGF-induced activation of Rap1 and inhibition of cell proliferation.

  6. Mediation by B1 and B2 receptors of vasodepressor responses to intravenously administered kinins in anaesthetized dogs.

    PubMed

    Nakhostine, N; Ribuot, C; Lamontagne, D; Nadeau, R; Couture, R

    1993-09-01

    1. Vasodepressor responses to intravenous (i.v.) injection of bradykinin (BK) and des-Arg9-BK, a selective B1 kinin receptor agonist, were characterized following i.v. pretreatment with selective B1 ([Leu8]-des-Arg9-BK) and B2 (Hoe 140) kinin receptor antagonists in anaesthetized dogs. 2. Des-Arg9-BK (0.05-3.3 nmol kg-1) produced dose-dependent decreases in mean arterial blood pressure with a ED50 0.4 nmol kg-1. The vasodepressor effects evoked by des-Arg9-BK (0.6 nmol kg-1) and BK (0.2 nmol kg-1) were greater after i.v. and i.a. injections, respectively. 3. The vasodepressor response to BK (0.6 nmol kg-1) but not to des-Arg9-BK (0.6 nmol kg-1) was significantly (P < 0.001) blocked by pretreatment with the B2 receptor antagonist, Hoe 140. 4. The vasodepressor response to des-Arg9-BK (0.6 nmol kg-1) but not to BK (0.6 nmol kg-1) was significantly (P < 0.001) reduced by pretreatment with the selective B1 receptor antagonist, [Leu8]-des-Arg9-BK. Although both B1 and B2 receptor antagonists caused a transient fall in blood pressure, their inhibitory action was unlikely to be related to a desensitization mechanism. 5. Inhibition of prostaglandin synthesis with indomethacin prevented the vasodepressor response induced by arachidonic acid (1 mg kg-1, i.v.) but not that to BK or des-Arg9-BK (0.6 nmol kg-1). 6. These results suggest, firstly, that the vasodepressor responses to i.v. BK and des-Arg9-BK are mediated by the activation of B2 and B1 receptors, respectively; secondly, that prostaglandins are not involved in the vasodepressor responses to kinins.These findings provide pharmacological evidence for the existence of functionally active B1 receptors in canine cardiovascular homeostasis. PMID:8220916

  7. β-1,3-Glucan reverses aflatoxin B1-mediated suppression of immune responses in mice.

    PubMed

    Bakheet, Saleh A; Attia, Sabry M; Alwetaid, Mohammad Y; Ansari, Mushtaq Ahmad; Zoheir, Khairy M A; Nadeem, Ahmed; Al-Shabanah, Othman A; Al-Harbi, Mohammed M; Ahmad, Sheikh Fayaz

    2016-05-01

    Aflatoxin B1 (AFB1) is immunotoxic to animals and is a suspected immunosuppressant in humans. β-1,3-Glucan (BG) consists of glucose polymers and has a variety of stimulatory effects on the immune system. In this study, we investigated the role of BG on the expression of phenotypic markers and cytokine secretion in mice exposed to AFB1. We treated animals with BG (150mg/kg, p.o., once daily) for 7days beginning at the onset of AFB1 exposure. Exposure of animals to AFB1 alone (1250μg/kg, p.o, once daily) for 7days resulted in a decrease in the percentages of lymphocyte subsets (CD4(+), GITR(+), CD8(+), TCR β(+), CD3(+), Foxp3(+), CD4(+)Foxp3(+), and CD127(+)) as compared to an normal control (NC). However, both BG alone and BG given in conjunction with exposure to AFB1 significantly increased the percentages of these lymphocyte subsets in blood. We also observed that mice exposed to AFB1 showed reduced IL-2, TNF-α, IL-17, and IFN-γ production in the spleen and serum. In contrast, oral administration of BG alone and in conjunction with AFB1 exposure augmented the levels of these cytokines. Moreover, this finding was confirmed through RT-PCR and western blot analysis of mRNA and protein expression in the spleen. Altogether, it can be concluded from these studies that BG enhances the responses of lymphocyte subsets, including cytokine production, even when given following exposure to AFB1 immunotoxin. These data demonstrate that BG carries out its immunomodulating activity by regulating cytokine production. Our findings also provide a direction for development of specific immunomodulating therapy. PMID:26997472

  8. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1.

    PubMed

    Guja, Kip E; Venkataraman, Krithika; Yakubovskaya, Elena; Shi, Hui; Mejia, Edison; Hambardjieva, Elena; Karzai, A Wali; Garcia-Diaz, Miguel

    2013-09-01

    Eukaryotic transcription factor B (TFB) proteins are homologous to KsgA/Dim1 ribosomal RNA (rRNA) methyltransferases. The mammalian TFB1, mitochondrial (TFB1M) factor is an essential protein necessary for mitochondrial gene expression. TFB1M mediates an rRNA modification in the small ribosomal subunit and thus plays a role analogous to KsgA/Dim1 proteins. This modification has been linked to mitochondrial dysfunctions leading to maternally inherited deafness, aminoglycoside sensitivity and diabetes. Here, we present the first structural characterization of the mammalian TFB1 factor. We have solved two X-ray crystallographic structures of TFB1M with (2.1 Å) and without (2.0 Å) its cofactor S-adenosyl-L-methionine. These structures reveal that TFB1M shares a conserved methyltransferase core with other KsgA/Dim1 methyltransferases and shed light on the structural basis of S-adenosyl-L-methionine binding and methyltransferase activity. Together with mutagenesis studies, these data suggest a model for substrate binding and provide insight into the mechanism of methyl transfer, clarifying the role of this factor in an essential process for mitochondrial function. PMID:23804760

  9. Downregulation of Organic Anion Transporting Polypeptide (OATP) 1B1 Transport Function by Lysosomotropic Drug Chloroquine: Implication in OATP-Mediated Drug-Drug Interactions.

    PubMed

    Alam, Khondoker; Pahwa, Sonia; Wang, Xueying; Zhang, Pengyue; Ding, Kai; Abuznait, Alaa H; Li, Lang; Yue, Wei

    2016-03-01

    Organic anion transporting polypeptide (OATP) 1B1 mediates the hepatic uptake of many drugs including lipid-lowering statins. Decreased OATP1B1 transport activity is often associated with increased systemic exposure of statins and statin-induced myopathy. Antimalarial drug chloroquine (CQ) is also used for long-term treatment of rheumatoid arthritis and systemic lupus erythematosus. CQ is lysosomotropic and inhibits protein degradation in lysosomes. The current studies were designed to determine the effects of CQ on OATP1B1 protein degradation, OATP1B1-mediated transport in OATP1B1-overexpressing cell line, and statin uptake in human sandwich-cultured hepatocytes (SCH). Treatment with lysosome inhibitor CQ increased OATP1B1 total protein levels in HEK293-OATP1B1 cells and in human SCH as determined by OATP1B1 immunoblot. In HEK293-FLAG-tagged OATP1B1 stable cell line, co-immunofluorescence staining indicated that intracellular FLAG-OATP1B1 is colocalized with lysosomal associated membrane glycoprotein (LAMP)-2, a marker protein of late endosome/lysosome. Enlarged LAMP-2-positive vacuoles with FLAG-OATP1B1 protein retained inside were readily detected in CQ-treated cells, consistent with blocking lysosomal degradation of OATP1B1 by CQ. In HEK293-OATP1B1 cells, without pre-incubation, CQ concentrations up to 100 μM did not affect OATP1B1-mediated [(3)H]E217G accumulation. However, pre-incubation with CQ at clinically relevant concentration(s) significantly decreased [(3)H]E217G and [(3)H]pitavastatin accumulation in HEK293-OATP1B1 cells and [(3)H]pitavastatin accumulation in human SCH. CQ pretreatment (25 μM, 2 h) resulted in ∼1.9-fold decrease in Vmax without affecting Km of OATP1B1-mediated [(3)H]E217G transport in HEK293-OATP1B1 cells. Pretreatment with monensin and bafilomycin A1, which also have lysosome inhibition activity, significantly decreased OATP1B1-mediated transport in HEK293-OATP1B1 cells. Pharmacoepidemiologic studies using data from the U.S. Food

  10. A widespread sequence-specific mRNA decay pathway mediated by hnRNPs A1 and A2/B1

    PubMed Central

    Geissler, Rene; Simkin, Alfred; Floss, Doreen; Patel, Ravi; Fogarty, Elizabeth A.; Scheller, Jürgen; Grimson, Andrew

    2016-01-01

    3′-untranslated regions (UTRs) specify post-transcriptional fates of mammalian messenger RNAs (mRNAs), yet knowledge of the underlying sequences and mechanisms is largely incomplete. Here, we identify two related novel 3′ UTR motifs in mammals that specify transcript degradation. These motifs are interchangeable and active only within 3′ UTRs, where they are often preferentially conserved; furthermore, they are found in hundreds of transcripts, many encoding regulatory proteins. We found that degradation occurs via mRNA deadenylation, mediated by the CCR4–NOT complex. We purified trans factors that recognize the motifs and identified heterogeneous nuclear ribonucleoproteins (hnRNPs) A1 and A2/B1, which are required for transcript degradation, acting in a previously unknown manner. We used RNA sequencing (RNA-seq) to confirm hnRNP A1 and A2/B1 motif-dependent roles genome-wide, profiling cells depleted of these factors singly and in combination. Interestingly, the motifs are most active within the distal portion of 3′ UTRs, suggesting that their role in gene regulation can be modulated by alternative processing, resulting in shorter 3′ UTRs. PMID:27151978

  11. Upregulation of B1 receptor mediating des-Arg9-BK-induced rat paw oedema by systemic treatment with bacterial endotoxin.

    PubMed

    Campos, M M; Souza, G E; Calixto, J B

    1996-03-01

    . Intraplantar injection of submaximal dose of DABK (10 nmol) in LPS-treated rats produced modest paw oedema (0.09 +/- 0.03 ml). However, i.pl. injections of PGE2, prostacyclin (PGI2), calcitonin-gene-related peptide (CGRP), SP, 5-HT, or platelet activating factor (PAF) (each 1 nmol), which alone caused little or no paw oedema, resulted in a potentiation of the DABK-induced oedema. The increases in paw volume (in ml) were: PGE2 + DABK (0.31 +/- 0.03), PGI2 + DABK (0.39 +/- 0.02), CGRP+DABK (0.35 +/- 0.04), DABK+SP (0.33 +/- 0.04), DABK + 5-HT (0.40 +/- 0.02) and DABK+PAF (0.38 +/- 0.016) ml. In contrast, histamine (1 nmol) was ineffective in potentiating the response to DABK. 7. The selective B1 receptor antagonist, DALBK (100-300 nmol), produced dose-dependent inhibition of paw oedema potentiation induced by co-injection of DABK and other mediators with mean ID50S (nmol) of: 180, 160, 139 and 135 in the presence of PGE2, PGI2, SP and 5-HT, respectively. 8. These results demonstrate that DABK-induced increase in paw volume in LPS-treated rats is probably mediated by induction of B1 receptors, associated with downregulation of B2 receptors. The induction of B1 receptors by LPS is sensitive to dexamethasone and cycloheximide treatment and requires activation of cyclo-oxygenase pathway. In addition, B1 receptors, when upregulated following LPS treatment, can interact in a synergistic manner with several inflammatory mediators such as PGI2, PGE2, CGRP, PAF and 5-HT. Such results indicate that induction of the B1 receptor might have a significant pathophysiological role in modulating chronic inflammatory diseases. PMID:8851492

  12. Mechanistic role of cytochrome P450 (CYP)1B1 in oxygen-mediated toxicity in pulmonary cells: A novel target for prevention of hyperoxic lung injury.

    PubMed

    Dinu, Daniela; Chu, Chun; Veith, Alex; Lingappan, Krithika; Couroucli, Xanthi; Jefcoate, Colin R; Sheibani, Nader; Moorthy, Bhagavatula

    2016-08-01

    Supplemental oxygen, which is routinely administered to preterm infants with pulmonary insufficiency, contributes to bronchopulmonary dysplasia (BPD) in these infants. Hyperoxia also contributes to the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in adults. The mechanisms of oxygen-mediated pulmonary toxicity are not completely understood. Recent studies have suggested an important role for cytochrome P450 (CYP)1A1/1A2 in the protection against hyperoxic lung injury. The role of CYP1B1 in oxygen-mediated pulmonary toxicity has not been studied. In this investigation, we tested the hypothesis that CYP1B1 plays a mechanistic role in oxygen toxicity in pulmonary cells in vitro. In human bronchial epithelial cell line BEAS-2B, hyperoxic treatment for 1-3 days led to decreased cell viability by about 50-80%. Hyperoxic cytotoxicity was accompanied by an increase in levels of reactive oxygen species (ROS) by up to 110%, and an increase of TUNEL-positive cells by up to 4.8-fold. Western blot analysis showed hyperoxia to significantly down-regulate CYP1B1 protein level. Also, there was a decrease of CYP1B1 mRNA by up to 38% and Cyp1b1 promoter activity by up to 65%. On the other hand, CYP1B1 siRNA appeared to rescue the cell viability under hyperoxia stress, and overexpression of CYP1B1 significantly attenuated hyperoxic cytotoxicity after 48 h of incubation. In immortalized lung endothelial cells derived from Cyp1b1-null and wild-type mice, hyperoxia increased caspase 3/7 activities in a time-dependent manner, but endothelial cells lacking the Cyp1b1 gene showed significantly decreased caspase 3/7 activities after 48 and 72 h of incubation, implying that CYP1B1 might promote apoptosis in wild type lung endothelial cells under hyperoxic stress. In conclusion, our results support the hypothesis that CYP1B1 plays a mechanistic role in pulmonary oxygen toxicity, and CYP1B1-mediated apoptosis could be one of the mechanisms of oxygen

  13. RAGE signaling mediates post-injury arterial neointima formation by suppression of liver kinase B1 and AMPK activity

    PubMed Central

    Yu, Weifang; Liu-Bryan, Ru; Stevens, Stephanie; Damanahalli, Jagadeesha K.; Terkeltaub, Robert

    2012-01-01

    Objective Intima formation involves smooth muscle cell (SMC) proliferation and migration that ultimately drives arterial stenosis, thrombosis, and ischemia in atherosclerosis, hypertension, and arterial revascularization. Receptor for advanced glycation endproducts (RAGE) is a transmembrane signaling receptor implicated in diabetic renal and vascular complications, and post-injury intima formation, partly via Signal transducer and activator of transcription 3 (STAT3) activation. The metabolic super-regulator Adenosine monophosphate kinase (AMPK) inhibits SMC proliferation and intima formation. AMPK activation is promoted by liver kinase B1 (LKB1), and LKB1 inhibits STAT3 activation. Here, we tested the hypothesis that RAGE promotes arterial intima formation by modulating both LKB1 and AMPK. Methods and Results RAGE ligands (the calgranulin S100A11, and glycated albumin) suppressed AMPK activation in conjunction with increased proliferation and migration of cultured SMCs. These effects were inhibited both by RAGE deficiency and by prior AMPK activation. In SMCs, RAGE ligands decreased LKB1 activity. Moreover, knockdown of both LKB1 and AMPK were associated with increased STAT3 phosphorylation levels. In response to murine carotid artery ligation, expression of RAGE and S100A11 increased, whereas AMPK and LKB1 activity decreased in situ. Conversely, LKB1 and AMPK activity increased in situ, and neointima formation was attenuated in Rage−/− mice. Conclusion The linkage of decreased LKB1 and AMPK activity with increased STAT3 in SMCs mediates the capacity of RAGE ligand-induced signaling to promote neointima formation in response to arterial injury. PMID:22552116

  14. Propionibacterium acnes induces an adjuvant effect in B-1 cells and affects their phagocyte differentiation via a TLR2-mediated mechanism.

    PubMed

    Gambero, Monica; Teixeira, Daniela; Butin, Liane; Ishimura, Mayari Eika; Mariano, Mario; Popi, Ana Flavia; Longo-Maugéri, Ieda Maria

    2016-09-01

    B-1 lymphocytes are present in large numbers in the mouse peritoneal cavity, as are macrophages, and are responsible for natural IgM production. These lymphocytes migrate to inflammatory foci and are also involved in innate immunity. It was also demonstrated that B-1 cells are able to differentiated into phagocytes (B-1CDP), which is characterized by expression of F4/80 and increased phagocytic activity. B-1 cell responses to antigens and adjuvants are poorly characterized. It has been shown that Propionibacterium acnes suspensions induce immunomodulatory effects in both macrophages and B-2 lymphocytes. We recently demonstrated that this bacterium has the ability to increase B-1 cell populations both in vitro and in vivo. P. acnes induces B-1CDP differentiation, increases the expression of TLR2, TLR4 and TLR9 and augments the expression of CD80, CD86 and CD40 in B-1 and B-1CDP cells. Because P. acnes has been shown to modulate TLR expression, in this study, we investigated the role of TLR2 and TLR4 in B-1 cell population, including B-1CDP differentiation and phagocytic activity in vitro and in vivo. Interestingly, we have demonstrated that TLR2 signaling could be involved in the increase in the B-1 cell population induced by P. acnes. Furthermore, the early differentiation of B-1CDP is also dependent of TLR2. It was also observed that TLR signals also interfere in the phagocytic ability of B-1 cells and their phagocytes. According to these data, it is clear that P. acnes promotes an important adjuvant effect in B-1 cells by inducing them to differentiate into B-1CDP cells and modulates their phagocytic functions both in vivo and in vitro. Moreover, most of these effects are mediated primarily via TLR2. These data reinforce the findings that such bacterial suspensions have powerful adjuvant properties. The responses of B-1 cells to exogenous stimulation indicate that these cells are important to the innate immune response. PMID:27233619

  15. Heterogeneous nuclear ribonucleoprotein B1 protein impairs DNA repair mediated through the inhibition of DNA-dependent protein kinase activity

    SciTech Connect

    Iwanaga, Kentaro; Sueoka, Naoko; Sato, Akemi; Hayashi, Shinichiro; Sueoka, Eisaburo . E-mail: sueokae@post.saga-med.ac.jp

    2005-08-05

    Heterogeneous nuclear ribonucleoprotein B1, an RNA binding protein, is overexpressed from the early stage of lung cancers; it is evident even in bronchial dysplasia, a premalignant lesion. We evaluated the proteins bound with hnRNP B1 and found that hnRNP B1 interacted with DNA-dependent protein kinase (DNA-PK) complex, and recombinant hnRNP B1 protein dose-dependently inhibited DNA-PK activity in vitro. To test the effect of hnRNP B1 on DNA repair, we performed comet assay after irradiation, using normal human bronchial epithelial (HBE) cells treated with siRNA for hnRNP A2/B1: reduction of hnRNP B1 treated with siRNA for hnRNP A2/B1 induced faster DNA repair in normal HBE cells. Considering these results, we assume that overexpression of hnRNP B1 occurring in the early stage of carcinogenesis inhibits DNA-PK activity, resulting in subsequent accumulation of erroneous rejoining of DNA double-strand breaks, causing tumor progression.

  16. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression

    SciTech Connect

    Meissonnier, Guylaine M.; Pinton, Philippe; Laffitte, Joelle; Cossalter, Anne-Marie; Gong, Yun Yun; Wild, Christopher P.; Bertin, Gerard; Galtier, Pierre; Oswald, Isabelle P.

    2008-09-01

    Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus or A. parasiticus, is a frequent contaminant of food and feed. This toxin is hepatotoxic and immunotoxic. The present study analyzed in pigs the influence of AFB1 on humoral and cellular responses, and investigated whether the immunomodulation observed is produced through interference with cytokine expression. For 28 days, pigs were fed a control diet or a diet contaminated with 385, 867 or 1807 {mu}g pure AFB1/kg feed. At days 4 and 15, pigs were vaccinated with ovalbumin. AFB1 exposure, confirmed by an observed dose-response in blood aflatoxin-albumin adduct, had no major effect on humoral immunity as measured by plasma concentrations of total IgA, IgG and IgM and of anti-ovalbumin IgG. Toxin exposure did not impair the mitogenic response of lymphocytes but delayed and decreased their specific proliferation in response to the vaccine antigen, suggesting impaired lymphocyte activation in pigs exposed to AFB1. The expression level of pro-inflammatory (TNF-{alpha}, IL-1{beta}, IL-6, IFN-{gamma}) and regulatory (IL-10) cytokines was assessed by real-time PCR in spleen. A significant up-regulation of all 5 cytokines was observed in spleen from pigs exposed to the highest dose of AFB1. In pigs exposed to the medium dose, IL-6 expression was increased and a trend towards increased IFN-{gamma} and IL-10 was observed. In addition we demonstrate that IL-6 impaired in vitro the antigenic- but not the mitogenic-induced proliferation of lymphocytes from control pigs vaccinated with ovalbumin. These results indicate that AFB1 dietary exposure decreases cell-mediated immunity while inducing an inflammatory response. These impairments in the immune response could participate in failure of vaccination protocols and increased susceptibility to infections described in pigs exposed to AFB1.

  17. FSH-induced p38-MAPK-mediated dephosphorylation at serine 727 of the signal transducer and activator of transcription 1 decreases Cyp1b1 expression in mouse granulosa cells.

    PubMed

    Du, Xue-Hai; Zhou, Xiao-Long; Cao, Rui; Xiao, Peng; Teng, Yun; Ning, Cai-Bo; Liu, Hong-Lin

    2015-01-01

    Most mammalian follicles undergo atresia at various stages before ovulation, and granulosa cell apoptosis is a major cause of antral follicular atresia. Estradiol is an essential mitogen for granulosa cell proliferation in vivo and inhibition of apoptosis. The estradiol-producing capacity and metabolism levels are important for follicle health, and sufficient estradiol is necessary for follicle development and ovulation. Cyp1b1, a member of the cytochrome P450 1 subfamily, is responsible for the metabolism of a wide variety of halogenated and polycyclic aromatic hydrocarbons in diverse tissues. In mouse follicles, Cyp1b1 converts estradiol to 4-hydroxyestradiol. We investigated mouse granulosa cells (MGCs) in vivo and in vitro and found that Cyp1b1 played a crucial role in estradiol metabolism in dominant follicles. Follicle-stimulating hormone (FSH) decreased estrogen metabolism by reducing Cyp1b1 mRNA and protein levels in MGCs. Furthermore, FSH regulated signal transducer and activator of transcription 1 (STAT1), a significant transcription factor of Cyp1b1, by mediating the dephosphorylation of STAT1 on serine 727 (Ser(727)) in MGCs. p38 mitogen-activated protein kinase (MAPK) may be involved in the FSH-induced dephosphorylation of STAT1 on Ser(727) in MGCs. These results suggested that FSH functions via p38 MAPK-induced dephosphorylation at Ser(727) of STAT1 to downregulate Cyp1b1 expression and maintain the estradiol levels in mouse dominant follicles. PMID:25315223

  18. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness

    PubMed Central

    Rossi, Davide; Bruscaggin, Alessio; Spina, Valeria; Rasi, Silvia; Khiabanian, Hossein; Messina, Monica; Fangazio, Marco; Vaisitti, Tiziana; Monti, Sara; Chiaretti, Sabina; Guarini, Anna; Del Giudice, Ilaria; Cerri, Michaela; Cresta, Stefania; Deambrogi, Clara; Gargiulo, Ernesto; Gattei, Valter; Forconi, Francesco; Bertoni, Francesco; Deaglio, Silvia; Rabadan, Raul; Pasqualucci, Laura; Foà, Robin

    2011-01-01

    The genetic lesions identified in chronic lymphocytic leukemia (CLL) do not entirely recapitulate the disease pathogenesis and the development of serious complications, such as chemorefractoriness. While investigating the coding genome of fludarabine-refractory CLL, we observed that mutations of SF3B1, encoding a splicing factor and representing a critical component of the cell spliceosome, were recurrent in 10 of 59 (17%) fludarabine-refractory cases, with a frequency significantly greater than that observed in a consecutive CLL cohort sampled at diagnosis (17/301, 5%; P = .002). Mutations were somatically acquired, were generally represented by missense nucleotide changes, clustered in selected HEAT repeats of the SF3B1 protein, recurrently targeted 3 hotspots (codons 662, 666, and 700), and were predictive of a poor prognosis. In fludarabine-refractory CLL, SF3B1 mutations and TP53 disruption distributed in a mutually exclusive fashion (P = .046). The identification of SF3B1 mutations points to splicing regulation as a novel pathogenetic mechanism of potential clinical relevance in CLL. PMID:22039264

  19. The J-protein AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling.

    PubMed

    Jia, Ning; Lv, Ting-Ting; Li, Mi-Xin; Wei, Shan-Shan; Li, Yan-Yi; Zhao, Chun-Lan; Li, Bing

    2016-05-01

    AtDjB1 is a mitochondria-located J-protein in Arabidopsis thaliana It is involved in the regulation of plant growth and development; however, the exact mechanisms remain to be determined. We performed comparison analyses of phenotypes, auxin signalling, redox status, mitochondrial structure and function using wild-type plants, AtDjB1 mutants, rescued AtDjB1 mutants by AtDjB1 or YUCCA2 (an auxin synthesis gene), and AtDjB1 overexpression plants. AtDjB1 mutants (atj1-1 or atj1-4) exhibited inhibition of growth and development and reductions in the level of IAA and the expression of YUCCA genes compared to wild-type plants. The introduction of AtDjB1 or YUCCA2 into atj1-1 largely rescued phenotypic defects and the IAA level, indicating that AtDjB1 probably regulates growth and development via auxin. Furthermore, atj1-1 plants displayed a significant reduction in amount/activity of mitochondrial complex I compared to wild-type plants; this resulted in the accumulation of reactive oxygen species (ROS). Moreover, exogenous H2O2 markedly inhibited the expression of YUCCA genes in wild-type plants. In contrast, the reducing agent ascorbate increased the expression of YUCCA genes and IAA level in atj1-1 plants, indicating that the low auxin level observed in atj1-1 was probably due to the high oxidation status. Overall, the data presented here suggest that AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling in Arabidopsis. PMID:27117341

  20. Transcription factors and anthocyanin genes related to low-temperature tolerance in rd29A:RdreB1BI transgenic strawberry.

    PubMed

    Gu, Xianbin; Chen, Yahua; Gao, Zhihong; Qiao, Yushan; Wang, Xiuyun

    2015-04-01

    Dehydration-responsive element-binding (DREB) transcription factors play critical roles in plant stress responses and signal transduction. To further understand how DREB regulates genes expression to promote cold-hardiness, Illumina/Solexa sequencing technology was used to compare the transcriptomes of non-transgenic and rd29A:RdreB1BI transgenic strawberry plants exposed to low temperatures. Approximately 3.5 million sequence tags were obtained from non-transgenic (NT) and transgenic (T) strawberry untreated (C) or low-temperature treated (LT) leaf samples. Over 1000 genes were differentially expressed between the NT-C and T-C plants, and also the NT-C and NT-LT, as well as the T-C and T-LT plants. Analysis of the genes up-regulated following low-temperature treatment revealed that the majority are linked to metabolism, biosynthesis, transcription and signal transduction. Uniquely up-regulated transcription factors as well as anthocyanin biosynthetic pathway genes are discussed. Accumulation of anthocyanin in the stolon and the base of the petiole differed between non-treated NT and T plants, and this correlated with gene expression patterns. The differentially expressed genes that encode transcription factors and anthocyanin enzymes may contribute to the cold hardiness of RdreB1BI transgenic strawberry. The transcriptome data provide a valuable resource for further studies of strawberry growth and development and DREB-mediated gene regulation under low-temperature stress. PMID:25686702

  1. ANGIOTENSIN II-INDUCED VASCULAR SMOOTH MUSCLE CELL MIGRATION AND GROWTH ARE MEDIATED BY CYTOCHROME P450 1B1-DEPENDENT SUPEROXIDE GENERATION

    PubMed Central

    Yaghini, Fariborz A.; Song, Chi Young; Lavrentyev, Eduard N.; Ghafoor, Hafiz U. B.; Fang, Xiao R.; Estes, Anne M.; Campbell, William B.; Malik, Kafait U.

    2010-01-01

    Cytochrome P450 1B1, expressed in vascular smooth muscle cells, can metabolize arachidonic acid in vitro into several products including 12- and 20-hydroxyeicosatetraenoic acids that stimulate vascular smooth muscle cell growth. This study was conducted to determine if cytochrome P450 1B1 contributes to angiotensin II-induced rat aortic smooth muscle cell migration, proliferation and protein synthesis. Ang II stimulated migration of these cells, measured by the wound healing approach, by 1.78 fold and DNA synthesis, measured by [3H]thymidine incorporation, by 1.44 fold after 24 hours, and protein synthesis, measured by [3H]leucine incorporation, by 1.40 fold after 48 hours. Treatment of vascular smooth muscle cells with the cytochrome P450 1B1 inhibitor, 2, 4, 3′, 5′-tetramethoxystilbene, or transduction of these cells with adenovirus cytochrome P450 1B1 shRNA, but not its scrambled control, reduced the activity of this enzyme and abolished angiotensin II- and arachidonic acid-induced cell migration, [3H]thymidine and [3H]leucine incorporation. Metabolism of arachidonic acid to 5-, 12-, 15- and 20-hydoxyeicosatetraenoic acids in these cells was not altered, but angiotensin II- and arachidonic acid-induced reactive oxygen species production and extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase, activity were inhibited by 2, 4, 3′, 5′-tetramethoxystilbene and cytochrome P450 1B1 shRNA, and by tempol that inactivates reactive oxygen species. Tempol did not alter cytochrome P450 1B1 activity. These data suggest that angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by reactive oxygen species generated from arachidonic acid by cytochrome P450 1B1 and activation of extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase. PMID:20439821

  2. Immunocytochemical Localization of Latent Transforming Growth Factor-B1 Activation by Stimulated Macrophages

    SciTech Connect

    Chong, Hyonkyong; Vodovotz, Yoram; Cox, G.W.; Barcellos-Hoff, M.H.

    1998-09-22

    Transforming growth factor-{beta}1 (TGF-{beta}) is secreted in a latent form consisting of mature TGF-{beta} noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-{beta} from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-{beta} action. We have identified two events associated with latent TGF-{beta} (LTGF-{beta}) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-{beta} concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-{gamma} and lipopolysaccharide reportedly activate LTGF-{beta} via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-{beta} activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-{beta} epitopes. The induction of TGF-{beta} immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-{beta} activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-{beta} and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-{beta} activation provides an important tool for studies of its regulation.

  3. CD22 expression mediates the regulatory functions of peritoneal B-1a cells during the remission phase of contact hypersensitivity reactions1

    PubMed Central

    Nakashima, Hiroko; Hamaguchi, Yasuhito; Watanabe, Rei; Ishiura, Nobuko; Kuwano, Yoshihiro; Okochi, Hitoshi; Takahashi, Yoshimasa; Tamaki, Kunihiko; Sato, Shinichi; Tedder, Thomas F.; Fujimoto, Manabu

    2013-01-01

    While contact hypersensitivity (CHS) has been considered a prototype of T cell-mediated immune reactions, recently a significant contribution of regulatory B cell subsets in the suppression of CHS has been demonstrated. CD22, one of the Siglecs, is a B cell-specific molecule that negatively regulates B cell receptor signaling. To clarify the roles of B cells in CHS, CHS in CD22-/- mice was investigated. CD22-/- mice showed delayed recovery from CHS reactions compared with wild type mice. Transfer of wild type peritoneal B-1a cells reversed the prolonged CHS reaction seen in CD22-/- mice, and this was blocked by the simultaneous injection with IL-10 receptor Ab. While CD22-/- peritoneal B-1a cells were capable of producing IL-10 at wild type levels, intraperitoneal injection of differentially labeled wild type/CD22-/- B cells demonstrated that a smaller number of CD22-/- B cells resided in lymphoid organs 5 days after CHS elicitation, suggesting a defect in survival or retention in activated CD22-/- peritoneal B-1 cells. Thus, our current study reveals a regulatory role for peritoneal B-1a cells in CHS. Two distinct regulatory B cell subsets cooperatively inhibit CHS responses. While splenic CD1dhiCD5+ B cells have a crucial role in suppressing the acute exacerbating phase of CHS, peritoneal B-1a cells are likely to suppress the late remission phase as “regulatory B cells”. CD22 deficiency results in disturbed CHS remission by impaired retention or survival of peritoneal B-1a cells that migrate into lymphoid organs. PMID:20335532

  4. Allorecognition, via TgrB1 and TgrC1, mediates the transition from unicellularity to multicellularity in the social amoeba Dictyostelium discoideum.

    PubMed

    Hirose, Shigenori; Santhanam, Balaji; Katoh-Kurosawa, Mariko; Shaulsky, Gad; Kuspa, Adam

    2015-10-15

    The social amoeba Dictyostelium discoideum integrates into a multicellular organism when individual starving cells aggregate and form a mound. The cells then integrate into defined tissues and develop into a fruiting body that consists of a stalk and spores. Aggregation is initially orchestrated by waves of extracellular cyclic adenosine monophosphate (cAMP), and previous theory suggested that cAMP and other field-wide diffusible signals mediate tissue integration and terminal differentiation as well. Cooperation between cells depends on an allorecognition system comprising the polymorphic adhesion proteins TgrB1 and TgrC1. Binding between compatible TgrB1 and TgrC1 variants ensures that non-matching cells segregate into distinct aggregates prior to terminal development. Here, we have embedded a small number of cells with incompatible allotypes within fields of developing cells with compatible allotypes. We found that compatibility of the allotype encoded by the tgrB1 and tgrC1 genes is required for tissue integration, as manifested in cell polarization, coordinated movement and differentiation into prestalk and prespore cells. Our results show that the molecules that mediate allorecognition in D. discoideum also control the integration of individual cells into a unified developing organism, and this acts as a gating step for multicellularity. PMID:26395484

  5. Gene Expression of Mycobacterium tuberculosis Putative Transcription Factors whiB1-7 in Redox Environments

    PubMed Central

    Larsson, Christer; Luna, Brian; Ammerman, Nicole C.; Maiga, Mamoudou; Agarwal, Nisheeth; Bishai, William R.

    2012-01-01

    The seven WhiB proteins of Mycobacterium tuberculosis (M.tb) are widely believed to be redox-sensing transcription factors due to their binding of iron-sulfur clusters and similarities to DNA binding proteins. Here, we explored the nature of this hypothesized relationship. We exposed M.tb to physiologic conditions such as gradual hypoxia, nitric oxide (NO), cyclic AMP and in vivo conditions, and measured transcription of the whiB genes. We found whiB3 to be induced both by hypoxia and NO, whiB7 to be induced in macrophage-like cells, and whiB4 to be induced in mouse lung. Cyclic AMP induced whiB1,−2, −4, −6 and −7. Our data indicate that the M.tb whiB genes are induced independently by various stimuli which may add versatility to their suggested redox-sensing properties. PMID:22829866

  6. Liver Kinase B1 Is Required for Thromboxane Receptor-Dependent Nuclear Factor-κB Activation and Inflammatory Responses

    PubMed Central

    He, Jinlong; Zhou, Yanhong; Xing, Junjie; Wang, Qilong; Zhu, Huaiping; Zhu, Yi; Zou, Ming-Hui

    2013-01-01

    Objective Thromboxane A2 receptor (TPr) has been reported to trigger vascular inflammation. Nuclear factor κ B (NF-κB) is a known transcription factor. The aims of the present study were to determine the contributions of NF-κB activation to TPr-triggered vascular inflammation and elucidate the mechanism(s) underlying TPr activation of NF-κB. Approach and Results The effects of TPr activators, I-BOP and U46619, on NF-κB activation, phosphorylation of rhoA/ rho-associated kinases and liver kinase B1, cell adhesion and migration, proliferation, and endothelium-dependent vasorelaxation were assayed in cultured human umbilical vein endothelial cells, human monocytes, or isolated mouse aortas. Exposure of human umbilical vein endothelial cells to TPr agonists I-BOP and U46619 induced dose-dependent and time-dependent phosphorylation of inhibitor of κB α in parallel with aberrant expression of inflammatory markers cyclooxygenase-2, inducible nitric oxide synthase, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1. Inhibition of NF-κB by pharmacological or genetic means abolished TPr-triggered expression of inflammatory markers. Consistently, exposure of human umbilical vein endothelial cells to either I-BOP or U46619 significantly increased phosphorylation of inhibitor of κB α, IkappaB kinase, rhoA, rho-associated kinases, and liver kinase B1. Pretreatment of human umbilical vein endothelial cells with the TPr antagonist SQ29548 or rho-associated kinases inhibitor Y27632 or silencing of the LKB1 gene blocked TPr-enhanced phosphorylation of inhibitor of κB α and its upstream kinase, IkappaB kinase. Finally, exposure of isolated mouse aortas to either U46619 or I-BOP enhanced NF-κB activation and vascular inflammation in parallel with reduced endothelium-dependent relaxation in intact vessels. Conclusions TPr stimulation instigates aberrant inflammation and endothelial dysfunction via rho-associated kinases/liver kinase B1/IkappaB kinase

  7. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    SciTech Connect

    Larkin, Andrew; Siddens, Lisbeth K.; Krueger, Sharon K.; Tilton, Susan C.; Waters, Katrina M.; Williams, David E.; Baird, William M.

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions

  8. Absorption of Montelukast is Transporter Mediated: a Common Variant of OATP2B1 is Associated with Reduced Plasma Concentrations and Poor Response

    PubMed Central

    Mougey, Edward B.; Feng, Hua; Castro, Mario; Irvin, Charles G.; Lima, John J.

    2009-01-01

    Objectives (i) determine if montelukast undergoes carrier mediated uptake; (ii) classify the carrier protein(s) responsible for uptake; (iii) identify specific transporters that mediate transport of montelukast; (iv) evaluate whether variation in the gene encoding the transport protein(s) influences the pharmacokinetics and pharmacodynamics of montelukast. Methods In vitro permeability studies of montelukast are conducted using Caco-2 cell culture, a standard model of human intestinal drug transport. In vivo plasma concentrations of montelukast in an asthmatic population are determined by HPLC, and genotyping of transport proteins is by LightTyper analysis. Results Permeability of montelukast has an activation energy of 13.7±0.7 kcal/mol, consistent with carrier mediated transport. Permeability is saturable at high concentrations of montelukast and follows Michaelis-Menten kinetics. Permeability is subject to competition by sulfobromophthalein, estrone 3-sulfate, pravastatin, taurocholic acid, and cholic acid (p<0.05, % of control; 72±7 – 86±7) and is inhibited by 5–10% citrus juice (p<0.05, maximal inhibition % of control; 31±2). An MDCKII cell line expressing OATP2B1 (coded for by the SLCO2B1 gene) displays significantly increased permeability of montelukast (p<0.05, % of control; 140±20). A nonsynonymous polymorphism in SLCO2B1, (rs12422149; SLCO2B1{NM_007256.2}:c.935G>A) associates with significantly reduced plasma concentration in subjects measured on the morning after an evening dose (p<0.025, square root mean transformed plasma concentration ± SE; c.[935G>A]+[935G]=3±1, c.[935G]+[935G]=7.0±0.9) and differential response as assessed by change in baseline Asthma Symptom Utility Index scores following one month of therapy (delta mean Asthma Symptom Utility Index; c.[935G>A]+[935G] = 0.02±0.01, p=1.0; c.[935G]+[935G] = 1.0±0.3, p<0.0001). Conclusions Together these observations suggest that the genetics of SLCO2B1 may be an important variable in

  9. Cloning and characterization of a novel human hepatocyte transcription factor, hB1F, which binds and activates enhancer II of hepatitis B virus.

    PubMed

    Li, M; Xie, Y H; Kong, Y Y; Wu, X; Zhu, L; Wang, Y

    1998-10-30

    Enhancer II (ENII) of hepatitis B virus (HBV) is one of the essential cis-elements for the transcriptional regulation of HBV gene expression. Its function is highly liver-specific, suggesting that liver-enriched transcriptional factors play critical roles in regulating the activity of ENII. In this report, a novel hepatocyte transcription factor, which binds specifically to the B1 region (AACGACCGACCTTGAG) within the major functional unit (B unit) of ENII, has been cloned from a human liver cDNA library by yeast one-hybrid screening, and demonstrated to trans-activate ENII via the B1 region. We named this factor hB1F, for human B1-binding factor. Amino acid analysis revealed this factor structurally belongs to nuclear receptor superfamily. Based on the sequence similarities, hB1F is characterized to be a novel human homolog of the orphan receptor fushi tarazu factor I (FTZ-F1). Using reverse transcription-polymerase chain reaction, a splicing isoform of hB1F (hB1F-2) was identified, which has an extra 46 amino acid residues in the A/B region. Examination of the tissue distribution has revealed an abundant 5.2-kilobase transcript of hB1F is present specifically in human pancreas and liver. Interestingly, an additional transcript of 3.8 kilobases was found to be present in hepatoma cells HepG2. Fluorescent in situ hybridization has mapped the gene locus of hB1F to the region q31-32.1 of human chromosome 1. Altogether, this study provides the first report that a novel human homolog of FTZ-F1 binds and regulates ENII of HBV. The potential roles of this FTZ-F1 homolog in tissue-specific gene regulation, in embryonic development, as well as in liver carcinogenesis are discussed. PMID:9786908

  10. Modulation of aflatoxin B1-mediated genotoxicity in primary cultures of human hepatocytes by diindolylmethane, curcumin, and xanthohumols.

    PubMed

    Gross-Steinmeyer, Kerstin; Stapleton, Patricia L; Tracy, Julia H; Bammler, Theo K; Strom, Stephen C; Buhler, Donald R; Eaton, David L

    2009-12-01

    This study employed cultured human primary hepatocytes to investigate the ability of the putative chemopreventive phytochemicals curcumin (CUR), 3,3'-diindolylmethane (DIM), isoxanthohumol (IXN), or 8-prenylnaringenin (8PN) to reduce DNA adduct formation of the hepatocarcinogen aflatoxin B1 (AFB). Following 48 h of pretreatment, DIM and 8PN significantly increased AFB-DNA adduct levels, whereas CUR and IXN had no effect. DIM greatly enhanced the transcriptional expression of cytochrome P450 (CYP) 1A1 and CYP1A2 mRNA. Glutathione S-transferase mRNAs were not increased by any of the treatments. In vitro enzyme activity assays demonstrated that 8PN and DIM, but not CUR or IXN, inhibited human CYP1A1, CYP1A2, and CYP3A4 activities. To distinguish between treatment effects on transcription versus direct effects on enzyme activity for DIM, we evaluated the effects of pretreatment alone (transcriptional activation) versus cotreatment alone (enzyme inhibition). The results demonstrated that effects on gene expression, but not catalytic activity, are responsible for the observed effects of DIM on AFB-DNA adduct formation. The increase in AFB-DNA damage following DIM treatment may be explained through its substantial induction of CYP1A2 and/or its downregulation of GSTM1, both of which were significant. The increase in DNA damage by DIM raises potential safety risks for dietary supplements of DIM and its precursor indole-3-carbinol. PMID:19770484

  11. Role of DAX-1 (NR0B1) and steroidogenic factor-1 (NR5A1) in human adrenal function.

    PubMed

    El-Khairi, Ranna; Martinez-Aguayo, Alejandro; Ferraz-de-Souza, Bruno; Lin, Lin; Achermann, John C

    2011-01-01

    The nuclear receptor transcription factors DAX-1 (NR0B1) and SF-1 (NR5A1) regulate many aspects of adrenal and reproductive development and function. Disruption of the genes encoding these factors can be associated with pediatric adrenal disease. DAX-1 mutations are classically associated with X-linked adrenal hypoplasia congenita, hypogonadotropic hypogonadism and impaired spermatogenesis. However, other phenotypes are also being reported, such as isolated mineralocorticoid insufficiency, premature sexual development, primary adrenal insufficiency in a 46, XX patient and late-onset X-linked adrenal hypoplasia congenita and/or hypogonadotropic hypogonadism. SF-1 mutations have also been associated with primary adrenal insufficiency, together with 46, XY disorders of sex development. However it is emerging that SF-1 changes are a relatively rare cause of primary adrenal failure in humans, and most individuals with SF-1 mutations have a spectrum of 46, XY disorders of sex development phenotypes. These conditions range from 46, XY females with streak gonads and müllerian structures, through children with ambiguous genitalia and inguinal testes, to severe penoscrotal hypospadias with undescended testes. Therefore, the human gonad appears to be more sensitive than the adrenal gland to loss of SF-1 function. This review will focus on the expanding range of phenotypes associated with DAX-1 and SF-1 mutations. PMID:21164257

  12. DWD HYPERSENSITIVE TO UV-B 1 is negatively involved in UV-B mediated cellular responses in Arabidopsis.

    PubMed

    Kim, Sang-Hoon; Kim, Hani; Seo, Kyoung-In; Kim, Soon-Hee; Chung, Sunglan; Huang, Xi; Yang, Panyu; Deng, Xing Wang; Lee, Jae-Hoon

    2014-12-01

    Among T-DNA insertion mutants of various cullin4-RING ubiquitin E3 ligase (CRL4) substrate receptors, one mutant that exhibits enhanced sensitivity in response to ultraviolet-B (UV-B) illumination has been isolated and its corresponding gene has been named DWD HYPERSENSITIVE TO UV-B 1 (DHU1) in Arabidopsis. dhu1 lines showed much shorter hypocotyls than those in wild type under low doses of UV-B. Other light did not alter hypocotyl growth patterns in dhu1, indicating the hypersensitivity of dhu1 is restricted to UV-B. DHU1 was upregulated by more than two times in response to UV-B application of 1.5 μmol m(-2) s(-1), implying its possible involvement in UV-B signaling. DHU1 is able to bind to DDB1, an adaptor of CRL4; accordingly, DHU1 is thought to act as a substrate receptor of CRL4. Microarray data generated from wild-type and dhu1 under low doses of UV-B revealed that 209 or 124 genes were upregulated or downregulated by more than two times in dhu1 relative to wild type, respectively. About 23.4 % of the total upregulated genes in dhu1 were upregulated by more than five times in response to UV-B based on the AtGenExpress Visualization Tool data, while only about 1.4 % were downregulated to the same degree by UV-B, indicating that loss of DHU1 led to the overall enhancement of the upregulation of UV-B inducible genes. dhu1 also showed altered responsiveness under high doses of UV-B. Taken together, these findings indicate that DHU1 is a potent CRL4 substrate receptor that may function as a negative regulator of UV-B response in Arabidopsis. PMID:25193399

  13. Resistance Factor-Mediated Spectinomycin Resistance

    PubMed Central

    Smith, David H.; Janjigian, J. A.; Prescott, Naomi; Anderson, Porter W.

    1970-01-01

    Of 100 natural isolates of drug-resistant enteric bacteria, 51 were resistant to spectinomycin (Spc) and 46 contained transferable R factors mediating Spc resistance. All SpcR R factors mediated streptomycin and bluensomycin resistance and were fi+ type. Extracts of R-SpcR strains adenylated Spc, dihydrospectinomycin, actinamine, streptomycin, and bluensomycin in vitro in the presence of adenosine triphosphate and Mg++. Results of genetic and biochemical studies support the hypothesis that these reactions are mediated by a single enzyme. PMID:16557684

  14. The role of NF-κB-1 and NF-κB-2-mediated resistance to apoptosis in lymphomas

    PubMed Central

    Bernal-Mizrachi, Leon; Lovly, Christine M.; Ratner, Lee

    2006-01-01

    The NF-κB pathways have been implicated in tumorigenesis in several lymphoid malignancies, including non-Hodgkin's and Hodgkin's lymphomas. However, the antiapoptotic functions and the mechanism responsible for signaling through each NF-κB pathway remain to be elucidated. In the current study, lymphoma cell lines with constitutively active NF-κB were found to be resistant to inducers of the extrinsic and intrinsic apoptosis pathways. Resistance to cell death resulted from blocks early and late in the apoptosis cascade. Several NF-κB target genes were overexpressed in these cell lines, including Bcl-xL, Fas-associated death domain-like IL-1β-converting enzyme inhibitor protein, cellular inhibitor of apoptosis, and X inhibitor of apoptosis. Inhibition of the canonical or noncanonical NF-κB pathways with small interfering RNAs or adenovirus expressing a stable form of inhibitor of NF-κB (IκB) enhanced sensitivity to apoptosis inducers and resulted in lower levels of Bcl-xL or Fas-associated death domain-like IL-1β-converting enzyme inhibitor protein, cellular inhibitor of apoptosis, and X inhibitor of apoptosis. These findings demonstrate an important role of both NF-κB pathways in mediating resistance to apoptosis and distinctive antiapoptotic downstream target gene profiles responsible for this effect. PMID:16751281

  15. TNFα-mediated Hsd11b1 binding of NF-κB p65 is associated with suppression of 11β-HSD1 in muscle

    PubMed Central

    Doig, Craig L; Bashir, Jamila; Zielinska, Agnieszka E; Cooper, Mark S; Stewart, Paul M; Lavery, Gareth G

    2014-01-01

    The activity of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive cortisone (11-dehydrocorticosterone (11-DHC)) (in mice) into the active glucocorticoid (GC) cortisol (corticosterone in mice), can amplify tissue GC exposure. Elevated TNFα is a common feature in a range of inflammatory disorders and is detrimental to muscle function in diseases such as rheumatoid arthritis and chronic obstructive pulmonary disease. We have previously demonstrated that 11β-HSD1 activity is increased in the mesenchymal stromal cells (MSCs) by TNFα treatment and suggested that this is an autoregulatory anti-inflammatory mechanism. This upregulation was mediated by the P2 promoter of the Hsd11b1 gene and was dependent on the NF-κB signalling pathway. In this study, we show that in contrast to MSCs, in differentiated C2C12 and primary murine myotubes, TNFα suppresses Hsd11b1 mRNA expression and activity through the utilization of the alternative P1 promoter. As with MSCs, in response to TNFα treatment, NF-κB p65 was translocated to the nucleus. However, ChIP analysis demonstrated that the direct binding was seen at position −218 to −245 bp of the Hsd11b1 gene's P1 promoter but not at the P2 promoter. These studies demonstrate the existence of differential regulation of 11β-HSD1 expression in muscle cells through TNFα/p65 signalling and the P1 promoter, further enhancing our understanding of the role of 11β-HSD1 in the context of inflammatory disease. PMID:24413279

  16. CD100 and plexins B2 and B1 mediate monocyte-endothelial cell adhesion and might take part in atherogenesis.

    PubMed

    Luque, Maria Carolina A; Gutierrez, Paulo S; Debbas, Victor; Kalil, Jorge; Stolf, Beatriz S

    2015-10-01

    Leukocyte migration is essential for the function of the immune system. Their recruitment from the vessels to the tissues involves sequential molecular interactions between leukocytes and endothelial cells (ECs). Many adhesion molecules involved in this process have already been described. However, additional molecules may be important in this interaction, and here we explore the potential role for CD100 and plexins in monocyte-EC binding. CD100 was shown to be involved in platelet-endothelial cell interaction, an important step in atherogenesis and thrombus formation. In a recent work we have described CD100 expression in monocytes and in macrophages and foam cells of human atherosclerotic plaques. In the present work, we have identified plexin B2 as a putative CD100 receptor in these cells. We have detected CD100 expression in the endothelium as well as in in vitro cultured endothelial cells. Blocking of CD100, plexin B1 and/or B2 in adhesion experiments have shown that both CD100 and plexins act as adhesion molecules involved in monocyte-endothelial cell binding. This effect may be mediated by CD100 expressed in both cell types, probably coupled to the receptors endothelial plexin B1 and monocytic plexin B2. These results can bring new insights about a possible biological activity of CD100 in monocyte adhesion and atherosclerosis, as well as a future candidate for targeting therapeutics. PMID:26275342

  17. Transforming growth factor-B1 and matrix metalloproteinase-7 promoter variants induce risk for Helicobacter pylori-associated gastric precancerous lesions.

    PubMed

    Achyut, B R; Ghoshal, Uday C; Moorchung, Nikhil; Mittal, Balraj

    2009-06-01

    The expression of growth factors, proteolytic enzymes, fibrogenic factors, and cytokines is altered in the Helicobacter pylori-infected gastric mucosa. Therefore, we aimed to evaluate the association of functional promoter variants of transforming growth factor (TGF)-B1 and matrix metalloproteinase (MMP)-7 genes with gastritis and gastric precancerous lesions. After upper gastrointestinal endoscopy, a total of 130 rapid urease test-positive patients with nonulcer dyspepsia were examined for H. pylori infection using modified Giemsa stain and IgG anti-CagA ELISA. All patients and 200 asymptomatic controls were genotyped for TGF-B1 (-509 C>T) and MMP-7 (-181 A>G) substitutions using PCR-RFLP. The genotype and allele frequencies of TGF-B1 and MMP-7 polymorphisms did not differ between patients and controls (p > 0.05). However, the CagA-positive patients with TGF-B1 -509 T allele had higher risk for gastric atrophy (p = 0.026, odds ratio [OR] = 2.38) and lymphoid follicle development (p = 0.028, OR = 2.29). In addition, CagA-positive patients carrying MMP-7 -181 G allele had risk for lymphoid follicle formation (p = 0.027, OR = 2.30). Thus, the present study revealed significant association of functional MMP-7 and TGF-B1 gene variants toward susceptibility to H. pylori-induced precancerous gastric lesions. PMID:19317620

  18. Transforming growth factor-beta 1 (TGF-B1) liberation from its latent complex during embryo implantation and its regulation by estradiol in mouse.

    PubMed

    Maurya, Vineet Kumar; Jha, Rajesh Kumar; Kumar, Vijay; Joshi, Anubha; Chadchan, Sangappa; Mohan, Jasna Jagan; Laloraya, Malini

    2013-10-01

    Transforming growth factor-beta (TGF-B) plays an important role in embryo implantation; however, TGF-B requires liberation from its inactive latent forms (i.e., large latent TGF-B complex [LLC] and small latent TGF-B complex [SLC]) to its biologically active (i.e., monomer or dimer) forms in order to act on its receptors (TGF-BRs), which in turn activate SMAD2/3. Activation of TGF-B1 from its latent complexes in the uterus is not yet deciphered. We investigated uterine latent TGF-B1 complex and its biologically active form during implantation, decidualization, and delayed implantation. Our study, utilizing nonreducing SDS-PAGE followed by Western blotting and immunoblotting with TGF-B1, LTBP1, and latency-associated peptide, showed the presence of LLC and SLC in the uterine extracellular matrix and plasma membranous protein fraction during stages of the implantation period. A biologically active form of TGF-B1 (~17-kDa monomer) was highly elevated in the uterine plasma membranous compartment at the peri-implantation stage (implantation and nonimplantation sites). Administration of hydroxychloroquine (an inhibitor of pro-TGF-B processing) at the preimplantation stage was able to block the liberation of biologically active TGF-B1 from its latent complex at the postimplantation stage; as a consequence, the number of implantation sites was reduced at Day 5 (1000 h), as was the number of fetuses at Day 13. The inhibition of TGF-B1 showed reduced levels of phosphorylated SMAD3. Further, the delayed-implantation mouse model showed progesterone and estradiol coordination to release the active TGF-B1 form from its latent complex in the receptive endometrium. This study demonstrates the importance of liberation of biologically active TGF-B1 during the implantation period and its regulation by estradiol. PMID:23926286

  19. Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay

    PubMed Central

    2010-01-01

    Background In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. Results In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1's role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3' UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. Conclusions Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels. PMID:20946641

  20. 6β-Hydroxytestosterone, a Cytochrome P450 1B1-Testosterone-Metabolite, Mediates Angiotensin II-Induced Renal Dysfunction in Male Mice.

    PubMed

    Pingili, Ajeeth K; Thirunavukkarasu, Shyamala; Kara, Mehmet; Brand, David D; Katsurada, Akemi; Majid, Dewan S A; Navar, L Gabriel; Gonzalez, Frank J; Malik, Kafait U

    2016-05-01

    6β-Hydroxytestosterone, a cytochrome P450 1B1-derived metabolite of testosterone, contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the maintenance of renal homeostasis, development of hypertension, and end-organ damage, this study was conducted to determine the contribution of 6β-hydroxytestosterone to angiotensin II actions on water consumption and renal function in maleCyp1b1(+/+)andCyp1b1(-/-)mice. Castration ofCyp1b1(+/+)mice orCyp1b1(-/-)gene disruption minimized the angiotensin II-induced increase in water consumption, urine output, proteinuria, and sodium excretion and decreases in urine osmolality. 6β-Hydroxytestosterone did not alter angiotensin II-induced increases in water intake, urine output, proteinuria, and sodium excretion or decreases in osmolality inCyp1b1(+/+)mice, but restored these effects of angiotensin II inCyp1b1(-/-)or castratedCyp1b1(+/+)mice.Cyp1b1gene disruption or castration prevented angiotensin II-induced renal fibrosis, oxidative stress, inflammation, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, and angiotensin-converting enzyme. 6β-Hydroxytestosterone did not alter angiotensin II-induced renal fibrosis, inflammation, oxidative stress, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, or angiotensin-converting enzyme inCyp1b1(+/+)mice. However, inCyp1b1(-/-)or castratedCyp1b1(+/+)mice, it restored these effects of angiotensin II. These data indicate that 6β-hydroxytestosterone contributes to increased thirst, impairment of renal function, and end-organ injury associated with angiotensin II-induced hypertension in male mice and that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension in male mice. PMID:26928804

  1. Loss of endophilin-B1 exacerbates Alzheimer's disease pathology.

    PubMed

    Wang, David B; Kinoshita, Yoshito; Kinoshita, Chizuru; Uo, Takuma; Sopher, Bryce L; Cudaback, Eiron; Keene, C Dirk; Bilousova, Tina; Gylys, Karen; Case, Amanda; Jayadev, Suman; Wang, Hong-Gang; Garden, Gwenn A; Morrison, Richard S

    2015-07-01

    Endophilin-B1, also known as Bax-interacting factor 1 (Bif-1, and encoded by SH3GLB1), is a multifunctional protein involved in apoptosis, autophagy and mitochondrial function. We recently described a unique neuroprotective role for neuron-specific alternatively spliced isoforms of endophilin-B1. To examine whether endophilin-B1-mediated neuroprotection could be a novel therapeutic target for Alzheimer's disease we used a double mutant amyloid precursor protein and presenilin 1 (APPswe/PSEN1dE9) mouse model of Alzheimer's disease and observed that expression of neuron-specific endophilin-B1 isoforms declined with disease progression. To determine if this reduction in endophilin-B1 has a functional role in Alzheimer's disease pathogenesis, we crossed endophilin-B1(-/-) mice with APPswe/PSEN1dE9 mice. Deletion of endophilin-B1 accelerated disease onset and progression in 6-month-old APPswe/PSEN1dE9/endophilin-B1(-/-) mice, which showed more plaques, astrogliosis, synaptic degeneration, cognitive impairment and mortality than APPswe/PSEN1dE9 mice. In mouse primary cortical neuron cultures, overexpression of neuron-specific endophilin-B1 isoforms protected against amyloid-β-induced apoptosis and mitochondrial dysfunction. Additionally, protein and mRNA levels of neuron-specific endophilin-B1 isoforms were also selectively decreased in the cerebral cortex and in the synaptic compartment of patients with Alzheimer's disease. Flow sorting of synaptosomes from patients with Alzheimer's disease demonstrated a negative correlation between amyloid-β and endophilin-B1 levels. The importance of endophilin-B1 in neuronal function was further underscored by the development of synaptic degeneration and cognitive and motor impairment in endophilin-B1(-/-) mice by 12 months. Our findings suggest that endophilin-B1 is a key mediator of a feed-forward mechanism of Alzheimer's disease pathogenesis where amyloid-β reduces neuron-specific endophilin-B1, which in turn enhances amyloid

  2. RNAi-mediated knockdown of the Halloween gene spookiest (CYP307B1) impedes adult eclosion in the western tarnished plant bug, Lygus hesperus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecdysteroids play a critical role in coordinating insect growth, development, and reproduction. A suite of cytochrome P450 monooxygenases coded by what are collectively termed Halloween genes mediate ecdysteroid biosynthesis. In this study, we describe cloning and RNAi-mediated knockdown of the CYP3...

  3. Inactivation of Serpulina hyodysenteriae flaA1 and flaB1 periplasmic flagellar genes by electroporation-mediated allelic exchange.

    PubMed Central

    Rosey, E L; Kennedy, M J; Petrella, D K; Ulrich, R G; Yancey, R J

    1995-01-01

    Serpulina hyodysenteriae, the etiologic agent of swine dysentery, contains complex periplasmic flagella which are composed of multiple class A and class B polypeptides. To examine the role these proteins play in flagellar synthesis, structure, and function and to develop strains which may provide insight into the importance of motility in the etiology of this pathogen, we constructed specific periplasmic flagellar mutations in S. hyodysenteriae B204. The cloned flaA1 and flaB1 genes were disrupted by replacement of internal fragments with chloramphenicol and/or kanamycin gene cassettes. Following delivery of these suicide plasmids into S. hyodysenteriae, homologous recombination and allelic exchange at the targeted chromosomal flaA1 and flaB1 genes was verified by PCR, sequence, and Southern analysis. The utility of a chloramphenicol resistance gene cassette for targeted gene disruption was demonstrated and found more amenable than kanamycin as a selective marker in S. hyodysenteriae. Immunoblots of cell lysates of the flagellar mutants with antiserum raised against purified FlaA or FlaB confirmed the absence of the corresponding sheath or core protein. Both mutations selectively abolished expression of the targeted gene without affecting synthesis of the other flagellar polypeptide. flaA1 and flaB1 mutant strains exhibited altered motility in vitro and were less efficient in movement through a liquid medium. Paradoxically, isogenic strains containing specifically disrupted flaA1 or flaB1 alleles were capable of assembling periplasmic flagella that were morphologically normal as evidenced by electron microscopy. This is the first report of specific inactivation of a motility-associated gene in spirochetes. PMID:7592350

  4. Activity-dependent and graded BACE1 expression in the olfactory epithelium is mediated by the retinoic acid metabolizing enzyme CYP26B1.

    PubMed

    Login, Hande; Butowt, Rafal; Bohm, Staffan

    2015-07-01

    It is well established that environmental influences play a key role in sculpting neuronal connectivity in the brain. One example is the olfactory sensory map of topographic axonal connectivity. While intrinsic odorant receptor signaling in olfactory sensory neurons (OSN) determines anterior-posterior counter gradients of the axonal guidance receptors Neuropilin-1 and Plexin-A1, little is known about stimulus-dependent gradients of protein expression, which correlates with the functional organization of the olfactory sensory map along its dorsomedial (DM)-ventrolateral (VL) axis. Deficiency of the Alzheimer's β-secretase BACE1, which is expressed in a DM(low)-VL(high) gradient, results in OSN axon targeting errors in a DM > VL and gene dose-dependent manner. We show that expression of BACE1 and the all-trans retinoic acid (RA)-degrading enzyme Cyp26B1 form DM-VL counter gradients in the olfactory epithelium. Analyses of mRNA and protein levels in OSNs after naris occlusion, in mice deficient in the olfactory cyclic nucleotide-gated channel and in relation to onset of respiration, show that BACE1 and Cyp26B1 expression in OSNs inversely depend on neuronal activity. Overexpression of a Cyp26B1 or presence of a dominant negative RA receptor transgene selectively in OSNs, inhibit BACE1 expression while leaving the DM(low)-VL(high) gradient of the axonal guidance protein Neuropilin-2 intact. We conclude that stimulus-dependent neuronal activity can control the expression of the RA catabolic enzyme Cyp26B1 and downstream genes such as BACE1. This result is pertinent to an understanding of the mechanisms by which a topographic pattern of connectivity is achieved and modified as a consequence of graded gene expression and sensory experience. PMID:24797530

  5. Thiamine (Vitamin B1)

    MedlinePlus

    ... B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin/niacinamide), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin ... in appropriate amounts, although rare allergic reactions and skin irritation have occurred. It is also LIKELY SAFE ...

  6. Vitamin B1

    MedlinePlus

    ... Flash 6 » Sound: No High score: Yes Credits » Chicken Farm Game - Why do we need vitamin B1? - ... save lives. You have one minute to feed chickens suffering from beriberi with the correct food to ...

  7. The involvement of intracellular Ca2+ in 5-HT1B/1D receptor-mediated contraction of the rabbit isolated renal artery

    PubMed Central

    Hill, P B; Dora, K A; Hughes, A D; Garland, C J

    2000-01-01

    5-Hydroxytryptamine1B/1D (5-HT1B/1D) receptor coupling to contraction was investigated in endothelium-denuded rabbit isolated renal arteries, by simultaneously measuring tension and intracellular [Ca2+], and tension in permeabilized smooth muscle cells.In intact arterial segments, 1 nM–10 μM 5-HT failed to induce contraction or increase the fura-2 fluorescence ratio (in the presence of 1 μM ketanserin and prazosin to block 5-HT2 and α1-adrenergic receptors, respectively). However, in vessels pre-exposed to either 20 mM K+ or 30 nM U46619, 5-HT stimulated concentration-dependent increases in both tension and intracellular [Ca2+].1 nM–10 μM U46619 induced concentration-dependent contractions. In the presence of nifedipine (0.3 and 1 μM) the maximal contraction to U46619 (10 μM) was reduced by around 70%. The residual contraction was abolished by the putative receptor operated channel inhibitor, SKF 96365 (2 μM).With 0.3 μM nifedipine present, 100 nM U46619 evoked similar contraction to 30 nM U46619 in the absence of nifedipine, but contraction to 5-HT (1 nM–10 μM) was abolished.In permeabilized arterial segments, 10 mM caffeine, 1 μM IP3 or 100 μM phenylephrine, each evoked transient contractions by releasing Ca2+ from intracellular stores, whereas 5-HT had no effect. In intact arterial segments pre-stimulated with 20 mM K+, 5-HT-evoked contractions were unaffected by 1 μM thapsigargin, which inhibits sarco- and endoplasmic reticulum calcium-ATPases.In vessels permeabilized with α-toxin and then pre-contracted with Ca2+ and GTP, 5-HT evoked further contraction, reflecting increased myofilament Ca2+-sensitivity.Contraction linked to 5-HT1B/1D receptor stimulation in the rabbit renal artery can be explained by an influx of external Ca2+ through voltage-dependent Ca2+ channels and sensitization of the contractile myofilaments to existing levels of Ca2+, with no release of Ca2+ from intracellular stores. PMID

  8. Sda1, a Cys2-His2 zinc finger transcription factor, is involved in polyol metabolism and fumonisin B1 production in Fusarium verticillioides.

    PubMed

    Malapi-Wight, Martha; Smith, Jonathon; Campbell, Jacquelyn; Bluhm, Burton H; Shim, Won-Bo

    2013-01-01

    The ubiquitous ascomycete Fusarium verticillioides causes ear rot and stalk rot of maize, both of which reduce grain quality and yield. Additionally, F. verticillioides produces the mycotoxin fumonisin B1 (FB1) during infection of maize kernels, and thus potentially compromises human and animal health. The current knowledge is fragmentary regarding the regulation of FB1 biosynthesis, particularly when considering interplay with environmental factors such as nutrient availability. In this study, SDA1 of F. verticillioides, predicted to encode a Cys-2 His-2 zinc finger transcription factor, was shown to play a key role in catabolizing select carbon sources. Growth of the SDA1 knock-out mutant (Δsda1) was completely inhibited when sorbitol was the sole carbon source and was severely impaired when exclusively provided mannitol or glycerol. Deletion of SDA1 unexpectedly increased FB1 biosynthesis, but reduced arabitol and mannitol biosynthesis, as compared to the wild-type progenitor. Trichoderma reesei ACE1, a regulator of cellulase and xylanase expression, complemented the F. verticillioides Δsda1 mutant, which indicates that Ace1 and Sda1 are functional orthologs. Taken together, the data indicate that Sda1 is a transcriptional regulator of carbon metabolism and toxin production in F. verticillioides. PMID:23844049

  9. Comparative study of in vitro prooxidative properties and genotoxicity induced by aflatoxin B1 and its laccase-mediated detoxification products.

    PubMed

    Zeinvand-Lorestani, Hamed; Sabzevari, Omid; Setayesh, Neda; Amini, Mohsen; Nili-Ahmadabadi, Amir; Faramarzi, Mohammad Ali

    2015-09-01

    In this paper, the enzymatic detoxification of aflatoxin B1 (AFB1) by laccase was studied, and the prooxidant properties and mutagenicity of the detoxification products were compared with those of AFB1. The optimal enzymatic reaction occurred in 0.1M of citrate buffer containing 20% DMSO at 35 °C, a pH of 4.5, and a laccase activity of 30 U mL(-1). After 2 d, sixty-seven percent of the toxic substrate was removed. The prooxidative properties of the detoxified products (27% versus 86%) and the mutagenicity were significantly decreased in comparison with the parent toxin. Unlike AFB1, which promoted metabolism-dependent genetic mutations by base-pair substitution, the detoxified products did not induce genotoxicity. Comparison of the Km values for AFB1 and riboflavin, a valuable food nutrient, indicated that laccase showed greater affinity for the toxin than for riboflavin. PMID:25876029

  10. [Vitamin B1 (thiamine)].

    PubMed

    Guilland, Jean-Claude

    2013-10-01

    Vitamin B1 (or thiamine) plays a key role in energy production from glucose. Since the main fuel of the nervous system is glucose, thiamine deficiency causes severe neurological symptoms. The biological exploration of vitamin B1 status is based on the measurement of thiamine pyrophosphate concentration or of the activity of a thiamine-dependent enzyme, transketolase, in erythrocytes. Severe deficiency states can be observed in chronic alcoholics, after protracted vomiting during pregnancy and after bariatric surgery. Mild deficiencies are common in the general population, but their clinical consequences are still unclear. PMID:24298824

  11. Factors Mediating the Adjustment to Involuntary Childlessness.

    ERIC Educational Resources Information Center

    Sabatelli, Ronald M.; And Others

    1988-01-01

    Explored stressors that accompany experience of involuntary childlessness and examined mediators of adjustment to infertility in married individuals. Data showed deleterious effect that coping with infertility can have on couple's sexual relationship. Findings suggest important relationship between self-esteem, marital commitment, and positive…

  12. Avermectin B1

    Integrated Risk Information System (IRIS)

    Avermectin B1 ; CASRN 65195 - 55 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  13. B-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The B-1 test stand, the largest of three test stands used for Space Shuttle Main Engine testing at Stennis Space Center, is a dual position engine stand that was modified for single-engine tests. This structure stands 295 feet tall or 407 feet tall with the crane fully extended.

  14. Impact of exercise and vitamin B1 intake on hippocampal brain-derived neurotrophic factor and spatial memory performance in a rat model of stress.

    PubMed

    E Dief, Abeer; M Samy, Doaa; I Dowedar, Fatma

    2015-01-01

    Chronic stress affects brain areas involved in learning and emotional responses through modulation of neurotropic factors or neurotransmitters. Therefore, we investigated the role of exercise and thiamine supplementation on spatial memory and on brain-derived neurotrophic factor (BDNF) and acetylcholine (Ach) content in the hippocampus of the stressed animals. Male Wistar rats were randomly assigned to 4 groups (8 rats/group): control group; stress group; swimming and stress group; and thiamine and stress group. All animals were assessed by a T maze for spatial memory or open field test for locomotion and anxiety. BDNF and Ach were estimated in the hippocampus. Chronic immobilization stress resulted in a significant decrease in BDNF and Ach levels in the hippocampus and impairment in spatial memory functions and decreased basal activity. However, either swimming training or thiamine intake for 30 d was proved to induce a significant increase both in BDNF and Ach in conjunction with improved performance in the T maze, marked anxiolytic effect and enhanced ambulation in the open field test, as compared to the stress group. Interestingly, swimming-exercised rats showed significantly higher levels of BDNF versus thiamine-receiving rats, while thiamine-receiving rats showed higher locomotor activity and less freezing behavior in the open field test compared to the swimming group. It was concluded that decreased BDNF and Ach after stress exposure could be a mechanism for the deleterious actions of stress on memory function; swimming exercise or vitamin B1 supplementation for 30 d was a protective tool to improve coping with chronic stress by modulating BDNF and Ach content along with enhancement of memory functions and motor activities. PMID:25994133

  15. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    PubMed Central

    Nandy, Debashis; Mukhopadhyay, Debabrata

    2011-01-01

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed. PMID:24212642

  16. A single-nucleotide polymorphism in serine-threonine kinase 11, the gene encoding liver kinase B1, is a risk factor for multiple sclerosis.

    PubMed

    Boullerne, Anne I; Skias, Demetrios; Hartman, Elizabeth M; Testai, Fernando D; Kalinin, Sergey; Polak, Paul E; Feinstein, Douglas L

    2015-01-01

    We identified a family in which five siblings were diagnosed with multiple sclerosis (MS) or clinically isolated syndrome. Several women in the maternal lineage have comorbidities typically associated with Peutz Jeghers Syndrome, a rare autosomal-dominant disease caused by mutations in the serine-threonine-kinase 11 (STK11) gene, which encodes liver kinase B1. Sequence analysis of DNA from one sibling identified a single-nucleotide polymorphism (SNP) within STK11 intron 5. This SNP (dbSNP ID: rs9282860) was identified by TaqMan polymerase chain reaction (PCR) assays in DNA samples available from two other siblings. Further screening was carried out in samples from 654 relapsing-remitting MS patients, 100 primary progressive MS patients, and 661 controls. The STK11-SNP has increased frequency in all female patients versus controls (odds ratio = 1.66, 95% CI = 1.05, 2.64, p = .032). The STK11-SNP was not associated with disease duration or onset; however, it was significantly associated with reduced severity (assessed by MS severity scores), with the lowest scores in patients who also harbored the HLA-DRB1*1501 allele. In vitro studies showed that peripheral blood mononuclear cells from members of the family were more sensitive to the mitochondrial inhibitor metformin than cells from MS patients with the major STK11 allele. The increased association of SNP rs9282860 in women with MS defines this variant as a genetic risk factor. The lower disease severity observed in the context of HLA-DRB1*1501 combined with limited in vitro studies raises the provocative possibility that cells harboring the STK11-SNP could be targeted by drugs which increase metabolic stress. PMID:25694554

  17. Activation of the human keratinocyte B1 bradykinin receptor induces expression and secretion of metalloproteases 2 and 9 by transactivation of epidermal growth factor receptor.

    PubMed

    Matus, Carola E; Ehrenfeld, Pamela; Pavicic, Francisca; González, Carlos B; Concha, Miguel; Bhoola, Kanti D; Burgos, Rafael A; Figueroa, Carlos D

    2016-09-01

    The B1 bradykinin receptor (BDKRB1) is a component of the kinin cascade localized in the human skin. Some of the effects produced by stimulation of BDKRB1 depend on transactivation of epidermal growth factor receptor (EGFR), but the mechanisms involved in this process have not been clarified yet. The primary purpose of this study was to determine the effect of a BDKRB1 agonist on wound healing in a mouse model and the migration and secretion of metalloproteases 2 and 9 from human HaCaT keratinocytes and delineate the signalling pathways that triggered their secretion. Although stimulation of BDKRB1 induces weak chemotactic migration of keratinocytes and wound closure in an in vitro scratch-wound assay, the BDKRB1 agonist improved wound closure in a mouse model. BDKRB1 stimulation triggers synthesis and secretion of both metalloproteases, effects that depend on the activity of EGFR and subsequent phosphorylation of ERK1/2 and p38 mitogen-activated protein kinases and PI3K/Akt. In the mouse model, immunoreactivity for both gelatinases was concentrated around wound borders. EGFR transactivation by BDKRB1 agonist involves Src kinases family and ADAM17. In addition to extracellular matrix degradation, metalloproteases 2 and 9 regulate cell migration and differentiation, cell functions that are associated with the role of BDKRB1 in keratinocyte differentiation. Considering that BDKRB1 is up-regulated by inflammation and/or by cytokines that are abundant in the inflammatory milieu, more stable BDKRB1 agonists may be of therapeutic value to modulate wound healing. PMID:27093919

  18. Effect of combined administration of transforming growth factor-b1 and insulin-like growth factor I on the mechanical properties of a patellar tendon defect model in rabbits.

    PubMed

    Lyras, Dimitrios N; Kazakos, Konstantinos; Verettas, Dionysios; Chronopoulos, Efstathios; Folaranmi, Semiu; Agrogiannis, George

    2010-06-01

    The aim of this study was to test the hypothesis that combined administration of TGF-b1 and IGF-I in a patellar tendon defect model could enhance the mechanical properties of the healed tendon. Twenty four New Zealand white rabbits were used for this purpose. In each animal, the right knee was used for the application of the growth factors, whereas the left knee served as an untreated control. The growth factors were mixed with fibrin sealant as a delivery vehicle. Two groups of rabbits were sacrificed after 2 weeks and 6 weeks respectively. Application of the growth factors resulted in a significant increase in force at failure, ultimate stress, stiffness, and energy uptake at 2 weeks, whereas none of the parameters revealed any significant difference between the two groups at 6 weeks. This study provides valuable information on the effect of the two growth factors on this patellar tendon defect model. PMID:20698461

  19. Associations of serum aflatoxin B1-lysine adduct level with socio-demographic factors and aflatoxins intake from nuts and related nut products in Malaysia.

    PubMed

    Leong, Yin-Hui; Rosma, Ahmad; Latiff, Aishah A; Izzah, A Nurul

    2012-04-01

    Aflatoxins are one of the major risk factors in the multi-factorial etiology of human hepatocellular carcinoma. Therefore, the information on aflatoxins exposure is very important in the intervention planning in order to reduce the dietary intake of aflatoxins, especially among the children. This study investigated the relationship between aflatoxin B(1) (AFB(1)) lysine adduct levers in serum and socio-demographic factors and dietary intake of aflatoxins from nuts and nut products in Penang, Malaysia. A cross-sectional field study was conducted in five districts of Penang. A survey on socio-demographic characteristics was administered to 364 healthy adults from the three main ethnic groups (Malay, Chinese and Indian). A total of 170 blood samples were successfully collected and tested for the level of AFB(1)-lysine adduct. 97% of the samples contained AFB(1)-lysine adduct above the detection limit of 0.4 pg/mg albumin and ranged from 0.20 to 23.16 pg/mg albumin (mean±standard deviation=7.67±4.54 pg/mg albumin; median=7.12 pg/mg albumin). There was no significant association between AFB(1)-lysine adduct levels with gender, district, education level, household number and occupation when these socio-demographic characteristics were examined according to high or low levels of AFB(1)-lysine. However, participants in the age group of 31-50 years were 3.08 times more likely to have high AFB(1) levels compared to those aged between 18 and 30 years (P=0.026). Significant difference (P=0.000) was found among different ethnic groups. Chinese and Indian participants were 3.05 and 2.35 times more likely to have high AFB(1) levels than Malay. The result of AFB(1)-lysine adduct suggested that Penang adult population is likely to be exposed to AFB(1) but at a level of less than that needed to cause direct acute illness or death. PMID:22230243

  20. Boeing XF2B-1 (F2B-1)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Boeing XF2B-1 (F2B-1): Serving as the prototype for the F2B-1 shipboard fighter, the XF2B-1 differed visually in having a pointed spinner and an unbalanced rudder. Like many aircraft of its day, the Boeing model 69 was powered by a Pratt & Whitney Wasp radial engine.

  1. Loss of Ypk1, the yeast homolog to the human serum- and glucocorticoid-induced protein kinase, accelerates phospholipase B1-mediated phosphatidylcholine deacylation.

    PubMed

    Surlow, Beth A; Cooley, Benjamin M; Needham, Patrick G; Brodsky, Jeffrey L; Patton-Vogt, Jana

    2014-11-01

    Ypk1, the yeast homolog of the human serum- and glucocorticoid-induced kinase (Sgk1), affects diverse cellular activities, including sphingolipid homeostasis. We now report that Ypk1 also impacts the turnover of the major phospholipid, phosphatidylcholine (PC). Pulse-chase radiolabeling reveals that a ypk1Δ mutant exhibits increased PC deacylation and glycerophosphocholine production compared with wild type yeast. Deletion of PLB1, a gene encoding a B-type phospholipase that hydrolyzes PC, in a ypk1Δ mutant curtails the increased PC deacylation. In contrast to previous data, we find that Plb1 resides in the ER and in the medium. Consistent with a link between Ypk1 and Plb1, the levels of both Plb1 protein and PLB1 message are elevated in a ypk1Δ strain compared with wild type yeast. Furthermore, deletion of PLB1 in a ypk1Δ mutant exacerbates phenotypes associated with loss of YPK1, including slowed growth and sensitivity to cell wall perturbation, suggesting that increased Plb1 activity buffers against the loss of Ypk1. Because Plb1 lacks a consensus phosphorylation site for Ypk1, we probed other processes under the control of Ypk1 that might be linked to PC turnover. Inhibition of sphingolipid biosynthesis by the drug myriocin or through utilization of a lcb1-100 mutant results in increased PLB1 expression. Furthermore, we discovered that the increase in PLB1 expression observed upon inhibition of sphingolipid synthesis or loss of Ypk1 is under the control of the Crz1 transcription factor. Taken together, these results suggest a functional interaction between Ypk1 and Plb1 in which altered sphingolipid metabolism up-regulates PLB1 expression via Crz1. PMID:25258318

  2. B1 magnet harmonics

    SciTech Connect

    Barnes, P D

    2000-05-30

    During the B0 Overpass construction for the CDF detector at Fermilab, 33 B1 magnets were measured using a bucked tangential coil. Measurements were made on the midplane, at the centerline and at {+-} 1 inch horizontal displacement. Since the coil was only 62 inches long, measurements were made at four longitudinal positions. Because of the design of the Main Ring, it was sufficient to combine data from all positions and report the harmonic spectrum for the magnet as a whole. For modeling the Scrounge-atron, it is more useful to treat each measurement position separately. The author reports here an analysis of the harmonic spectra at each probe position, based on the original data.

  3. Secretome identification of immune cell factors mediating metastatic cell homing

    PubMed Central

    Aguado, Brian A.; Wu, Jia J.; Azarin, Samira M.; Nanavati, Dhaval; Rao, Shreyas S.; Bushnell, Grace G.; Medicherla, Chaitanya B.; Shea, Lonnie D.

    2015-01-01

    Metastatic cell homing is a complex process mediated in part by diffusible factors secreted from immune cells found at a pre-metastatic niche. We report on connecting secretomics and TRanscriptional Activity CEll aRray (TRACER) data to identify functional paracrine interactions between immune cells and metastatic cells as novel mediators of homing. Metastatic breast cancer mouse models were used to generate a diseased splenocyte conditioned media (D-SCM) containing immune cell secreted factors. MDA-MB-231 metastatic cell activity including cell invasion, migration, transendothelial migration, and proliferation were increased in D-SCM relative to control media. Our D-SCM secretome analysis yielded 144 secreted factor candidates that contribute to increased metastatic cell activity. The functional mediators of homing were identified using MetaCore software to determine interactions between the immune cell secretome and the TRACER-identified active transcription factors within metastatic cells. Among the 5 candidate homing factors identified, haptoglobin was selected and validated in vitro and in vivo as a key mediator of homing. Our studies demonstrate a novel systems biology approach to identify functional signaling factors associated with a cellular phenotype, which provides an enabling tool that complements large-scale protein identification provided by proteomics. PMID:26634905

  4. CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/β-Catenin Signaling via Sp1 Upregulation.

    PubMed

    Kwon, Yeo-Jung; Baek, Hyoung-Seok; Ye, Dong-Jin; Shin, Sangyun; Kim, Donghak; Chun, Young-Jin

    2016-01-01

    Cytochrome P450 1B1 (CYP1B1) is a major E2 hydroxylase involved in the metabolism of potential carcinogens. CYP1B1 expression has been reported to be higher in tumors compared to normal tissues, especially in hormone-related cancers including breast, ovary, and prostate tumors. To explore the role of CYP1B1 in cancer progression, we investigated the action of CYP1B1 in cells with increased CYP1B1 via the inducer 7,12-dimethylbenz[α]anthracene (DMBA) or an overexpression vector, in addition to decreased CYP1B1 via the inhibitor tetramethoxystilbene (TMS) or siRNA knockdown. We observed that CYP1B1 promoted cell proliferation, migration, and invasion in MCF-7 and MCF-10A cells. To understand its molecular mechanism, we measured key oncogenic proteins including β-catenin, c-Myc, ZEB2, and matrix metalloproteinases following CYP1B1 modulation. CYP1B1 induced epithelial-mesenchymal transition (EMT) and activated Wnt/β-catenin signaling via upregulation of CTNNB1, ZEB2, SNAI1, and TWIST1. Sp1, a transcription factor involved in cell growth and metastasis, was positively regulated by CYP1B1, and suppression of Sp1 expression by siRNA or DNA binding activity using mithramycin A blocked oncogenic transformation by CYP1B1. Therefore, we suggest that Sp1 acts as a key mediator for CYP1B1 action. Treatment with 4-hydroxyestradiol (4-OHE2), a major metabolite generated by CYP1B1, showed similar effects as CYP1B1 overexpression, indicating that CYP1B1 activity mediated various oncogenic events in cells. In conclusion, our data suggests that CYP1B1 promotes cell proliferation and metastasis by inducing EMT and Wnt/β-catenin signaling via Sp1 induction. PMID:26981862

  5. CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/β-Catenin Signaling via Sp1 Upregulation

    PubMed Central

    Kwon, Yeo-Jung; Baek, Hyoung-Seok; Ye, Dong-Jin; Shin, Sangyun; Kim, Donghak; Chun, Young-Jin

    2016-01-01

    Cytochrome P450 1B1 (CYP1B1) is a major E2 hydroxylase involved in the metabolism of potential carcinogens. CYP1B1 expression has been reported to be higher in tumors compared to normal tissues, especially in hormone-related cancers including breast, ovary, and prostate tumors. To explore the role of CYP1B1 in cancer progression, we investigated the action of CYP1B1 in cells with increased CYP1B1 via the inducer 7,12-dimethylbenz[α]anthracene (DMBA) or an overexpression vector, in addition to decreased CYP1B1 via the inhibitor tetramethoxystilbene (TMS) or siRNA knockdown. We observed that CYP1B1 promoted cell proliferation, migration, and invasion in MCF-7 and MCF-10A cells. To understand its molecular mechanism, we measured key oncogenic proteins including β-catenin, c-Myc, ZEB2, and matrix metalloproteinases following CYP1B1 modulation. CYP1B1 induced epithelial-mesenchymal transition (EMT) and activated Wnt/β-catenin signaling via upregulation of CTNNB1, ZEB2, SNAI1, and TWIST1. Sp1, a transcription factor involved in cell growth and metastasis, was positively regulated by CYP1B1, and suppression of Sp1 expression by siRNA or DNA binding activity using mithramycin A blocked oncogenic transformation by CYP1B1. Therefore, we suggest that Sp1 acts as a key mediator for CYP1B1 action. Treatment with 4-hydroxyestradiol (4-OHE2), a major metabolite generated by CYP1B1, showed similar effects as CYP1B1 overexpression, indicating that CYP1B1 activity mediated various oncogenic events in cells. In conclusion, our data suggests that CYP1B1 promotes cell proliferation and metastasis by inducing EMT and Wnt/β-catenin signaling via Sp1 induction. PMID:26981862

  6. Psychological, muscular and kinematic factors mediate performance under pressure.

    PubMed

    Cooke, Andrew; Kavussanu, Maria; McIntyre, David; Ring, Christopher

    2010-11-01

    It is well established that performance is influenced by pressure, but the underlying mechanisms of the pressure-performance relationship are poorly understood. To address this important issue, the current experiment evaluated psychological, physiological, and kinematic factors as mediators of the pressure-performance relationship. Psychological, physiological, and kinematic responses to three levels of competitive pressure were measured in 23 males and 35 females during a golf putting task. Pressure manipulations impaired putting performance. Self-reported anxiety, effort, and perceived pressure were increased. Heart rate, heart rate variability, muscle activity, and lateral clubhead acceleration were also elevated. Mediation analyses revealed that effort, muscle activity, and lateral acceleration partially mediated the decline in performance. Results confirmed that pressure elicits effects on performance through multiple pathways. PMID:20409012

  7. [The interactions between natural products and OATP1B1].

    PubMed

    Shi, Mei-zhi; Liu, Yu; Bian, Jia-lin; Jin, Meng; Gui, Chun-shan

    2015-07-01

    Organic anion transporting polypeptide 1B1 (OATP1B1) is an important liver-specific uptake transporter, which mediates transport of numerous endogenous substances and drugs from blood into hepatocytes. To identify and investigate potential modulators of OATP1B1 from natural products, the effect of 21 frequently used natural compounds and extracts on OATP1B1-mediated fluorescein methotrexate transport was studied by using Chinese hamster ovary cells stably expressing OATP1B1 (CHO-OATP1B1) in 96-well plates. This method could be used for the screening of large compound libraries. Our studies showed that some flavonoids (e.g., quercetin, quercitrin, rutin, chrysanthemum flavonoids and mulberrin) and triterpenoids (e.g., glycyrrhetinic acid and glycyrrhizic acid) were inhibitors of OATP1B1 with IC50 values less than 16 µmol · L(-1). The IC50 value of glycyrrhetinic acid on OATP1B1 was comparable to its blood concentration in clinics, indicating an OATPlB1-mediated drug-drug interaction could occur. Structure-activity relationship analysis showed that flavonoids had much higher inhibitory activity than their glycosides. Furthermore, the type and length of saccharides had a significant effect on their activity. In addition, we used OATP1B1 substrates fluvastatin and rosuvastatin as probe drugs to investigate the substrate-dependent effect of several natural compounds on the function of OATP1B1 in vitro. Our results demonstrated that the effect of these natural products on the function of OATPlB1 was substrate-dependent. In summary, this study would be conducive to predicting and avoiding potential OATP1B1-mediated drug-drug and drug-food interactions and thus provide the experimental basis and guidance for rational drug use. PMID:26552146

  8. Self-Organizing Map (SOM) and Support Vector Machine (SVM) Models for the Prediction of Human Epidermal Growth Factor Receptor (EGFR/ ErbB-1) Inhibitors.

    PubMed

    Kong, Yue; Qu, Dan; Chen, Xiaoyan; Gong, Ya-Nan; Yan, Aixia

    2016-01-01

    EGFR (ErbB-1/HER1) kinase plays an important role in cancer therapy. Two classification models were established to predict whether a compound is an inhibitor or a decoy of human EGFR (ErbR-1) by using Kohonen's self-organizing map (SOM) and support vector machine (SVM). A dataset containing 1248 ATP binding site inhibitors and 3090 decoys was collected and randomly divided into a training set (831 inhibitors and 2064 decoys) and a test set (417 inhibitors and 1029 decoys). The descriptors that represent molecular structures were calculated by software ADRIANA.Code. Thirteen significant descriptors including five global descriptors and eight 2D property autocorrelation descriptors were selected by Pearson correlation analysis and stepwise analysis. The prediction accuracies on training set and test set are 98.5% and 96.3% for SOM model, 99.0% and 97.0% for SVM model, respectively. Both of these two classification models have good performance on distinguishing EGFR inhibitors from decoys. PMID:27074760

  9. Pharmacological evidence that 5-HT1A/1B/1D, α2-adrenoceptors and D2-like receptors mediate ergotamine-induced inhibition of the vasopressor sympathetic outflow in pithed rats.

    PubMed

    Villamil-Hernández, Ma Trinidad; Alcántara-Vázquez, Oscar; Sánchez-López, Araceli; Gutiérrez-Lara, Erika J; Centurión, David

    2014-10-01

    The sympathetic nervous system that innervates the peripheral circulation is regulated by several mechanisms/receptors. It has been reported that prejunctional 5-HT1A, 5-HT1B, 5-HT1D, D2-like receptors and α2-adrenoceptors mediate the inhibition of the vasopressor sympathetic outflow in pithed rats. In addition, ergotamine, an antimigraine drug, displays affinity at the above receptors and may explain some of its adverse/therapeutic effects. Thus, the aims of this study were to investigate in pithed rats: (i) whether ergotamine produces inhibition of the vasopressor sympathetic outflow; and (ii) the major receptors involved in this effect. For this purpose, male Wistar pithed rats were pre-treated with gallamine (25 mg/kg; i.v.) and desipramine (50 µg/kg) and prepared to stimulate the vasopressor sympathetic outflow (T7-T9; 0.03-3 Hz) or to receive i.v. bolus of exogenous noradrenaline (0.03-3 µg/kg). I.v. continuous infusions of ergotamine (1 and 1.8 μg/kgmin) dose-dependently inhibited the vasopressor responses to sympathetic stimulation but not those to exogenous noradrenaline. The sympatho-inhibition elicited by 1.8 μg/kg min ergotamine was (i) unaffected by saline (1 ml/kg); (ii) partially antagonised by WAY 100635 (5-HT1A; 30 μg/kg) and rauwolscine (α2-adrenoceptor; 300 μg/kg), and (iii) dose-dependently blocked by GR 127935 (5-HT1B/1D; 100 and 300 μg/kg) or raclopride (D2-like; 300 and 1000 μg/kg), The above doses of antagonists did not modify per se the sympathetically-induced vasopressor responses. The above results suggest that ergotamine induces inhibition of the vasopressor sympathetic outflow by activation of prejunctional 5-HT1A, 5-HT1B/1D, α2-adrenoceptors and D2-like receptors in pithed rats. PMID:24975101

  10. A decade of transcription factor-mediated reprogramming to pluripotency.

    PubMed

    Takahashi, Kazutoshi; Yamanaka, Shinya

    2016-03-01

    The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors - octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) - initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery. PMID:26883003

  11. B-1a Lymphocytes Attenuate Insulin Resistance

    PubMed Central

    Shen, Lei; Chng, MH; Alonso, Michael N.; Yuan, Robert

    2015-01-01

    Obesity-associated insulin resistance, a common precursor of type 2 diabetes, is characterized by chronic inflammation of tissues, including visceral adipose tissue (VAT). Here we show that B-1a cells, a subpopulation of B lymphocytes, are novel and important regulators of this process. B-1a cells are reduced in frequency in obese high-fat diet (HFD)-fed mice, and EGFP interleukin-10 (IL-10) reporter mice show marked reductions in anti-inflammatory IL-10 production by B cells in vivo during obesity. In VAT, B-1a cells are the dominant producers of B cell–derived IL-10, contributing nearly half of the expressed IL-10 in vivo. Adoptive transfer of B-1a cells into HFD-fed B cell–deficient mice rapidly improves insulin resistance and glucose tolerance through IL-10 and polyclonal IgM-dependent mechanisms, whereas transfer of B-2 cells worsens metabolic disease. Genetic knockdown of B cell–activating factor (BAFF) in HFD-fed mice or treatment with a B-2 cell–depleting, B-1a cell–sparing anti-BAFF antibody attenuates insulin resistance. These findings establish B-1a cells as a new class of immune regulators that maintain metabolic homeostasis and suggest manipulation of these cells as a potential therapy for insulin resistance. PMID:25249575

  12. Boeing F3B-1

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Boeing F3B-1: While most Boeing F3B-1s served aboard the U. S. Navy aircraft carriers Lexington and Saratoga, this example flew in NACA hands at the Langley Memorial Aeronautical Laboratory in the late 1920's. Also known as the Boeing Model 77, the aircraft was powered by a Pratt & Whitney Wasp radial engine.

  13. B1 bradykinin receptors and sensory neurones.

    PubMed Central

    Davis, C. L.; Naeem, S.; Phagoo, S. B.; Campbell, E. A.; Urban, L.; Burgess, G. M.

    1996-01-01

    1. The location of the B1 bradykinin receptors involved in inflammatory hyperalgesia was investigated. 2. No specific binding of the B1 bradykinin receptor ligand [3H]-des-Arg10-kallidin was detected in primary cultures of rat dorsal root ganglion neurones, even after treatment with interleukin-1 beta (100 iu ml-1). 3. In dorsal root ganglion neurones, activation of B2 bradykinin receptors stimulated polyphosphoinositidase C. In contrast, B1 bradykinin receptor agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM) failed to activate polyphosphoinositidase C, even in neurones that had been treated with interleukin-1 beta (100 iu ml-1), prostaglandin E2 (1 microM) or prostaglandin I2 (1 microM). 4. Dorsal root ganglion neurones removed from rats (both neonatal and 14 days old) that had been pretreated with inflammatory mediators (Freund's complete adjuvant, or carrageenan) failed to respond to B1 bradykinin receptor selective agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM). 5. Bradykinin (25 nM to 300 nM) evoked ventral root responses when applied to peripheral receptive fields or central terminals of primary afferents in the neonatal rat spinal cord and tail preparation. In contrast, des-Arg9-bradykinin (50 nM to 500 nM) failed to evoke ventral root depolarizations in either control rats or in animals that developed inflammation following ultraviolet irradiation of the tail skin. 6. The results of the present study imply that the B1 bradykinin receptors that contribute to hypersensitivity in models of persistent inflammatory hyperalgesia are located on cells other than sensory neurones where they may be responsible for releasing mediators that sensitize or activate the nociceptors. PMID:8832074

  14. B-1 cells modulate the kinetics of wound-healing process in mice.

    PubMed

    Oliveira, H C; Popi, A F; Bachi, A L L; Nonogaki, S; Lopes, J D; Mariano, M

    2010-03-01

    Wound healing is a complex phenomenon whose mechanisms are not fully understood. Although inflammatory cells are recruited to the site of the lesion there are no reports concerning the participation of B lymphocytes in tissue repair. As demonstrated in our laboratory, B-1 cells migrate to a non-specific inflammatory focus and differentiate into a phagocyte. It has been reported that BALB/Xid mice are deficient in B-1 cells. Using this model, here we report that BALB/Xid mice have an increased inflammatory response, a delayed wound-healing process, a prominent neutrophilic infiltration of the lesion, and an increased neovascularization of the lesion as compared with BALB/c and BALB/Xid reconstituted with B-1 cells. The infiltration of B-1 cells into the wound was demonstrated. As B-1 cells secret and use interleukin 10 (IL-10) as an autocrine growth factor, the possible participation of this interleukin in the kinetics of wound healing was investigated. Results show that C57/BL6 IL-10 KO mice had an increased inflammatory response when compared with C57/BL6 and C57/BL6 IL-10 KO mice reconstituted with B-1 cells, thus suggesting that the observed effects of B-1 cells in the healing process is mediated by this interleukin. However, the mechanisms by which IL-10 influence these phenomena remain to be uncovered. PMID:19457571

  15. R Factor-Mediated Antibiotic Resistance in Serratia marcescens

    PubMed Central

    Cooksey, Robert C.; Thorne, Grace M.; Farrar, W. Edmund

    1976-01-01

    Nineteen of 39 multiresistant strains of Serratia marcescens isolated from clinical sources transferred antibiotic resistance to Escherichia coli or Klebsiella pneumoniae recipients. Marcesins and/or phage prevented effective resistance transfer to E. coli and attempts to select marcescin-resistant mutants of the E. coli recipient strain were unsuccessful. Transfer of resistance was demonstrated for all drugs tested except nalidixic acid. Approximately 90% of donors resistant to tobramycin, ampicillin, or carbenicillin transferred resistance to these drugs. High levels of transferred resistance (minimal inhibitory concentration, >2,500 μg/ml) were demonstrated particularly for ampicillin, carbenicillin, and kanamycin. Transmissibility of Serratia R factors was greatest between isogeneic strains of E. coli K-12. Comparative rates of spontaneous loss of R factor-mediated resistance indicated that Serratia R factors are less stable in E. coli and K. pneumoniae transcipients than in the indigenous hosts. PMID:791085

  16. Integrating toxin gene expression, growth and fumonisin B1 and B2 production by a strain of Fusarium verticillioides under different environmental factors

    PubMed Central

    Medina, Angel; Schmidt-Heydt, Markus; Cárdenas-Chávez, Diana L.; Parra, Roberto; Geisen, Rolf; Magan, Naresh

    2013-01-01

    The objective of this study was to integrate data on the effect of water activity (aw; 0.995–0.93) and temperature (20–35°C) on activation of the biosynthetic FUM genes, growth and the mycotoxins fumonisin (FB1, FB2) by Fusarium verticillioides in vitro. The relative expression of nine biosynthetic cluster genes (FUM1, FUM7, FUM10, FUM11, FUM12, FUM13, FUM14, FUM16 and FUM19) in relation to the environmental factors was determined using a microarray analysis. The expression was related to growth and phenotypic FB1 and FB2 production. These data were used to develop a mixed-growth-associated product formation model and link this to a linear combination of the expression data for the nine genes. The model was then validated by examining datasets outside the model fitting conditions used (35°C). The relationship between the key gene (FUM1) and other genes in the cluster (FUM11, FUM13, FUM9, FUM14) were examined in relation to aw, temperature, FB1 and FB2 production by developing ternary diagrams of relative expression. This model is important in developing an integrated systems approach to develop prevention strategies to control fumonisin biosynthesis in staple food commodities and could also be used to predict the potential impact that climate change factors may have on toxin production. PMID:23697716

  17. Relative Expression of Vitamin D Hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and Heterogeneity of Human Colorectal Cancer in Relation to Age, Gender, Tumor Location, and Malignancy: Results from Factor and Cluster Analysis.

    PubMed

    Brozek, Wolfgang; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S

    2012-01-01

    Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH)2D3 and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1a-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression. PMID:24213465

  18. Temporal Variation and Association of Aflatoxin B1 Albumin-Adduct Levels with Socio-Economic and Food Consumption Factors in HIV Positive Adults

    PubMed Central

    Jolly, Pauline E.; Akinyemiju, Tomi F.; Jha, Megha; Aban, Inmaculada; Gonzalez-Falero, Andrea; Joseph, Dnika

    2015-01-01

    The association between aflatoxin exposure and alteration in immune responses observed in humans suggest that aflatoxin could suppress the immune system and work synergistically with HIV to increase disease severity and progression to AIDS. No longitudinal study has been conducted to assess exposure to aflatoxin (AF) among HIV positive individuals. We examined temporal variation in AFB1 albumin adducts (AF-ALB) in HIV positive Ghanaians, and assessed the association with socioeconomic and food consumption factors. We collected socioeconomic and food consumption data for 307 HIV positive antiretroviral naive adults and examined AF-ALB levels at recruitment (baseline) and at six (follow-up 1) and 12 (follow-up 2) months post-recruitment, by age, gender, socioeconomic status (SES) and food consumption patterns. Generalized linear models were used to examine the influence of socioeconomic and food consumption factors on changes in AF-ALB levels over the study period, adjusting for other covariates. AF-ALB levels (pg/mg albumin) were lower at baseline (mean AF-ALB: 14.9, SD: 15.9), higher at six months (mean AF-ALB: 23.3, SD: 26.6), and lower at 12 months (mean AF-ALB: 15.3, SD: 15.4). Participants with the lowest SES had the highest AF-ALB levels at baseline and follow up-2 compared with those with higher SES. Participants who bought less than 20% of their food and who stored maize for less than two months had lower AF-ALB levels. In the adjusted models, there was a statistically significant association between follow up time and season (dry or rainy season) on AF-ALB levels over time (p = 0.04). Asymptomatic HIV-positive Ghanaians had high plasma AF-ALB levels that varied according to season, socioeconomic status, and food consumption patterns. Steps need to be taken to ensure the safety and security of the food supply for the population, but in particular for the most vulnerable groups such as HIV positive people. PMID:26633502

  19. B-1-cell subpopulations contribute differently to gut immunity.

    PubMed

    Roy, Bishnudeo; Agarwal, Shiwani; Brennecke, Anne-Margarete; Krey, Martina; Pabst, Oliver; Düber, Sandra; Weiss, Siegfried

    2013-08-01

    In mice, B-1 (B1a/B1b) cells are mainly located in the peritoneal cavity. B-1 cells are well known for their role in the early stages of Ab-mediated immune responses against pathogenic invasion as well as for the production of natural IgM antibodies. Although such B cells have been claimed to give rise to intestinal plasma cells producing IgA, a clear role of B-1 cells in IgA production in the gut-associated tissues is still not defined. Here, we employed the transgenic L2 mouse model characterized by the lack of B-2 cells and presence of B-1 cells as major B-cell subpopulation. The oligoclonality of the Ab repertoire in this mouse allowed us to take typical B1a cell VH sequences as indicators of the presence of IgM-producing B-1a cells in Peyer's patches as well as in lamina propria. However, amongst the IgAVH sequences recovered from the same tissues, none of the sequences showed B1a-cell specificity. Interestingly, all IgAVH sequences derived from the lamina propria of L2 mice displayed extensive numbers of nucleotide exchanges, indicating somatic hypermutation, and affinity maturation. This suggests that the contribution of natural unmutated IgA by B-1a cells to intestinal immunity is negligible. PMID:23677546

  20. Tissue factor and thrombin mediate myocardial ischemia-reperfusion injury.

    PubMed

    Chong, Albert J; Pohlman, Timothy H; Hampton, Craig R; Shimamoto, Akira; Mackman, Nigel; Verrier, Edward D

    2003-02-01

    Reperfusion of the ischemic heart is necessary to prevent irreversible injury of the myocardium, which leads to permanent organ dysfunction. However, reperfusion in itself leads to myocardial ischemia/reperfusion (I/R) injury, which is characterized by an acute inflammatory response mediated by activated inflammatory cells, chemokines, cytokines, and adhesion molecules. The molecular mechanisms of myocardial I/R injury are not completely known. Tissue factor (TF) and thrombin, two potent procoagulant and proinflammatory mediators, are recognized to play significant roles in myocardial I/R injury. To investigate the role of TF and thrombin in myocardial I/R injury, we used rabbit and murine in situ coronary artery ligation models. Increased TF mRNA, antigen, and activity were found in ischemic cardiomyocytes. Administration of an inhibitory antirabbit TF monoclonal antibody before or during the onset of ischemia resulted in a significant reduction in infarct size. Functional inhibition of thrombin with hirudin also reduced the infarct size. However, defibrinogenating rabbits with ancrod had no effect on infarct size, suggesting a requirement of thrombin generation but not fibrin deposition in myocardial I/R injury. PMID:12607707

  1. More Power to OATP1B1: An Evaluation of Sample Size in Pharmacogenetic Studies Using a Rosuvastatin PBPK Model for Intestinal, Hepatic, and Renal Transporter-Mediated Clearances.

    PubMed

    Emami Riedmaier, Ariane; Burt, Howard; Abduljalil, Khaled; Neuhoff, Sibylle

    2016-07-01

    Rosuvastatin is a substrate of choice in clinical studies of organic anion-transporting polypeptide (OATP)1B1- and OATP1B3-associated drug interactions; thus, understanding the effect of OATP1B1 polymorphisms on the pharmacokinetics of rosuvastatin is crucial. Here, physiologically based pharmacokinetic (PBPK) modeling was coupled with a power calculation algorithm to evaluate the influence of sample size on the ability to detect an effect (80% power) of OATP1B1 phenotype on pharmacokinetics of rosuvastatin. Intestinal, hepatic, and renal transporters were mechanistically incorporated into a rosuvastatin PBPK model using permeability-limited models for intestine, liver, and kidney, respectively, nested within a full PBPK model. Simulated plasma rosuvastatin concentrations in healthy volunteers were in agreement with previously reported clinical data. Power calculations were used to determine the influence of sample size on study power while accounting for OATP1B1 haplotype frequency and abundance in addition to its correlation with OATP1B3 abundance. It was determined that 10 poor-transporter and 45 intermediate-transporter individuals are required to achieve 80% power to discriminate the AUC0-48h of rosuvastatin from that of the extensive-transporter phenotype. This number was reduced to 7 poor-transporter and 40 intermediate-transporter individuals when the reported correlation between OATP1B1 and 1B3 abundance was taken into account. The current study represents the first example in which PBPK modeling in conjunction with power analysis has been used to investigate sample size in clinical studies of OATP1B1 polymorphisms. This approach highlights the influence of interindividual variability and correlation of transporter abundance on study power and should allow more informed decision making in pharmacogenomic study design. PMID:27385171

  2. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box

    SciTech Connect

    Liang Xin; Xu Ke; Xu Yufang; Liu Jianwen Qian Xuhong

    2011-10-01

    The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report here that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P{sub 2} promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research Highlights: > B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. > B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. > B1 induced significant increase of p53 binding to Bcl-2 P{sub 2} promoter TATA box.

  3. Design, synthesis and evaluation of small molecule imidazo[2,1-b][1,3,4]thiadiazoles as inhibitors of transforming growth factor-β type-I receptor kinase (ALK5).

    PubMed

    Patel, Harun M; Sing, Baljeet; Bhardwaj, Varun; Palkar, Mahesh; Shaikh, Mahamadhanif S; Rane, Rajesh; Alwan, Wesam S; Gadad, Andanappa K; Noolvi, Malleshappa N; Karpoormath, Rajshekhar

    2015-03-26

    A new series of imidazo[2,1-b][1,3,4]thiadiazoles 5(a-g), 6(a-g), 9(a-i) and 12(a-h) were synthesized as transforming growth factor-β (TGF-β) type I receptor (also known as activin receptor-like kinase 5 or ALK5) inhibitors. These compounds were evaluated for their ALK5 inhibitory activity in an enzyme assay and their TGF-β -induced Smad2/3 phosphorylation inhibitory activity in a cell-based assay. Compound 6d, 2-(5-((2-cyclopropyl-6-(4-fluorophenyl) imidazo [2,1-b][1,3,4]thiadiazol-5-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl) acetic acid, shows prominent ALK5 inhibition (IC50 = 0.0012 μM) and elective inhibition (91%) against the P38αkinase at10 μM. The binding mode of compound 6d by XP docking studies shows that it fits well into the active site cavity of ALK5 by forming broad and tight interactions. Lipinski's rule and in silico ADME pharmacokinetic parameters are within the acceptable range defined for human use thereby indicating their potential as a drug-like molecules. PMID:25234355

  4. Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks

    PubMed Central

    2011-01-01

    Background Transcriptional regulation by transcription factor (TF) controls the time and abundance of mRNA transcription. Due to the limitation of current proteomics technologies, large scale measurements of protein level activities of TFs is usually infeasible, making computational reconstruction of transcriptional regulatory network a difficult task. Results We proposed here a novel Bayesian non-negative factor model for TF mediated regulatory networks. Particularly, the non-negative TF activities and sample clustering effect are modeled as the factors from a Dirichlet process mixture of rectified Gaussian distributions, and the sparse regulatory coefficients are modeled as the loadings from a sparse distribution that constrains its sparsity using knowledge from database; meantime, a Gibbs sampling solution was developed to infer the underlying network structure and the unknown TF activities simultaneously. The developed approach has been applied to simulated system and breast cancer gene expression data. Result shows that, the proposed method was able to systematically uncover TF mediated transcriptional regulatory network structure, the regulatory coefficients, the TF protein level activities and the sample clustering effect. The regulation target prediction result is highly coordinated with the prior knowledge, and sample clustering result shows superior performance over previous molecular based clustering method. Conclusions The results demonstrated the validity and effectiveness of the proposed approach in reconstructing transcriptional networks mediated by TFs through simulated systems and real data. PMID:22166063

  5. Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74.

    PubMed

    Djudjaj, Sonja; Lue, Hongqi; Rong, Song; Papasotiriou, Marios; Klinkhammer, Barbara M; Zok, Stephanie; Klaener, Ole; Braun, Gerald S; Lindenmeyer, Maja T; Cohen, Clemens D; Bucala, Richard; Tittel, Andre P; Kurts, Christian; Moeller, Marcus J; Floege, Juergen; Ostendorf, Tammo; Bernhagen, Jürgen; Boor, Peter

    2016-06-01

    Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow-derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN. PMID:26453615

  6. Analysis of DAX1 (NR0B1) and steroidogenic factor-1 (SF1/Ad4BP, NR5A1) in children and adults with primary adrenal failure: ten years' experience

    PubMed Central

    Lin, Lin; Gu, Wen-Xia; Ozisik, Gokhan; To, Wing S.; Owen, Catherine J.; Jameson, J. Larry; Achermann, John C.

    2007-01-01

    Context Primary adrenal failure is a life-threatening condition that can be caused by a range of etiologies, including autoimmune, metabolic, and developmental disorders. The nuclear receptors DAX1 (NR0B1) and steroidogenic factor-1 (SF1/Ad4BP, NR5A1) play an important role in adrenal development and function, and mutations in these transcription factors have been found in patients with adrenal hypoplasia. Objective To investigate the prevalence of DAX1 and SF1 mutations in children and adults with primary adrenal failure of unknown etiology (i.e., not caused by congenital adrenal hyperplasia, adrenoleukodystrophy, autoimmune disease). Patients One-hundred and seventeen patients were included. Eighty-eight individuals presented in infancy or childhood with adrenal hypoplasia or primary adrenal failure of unknown etiology (n=64, 46,XY phenotypic males; n=17, 46,XY gonadal dysgenesis/impaired androgenization; n=7, 46,XX females). Twenty-nine individuals presented in adulthood with “Addison disease” of unknown etiology. Methods Mutational analysis of DAX1 (NR0B1) (including exon 2α/1A) and SF1 (NR5A1) by direct sequencing. Results DAX1 mutations were found in 58% (37/64) of 46,XY phenotypic boys referred with adrenal hypoplasia, and in all boys (8/8) with hypogonadotropic hypogonadism and a family history suggestive of adrenal failure in males. SF1 mutations causing adrenal failure were found only in two patients with 46,XY gonadal dysgenesis. No DAX1 or SF1 mutations were identified in the adult-onset group. Conclusions DAX1 mutations are a relatively frequent cause of adrenal failure in this group of boys. SF1 mutations causing adrenal failure in humans are rare and are more likely to be associated with significant underandrogenization and gonadal dysfunction in 46,XY individuals. PMID:16684822

  7. Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and B2 receptors

    PubMed Central

    Kuhr, F.; Lowry, J.; Zhang, Y.; Brovkovych, V.; Skidgel, R.A.

    2010-01-01

    Kinins are vasoactive peptides that play important roles in cardiovascular homeostasis, pain and inflammation. After release from their precursor kininogens, kinins or their C-terminal des-Arg metabolites activate two distinct G protein-coupled receptors (GPCR), called B2 (B2R) or B1 (B1R). The B2R is expressed constitutively with a wide tissue distribution. In contrast, the B1R is not expressed under normal conditions but is upregulated by tissue insult or inflammatory mediators. The B2R is considered to mediate many of the acute effects of kinins while the B1R is more responsible for chronic responses in inflammation. Both receptors can couple to Gαi and Gαq families of G proteins to release mediators such as nitric oxide (NO), arachidonic acid, prostaglandins, leukotrienes and endothelium derived hyperpolarizing factor and can induce the release of other inflammatory agents. The focus of this review is on the different transduction events that take place upon B2R and B1R activation in human endothelial cells that leads to generation of NO via activation of different NOS isoforms. Importantly, B2R-mediated eNOS activation leads to a transient (~ 5 min) output of NO in control endothelial cells whereas in cytokine-treated endothelial cells, B1R activation leads to very high and prolonged (~90 min) NO production that is mediated by a novel signal transduction pathway leading to post-translational activation of iNOS. PMID:20045558

  8. Endophilin B1 regulates EGFR endocytic degradation in prostate cancer cell.

    PubMed

    Zhu, J-Y; Xiong, Y; Zhang, W; Wan, J; Wan, J

    2016-01-01

    Prostate cancer (Pca) is one of the most common types of cancer for elder men. Aberrant expression of epidermal growth factor receptor (EGFR) and EGFR downstream signaling have been known to contribute to disease progression in prostate cancer. EGF-stimulated EGFR is internalized and the process of endocytic degradation of EGFR mediates its signaling which is frequently dysregulated in many kinds of cancer. In the present study, we demonstrated that endophilin B1 expression was inhibited and EGFR expression was significantly increased in prostate cancer cell lines. We demonstrated that suppression of endophilin B1 increased EGFR levels via delaying EGFR internalization triggered by EGF and its intracellular degradation. Endophilin B1 decreased also sustained EGFR downstream signaling such as Erk1/2 phosphorylation in response to EGF stimulation and promoted prostate cancer cell proliferation which is EGF independent. Our data indicated that endophilin B1 mediated the biological function of EGFR in cancer cell proliferation through regulating the EGFR endocytic trafficking and downstream signaling. PMID:27609472

  9. Promoter activity and regulation of the corneal CYP4B1 gene by hypoxia.

    PubMed

    Mastyugin, Vladimir; Mezentsev, Alexandre; Zhang, Wen-Xiang; Ashkar, Silvia; Dunn, Michael W; Laniado-Schwartzman, Michal

    2004-04-15

    Hypoxic injury to the ocular surface provokes an inflammatory response that is mediated, in part, by corneal epithelial-derived 12-hydroxyeicosanoids. Recent studies indicate that a cytochrome P450 (CYP) monooxygenase, identified as CYP4B1, is involved in the production of these eicosanoids which exhibit potent inflammatory and angiogenic properties. We have isolated and cloned a corneal epithelial CYP4B1 full-length cDNA and demonstrated that the CYP4B1 mRNA is induced by hypoxia in vitro and in vivo. To further understand the molecular regulation that underlies the synthesis of these potent inflammatory eicosanoids in response to hypoxic injury, we isolated and cloned the CYP4B1 promoter region. GenomeWalker libraries constructed from rabbit corneal epithelial genomic DNA were used as templates for primary and nested PCR amplifications with gene- and adaptor-specific primers. A 3.41-kb DNA fragment of the 5'-flanking region of the CYP4B1 promoter was isolated, cloned, sequenced, and analyzed by computer software for the presence of known cis-acting elements. Analysis of the promoter sequence revealed the presence of consensus DNA binding sequences for factors known to activate gene transcription in response to hypoxia including HIF-1, NFkappaB, and AP-1. Transient transfection of luciferase reporter (pGL3-Basic) vectors containing different lengths of the CYP4B1 promoter fragment demonstrated hypoxia-induced transcription in rabbit corneal epithelial (RCE) cells. Electrophoretic mobility shift assay (EMSA) revealed a marked induction of nuclear binding activity for the labeled HIF-1 probe from the CYP4B1 promoter in nuclear extracts of cells exposed to hypoxia. This binding activity was due to sequence-specific binding to the HIF-1 oligonucleotide probe as shown by competition with excess unlabeled probe for the HIF-1 but not with unlabeled NFkappaB probe. The nuclear binding activity of AP-1 and NFkappaB probes from the CYP4B1 promoter was also enhanced in

  10. Risk Factors for Preschool Depression: The Mediating Role of Early Stressful Life Events

    ERIC Educational Resources Information Center

    Luby, Joan L.; Belden, Andy C.; Spitznagel, Edward

    2006-01-01

    Background: Family history of mood disorders and stressful life events are both established risk factors for childhood depression. However, the role of mediators in risk trajectories, which are potential targets for intervention, remains understudied. To date, there have been no investigations of mediating relationships between risk factors and…

  11. 8 CFR 343b.1 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the form designated by USCIS with the fee specified in 8 CFR 103.7(b)(1) and in accordance with the... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Application. 343b.1 Section 343b.1 Aliens... NATURALIZATION FOR RECOGNITION BY A FOREIGN STATE § 343b.1 Application. A naturalized citizen who desires...

  12. EWS/FLI and its Downstream Target NR0B1 Interact Directly to Modulate Transcription and Oncogenesis in Ewing's Sarcoma

    PubMed Central

    Kinsey, Michelle; Smith, Richard; Iyer, Anita K.; McCabe, Edward R.B.; Lessnick, Stephen L.

    2009-01-01

    Most Ewing's sarcomas harbor chromosomal translocations that encode fusions between EWS and ETS family members. The most common fusion, EWS/FLI, consists of an EWSR1-derived strong transcriptional activation domain fused, in frame, to the DNA binding domain-containing portion of FLI1. EWS/FLI functions as an aberrant transcription factor to regulate genes that mediate the oncogenic phenotype of Ewing's sarcoma. One of these regulated genes, NR0B1, encodes a co-repressor protein, and likely plays a transcriptional role in tumorigenesis. However, the genes that NR0B1 regulates and the transcription factors it interacts with in Ewing's sarcoma are largely unknown. We used transcriptional profiling and chromatin immunoprecipitation to identify genes that are regulated by NR0B1, and compared these data to similar data for EWS/FLI. While the transcriptional profile overlapped as expected, we also found that the genome-wide localization of NR0B1and EWS/FLI overlapped as well, suggesting that they regulate some genes coordinately. Further analysis revealed that NR0B1 and EWS/FLI physically interact. This protein-protein interaction is likely to be relevant for Ewing's sarcoma development because mutations in NR0B1 that disrupt the interaction have transcriptional consequences and also abrogate oncogenic transformation. Taken together, these data suggest that EWS/FLI and NR0B1 physically interact, coordinately modulate gene expression, and mediate the transformed phenotype of Ewing's sarcoma. PMID:19920188

  13. MAN1B1 Deficiency: An Unexpected CDG-II

    PubMed Central

    Millón, María B.; Race, Valérie; Sturiale, Luisa; Garozzo, Domenico; Mills, Philippa; Clayton, Peter; Asteggiano, Carla G.; Quelhas, Dulce; Cansu, Ali; Martins, Esmeralda; Nassogne, Marie-Cécile; Gonçalves-Rocha, Miguel; Topaloglu, Haluk; Jaeken, Jaak; Foulquier, François; Matthijs, Gert

    2013-01-01

    Congenital disorders of glycosylation (CDG) are a group of rare metabolic diseases, due to impaired protein and lipid glycosylation. In the present study, exome sequencing was used to identify MAN1B1 as the culprit gene in an unsolved CDG-II patient. Subsequently, 6 additional cases with MAN1B1-CDG were found. All individuals presented slight facial dysmorphism, psychomotor retardation and truncal obesity. Generally, MAN1B1 is believed to be an ER resident alpha-1,2-mannosidase acting as a key factor in glycoprotein quality control by targeting misfolded proteins for ER-associated degradation (ERAD). However, recent studies indicated a Golgi localization of the endogenous MAN1B1, suggesting a more complex role for MAN1B1 in quality control. We were able to confirm that MAN1B1 is indeed localized to the Golgi complex instead of the ER. Furthermore, we observed an altered Golgi morphology in all patients' cells, with marked dilatation and fragmentation. We hypothesize that part of the phenotype is associated to this Golgi disruption. In conclusion, we linked mutations in MAN1B1 to a Golgi glycosylation disorder. Additionally, our results support the recent findings on MAN1B1 localization. However, more work is needed to pinpoint the exact function of MAN1B1 in glycoprotein quality control, and to understand the pathophysiology of its deficiency. PMID:24348268

  14. ACTH Regulation of Adrenal SR-B1

    PubMed Central

    Shen, Wen-Jun; Azhar, Salman; Kraemer, Fredric B.

    2016-01-01

    The adrenal gland is one of the prominent sites for steroid hormone synthesis. Lipoprotein-derived cholesterol esters (CEs) delivered via SR-B1 constitute the dominant source of cholesterol for steroidogenesis, particularly in rodents. Adrenocorticotropic hormone (ACTH) stimulates steroidogenesis through downstream actions on multiple components involved in steroidogenesis. Both acute and chronic ACTH treatments can modulate SR-B1 function, including its transcription, posttranscriptional stability, phosphorylation and dimerization status, as well as the interaction with other protein partners, all of which result in changes in the ability of SR-B1 to mediate HDL-CE uptake and the supply of cholesterol for conversion to steroids. Here, we provide a review of the recent findings on the regulation of adrenal SR-B1 function by ACTH. PMID:27242666

  15. Physiologic Expression of Sf3b1(K700E) Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome Modulation.

    PubMed

    Obeng, Esther A; Chappell, Ryan J; Seiler, Michael; Chen, Michelle C; Campagna, Dean R; Schmidt, Paul J; Schneider, Rebekka K; Lord, Allegra M; Wang, Lili; Gambe, Rutendo G; McConkey, Marie E; Ali, Abdullah M; Raza, Azra; Yu, Lihua; Buonamici, Silvia; Smith, Peter G; Mullally, Ann; Wu, Catherine J; Fleming, Mark D; Ebert, Benjamin L

    2016-09-12

    More than 80% of patients with the refractory anemia with ring sideroblasts subtype of myelodysplastic syndrome (MDS) have mutations in Splicing Factor 3B, Subunit 1 (SF3B1). We generated a conditional knockin mouse model of the most common SF3B1 mutation, Sf3b1(K700E). Sf3b1(K700E) mice develop macrocytic anemia due to a terminal erythroid maturation defect, erythroid dysplasia, and long-term hematopoietic stem cell (LT-HSC) expansion. Sf3b1(K700E) myeloid progenitors and SF3B1-mutant MDS patient samples demonstrate aberrant 3' splice-site selection associated with increased nonsense-mediated decay. Tet2 loss cooperates with Sf3b1(K700E) to cause a more severe erythroid and LT-HSC phenotype. Furthermore, the spliceosome modulator, E7017, selectively kills SF3B1(K700E)-expressing cells. Thus, SF3B1(K700E) expression reflects the phenotype of the mutation in MDS and may be a therapeutic target in MDS. PMID:27622333

  16. Ca2+/calmodulin-mediated fast desensitization by the B1b subunit of the CNG channel affects response termination but not sensitivity to recurring stimulation in olfactory sensory neurons

    PubMed Central

    Song, Yijun; Cygnar, Katherine D.; Sagdullaev, Botir; Valley, Matthew; Hirsh, Sarah; Stephan, Aaron; Reisert, Johannes; Zhao, Haiqing

    2008-01-01

    Summary Ca2+/calmodulin-mediated negative feedback is a prototypical regulatory mechanism for Ca2+ permeable ion channels. In olfactory sensory neurons (OSNs) such regulation on the cyclic nucleotide-gated (CNG) channel is considered a major mechanism of OSN adaptation. To determine the role of Ca2+/calmodulin desensitization of the olfactory CNG channel, we introduced a mutation in the channel subunit CNGB1b in mice that rendered the channel resistant to fast desensitization by Ca2+/calmodulin. Contrary to expectations, mutant OSNs showed normal receptor current adaptation to repeated stimulation. Rather, they displayed slower response termination and consequently, a reduced ability to transmit olfactory information to the olfactory bulb. They also displayed reduced response decline during sustained odorant exposure. These results suggest that Ca2+/calmodulin-mediated CNG channel fast desensitization is less important in regulating the sensitivity to recurring stimulation than previously thought and instead functions primarily to terminate OSN responses. PMID:18466748

  17. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    SciTech Connect

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  18. A role for factor XIIa–mediated factor XI activation in thrombus formation in vivo

    PubMed Central

    Cheng, Qiufang; Tucker, Erik I.; Pine, Meghann S.; Sisler, India; Matafonov, Anton; Sun, Mao-fu; White-Adams, Tara C.; Smith, Stephanie A.; Hanson, Stephen R.; McCarty, Owen J. T.; Renné, Thomas; Gruber, András

    2010-01-01

    Mice lacking factor XII (fXII) or factor XI (fXI) are resistant to experimentally–induced thrombosis, suggesting fXIIa activation of fXI contributes to thrombus formation in vivo. It is not clear whether this reaction has relevance for thrombosis in pri mates. In 2 carotid artery injury models (FeCl3 and Rose Bengal/laser), fXII-deficient mice are more resistant to thrombosis than fXI- or factor IX (fIX)–deficient mice, raising the possibility that fXII and fXI function in distinct pathways. Antibody 14E11 binds fXI from a variety of mammals and interferes with fXI activation by fXIIa in vitro. In mice, 14E11 prevented arterial occlusion induced by FeCl3 to a similar degree to total fXI deficiency. 14E11 also had a modest beneficial effect in a tissue factor–induced pulmonary embolism model, indicating fXI and fXII contribute to thrombus formation even when factor VIIa/tissue factor initiates thrombosis. In baboons, 14E11 reduced platelet-rich thrombus growth in collagen-coated grafts inserted into an arteriovenous shunt. These data support the hypothesis that fXIIa-mediated fXI activation contributes to thrombus formation in rodents and primates. Since fXII deficiency does not impair hemostasis, targeted inhibition of fXI activation by fXIIa may be a useful antithrombotic strategy associated with a low risk of bleeding complications. PMID:20634381

  19. The mediating effect of psychosocial factors on suicidal probability among adolescents.

    PubMed

    Hur, Ji-Won; Kim, Won-Joong; Kim, Yong-Ku

    2011-01-01

    Suicidal probability is an actual tendency including negative self-evaluation, hopelessness, suicidal ideation, and hostility. The purpose of this study was to examine the role of psychosocial variances in the suicidal probability of adolescents, especially the role of mediating variance. This study investigated the mediating effects of psychosocial factors such as depression, anxiety, self-esteem, stress, and social support on the suicidal probability among 1,586 adolescents attending middle and high schools in the Kyunggi Province area of South Korea. The relationship between depression and anxiety/suicidal probability was mediated by both social resources and self-esteem. Furthermore, the influence of social resources was mediated by interpersonal and achievement stress as well as self-esteem. This study suggests that suicidal probability in adolescents has various relationships, including mediating relations, with several psychosocial factors. The interventions on suicidal probability in adolescents should focus on social factors as well as clinical symptoms. PMID:22023641

  20. CYP1B1: a unique gene with unique characteristics.

    PubMed

    Faiq, Muneeb A; Dada, Rima; Sharma, Reetika; Saluja, Daman; Dada, Tanuj

    2014-01-01

    CYP1B1, a recently described dioxin inducible oxidoreductase, is a member of the cytochrome P450 superfamily involved in the metabolism of estradiol, retinol, benzo[a]pyrene, tamoxifen, melatonin, sterols etc. It plays important roles in numerous physiological processes and is expressed at mRNA level in many tissues and anatomical compartments. CYP1B1 has been implicated in scores of disorders. Analyses of the recent studies suggest that CYP1B1 can serve as a universal/ideal cancer marker and a candidate gene for predictive diagnosis. There is plethora of literature available about certain aspects of CYP1B1 that have not been interpreted, discussed and philosophized upon. The present analysis examines CYP1B1 as a peculiar gene with certain distinctive characteristics like the uniqueness in its chromosomal location, gene structure and organization, involvement in developmentally important disorders, tissue specific, not only expression, but splicing, potential as a universal cancer marker due to its involvement in key aspects of cellular metabolism, use in diagnosis and predictive diagnosis of various diseases and the importance and function of CYP1B1 mRNA in addition to the regular translation. Also CYP1B1 is very difficult to express in heterologous expression systems, thereby, halting its functional studies. Here we review and analyze these exceptional and startling characteristics of CYP1B1 with inputs from our own experiences in order to get a better insight into its molecular biology in health and disease. This may help to further understand the etiopathomechanistic aspects of CYP1B1 mediated diseases paving way for better research strategies and improved clinical management. PMID:25658124

  1. 32 CFR 242b.1 - Regents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Regents. 242b.1 Section 242b.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS GENERAL PROCEDURES AND DELEGATIONS OF THE BOARD OF REGENTS OF THE UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242b.1 Regents. (a) History...

  2. 8 CFR 343b.1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Application. 343b.1 Section 343b.1 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY NATIONALITY REGULATIONS SPECIAL CERTIFICATE OF NATURALIZATION FOR RECOGNITION BY A FOREIGN STATE § 343b.1 Application. A naturalized citizen who desires...

  3. 18 CFR 1b.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Definitions. 1b.1 Section 1b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.1 Definitions. For purposes of this part—...

  4. 34 CFR 5b.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Definitions. 5b.1 Section 5b.1 Education Office of the Secretary, Department of Education PRIVACY ACT REGULATIONS § 5b.1 Definitions. As used in this part: (a... Education. (c) Department means the Department of Education. (d) Disclosure means the availability...

  5. 34 CFR 5b.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Definitions. 5b.1 Section 5b.1 Education Office of the Secretary, Department of Education PRIVACY ACT REGULATIONS § 5b.1 Definitions. As used in this part: (a... Education. (c) Department means the Department of Education. (d) Disclosure means the availability...

  6. 32 CFR 242b.1 - Regents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Regents. 242b.1 Section 242b.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS GENERAL PROCEDURES AND DELEGATIONS OF THE BOARD OF REGENTS OF THE UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242b.1 Regents. (a) History...

  7. What factors mediate the relationship between global self-worth and weight and shape concerns?

    PubMed

    Murphy, Edel; Dooley, Barbara; Menton, Aoife; Dolphin, Louise

    2016-04-01

    The primary aim of this study was to investigate whether the relationship between global self-worth and weight concerns and global self-worth and shape concerns was mediated by pertinent body image factors, while controlling for gender and estimated BMI. Participants were 775 adolescents (56% male) aged 12-18years (M=14.6; SD=1.50). Mediation analysis revealed a direct and a mediated effect between global self-worth and two body image models: 1) weight concerns and 2) shape concerns. The strongest mediators in both models were physical appearance, restrained eating, and depression. Partial mediation was observed for both models, indicating that body image factors which span cognitive, affective, and behavioral constructs, explain the association between global self-worth and weight and shape concerns. Implications for future research, weight and shape concern prevention and global self-worth enhancement programs are discussed. PMID:26894257

  8. Herpes Simplex Virus 1 E3 Ubiquitin Ligase ICP0 Protein Inhibits Tumor Necrosis Factor Alpha-Induced NF-κB Activation by Interacting with p65/RelA and p50/NF-κB1

    PubMed Central

    Zhang, Jie; Wang, Kezhen

    2013-01-01

    NF-κB plays central roles in regulation of diverse biological processes, including innate and adaptive immunity and inflammation. HSV-1 is the archetypal member of the alphaherpesviruses, with a large genome encoding over 80 viral proteins, many of which are involved in virus-host interactions and show immune modulatory capabilities. In this study, we demonstrated that the HSV-1 ICP0 protein, a viral E3 ubiquitin ligase, was shown to significantly suppress tumor necrosis factor alpha (TNF-α)-mediated NF-κB activation. ICP0 was demonstrated to bind to the NF-κB subunits p65 and p50 by coimmunoprecipitation analysis. ICP0 bound to the Rel homology domain (RHD) of p65. Fluorescence microscopy demonstrated that ICP0 abolished nuclear translocation of p65 upon TNF-α stimulation. Also, ICP0 degraded p50 via its E3 ubiquitin ligase activity. The RING finger (RF) domain mutant ICP0 (ICP0-RF) lost its ability to inhibit TNF-α-mediated NF-κB activation and p65 nuclear translocation and degrade p50. Notably, the RF domain of ICP0 was sufficient to interact with p50 and abolish NF-κB reporter gene activity. Here, it is for the first time shown that HSV-1 ICP0 interacts with p65 and p50, degrades p50 through the ubiquitin-proteasome pathway, and prevents NF-κB-dependent gene expression, which may contribute to immune evasion and pathogenesis of HSV-1. PMID:24067962

  9. USP17 is required for clathrin mediated endocytosis of epidermal growth factor receptor

    PubMed Central

    Jaworski, Jakub; de la Vega, Michelle; Fletcher, Sarah J.; McFarlane, Cheryl; Greene, Michelle K.; Smyth, Andrew W.; Van Schaeybroeck, Sandra; Johnston, James A.; Scott, Christopher J.; Rappoport, Joshua Z.; Burrows, James F.

    2014-01-01

    Previously we have shown that expression of the deubiquitinating enzyme USP17 is required for cell proliferation and motility. More recently we reported that USP17 deubiquitinates RCE1 isoform 2 and thus regulates the processing of ‘CaaX’ motif proteins. Here we now show that USP17 expression is induced by epidermal growth factor and that USP17 expression is required for clathrin mediated endocytosis of epidermal growth factor receptor. In addition, we show that USP17 is required for the endocytosis of transferrin, an archetypal substrate for clathrin mediated endocytosis, and that USP17 depletion impedes plasma membrane recruitment of the machinery required for clathrin mediated endocytosis. Thus, our data reveal that USP17 is necessary for epidermal growth factor receptor and transferrin endocytosis via clathrin coated pits, indicate this is mediated via the regulation of the recruitment of the components of the endocytosis machinery and suggest USP17 may play a general role in receptor endocytosis. PMID:25026282

  10. Combined Proteomics and Transcriptomics Identifies Carboxypeptidase B1 and Nuclear Factor κB (NF-κB) Associated Proteins as Putative Biomarkers of Metastasis in Low Grade Breast Cancer*

    PubMed Central

    Bouchal, Pavel; Dvořáková, Monika; Roumeliotis, Theodoros; Bortlíček, Zbyněk; Ihnatová, Ivana; Procházková, Iva; Ho, Jenny T. C.; Maryáš, Josef; Imrichová, Hana; Budinská, Eva; Vyzula, Rostislav; Garbis, Spiros D.; Vojtěšek, Bořivoj; Nenutil, Rudolf

    2015-01-01

    Current prognostic factors are insufficient for precise risk-discrimination in breast cancer patients with low grade breast tumors, which, in disagreement with theoretical prognosis, occasionally form early lymph node metastasis. To identify markers for this group of patients, we employed iTRAQ-2DLC-MS/MS proteomics to 24 lymph node positive and 24 lymph node negative grade 1 luminal A primary breast tumors. Another group of 48 high-grade tumors (luminal B, triple negative, Her-2 subtypes) was also analyzed to investigate marker specificity for grade 1 luminal A tumors. From the total of 4405 proteins identified (FDR<5%), the top 65 differentially expressed together with 30 previously identified and control markers were analyzed also at transcript level. Increased levels of carboxypeptidase B1 (CPB1), PDZ and LIM domain protein 2 (PDLIM2), and ring finger protein 25 (RNF25) were associated specifically with lymph node positive grade 1 tumors, whereas stathmin 1 (STMN1) and thymosin beta 10 (TMSB10) associated with aggressive tumor phenotype also in high grade tumors at both protein and transcript level. For CPB1, these differences were also observed by immunohistochemical analysis on tissue microarrays. Up-regulation of putative biomarkers in lymph node positive (versus negative) luminal A tumors was validated by gene expression analysis of an independent published data set (n = 343) for CPB1 (p = 0.00155), PDLIM2 (p = 0.02027) and RELA (p = 0.00015). Moreover, statistically significant connections with patient survival were identified in another public data set (n = 1678). Our findings indicate unique pro-metastatic mechanisms in grade 1 tumors that can include up-regulation of CPB1, activation of NF-κB pathway and changes in cell survival and cytoskeleton. These putative biomarkers have potential to identify the specific minor subpopulation of breast cancer patients with low grade tumors who are at higher than expected risk of recurrence and who would benefit

  11. Generation and Characterization of a Cyp4b1 Null Mouse and the Role of CYP4B1 in the Activation and Toxicity of Ipomeanol

    PubMed Central

    Kelly, Edward J.

    2013-01-01

    4-Ipomeanol (IPO) is a prototypical pulmonary toxin that requires P450-mediated metabolic activation to reactive intermediates in order to elicit its toxic effects. CYP4B1 is a pulmonary enzyme that has been shown, in vitro, to have a high capacity for bioactivating IPO. In order to determine, unambiguously, the role of CYP4B1 in IPO bioactivation in vivo, we generated Cyp4b1 null mice following targeted disruption of the gene downstream of exon 1. Cyp4b1 −/− mice are viable and healthy, with no overt phenotype, and no evidence of compensatory upregulation of other P450 isoforms in any of the tissues examined. Pulmonary and renal microsomes prepared from male Cyp4b1 −/− mice exhibited no detectable expression of the protein and catalyzed the in vitro bioactivation of IPO at < 10% of the rates observed in tissue microsomes from Cyp4b1 +/+ animals. Administration of IPO (20mg/kg) to Cyp4b1 +/+ mice resulted in characteristic lesions in the lung, and to a lesser extent in the kidney, which were completely absent in Cyp4b1 −/− mice. We conclude that CYP4B1 is a critical enzyme for the bioactivation of IPO in vivo and that the Cyp4b1 −/− mouse is a useful model for studying CYP4B1-dependent metabolism and toxicity. PMID:23748241

  12. Fibrinogen blocks the autoactivation and thrombin-mediated activation of factor XI on dextran sulfate.

    PubMed Central

    Scott, C F; Colman, R W

    1992-01-01

    The intrinsic pathway of blood coagulation is activated when factor XIa, one of the three contact-system enzymes, is generated and then activates factor IX. Factor XI has been shown to be efficiently activated in vitro by surface-bound factor XIIa after factor XI is transported to the surface by its cofactor, high molecular weight kininogen (HK). However, individuals lacking any of the three contact-system proteins--namely, factor XII, prekallikrein, and HK--do not suffer from bleeding abnormalities. This mystery has led several investigators to search for an "alternate" activation pathway for factor XI. Recently, factor XI has been reported to be autoactivated on the soluble "surface" dextran sulfate, and thrombin was shown to accelerate the autoactivation. However, it was also reported that HK, the cofactor for factor XIIa-mediated activation of factor XI, actually diminishes the thrombin-catalyzed activation rate of factor XI. Nonetheless, it was suggested that thrombin was a more efficient activator than factor XIIa. In this report we investigated the effect of fibrinogen, the major coagulation protein in plasma, on the activation rate of factor XI. Fibrinogen, the preferred substrate for thrombin in plasma, virtually prevented autoactivation of factor XI as well as the thrombin-mediated activation of factor XI, while having no effect on factor XIIa-catalyzed activation. HK dramatically curtailed the autoactivation of factor XI in addition to the thrombin-mediated activation. These data indicate that factor XI would not be autoactivated in a plasma environment, and thrombin would, therefore, be unlikely to potentiate the activation. We believe that the "missing pathway" for factor XI activation remains an enigma that warrants further investigation. PMID:1454798

  13. β-Arrestin 2 is required for B1 receptor-dependent post-translational activation of inducible nitric oxide synthase

    PubMed Central

    Kuhr, Frank K.; Zhang, Yongkang; Brovkovych, Viktor; Skidgel, Randal A.

    2010-01-01

    A major source of “high-output” NO in inflammation is inducible nitric oxide synthase (iNOS). iNOS is primarily transcriptionally regulated and is thought to function as an uncontrolled generator of high NO. We found that iNOS in cytokine-stimulated human lung microvascular endothelial cells (HLMVECs) is highly regulated post-translationally via activation of the B1 kinin G protein-coupled receptor (B1R). We report here that B1R-mediated iNOS activation was significantly inhibited by knockdown of β-arrestin 2 with siRNA in cytokine-treated HLMVECs or HEK293 cells transfected with iNOS and B1R. In contrast, β-arrestin 1 siRNA had no effect. The prolonged phase of B1R-dependent ERK activation was also inhibited by β-arrestin 2 knockdown. Furthermore, robust ERK activation by the epidermal growth factor receptor (a β-arrestin 2 independent pathway) had no effect on iNOS-derived NO production. β-arrestin 2 and iNOS coimmunoprecipitated, and there was significant fluorescence resonance energy transfer between CFP-iNOS and β-arrestin 2-YFP (but not β-arrestin 1-YFP) that increased 3-fold after B1R stimulation. These data show that β-arrestin 2 mediates B1R-dependent high-output NO by scaffolding iNOS and ERK to allow post-translational activation of iNOS. This could play a critical role in mediating endothelial function in inflammation.—Kuhr, F. K., Zhang, Y., Brovkovych, V., Skidgel, R. A. β-Arrestin 2 is required for B1 receptor-dependent post-translational activation of inducible nitric oxide synthase. PMID:20228252

  14. Transcription factors mediate long-range enhancer–promoter interactions

    PubMed Central

    Nolis, Ilias K.; McKay, Daniel J.; Mantouvalou, Eva; Lomvardas, Stavros; Merika, Menie; Thanos, Dimitris

    2009-01-01

    We examined how remote enhancers establish physical communication with target promoters to activate gene transcription in response to environmental signals. Although the natural IFN-β enhancer is located immediately upstream of the core promoter, it also can function as a classical enhancer element conferring virus infection-dependent activation of heterologous promoters, even when it is placed several kilobases away from these promoters. We demonstrated that the remote IFN-β enhancer “loops out” the intervening DNA to reach the target promoter. These chromatin loops depend on sequence-specific transcription factors bound to the enhancer and the promoter and thus can explain the specificity observed in enhancer–promoter interactions, especially in complex genetic loci. Transcription factor binding sites scattered between an enhancer and a promoter can work as decoys trapping the enhancer in nonproductive loops, thus resembling insulator elements. Finally, replacement of the transcription factor binding sites involved in DNA looping with those of a heterologous prokaryotic protein, the λ repressor, which is capable of loop formation, rescues enhancer function from a distance by re-establishing enhancer–promoter loop formation. PMID:19923429

  15. Evidence for Multiple Mediator Complexes in Yeast Independently Recruited by Activated Heat Shock Factor.

    PubMed

    Anandhakumar, Jayamani; Moustafa, Yara W; Chowdhary, Surabhi; Kainth, Amoldeep S; Gross, David S

    2016-07-15

    Mediator is an evolutionarily conserved coactivator complex essential for RNA polymerase II transcription. Although it has been generally assumed that in Saccharomyces cerevisiae, Mediator is a stable trimodular complex, its structural state in vivo remains unclear. Using the "anchor away" (AA) technique to conditionally deplete select subunits within Mediator and its reversibly associated Cdk8 kinase module (CKM), we provide evidence that Mediator's tail module is highly dynamic and that a subcomplex consisting of Med2, Med3, and Med15 can be independently recruited to the regulatory regions of heat shock factor 1 (Hsf1)-activated genes. Fluorescence microscopy of a scaffold subunit (Med14)-anchored strain confirmed parallel cytoplasmic sequestration of core subunits located outside the tail triad. In addition, and contrary to current models, we provide evidence that Hsf1 can recruit the CKM independently of core Mediator and that core Mediator has a role in regulating postinitiation events. Collectively, our results suggest that yeast Mediator is not monolithic but potentially has a dynamic complexity heretofore unappreciated. Multiple species, including CKM-Mediator, the 21-subunit core complex, the Med2-Med3-Med15 tail triad, and the four-subunit CKM, can be independently recruited by activated Hsf1 to its target genes in AA strains. PMID:27185874

  16. Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor

    PubMed Central

    Acevedo, Lisette M.; Barillas, Samuel; Weis, Sara M.; Göthert, Joachim R.

    2008-01-01

    Semaphorin 3A (Sema3A), a known inhibitor of axonal sprouting, also alters vascular patterning. Here we show that Sema3A selectively interferes with VEGF- but not bFGF-induced angiogenesis in vivo. Consistent with this, Sema3A disrupted VEGF- but not bFGF-mediated endothelial cell signaling to FAK and Src, key mediators of integrin and growth factor signaling; however, signaling to ERK by either growth factor was unperturbed. Since VEGF is also a vascular permeability (VP) factor, we examined the role of Sema3A on VEGF-mediated VP in mice. Surprisingly, Sema3A not only stimulated VEGF-mediated VP but also potently induced VP in the absence of VEGF. Sema3A-mediated VP was inhibited either in adult mice expressing a conditional deletion of endothelial neuropilin-1 (Nrp-1) or in wild-type mice systemically treated with a function-blocking Nrp-1 antibody. While both Sema3A- and VEGF-induced VP was Nrp-1 dependent, they use distinct downstream effectors since VEGF- but not Sema3A-induced VP required Src kinase signaling. These findings define a novel role for Sema3A both as a selective inhibitor of VEGF-mediated angiogenesis and a potent inducer of VP. PMID:18180379

  17. Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor.

    PubMed

    Acevedo, Lisette M; Barillas, Samuel; Weis, Sara M; Göthert, Joachim R; Cheresh, David A

    2008-03-01

    Semaphorin 3A (Sema3A), a known inhibitor of axonal sprouting, also alters vascular patterning. Here we show that Sema3A selectively interferes with VEGF- but not bFGF-induced angiogenesis in vivo. Consistent with this, Sema3A disrupted VEGF- but not bFGF-mediated endothelial cell signaling to FAK and Src, key mediators of integrin and growth factor signaling; however, signaling to ERK by either growth factor was unperturbed. Since VEGF is also a vascular permeability (VP) factor, we examined the role of Sema3A on VEGF-mediated VP in mice. Surprisingly, Sema3A not only stimulated VEGF-mediated VP but also potently induced VP in the absence of VEGF. Sema3A-mediated VP was inhibited either in adult mice expressing a conditional deletion of endothelial neuropilin-1 (Nrp-1) or in wild-type mice systemically treated with a function-blocking Nrp-1 antibody. While both Sema3A- and VEGF-induced VP was Nrp-1 dependent, they use distinct downstream effectors since VEGF- but not Sema3A-induced VP required Src kinase signaling. These findings define a novel role for Sema3A both as a selective inhibitor of VEGF-mediated angiogenesis and a potent inducer of VP. PMID:18180379

  18. PXR stimulates growth factor-mediated hepatocyte proliferation by cross-talk with the FOXO transcription factor.

    PubMed

    Shizu, Ryota; Abe, Taiki; Benoki, Satoshi; Takahashi, Miki; Kodama, Susumu; Miayata, Masaaki; Matsuzawa, Atsushi; Yoshinari, Kouichi

    2016-02-01

    Growth factor-mediated hepatocyte proliferation is crucial in liver regeneration and the recovery of liver function after injury. The nuclear receptor, pregnane X receptor (PXR), is a key transcription factor for the xenobiotic-induced expression of genes associated with various liver functions. Recently, we reported that PXR activation stimulates xenobiotic-induced hepatocyte proliferation. In the present study, we investigated whether PXR activation also stimulates growth factor-mediated hepatocyte proliferation. In G0 phase-synchronized, immortalized mouse hepatocytes, serum or epidermal growth factor treatment increased cell growth and this growth was augmented by the expression of mouse PXR and co-treatment with pregnenolone 16α-carbonitrile (PCN), a PXR ligand. In a liver regeneration model using carbon tetrachloride, PCN treatment enhanced the injury-induced increase in the number of Ki-67-positive nuclei as well as Ccna2 and Ccnb1 mRNA levels in wild-type (WT) but not Pxr-null mice. Chronological analysis of this model demonstrated that PCN treatment shifted the maximum cell proliferation to an earlier time point and increased the number of M-phase cells at those time points. In WT but not Pxr-null mice, PCN treatment reduced hepatic mRNA levels of genes involved in the suppression of G0/G1- and G1/S-phase transition, e.g. Rbl2, Cdkn1a and Cdkn1b. Analysis of the Rbl2 promoter revealed that PXR activation inhibited its Forkhead box O3 (FOXO3)-mediated transcription. Finally, the PXR-mediated enhancement of hepatocyte proliferation was inhibited by the expression of dominant active FOXO3 in vitro. The results of the present study suggest that PXR activation stimulates growth factor-mediated hepatocyte proliferation in mice, at least in part, through inhibiting FOXO3 from accelerating cell-cycle progression. PMID:26574435

  19. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

    PubMed

    Naranjo, José R; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C; Arrabal, María D; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-02-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  20. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  1. Complement-mediated adipocyte lysis by nephritic factor sera.

    PubMed

    Mathieson, P W; Würzner, R; Oliveria, D B; Lachmann, P J; Peters, D K

    1993-06-01

    Recent data indicate a previously unsuspected link between the complement system and adipocyte biology. Murine adipocytes produce key components of the alternative pathway of complement and are able to activate this pathway. This suggested to us an explanation for adipose tissue loss in partial lipodystrophy, a rare human condition usually associated with the immunoglobulin G(IgG) autoantibody nephritic factor (NeF) which leads to enhanced alternative pathway activation in vivo. We hypothesized that in the presence of NeF, there is dysregulated complement activation at the membrane of the adipocyte, leading to adipocyte lysis. Here we show that adipocytes explanted from rat epididymal fat pads are lysed by NeF-containing sera but not by control sera. A similar pattern is seen with IgG fractions of these sera. Adipocyte lysis in the presence of NeF is associated with the generation of fluid-phase terminal complement complexes, the level of which correlates closely with the level of lactate dehydrogenase, a marker of cell lysis. Lysis is abolished by ethylenediaminetetraacetic acid, which chelates divalent cations and prevents complement activation, and reduced by an antibody to factor D, a key component of the alternative pathway. These data provide an explanation for the previously obscure link between NeF and fat cell damage. PMID:8496694

  2. The Transcription Factor ATF5 Mediates a Mammalian Mitochondrial UPR.

    PubMed

    Fiorese, Christopher J; Schulz, Anna M; Lin, Yi-Fan; Rosin, Nadine; Pellegrino, Mark W; Haynes, Cole M

    2016-08-01

    Mitochondrial dysfunction is pervasive in human pathologies such as neurodegeneration, diabetes, cancer, and pathogen infections as well as during normal aging. Cells sense and respond to mitochondrial dysfunction by activating a protective transcriptional program known as the mitochondrial unfolded protein response (UPR(mt)), which includes genes that promote mitochondrial protein homeostasis and the recovery of defective organelles [1, 2]. Work in Caenorhabditis elegans has shown that the UPR(mt) is regulated by the transcription factor ATFS-1, which is regulated by organelle partitioning. Normally, ATFS-1 accumulates within mitochondria, but during respiratory chain dysfunction, high levels of reactive oxygen species (ROS), or mitochondrial protein folding stress, a percentage of ATFS-1 accumulates in the cytosol and traffics to the nucleus where it activates the UPR(mt) [2]. While similar transcriptional responses have been described in mammals [3, 4], how the UPR(mt) is regulated remains unclear. Here, we describe a mammalian transcription factor, ATF5, which is regulated similarly to ATFS-1 and induces a similar transcriptional response. ATF5 expression can rescue UPR(mt) signaling in atfs-1-deficient worms requiring the same UPR(mt) promoter element identified in C. elegans. Furthermore, mammalian cells require ATF5 to maintain mitochondrial activity during mitochondrial stress and promote organelle recovery. Combined, these data suggest that regulation of the UPR(mt) is conserved from worms to mammals. PMID:27426517

  3. Sequence dependence of transcription factor-mediated DNA looping

    PubMed Central

    Johnson, Stephanie; Lindén, Martin; Phillips, Rob

    2012-01-01

    DNA is subject to large deformations in a wide range of biological processes. Two key examples illustrate how such deformations influence the readout of the genetic information: the sequestering of eukaryotic genes by nucleosomes and DNA looping in transcriptional regulation in both prokaryotes and eukaryotes. These kinds of regulatory problems are now becoming amenable to systematic quantitative dissection with a powerful dialogue between theory and experiment. Here, we use a single-molecule experiment in conjunction with a statistical mechanical model to test quantitative predictions for the behavior of DNA looping at short length scales and to determine how DNA sequence affects looping at these lengths. We calculate and measure how such looping depends upon four key biological parameters: the strength of the transcription factor binding sites, the concentration of the transcription factor, and the length and sequence of the DNA loop. Our studies lead to the surprising insight that sequences that are thought to be especially favorable for nucleosome formation because of high flexibility lead to no systematically detectable effect of sequence on looping, and begin to provide a picture of the distinctions between the short length scale mechanics of nucleosome formation and looping. PMID:22718983

  4. Platelet activating factor as a mediator of equine cell locomotion.

    PubMed

    Dawson, J; Lees, P; Sedgwick, A D

    1988-01-01

    Equine polymorphonuclear (PMN) and mononuclear (MN) leucocytes were separated on Percoll gradients and used to study the chemoattractant properties of the polar ether-linked phospholipid, platelet activating factor (PAF). Six concentrations of PAF ranging from 1 ng/ml to 100 micrograms/ml were studied in each of two in vitro assay systems, the agarose microdroplet and a microfilter technique. Very significant (p less than 0.01) increases in the movement of both PMN and MN cells were obtained with most concentrations of PAF. In two instances there was no apparent concentration-response relationship, although the action of PAF was approximately bell-shaped in two others. The possible significance of these findings for equine inflammatory conditions is discussed. PMID:3188378

  5. Human B-1 cells take the stage

    PubMed Central

    Rothstein, Thomas L.; Griffin, Daniel O.; Holodick, Nichol E.; Quach, Tam D.; Kaku, Hiroaki

    2013-01-01

    B-1cells play critical roles in defending against microbial invasion and in housekeeping removal of cellular debris. B-1cells secrete natural antibody and manifest functions that influence T cell expansion and differentiation and in these and other ways differ from conventional B-2 cells. B-1-cells were originally studied in mice where they are easily distinguished from B-2cells, but their identity in the human system remained poorly defined for many years. Recently, functional criteria for human B-1cells were established on the basis of murine findings, and reverse engineering resulted in identification of the phenotypic profile, CD20+CD27+CD43+CD70−, for B-1cells found in both umbilical cord blood and adult peripheral blood. Human B-1cells may contribute to multiple disease states through production of autoantibody and stimulation/modulation of T cell activity. Human B-1cells could be a rich source of antibodies useful in treating diseases present in elderly populations where natural antibody protection may have eroded. Manipulation of human B-1cell numbers and/or activity may be a new avenue for altering T cell function and treating immune dyscrasias. PMID:23692567

  6. 18 CFR 3b.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Purpose. 3b.1 Section 3b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES COLLECTION, MAINTENANCE, USE, AND DISSEMINATION OF RECORDS OF IDENTIFIABLE...

  7. Biobehavioral Factors Mediate Exercise Effects on Fatigue in Breast Cancer Survivors

    PubMed Central

    Rogers, Laura Q; Vicari, Sandra; Trammell, Rita; Hopkins-Price, Patricia; Fogleman, Amanda; Spenner, Allison; Rao, Krishna; Courneya, Kerry S; Hoelzer, Karen S; Robbs, Randall; Verhulst, Steven

    2015-01-01

    Purpose Examine mediators of fatigue response to an exercise intervention for breast cancer survivors (BCS) in a pilot randomized controlled trial. Methods Postmenopausal BCS (n=46; ≤ Stage II), off primary treatment, and reporting fatigue and/or sleep dysfunction were randomized to a 3-month exercise intervention (160 minutes/week of moderate intensity aerobic walking, twice weekly resistance training with resistance bands) or control group. Six discussion group sessions provided behavioral support to improve adherence. Fatigue, serum cytokines, accelerometer physical activity, cardiorespiratory fitness, sleep dysfunction, and psychosocial factors were assessed at baseline and 3 months. Results Exercise intervention effect sizes for fatigue were: fatigue intensity d=0.30 (p=.34), interference d=−0.38 (p=.22), and general fatigue d=−0.49 (p=.13). Using Freedman-Schatzkin difference-in-coefficients tests, increase in fatigue intensity was significantly mediated by interleukin (IL)-6 (82%), IL-10 (94%), IL-6:IL-10 (49%), and tumor necrosis factor (TNF)-alpha:IL-10 (78%) with reduced sleep dysfunction increasing the relationship between intervention and fatigue intensity rather than mediating intervention effects (−88%). Decrease in fatigue interference was mediated by sleep dysfunction (35%) while IL-10 and pro:anti-inflammatory cytokine ratios increased the relationship between intervention and interference (−25% to −40%). The reduction in general fatigue was significantly mediated by minutes of physical activity (76%), sleep dysfunction (45%), and physical activity enjoyment (40%) with IL-10 (−40%) and IL-6:IL-10 (−11%) increasing the intervention-fatigue relationship. In the intervention group, higher baseline fatigue, anxiety, depression, and perceived exercise barriers interference predicted a greater decline in fatigue interference and/or general fatigue during the intervention. Conclusions Biobehavioral factors mediated and enhanced

  8. Heat Shock Factor 1 Mediates Latent HIV Reactivation

    PubMed Central

    Pan, Xiao-Yan; Zhao, Wei; Zeng, Xiao-Yun; Lin, Jian; Li, Min-Min; Shen, Xin-Tian; Liu, Shu-Wen

    2016-01-01

    HSF1, a conserved heat shock factor, has emerged as a key regulator of mammalian transcription in response to cellular metabolic status and stress. To our knowledge, it is not known whether HSF1 regulates viral transcription, particularly HIV-1 and its latent form. Here we reveal that HSF1 extensively participates in HIV transcription and is critical for HIV latent reactivation. Mode of action studies demonstrated that HSF1 binds to the HIV 5′-LTR to reactivate viral transcription and recruits a family of closely related multi-subunit complexes, including p300 and p-TEFb. And HSF1 recruits p300 for self-acetylation is also a committed step. The knockout of HSF1 impaired HIV transcription, whereas the conditional over-expression of HSF1 improved that. These findings demonstrate that HSF1 positively regulates the transcription of latent HIV, suggesting that it might be an important target for different therapeutic strategies aimed at a cure for HIV/AIDS. PMID:27189267

  9. Analysis of factor VIII mediated suppression of lentiviral vector titres.

    PubMed

    Radcliffe, P A; Sion, C J M; Wilkes, F J; Custard, E J; Beard, G L; Kingsman, S M; Mitrophanous, K A

    2008-02-01

    Effective gene therapy for haemophilia A necessitates a vector system that is not subject to a pre-existing immune response, has adequate coding capacity, gives long-term expression and preferably can target non-dividing cells. Vector systems based on lentiviruses such as equine infectious anaemia virus (EIAV) fulfil these criteria for the delivery of factor VIII (FVIII). We have found that B domain-deleted (BDD) FVIII protein inhibits functional viral particle production when co-expressed with the EIAV vector system. Although particle numbers (as measured by reverse transcriptase activity) are near normal, RNA genome levels are reduced and measurement of integrated copies revealed the virus is severely defective in its ability to transduce target cells. This is due to the absence of sufficient vesicular stomatitis virus glycoprotein (VSV-G) envelope on viral particles derived from cells expressing FVIII. By using an internal tissue-specific promoter, that has low activity in the producer cells, to drive expression of FVIII we have overcome this inhibitory effect allowing us to generate titres approaching those obtained with vector genomes encoding reporter genes. Furthermore, we report that codon optimization of the full-length FVIII gene increased vector titres approximately 10-fold in addition to substantially improving expression per integrated vector copy. PMID:18046428

  10. Racial/Ethnic Differences in Adolescent Substance Use: Mediation by Individual, Family, and School Factors*

    PubMed Central

    Shih, Regina A.; Miles, Jeremy N. V.; Tucker, Joan S.; Zhou, Annie J.; D'Amico, Elizabeth J.

    2010-01-01

    Objective: This study examined racial/ethnic differences in alcohol, cigarette, and marijuana use among a diverse sample of approximately 5,500 seventh and eighth graders. We also evaluated the extent to which individual, family, and school factors mediated racial/ ethnic disparities in use. Method: Students (49% male) from 16 participating middle schools in southern California reported on lifetime and past-month substance use, individual factors (expectancies and resistance self-efficacy), family factors (familism, parental respect, and adult and older sibling use), and school factors (school-grade use and perceived peer use). We used generalized estimating equations to examine the odds of consumption for each racial/ethnic group adjusting for sex, grade, and family structure. Path analysis models tested mediation of racial/ethnic differences through individual, family, and school factors. Results: After adjusting for sex, grade, and family structure, Hispanics reported higher and Asians reported lower lifetime and past-month substance use, compared with non-Hispanic Caucasians. Rates of substance use did not differ between non-Hispanic African Americans and Caucasians. Several individual factors mediated the relationship between Hispanic ethnicity and substance use, including negative expectancies and resistance self-efficacy. Higher use among Hispanics was generally not explained by family or school factors. By contrast, several factors mediated the relationship between Asian race and lower alcohol use, including individual, family (parental respect, adult and older sibling use), and school (perceived peer use, school-grade use) factors. Conclusions: Results highlight the importance of targeting specific individual, family, and school factors in tailored intervention efforts to reduce substance use among young minority adolescents. PMID:20731969

  11. EphB1 Suppression in Acute Myelogenous Leukemia: Regulating the DNA Damage Control System

    PubMed Central

    Kampen, K.R.; Scherpen, F.J.G.; Garcia-Manero, G.; Yang, H.; Kaspers, G.J.L.; Cloos, J.; Zwaan, C.M.; van den Heuvel-Eibrink, M.M.; Kornblau, S.M.; De Bont, E.S.J.M.

    2016-01-01

    Loss of ephrin receptor (EphB1) expression may associate with aggressive cancer phenotypes; however, the mechanism of action remains unclear. To gain detailed insight into EphB1 function in acute myelogenous leukemia (AML), comprehensive analysis of EphB1 transcriptional regulation was conducted. In AML cells, EphB1 transcript was inversely correlated with EphB1 promoter methylation. The presence of EphB1 allowed EfnB1 ligand–mediated p53 DNA binding, leading to restoration of the DNA damage response (DDR) cascade by the activation of ATR, Chk1, p53, p21, p38, CDK1tyr15, and Bax, and downregulation of HSP27 and Bcl2. Comparatively, reintroduction of EphB1 expression in EphB1-methylated AML cells enhanced the same cascade of ATR, Chk1, p21, and CDK1tyr15, which consequently enforced programmed cell death. Interestingly, in pediatric AML samples, EphB1 peptide phosphorylation and mRNA expression were actively suppressed as compared with normal bone marrow, and a significant percentage of the primary AML specimens had EphB1 promoter hyper-methylation. Finally, EphB1 repression associated with a poor overall survival in pediatric AML. Combined, the contribution of EphB1 to the DDR system reveals a tumor-suppressor function for EphB1 in pediatric AML. Implications The tumor-suppressor function of EphB1 is clinically relevant across many malignancies, suggesting that EphB1 is an important regulator of common cancer cell trans forming pathways. PMID:25944917

  12. Adolescent-Parent Attachment and Externalizing Behavior: The Mediating Role of Individual and Social Factors.

    PubMed

    de Vries, Sanne L A; Hoeve, Machteld; Stams, Geert Jan J M; Asscher, Jessica J

    2016-02-01

    The aim of this study was to test whether the associations between adolescent-parent attachment and externalizing problem behavior of adolescents were mediated by adolescent cognitive distortions, self-esteem, parental monitoring and association with deviant peers. A total of 102 adolescents (71 % male; aged 12-19 years) at risk for developing delinquent behaviors reported on attachment, parental monitoring, aggressive and delinquent behavior and peers. Mediation effects were tested by using structural equation modeling. Different pathways were found depending on the type of externalizing behavior. The association between attachment and direct and indirect aggressive behavior was mediated by cognitive distortions. The relation between attachment and delinquency was mediated by deviant peers and parental monitoring. We argue that clinical practice should focus on the attachment relationship between adolescent and parents in order to positively affect risk and protective factors for adolescents' aggressive and delinquent behavior. PMID:25772427

  13. FGF-23 Regulates CYP27B1 Transcription in the Kidney and in Extra-Renal Tissues

    PubMed Central

    Chanakul, Ankanee; Zhang, Martin Y. H.; Louw, Andrew; Armbrecht, Harvey J.; Miller, Walter L.; Portale, Anthony A.; Perwad, Farzana

    2013-01-01

    The mitochondrial enzyme 25-hydroxyvitamin D 1α-hydroxylase, which is encoded by the CYP27B1 gene, converts 25OHD to the biological active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D). Renal 1α-hydroxylase activity is the principal determinant of the circulating 1,25(OH)2D concentration and enzyme activity is tightly regulated by several factors. Fibroblast growth factor-23 (FGF-23) decreases serum 1,25(OH)2D concentrations by suppressing CYP27B1 mRNA abundance in mice. In extra-renal tissues, 1α-hydroxylase is responsible for local 1,25(OH)2D synthesis, which has important paracrine actions, but whether FGF-23 regulates CYP27B1 gene expression in extra-renal tissues is unknown. We sought to determine whether FGF-23 regulates CYP27B1 transcription in the kidney and whether extra-renal tissues are target sites for FGF-23-induced suppression of CYP27B1. In HEK293 cells transfected with the human CYP27B1 promoter, FGF-23 suppressed promoter activity by 70%, and the suppressive effect was blocked by CI-1040, a specific inhibitor of extracellular signal regulated kinase 1/2. To examine CYP27B1 transcriptional activity in vivo, we crossed fgf-23 null mice with mice bearing the CYP27B1 promoter-driven luciferase transgene (1α-Luc). In the kidney of FGF-23 null/1α-Luc mice, CYP27B1 promoter activity was increased by 3-fold compared to that in wild-type/1α-Luc mice. Intraperitoneal injection of FGF-23 suppressed renal CYP27B1 promoter activity and protein expression by 26% and 60% respectively, and the suppressive effect was blocked by PD0325901, an ERK1/2 inhibitor. These findings provide evidence that FGF-23 suppresses CYP27B1 transcription in the kidney. Furthermore, we demonstrate that in FGF-23 null/1α-Luc mice, CYP27B1 promoter activity and mRNA abundance are increased in several extra-renal sites. In the heart of FGF-23 null/1α-Luc mice, CYP27B1 promoter activity and mRNA were 2- and 5-fold higher, respectively, than in control mice. We also

  14. In vivo formation of N-acyl-fumonisin B1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are fungal toxins found in corn and in corn-based foods. Fumonisin B1 (FB1) is the most common and is toxic to animals, causes cancer in rodents, and is a suspected risk factor for cancer and birth defects in humans. The hydrolyzed form of FB1 (HFB1) also occurs in foods and is metabolize...

  15. Social Competence as a Mediating Factor in Reduction of Behavioral Problems

    ERIC Educational Resources Information Center

    Langeveld, Johannes H.; Gundersen, Knut K.; Svartdal, Frode

    2012-01-01

    The main purpose of the present study was to explore how social competence reduces behavioral problems. Based on previous findings, we assume that increased social competence can be regarded as a mediating factor in reducing behavior problems. All participants (children and adolescents, n = 112) received an intervention intended to increase social…

  16. Factors Mediating the Effect of Gender on Ninth-Grade Turkish Students' Misconceptions Concerning Electric Circuits

    ERIC Educational Resources Information Center

    Sencar, Selen; Eryilmaz, Ali

    2004-01-01

    This study was designed to identify and analyze possible factors that mediate the effect of gender on ninth-grade Turkish students' misconceptions concerning electric circuits. A Simple Electric Circuit Concept Test (SECCT), including items with both practical and theoretical contexts, and an Interest-Experience Questionnaire about Electricity…

  17. Risk Factors and Mediators of the Vascular Dysfunction Associated with Hypertension in Pregnancy

    PubMed Central

    Sheppard, Stephanie J.; Khalil, Raouf A.

    2010-01-01

    Normal pregnancy is associated with significant hemodynamic changes and vasodilation in the uterine and systemic circulation in order to meet the metabolic demands of the mother and developing fetus. Hypertension in pregnancy (HTN-Preg) and preeclampsia (PE) are major complications and life-threatening conditions to both the mother and fetus. PE is precipitated by various genetic, dietary and environmental factors. Although the initiating events of PE are unclear, inadequate invasion of cytotrophoblasts into the uterine artery is thought to reduce uteroplacental perfusion pressure and lead to placental ischemia/hypoxia. Placental hypoxia induces the release of biologically active factors such as growth factor inhibitors, anti-angiogenic proteins, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and antibodies to vascular angiotensin II receptor. These bioactive factors affect the production/activity of various vascular mediators in the endothelium, smooth muscle and extracellular matrix, leading to severe vasoconstriction and HTN. As an endothelial cell disorder, PE is associated with decreased vasodilator mediators such as nitric oxide, prostacyclin and hyperpolarizing factor and increased vasoconstrictor mediators such as endothelin, angiotensin II and thromboxane A2. PE also involves enhanced mechanisms of vascular smooth muscle contraction including intracellular free Ca2+ concentration ([Ca2+]i), and [Ca2+]i sensitization pathways such as protein kinase C, Rho-kinase and mitogen-activated protein kinase. Changes in extracellular matrix composition and matrix metalloproteases activity also promote vascular remodeling and further vasoconstriction in the uterine and systemic circulation. Characterization of the predisposing risk factors, the biologically active factors, and the vascular mediators associated with PE holds the promise for early detection, and should help design specific genetic and pharmacological tools for the management

  18. Dual role for B-1a cells in immunity to influenza virus infection.

    PubMed

    Choi, Youn Soo; Baumgarth, Nicole

    2008-12-22

    B-1 cells are known to contribute most of the "natural antibodies" that are secreted in the steady state, antibodies which are crucial for protection against many pathogens including influenza virus. Whether the CD5(+) B-1a subset plays a role during an active immune response is incompletely understood. In contrast to recent data suggesting a passive role for B-1a cells, data provided here show strong highly localized activation of B-1 cells in the draining lymph nodes of the respiratory tract after influenza infection. B-1 cells are identified as a major source for both steady state and infection-induced local virus-neutralizing IgM. The CD5(+) B-1a subset is the main B-1 cell subset generating this response. B-1a cell responses are generated by their increased local accumulation rather than by antigen-specific expansion. Our study reveals that during infection with influenza, CD5-expressing B-1a cells respond to and contribute to protection, presumably without the need for B cell receptor-mediated antigen-specific signals, which are known to induce the death of B-1a cells rather than activation. With that, our data reveal fundamental differences in the response regulation of B-1 and B-2 cells during an infection. PMID:19075288

  19. Observation of B Meson decays to b1pi and b1K.

    PubMed

    Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Tico, J Garra; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Pegna, D Lopes; Lynch, G; Mir, L M; Orimoto, T J; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Wenzel, W A; Del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Pelizaeus, M; Schroeder, T; Steinke, M; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Watson, J E; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Vazquez, W Panduro; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Roethel, W; Wilson, F F; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; de Monchenault, G Hamel; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hryn'ova, T; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Neal, H

    2007-12-14

    We present the results of searches for decays of B mesons to final states with a b1 meson and a charged pion or kaon. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 382x10(6) BB[over ] pairs produced in e+e- annihilation. The results for the branching fractions are, in units of 10(-6), B(B+-->b1(0)pi+)=6.7+/-1.7+/-1.0, B(B+-->b1(0)K+)=9.1+/-1.7+/-1.0, B(B0-->b1(-/+)pi(+/-))=10.9+/-1.2+/-0.9, and B(B0-->b1(-)K+)=7.4+/-1.0+/-1.0, with the assumption that B(b1-->omega pi)=1. We also measure charge and flavor asymmetries A(ch)(B+-->b1(0)pi+)=0.05+/-0.16+/-0.02, Ach(B+-->b1(0)K+)=-0.46+/-0.20+/-0.02, A(ch)(B0-->b1(-/+)pi(+/-))=-0.05+/-0.10+/-0.02, C(B0-->b1(-/+)pi(+/-))=-0.22+/-0.23+/-0.05, DeltaC(B0-->b1(-/+)pi(+/-))=-1.04+/-0.23+/-0.08, and A(ch)(B0-->b1(-)K+)=-0.07+/-0.12+/-0.02. The first error quoted is statistical, and the second systematic. PMID:18233439

  20. Large dynamic range relative B1+ mapping

    PubMed Central

    Hess, Aaron T.; Aljabar, Paul; Malik, Shaihan J.; Jezzard, Peter; Robson, Matthew D.; Hajnal, Joseph V.; Koopmans, Peter J.

    2015-01-01

    Purpose Parallel transmission (PTx) requires knowledge of the B1+ produced by each element. However, B1+ mapping can be challenging when transmit fields exhibit large dynamic range. This study presents a method to produce high quality relative B1+ maps when this is the case. Theory and Methods The proposed technique involves the acquisition of spoiled gradient echo (SPGR) images at multiple radiofrequency drive levels for each transmitter. The images are combined using knowledge of the SPGR signal equation using maximum likelihood estimation, yielding an image for each channel whose signal is proportional to the B1+ field strength. Relative B1+ maps are then obtained by taking image ratios. The method was tested using numerical simulations, phantom imaging, and through in vivo experiments. Results The numerical simulations demonstrated that the proposed method can reconstruct relative transmit sensitivities over a wide range of B1+ amplitudes and at several SNR levels. The method was validated at 3 Tesla (T) by comparing it with an alternative B1+ mapping method, and demonstrated in vivo at 7T. Conclusion Relative B1+ mapping in the presence of large dynamic range has been demonstrated through numerical simulations, phantom imaging at 3T and experimentally at 7T. The method will enable PTx to be applied in challenging imaging scenarios at ultrahigh field. Magn Reson Med 76:490–499, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26308375

  1. Association of Endophilin B1 with Cytoplasmic Vesicles.

    PubMed

    Li, Jinhui; Barylko, Barbara; Eichorst, John P; Mueller, Joachim D; Albanesi, Joseph P; Chen, Yan

    2016-08-01

    Endophilins are SH3- and BAR domain-containing proteins implicated in membrane remodeling and vesicle formation. Endophilins A1 and A2 promote the budding of endocytic vesicles from the plasma membrane, whereas endophilin B1 has been implicated in vesicle budding from intracellular organelles, including the trans-Golgi network and late endosomes. We previously reported that endophilins A1 and A2 exist almost exclusively as soluble dimers in the cytosol. Here, we present results of fluorescence fluctuation spectroscopy analyses indicating that, in contrast, the majority of endophilin B1 is present in multiple copies on small, highly mobile cytoplasmic vesicles. Formation of these vesicles was enhanced by overexpression of wild-type dynamin 2, but suppressed by expression of a catalytically inactive dynamin 2 mutant. Using dual-color heterospecies partition analysis, we identified the epidermal growth factor receptor on endophilin B1 vesicles. Moreover, a proportion of endophilin B1 vesicles also contained caveolin, whereas clathrin was almost undetectable on those vesicles. These results raise the possibility that endophilin B1 participates in dynamin 2-dependent formation of a population of transport vesicles distinct from those generated by A-type endophilins. PMID:27508440

  2. Fumonisin B1 and the kidney: modes of action for renal tumor formation by fumonisin B1 in rodents.

    PubMed

    Müller, Stephanie; Dekant, Wolfgang; Mally, Angela

    2012-10-01

    The mycotoxin fumonisin B1 (FB1) is an important contaminant of maize and maize-based products. In rodent toxicity studies, FB1 was shown to be hepato- and nephrotoxic, and to induce renal tumors in rats when administered via the diet. Of particular note are the aggressive growth characteristics of FB1-induced tumors with a high potential to metastasize. While genotoxicity does not appear to contribute to FB1 carcinogenicity, it is well established that FB1-mediated disruption of sphingolipid metabolism plays a key role in FB1 toxicity. This review provides an overview on human dietary exposure to FB1, FB1 toxicity and carcinogenicity, and potential mechanisms involved in FB1-mediated tumor formation, with a particular focus on cellular functions of sphingolipids and biological consequences of FB1-mediated perturbation of sphingolipid metabolism. PMID:22771819

  3. Association between Kinin B1 Receptor Expression and Leukocyte Trafficking across Mouse Mesenteric Postcapillary Venules

    PubMed Central

    McLean, Peter G.; Ahluwalia, Amrita; Perretti, Mauro

    2000-01-01

    Using intravital microscopy, we examined the role played by B1 receptors in leukocyte trafficking across mouse mesenteric postcapillary venules in vivo. B1 receptor blockade attenuated interleukin (IL)-1β–induced (5 ng intraperitoneally, 2 h) leukocyte–endothelial cell interactions and leukocyte emigration (∼50% reduction). The B1 receptor agonist des-Arg9bradykinin (DABK), although inactive in saline- or IL-8–treated mice, caused marked neutrophil rolling, adhesion, and emigration 24 h after challenge with IL-1β (when the cellular response to IL-1β had subsided). Reverse transcriptase polymerase chain reaction and Western blot revealed a temporal association between the DABK-induced response and upregulation of mesenteric B1 receptor mRNA and de novo protein expression after IL-1β treatment. DABK-induced leukocyte trafficking was antagonized by the B1 receptor antagonist des-arg10HOE 140 but not by the B2 receptor antagonist HOE 140. Similarly, DABK effects were maintained in B2 receptor knockout mice. The DABK-induced responses involved the release of neuropeptides from C fibers, as capsaicin treatment inhibited the responses. Treatment with the neurokinin (NK)1 and NK3 receptor antagonists attenuated the responses, whereas NK2, calcitonin gene-related peptide, or platelet-activating factor receptor antagonists had no effect. Substance P caused leukocyte recruitment that, similar to DABK, was inhibited by NK1 and NK3 receptor blockade. Mast cell depletion using compound 48/80 reduced DABK-induced leukocyte trafficking, and DABK treatment was shown histologically to induce mast cell degranulation. DABK-induced trafficking was inhibited by histamine H1 receptor blockade. Our findings provide clear evidence that B1 receptors play an important role in the mediation of leukocyte–endothelial cell interactions in postcapillary venules, leading to leukocyte recruitment during an inflammatory response. This involves activation of C fibers and mast cells

  4. Structure and expression of the gene (HNRPA2B1) encoding the human hnRNP protein A2/B1

    SciTech Connect

    Kozu, Tomoko; Henrich, B.; Schaefer, K.P.

    1995-01-20

    Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a major nuclear protein and one of the major components of the hnRNP core complex in mammalian cells. We first determined the complete sequence of the human gene for hnRNP protein A2 (HNRPA2B1). The human HNRPA2B1 gene exists in a single copy over 9 kb in length. The gene was split into 12 exons, including a 36-nucleotide mini-exon, which was specific to the hnRNP protein B1, providing genetic evidence that the B1 mRNA was generated from the primary HNRPA2B1 transcript by alternative splicing. The 5{prime} region of HNRPA2B1 was GC-rich and contained several DNA motifs for the binding of several transcription factors, which included 2 CCAAT boxes and no TATA sequences. The 5{prime} ends of the mRNA were mapped to multiple positions. These structural features are characteristic of promoter regions of housekeeping genes. Northern blot and RT-PCR analyses of the HNRPA2B1 transcripts revealed levels of B1 mRNA from 2 to 5% of total A2/B1 transcripts and showed that both A2 and B1 mRNAs were transcribed in all human cell lines and mouse tissues studied. The structural and evolutionary characteristics of the A2 and A1 proteins as they relate to each other are discussed. 38 refs., 5 figs.

  5. Master transcription factors and mediator establish super-enhancers at key cell identity genes.

    PubMed

    Whyte, Warren A; Orlando, David A; Hnisz, Denes; Abraham, Brian J; Lin, Charles Y; Kagey, Michael H; Rahl, Peter B; Lee, Tong Ihn; Young, Richard A

    2013-04-11

    Master transcription factors Oct4, Sox2, and Nanog bind enhancer elements and recruit Mediator to activate much of the gene expression program of pluripotent embryonic stem cells (ESCs). We report here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state. These domains, which we call super-enhancers, consist of clusters of enhancers that are densely occupied by the master regulators and Mediator. Super-enhancers differ from typical enhancers in size, transcription factor density and content, ability to activate transcription, and sensitivity to perturbation. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. Super-enhancers thus play key roles in the control of mammalian cell identity. PMID:23582322

  6. Hypoxia-inducible Factor-dependent Production of Profibrotic Mediators by Hypoxic Hepatocytes

    PubMed Central

    Copple, Bryan L.; Bustamante, Juan J.; Welch, Timothy P.; Kim, Nam Deuk; Moon, Jeon-OK

    2011-01-01

    Background/Aims During the development of liver fibrosis, mediators are produced that stimulate cells in the liver to differentiate into myofibroblasts and to produce collagen. Recent studies demonstrated that the transcription factor, hypoxia-inducible factor-1α (HIF-1α), is critical for upregulation of profibrotic mediators, such as platelet-derived growth factor-A (PDGF-A), PDGF-B, and plasminogen activator inhibitor-1 (PAI-1) in the liver during the development of fibrosis. What remains unknown is the cell type-specific regulation of these genes by HIF-1α in liver cell types. Accordingly, the hypothesis was tested that HIF-1α is activated in hypoxic hepatocytes and regulates production of profibrotic mediators by these cells. Methods In this study, hepatocytes were isolated from the livers of control and HIF-1α or HIF-1β-Deficient mice and exposed to hypoxia. Results Exposure of primary mouse hepatocytes to 1% oxygen stimulated nuclear accumulation of HIF-1α and upregulated PAI-1, vascular endothelial cell growth factor, and the vasoactive peptides adrenomedullin-1 (ADM-1) and ADM-2. In contrast, levels of PDGF-A and PDGF-B mRNAs were unaffected in these cells by hypoxia. Exposure of HIF-1α-Deficient hepatocytes to 1% oxygen only partially prevented upregulation of these genes, suggesting that other hypoxia-regulated transcription factors, such as HIF-2α, may also regulate these genes. In support of this, HIF-2α was activated in hypoxic hepatocytes, and exposure of HIF-1β-Deficient hepatocytes to 1% oxygen completely prevented upregulation PAI-1, VEGF, and ADM-1, suggesting that HIF-2α may also contribute to upregulation of these genes in hypoxic hepatocytes. Conclusions Collectively, our results suggest that HIFs may be important regulators of profibrotic and vasoactive mediators by hypoxic hepatocytes. PMID:19302442

  7. Flavonoids exhibit diverse effects on CYP11B1 expression and cortisol synthesis

    SciTech Connect

    Cheng, Li-Chuan; Li, Lih-Ann

    2012-02-01

    CYP11B1 catalyzes the final step of cortisol biosynthesis. The effects of flavonoids on transcriptional expression and enzyme activity of CYP11B1 were investigated using the human adrenocortical H295R cell model. All tested nonhydroxylated flavones including 3′,4′-dimethoxyflavone, α-naphthoflavone, and β-naphthoflavone upregulated CYP11B1 expression and cortisol production, whereas apigenin and quercetin exhibited potent cytotoxicity and CYP11B1 repression at high concentrations. Nonhydroxylated flavones stimulated CYP11B1-catalyzed cortisol formation at transcriptional level. Resveratrol increased endogenous and substrate-supported cortisol production like nonhydroxylated flavones tested, but it had no effect on CYP11B1 gene expression and enzyme activity. Resveratrol appeared to alter cortisol biosynthesis at an earlier step. The Ad5 element situated in the − 121/− 106 region was required for basal and flavone-induced CYP11B1 expression. Overexpression of COUP-TFI did not improve the responsiveness of Ad5 to nonhydroxylated flavones. Although COUP-TFI overexpression increased CYP11B1 and CYP11B2 promoter activation, its effect was not mediated through the common Ad5 element. Treating cells with PD98059 (a flavone-type MEK1 inhibitor) increased CYP11B1 promoter activity, but not involving ERK signaling because phosphorylation of ERK1/2 remained unvarying throughout the course of treatment. Likewise, AhR was not responsible for the CYP11B1-modulating effects of flavonoids because inconsistency with their effects on AhR activation. 3′,4′-dimethoxyflavone and 8-Br-cAMP additively activated CYP11B1 promoter activity. H-89 reduced 3′,4′-dimethoxyflavone-induced CYP11B1 promoter activation but to a lesser extent as compared to its inhibition on cAMP-induced transactivation. Our data suggest that constant exposure to nonhydroxylated flavones raises a potential risk of high basal and cAMP-induced cortisol synthesis in consequence of increased CYP11B1

  8. Transforming growth factor-β: an important mediator in Helicobacter pylori-associated pathogenesis

    PubMed Central

    Li, Nianshuang; Xie, Chuan; Lu, Nong-Hua

    2015-01-01

    Helicobacter pylori (H.pylori) is a Gram-negative, microaerophilic, helical bacillus that specifically colonizes the gastric mucosa. The interaction of virulence factors, host genetic factors, and environmental factors contributes to the pathogenesis of H. pylori-associated conditions, such as atrophic gastritis and intestinal metaplasia. Infection with H. pylori has recently been recognized as the strongest risk factor for gastric cancer. As a pleiotropic cytokine, transforming growth factor (TGF)-β regulates various biological processes, including cell cycle, proliferation, apoptosis, and metastasis. Recent studies have shed new light on the involvement of TGF-β signaling in the pathogenesis of H. pylori infection. This review focuses on the potential etiological roles of TGF-β in H. pylori-mediated gastric pathogenesis. PMID:26583078

  9. Antiretroviral treatment adherence as a mediating factor between psychosocial variables and HIV viral load.

    PubMed

    Attonito, Jennifer; Dévieux, Jessy G; Lerner, Brenda D G; Hospital, Michelle M; Rosenberg, Rhonda

    2014-01-01

    Psychosocial factors may directly impact HIV health measures such as viral load (VL) whether or not patients are taking antiretroviral treatment (ART) consistently. Structural equation modeling plus Baron and Kenny's (1986) four-step approach were used to test a mediated model predicting VL among 246 HIV-infected adults who were on ART. Exogenous variables were social support, barriers to adherence, and stress. Moderators were alcohol use, marijuana use, and neurocognitive impairment. A small positive association between marijuana use and ART adherence approached significance. Only barriers to adherence predicted a decrease in adherence rates and an increase in VL. No other factors were significantly associated with either VL or adherence, and no interaction effects between exogenous variables and moderators were identified. The association between barriers to adherence and VL was partially mediated by ART adherence. Findings provide modest support for a direct link between psychosocial variables and a virologic response to ART. PMID:25305029

  10. Antiretroviral treatment adherence as a mediating factor between psychosocial variables and HIV viral load

    PubMed Central

    Attonito, Jennifer; Dévieux, Jessy G.; Lerner, Brenda D. G.; Hospital, Michelle M.; Rosenberg, Rhonda

    2014-01-01

    Psychosocial factors may directly impact HIV health measures such as viral load (VL), whether or not patients are taking antiretroviral treatment (ART) consistently. Structural equation modeling plus Baron and Kenny’s (1986) four-step approach were used to test a mediated model predicting VL among 246 HIV-infected adults who were on ART. Exogenous variables were social support, barriers to adherence, and stress. Moderators were alcohol use, marijuana use, and neurocognitive impairment. A small positive association between marijuana use and ART adherence approached significance. Only barriers to adherence predicted a decrease in adherence rates and an increase in VL. No other factors were significantly associated with either VL or adherence and no interaction effects between exogenous variables and moderators were identified. The association between barriers to adherence and VL was partially mediated by ART adherence. Findings provide modest support for a direct link between psychosocial variables and a virologic response to ART. PMID:25305029

  11. Loss of serum response factor induces microRNA-mediated apoptosis in intestinal smooth muscle cells

    PubMed Central

    Park, C; Lee, M Y; Slivano, O J; Park, P J; Ha, S; Berent, R M; Fuchs, R; Collins, N C; Yu, T J; Syn, H; Park, J K; Horiguchi, K; Miano, J M; Sanders, K M; Ro, S

    2015-01-01

    Serum response factor (SRF) is a transcription factor known to mediate phenotypic plasticity in smooth muscle cells (SMCs). Despite the critical role of this protein in mediating intestinal injury response, little is known about the mechanism through which SRF alters SMC behavior. Here, we provide compelling evidence for the involvement of SRF-dependent microRNAs (miRNAs) in the regulation of SMC apoptosis. We generated SMC-restricted Srf inducible knockout (KO) mice and observed both severe degeneration of SMCs and a significant decrease in the expression of apoptosis-associated miRNAs. The absence of these miRNAs was associated with overexpression of apoptotic proteins, and we observed a high level of SMC death and myopathy in the intestinal muscle layers. These data provide a compelling new model that implicates SMC degeneration via anti-apoptotic miRNA deficiency caused by lack of SRF in gastrointestinal motility disorders. PMID:26633717

  12. Fungal degradation of aflatoxin B1.

    PubMed

    Shantha, T

    1999-01-01

    A number of fungal cultures were screened to select an organism suitable to be used in the detoxification of aflatoxin B1. They were co-cultured in Czapek-Dox-Casamino acid medium with aflatoxin B1 producing Aspergillus flavus. Several fungal cultures were found to prevent synthesis of aflatoxin B1 in liquid culture medium. Among these Phoma sp., Mucor sp., Trichoderma harzianum, Trichoderma sp. 639, Rhizopus sp. 663, Rhizopus sp. 710, Rhizopus sp. 668, Alternaria sp. and some strains belonging to the Sporotrichum group (ADA IV B14(a), ADA SF VI BF (9), strain 720) could inhibit aflatoxin synthesis by > or =90%. A few fungi, namely ADA IV B1, ADA F1, ADA F8, also belonging to the Sporotrichum group, were less efficient than the Phoma sp. The Cladosporium sp. and A. terreus sp. were by far the least efficient, registering <10% inhibition. The cultures which prevent aflatoxin biosynthesis are also capable of degrading the preformed toxin. Among these, Phoma sp. was the most efficient destroying about 99% of aflatoxin B1. The cell free extract of Phoma sp. destroyed nearly 50 microg aflatoxin B1 100 ml(-1) culture medium (90% of the added toxin), and this was more effective than its own culture filtrate over 5 days incubation at 28+/-2 degrees C. The degradation was gradual: 35% at 24 h, 58% at 48 h, 65% at 72 h, 85% at 96 h and 90% at 120 h. The possibility of a heat stable enzymatic activity in the cell free extract of Phoma is proposed. PMID:10945479

  13. [Production of a dialysable transfer factor of cell mediated immunity by lymphoblastoid cells in continuous proliferation].

    PubMed

    Goust, J M; Viza, D; Moulias, R; Trejdosiewicz, L; Lesourd, B; Marescot, M R; Prévot, A

    1975-01-20

    Four lymphoblastoid cell lines tested in this work contain normally a dialysable moiety having by ultraviolet spectroscopy, column chromatography (Biogel P 10) and chemically the same properties than human dialysable Transfer Factor (TFd), but unable to transfer cell mediated immune response against common antigens. Two of them are able to do so after incubation with minimal amounts of TFd. Production of a molecule identical to human TFd is possible in some lymphoblastoid cell lines after induction with TFd. PMID:808340

  14. Educational inequalities in TV viewing among older adults: a mediation analysis of ecological factors

    PubMed Central

    2013-01-01

    Background Television (TV) viewing, a prevalent leisure-time sedentary behaviour independently related to negative health outcomes, appears to be higher in less educated and older adults. In order to tackle the social inequalities, evidence is needed about the underlying mechanisms of the association between education and TV viewing. The present purpose was to examine the potential mediating role of personal, social and physical environmental factors in the relationship between education and TV viewing among Australian 55–65 year-old adults. Methods In 2010, self-reported data was collected among 4082 adults (47.6% men) across urban and rural areas of Victoria, for the Wellbeing, Eating and Exercise for a Long Life (WELL) study. The mediating role of personal (body mass index [BMI], quality of life), social (social support from family and friends, social participation at proximal level, and interpersonal trust, social cohesion, personal safety at distal level) and physical environmental (neighbourhood aesthetics, neighbourhood physical activity environment, number of televisions) factors in the association between education and TV viewing time was examined using the product-of-coefficients test of MacKinnon based on multilevel linear regression analyses (conducted in 2012). Results Multiple mediating analyses showed that BMI (p ≤ 0.01), personal safety (p < 0.001), neighbourhood aesthetics (p ≤ 0.01) and number of televisions (p ≤ 0.01) partly explained the educational inequalities in older adult’s TV viewing. No proximal social factors mediated the education-TV viewing association. Conclusions Interventions aimed to reduce TV viewing should focus on personal (BMI) and environmental (personal safety, neighbourhood aesthetics, number of televisions) factors, in order to overcome educational inequalities in sedentary behaviour among older adults. PMID:24350830

  15. CYP7B1 Enzyme Deletion Impairs Reproductive Behaviors in Male Mice

    PubMed Central

    Oyola, Mario G.; Zuloaga, Damian G.; Carbone, David; Malysz, Anna M.; Acevedo-Rodriguez, Alexandra; Handa, Robert J.

    2015-01-01

    In addition to androgenic properties mediated via androgen receptors, dihydrotestosterone (DHT) also regulates estrogenic functions via an alternate pathway. These estrogenic functions of DHT are mediated by its metabolite 5α-androstane-3β, 17β-diol (3β-diol) binding to estrogen receptor β (ERβ). CYP7B1 enzyme converts 3β-diol to inactive 6α- or 7α-triols and plays an important role as a regulator of estrogenic functions mediated by 3β-diol. Using a mutant mouse carrying a null mutation for the CYP7B1 gene (CYP7B1KO), we examined the contribution of CYP7B1 on physiology and behavior. Male, gonadectomized (GDX) CYP7B1KO and their wild type (WT) littermates were assessed for their behavioral phenotype, anxiety-related behavioral measures, and hypothalamic pituitary adrenal axis reactivity. No significant effects of genotype were evident in anxiety-like behaviors in open field (OFA), light-dark (L/D) exploration, and elevated plus maze (EPM). T significantly reduced open arm time on the EPM while not affecting L/D exploratory and OFA behaviors in CYP7B1KO and WT littermates. T also attenuated the corticosterone response to EPM in both genotypes. In GDX animals, T was able to reinstate male-specific reproductive behaviors (latencies and number of mounts, intromission, and ejaculations) in the WT but not in the CYP7B1KO mice. The male reproductive behavior defect in CYP7B1KO seems to be due to their inability to distinguish olfactory cues from a behavioral estrus female. CYP7B1KO mice also showed a reduction in androgen receptor mRNA expression in the olfactory bulb. Our findings suggest a novel role for the CYP7B1 enzyme in the regulation of male reproductive behaviors. PMID:25849728

  16. TRANSFORMING GROWTH FACTOR-BETA MEDIATED SUPPRESSION OF ANTI-TUMOR T CELLS REQUIRES FOXP1 TRANSCRIPTION FACTOR EXPRESSION

    PubMed Central

    Stephen, Tom L.; Rutkowski, Melanie R.; Allegrezza, Michael J.; Perales-Puchalt, Alfredo; Tesone, Amelia J.; Svoronos, Nikolaos; Nguyen, Jenny M.; Sarmin, Fahmida; Borowsky, Mark E.; Tchou, Julia; Conejo-Garcia, Jose R.

    2014-01-01

    SUMMARY Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the up-regulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8+ T cells from proliferating and up-regulating Granzyme-B and interferon-γ (IFN-γ) in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors, and promoted protection against tumor re-challenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in pre-activated CD8+ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. PMID:25238097

  17. Prostaglandin F2α Stimulates the Expression and Secretion of Transforming Growth Factor B1 Via Induction of the Early Growth Response 1 Gene (EGR1) in the Bovine Corpus Luteum

    PubMed Central

    Hou, Xiaoying; Arvisais, Edward W.; Jiang, Chao; Chen, Dong-bao; Roy, Shyamal K.; Pate, Joy L.; Hansen, Thomas R.; Rueda, Bo R.; Davis, John S.

    2008-01-01

    In most mammals, prostaglandin F2α (PGF2α) is believed to be a trigger that induces the regression of the corpus luteum (CL), whereby progesterone synthesis is inhibited, the luteal structure involutes, and the reproductive cycle resumes. Studies have shown that the early growth response 1 (EGR1) protein can induce the expression of proapoptotic proteins, suggesting that EGR1 may play a role in luteal regression. Our hypothesis is that EGR1 mediates the actions of PGF2α by inducing the expression of TGF β1 (TGFB1), a key tissue remodeling protein. The levels of EGR1 mRNA and protein were up-regulated in the bovine CL during PGF2α-induced luteolysis in vivo and in PGF2α-treated luteal cells in vitro. Using chemical and genetic approaches, the RAF/MAPK kinase (MEK) 1/ERK pathway was identified as a proximal signaling event required for the induction of EGR1 in PGF2α-treated cells. Treatment with PGF2α increased the expression of TGFB1 mRNA and protein as well as the binding of EGR1 protein to TGFB1 promoter in bovine luteal cells. The effect of PGF2α on TGFB1 expression was mimicked by a protein kinase C (PKC)/RAF/MEK1/ERK activator or adenoviral-mediated expression of EGR1. The stimulatory effect of PGF2α on TGFB1 mRNA and TGFB1 protein secretion was inhibited by blockade of MEK1/ERK signaling and by adenoviral-mediated expression of NAB2, an EGR1 binding protein that inhibits EGR1 transcriptional activity. Treatment of luteal cells with TGFB1 reduced progesterone secretion, implicating TGFB1 in luteal regression. These studies demonstrate that PGF2α stimulates the expression of EGR1 and TGFB1 in the CL. We suggest that EGR1 plays a role in the expression of genes whose cognate proteins coordinate luteal regression. PMID:17916653

  18. Establishing a Framework of Influential Factors on Empowering Primary School Students in Peer Mediation

    PubMed Central

    Jorbozeh, Hamideh; Dehdari, Tahereh; Ashoorkhani, Mahnaz; Taghdisi, Mohammad Hossein

    2014-01-01

    Background: Empowerment of children and adolescents in terms of social skills is critical for promoting their social health. Objectives: This study attempts to explore a framework of influential factors on empowering primary school students by means of peer mediation from the stakeholders' point of view, as a qualitative content analysis design. Patients and Methods: This study was a qualitative content analysis (conventional method). Seven focused group discussions and six in-depth interviews were conducted with schoolchildren, parents and education authorities. Following each interview, recordings were entered to an open code software and analyzed. Data collection was continued up to data saturation. Results: Within the provided framework, the participants' views and comments were classified into two major categories “educational empowerment” and “social empowerment”, and into two themes; “program” and “advocacy”. The “program” theme included factors such as design and implementation, development, maintenance and improvement, and individual and social impact. The “advocacy” theme included factors such as social, emotional and physical support. Conclusions: The explained framework components regarding peer mediation are useful to design peace education programs and to empower school-age children in peer mediation. PMID:25763191

  19. Cytochrome P450 1B1: An Unexpected Modulator of Liver Fatty Acid Homeostasis

    PubMed Central

    Larsen, Michele Campaigne; Bushkofsky, Justin R.; Gorman, Tyler; Adhami, Vaqar; Mukhtar, Hasan; Wang, Suqing; Reeder, Scott B.; Sheibani, Nader; Jefcoate, Colin R.

    2015-01-01

    Cytochrome P450 1b1 (Cyp1b1) expression is absent in mouse hepatocytes, but present in liver endothelia and activated stellate cells. Increased expression during adipogenesis suggests a role of Cyp1b1 metabolism in fatty acid homeostasis. Wild-type C57BL/6j (WT) and Cyp1b1-null (Cyp1b1-ko) mice were provided low or high fat diets (LFD and HFD, respectively). Cyp1b1-deletion suppressed HFD-induced obesity, improved glucose tolerance and prevented liver steatosis. Suppression of lipid droplets in sinusoidal hepatocytes, concomitant with enhanced glycogen granules, was a consistent feature of Cyp1b1-ko mice. Cyp1b1 deletion altered the in vivo expression of 560 liver genes, including suppression of PPARγ, stearoyl CoA desaturase 1 (Scd1) and many genes stimulated by PPARα, each consistent with this switch in energy storage mechanism. Ligand activation of PPARα in Cyp1b1-ko mice by WY-14643 was, nevertheless, effective. Seventeen gene changes in Cyp1b1-ko mice correspond to mouse transgenic expression that attenuated diet-induced diabetes. The absence of Cyp1b1 in mouse hepatocytes indicates participation in energy homeostasis through extra-hepatocyte signaling. Extensive sexual dimorphism in hepatic gene expression suggests a developmental impact of estrogen metabolism by Cyp1b1. Suppression of Scd1 and increased leptin turnover support enhanced leptin participation from the hypothalamus. Cyp1b1-mediated effects on vascular cells may underlie these changes. PMID:25703193

  20. Exploring socio-cultural factors that mediate, facilitate, & constrain the health and empowerment of refugee youth.

    PubMed

    Edge, Sara; Newbold, K Bruce; McKeary, Marie

    2014-09-01

    Studies on youth health and well-being are predominantly quantitative and expert-driven with less attention given to how youth understand what it means to be healthy themselves and the role of socio-cultural factors in shaping this. Knowledge on the perceptions and experiences of refugee youth is particularly lacking and notable given their unique stressors related to migratory, settlement and integration experiences. We contribute a better understanding of how refugee youth themselves define and contextualize health, with particular emphasis given to socio-cultural factors that enable or constrain health promotion efforts and individual health agency. This research was undertaken at a downtown drop-in centre in Hamilton, Ontario, Canada that provided settlement and integration services to newcomer youth. We employ a grounded theory approach and draw upon participant observation, focus groups and in-depth interviews. Twenty-six youth (age 18-25 years), representing 12 different countries of origin participated. The youth defined health very broadly touching upon many typical determinants of health (e.g. education, income, etc.). Yet factors of most importance (as demonstrated by the frequency and urgency in which they were discussed by youth) included a sense of belonging, positive self-identity, emotional well-being, and sense of agency or self-determination. We conceptualize these as "mediating" factors given the youth argued they enabled or constrained their ability to cope with adversities related to other health determinant categories. The youth also discussed what we interpret as "facilitators" that encourage mediating factors to manifest positively (e.g. informal, non-biomedical settings and programs that nurture trust, break down access barriers, and promote a sense of community amongst peers, mentors, and health professionals). When creating health promotion strategies for refugee youth (and perhaps youth more generally) it is important to understand the

  1. Expression of nuclear factor, erythroid 2-like 2-mediated genes differentiates tuberculosis.

    PubMed

    Qian, Zhongqing; Lv, Jingzhu; Kelly, Gabriel T; Wang, Hongtao; Zhang, Xiaojie; Gu, Wanjun; Yin, Xiaofeng; Wang, Ting; Zhou, Tong

    2016-07-01

    During infection and host defense, nuclear factor, erythroid 2-like 2 (Nrf2) dependent signaling is an efficient antioxidant defensive mechanism used by host cells to control the destructive effects of reactive oxygen species. This allows for effective defense responses against microbes while minimizing oxidative injury to the host cell itself. As a central regulator of antioxidant genes, Nrf2 has gained great attention in its pivotal role in infection, especially in tuberculosis (TB), the top infectious disease killer worldwide. To elucidate the genes potentially regulated by Nrf2 in TB, we conducted a meta-analysis on published gene expression datasets. Firstly, we compared the global gene expression profiles between control and Nrf2-deficient human cells. The differentially expressed genes were deemed as "Nrf2-mediated genes". Next, the whole blood gene expression pattern of TB patients was compared with that of healthy controls, pneumonia patients, and lung cancer patients. We found that the genes deregulated in TB significantly overlap with the Nrf2-mediated genes. Based on the intersection of Nrf2-mediated and TB-regulated genes, we identified an Nrf2-mediated 17-gene signature, which reflects a cluster of gene ontology terms highly related to TB physiology. We demonstrated that the 17-gene signature can be used to distinguish TB patients from healthy controls and patients with latent TB infection, pneumonia, or lung cancer. Also, the Nrf2-mediated gene signature can be used as an indicator of the anti-TB therapeutic response. More importantly, we confirmed that the predictive power of the Nrf2-mediated 17-gene signature is significantly better than the random gene sets selected from the human transcriptome. Also, the 17-gene signature performs even better than the random gene signatures selected from TB-associated genes. Our study confirms the central role of Nrf2 in TB pathogenesis and provides a novel and useful diagnostic method to differentiate TB

  2. Transcription Factor-Mediated Regulation of Carboxylesterase Enzymes in Livers of Mice

    PubMed Central

    Zhang, Youcai; Cheng, Xingguo; Aleksunes, Lauren

    2012-01-01

    The induction of drug-metabolizing enzymes by chemicals is one of the major reasons for drug-drug interactions. In the present study, the regulation of mRNA expression of one arylacetamide deacetylase (Aadac) and 11 carboxylesterases (Cess) by 15 microsomal enzyme inducers (MEIs) was examined in livers of male C57BL/6 mice. The data demonstrated that Aadac mRNA expression was suppressed by three aryl hydrocarbon receptor (AhR) ligands, two constitutive androstane receptor (CAR) activators, two pregnane X receptor (PXR) ligands, and one nuclear factor erythroid 2-related factor 2 (Nrf2) activator. Ces1 subfamily mRNA expression was not altered by most of the MEIs, whereas Ces2 subfamily mRNA was readily induced by the activators of CAR, PXR, and Nrf2 but not by peroxisome proliferator-activated receptor α activators. Studies using null mice demonstrated that 1) AhR was required for the 2,3,7,8-tetrachlorodibenzo-p-dioxin–mediated suppression of Aadac and Ces3a; 2) CAR was involved in the 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene–mediated induction of Aadac, Ces2c, Ces2a, and Ces3a; 3) PXR was required for the pregnenolone-16α-carbonitrile–mediated induction of Aadac, Ces2c, and Ces2a; 4) Nrf2 was required for the oltipraz-mediated induction of Ces1g and Ces2c; and 5) PXR was not required for the DEX-mediated suppression of Cess in livers of mice. In conclusion, the present study systematically investigated the regulation of Cess by MEIs in livers of mice and demonstrated that MEIs modulated mRNA expression of mouse hepatic Cess through the activation of AhR, CAR, PXR, and/or Nrf2 transcriptional pathways. PMID:22429928

  3. Factors mediating the relationship between intimate partner violence and chronic pain in Chinese women.

    PubMed

    Tiwari, Agnes; Fong, Daniel Y T; Chan, Chee-Hon; Ho, Pak-Chung

    2013-03-01

    There is increasing recognition that chronic pain is a problem affecting women survivors of intimate partner violence (IPV), and in Western literature evidence is emerging about significant factors mediating the relationship between IPV and chronic pain. However, little is known about the factors mediating IPV and chronic pain in Chinese women for whom prior research has shown that Chinese culture may influence their response to IPV. This study was conducted to assess the roles of posttraumatic stress disorder (PTSD) symptoms, depressive symptoms, and IPV-related injury on the relationship between IPV and chronic pain in Chinese women, using structural equation modelling (SEM). Data were collected from 308 Chinese women survivors of IPV recruited at community setting (n = 228) and at domestic violence shelters (n = 82). Results showed that only the relationship between psychological abuse severity and chronic pain severity was mediated by PTSD symptom severity (β = .30, 95% CI = 0.14-0.45, p < .001). Furthermore, although depressive symptom severity was strongly correlated with PTSD symptom severity (β = .69, 95% CI = 0.61-0.76, p < .001), it was not found to be mediating the relationship between any types of IPV and chronic pain. Similarly, IPV-related injury severity was not shown to have a significant mediating effect on the relationship between IPV and chronic pain. The findings affirm the importance of recognizing the complex interrelationships among IPV, mental health symptoms, and physical health problems as well as the need for considering PTSD symptoms when designing interventions for abused Chinese women with complaints of chronic pain. PMID:23002081

  4. B1b cells recognize protective antigens after natural infection and vaccination.

    PubMed

    Cunningham, Adam F; Flores-Langarica, Adriana; Bobat, Saeeda; Dominguez Medina, Carmen C; Cook, Charlotte N L; Ross, Ewan A; Lopez-Macias, Constantino; Henderson, Ian R

    2014-01-01

    There are multiple, distinct B-cell populations in human beings and other animals such as mice. In the latter species, there is a well-characterized subset of B-cells known as B1 cells, which are enriched in peripheral sites such as the peritoneal cavity but are rare in the blood. B1 cells can be further subdivided into B1a and B1b subsets. There may be additional B1 subsets, though it is unclear if these are distinct populations or stages in the developmental process to become mature B1a and B1b cells. A limitation in understanding B1 subsets is the relative paucity of specific surface markers. In contrast to mice, the existence of B1 cells in human beings is controversial and more studies are needed to investigate the nature of these enigmatic cells. Examples of B1b antigens include pneumococcal polysaccharide and the Vi antigen from Salmonella Typhi, both used routinely as vaccines in human beings and experimental antigens such as haptenated-Ficoll. In addition to inducing classical T-dependent responses some proteins are B1b antigens and can induce T-independent (TI) immunity, examples include factor H binding protein from Borrelia hermsii and porins from Salmonella. Therefore, B1b antigens can be proteinaceous or non-proteinaceous, induce TI responses, memory, and immunity, they exist in a diverse range of pathogenic bacteria, and a single species can contain multiple B1b antigens. An unexpected benefit to studying B1b cells is that they appear to have a propensity to recognize protective antigens in bacteria. This suggests that studying B1b cells may be rewarding for vaccine design as immunoprophylactic and immunotherapeutic interventions become more important due to the decreasing efficacy of small molecule antimicrobials. PMID:25400633

  5. B1b Cells Recognize Protective Antigens after Natural Infection and Vaccination

    PubMed Central

    Cunningham, Adam F.; Flores-Langarica, Adriana; Bobat, Saeeda; Dominguez Medina, Carmen C.; Cook, Charlotte N. L.; Ross, Ewan A.; Lopez-Macias, Constantino; Henderson, Ian R.

    2014-01-01

    There are multiple, distinct B-cell populations in human beings and other animals such as mice. In the latter species, there is a well-characterized subset of B-cells known as B1 cells, which are enriched in peripheral sites such as the peritoneal cavity but are rare in the blood. B1 cells can be further subdivided into B1a and B1b subsets. There may be additional B1 subsets, though it is unclear if these are distinct populations or stages in the developmental process to become mature B1a and B1b cells. A limitation in understanding B1 subsets is the relative paucity of specific surface markers. In contrast to mice, the existence of B1 cells in human beings is controversial and more studies are needed to investigate the nature of these enigmatic cells. Examples of B1b antigens include pneumococcal polysaccharide and the Vi antigen from Salmonella Typhi, both used routinely as vaccines in human beings and experimental antigens such as haptenated-Ficoll. In addition to inducing classical T-dependent responses some proteins are B1b antigens and can induce T-independent (TI) immunity, examples include factor H binding protein from Borrelia hermsii and porins from Salmonella. Therefore, B1b antigens can be proteinaceous or non-proteinaceous, induce TI responses, memory, and immunity, they exist in a diverse range of pathogenic bacteria, and a single species can contain multiple B1b antigens. An unexpected benefit to studying B1b cells is that they appear to have a propensity to recognize protective antigens in bacteria. This suggests that studying B1b cells may be rewarding for vaccine design as immunoprophylactic and immunotherapeutic interventions become more important due to the decreasing efficacy of small molecule antimicrobials. PMID:25400633

  6. [Development of Preventive Therapy by Clarification of Mechanisms of Environmental-Factor-Mediated Diseases].

    PubMed

    Kato, Masashi; Omata, Yasuhiro; Iida, Machiko; Kumasaka, Mayuko Y; Ohgami, Nobutaka; Li, Xiang; Zou, Cunchao; Nakano, Chihiro; Kato, Yoko; Ohgami, Kyoko; Ohnuma, Shoko; Yajima, Ichiro

    2015-01-01

    Environmental factors affecting human health are generally classified into physical, chemical and biological factors. In this review article, we focus on ultraviolet (UV) as a physical factor, heavy metals as a chemical factor and Japanese cedar pollens as a biological factor. Since we believe that progress based on both fieldwork research and experimental research is essential in hygiene study, we included the results of both the research approached. We first introduced the mechanism of development of and prevention of UV-mediated skin melanoma in our experimental research after showing our epidemiological research on UV-mediated DNA damage in humans. We then introduced our evaluation of toxicity and development of a remediation system in our experimental research on heavy metals after showing our fieldwork research for the monitoring of drinking water from wells in Asian countries. We finally introduced the results of pathogenic analysis of pollinosis in our clinical study. We would be very happy if young researchers would re-realize the importance of experimental research as well as epidemiological research in hygiene study. PMID:26411934

  7. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling

    PubMed Central

    Zhang, Xianming; Brovkovych, Viktor; Zhang, Yongkang; Tan, Fulong; Skidgel, Randal A.

    2014-01-01

    Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions. PMID:25289859

  8. 45 CFR 5b.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PRIVACY ACT REGULATIONS § 5b.1 Definitions. As... the Department of Health and Human Services. (c) Department means the Department of Health and Human... records when used in connection with the term “system of records.” (g) Notification means communication...

  9. Mediation of Cardiovascular Risk Factor Effects Through Subclinical Vascular Disease: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Yeboah, Joseph; Delaney, Joseph A; Nance, Robin; McClelland, Robyn L; Polak, Joseph F.; Sibley, Christopher T.; Bertoni, Alain; Burke, Gregory L; Carr, J. Jeffery; Herrington, David M.

    2015-01-01

    Objective It is unclear to what extent subclinical cardiovascular disease (CVD) such as coronary artery calcium (CAC), carotid intima-media thickness (CIMT) and brachial flow mediated dilation (FMD) are mediators of the known associations between traditional cardiovascular risk factors and incident CVD events. We assessed the portion of the effects of risk factors on incident CVD events that are mediated through CAC, CIMT and FMD. Approach and Results 6355 out of 6814 MESA participants were included. Nonlinear implementation of structural equation modeling (STATA mediation package) were used to assess whether CAC, CIMT or FMD are mediators of the association between traditional risk factors and incident CVD event. Mean age of 62, with 47% males, 12% diabetics and 13% current smokers. Mean follow up of 7.5 years, 539 CVD events were adjudicated. CAC showed the highest mediation while FMD showed the least. Age had the highest percent of total effect mediated via CAC for CVD outcomes while current cigarette smoking had the least percent of total effect mediated via CAC [percent (95%CI: 80.2(58.8, 126.7) % vs. 10.6(6.1, 38.5) % respectively). BMI showed the highest percent of total effect mediated via CIMT [17.7(11.6, 38.9) %], only a negligible amount of the association between traditional risk factors and CVD was mediated via FMD. Conclusion Many of the risk factors for incident CVD (other than age, sex and BMI) showed a modest level of mediation via CAC, CIMT and FMD suggesting that current subclinical CVD markers may not be optimal intermediaries for gauging upstream risk factor modification PMID:24876350

  10. Rhizobium nod factor signaling. Evidence for a g protein-mediated transduction mechanism

    PubMed Central

    Pingret, JL; Journet, EP; Barker, DG

    1998-01-01

    Rhizobium nodulation (Nod) factors are lipochitooligosaccharide signals that elicit key symbiotic developmental responses in the host legume root. In this study, we have investigated Nod factor signal transduction in the Medicago root epidermis by using a pharmacological approach in conjunction with transgenic plants expressing the Nod factor-responsive reporter construct pMtENOD12-GUS. Evidence for the participation of heterotrimeric G proteins in Nod factor signaling has come from three complementary observations: (1) the amphiphilic peptides mastoparan and Mas7, known G protein agonists, are able to mimic Nod factor-induced epidermal MtENOD12 expression; (2) growth of plants in nodulation-inhibiting conditions (10 mM NH4NO3) leads to a dramatic reduction in both Nod factor- and mastoparan-elicited gene expression; and (3) bacterial pertussis toxin, a well-characterized G protein antagonist, blocks the activities of both the Nod factor and mastoparan. In addition, we have found that antagonists that interfere with phospholipase C activity (neomycin and U73122) and Ca2+ influx/release (EGTA, La3+, and ruthenium red) block Nod factor/mastoparan activity. Taken together, these results are consistent with a Nod factor signal transduction mechanism involving G protein mediation coupled to the activation of both phosphoinositide and Ca2+ second messenger pathways. PMID:9596628

  11. Theory on the dynamic memory in the transcription-factor-mediated transcription activation

    NASA Astrophysics Data System (ADS)

    Murugan, R.

    2011-04-01

    We develop a theory to explain the origin of the static and dynamical memory effects in transcription-factor-mediated transcription activation. Our results suggest that the following inequality conditions should be satisfied to observe such memory effects: (a) τL≫max(τR,τE), (b) τLT≫τT, and (c) τI⩾(τEL+τTR) where τL is the average time required for the looping-mediated spatial interactions of enhancer—transcription-factor complex with the corresponding promoter—RNA-polymerase or eukaryotic RNA polymerase type II (PolII in eukaryotes) complex that is located L base pairs away from the cis-acting element, (τR,τE) are respectively the search times required for the site-specific binding of the RNA polymerase and the transcription factor with the respective promoter and the cis-regulatory module, τLT is the time associated with the relaxation of the looped-out segment of DNA that connects the cis-acting site and promoter, τT is the time required to generate a complete transcript, τI is the transcription initiation time, τEL is the elongation time, and τTR is the termination time. We have theoretically derived the expressions for the various searching, looping, and loop-relaxation time components. Using the experimentally determined values of various time components we further show that the dynamical memory effects cannot be experimentally observed whenever the segment of DNA that connects the cis-regulatory element with the promoter is not loaded with bulky histone bodies. Our analysis suggests that the presence of histone-mediated compaction of the connecting segment of DNA can result in higher values of looping and loop-relaxation times, which is the origin of the static memory in the transcription activation that is mediated by the memory gene loops in eukaryotes.

  12. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid

    PubMed Central

    Jiang, Wenbo; Yu, Diqiu

    2009-01-01

    Background Plant WRKY DNA-binding transcription factors are key regulators in certain developmental programs. A number of studies have suggested that WRKY genes may mediate seed germination and postgermination growth. However, it is unclear whether WRKY genes mediate ABA-dependent seed germination and postgermination growth arrest. Results To determine directly the role of Arabidopsis WRKY2 transcription factor during ABA-dependent seed germination and postgermination growth arrest, we isolated T-DNA insertion mutants. Two independent T-DNA insertion mutants for WRKY2 were hypersensitive to ABA responses only during seed germination and postgermination early growth. wrky2 mutants displayed delayed or decreased expression of ABI5 and ABI3, but increased or prolonged expression of Em1 and Em6. wrky2 mutants and wild type showed similar levels of expression for miR159 and its target genes MYB33 and MYB101. Analysis of WRKY2 expression level in ABA-insensitive and ABA-deficient mutants abi5-1, abi3-1, aba2-3 and aba3-1 further indicated that ABA-induced WRKY2 accumulation during germination and postgermination early growth requires ABI5, ABI3, ABA2 and ABA3. Conclusion ABA hypersensitivity of the wrky2 mutants during seed germination and postgermination early seedling establishment is attributable to elevated mRNA levels of ABI5, ABI3 and ABI5-induced Em1 and Em6 in the mutants. WRKY2-mediated ABA responses are independent of miR159 and its target genes MYB33 and MYB101. ABI5, ABI3, ABA2 and ABA3 are important regulators of the transcripts of WRKY2 by ABA treatment. Our results suggest that WRKY2 transcription factor mediates seed germination and postgermination developmental arrest by ABA. PMID:19622176

  13. Causal and mediating factors for anxiety, depression and well-being.

    PubMed

    Kinderman, Peter; Tai, Sara; Pontin, Eleanor; Schwannauer, Matthias; Jarman, Ian; Lisboa, Paulo

    2015-06-01

    Background The relationship between well-being and mental ill health is complex; people may experience very low levels of well-being even in the absence of overt mental health problems. Aims This study tested the hypothesis that anxiety, depression and well-being have different causal determinants and psychological mediating mechanisms. Method The influence of causal and mediating factors on anxiety, depression and well-being were investigated in a cross-sectional online questionnaire survey hosted on a UK national broadcasting website. Results Multivariate conditional independence analysis of data from 27 397 participants revealed different association pathways for the two constructs. Anxiety and depression were associated with negative life events mediated by rumination; low levels of subjective well-being were associated with material deprivation and social isolation, mediated by adaptive coping style. Conclusions Our findings support the 'two continua' model of the relationship between psychological well-being and mental health problems, with implications for both treatment and prevention. PMID:25858180

  14. Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation.

    SciTech Connect

    Hallahan, D. E.; Virudachalam, S.; Sherman, M. L.; Huberman, E.; Kufe, D. W.; Weichselbaum, R. R.; Univ. of Chicago; Dana-Farber Cancer Inst.; Univ. of Chicago

    1991-01-01

    Tumor necrosis factor (TNF) production following X-irradiation has been implicated in the biological response to ionizing radiation. Protein kinase C (PKC) is suggested to participate in TNF transcriptional induction and X-ray-mediated gene expression. We therefore studied radiation-mediated TNF expression in HL-60 cells with diminished PKC activity produced by either pretreatment with protein kinase inhibitors or prolonged 12-O-tetradecanoylphorbol-13-acetate treatment. Both treatments resulted in attenuation of radiation-mediated TNF induction. Consistent with these results, we found no detectable induction of TNF expression following X-irradiation in the HL-60 variant deficient in PKC-mediated signal transduction. The rapid activation of PKC following {gamma}-irradiation was established using an in vitro assay measuring phosphorylation of a PKC specific substrate. A 4.5-fold increase in PKC activity occurred 15 to 30 s following irradiation, which declined to baseline at 60 s. Two-dimensional gel electrophoresis of phosphoproteins extracted from irradiated cells demonstrated in vivo phosphorylation of the PKC specific substrate Mr 80,000 protein at 45 s following X-irradiation. These findings indicate that signal transduction via the PKC pathway is required for the induction of TNF gene expression by ionizing radiation.

  15. Relationships between tumour necrosis factor, eicosanoids and platelet-activating factor as mediators of endotoxin-induced shock in mice.

    PubMed Central

    Myers, A. K.; Robey, J. W.; Price, R. M.

    1990-01-01

    1. The toxicity of intravenous recombinant human tumour necrosis factor (rhTNF), a TNF fragment (TNF114-130), endotoxin and combinations of rhTNF or TNF114-130 were tested in mice. Neither rhTNF nor TNF114-130 was lethal alone, but when combined with a non-lethal dose of endotoxin, rhTNF provoked dose-dependent mortality, as did higher doses of endotoxin alone. 2. Both the toxicity and the vasopermeability changes induced by endotoxin alone were blocked by the platelet-activating factor (PAF) antagonist BN52021, indomethacin or the dual cyclo-oxygenase/lipoxygenase inhibitor BW755C. 3. The lethality of the combined low dose endotoxin/rhTNF challenge was unaffected by pretreatment with BN52021, indomethacin or BW755C, or by treatment at 6 h intervals with BN52021 or BW755C. 4. The results of these studies suggest that TNF, a putative, early mediator of septic or endotoxin shock, cannot by itself mimic all of the effects of bacterial endotoxin in the model used in this study. Apparently, TNF works synergistically with other mediators whose release is stimulated by endotoxin. 5. The results also suggest that the mechanism of shock production by the rhTNF/endotoxin combination in mice is not dependent on the early stimulation of eicosanoid or PAF synthesis by rhTNF. PMID:2110016

  16. Psychosocial factors as mediators of food insecurity and weight status among middle school students.

    PubMed

    Willis, Don E; Fitzpatrick, Kevin M

    2016-08-01

    Research regarding the association between food insecurity and weight status among youth has produced mixed results. However, few studies on this topic have utilized data that includes survey responses from children themselves regarding their experience with food insecurity. This study was undertaken to examine the association between food insecurity and weight status among youth, as well as the potential mediation by psychosocial factors. A survey of 5th-7th grade students was administered to gather information on food insecurity, social and psychological resources, and health. The primary analysis includes OLS (Ordinary Least Squares) regression conducted using SPSS software and Sobel's test for mediation. Results suggest a positive association between food insecurity and weight status even when controlling for key demographic variables. In addition, we find that this association is mediated by psychosocial factors-namely, perceived social status and depression. Insights from this work highlight the need to consider non-nutritional pathways through which food insecurity impacts health as well the need to continue surveying youth directly when examining their experiences with food insecurity. PMID:27107857

  17. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity.

    PubMed

    Pekker, Irena; Alvarez, John Paul; Eshed, Yuval

    2005-11-01

    Members of the KANADI gene family in Arabidopsis thaliana regulate abaxial identity and laminar growth of lateral organs. Promoter APETALA3-mediated ectopic expression of KANADI restricts petal expansion and was used in a genetic screen for factors involved in KANADI-mediated signaling. Through this screen, mutations in ETTIN (ETT; also known as Auxin Response Factor3 [ARF3]) were isolated as second site suppressors and found to ameliorate ectopic KANADI activity throughout the plant as well. Mutant phenotypes of ett are restricted to flowers; however, double mutants with a closely related gene ARF4 exhibit transformation of abaxial tissues into adaxial ones in all aerial parts, resembling mutations in KANADI. Accordingly, the common RNA expression domain of both ARFs was found to be on the abaxial side of all lateral organs. Truncated, negatively acting gene products of strong ett alleles map to an ARF-specific, N-terminal domain of ETT. Such gene products strongly enhance abaxial tissue loss only when ARF activities are compromised. As KANADI is not required for either ETT or ARF4 transcription, and their overexpression cannot rescue kanadi mutants, cooperative activity is implied. ARF proteins are pivotal in mediating auxin responses; thus, we present a model linking transient local auxin gradients and gradual partitioning of lateral organs along the abaxial/adaxial axis. PMID:16199616

  18. Fetal production of growth factors and inflammatory mediators predicts pulmonary hypertension in congenital diaphragmatic hernia

    PubMed Central

    Fleck, Shannon; Bautista, Geoanna; Keating, Sheila M.; Lee, Tzong-Hae; Keller, Roberta L.; Moon-Grady, Anita J.; Gonzales, Kelly; Norris, Philip J.; Busch, Michael P.; Kim, CJ; Romero, Roberto; Lee, Hanmin; Miniati, Doug; MacKenzie, Tippi C.

    2014-01-01

    Background Congenital diaphragmatic hernia (CDH) represents a spectrum of lung hypoplasia and consequent pulmonary hypertension is an important cause of postnatal morbidity and mortality. We studied biomarkers at the maternal-fetal interface to understand factors associated with the persistence of pulmonary hypertension. Methods Maternal and cord blood samples from fetuses with CDH and unaffected controls were analyzed using a human 39plex immunoassay kit. Cellular trafficking between the mother and the fetu was quantified using quantitative real-time PCR for non-shared alleles. Biomarker profiles were then correlated with CDH severity based on the degree of pulmonary hypertension. Results Cord blood levels of epidermal growth factor, platelet-derived growth factor, and several inflammatory mediators increased significantly as the severity of CDH increased, while maternal levels growth factors and mediators decreased significantly with CDH severity. Maternal cells were increased in fetuses with severe CDH compared to controls, with elevated levels of the chemokine CXCL-10 in patients with the highest trafficking. Conclusion Patients with CDH demonstrate pro-inflammatory and chemotactic signals in fetal blood at the time of birth. Since some of these molecules have been implicated in the development of pulmonary hypertension, prenatal strategies targeting specific molecular pathways may be useful adjuncts to current fetal therapies. PMID:23770923

  19. The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation.

    PubMed

    Brasier, Allan R

    2010-05-01

    Vascular inflammation is a common pathophysiological response to diverse cardiovascular disease processes, including atherosclerosis, myocardial infarction, congestive heart failure, and aortic aneurysms/dissection. Inflammation is an ordered process initiated by vascular injury that produces enhanced leucocyte adherence, chemotaxis, and finally activation in situ. This process is coordinated by local secretion of adhesion molecules, chemotactic factors, and cytokines whose expression is the result of vascular injury-induced signal transduction networks. A wide variety of mediators of the vascular injury response have been identified; these factors include vasoactive peptides (angiotensin II, Ang II), CD40 ligands, oxidized cholesterol, and advanced glycation end-products. Downstream, the nuclear factor-kappaB (NF-kappaB) transcription factor performs an important signal integration step, responding to mediators of vascular injury in a stimulus-dependent and cell type-specific manner. The ultimate consequence of NF-kappaB signalling is the activation of inflammatory genes including adhesion molecules and chemotaxins. However, clinically, the hallmark of vascular NF-kappaB activation is the production of interleukin-6 (IL-6), whose local role in vascular inflammation is relatively unknown. The recent elucidation for the role of the IL-6 signalling pathway in Ang II-induced vascular inflammation as one that controls monocyte activation as well as its diverse signalling mechanism will be reviewed. These new discoveries further our understanding for the important role of the NF-kappaB-IL-6 signalling pathway in the process of vascular inflammation. PMID:20202975

  20. Nonsense-mediated mRNA decay among coagulation factor genes

    PubMed Central

    Shahbazi, Shirin

    2016-01-01

    Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation factor deficiencies such as hemophilia. Materials and Methods: A relevant literature search of PubMed was performed using the keywords coagulation factors, Nonsense-mediated mRNA decay and premature translation termination codons. Search limitations included English language and human-based studies. Results: Mutations that cause premature translation termination codons probably account for one-third of genetically inherited diseases. Transcripts bearing aberrant termination codons are selectively identified and eliminated by an evolutionarily conserved posttranscriptional pathway known as nonsense-mediated mRNA decay (NMD). There are many pieces of evidence of decay among coagulation factor genes. However, the hemophilia gene (F8) does not seem to be subjected to NMD. Since the F8 gene is located on the X-chromosome, a connection between X-linked traits and mRNA decay could be assumed. Conclusion: Considering that not all genes go through decay, this review focuses on the basics of the mechanism in coagulation genes. It is interesting to determine whether this translation-coupled surveillance system represents a general rule for the genes encoding components of the same physiological cascade. PMID:27279976

  1. B-cell-activating factor inhibits CD20-mediated and B-cell receptor-mediated apoptosis in human B cells

    PubMed Central

    Saito, Yohei; Miyagawa, Yoshitaka; Onda, Keiko; Nakajima, Hideki; Sato, Ban; Horiuchi, Yasuomi; Okita, Hajime; Katagiri, Yohko U; Saito, Masahiro; Shimizu, Toshiaki; Fujimoto, Junichiro; Kiyokawa, Nobutaka

    2008-01-01

    B-cell-activating factor (BAFF) is a survival and maturation factor for B cells belonging to the tumour necrosis factor superfamily. Among three identified functional receptors, the BAFF receptor (BAFF-R) is thought to be responsible for the effect of BAFF on B cells though details of how remain unclear. We determined that a hairy-cell leukaemia line, MLMA, expressed a relatively high level of BAFF-R and was susceptible to apoptosis mediated by either CD20 or B-cell antigen receptor (BCR). Using MLMA cells as an in vitro model of mature B cells, we found that treatment with BAFF could inhibit apoptosis mediated by both CD20 and BCR. We also observed, using immunoblot analysis and microarray analysis, that BAFF treatment induced activation of nuclear factor-κB2 following elevation of the expression level of Bcl-2, which may be involved in the molecular mechanism of BAFF-mediated inhibition of apoptosis. Interestingly, BAFF treatment was also found to induce the expression of a series of genes, such as that for CD40, related to cell survival, suggesting the involvement of a multiple mechanism in the BAFF-mediated anti-apoptotic effect. MLMA cells should provide a model for investigating the molecular basis of the effect of BAFF on B cells in vitro and will help to elucidate how B cells survive in the immune system in which BAFF-mediated signalling is involved. PMID:18540961

  2. Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury

    PubMed Central

    Nikolakopoulou, Angeliki M.; Koeppen, Jordan; Garcia, Michael; Leish, Joshua; Obenaus, Andre

    2016-01-01

    Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in injury-induced synapse remodeling. Our studies suggest a new role of ephrin-B1, which is known to regulate synapse development in neurons, in astrocyte-mediated synapse remodeling following TBI. Indeed, we observed a transient upregulation of ephrin-B1 immunoreactivity in hippocampal astrocytes following moderate controlled cortical impact model of TBI. The upregulation of ephrin-B1 levels in hippocampal astrocytes coincided with a decline in the number of vGlut1-positive glutamatergic input to CA1 neurons at 3 days post injury even in the absence of hippocampal neuron loss. In contrast, tamoxifen-induced ablation of ephrin-B1 from adult astrocytes in ephrin-B1loxP/yERT2-CreGFAP mice accelerated the recovery of vGlut1-positive glutamatergic input to CA1 neurons after TBI. Finally, our studies suggest that astrocytic ephrin-B1 may play an active role in injury-induced synapse remodeling through the activation of STAT3-mediated signaling in astrocytes. TBI-induced upregulation of STAT3 phosphorylation within the hippocampus was suppressed by astrocyte-specific ablation of ephrin-B1 in vivo, whereas the activation of ephrin-B1 in astrocytes triggered an increase in STAT3 phosphorylation in vitro. Thus, regulation of ephrin-B1 signaling in astrocytes may provide new therapeutic opportunities to aid functional recovery after TBI. PMID:26928051

  3. Total Synthesis of Leupyrrin B1: A Potent Inhibitor of Human Leukocyte Elastase.

    PubMed

    Thiede, Sebastian; Wosniok, Paul R; Herkommer, Daniel; Schulz-Fincke, Anna-Christina; Gütschow, Michael; Menche, Dirk

    2016-08-19

    The total synthesis of leupyrrin B1 was accomplished by an expedient strategy that involves an optimized HATU-mediated amide coupling protocol of elaborate substrates. The generally useful procedure was also successfully applied in an improved total synthesis of leupyrrin A1. Finally, leupyrrins A1 and B1 were evaluated toward a panel of proteases, and human leukocyte elastase was discovered as a molecular target of the leupyrrins. PMID:27486674

  4. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy

    PubMed Central

    Semenza, Gregg L.

    2012-01-01

    Hypoxia-inducible factors (HIFs) mediate adaptive physiological responses to hypoxia. In human cancers that are accessible for O2 electrode measurements, intratumoral hypoxia is common and is associated with increased risk of mortality. HIF activity in regions of intratumoral hypoxia mediates angiogenesis, epithelial-mesenchymal transition, stem cell maintenance, invasion, metastasis, and resistance to radiation therapy and chemotherapy. A growing number of drugs have been identified that inhibit HIF activity by a variety of molecular mechanisms. Because many of these drugs are already FDA-approved for other indications, clinical trials can (and should) be initiated to test the hypothesis that incorporation of HIF inhibitors into current standard-of-care therapy will increase the survival of cancer patients. PMID:22398146

  5. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  6. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation.

    PubMed

    Müller, Christine; Birmes, Franziska S; Rückert, Christian; Kalinowski, Jörn; Fetzner, Susanne

    2015-11-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s(-1), respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  7. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Rückert, Christian; Kalinowski, Jörn

    2015-01-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s−1, respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  8. Hypoxia-induced production of 12-hydroxyeicosanoids in the corneal epithelium: involvement of a cytochrome P-4504B1 isoform.

    PubMed

    Mastyugin, V; Aversa, E; Bonazzi, A; Vafaes, C; Mieyal, P; Schwartzman, M L

    1999-06-01

    The corneal epithelium metabolizes arachidonic acid by a cytochrome P-450 (CYP)-mediated activity to 12-hydroxy-5,8,11, 14-eicosatetraenoic acid (12(R)-HETE) and 12-hydroxy-5,8, 14-eicosatrienoic acid (12(R)-HETrE ). Both metabolites possess potent inflammatory properties, with 12(R)-HETrE being a powerful angiogenic factor, and they assume the role of inflammatory mediators in hypoxia- and chemical-induced injury in the cornea in vivo and in vitro. We used a model of corneal organ culture that exhibits hypoxia-induced epithelial CYP-dependent 12(R)-HETE and 12(R)-HETrE synthesis for isolating, identifying, and characterizing the CYP protein responsible for these eicosanoid syntheses. Northern analysis revealed the presence of a CYP4A-hybridizable mRNA, the levels of which were increased after hypoxia. Reverse transcription-polymerase chain reaction analysis with primers specific for the CYP4A family led to the isolation of a 671-base pair fragment with a 98.8% sequence homology to the rabbit lung CYP4B1 isoform, of which the levels in the corneal epithelium were greatly increased under hypoxic conditions. Moreover, phenobarbital, an inducer of hepatic CYP4B1 in the rabbit, also induced 12-HETE and 12-HETrE synthesis. Antibodies against CYP4B1, but not against CYP4A1, inhibited hypoxia-, clofibrate-, and phenobarbital-induced 12-HETE and 12-HETrE synthesis. These results suggest the involvement of a CYP4B1 isoform in the corneal epithelial synthesis of these eicosanoids in response to hypoxia. PMID:10336559

  9. Protective Action of Neurotrophic Factors and Estrogen against Oxidative Stress-Mediated Neurodegeneration.

    PubMed

    Numakawa, Tadahiro; Matsumoto, Tomoya; Numakawa, Yumiko; Richards, Misty; Yamawaki, Shigeto; Kunugi, Hiroshi

    2011-01-01

    Oxidative stress is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Low levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important for maintenance of neuronal function, though elevated levels lead to neuronal cell death. A complex series of events including excitotoxicity, Ca(2+) overload, and mitochondrial dysfunction contributes to oxidative stress-mediated neurodegeneration. As expected, many antioxidants like phytochemicals and vitamins are known to reduce oxidative toxicity. Additionally, growing evidence indicates that neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and estrogens significantly prevent neuronal damage caused by oxidative stress. Here, we review and discuss recent studies addressing the protective mechanisms of neurotrophic factors and estrogen within this system. PMID:21776259

  10. Sequestration of toxic oligomers by HspB1 as a cytoprotective mechanism.

    PubMed

    Ojha, Juhi; Masilamoni, Gunasingh; Dunlap, David; Udoff, Ross A; Cashikar, Anil G

    2011-08-01

    Small heat shock proteins (sHsps) are molecular chaperones that protect cells from cytotoxic effects of protein misfolding and aggregation. HspB1, an sHsp commonly associated with senile plaques in Alzheimer's disease (AD), prevents the toxic effects of Aβ aggregates in vitro. However, the mechanism of this chaperone activity is poorly understood. Here, we observed that in two distinct transgenic mouse models of AD, mouse HspB1 (Hsp25) localized to the penumbral areas of plaques. We have demonstrated that substoichiometric amounts of human HspB1 (Hsp27) abolish the toxicity of Aβ oligomers on N2a (mouse neuroblastoma) cells. Using biochemical methods, spectroscopy, light scattering, and microscopy methods, we found that HspB1 sequesters toxic Aβ oligomers and converts them into large nontoxic aggregates. HspB1 was overexpressed in N2a cells in response to treatment with Aβ oligomers. Cultured neurons from HspB1-deficient mice were more sensitive to oligomer-mediated toxicity than were those from wild-type mice. Our results suggest that sequestration of oligomers by HspB1 constitutes a novel cytoprotective mechanism of proteostasis. Whether chaperone-mediated cytoprotective sequestration of toxic aggregates may bear clues to plaque deposition and may have potential therapeutic implications must be investigated in the future. PMID:21670152

  11. B-1 Cell Development and Function

    PubMed Central

    Davis, Randall S

    2015-01-01

    Coelomic cavity–derived B-1 and splenic marginal zone (MZ) B lymphocytes play principal roles in frontline host protection at homeostasis and during primary humoral immune responses. Although they share many features that enable rapid and broad-based defense against pathogens, these innate-like subsets have disparate B cell receptor (BCR) signaling features. Members of the Fc receptor–like (FCRL) family are preferentially expressed by B cells and possess tyrosine-based immunoregulatory function. An unusual characteristic of many of these cell surface proteins is the presence of both inhibitory (ITIM) and activating (ITAM-like) motifs in their cytoplasmic tails. In mice, FCRL5 is a discrete marker of splenic MZ and peritoneal B-1 B cells and has both ITIM and ITAM-like sequences. Recent work explored its signaling properties and identified that FCRL5 differentially influences innate-like BCR function. Closer scrutiny of these differences disclosed the ability of FCRL5 to counter-regulate BCR activation by recruiting SHP-1 and Lyn to its cytoplasmic motifs. Furthermore, the disparity in FCRL5 regulation between MZ and B-1 B cells correlated with relative intracellular concentrations of SHP-1. These findings validate and extend our understanding of the unique signaling features in innate-like B cells and provide new insight into the complexity of FCRL modulation. PMID:25964091

  12. TGF-α/HA complex promotes tympanic membrane keratinocyte migration and proliferation via ErbB1 receptor

    SciTech Connect

    Mei Teh, Bing; Redmond, Sharon L.; Shen, Yi; Atlas, Marcus D.; Marano, Robert J.; Dilley, Rodney J.

    2013-04-01

    Tympanic membrane perforations are common and represent a management challenge to clinicians. Current treatments for chronic perforations involve a graft surgery and require general anaesthesia, including associated costs and morbidities. Bioactive molecules (e.g. growth factors, cytokines) play an important role in promoting TM wound healing following perforation and the use of growth factors as a topical treatment for tympanic membrane perforations has been suggested as an alternative to surgery. However, the choice of bioactive molecules best suited to promote wound healing has yet to be identified. We investigated the effects of hyaluronic acid, vitronectin, TGF-α, IL-24 and their combinations on migration, proliferation and adhesion of cultured human tympanic membrane-derived keratinocytes (hTM), in addition to their possible mechanisms of action. We found that TGF-α, TGF-α/HA and TGF-α/IL-24 promoted wound healing by significantly increasing both migration and proliferation. TGF-α and/or HA treated cells showed comparable cell–cell adhesion whilst maintaining an epithelial cell phenotype. With the use of receptor binding inhibitors for ErbB1 (AG1478) and CD44 (BRIC235), we revealed that the activation of ErbB1 is required for TGF-α/HA-mediated migration and proliferation. These results suggest factors that may be incorporated into a tissue-engineered membrane or directly as topical treatment for tympanic membrane perforations and hence reduce the need for a surgery. - Highlights: ► TGF-α, TGF-α/HA and TGF-α/IL-24 improved hTM keratinocyte migration and proliferation. ► TGF-α and/or HA maintained epithelial cell phenotype. ► TGF-α/HA-mediated migration and proliferation requires activation of ErbB1 receptor.

  13. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism

    PubMed Central

    Zhang, Rui; Wang, Yueqiao; Li, Rui; Chen, Guoxun

    2015-01-01

    Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism. PMID:26110391

  14. Glucose availability is a decisive factor for Nrf2-mediated gene expression☆

    PubMed Central

    Heiss, Elke H.; Schachner, Daniel; Zimmermann, Kristin; Dirsch, Verena M.

    2013-01-01

    Activation of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) is one of the major cellular defense lines against oxidative and xenobiotic stress, but also influences genes involved in lipid and glucose metabolism. It is unresolved whether the cytoprotective and metabolic responses mediated by Nrf2 are connected or separable events in non-malignant cells. In this study we show that activation of Nrf2, either by the small molecule sulforaphane or knockout of the Nrf2 inhibitor Keap1, leads to increased cellular glucose uptake and increased glucose addiction in fibroblasts. Upon Nrf2 activation glucose is preferentially metabolized through the pentose phosphate pathway with increased production of NADPH. Interference with the supply of glucose or the pentose phosphate pathway and NADPH generation not only hampers Nrf2-mediated detoxification of reactive oxygen species on the enzyme level but also Nrf2-initiated expression of antioxidant defense proteins, such as glutathione reductase and heme-oxygenase1. We conclude that the Nrf2-dependent protection against oxidative stress relies on an intact pentose phosphate pathway and that there is crosstalk between metabolism and detoxification already at the level of gene expression in mammalian cells. PMID:24024172

  15. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism.

    PubMed

    Zhang, Rui; Wang, Yueqiao; Li, Rui; Chen, Guoxun

    2015-01-01

    Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism. PMID:26110391

  16. Glucose availability is a decisive factor for Nrf2-mediated gene expression.

    PubMed

    Heiss, Elke H; Schachner, Daniel; Zimmermann, Kristin; Dirsch, Verena M

    2013-01-01

    Activation of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) is one of the major cellular defense lines against oxidative and xenobiotic stress, but also influences genes involved in lipid and glucose metabolism. It is unresolved whether the cytoprotective and metabolic responses mediated by Nrf2 are connected or separable events in non-malignant cells. In this study we show that activation of Nrf2, either by the small molecule sulforaphane or knockout of the Nrf2 inhibitor Keap1, leads to increased cellular glucose uptake and increased glucose addiction in fibroblasts. Upon Nrf2 activation glucose is preferentially metabolized through the pentose phosphate pathway with increased production of NADPH. Interference with the supply of glucose or the pentose phosphate pathway and NADPH generation not only hampers Nrf2-mediated detoxification of reactive oxygen species on the enzyme level but also Nrf2-initiated expression of antioxidant defense proteins, such as glutathione reductase and heme-oxygenase1. We conclude that the Nrf2-dependent protection against oxidative stress relies on an intact pentose phosphate pathway and that there is crosstalk between metabolism and detoxification already at the level of gene expression in mammalian cells. PMID:24024172

  17. The Pho4 transcription factor mediates the response to arsenate and arsenite in Candida albicans

    PubMed Central

    Urrialde, Verónica; Prieto, Daniel; Pla, Jesús; Alonso-Monge, Rebeca

    2015-01-01

    Arsenate (As (V)) is the dominant form of the toxic metalloid arsenic (As). Microorganisms have consequently developed mechanisms to detoxify and tolerate this kind of compounds. In the present work, we have explored the arsenate sensing and signaling mechanisms in the pathogenic fungus Candida albicans. Although mutants impaired in the Hog1 or Mkc1-mediated pathways did not show significant sensitivity to this compound, both Hog1 and Mkc1 became phosphorylated upon addition of sodium arsenate to growing cells. Hog1 phosphorylation upon arsenate challenge was shown to be Ssk1-dependent. A screening designed for the identification of transcription factors involved in the arsenate response identified Pho4, a transcription factor of the myc-family, as pho4 mutants were susceptible to As (V). The expression of PHO4 was shortly induced in the presence of sodium arsenate in a Hog1-independent manner. Pho4 level affects Hog1 phosphorylation upon As (V) challenge, suggesting an indirect relationship between Pho4 activity and signaling in C. albicans. Pho4 also mediates the response to arsenite as revealed by the fact that pho4 defective mutants are sensitive to arsenite and Pho4 becomes phosphorylated upon sodium arsenite addition. Arsenite also triggers Hog1 phosphorylation by a process that is, in this case, independent of the Ssk1 kinase. These results indicate that the HOG pathway mediates the response to arsenate and arsenite in C. albicans and that the Pho4 transcription factor can differentiate among As (III), As (V) and Pi, triggering presumably specific responses. PMID:25717325

  18. Vitamin D enhances mitogenesis mediated by keratinocyte growth factor receptor in keratinocytes.

    PubMed

    Gamady, Anat; Koren, Ruth; Ron, Dina; Liberman, Uri A; Ravid, Amiram

    2003-06-01

    The hormonally active vitamin D metabolite, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and keratinocyte growth factor (KGF) belong to the network of autocrine and paracrine mediators in the skin. Both were shown to modulate keratinocyte proliferation, to reverse epidermal atrophy, to increase wound healing, and to reduce chemotherapy-induced alopecia. The overlap between their activities may suggest that vitamin D exerts some of its actions by modulation of KGF activities in the skin. This notion was examined by using HaCaT keratinocytes cultured in serum-free medium in the absence of exogenous growth factors and in the presence of the EGF receptor tyrosine kinase inhibitor AG 1478 that blocks their autonomous proliferation. These cells could be stimulated to proliferate by different fibroblast growth factors (FGFs). The relative mitogenic efficacy of basic FGF, acidic FGF, or KGF was in correlation with their affinities for the KGF receptor (KGFR). Forty-eight hour co-treatment with 1,25(OH)(2)D(3) enhanced KGFR-mediated cell proliferation in a dose dependent manner. Both ERK1/2 and c-Jun N-terminal kinase (JNK) were activated by the FGFs. Treatment with 1,25(OH)(2)D(3) increased the activation of ERK but reduced the activation of JNK. Treatment with 1,25(OH)(2)D(3) increased the levels of KGFR in the presence but not in the absence of KGF, probably due to inhibition of ligand-induced receptor degradation. Inhibition of protein kinase C with bisindolylmaleimide did not interfere with the effect of 1,25(OH)(2)D(3) on KGFR-mediated ERK activation. Our results support the notion that the paracrine KGF-KGFR system in the skin can act in concert with the autocrine vitamin D system in keratinocytes to promote keratinocyte proliferation and survival under situations of stress and injury. PMID:12761878

  19. Sleep as a Mediator in the Pathway Linking Environmental Factors to Hypertension: A Review of the Literature

    PubMed Central

    Akinseye, Oluwaseun A.; Williams, Stephen K.; Seixas, Azizi; Pandi-Perumal, Seithikurippu R.; Vallon, Julian; Zizi, Ferdinand; Jean-Louis, Girardin

    2015-01-01

    Environmental factors, such as noise exposure and air pollution, are associated with hypertension. These environmental factors also affect sleep quality. Given the growing evidence linking sleep quality with hypertension, the purpose of this review is to investigate the role of sleep as a key mediator in the association between hypertension and environmental factors. Through this narrative review of the extant literature, we highlight that poor sleep quality mediates the relationship between environmental factors and hypertension. The conceptual model proposed in this review offers opportunities to address healthcare disparities in hypertension among African Americans by highlighting the disparate impact that the predictors (environmental factors) and mediator (sleep) have on the African-American community. Understanding the impact of these factors is crucial since the main outcome variable (hypertension) severely burdens the African-American community. PMID:25821594

  20. Augmented TLR9-induced Btk activation in PIR-B-deficient B-1 cells provokes excessive autoantibody production and autoimmunity.

    PubMed

    Kubo, Tomohiro; Uchida, Yuki; Watanabe, Yuko; Abe, Masahiro; Nakamura, Akira; Ono, Masao; Akira, Shizuo; Takai, Toshiyuki

    2009-08-31

    Pathogens are sensed by Toll-like receptors (TLRs) expressed in leukocytes in the innate immune system. However, excess stimulation of TLR pathways is supposed to be connected with provocation of autoimmunity. We show that paired immunoglobulin (Ig)-like receptor B (PIR-B), an immunoreceptor tyrosine-based inhibitory motif-harboring receptor for major histocompatibility class I molecules, on relatively primitive B cells, B-1 cells, suppresses TLR9 signaling via Bruton's tyrosine kinase (Btk) dephosphorylation, which leads to attenuated activation of nuclear factor kappaB p65RelA but not p38 or Erk, and blocks the production of natural IgM antibodies, including anti-IgG Fc autoantibodies, particularly rheumatoid factor. The autoantibody production in PIR-B-deficient (Pirb(-/-)) mice was further augmented in combination with the Fas(lpr) mutation, which might be linked to the development of autoimmune glomerulonephritis. These results show the critical link between TLR9-mediated sensing and a simultaneously evoked, PIR-B-mediated inhibitory circuit with a Btk intersection in B-1 cells, and suggest a novel way toward preventing pathogenic natural autoantibody production. PMID:19687229

  1. Helix-loop-helix transcription factors mediate activation and repression of the p75LNGFR gene.

    PubMed Central

    Chiaramello, A; Neuman, K; Palm, K; Metsis, M; Neuman, T

    1995-01-01

    Sequence analysis of rat and human low-affinity nerve growth factor receptor p75LNGFR gene promoter regions revealed a single E-box cis-acting element, located upstream of the major transcription start sites. Deletion analysis of the E-box sequence demonstrated that it significantly contributes to p75LNGFR promoter activity. This E box has a dual function; it mediates either activation or repression of the p75LNGFR promoter activity, depending on the interacting transcription factors. We showed that the two isoforms of the class A basic helix-loop-helix (bHLH) transcription factor ME1 (ME1a and ME1b), the murine homolog of the human HEB transcription factor, specifically repress p75LNGFR promoter activity. This repression can be released by coexpression of the HLH Id2 transcriptional regulator. In vitro analyses demonstrated that ME1a forms a stable complex with the p75LNGFR E box and likely competes with activating E-box-binding proteins. By using ME1a-overexpressing PC12 cells, we showed that the endogenous p75LNGFR gene is a target of ME1a repression. Together, these data demonstrate that the p75LNGFR E box and the interacting bHLH transcription factors are involved in the regulation of p75LNGFR gene expression. These results also show that class A bHLH transcription factors can repress and Id-like negative regulators can stimulate gene expression. PMID:7565756

  2. Palmitoylation of cytoskeleton associated protein 4 by DHHC2 regulates antiproliferative factor-mediated signaling.

    PubMed

    Planey, Sonia L; Keay, Susan K; Zhang, Chen-Ou; Zacharias, David A

    2009-03-01

    Previously, we identified cytoskeleton-associated protein 4 (CKAP4) as a major substrate of the palmitoyl acyltransferase, DHHC2, using a novel proteomic method called palmitoyl-cysteine identification, capture and analysis (PICA). CKAP4 is a reversibly palmitoylated and phosphorylated protein that links the ER to the cytoskeleton. It is also a high-affinity receptor for antiproliferative factor (APF), a small sialoglycopeptide secreted from bladder epithelial cells of patients with interstitial cystitis (IC). The role of DHHC2-mediated palmitoylation of CKAP4 in the antiproliferative response of HeLa and normal bladder epithelial cells to APF was investigated. Our data show that siRNA-mediated knockdown of DHHC2 and consequent suppression of CKAP4 palmitoylation inhibited the ability of APF to regulate cellular proliferation and blocked APF-induced changes in the expression of E-cadherin, vimentin, and ZO-1 (genes known to play a role in cellular proliferation and tumorigenesis). Immunocytochemistry revealed that CKAP4 palmitoylation by DHHC2 is required for its trafficking from the ER to the plasma membrane and for its nuclear localization. These data suggest an important role for DHHC2-mediated palmitoylation of CKAP4 in IC and in opposing cancer-related cellular behaviors and support the idea that DHHC2 is a tumor suppressor. PMID:19144824

  3. Platelet-derived growth factor-BB-mediated glycosaminoglycan synthesis is transduced through Akt.

    PubMed

    Cartel, Nicholas J; Wang, Jinxia; Post, Martin

    2002-04-01

    Previously we have demonstrated that the phosphoinositide 3-kinase (PI-3K) signal-transduction pathway mediates platelet-derived growth factor (PDGF)-BB-induced glycosaminoglycan (GAG) synthesis in fetal lung fibroblasts. In the present study we further investigated the signal-transduction pathway(s) that results in PDGF-BB-induced GAG synthesis. Over-expression of a soluble PDGF beta-receptor as well as a mutated form of the beta-receptor, unable to bind PI-3K, diminished GAG synthesis in fetal lung fibroblasts subsequent to PDGF-BB stimulation. The PI-3K inhibitor wortmannin blocked PDGF-BB-induced Akt activity as well as significantly diminishing PDGF-BB-mediated GAG synthesis. Expression of dominant-negative PI-3K also abrogated Akt activity and GAG synthesis. Furthermore, expression of dominant-negative Akt abrogated endogenous Akt activity, Rab3D phosphorylation and GAG synthesis, whereas expression of constitutively activated Akt stimulated Rab3D phosphorylation and GAG synthesis in the absence of PDGF-BB. Over-expression of wild-type PTEN (phosphatase and tensin homologue deleted in chromosome 10) inhibited Akt activity and concomitantly attenuated GAG synthesis in fibroblasts stimulated with PDGF-BB. These data suggest that Akt is an integral protein involved in PDGF-BB-mediated GAG regulation in fetal lung fibroblasts. PMID:11903042

  4. Advanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance

    PubMed Central

    Ottum, Mona S.; Mistry, Anahita M.

    2015-01-01

    Advanced glycation end-products are toxic by-products of metabolism and are also acquired from high-temperature processed foods. They promote oxidative damage to proteins, lipids and nucleotides. Aging and chronic diseases are strongly associated with markers for oxidative stress, especially advanced glycation end-products, and resistance to peripheral insulin-mediated glucose uptake. Modifiable environmental factors including high levels of refined and simple carbohydrate diets, hypercaloric diets and sedentary lifestyles drive endogenous formation of advanced glycation end-products via accumulation of highly reactive glycolysis intermediates and activation of the polyol/aldose reductase pathway producing high intracellular fructose. High advanced glycation end-products overwhelm innate defenses of enzymes and receptor-mediated endocytosis and promote cell damage via the pro-inflammatory and pro-oxidant receptor for advanced glycation end-products. Oxidative stress disturbs cell signal transduction, especially insulin-mediated metabolic responses. Here we review emerging evidence that restriction of dietary advanced glycation end-products significantly reduces total systemic load and insulin resistance in animals and humans in diabetes, polycystic ovary syndrome, healthy populations and dementia. Of clinical importance, this insulin sensitizing effect is independent of physical activity, caloric intake and adiposity level. PMID:26236094

  5. Valproic acid overcomes transforming growth factor-β-mediated sorafenib resistance in hepatocellular carcinoma

    PubMed Central

    Matsuda, Yasunobu; Wakai, Toshifumi; Kubota, Masayuki; Osawa, Mami; Hirose, Yuki; Sakata, Jun; Kobayashi, Takashi; Fujimaki, Shun; Takamura, Masaaki; Yamagiwa, Satoshi; Aoyagi, Yutaka

    2014-01-01

    Sorafenib is a multi-kinase inhibitor approved for hepatocellular carcinoma, but rarely causes tumor regression in patients with chronic liver diseases. To investigate whether growth factor-mediated signaling is involved in sorafenib resistance, HepG2 and PLC/PRF/5 hepatoma cells were exposed to epidermal growth factor (EGF), hepatocyte growth factor (HGF) or transforming growth factor-β (TGF-β) prior to treatment with sorafenib. Furthermore, to identify an effective combination treatment with sorafenib, growth factor-sensitized cells were treated with sorafenib alone or in combination with celecoxib, lovastatin or valproic acid (VPA). Trypan blue staining and Annexin V assays showed that the cytotoxic effect of sorafenib was inhibited by 15-54% in cells sensitized to TGF-β (P<0.05). Western blotting analysis showed that TGF-β significantly activated extracellular signal-regulated kinase (ERK)-mediated AKT signaling, and sorafenib failed to suppress both ERK and AKT in TGF-β-sensitized cells. The decreased anti-tumor effect of sorafenib was rescued by chemical inhibition of ERK and AKT. When TGF-β-sensitized cells were treated with sorafenib plus VPA, the levels of phosphorylated ERK and AKT were considerably suppressed and the numbers of dead cells were increased by 3.7-5.7-fold compared with those exposed to sorafenib alone (P<0.05). Moreover, low dose sorafenib-induced cell migration was effectively suppressed by combination treatment with sorafenib and VPA. Collectively, TGF-β/ERK/AKT signaling might play a critical role in sorafenib resistance in hepatoma cells, and combination treatment with VPA may be effective against this drug resistance. PMID:24817927

  6. B1a cells play a pathogenic role in the development of autoimmune arthritis

    PubMed Central

    Deng, Jun; Wang, Xiaohui; Chen, Qian; Sun, Xiaoxuan; Xiao, Fan; Ko, King-Hung; Zhang, Miaojia; Lu, Liwei

    2016-01-01

    Dysregulated functions of B1 cells have been implicated in the disease progression of various autoimmune disorders, but it remains largely unclear whether B1 cells are involved in the pathogenesis of autoimmune arthritis. In this study, we found that peritoneal B1a cells underwent proliferation and migrated to the inflamed joint tissue with upregulated RANKL expression during collagen-induced arthritis (CIA) development in mice. Adoptive transfer of B1a cells exacerbated arthritic severity and joint damage while intraperitoneal depletion of B1 cells ameliorated both arthritic symptoms and joint pathology in CIA mice. In culture, RANKL-expressing B1a cells significantly promoted the expansion of osteoclasts derived from bone marrow cells, which were in accord with the in vivo findings of increased osteoclastogenesis in CIA mice transferred with B1a cells. Together, these results have demonstrated a pathogenic role of B1a cells in the development of autoimmune arthritis through RANKL-mediated osteoclastogenesis. PMID:27014914

  7. Characterization of a strong repression domain in the hinge region of orphan nuclear receptor hB1F/hLRH-1.

    PubMed

    Xu, Ping-Long; Shan, Shi-Fang; Kong, Yu-Ying; Xie, You-Hua; Wang, Yuan

    2003-10-01

    Human hepatitis B virus enhancer II B1 binding factor (hB1F also known as NR5A2, LRH-1, FTF or CPF) is an orphan nuclear receptor and belongs to the fushi tarazu factor I (FTZ-F1) subfamily. It plays important roles in the transcriptional regulation of a number of genes involved in bile acid biosynthesis pathway, hepatitis B virus (HBV) replication and liver specific regulatory network. Like other nuclear receptors, hB1F is composed of modular functional domains. We characterized a domain in its hinge region that imposes a strong repression on the transcriptional activity of hB1F, which is important for the function of hB1F on regulating the activity of HBV enhancer II/core promoter. Mutations of the core residues in this domain abrogate the repression. Bioinformatic analysis reveals that the amino acid sequence of this region is highly conserved only among members of the FTZ-F1 subfamily. The repression is observed in five cell lines tested, while the degree of the repression varies greatly, which does not parallel with the expression level of the DEAD box protein of 130 kD (DP103), a potential interacting protein of a homologous domain in the steroidogenic factor 1 (SF-1). Moreover, the repression is not affected by the silencing mediator for retinoic acid receptor and thyroid hormone receptor (SMRT) and steroid receptor coactivator 1 (SRC-1). Collectively, these data suggest a novel regulatory mechanism for the transcriptional activity of hB1F. PMID:14515208

  8. Mosquito Cellular Factors and Functions in Mediating the Infectious entry of Chikungunya Virus

    PubMed Central

    Lee, Regina Ching Hua; Hapuarachchi, Hapuarachchige Chanditha; Chen, Karen Caiyun; Hussain, Khairunnisa' Mohamed; Chen, Huixin; Low, Swee Ling; Ng, Lee Ching; Lin, Raymond; Ng, Mary Mah-Lee; Chu, Justin Jang Hann

    2013-01-01

    Chikungunya virus (CHIKV) is an arthropod-borne virus responsible for recent epidemics in the Asia Pacific regions. A customized gene expression microarray of 18,760 transcripts known to target Aedes mosquito genome was used to identify host genes that are differentially regulated during the infectious entry process of CHIKV infection on C6/36 mosquito cells. Several genes such as epsin I (EPN1), epidermal growth factor receptor pathway substrate 15 (EPS15) and Huntingtin interacting protein I (HIP1) were identified to be differentially expressed during CHIKV infection and known to be involved in clathrin-mediated endocytosis (CME). Transmission electron microscopy analyses further revealed the presence of CHIKV particles within invaginations of the plasma membrane, resembling clathrin-coated pits. Characterization of vesicles involved in the endocytic trafficking processes of CHIKV revealed the translocation of the virus particles to the early endosomes and subsequently to the late endosomes and lysosomes. Treatment with receptor-mediated endocytosis inhibitor, monodansylcadaverine and clathrin-associated drug inhibitors, chlorpromazine and dynasore inhibited CHIKV entry, whereas no inhibition was observed with caveolin-related drug inhibitors. Inhibition of CHIKV entry upon treatment with low-endosomal pH inhibitors indicated that low pH is essential for viral entry processes. CHIKV entry by clathrin-mediated endocytosis was validated via overexpression of a dominant-negative mutant of Eps15, in which infectious entry was reduced, while siRNA-based knockdown of genes associated with CME, low endosomal pH and RAB trafficking proteins exhibited significant levels of CHIKV inhibition. This study revealed, for the first time, that the infectious entry of CHIKV into mosquito cells is mediated by the clathrin-dependent endocytic pathway. PMID:23409203

  9. Factors Affecting Disability-Related Depression in Patients with Lost Limbs: A Mediational Model.

    PubMed

    Batool, Syeda Shahida; Nawaz, Samina

    2016-08-01

    The objective of the present study was to determine the mediating role of self-efficacy between religiosity, social support, and depression in patients with lost limbs. We sampled 67 male and 33 female disabled patients who had lost limbs in accidents or amputations from four public hospitals in Lahore, Pakistan, and used Religiosity Index (Farooq and Imam, in The effect of religiosity on locus of control. Department of Psychology, Govt College University, Lahore, 1997), General Self-efficacy Scales (Tabassum et al., in Urdu adaptation of the general self-efficacy scale. Retrieved from http://userpage.fu-berlin.de/~health/urdu.htm , 2003), Berlin Social Support Scale (Schwarzer and Schulz, in Berlin Social Support Scales. Retrieved online from http://userpage.fuberlin.de/~gesund/skalen/Language_Selection/Turkish/BerlinSocialSupportScales/berlin_social_support_scales.htm , 2000), and Siddiqui-Shah Depression Scale (Siddiqui and Shah, in Pychol Dev Soc 9(2):245-262, 1997), and used a correlation matrix and mediational analyses along with other inferential statistics to develop a model that suggested self-efficacy mediated between religiosity, social support, and depression with negative correlations that partially mediated this relationship. The findings suggest that low level of religiosity, social support, and self-efficacy may play a role in the onset and continuation of depression or its symptoms. We found no significant differences in gender, education, and cause of disability in patients with lost limbs. Results have implications for clinical psychologists, counselors, and health psychologists to develop a treatment plan for such patients with depression focusing on the factors implicated above. PMID:26231727

  10. Protective effects of silymarin on fumonisin B1-induced hepatotoxicity in mice

    PubMed Central

    Devrim, Alparslan Kadir; Tunca, Recai; Bayezit, Murat; Dag, Serpil; Essiz, Dinc

    2014-01-01

    The present study was conducted to investigate the effect of silymarin on experimental liver toxication induced by Fumonisin B1 (FB1) in BALB/c mice. The mice were divided into six groups (n = 15). Group 1 served as the control. Group 2 was the silymarin control (100 mg/kg by gavage). Groups 3 and 4 were treated with FB1 (Group 3, 1.5 mg/kg FB1, intraperitoneally; and Group 4, 4.5 mg/kg FB1). Group 5 received FB1 (1.5 mg/kg) and silymarin (100 mg/kg), and Group 6 was given a higher dose of FB1 (4.5 mg/kg FB1) with silymarin (100 mg/kg). Silymarin treatment significantly decreased (p < 0.0001) the apoptotic rate. FB1 administration significantly increased (p < 0.0001) proliferating cell nuclear antigen and Ki-67 expression. Furthermore, FB1 elevated the levels of caspase-8 and tumor necrosis factor-alpha mediators while silymarin significantly reduced (p < 0.0001) the expression of these factors. Vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) expressions were significantly elevated in Group 4 (p < 0.0001). Silymarin administration alleviated increased VEGF and FGF-2 expression levels (p < 0.0001). In conclusion, silymarin ameliorated toxic liver damage caused by FB1 in BALB/c mice. PMID:24136215

  11. B-1B excels in conventional role

    SciTech Connect

    Scott, W.B.

    1992-07-01

    A report is presented of an observational flight performed in a USAF B-1B to better understand the operational aspects of the aircraft's new conventional bombing mission as an integral element of a multiaircraft tactical strike package. The basic flight plan consisted of a standard takeoff and climb, cruising to the training area at 22,000 ft, descending for a 400 ft low-level run, making two simulated bomb drops, and climbing back to 25,000 ft for the return to base. Attention is given the new/enhanced avionics, the ALQ-161 defensive electronic warfare system and ripple-release Mk. 82 bombing procedures.

  12. Syndecan-4, a PRRSV attachment factor, mediates PRRSV entry through its interaction with EGFR.

    PubMed

    Wang, Rui; Wang, Xin; Ni, Bo; Huan, Chang-Chao; Wu, Jia-Qiang; Wen, Li-Bin; Liao, Ying; Tong, Guang-Zhi; Ding, Chan; Fan, Hong-Jie; Mao, Xiang

    2016-06-24

    The causative agent of porcine reproductive and respiratory syndrome is the PRRS virus (PRRSV), an enveloped, single-stranded and positive-sense RNA virus. The host factors and mechanisms that are involved in PRRSV entry are still largely unknown. In our present studies, we found that syndecan-4, one of the heparan sulfate proteoglycans, plays a critical role in PRRSV entry, especially in PRRSV attachment. Moreover, EGFR interacts with syndecan-4 in MACR-145 cells and disruption of their interaction impaired PRRSV entry. Furthermore, EGFR inhibitor AG1478 or syndecan-4 derived peptide SSTN87-131 inhibited syndecan-4 endocytosis induced by PRRSV entry. Altogether, syndecan-4, a PRRSV attachment factor, mediated PRRSV entry by interacting with EGFR. PMID:27208778

  13. Mediation of wound-related Rous sarcoma virus tumorigenesis by TFG (transforming growth factor)-. beta

    SciTech Connect

    Sieweke, M.H.; Bissell, M.J. ); Thompson, N.L.; Sporn, M.B. )

    1990-06-29

    In Rous sarcoma virus (RSV)-infected chickens, wounding leads to tumor formation with nearly 100% frequency in tissues that would otherwise remain tumor-free. Identifying molecular mediators of this phenomenon should yield important clues to the mechanisms involved in RSV tumorigenesis. Immunohistochemical staining showed that TGF-{beta} is present locally shortly after wounding, but not in unwounded controls. In addition, subcutaneous administration of recombinant transforming growth factor {beta}1 (TGF-{beta}1) could substitute completely for wounding in tumor induction. A treatment protocol of four doses of 800 nanograms of TGF-{beta} resulted in v-src-expressing tumors with 100% frequency; four doses of only 10 nanograms still led to tumor formation in 80% of the animals. This effect was specific, as other growth factors with suggested roles in would healing did not elicit the same response. Epidermal growth factor (EGF) or TGF-{alpha} had no effect, and platelet-derived growth factor (PDGF) or insulin-like growth factor-1 (IGF-1) yielded only occasional tumors after longer latency. TGF-{beta} release during the would-healing response may thus be a critical event that creates a conducive environment for RSV tumorigenesis and may act as a cofactor for transformation in this system. 31 refs., 3 figs., 2 tabs.

  14. Stromal inhibition of prostatic epithelial cell proliferation not mediated by transforming growth factor beta.

    PubMed Central

    Kooistra, A.; van den Eijnden-van Raaij, A. J.; Klaij, I. A.; Romijn, J. C.; Schröder, F. H.

    1995-01-01

    The paracrine influence of prostatic stroma on the proliferation of prostatic epithelial cells was investigated. Stromal cells from the human prostate have previously been shown to inhibit anchorage-dependent as well as anchorage-independent growth of the prostatic tumour epithelial cell lines PC-3 and LNCaP. Antiproliferative activity, mediated by a diffusible factor in the stromal cell conditioned medium, was found to be produced specifically by prostatic stromal cells. In the present study the characteristics of this factor were examined. It is demonstrated that prostate stroma-derived inhibiting factor is an acid- and heat-labile, dithiothreitol-sensitive protein. Although some similarities with type beta transforming growth factor (TGF-beta)-like inhibitors are apparent, evidence is presented that the factor is not identical to TGF-beta or to the TGF-beta-like factors activin and inhibin. Absence of TGF-beta activity was shown by the lack of inhibitory response of the TGF-beta-sensitive mink lung cell line CCL-64 to prostate stromal cell conditioned medium and to concentrated, partially purified preparations of the inhibitor. Furthermore, neutralising antibodies against TGF-beta 1 or TGF-beta 2 did not cause a decline in the level of PC-3 growth inhibition caused by partially purified inhibitor. Using Northern blot analyses, we excluded the involvement of inhibin or activin. It is concluded that the prostate stroma-derived factor may be a novel growth inhibitor different from any of the currently described inhibiting factors. Images Figure 5 PMID:7543773

  15. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets.

    PubMed

    Wöhrle, Simon; Henninger, Christine; Bonny, Olivier; Thuery, Anne; Beluch, Noemie; Hynes, Nancy E; Guagnano, Vito; Sellers, William R; Hofmann, Francesco; Kneissel, Michaela; Graus Porta, Diana

    2013-04-01

    Fibroblast growth factor 23 (FGF23) is a circulating factor secreted by osteocytes that is essential for phosphate homeostasis. In kidney proximal tubular cells FGF23 inhibits phosphate reabsorption and leads to decreased synthesis and enhanced catabolism of 1,25-dihydroxyvitamin D3 (1,25[OH]2 D3 ). Excess levels of FGF23 cause renal phosphate wasting and suppression of circulating 1,25(OH)2 D3 levels and are associated with several hereditary hypophosphatemic disorders with skeletal abnormalities, including X-linked hypophosphatemic rickets (XLH) and autosomal recessive hypophosphatemic rickets (ARHR). Currently, therapeutic approaches to these diseases are limited to treatment with activated vitamin D analogues and phosphate supplementation, often merely resulting in partial correction of the skeletal aberrations. In this study, we evaluate the use of FGFR inhibitors for the treatment of FGF23-mediated hypophosphatemic disorders using NVP-BGJ398, a novel selective, pan-specific FGFR inhibitor currently in Phase I clinical trials for cancer therapy. In two different hypophosphatemic mouse models, Hyp and Dmp1-null mice, resembling the human diseases XLH and ARHR, we find that pharmacological inhibition of FGFRs efficiently abrogates aberrant FGF23 signaling and normalizes the hypophosphatemic and hypocalcemic conditions of these mice. Correspondingly, long-term FGFR inhibition in Hyp mice leads to enhanced bone growth, increased mineralization, and reorganization of the disturbed growth plate structure. We therefore propose NVP-BGJ398 treatment as a novel approach for the therapy of FGF23-mediated hypophosphatemic diseases. PMID:23129509

  16. Epigenetic Aberrations Are Not Specific to Transcription Factor-Mediated Reprogramming.

    PubMed

    Tiemann, Ulf; Wu, Guangming; Marthaler, Adele Gabriele; Schöler, Hans Robert; Tapia, Natalia

    2016-01-12

    Somatic cells can be reprogrammed to pluripotency using different methods. In comparison with pluripotent cells obtained through somatic nuclear transfer, induced pluripotent stem cells (iPSCs) exhibit a higher number of epigenetic errors. Furthermore, most of these abnormalities have been described to be intrinsic to the iPSC technology. Here, we investigate whether the aberrant epigenetic patterns detected in iPSCs are specific to transcription factor-mediated reprogramming. We used germline stem cells (GSCs), which are the only adult cell type that can be converted into pluripotent cells (gPSCs) under defined culture conditions, and compared GSC-derived iPSCs and gPSCs at the transcriptional and epigenetic level. Our results show that both reprogramming methods generate indistinguishable states of pluripotency. GSC-derived iPSCs and gPSCs retained similar levels of donor cell-type memory and exhibited comparable numbers of reprogramming errors. Therefore, our study demonstrates that the epigenetic abnormalities detected in iPSCs are not specific to transcription factor-mediated reprogramming. PMID:26711876

  17. Autocrine fibroblast growth factor 18 mediates dexamethasone-induced osteogenic differentiation of murine mesenchymal stem cells.

    PubMed

    Hamidouche, Zahia; Fromigué, Olivia; Nuber, Ulrike; Vaudin, Pascal; Pages, Jean-Christophe; Ebert, Regina; Jakob, Franz; Miraoui, Hichem; Marie, Pierre J

    2010-08-01

    The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs. Using microarray analysis combined with biochemical and molecular approach, we found that FGF18, a member of the FGF family, is upregulated during osteoblast differentiation induced by dexamethasone in murine MSCs. We showed that overexpression of FGF18 by lentiviral (LV) infection, or treatment of MSCs with recombinant human (rh)FGF18 increased the expression of the osteoblast specific transcription factor Runx2, and enhanced osteoblast phenotypic marker gene expression and in vitro osteogenesis. Molecular silencing using lentiviral shRNA demonstrated that downregulation of FGFR1 or FGFR2 abrogated osteoblast gene expression induced by either LV-FGF18 or rhFGF18, indicating that FGF18 enhances osteoblast differentiation in MSCs via activation of FGFR1 or FGFR2 signaling. Biochemical and pharmacological analyses showed that the induction of phenotypic osteoblast markers by LV-FGF18 is mediated by activation of ERK1/2-MAPKs and PI3K signaling in MSCs. These results reveal that FGF18 is an essential autocrine positive regulator of the osteogenic differentiation program in murine MSCs and indicate that osteogenic differentiation induced by FGF18 in MSCs is triggered by FGFR1/FGFR2-mediated ERK1/2-MAPKs and PI3K signaling. PMID:20432451

  18. Inflammatory and neuropathic cold allodynia are selectively mediated by the neurotrophic factor receptor GFRα3.

    PubMed

    Lippoldt, Erika K; Ongun, Serra; Kusaka, Geoffrey K; McKemy, David D

    2016-04-19

    Tissue injury prompts the release of a number of proalgesic molecules that induce acute and chronic pain by sensitizing pain-sensing neurons (nociceptors) to heat and mechanical stimuli. In contrast, many proalgesics have no effect on cold sensitivity or can inhibit cold-sensitive neurons and diminish cooling-mediated pain relief (analgesia). Nonetheless, cold pain (allodynia) is prevalent in many inflammatory and neuropathic pain settings, with little known of the mechanisms promoting pain vs. those dampening analgesia. Here, we show that cold allodynia induced by inflammation, nerve injury, and chemotherapeutics is abolished in mice lacking the neurotrophic factor receptor glial cell line-derived neurotrophic factor family of receptors-α3 (GFRα3). Furthermore, established cold allodynia is blocked in animals treated with neutralizing antibodies against the GFRα3 ligand, artemin. In contrast, heat and mechanical pain are unchanged, and results show that, in striking contrast to the redundant mechanisms sensitizing other modalities after an insult, cold allodynia is mediated exclusively by a single molecular pathway, suggesting that artemin-GFRα3 signaling can be targeted to selectively treat cold pain. PMID:27051069

  19. Matrix metalloproteinase-mediation of tumor targeting human recombinant tumor necrosis factor-α fusion protein.

    PubMed

    Ren, Hui; Shao, Xin; Zeng, Liang; Wang, Fa; Huang, Di-Nan; Hou, Gan

    2015-08-01

    The aim of the present study was to use genetic engineering in order to establish an efficient tumor necrosis factor (TNF)-α fusion protein with low toxicity, which may be used to target tumors. Four types of matrix metalloproteinase (MMP)-mediated tumor targeting human recombinant TNF-α (rhTNF-α) fusion protein vectors were constructed. These were subsequently introduced into Escherichia coli. rhTNF-α fusion protein with a glutathione S-transferase (GST)-tag was purified using GST resin affinity chromatography, and GST-tags were digested using factor Xa. The cytotoxic effects of the fusion protein on L929 cells were determined using MTT assays. At a concentration of 1 pM, the GST-tagged fusion protein exerted no cytotoxic effects on the cells, compared with the negative control cells (P=0.975>0.05). However, at a concentration of 1000 pM, the deblocking fusion protein exerted greater cytotoxic effects on L929 cells, compared with positive control cells (P<0.05). Treatment with the fusion protein also induced cell apoptosis in the nasopharyngeal cancer cell line, CNE-2Z, which secretes high levels of MMP-1. In conclusion, the results of the present study suggested that MMP-mediated rhTNF-α fusion protein induces CNE-2Z cells apoptosis. rhTNF-α exhibits high efficacy and tumor cell targeting capability, with low toxicity effects on healthy cells. PMID:25891416

  20. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  1. Combinatorial control of cyclin B1 nuclear trafficking through phosphorylation at multiple sites.

    PubMed

    Yang, J; Song, H; Walsh, S; Bardes, E S; Kornbluth, S

    2001-02-01

    Entry into mitosis is regulated by the Cdc2 kinase complexed to B-type cyclins. We and others recently reported that cyclin B1/Cdc2 complexes, which appear to be constitutively cytoplasmic during interphase, actually shuttle continually into and out of the nucleus, with the rate of nuclear export exceeding the import rate (). At the time of entry into mitosis, the import rate is increased, whereas the export rate is decreased, leading to rapid nuclear accumulation of Cdc2/cyclin B1. Although it has recently been reported that phosphorylation of 4 serines within cyclin B1 promotes the rapid nuclear translocation of Cdc2/cyclin B1 at G(2)/M, the role that individual phosphorylation sites play in this process has not been examined (, ). We report here that phosphorylation of a single serine residue (Ser(113) of Xenopus cyclin B1) abrogates nuclear export of cyclin B1. This serine lies directly within the cyclin B1 nuclear export sequence and, when phosphorylated, prevents binding of the nuclear export factor, CRM1. In contrast, analysis of phosphorylation site mutants suggests that coordinate phosphorylation of all 4 serines (94, 96, 101, and 113) is required for the accelerated nuclear import of cyclin B1/Cdc2 characteristic of G(2)/M. Additionally, binding of cyclin B1 to importin-beta, the factor known to be responsible for the slow interphase nuclear entry of cyclin B1, appears to be unaffected by the phosphorylation state of cyclin B. These data suggest that a distinct import factor must be recruited to enhance nuclear entry of Cdc2/cyclin B1 at the G(2)/M transition. PMID:11060306

  2. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease

    PubMed Central

    Grimm, Fiona; Sarre, Alexandre; Hörl, Manuel; Kayikci, Melis; Fankhauser, Niklaus; Christinat, Yann; Cortijo, Cédric; Feehan, Owen; Vukolic, Ana; Sossalla, Samuel; Stehr, Sebastian N.; Ule, Jernej; Zamboni, Nicola; Pedrazzini, Thierry; Krek, Wilhelm

    2016-01-01

    Fructose is a major component of dietary sugar and its overconsumption exacerbates key pathological features of metabolic syndrome. The central fructose-metabolising enzyme is ketohexokinase (KHK), which exists in two isoforms: KHK-A and KHK-C, generated through mutually exclusive alternative splicing of KHK pre-mRNAs. KHK-C displays superior affinity for fructose compared with KHK-A and is produced primarily in the liver, thus restricting fructose metabolism almost exclusively to this organ. Here we show that myocardial hypoxia actuates fructose metabolism in human and mouse models of pathological cardiac hypertrophy through hypoxia-inducible factor 1α (HIF1α) activation of SF3B1 and SF3B1-mediated splice switching of KHK-A to KHK-C. Heart-specific depletion of SF3B1 orgenetic ablation of Khk, but not Khk-A alone, in mice, suppresses pathological stress-induced fructose metabolism, growth and contractile dysfunction, thus defining signalling components and molecular underpinnings of a fructose metabolism regulatory system crucial for pathological growth. PMID:26083752

  3. DNA Damage Response Factors from Diverse Pathways, Including DNA Crosslink Repair, Mediate Alternative End Joining

    PubMed Central

    Howard, Sean M.; Yanez, Diana A.; Stark, Jeremy M.

    2015-01-01

    Alternative end joining (Alt-EJ) chromosomal break repair involves bypassing classical non-homologous end joining (c-NHEJ), and such repair causes mutations often with microhomology at the repair junction. Since the mediators of Alt-EJ are not well understood, we have sought to identify DNA damage response (DDR) factors important for this repair event. Using chromosomal break reporter assays, we surveyed an RNAi library targeting known DDR factors for siRNAs that cause a specific decrease in Alt-EJ, relative to an EJ event that is a composite of Alt-EJ and c-NHEJ (Distal-EJ between two tandem breaks). From this analysis, we identified several DDR factors that are specifically important for Alt-EJ relative to Distal-EJ. While these factors are from diverse pathways, we also found that most of them also promote homologous recombination (HR), including factors important for DNA crosslink repair, such as the Fanconi Anemia factor, FANCA. Since bypass of c-NHEJ is likely important for both Alt-EJ and HR, we disrupted the c-NHEJ factor Ku70 in Fanca-deficient mouse cells and found that Ku70 loss significantly diminishes the influence of Fanca on Alt-EJ. In contrast, an inhibitor of poly ADP-ribose polymerase (PARP) causes a decrease in Alt-EJ that is enhanced by Ku70 loss. Additionally, the helicase/nuclease DNA2 appears to have distinct effects from FANCA and PARP on both Alt-EJ, as well as end resection. Finally, we found that the proteasome inhibitor Bortezomib, a cancer therapeutic that has been shown to disrupt FANC signaling, causes a significant reduction in both Alt-EJ and HR, relative to Distal-EJ, as well as a substantial loss of end resection. We suggest that several distinct DDR functions are important for Alt-EJ, which include promoting bypass of c-NHEJ and end resection. PMID:25629353

  4. Drug-drug interactions between rosuvastatin and oral antidiabetic drugs occurring at the level of OATP1B1.

    PubMed

    van de Steeg, E; Greupink, R; Schreurs, M; Nooijen, I H G; Verhoeckx, K C M; Hanemaaijer, R; Ripken, D; Monshouwer, M; Vlaming, M L H; DeGroot, J; Verwei, M; Russel, F G M; Huisman, M T; Wortelboer, H M

    2013-03-01

    Organic anion-transporting polypeptide 1B1 (OATP1B1) is an important hepatic uptake transporter, of which the polymorphic variant OATP1B1*15 (Asn130Asp and Val174Ala) has been associated with decreased transport activity. Rosuvastatin is an OATP1B1 substrate and often concomitantly prescribed with oral antidiabetics in the clinic. The aim of this study was to investigate possible drug-drug interactions between these drugs at the level of OATP1B1 and OATP1B1*15. We generated human embryonic kidney (HEK)293 cells stably overexpressing OATP1B1 or OATP1B1*15 that showed similar protein expression levels of OATP1B1 and OATP1B1*15 at the cell membrane as measured by liquid chromatography-tandem mass spectrometry. In HEK-OATP1B1*15 cells, the V(max) for OATP1B1-mediated transport of E(2)17β-G (estradiol 17β-d-glucuronide) was decreased >60%, whereas K(m) values (Michaelis constant) were comparable. Uptake of rosuvastatin in HEK-OATP1B1 cells (K(m) 13.1 ± 0.43 μM) was nearly absent in HEK-OATP1B1*15 cells. Interestingly, several oral antidiabetics (glyburide, glimepiride, troglitazone, pioglitazone, glipizide, gliclazide, and tolbutamide), but not metformin, were identified as significant inhibitors of the OATP1B1-mediated transport of rosuvastatin. The IC(50) values for inhibition of E(2)17β-G uptake were similar between OATP1B1 and OATP1B1*15. In conclusion, these studies indicate that several oral antidiabetic drugs affect the OATP1B1-mediated uptake of rosuvastatin in vitro. The next step will be to translate these data to the clinical situation, as it remains to be established whether the studied oral antidiabetics indeed affect the clinical pharmacokinetic profile of rosuvastatin in patients. PMID:23248200

  5. 26 CFR 301.7701(b)-1 - Resident alien.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Resident alien. 301.7701(b)-1 Section 301.7701(b)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) PROCEDURE AND ADMINISTRATION PROCEDURE AND ADMINISTRATION Definitions § 301.7701(b)-1 Resident alien. (a) Scope. Section 301.7701(b)-1(b) provides rules...

  6. Tumour necrosis factor (TNF) as a mediator of macrophage helminthotoxic activity.

    PubMed

    James, S L; Glaven, J; Goldenberg, S; Meltzer, M S; Pearce, E

    1990-01-01

    Lymphokine-activated macrophages are cytotoxic for larvae of the helminth parasite Schistosoma mansoni. That soluble secreted factors may mediate this cytotoxicity was suggested by the observation that culture supernatant fluids from stimulated macrophages also exhibited larvacidal activity. These fluids contain the monokine tumour necrosis factor (TNF). Several observations indicated that TNF is directly toxic to schistosome larvae. Cytotoxic sera taken from BCG- or S. mansoni-immunized mice after endotoxin challenge killed schistosomula in vitro, and upon gel filtration the larvacidal factor(s) in the sera co-eluted with the tumoricidal activity defined as TNF. Recombinant-derived TNF exhibited direct toxicity to schistosomula at high concentrations, or at lower concentrations in the presence of IFN gamma. The larvacidal activity of macrophage supernatant fluids was abrogated by addition of either anti-TNF antisera or Zn+2, which has been shown to inhibit TNF-induced damage of tumour cells. Anti-TNF and Zn+2 likewise suppressed schistosomulum killing by lymphokine-activated peritoneal macrophages or the IC-21 macrophage line, indicating that TNF also plays a role in the effector mechanism of larval killing by whole cells. PMID:2314921

  7. Serum Response Factor Mediated Gene Activity in Physiological and Pathological Processes of Neuronal Motility

    PubMed Central

    Knöll, Bernd

    2011-01-01

    In recent years, the transcription factor serum response factor (SRF) was shown to contribute to various physiological processes linked to neuronal motility. The latter include cell migration, axon guidance, and, e.g., synapse function relying on cytoskeletal dynamics, neurite outgrowth, axonal and dendritic differentiation, growth cone motility, and neurite branching. SRF teams up with myocardin related transcription factors (MRTFs) and ternary complex factors (TCFs) to mediate cellular actin cytoskeletal dynamics and the immediate-early gene (IEG) response, a bona fide indicator of neuronal activation. Herein, I will discuss how SRF and cofactors might modulate physiological processes of neuronal motility. Further, potential mechanisms engaged by neurite growth promoting molecules and axon guidance cues to target SRF’s transcriptional machinery in physiological neuronal motility will be presented. Of note, altered cytoskeletal dynamics and rapid initiation of an IEG response are a hallmark of injured neurons in various neurological disorders. Thus, SRF and its MRTF and TCF cofactors might emerge as a novel trio modulating peripheral and central axon regeneration. PMID:22164132

  8. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    SciTech Connect

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  9. DNA methylation-mediated transcription factors regulate Piwil1 expression during chicken spermatogenesis.

    PubMed

    Qiu, Lingling; Xu, Lu; Chang, Guobin; Guo, Qixin; Liu, Xiangping; Bi, Yulin; Zhang, Yu; Wang, Hongzhi; Wang, Kehua; Lu, Wei; Ren, Lichen; Zhu, Pengfei; Wu, Yun; Zhang, Yang; Xu, Qi; Chen, Guohong

    2016-08-25

    The P-element induced wimpy testis (Piwi) protein family is responsible for initiating spermatogenesis and maintaining the integrity of germ cells and stem cells, but little is known regarding its transcriptional regulation in poultry. Here, we characterized the methylation status of the Piwil1 promoter in five different spermatogenic cell lines using direct bisulfite pyrosequencing and determined that methylation correlates negatively with germ cell type-specific expression patterns of piwil1. We demonstrated that methylation of the -148 CpG site, which is the predicted binding site for the transcription factors TCF3 and NRF1, was differentially methylated in different spermatogenic cells. This site was completely methylated in PGCs (primordial germ cells), but was unmethylated in round spermatids. A similar result was obtained in the region from +121 to +139 CpG sites of the Piwil1 promoter CpG island, which was predicted to contain SOX2 binding sites. In addition, demethylation assays further demonstrated that DNA methylation indeed regulates Piwil1 expression during chicken spermatogenesis. Combined with transcription factor binding site prediction, we speculate that methylation influences the recruitment of corresponding transcription factors. Collectively, we show the negative correlation between promoter methylation and piwil1 expression and that the spatiotemporal expression of chicken Piwil1 from the PGC stage to the round spermatid stage is influenced by methylation-mediated transcription factor regulation. PMID:27108736

  10. DNA methylation-mediated transcription factors regulate Piwil1 expression during chicken spermatogenesis

    PubMed Central

    QIU, Lingling; XU, Lu; CHANG, Guobin; GUO, Qixin; LIU, Xiangping; BI, Yulin; ZHANG, Yu; WANG, Hongzhi; WANG, Kehua; LU, Wei; REN, Lichen; ZHU, Pengfei; WU, Yun; ZHANG, Yang; XU, Qi; CHEN, Guohong

    2016-01-01

    The P-element induced wimpy testis (Piwi) protein family is responsible for initiating spermatogenesis and maintaining the integrity of germ cells and stem cells, but little is known regarding its transcriptional regulation in poultry. Here, we characterized the methylation status of the Piwil1 promoter in five different spermatogenic cell lines using direct bisulfite pyrosequencing and determined that methylation correlates negatively with germ cell type-specific expression patterns of piwil1. We demonstrated that methylation of the −148 CpG site, which is the predicted binding site for the transcription factors TCF3 and NRF1, was differentially methylated in different spermatogenic cells. This site was completely methylated in PGCs (primordial germ cells), but was unmethylated in round spermatids. A similar result was obtained in the region from +121 to +139 CpG sites of the Piwil1 promoter CpG island, which was predicted to contain SOX2 binding sites. In addition, demethylation assays further demonstrated that DNA methylation indeed regulates Piwil1 expression during chicken spermatogenesis. Combined with transcription factor binding site prediction, we speculate that methylation influences the recruitment of corresponding transcription factors. Collectively, we show the negative correlation between promoter methylation and piwil1 expression and that the spatiotemporal expression of chicken Piwil1 from the PGC stage to the round spermatid stage is influenced by methylation-mediated transcription factor regulation. PMID:27108736