Science.gov

Sample records for factor cleaving protease

  1. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura.

    PubMed

    Furlan, M; Robles, R; Solenthaler, M; Wassmer, M; Sandoz, P; Lämmle, B

    1997-05-01

    In patients with thrombotic thrombocytopenic purpura (TTP), excessive intravascular platelet aggregation has been associated with appearance in plasma of unusually large von Willebrand factor (vWF) multimers. These extremely adhesive vWF multimers may arise due to deficiency of a "depolymerase" cleaving vWF to smaller molecular forms, either by reducing the interdimeric disulfide bridges or by proteolytic degradation. We studied the activity of a recently described vWF-cleaving protease in four patients with chronic relapsing TTP. Diluted plasma samples of TTP patients were incubated with purified normal human vWF in the presence of a serine protease inhibitor, at low ionic strength, and in the presence of urea and barium ions. The extent of vWF degradation was assayed by electrophoresis in sodium dodecyl sulfate-agarose gels and immunoblotting. Four patients, that included two brothers, with chronic relapsing TTP displayed either substantially reduced levels or a complete absence of vWF-cleaving protease activity. In none of these patient plasmas was an inhibitor of or an antibody against the vWF-cleaving protease established. Our data suggest that the unusually large vWF multimers found in TTP patients may be caused by deficient vWF-cleaving protease activity. Deficiency of this protease may be inherited in an autosomal recessive manner and seems to predispose to chronic relapsing TTP. The assay of the vWF-cleaving protease activity may be used as a sensitive diagnostic tool for identification of subjects with a latent TTP tendency. PMID:9129011

  2. [Stable expression and characterization of the von Willebrand factor cleaving protease].

    PubMed

    Ma, Zhenni; Dong, Ningzheng; Zhang, Jingyu; Su, Jian; Wang, Anyou; Ruan, Changgeng

    2010-02-01

    This study was to acquire recombinant protein of von Willebrand factor cleaving protease (ADAMTS13, a disintegrin and metalloprotease with a thromboSpondin type 1 motifs 13), for further studies on its biological function in thrombosis and hemostasis. We transfected the Hela cells with the plasmid pSecTag-ADAMTS13 by lipofectamine. A positive cell cloning was selected by hygromycin-B. The recombinant protein was purified with Ni-NTA agarose column by gradient imidazole. The purity and immune activity of purified products were identified with SDS-PAGE and Western blotting respectively. We also measured the enzymatic activity of recombinant protein (rADAMTS13) by GST-His two-site ELISA assay. The results showed that we successfully constructed Hela cells ADAMTS2-4 which expressed high level of rADAMTS13. We received about 5.8 mg recombinant protein in culture supernantants per liter purified with Ni-NTA column. The protein formed a main lane at the position of 190 kDa with SDS-PAGE and reacted with polyclonal antibody against ADAMTS13 by Western blotting. The amount of rADAMTS13 activity was 6.4 U/mL, according to the normal plasma defined as 1 U/mL. In conclusion, rADAMTS13 protein had high purity, immune activity and good enzymatic activity, which could establish the experimental foundation for further research on biological function and mechanism of this unique metalloprotease. PMID:20432945

  3. Protease Omi facilitates neurite outgrowth in mouse neuroblastoma N2a cells by cleaving transcription factor E2F1

    PubMed Central

    Ma, Qi; Hu, Qing-song; Xu, Ran-jie; Zhen, Xue-chu; Wang, Guang-hui

    2015-01-01

    Aim: Omi is an ATP-independent serine protease that is necessary for neuronal function and survival. The aim of this study was to investigate the role of protease Omi in regulating differentiation of mouse neuroblastoma cells and to identify the substrate of Omi involved in this process. Methods: Mouse neuroblastoma N2a cells and Omi protease-deficient mnd2 mice were used in this study. To modulate Omi and E2F1 expression, N2a cells were transfected with expression plasmids, shRNA plasmids or siRNA. Protein levels were detected using immunoblot assays. The interaction between Omi and E2F1 was studied using immunoprecipitation, GST pulldown and in vitro cleavage assays. N2a cells were treated with 20 μmol/L retinoic acid (RA) and 1% fetal bovine serum to induce neurite outgrowth, which was measured using Image J software. Results: E2F1 was significantly increased in Omi knockdown cells and in brain lysates of mnd2 mice, and was decreased in cells overexpressing wild-type Omi, but not inactive Omi S276C. In brain lysates of mnd2 mice, endogenous E2F1 was co-immunoprecipitated with endogenous Omi. In vitro cleavage assay demonstrated that Omi directly cleaved E2F1. Treatment of N2a cells with RA induced marked differentiation and neurite outgrowth accompanied by significantly increased Omi and decreased E2F1 levels, which were suppressed by pretreatment with the specific Omi inhibitor UCF-101. Knockdown of Omi in N2a cells suppressed RA-induced neurite outgrowth, which was partially restored by knockdown of E2F1. Conclusion: Protease Omi facilitates neurite outgrowth by cleaving the transcription factor E2F1 in differentiated neuroblastoma cells; E2F1 is a substrate of Omi. PMID:26238290

  4. The outer membrane protease PgtE of Salmonella enterica interferes with the alternative complement pathway by cleaving factors B and H.

    PubMed

    Riva, Rauna; Korhonen, Timo K; Meri, Seppo

    2015-01-01

    The virulence factor PgtE is an outer membrane protease (omptin) of the zoonotic pathogen Salmonella enterica that causes diseases ranging from gastroenteritis to severe enteric fever. It is surface exposed in bacteria that have a short-chain, i.e., rough LPS, as observed e.g., in bacteria residing inside macrophages or just emerging from them. We investigated whether PgtE cleaves the complement factors B (B) and H (H), key proteins controlling formation and inactivation of the complement protein C3b and thereby the activity of the complement system. S. enterica serovar Typhimurium or omptin-expressing recombinant E. coli bacteria were incubated with purified human complement proteins or recombinant H fragments. PgtE cleaved both B and H, whereas its close homolog Pla of Yersinia pestis cleaved only H. H was cleaved at both N- and C-termini, while the central region resisted proteolysis. Because of multiple effects of PgtE on complement components (cleavage of C3, C3b, B, and H) we assessed its effect on the opsonophagocytosis of Salmonella. In human serum, C3 cleavage was dependent on proteolytically active PgtE. Human neutrophils interacted less with serum-opsonized FITC-stained S. enterica 14028R than with the isogenic ΔpgtE strain, as analyzed by flow cytometry. In conclusion, cleavage of B and H by PgtE, together with C3 cleavage, affects the C3-mediated recognition of S. enterica by human neutrophils, thus thwarting the immune protection against Salmonella. PMID:25705210

  5. The outer membrane protease PgtE of Salmonella enterica interferes with the alternative complement pathway by cleaving factors B and H

    PubMed Central

    Riva, Rauna; Korhonen, Timo K.; Meri, Seppo

    2015-01-01

    The virulence factor PgtE is an outer membrane protease (omptin) of the zoonotic pathogen Salmonella enterica that causes diseases ranging from gastroenteritis to severe enteric fever. It is surface exposed in bacteria that have a short-chain, i.e., rough LPS, as observed e.g., in bacteria residing inside macrophages or just emerging from them. We investigated whether PgtE cleaves the complement factors B (B) and H (H), key proteins controlling formation and inactivation of the complement protein C3b and thereby the activity of the complement system. S. enterica serovar Typhimurium or omptin-expressing recombinant E. coli bacteria were incubated with purified human complement proteins or recombinant H fragments. PgtE cleaved both B and H, whereas its close homolog Pla of Yersinia pestis cleaved only H. H was cleaved at both N- and C-termini, while the central region resisted proteolysis. Because of multiple effects of PgtE on complement components (cleavage of C3, C3b, B, and H) we assessed its effect on the opsonophagocytosis of Salmonella. In human serum, C3 cleavage was dependent on proteolytically active PgtE. Human neutrophils interacted less with serum-opsonized FITC-stained S. enterica 14028R than with the isogenic ΔpgtE strain, as analyzed by flow cytometry. In conclusion, cleavage of B and H by PgtE, together with C3 cleavage, affects the C3-mediated recognition of S. enterica by human neutrophils, thus thwarting the immune protection against Salmonella. PMID:25705210

  6. The Streptococcal Cysteine Protease SpeB Is Not a Natural Immunoglobulin-Cleaving Enzyme

    PubMed Central

    Persson, Helena; Vindebro, Reine

    2013-01-01

    The human bacterial pathogen Streptococcus pyogenes has developed a broad variety of virulence mechanisms to evade the actions of the host immune defense. One of the best-characterized factors is the streptococcal cysteine protease SpeB, an important multifunctional protease that contributes to group A streptococcal pathogenesis in vivo. Among many suggested activities, SpeB has been described to degrade various human plasma proteins, including immunoglobulins (Igs). In this study, we show that SpeB has no Ig-cleaving activity under physiological conditions and that only Igs in a reduced state, i.e., semimonomeric molecules, are cleaved and degraded by SpeB. Since reducing conditions outside eukaryotic cells have to be considered nonphysiological and IgG in a reduced state lacks biological effector functions, we conclude that SpeB does not contribute to S. pyogenes virulence through the proteolytic degradation of Igs. PMID:23569114

  7. Porcine Epidemic Diarrhea Virus 3C-Like Protease Regulates Its Interferon Antagonism by Cleaving NEMO

    PubMed Central

    Wang, Dang; Fang, Liurong; Shi, Yanling; Zhang, Huan; Gao, Li; Peng, Guiqing; Chen, Huanchun; Li, Kui

    2015-01-01

    ABSTRACT Porcine epidemic diarrhea virus (PEDV) is an enteropathogenic coronavirus causing lethal watery diarrhea in piglets. Since 2010, a PEDV variant has spread rapidly in China, and it emerged in the United States in 2013, posing significant economic and public health concerns. The ability to circumvent the interferon (IFN) antiviral response, as suggested for PEDV, promotes viral survival and regulates pathogenesis of PEDV infections, but the underlying mechanisms remain obscure. Here, we show that PEDV-encoded 3C-like protease, nsp5, is an IFN antagonist that proteolytically cleaves the nuclear transcription factor kappa B (NF-κB) essential modulator (NEMO), an essential adaptor bridging interferon-regulatory factor and NF-κB activation. NEMO is cleaved at glutamine 231 (Q231) by PEDV, and this cleavage impaired the ability of NEMO to activate downstream IFN production and to act as a signaling adaptor of the RIG-I/MDA5 pathway. Mutations specifically disrupting the cysteine protease activity of PEDV nsp5 abrogated NEMO cleavage and the inhibition of IFN induction. Structural analysis suggests that several key residues outside the catalytic sites of PEDV nsp5 probably impact NEMO cleavage by modulating potential interactions of nsp5 with their substrates. These data show that PEDV nsp5 disrupts type I IFN signaling by cleaving NEMO. Previously, we and others demonstrated that NEMO is also cleaved by 3C or 3C-like proteinases of picornavirus and artertivirus. Thus, NEMO probably represents a prime target for 3C or 3C-like proteinases of different viruses. IMPORTANCE The continued emergence and reemergence of porcine epidemic diarrhea virus (PEDV) underscore the importance of studying how this virus manipulates the immune responses of its hosts. During coevolution with its hosts, PEDV has acquired mechanisms to subvert host innate immune responses for its survival advantage. At least two proteins encoded by PEDV have been identified as interferon (IFN

  8. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    PubMed Central

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macro­globulin, this protease-activation mechanism is likely to operate across the diverse members of this group. PMID:26143919

  9. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    SciTech Connect

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  10. Cleaving for growth: threonine aspartase 1-a protease relevant for development and disease.

    PubMed

    Stauber, Roland H; Hahlbrock, Angelina; Knauer, Shirley K; Wünsch, Désirée

    2016-03-01

    From the beginning of life, proteases are key to organismal development comprising morphogenesis, cellular differentiation, and cell growth. Regulated proteolytic activity is essential for the orchestration of multiple developmental pathways, and defects in protease activity can account for multiple disease patterns. The highly conserved protease threonine aspartase 1 is a member of such developmental proteases and critically involved in the regulation of complex processes, including segmental identity, head morphogenesis, spermatogenesis, and proliferation. Additionally, threonine aspartase 1 is overexpressed in numerous liquid as well as in solid malignancies. Although threonine aspartase 1 is able to cleave the master regulator mixed lineage leukemia protein as well as other regulatory proteins in humans, our knowledge of its detailed pathobiological function and the underlying molecular mechanisms contributing to development and disease is still incomplete. Moreover, neither effective genetic nor chemical inhibitors for this enzyme are available so far precluding the detailed dissection of the pathobiological functions of threonine aspartase 1. Here, we review the current knowledge of the structure-function relationship of threonine aspartase 1 and its mechanistic impact on substrate-mediated coordination of the cell cycle and development. We discuss threonine aspartase 1-mediated effects on cellular transformation and conclude by presenting a short overview of recent interference strategies.-Stauber, R. H., Hahlbrock, A., Knauer, S. K., Wünsch, D. Cleaving for growth: threonine aspartase 1-a protease relevant for development and disease. PMID:26578689

  11. In Silico Prediction of Mutant HIV-1 Proteases Cleaving a Target Sequence

    PubMed Central

    Jensen, Jan H.; Willemoës, Martin; Winther, Jakob R.; De Vico, Luca

    2014-01-01

    HIV-1 protease represents an appealing system for directed enzyme re-design, since it has various different endogenous targets, a relatively simple structure and it is well studied. Recently Chaudhury and Gray (Structure (2009) 17: 1636–1648) published a computational algorithm to discern the specificity determining residues of HIV-1 protease. In this paper we present two computational tools aimed at re-designing HIV-1 protease, derived from the algorithm of Chaudhuri and Gray. First, we present an energy-only based methodology to discriminate cleavable and non cleavable peptides for HIV-1 proteases, both wild type and mutant. Secondly, we show an algorithm we developed to predict mutant HIV-1 proteases capable of cleaving a new target substrate peptide, different from the natural targets of HIV-1 protease. The obtained in silico mutant enzymes were analyzed in terms of cleavability and specificity towards the target peptide using the energy-only methodology. We found two mutant proteases as best candidates for specificity and cleavability towards the target sequence. PMID:24796579

  12. Astacin Proteases Cleave Dentin Sialophosphoprotein (Dspp) to Generate Dentin Phosphoprotein (Dpp)

    PubMed Central

    Tsuchiya, Shuhei; Simmer, James P; Hu, Jan C-C; Richardson, Amelia S; Yamakoshi, Fumiko; Yamakoshi, Yasuo

    2011-01-01

    Dentin sialophosphoprotein (Dspp) is critical for proper dentin biomineralization because genetic defects in DSPP cause dentin dysplasia type II and dentinogenesis imperfecta types II and III. Dspp is processed by proteases into smaller subunits; the initial cleavage releases dentin phosphoprotein (Dpp). We incubated fluorescence resonance energy transfer (FRET) peptides containing the amino acid context of the Dpp cleavage site (YEFDGKSMQGDDPN, designated Dspp-FRET) or a mutant version of that context (YEFDGKSIEGDDPN, designated mutDspp-FRET) with BMP-1, MEP1A, MEP1B, MMP-2, MMP-8, MMP-9, MT1-MMP, MT3-MMP, Klk4, MMP-20, plasmin, or porcine Dpp and characterized the peptide cleavage products. Only BMP-1, MEP1A, and MEP1B cleaved Dspp-FRET at the G–D peptide bond that releases Dpp from Dspp in vivo. We isolated Dspp proteoglycan from dentin power and incubated it with the three enzymes that cleaved Dspp-FRET at the G–D bond. In each case, the released Dpp domain was isolated, and its N-terminus was characterized by Edman degradation. BMP-1 and MEP1A both cleaved native Dspp at the correct site to generate Dpp, making both these enzymes prime candidates for the protease that cleaves Dspp in vivo. MEP1B was able to degrade Dpp when the Dpp was at sufficiently high concentration to deplete free calcium ion concentration. Immunohistochemistry of developing porcine molars demonstrated that astacins are expressed by odontoblasts, a result that is consistent with RT-PCR analyses. We conclude that during odontogenesis, astacins in the predentin matrix cleave Dspp before the DDPN sequence at the N-terminus of Dpp to release Dpp from the parent Dspp protein. © 2011 American Society for Bone and Mineral Research. PMID:20687161

  13. Hepatitis A Virus 3C Protease Cleaves NEMO To Impair Induction of Beta Interferon

    PubMed Central

    Wang, Dang; Fang, Liurong; Wei, Dahai; Zhang, Huan; Luo, Rui; Chen, Huanchun

    2014-01-01

    NEMO (NF-κB essential modulator) is a bridging adaptor indispensable for viral activation of interferon (IFN) antiviral response. Herein, we show that hepatitis A virus (HAV) 3C protease (3Cpro) cleaves NEMO at the Q304 residue, negating its signaling adaptor function and abrogating viral induction of IFN-β synthesis via the retinoic acid-inducible gene I/melanoma differentiation-associated protein 5 (RIG-I/MDA5) and Toll-like receptor 3 (TLR3) pathways. NEMO cleavage and IFN antagonism, however, were lost upon ablation of the catalytic activity of 3Cpro. These data describe a novel immune evasion mechanism of HAV. PMID:24920812

  14. Drosophila insulin degrading enzyme and rat skeletal muscle insulin protease cleave insulin at similar sites

    SciTech Connect

    Duckworth, W.C.; Garcia, J.V.; Liepnieks, J.J.; Hamel, F.G.; Hermodson, M.A.; Frank, B.H.; Rosner, M.R. )

    1989-03-21

    Insulin degradation is an integral part of the cellular action of insulin. Recent evidence suggests that the enzyme insulin protease is involved in the degradation of insulin in mammalian tissues. Drosophila, which has insulin-like hormones and insulin receptor homologues, also expresses an insulin degrading enzyme with properties that are very similar to those of mammalian insulin protease. In the present study, the insulin cleavage products generated by the Drosophila insulin degrading enzyme were identified and compared with the products generated by the mammalian insulin protease. Both purified enzymes were incubated with porcine insulin specifically labeled with {sup 125}I on either the A19 or B26 position, and the degradation products were analyzed by HPLC before and after sulfitolysis. Isolation and sequencing of the cleavage products indicated that both enzymes cleave the A chain of intact insulin at identical sites between residues A13 and A14 and A14 and A15. These results demonstrate that all the insulin cleavage sites generated by the Drosopohila insulin degrading enzyme are shared in common with the mammalian insulin protease. These data support the hypothesis that there is evolutionary conservation of the insulin degrading enzyme and further suggest that this enzyme plays an important role in cellular function.

  15. Proteolytic Processing of Neuregulin 1 Type III by Three Intramembrane-cleaving Proteases.

    PubMed

    Fleck, Daniel; Voss, Matthias; Brankatschk, Ben; Giudici, Camilla; Hampel, Heike; Schwenk, Benjamin; Edbauer, Dieter; Fukumori, Akio; Steiner, Harald; Kremmer, Elisabeth; Haug-Kröper, Martina; Rossner, Moritz J; Fluhrer, Regina; Willem, Michael; Haass, Christian

    2016-01-01

    Numerous membrane-bound proteins undergo regulated intramembrane proteolysis. Regulated intramembrane proteolysis is initiated by shedding, and the remaining stubs are further processed by intramembrane-cleaving proteases (I-CLiPs). Neuregulin 1 type III (NRG1 type III) is a major physiological substrate of β-secretase (β-site amyloid precursor protein-cleaving enzyme 1 (BACE1)). BACE1-mediated cleavage is required to allow signaling of NRG1 type III. Because of the hairpin nature of NRG1 type III, two membrane-bound stubs with a type 1 and a type 2 orientation are generated by proteolytic processing. We demonstrate that these stubs are substrates for three I-CLiPs. The type 1-oriented stub is further cleaved by γ-secretase at an ϵ-like site five amino acids N-terminal to the C-terminal membrane anchor and at a γ-like site in the middle of the transmembrane domain. The ϵ-cleavage site is only one amino acid N-terminal to a Val/Leu substitution associated with schizophrenia. The mutation reduces generation of the NRG1 type III β-peptide as well as reverses signaling. Moreover, it affects the cleavage precision of γ-secretase at the γ-site similar to certain Alzheimer disease-associated mutations within the amyloid precursor protein. The type 2-oriented membrane-retained stub of NRG1 type III is further processed by signal peptide peptidase-like proteases SPPL2a and SPPL2b. Expression of catalytically inactive aspartate mutations as well as treatment with 2,2'-(2-oxo-1,3-propanediyl)bis[(phenylmethoxy)carbonyl]-l-leucyl-l-leucinamide ketone inhibits formation of N-terminal intracellular domains and the corresponding secreted C-peptide. Thus, NRG1 type III is the first protein substrate that is not only cleaved by multiple sheddases but is also processed by three different I-CLiPs. PMID:26574544

  16. Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex.

    PubMed

    Levy, C; Brooks, J M; Chen, J; Su, J; Fox, M A

    2015-03-01

    Mounting evidence has demonstrated that a specialized extracellular matrix exists in the mammalian brain and that this glycoprotein-rich matrix contributes to many aspects of brain development and function. The most prominent supramolecular assemblies of these extracellular matrix glycoproteins are perineuronal nets, specialized lattice-like structures that surround the cell bodies and proximal neurites of select classes of interneurons. Perineuronal nets are composed of lecticans, a family of chondroitin sulfate proteoglycans that includes aggrecan, brevican, neurocan, and versican. These lattice-like structures emerge late in postnatal brain development, coinciding with the ending of critical periods of brain development. Despite our knowledge of the presence of lecticans in perineuronal nets and their importance in regulating synaptic plasticity, we know little about the development or distribution of the extracellular proteases that are responsible for their cleavage and turnover. A subset of a large family of extracellular proteases (called a disintegrin and metalloproteinase with thrombospondin motifs [ADAMTS]) is responsible for endogenously cleaving lecticans. We therefore explored the expression pattern of two aggrecan-degrading ADAMTS family members, ADAMTS15 and ADAMTS4, in the hippocampus and neocortex. Here, we show that both lectican-degrading metalloproteases are present in these brain regions and that each exhibits a distinct temporal and spatial expression pattern. Adamts15 mRNA is expressed exclusively by parvalbumin-expressing interneurons during synaptogenesis, whereas Adamts4 mRNA is exclusively generated by telencephalic oligodendrocytes during myelination. Thus, ADAMTS15 and ADAMTS4 not only exhibit unique cellular expression patterns but their developmental upregulation by these cell types coincides with critical aspects of neural development. PMID:25349050

  17. Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex

    PubMed Central

    Levy, C.; Brooks, J.M.; Chen, J.; Su, J.; Fox, M.A.

    2014-01-01

    Mounting evidence has demonstrated that a specialized extracellular matrix exists in the mammalian brain, and this glycoprotein-rich matrix contributes to many aspects of brain development and function. The most prominent supramolecular assembly of these ECM glycoproteins are perineuronal nets, specialized lattice-like structures that surround the cell bodies and proximal neurites of select classes of interneurons. Perineuronal nets are composed of lecticans – a family of chondroitin sulfate proteoglycans [CSPGs] that includes aggrecan, brevican, neurocan, and versican. The presence of these lattice-like structures emerge late in postnatal brain development and coincides with the ending of critical periods of brain development. Despite our knowledge of the presence of lecticans in perineuronal nets and their importance in regulating synaptic plasticity, we know little about the development or distribution of extracellular proteases that are responsible for their cleavage and turnover. A subset of the large “A Disintegrin and Metalloproteinase with Thrombospondin Motifs” (ADAMTS) family of extracellular proteases is responsible for endogenously cleaving lecticans. We therefore explored the expression pattern of 2 aggrecan-degrading ADAMTS family members, ADAMTS15 and ADAMTS4, in hippocampus and neocortex. Here, we show that both lectican-degrading metalloproteases are present in these brain regions and each exhibits a distinct temporal and spatial expression pattern. Adamts15 mRNA is expressed exclusively by Parvalbumin-expressing interneurons during synaptogenesis, whereas, Adamts4 mRNA is exclusively generated by telencephalic oligodendrocytes during myelination. Thus, ADAMTS15 and ADAMTS4 not only exhibit unique cellular expression patterns but their developmental upregulation by these cell types coincides with critical aspects of neural development. PMID:25349050

  18. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking.

    PubMed

    Meissner, Cathrin; Lorenz, Holger; Weihofen, Andreas; Selkoe, Dennis J; Lemberg, Marius K

    2011-06-01

    Intramembrane proteolysis is a conserved mechanism that regulates a variety of cellular processes ranging from transcription control to signaling. In mitochondria, the inner membrane rhomboid protease PARL has been implicated in the control of life span and apoptosis by a so far uncharacterized mechanism. Here, we show that PARL cleaves human Pink1, which is implicated in Parkinson's disease, within its conserved membrane anchor. Mature Pink1 is then free to be released into the cytosol or the mitochondrial intermembrane space. Upon depolarization of the mitochondrial membrane potential, the canonical import of Pink1 and PARL-catalyzed processing is blocked, leading to accumulation of the Pink1 precursor. As targeting of this precursor to the outer mitochondrial membrane has been shown to trigger mitophagy, we suggest that the PARL-catalyzed removal of the Pink1 signal sequence in the canonical import pathway acts as a cellular checkpoint for mitochondrial integrity. Furthermore, we show that two Parkinson's disease-causing mutations decrease the processing of Pink1 by PARL, with attendant implications for pathogenesis. PMID:21426348

  19. Coagulation factor XII protease domain crystal structure

    PubMed Central

    Pathak, M; Wilmann, P; Awford, J; Li, C; Hamad, BK; Fischer, PM; Dreveny, I; Dekker, LV; Emsley, J

    2015-01-01

    Background Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI. Objective To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain. Methods and results A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to β-FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70-loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short α-helix in the 180-loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates. Conclusions These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation. PMID:25604127

  20. Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development.

    PubMed

    Hanspal, Manjit; Dua, Meenakshi; Takakuwa, Yuichi; Chishti, Athar H; Mizuno, Akiko

    2002-08-01

    Plasmodium falciparum-derived cysteine protease falcipain-2 cleaves host erythrocyte hemoglobin at acidic pH and specific components of the membrane skeleton at neutral pH. Analysis of stage-specific expression of these 2 proteolytic activities of falcipain-2 shows that hemoglobin-hydrolyzing activity is maximum in early trophozoites and declines rapidly at late stages, whereas the membrane skeletal protein hydrolyzing activity is markedly increased at the late trophozoite and schizont stages. Among the erythrocyte membrane skeletal proteins, ankyrin and protein 4.1 are cleaved by native and recombinant falcipain-2 near their C-termini. To identify the precise peptide sequence at the hydrolysis site of protein 4.1, we used a recombinant construct of protein 4.1 as substrate followed by MALDI-MS analysis of the cleaved product. We show that falcipain-2-mediated cleavage of protein 4.1 occurs immediately after lysine 437, which lies within a region of the spectrin-actin-binding domain critical for erythrocyte membrane stability. A 16-mer peptide containing the cleavage site completely inhibited the enzyme activity and blocked falcipain-2-induced fragmentation of erythrocyte ghosts. Based on these results, we propose that falcipain-2 cleaves hemoglobin in the acidic food vacuole at the early trophozoite stage, whereas it cleaves specific components of the red cell skeleton at the late trophozoite and schizont stages. It is the proteolysis of skeletal proteins that causes membrane instability, which, in turn, facilitates parasite release in vivo. PMID:12130521

  1. Cleavage and activation of human factor IX by serine proteases

    SciTech Connect

    Enfield, D.L.; Thompson, A.R.

    1984-10-01

    Human factor IX circulates as a single-chain glycoprotein. Upon activation in vitro, it is cleaved into disulfide-linked light and heavy chains and an activation peptide. After reduction of activated /sup 125/I-factor IX, the heavy and light chains are readily identified by gel electrophoresis. A direct, immunoradiometric assay for factor IXa was developed to assess activation of factor IX for proteases that cleaved it. The assay utilized radiolabeled antithrombin III with heparin to identify the active site and antibodies to distinguish factor IX. After cleavage of factor IX by factor XIa, factor VIIa-tissue thromboplastin complex, or the factor X-activating enzyme from Russell's viper venom, antithrombin III bound readily to factor IXa. Cleavage of /sup 125/I-factor IX by trypsin, chymotrypsin, and granulocyte elastase in the presence of calcium yielded major polypeptide fragments of the sizes of the factor XIa-generated light and heavy chains. When the immunoradiometric assay was used to assess trypsin-cleaved factor IX, the product bound antithrombin III, but not maximally. After digesting with insolubilized trypsin, clotting activity confirmed activation. In evaluating activation of factor IX, physical evidence of activation cleavages does not necessarily correlate with generation of an active site.

  2. The DEG15 Serine Protease Cleaves Peroxisomal Targeting Signal 2-Containing Proteins in Arabidopsis1[OA

    PubMed Central

    Schuhmann, Holger; Huesgen, Pitter F.; Gietl, Christine; Adamska, Iwona

    2008-01-01

    Two distinct peroxisomal targeting signals (PTSs), the C-terminal PTS1 and the N-terminal PTS2, are defined. Processing of the PTS2 on protein import is conserved in higher eukaryotes. Recently, candidates for the responsible processing protease were identified from plants (DEG15) and mammals (TYSND1). We demonstrate that plants lacking DEG15 show an expressed phenotype potentially linked to reduced β-oxidation, indicating the impact of protein processing on peroxisomal functions in higher eukaryotes. Mutational analysis of Arabidopsis (Arabidopsis thaliana) DEG15 revealed that conserved histidine, aspartic acid, and serine residues are essential for the proteolytic activity of this enzyme in vitro. This indicates that DEG15 and related enzymes are trypsin-like serine endopeptidases. Deletion of a plant-specific stretch present in the protease domain diminished, but did not abolish, the proteolytic activity of DEG15 against the PTS2-containing glyoxysomal malate dehydrogenase. Fluorescence microscopy showed that a DEG15-green fluorescent protein fusion construct is targeted to peroxisomes in planta. In vivo studies with isolated homozygous deg15 knockout mutants and complemented mutant lines suggest that this enzyme mediates general processing of PTS2-containing proteins. PMID:18952862

  3. Characterization of the protease activity that cleaves the extracellular domain of {beta}-dystroglycan

    SciTech Connect

    Zhong Di; Saito, Fumiaki; Saito, Yuko; Nakamura, Ayami; Shimizu, Teruo; Matsumura, Kiichiro . E-mail: k-matsu@med.teikyo-u.ac.jp

    2006-06-30

    Dystroglycan (DG) complex, composed of {alpha}DG and {beta}DG, provides a link between the extracellular matrix (ECM) and cortical cytoskeleton. Although the proteolytic processing of {beta}DG was reported in various physiological and pathological conditions, its exact mechanism remains unknown. In this study, we addressed this issue using the cell culture system of rat schwannoma cell line RT4. We found that the culture medium of RT4 cells was enriched with the protease activity that degrades the fusion protein construct of the extracellular domain of {beta}DG specifically. This activity was suppressed by the inhibitor of matrix metalloproteinase-2 (MMP-2) and MMP-9, but not by the inhibitors of MMP-1, MMP-3, MMP-8, and MMP-13. Zymography and RT-PCR analysis showed that RT4 cells secreted MMP-2 and MMP-9 into the culture medium. Finally, active MMP-2 and MMP-9 enzymes degraded the fusion protein construct of the extracellular domain of {beta}DG. These results indicate (1) that RT4 cells secrete the protease activity that degrades the extracellular domain of {beta}DG specifically and (2) that MMP-2 and MMP-9 may be involved in this process.

  4. Cysteine protease antigens cleave CD123, the α subunit of murine IL-3 receptor, on basophils and suppress IL-3-mediated basophil expansion

    SciTech Connect

    Nishikado, Hideto; Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko; Ogawa, Hideoki; Okumura, Ko; Takai, Toshiro

    2015-05-01

    Th2 type immune responses are essential for protective immunity against parasites and play crucial roles in allergic disorders. Helminth parasites secrete a variety of proteases for their infectious cycles including for host entry, tissue migration, and suppression of host immune effector cell function. Furthermore, a number of pathogen-derived antigens, as well as allergens such as papain, belong to the family of cysteine proteases. Although the link between protease activity and Th2 type immunity is well documented, the mechanisms by which proteases regulate host immune responses are largely unknown. Here, we demonstrate that the cysteine proteases papain and bromelain selectively cleave the α subunit of the IL-3 receptor (IL-3Rα/CD123) on the surface of murine basophils. The decrease in CD123 expression on the cell surface, and the degradation of the extracellular domain of recombinant CD123 were dependent on the protease activity of papain and bromelain. Pre-treatment of murine basophils with papain resulted in inhibition of IL-3-IL-3R signaling and suppressed IL-3- but not thymic stromal lymphopoietin-induced expansion of basophils in vitro. Our unexpected findings illuminate a novel mechanism for the regulation of basophil functions by protease antigens. Because IL-3 plays pivotal roles in the activation and proliferation of basophils and in protective immunity against helminth parasites, pathogen-derived proteases might contribute to the pathogenesis of infections by regulating IL-3-mediated functions in basophils. - Highlights: • We identified the murine IL3R as a novel target of papain-family cysteine proteases. • Papain-family cysteine proteases cleaved IL3Rα/CD123 on murine basophils. • Papain suppressed IL3- but not TSLP-induced expansion of murine basophils. • The inactivation of IL3R might be a strategy for pathogens to suppress host immunity.

  5. Cysteine protease antigens cleave CD123, the α subunit of murine IL-3 receptor, on basophils and suppress IL-3-mediated basophil expansion.

    PubMed

    Nishikado, Hideto; Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko; Ogawa, Hideoki; Okumura, Ko; Takai, Toshiro

    2015-05-01

    Th2 type immune responses are essential for protective immunity against parasites and play crucial roles in allergic disorders. Helminth parasites secrete a variety of proteases for their infectious cycles including for host entry, tissue migration, and suppression of host immune effector cell function. Furthermore, a number of pathogen-derived antigens, as well as allergens such as papain, belong to the family of cysteine proteases. Although the link between protease activity and Th2 type immunity is well documented, the mechanisms by which proteases regulate host immune responses are largely unknown. Here, we demonstrate that the cysteine proteases papain and bromelain selectively cleave the α subunit of the IL-3 receptor (IL-3Rα/CD123) on the surface of murine basophils. The decrease in CD123 expression on the cell surface, and the degradation of the extracellular domain of recombinant CD123 were dependent on the protease activity of papain and bromelain. Pre-treatment of murine basophils with papain resulted in inhibition of IL-3-IL-3R signaling and suppressed IL-3- but not thymic stromal lymphopoietin-induced expansion of basophils in vitro. Our unexpected findings illuminate a novel mechanism for the regulation of basophil functions by protease antigens. Because IL-3 plays pivotal roles in the activation and proliferation of basophils and in protective immunity against helminth parasites, pathogen-derived proteases might contribute to the pathogenesis of infections by regulating IL-3-mediated functions in basophils. PMID:25778870

  6. Biological actions of cleaved atrial natriuretic factor (ANF101-105/106-126) in conscious sheep.

    PubMed

    Charles, C J; Espiner, E A; Yandle, T G; Cameron, V A; Richards, A M

    1991-03-01

    Atrial natriuretic factor (ANF) cleaved between Cys105 and Phe106 is the primary metabolite of ANF and circulates in human plasma. Because the role of this metabolite in vivo and its possible interaction with intact ANF are unclear, we studied the biologic effects of a 2-h infusion of rat cleaved ANF101-105/106-126 (15 pmol/kg/min) or vehicle alone in six normal sheep. Infusions of cleaved ANF increased venous plasma levels of cleaved ANF from less than 5 to 260 pmol/L and induced a progressive and significant increase in plasma cyclic GMP (p = 0.025) without significantly affecting plasma ANF levels. These changes were associated with a small (nonsignificant) decrease in arterial pressure and a significant increase in heart rate (HR) and sympathetic nervous activity and were followed by activation of the renin-angiotensin-aldosterone (RAA) axis after infusions were terminated. Unlike ANF itself, cleaved ANF was not natriuretic and did not reduce plasma volume or right atrial pressure. Calculated metabolic clearance rate (MCR) (1.47 +/- 0.4 L/min) and disappearance rate of cleaved ANF from plasma (4.8 +/- 0.37 min) were similar to values reported previously for intact ANF in sheep. These studies show that cleaved ANF stimulates guanylate cyclase and alters hemodynamics and the RAA system in vivo. PMID:1711601

  7. A common neoepitope is created when the reactive center of C1-inhibitor is cleaved by plasma kallikrein, activated factor XII fragment, C1 esterase, or neutrophil elastase.

    PubMed Central

    de Agostini, A; Patston, P A; Marottoli, V; Carrel, S; Harpel, P C; Schapira, M

    1988-01-01

    The reactive center of C1-inhibitor, a plasma protease inhibitor that belongs to the serpin superfamily, is located on a peptide loop which is highly susceptible to proteolytic cleavage. With plasma kallikrein, C1s and beta-Factor XIIa, this cleavage occurs at the reactive site residue P1 (Arg444); with neutrophil elastase, it takes place near P1, probably at residue P3 (Val442). After these cleavages, C1-inhibitor is inactivated and its conformation is modified. Moreover, in vivo, cleaved C1-inhibitor is removed from the blood stream more rapidly than the intact serpin, which suggests that proteolysis unmasks sites responsible for cellular recognition and the uptake of the cleaved inhibitor. In the study reported here, we show, using an MAb, that an identical neoepitope is created on C1-inhibitor after the cleavage of its exposed loop by plasma kallikrein, C1s, beta-Factor XIIa, and by neutrophil elastase. Images PMID:2457036

  8. Protease Omi cleaving Hax-1 protein contributes to OGD/R-induced mitochondrial damage in neuroblastoma N2a cells and cerebral injury in MCAO mice

    PubMed Central

    Wu, Jia-yuan; Li, Mei; Cao, Li-juan; Sun, Mei-ling; Chen, Dong; Ren, Hai-gang; Xia, Qin; Tao, Zhou-teng; Qin, Zheng-hong; Hu, Qing-song; Wang, Guang-hui

    2015-01-01

    Aim: In the penumbra after focal cerebral ischemia, an increase of protease Omi is linked to a decrease of Hs1-associated protein X-1 (Hax-1), a protein belonging to the Bcl-2 family. In this study we investigated the mechanisms underlying the regulation of Hax-1 by protease Omi in cerebral ischemia/reperfusion (I/R) injury. Methods: Mouse neuroblastoma N2a cells were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R); cell viability was assessed with MTT assay. Mice underwent 2-h middle cerebral artery occlusion (MCAO) and reperfusion, and the infarct volume was determined with TTC staining. The expression of Omi and Hax-1 was detected using immunoblot and immunofluorescence assays. The mitochondrial membrane potential was measured using TMRM staining. Results: In the brains of MCAO mice, the protein level of Omi was significantly increased, while the protein level of Hax-1 was decreased. Similar changes were observed in OGD/R-treated N2a cells, but the mRNA level of Hax-1 was not changed. Furthermore, in OGD/R-treated N2a cells, knockdown of Omi significantly increased Hax-1 protein level. Immunofluorescence assay showed that Omi and Hax-1 were co-localized in mitochondria of N2a cells. OGD/R caused marked mitochondrial damage and apoptosis in N2a cells, while inhibition of Omi protease activity with UCF-101 (10 μmol/L) or overexpression of Hax-1 could restore the mitochondrial membrane potential and attenuate cell apoptosis. Moreover, pretreatment of MCAO mice with UCF-101 (7.15 mg/kg, ip) could restore Hax-1 expression, inhibit caspase activation, and significantly reduce the infarct volume. Conclusion: Protease Omi impairs mitochondrial function by cleaving Hax-1, which induces apoptosis in OGD/R-treated N2a cells and causes I/R injury in MCAO mice. PMID:26299953

  9. Distinct roles of secreted HtrA proteases from gram-negative pathogens in cleaving the junctional protein and tumor suppressor E-cadherin.

    PubMed

    Hoy, Benjamin; Geppert, Tim; Boehm, Manja; Reisen, Felix; Plattner, Patrick; Gadermaier, Gabriele; Sewald, Norbert; Ferreira, Fatima; Briza, Peter; Schneider, Gisbert; Backert, Steffen; Wessler, Silja

    2012-03-23

    The periplasmic chaperone and serine protease HtrA is important for bacterial stress responses and protein quality control. Recently, we discovered that HtrA from Helicobacter pylori is secreted and cleaves E-cadherin to disrupt the epithelial barrier, but it remained unknown whether this maybe a general virulence mechanism. Here, we show that important other pathogens including enteropathogenic Escherichia coli, Shigella flexneri, and Campylobacter jejuni, but not Neisseria gonorrhoeae, cleaved E-cadherin on host cells. HtrA deletion in C. jejuni led to severe defects in E-cadherin cleavage, loss of cell adherence, paracellular transmigration, and basolateral invasion. Computational modeling of HtrAs revealed a conserved pocket in the active center exhibiting pronounced proteolytic activity. Differential E-cadherin cleavage was determined by an alanine-to-glutamine exchange in the active center of neisserial HtrA. These data suggest that HtrA-mediated E-cadherin cleavage is a prevalent pathogenic mechanism of multiple gram-negative bacteria representing an attractive novel target for therapeutic intervention to combat bacterial infections. PMID:22337879

  10. The Neural Cell Adhesion Molecules L1 and CHL1 Are Cleaved by BACE1 Protease in Vivo*

    PubMed Central

    Zhou, Lujia; Barão, Soraia; Laga, Mathias; Bockstael, Katrijn; Borgers, Marianne; Gijsen, Harry; Annaert, Wim; Moechars, Diederik; Mercken, Marc; Gevaer, Kris; De Strooper, Bart

    2012-01-01

    The β-site amyloid precursor protein-cleaving enzyme BACE1 is a prime drug target for Alzheimer disease. However, the function and the physiological substrates of BACE1 remain largely unknown. In this work, we took a quantitative proteomic approach to analyze the secretome of primary neurons after acute BACE1 inhibition, and we identified several novel substrate candidates for BACE1. Many of these molecules are involved in neuronal network formation in the developing nervous system. We selected the adhesion molecules L1 and CHL1, which are crucial for axonal guidance and maintenance of neural circuits, for further validation as BACE1 substrates. Using both genetic BACE1 knock-out and acute pharmacological BACE1 inhibition in mice and cell cultures, we show that L1 and CHL1 are cleaved by BACE1 under physiological conditions. The BACE1 cleavage sites at the membrane-proximal regions of L1 (between Tyr1086 and Glu1087) and CHL1 (between Gln1061 and Asp1062) were determined by mass spectrometry. This work provides molecular insights into the function and the pathways in which BACE1 is involved, and it will help to predict or interpret possible side effects of BACE1 inhibitor drugs in current clinical trials. PMID:22692213

  11. THAP5 is a human cardiac-specific inhibitor of cell cycle that is cleaved by the proapoptotic Omi/HtrA2 protease during cell death.

    PubMed

    Balakrishnan, Meenakshi P; Cilenti, Lucia; Mashak, Zineb; Popat, Paiyal; Alnemri, Emad S; Zervos, Antonis S

    2009-08-01

    Omi/HtrA2 is a mitochondrial serine protease that has a dual function: while confined in the mitochondria, it promotes cell survival, but when released into the cytoplasm, it participates in caspase-dependent as well as caspase-independent cell death. To investigate the mechanism of Omi/HtrA2's function, we set out to isolate and characterize novel substrates for this protease. We have identified Thanatos-associated protein 5 (THAP5) as a specific interactor and substrate of Omi/HtrA2 in cells undergoing apoptosis. This protein is an uncharacterized member of the THAP family of proteins. THAP5 has a unique pattern of expression and is found predominantly in the human heart, although a very low expression is also seen in the human brain and muscle. THAP5 protein is localized in the nucleus and, when ectopically expressed, induces cell cycle arrest. During apoptosis, THAP5 protein is degraded, and this process can be blocked using a specific Omi/HtrA2 inhibitor, leading to reduced cell death. In patients with coronary artery disease, THAP5 protein levels substantially decrease in the myocardial infarction area, suggesting a potential role of this protein in human heart disease. This work identifies human THAP5 as a cardiac-specific nuclear protein that controls cell cycle progression. Furthermore, during apoptosis, THAP5 is cleaved and removed by the proapoptotic Omi/HtrA2 protease. Taken together, we provide evidence to support that THAP5 and its regulation by Omi/HtrA2 provide a new link between cell cycle control and apoptosis in cardiomyocytes. PMID:19502560

  12. A secreted streptococcal cysteine protease can cleave a surface-expressed M1 protein and alter the immunoglobulin binding properties.

    PubMed

    Raeder, R; Woischnik, M; Podbielski, A; Boyle, M D

    1998-09-01

    Previous studies of recent clinical isolates of serotype M1 group A streptococci indicated that they display two patterns of non-immune human IgG subclass binding reactivity associated with their M1 protein. One group reacted with all four IgG subclasses (type IIo), while the second group expressed an M1 protein reacting preferentially with human IgG3 (type IIb). In this study, we have demonstrated that a cysteine protease, SpeB, present in culture supernatants of M1 serotype group A streptococcal isolates expressing type IIb IgG binding protein, can convert a recombinant Emm1 protein from a type IIo functional profile to a type IIb profile by removal of 24 amino acids from the N-terminus of the mature M1 protein. Furthermore, SpeB can convert bacteria expressing IgG binding proteins of the type IIo phenotype into those expressing type IIb proteins. The role of the cysteine protease as the central bacterial enzyme in this posttranslational modification event was confirmed by generation of an isogenic SpeB-negative mutant. PMID:9795991

  13. Local and spatial factors determining HIV-1 protease substrate recognition.

    PubMed Central

    Hazebrouck, S; Machtelinckx-Delmas, V; Kupiec, J J; Sonigo, P

    2001-01-01

    Insertional mutagenesis of the Escherichia coli thymidylate synthase (TS) was used to address substrate recognition of HIV-1 protease in a well characterized structural context. By modifying the TS conformation while maintaining its enzymic activity, we investigated the influence of protein folding on protease-substrate recognition. A slight destabilization of the TS structure permitted the cleavage of a target site, which was resistant in the native TS. This result supports a dynamic interpretation of HIV-1 protease specificity. Exposure time of the potential cleavage site, which depends on the stability of the global conformation, must be compatible with the cleavage kinetics, which are determined by the local sequence. Cleavage specificity has been described as the consequence of cumulative interactions, globally favourable, between at least six amino acids around the cleavage site. To investigate influence of local sequence, we introduced insertions of variable lengths in two exposed loops of the TS. In both environments, insertion of only two amino acids could determine specific cleavage. We then inserted libraries of dipeptides naturally cleaved by the HIV-1 protease in order to assess the limitations of established classifications of substrates in different conformational contexts. PMID:11513751

  14. Granzyme B Cleaves Decorin, Biglycan and Soluble Betaglycan, Releasing Active Transforming Growth Factor-β1

    PubMed Central

    Boivin, Wendy A.; Shackleford, Marlo; Vanden Hoek, Amanda; Zhao, Hongyan; Hackett, Tillie L.; Knight, Darryl A.; Granville, David J.

    2012-01-01

    Objective Granzyme B (GrB) is a pro-apoptotic serine protease that contributes to immune-mediated target cell apoptosis. However, during inflammation, GrB accumulates in the extracellular space, retains its activity, and is capable of cleaving extracellular matrix (ECM) proteins. Recent studies have implicated a pathogenic extracellular role for GrB in cardiovascular disease, yet the pathophysiological consequences of extracellular GrB activity remain largely unknown. The objective of this study was to identify proteoglycan (PG) substrates of GrB and examine the ability of GrB to release PG-sequestered TGF-β1 into the extracellular milieu. Methods/Results Three extracellular GrB PG substrates were identified; decorin, biglycan and betaglycan. As all of these PGs sequester active TGF-β1, cytokine release assays were conducted to establish if GrB-mediated PG cleavage induced TGF-β1 release. Our data confirmed that GrB liberated TGF-β1 from all three substrates as well as from endogenous ECM and this process was inhibited by the GrB inhibitor 3,4-dichloroisocoumarin. The released TGF-β1 retained its activity as indicated by the induction of SMAD-3 phosphorylation in human coronary artery smooth muscle cells. Conclusion In addition to contributing to ECM degradation and the loss of tissue structural integrity in vivo, increased extracellular GrB activity is also capable of inducing the release of active TGF-β1 from PGs. PMID:22479366

  15. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity

    SciTech Connect

    Du, Lanying; Kao, Richard Y.; Zhou, Yusen; He, Yuxian; Zhao, Guangyu; Wong, Charlotte; Jiang, Shibo; Yuen, Kwok-Yung; Jin, Dong-Yan; Zheng, Bo-Jian . E-mail: bzheng@hkucc.hku.hk

    2007-07-20

    The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, was able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection.

  16. M. tuberculosis intramembrane protease Rip1 controls transcription through three anti-sigma factor substrates.

    PubMed

    Sklar, Joseph G; Makinoshima, Hideki; Schneider, Jessica S; Glickman, Michael S

    2010-08-01

    Regulated intramembrane proteolysis (RIP) is a mechanism of transmembrane signal transduction that functions through intramembrane proteolysis of substrates. We previously reported that the RIP metalloprotease Rv2869c (Rip1) is a determinant of Mycobacterium tuberculosis (Mtb) cell envelope composition and virulence, but the substrates of Rip1 were undefined. Here we show that Rip1 cleaves three transmembrane anti-sigma factors: anti-SigK, anti-SigL and anti-SigM, negative regulators of Sigma K, L and M. We show that transcriptional activation of katG in response to phenanthroline requires activation of SigK and SigL by Rip1 cleavage of anti-SigK and anti-SigL. We also demonstrate a Rip1-dependent pathway that activates the genes for the mycolic acid biosynthetic enzyme KasA and the resuscitation promoting factor RpfC, but represses the bacterioferritin encoding gene bfrB. Regulation of these three genes by Rip1 is not reproduced by deletion of Sigma K, L or M, either indicating a requirement for multiple Rip1 substrates or additional arms of the Rip1 pathway. These results identify a branched proteolytic signal transduction system in which a single intramembrane protease cleaves three anti-sigma factor substrates to control multiple downstream pathways involved in lipid biosynthesis and defence against oxidative stress. PMID:20545848

  17. Analysis of the serine protease function of porcine factor I produced by liver cells for xenotransplantation.

    PubMed

    Nakahata, Kengo; Matsunami, Katsuyoshi; Kobayashi, Chizuko; Omori, Takeshi; Xu, Hengjie; Firdawes, Sabere; Fukuzawa, Masahiro; Miyagawa, Shuji

    2008-04-01

    The use of a bioartificial liver with pig liver cells in the treatment of fulminant hepatic failure has already begun as a clinical trial in several countries. Therefore, studies on plasma complement regulatory proteins of the pig are necessary, because the liver produces them. Complement factor I is a serine protease that cleaves C3b and C4b. The DNA sequences of factor I have been reported in many species, with the noted exception of pigs. In this study, porcine factor I was cloned and an open reading frame of 1794 base pairs were identified. The predicted amino acid sequence maintained a relatively high homology compared to those of other mammals, especially in the serine protease (SP) region. The cell membrane-bound forms of the porcine and the human SP domain of factor I were constructed. Amelioration of complement-mediated cell lysis by these molecules was then tested, using several kinds of sera and Chinese hamster ovary (CHO) cell transfectants. Both molecules had a suppressing effect on pig, human and dog complements, indicating little species-specificity. Further studies of other plasma complement regulatory proteins produced from pig liver cells will need to be considered as the primary feature of the pig bioartificial liver. PMID:18346635

  18. The Serine Protease Plasmin Cleaves the Amino-terminal Domain of the NR2A Subunit to Relieve Zinc Inhibition of the N-Methyl-d-aspartate Receptors*S⃞

    PubMed Central

    Yuan, Hongjie; Vance, Katie M.; Junge, Candice E.; Geballe, Matthew T.; Snyder, James P.; Hepler, John R.; Yepes, Manuel; Low, Chian-Ming; Traynelis, Stephen F.

    2009-01-01

    Zinc is hypothesized to be co-released with glutamate at synapses of the central nervous system. Zinc binds to NR1/NR2A N-methyl-d-aspartate (NMDA) receptors with high affinity and inhibits NMDAR function in a voltage-independent manner. The serine protease plasmin can cleave a number of substrates, including protease-activated receptors, and may play an important role in several disorders of the central nervous system, including ischemia and spinal cord injury. Here, we demonstrate that plasmin can cleave the native NR2A amino-terminal domain (NR2AATD), removing the functional high affinity Zn2+ binding site. Plasmin also cleaves recombinant NR2AATD at lysine 317 (Lys317), thereby producing a ∼40-kDa fragment, consistent with plasmin-induced NR2A cleavage fragments observed in rat brain membrane preparations. A homology model of the NR2AATD predicts that Lys317 is near the surface of the protein and is accessible to plasmin. Recombinant expression of NR2A with an amino-terminal deletion at Lys317 is functional and Zn2+ insensitive. Whole cell voltage-clamp recordings show that Zn2+ inhibition of agonist-evoked NMDA receptor currents of NR1/NR2A-transfected HEK 293 cells and cultured cortical neurons is significantly reduced by plasmin treatment. Mutating the plasmin cleavage site Lys317 on NR2A to alanine blocks the effect of plasmin on Zn2+ inhibition. The relief of Zn2+ inhibition by plasmin occurs in PAR1-/- cortical neurons and thus is independent of interaction with protease-activated receptors. These results suggest that plasmin can directly interact with NMDA receptors, and plasmin may increase NMDA receptor responses through disruption or removal of the amino-terminal domain and relief of Zn2+ inhibition. PMID:19240037

  19. Preserved Expression of mRNA Coding von Willebrand Factor–Cleaving Protease ADAMTS13 by Selenite and Activated Protein C

    PubMed Central

    Ekaney, Michael L; Bockmeyer, Clemens L; Sossdorf, Maik; Reuken, Philipp A; Conradi, Florian; Schuerholz, Tobias; Blaess, Markus F; Friedman, Scott L; Lösche, Wolfgang; Bauer, Michael; Claus, Ralf A

    2015-01-01

    In sepsis, the severity-dependent decrease of von Willebrand factor (VWF)–inactivating protease, a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), results in platelet aggregation and consumption, leading to sepsis-associated thrombotic microangiopathy (TMA) and organ failure. Previous reports assessing its functional deficiency have pinpointed involvement of autoantibodies or mutations to propagate thrombotic thrombocytopenic purpura (TTP). However, mechanisms of acquired ADAMTS13 deficiency during host response remain unclear. To enhance understanding of ADAMTS13 deficiency in sepsis, we evaluated changes in expression of mRNA coding ADAMTS13 during septic conditions using primary cellular sources of the protease. We hypothesized that proinflammatory cytokines and constituents of serum from septic patients affect the transcriptional level of ADAMTS13 in vitro, and previously recommended therapeutic agents as adjunctive therapy for sepsis interact therewith. Cultured hepatic stellate cells (HSCs), endothelial cells (HMEC) and human precision-cut liver slices as an ex vivo model were stimulated with sepsis prototypic cytokines, bacterial endotoxin and pooled serum obtained from septic patients. Stimulation resulted in a significant decrease in ADAMTS13 mRNA between 10% and 80% of basal transcriptional rates. Costimulation of selenite or recombinant activated protein C (APC) with serum prevented ADAMTS13 decrease in HSCs and increased ADAMTS13 transcripts in HMEC. In archived clinical samples, the activity of ADAMTS13 in septic patients treated with APC (n = 5) increased with an accompanying decrease in VWF propeptide as surrogate for improved endothelial function. In conclusion, proinflammatory conditions of sepsis repress mRNA coding ADAMTS13 and the ameliorating effect by selenite and APC may support the concept for identification of beneficial mechanisms triggered by these drugs at a molecular level. PMID:25860876

  20. Antigenicity of Recombinant Maltose Binding Protein-Mycobacterium avium subsp. paratuberculosis Fusion Proteins with and without Factor Xa Cleaving

    PubMed Central

    Begg, Douglas J.; Purdie, Auriol C.; Bannantine, John P.; Whittington, Richard J.

    2013-01-01

    Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants. Proteomic studies have shown that M. avium subsp. paratuberculosis expresses certain proteins when exposed to in vitro physiological stress conditions similar to the conditions experienced within a host during natural infection. Such proteins are hypothesized to be expressed in vivo, are recognized by the host immune system, and may be of potential use in the diagnosis of JD. In this study, 50 recombinant maltose binding protein (MBP)-M. avium subsp. paratuberculosis fusion proteins were evaluated using serum samples from sheep infected with M. avium subsp. paratuberculosis, and 29 (58%) were found to be antigenic. Among 50 fusion proteins, 10 were evaluated in MBP fusion and factor Xa-cleaved forms. A total of 31 proteins (62%) were found to be antigenic in either MBP fusion or factor Xa-cleaved forms. Antigenicity after cleavage and removal of the MBP tag was marginally enhanced. PMID:24132604

  1. In vivo activation and functions of the protease factor XII.

    PubMed

    Björkqvist, Jenny; Nickel, Katrin F; Stavrou, Evi; Renné, Thomas

    2014-11-01

    Combinations of proinflammatory and procoagulant reactions are the unifying principle for a variety of disorders affecting the cardiovascular system. Factor XII (FXII, Hageman factor) is a plasma protease that initiates the contact system. The biochemistry of the contact system in vitro is well understood; however, its in vivo functions are just beginning to emerge. The current review concentrates on activators and functions of the FXII-driven contact system in vivo. Elucidating its physiologic activities offers the exciting opportunity to develop strategies for the safe interference with both thrombotic and inflammatory diseases. PMID:25187064

  2. Protease-induced immunoregulatory activity of platelet factor 4.

    PubMed Central

    Katz, I R; Thorbecke, G J; Bell, M K; Yin, J Z; Clarke, D; Zucker, M B

    1986-01-01

    Intravenous injection of human or mouse serum or platelet material secreted from appropriately stimulated platelets ("releasate") together with antigen alleviates the immunosuppression in SJL/J mice induced by injection of irradiated lymphoma cells or in (CB6)F1 mice induced by injection of concanavalin A. We now report that injection of releasate from 10(6) human platelets restores plaque-forming cells to the unsuppressed number; greater amounts increase responses further. Immunoregulatory activity is released from platelets exposed to thrombin in parallel with other alpha-granule components. Heparin-agarose absorbs activity. Purified platelet factor 4 (PF4) has activity; beta-thromboglobulin and platelet-derived growth factor have little or none. Activity in serum is neutralized by goat anti-human PF4. An enzymatic step is necessary for production of immunoregulatory activity. Releasates boiled immediately after platelet aggregation with 250 nM A23187 or those produced by adding A23187 in the presence of 100 microM serine protease inhibitor (p-amidinophenyl)methanesulfonyl fluoride (APMSF) are ineffective, whereas releasates boiled or mixed with APMSF after incubation for 60 min are active. Activity is generated by incubating a mixture of heparin-absorbed releasate (as enzyme source) and heparin-agarose eluate of releasate made in the presence of APMSF (as substrate source). The enzymatic step does not alter the heparin-neutralizing activity of PF4. Apparently a secreted platelet protease converts PF4 to a form with immunoregulatory activity. PMID:3517862

  3. The factor VII-activating protease (FSAP) enhances the activity of bone morphogenetic protein-2 (BMP-2).

    PubMed

    Roedel, Elfie Kathrin; Schwarz, Elisabeth; Kanse, Sandip Madhav

    2013-03-01

    Factor VII-activating protease (FSAP) is a circulating protease involved in the pathogenesis of atherosclerosis, calcification, and fibrotic processes. To understand how FSAP controls the balance of local growth factors, we have investigated its effect on the regulation of bone morphogenetic proteins (BMPs). BMP-2 is produced as a large pro-form and secreted as a mature heparin-binding growth factor after intracellular processing by pro-protein convertases (PCs). In this study, we discovered that FSAP enhances the biological activity of mature BMP-2 as well as its pro-form, as shown by osteogenic differentiation of C2C12 myoblasts. These findings were complemented by knockdown of FSAP in hepatocytes, which revealed BMP-2 processing by endogenous FSAP. N-terminal sequencing indicated that pro-BMP-2 was cleaved by FSAP at the canonical PC cleavage site, giving rise to mature BMP-2 (Arg(282)↓Gln(283)), as well as in the N-terminal heparin binding region of mature BMP-2, generating a truncated mature BMP-2 peptide (Arg(289)↓Lys(290)). Similarly, mature BMP-2 was also cleaved to a truncated peptide within its N-terminal region (Arg(289)↓Lys(290)). Plasmin exhibited a similar activity, but it was weaker compared with FSAP. Thrombin, Factor VIIa, Factor Xa, and activated protein C were not effective. These results were further supported by the observation that the mutation of the heparin binding region of BMP-2 inhibited the processing by FSAP but not by PC. Thus, the proteolysis and activation of pro-BMP-2 and mature BMP-2 by FSAP can regulate cell differentiation and calcification in vasculature and may explain why polymorphisms in the gene encoding for FSAP are related to vascular diseases. PMID:23341458

  4. Poliovirus protease 3C (P3-7c) does not cleave P220 of the eucaryotic mRNA cap-binding protein complex.

    PubMed Central

    Lee, K A; Edery, I; Hanecak, R; Wimmer, E; Sonenberg, N

    1985-01-01

    Infection of HeLa cells by poliovirus results in proteolysis of the large subunit (P220) of the cap-binding protein complex. This is believed to cause the rapid shut-off of host protein synthesis during poliovirus infection. In this communication we examined the possible involvement of poliovirus proteins 3C (a proteinase) and 2C in cleavage of P220. Using antisera against these two viral polypeptides, we were unable to inhibit proteolysis of P220 in an in vitro assay. These results indicate that viral proteins 3C and 2C are not directly involved in cleaving P220 and hence do not cause shut-off of cellular protein synthesis. Images PMID:2991572

  5. The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli.

    PubMed

    Abreu, Afonso G; Abe, Cecilia M; Nunes, Kamila O; Moraes, Claudia T P; Chavez-Dueñas, Lucia; Navarro-Garcia, Fernando; Barbosa, Angela S; Piazza, Roxane M F; Elias, Waldir P

    2016-01-01

    Autotransporter proteins (AT) are associated with bacterial virulence attributes. Originally identified in enteroaggregative Escherichia coli (EAEC), Shigella flexneri 2a and uropathogenic E. coli, the serine protease Pic is one of these AT. We have previously detected one atypical enteropathogenic E. coli strain (BA589) carrying the pic gene. In the present study, we characterized the biological activities of Pic produced by BA589 both in vitro and in vivo. Contrarily to other Pic-producers bacteria, pic in BA589 is located on a high molecular weight plasmid. PicBA589 was able to agglutinate rabbit erythrocytes, cleave mucin and degrade complement system molecules. BA589 was able to colonize mice intestines, and an intense mucus production was observed. The BA589Δpic mutant lost the capacity to colonize as well as the above-mentioned in vitro activities. Thus, Pic represents an additional virulence factor in aEPEC strain BA589, associated with adherence, colonization and evasion from the innate immune system. PMID:26963626

  6. MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to directly activate myelin genes.

    PubMed

    Bujalka, Helena; Koenning, Matthias; Jackson, Stacey; Perreau, Victoria M; Pope, Bernard; Hay, Curtis M; Mitew, Stanlislaw; Hill, Andrew F; Lu, Q Richard; Wegner, Michael; Srinivasan, Rajini; Svaren, John; Willingham, Melanie; Barres, Ben A; Emery, Ben

    2013-01-01

    The myelination of axons is a crucial step during vertebrate central nervous system (CNS) development, allowing for rapid and energy efficient saltatory conduction of nerve impulses. Accordingly, the differentiation of oligodendrocytes, the myelinating cells of the CNS, and their expression of myelin genes are under tight transcriptional control. We previously identified a putative transcription factor, Myelin Regulatory Factor (Myrf), as being vital for CNS myelination. Myrf is required for the generation of CNS myelination during development and also for its maintenance in the adult. It has been controversial, however, whether Myrf directly regulates transcription, with reports of a transmembrane domain and lack of nuclear localization. Here we show that Myrf is a membrane-associated transcription factor that undergoes an activating proteolytic cleavage to separate its transmembrane domain-containing C-terminal region from a nuclear-targeted N-terminal region. Unexpectedly, this cleavage event occurs via a protein domain related to the autoproteolytic intramolecular chaperone domain of the bacteriophage tail spike proteins, the first time this domain has been found to play a role in eukaryotic proteins. Using ChIP-Seq we show that the N-terminal cleavage product directly binds the enhancer regions of oligodendrocyte-specific and myelin genes. This binding occurs via a defined DNA-binding consensus sequence and strongly promotes the expression of target genes. These findings identify Myrf as a novel example of a membrane-associated transcription factor and provide a direct molecular mechanism for its regulation of oligodendrocyte differentiation and CNS myelination. PMID:23966833

  7. Nonenzymatic anticoagulant activity of the mutant serine protease Ser360Ala-activated protein C mediated by factor Va.

    PubMed Central

    Gale, A. J.; Sun, X.; Heeb, M. J.; Griffin, J. H.

    1997-01-01

    The human plasma serine protease, activated protein C (APC), primarily exerts its anticoagulant function by proteolytic inactivation of the blood coagulation cofactors Va and VIIIa. A recombinant active site Ser 360 to Ala mutation of protein C was prepared, and the mutant protein was expressed in human 293 kidney cells and purified. The activation peptide of the mutant protein C zymogen was cleaved by a snake venom activator, Protac C, but the "activated" S360A APC did not have amidolytic activity. However, it did exhibit significant anticoagulant activity both in clotting assays and in a purified protein assay system that measured prothrombinase activity. The S360A APC was compared to plasma-derived and wild-type recombinant APC. The anticoagulant activity of the mutant, but not native APC, was resistant to diisopropyl fluorophosphate, whereas all APCs were inhibited by monoclonal antibodies against APC. In contrast to native APC, S360A APC was not inactivated by serine protease inhibitors in plasma and did not bind to the highly reactive mutant protease inhibitor M358R alpha 1 antitrypsin. Since plasma serpins provide the major mechanism for inactivating APC in vivo, this suggests that S360A APC would have a long half-life in vivo, with potential therapeutic advantages. S360A APC rapidly inhibited factor Va in a nonenzymatic manner since it apparently did not proteolyze factor Va. These data suggest that native APC may exhibit rapid nonenzymatic anticoagulant activity followed by enzymatic irreversible proteolysis of factor Va. The results of clotting assays and prothrombinase assays showed that S360A APC could not inhibit the variant Gln 506-FVa compared with normal Arg 506-FVa, suggesting that the active site of S360A APC binds to FVa at or near Arg 506. PMID:9007985

  8. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection by a variety of viruses alters the nuclear-cytoplasmic trafficking of certain host cell proteins. In our continued search for interacting factors, we reported the re-localization of RNA helicase A (RHA) from the nucleus to the cytoplasm in cells infected with foot-and-mouth disease virus ...

  9. Hormonal regulation of epidermal growth factor and protease in the submandibular gland of the adult mouse.

    PubMed

    Gresik, E W; Schenkein, I; van der Noen, H; Barka, T

    1981-09-01

    The structure of the granular convoluted tubules of the mouse submandibular gland is influenced by androgens, adrenal steroids, and thyroid hormones. We wished to investigate the effects of variations in hormonal status on the quantitative and qualitative distribution of two secretory products of these tubules, epidermal growth factor (EGF) and protease. The effects of the thyroid and adrenal glands on EGF content and protease activity of the submandibular glands of adult female mice were studied by RIAs (EGF), enzyme assays (protease), and immunocytochemical methods. In animals rendered chronically hypothyroid by propylthiouracil (4 months) or in animals which were adrenalectomized and ovariectomized (3 weeks), protease activity and EGF levels were reduced by 81-97%. The administration of testosterone induced these polypeptides even in hypothyroid animals. Daily administration of L-T4 (T4; 1 micrograms/g BW) for 7 days increased EGF and protease activity 3.6-fold in intact mice and reversed the effect of hypothyroidism. EGF and protease were also induced by T4 in adrenalectomized and ovariectomized mice, although to a lesser degree than in intact animals. Immunocytochemical stainings of submandibular glands indicated that the number of granular convoluted tubule cells immunoreactive for EGF correlated with the levels of EGF determined by RIAs. With respect to immunostaining for protease, such a correlation was not observed. The data indicate multihormonal regulation of EGF and protease in the mouse submandibular gland. PMID:7021131

  10. Protease inhibitors interfere with the necessary factors of carcinogenesis.

    PubMed Central

    Troll, W

    1989-01-01

    Many tumor promoters are inflammatory agents that stimulate the formation of oxygen radicals (.O2-) and hydrogen peroxide (H2O2) in phagocytic neutrophils. The neutrophils use the oxygen radicals to kill bacteria, which are recognized by the cell membrane of phagocytic cells causing a signal to mount the oxygen response. The tumor promoter isolated from croton oil, 12-O-tetradecanoylphorbol-13-acetate (TPA), mimics the signal, causing an oxygen radical release that is intended to kill bacteria; instead, it injures cells in the host. Oxygen radicals cause single strand breaks in DNA and modify DNA bases. These damaging reactions appear to be related to tumor promotion, as three types of chemopreventive agents, retinoids, onion oil, and protease inhibitors, suppress the induction of oxygen radicals in phagocytic neutrophils and suppress tumor promotion in skin cancer in mice. Protease inhibitors also suppress breast and colon cancers in mice. Protease inhibitors capable of inhibiting chymotrypsin show a greater suppression of the oxygen effect and are better suppressors of tumor promotion. In addition, oxygen radicals may be one of the many agents that cause activation of oncogenes. Since retinoids and protease inhibitors suppress the expression of the ras oncogene in NIH 3T3 cells, NIH 3T3 cells may serve as a relatively facile model for finding and measuring chemopreventive agents that interfere with the carcinogenic process. PMID:2667986

  11. KLIKK proteases of Tannerella forsythia: putative virulence factors with a unique domain structure

    PubMed Central

    Ksiazek, Miroslaw; Mizgalska, Danuta; Eick, Sigrum; Thøgersen, Ida B.; Enghild, Jan J.; Potempa, Jan

    2015-01-01

    Comparative genomics of virulent Tannerella forsythia ATCC 43037 and a close health-associated relative, Tannerella BU063, revealed, in the latter, the absence of an entire array of genes encoding putative secretory proteases that possess a nearly identical C-terminal domain (CTD) that ends with a -Lys-Leu-Ile-Lys-Lys motif. This observation suggests that these proteins, referred to as KLIKK proteases, may function as virulence factors. Re-sequencing of the loci of the KLIKK proteases found only six genes grouped in two clusters. All six genes were expressed by T. forsythia in routine culture conditions, although at different levels. More importantly, a transcript of each gene was detected in gingival crevicular fluid (GCF) from periodontitis sites infected with T. forsythia indicating that the proteases are expressed in vivo. In each protein, a protease domain was flanked by a unique N-terminal profragment and a C-terminal extension ending with the CTD. Partially purified recombinant proteases showed variable levels of proteolytic activity in zymography gels and toward protein substrates, including collagen, gelatin, elastin, and casein. Taken together, these results indicate that the pathogenic strain of T. forsythia secretes active proteases capable of degrading an array of host proteins, which likely represents an important pathogenic feature of this bacterium. PMID:25954253

  12. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors

    PubMed Central

    de Souza, Devandir Antonio; Borges, Antonio Carlos; Santana, Ana Carolina; Oliver, Constance; Jamur, Maria Célia

    2015-01-01

    Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7) in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization. PMID:26633538

  13. Partial amino acid sequence of human factor D:homology with serine proteases.

    PubMed Central

    Volanakis, J E; Bhown, A; Bennett, J C; Mole, J E

    1980-01-01

    Human factor D purified to homogeneity by a modified procedure was subjected to NH2-terminal amino acid sequence analysis by using a modified automated Beckman sequencer. We identified 48 of the first 57 NH2-terminal amino acids in a single sequencer run, using microgram quantities of factor D. The deduced amino acid sequence represents approximately 25% of the primary structure of factor D. This extended NH2-terminal amino acid sequence of factor D was compared to that of other trypsin-related serine proteases. By visual inspection, strong homologies (33--50% identity) were observed with all the serine proteases included in the comparison. Interestingly, factor D showed a higher degree of homology to serine proteases of pancreatic origin than to those of serum origin. Images PMID:6987665

  14. Kallikrein Promotes Inflammation in Human Dental Pulp Cells Via Protease-Activated Receptor-1.

    PubMed

    Hayama, Tomomi; Kamio, Naoto; Okabe, Tatsu; Muromachi, Koichiro; Matsushima, Kiyoshi

    2016-07-01

    Plasma kallikrein (KLKB1), a serine protease, cleaves high-molecular weight kininogen to produce bradykinin, a potent vasodilator and pro-inflammatory peptide. In addition, KLKB1 activates plasminogen and other leukocyte and blood coagulation factors and processes pro-enkephalin, prorenin, and C3. KLKB1 has also been shown to cleave protease-activated receptors in vascular smooth muscle cells to regulate the expression of epidermal growth factor receptor. In this study, we investigated KLKB1-dependent inflammation and activation of protease-activated receptor-1 in human dental pulp cells. These cells responded to KLKB1 stimulation by increasing intracellular Ca(2+) , upregulating cyclooxygenase-2, and secreting prostaglandin E2 . Remarkably, SCH79797, an antagonist of protease-activated receptor-1, blocked these effects. Thus, these data indicate that KLKB1 induces inflammatory reactions in human dental tissues via protease-activated receptor 1. J. Cell. Biochem. 117: 1522-1528, 2016. © 2015 Wiley Periodicals, Inc. PMID:26566265

  15. Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors

    PubMed Central

    Serrano-Luna, Jesús; Piña-Vázquez, Carolina; Reyes-López, Magda; Ortiz-Estrada, Guillermo

    2013-01-01

    The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms. PMID:23476670

  16. Proteases as Insecticidal Agents

    PubMed Central

    Harrison, Robert L.; Bonning, Bryony C.

    2010-01-01

    Proteases from a variety of sources (viruses, bacteria, fungi, plants, and insects) have toxicity towards insects. Some of these insecticidal proteases evolved as venom components, herbivore resistance factors, or microbial pathogenicity factors, while other proteases play roles in insect development or digestion, but exert an insecticidal effect when over-expressed from genetically engineered plants or microbial pathogens. Many of these proteases are cysteine proteases, although insect-toxic metalloproteases and serine proteases have also been examined. The sites of protease toxic activity range from the insect midgut to the hemocoel (body cavity) to the cuticle. This review discusses these insecticidal proteases along with their evaluation and use as potential pesticides. PMID:22069618

  17. Streptococcal SpeB Cleaved PAR-1 Suppresses ERK Phosphorylation and Blunts Thrombin-Induced Platelet Aggregation

    PubMed Central

    Ender, Miriam; Andreoni, Federica; Zinkernagel, Annelies Sophie; Schuepbach, Reto Andreas

    2013-01-01

    Background The family of 4 related protease-activated receptors (PAR-1, 2, 3 & 4) expressed by mammalian cells allow to sense for and react to extracellular proteolytic activity. Since major human bacterial pathogens secret a wide array of protease(-s) we investigated whether they interfere with human PAR function. Methodology/Principal Findings Supernatants from cultures of major human bacterial pathogens were assayed for the presence of protease(-s) capable to cleave overexpressed human PAR-1, 2, 3 and 4 reporter constructs. Group A streptococcus (GAS) was found to secret a PAR-1-cleaving protease. Experiments involving genetical and pharmacological gain and loss of function identified streptococcal pyrogenic exotoxin B SpeB as the protease responsible. On the host’s side analysis of overexpressed PAR-1 carrying alanine substitutions and deletions showed the amino acid residue leucine44 on PAR-1’s extracellular N-terminus to be the only cleavage site. Complementary studies on endogenously expressed PAR-1 using PAR-1 blocking antibodies further supported our conclusion. Through PAR-1 cleavage SpeB efficiently blunted thrombin-induced induction of the ERK-pathway in endothelial cells and prevented platelets aggregation in response to thrombin. Conclusions/Significance Our results identify a novel function of the streptococcal virulence factor SpeB. By cleaving human PAR-1 at the N-terminal amino acid residue leucine44 SpeB rendered endothelial cells unresponsive to thrombin and prevented human platelets from thrombin-induced aggregation. These results suggest that by blunting PAR-1 signaling, SpeB modulates various innate host responses directed against invasive GAS potentially helping the invasive bacteria to escape. This may allow to tailor additional treatments in the future since upon invasion of the blood stream endothelial cells as well as platelets and mononuclear cells respond to PAR-1 agonists aiming to prevent further bacterial dissemination. PMID

  18. Induction of DNA synthesis in isolated nuclei by cytoplasmic factors: inhibition by protease inhibitors.

    PubMed Central

    Wong, R L; Gutowski, J K; Katz, M; Goldfarb, R H; Cohen, S

    1987-01-01

    Cytoplasmic extracts from spontaneously proliferating and mitogen-activated lymphoid cells contain a protein factor called ADR (activator of DNA replication) that induces DNA synthesis in isolated quiescent nuclei. ADR-containing preparations have proteolytic activity, as indicated by their ability to degrade fibrin in a plasminogen-independent and plasminogen-dependent manner. In addition, aprotinin, a nonspecific protease inhibitor, abrogates ADR-induced DNA synthesis in a dose-dependent fashion. Preincubation studies demonstrated that the effect of aprotinin is not due to its suppressive effects on the nuclei themselves. Other protease inhibitors such as leupeptin, p-aminobenzamidine, and N-alpha-tosyllysine chloromethyl ketone are also inhibitory, but soybean trypsin inhibitor is without effect. ADR activity can be removed from active extracts by adsorption with aprotinin-conjugated agarose beads and can be recovered by elution with an acetate buffer (pH 5). These findings are consistent with the interpretation that the initiation of DNA synthesis in resting nuclei may be protease dependent and, further, that the cytoplasmic stimulatory factor we have called ADR may be a protease itself. PMID:3540956

  19. Recombinant expression and antigenic properties of a 32-kilodalton extracellular alkaline protease, representing a possible virulence factor from Aspergillus fumigatus.

    PubMed Central

    Moser, M; Menz, G; Blaser, K; Crameri, R

    1994-01-01

    A 32-kDa nonglycosylated alkaline protease (EC 3.4.1.14) with elastolytic activity, secreted by the opportunistic pathogen Aspergillus fumigatus ATCC 42202, is suggested to be a virulence factor of this fungus. The enzyme is a serine protease of the subtilisin family, and its cDNA nucleotide sequence has recently been reported. We have cloned the cDNA encoding the mature protease into a high-level Escherichia coli expression plasmid and produced the recombinant protease as a fusion protein with a six-adjacent-histidine affinity tag at the carboxy terminus. Subsequently, the recombinant protease was purified to homogeneity, with affinity chromatography yielding 30 to 40 mg of recombinant protease per liter of E. coli culture. Refolded recombinant protease, in comparison with native protease, demonstrated weak enzymatic activity but similar immunochemical characteristics as analyzed by antigen-specific enzyme-linked immunosorbent assay (ELISA), competition ELISA, and immunoblotting assays. To assess the allergenic potential of the protease, sera from patients with allergic bronchopulmonary aspergillosis and sera from healthy control individuals were analyzed by ELISA and immunoblotting techniques. Sera from patients with allergic bronchopulmonary aspergillosis did not have protease-specific immunoglobulin E (IgE) antibodies and, remarkably, did not show significantly elevated protease-specific IgG antibody levels compared with those in sera from healthy control individuals. This suggests that the alkaline protease from A. fumigatus does not elicit IgE antibodies and has weak immunogenicity, a property which may explain fungus persistence in allergic individuals. Images PMID:8112866

  20. Cleaving DNA with DNA

    NASA Astrophysics Data System (ADS)

    Carmi, Nir; Balkhi, Shameelah R.; Breaker, Ronald R.

    1998-03-01

    A DNA structure is described that can cleave single-stranded DNA oligonucleotides in the presence of ionic copper. This ``deoxyribozyme'' can self-cleave or can operate as a bimolecular complex that simultaneously makes use of duplex and triplex interactions to bind and cleave separate DNA substrates. Bimolecular deoxyribozyme-mediated strand scission proceeds with a kobs of 0.2 min-1, whereas the corresponding uncatalyzed reaction could not be detected. The duplex and triplex recognition domains can be altered, making possible the targeted cleavage of single-stranded DNAs with different nucleotide sequences. Several small synthetic DNAs were made to function as simple ``restriction enzymes'' for the site-specific cleavage of single-stranded DNA.

  1. Protochlamydia Induces Apoptosis of Human HEp-2 Cells through Mitochondrial Dysfunction Mediated by Chlamydial Protease-Like Activity Factor

    PubMed Central

    Matsuo, Junji; Nakamura, Shinji; Ito, Atsushi; Yamazaki, Tomohiro; Ishida, Kasumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Takahashi, Kaori; Sekizuka, Tsuyoshi; Takeuchi, Fumihiko; Kuroda, Makoto; Nagai, Hiroki; Hayashida, Kyoko; Sugimoto, Chihiro; Yamaguchi, Hiroyuki

    2013-01-01

    Obligate amoebal endosymbiotic bacterium Protochlamydia with ancestral pathogenic chlamydial features evolved to survive within protist hosts, such as Acanthamoba, 0.7–1.4 billion years ago, but not within vertebrates including humans. This observation raises the possibility that interactions between Protochlamydia and human cells may result in a novel cytopathic effect, leading to new insights into host-parasite relationships. Previously, we reported that Protochlamydia induces apoptosis of the immortalized human cell line, HEp-2. In this study, we attempted to elucidate the molecular mechanism underlying this apoptosis. We first confirmed that, upon stimulation with the bacteria, poly (ADP-ribose) polymerase (PARP) was cleaved at an early stage in HEp-2 cells, which was dependent on the amount of bacteria. A pan-caspase inhibitor and both caspase-3 and -9 inhibitors similarly inhibited the apoptosis of HEp-2 cells. A decrease of the mitochondrial membrane potential was also confirmed. Furthermore, lactacystin, an inhibitor of chlamydial protease-like activity factor (CPAF), blocked the apoptosis. Cytochalasin D also inhibited the apoptosis, which was dependent on the drug concentration, indicating that bacterial entry into cells was required to induce apoptosis. Interestingly, Yersinia type III inhibitors (ME0052, ME0053, and ME0054) did not have any effect on the apoptosis. We also confirmed that the Protochlamydia used in this study possessed a homologue of the cpaf gene and that two critical residues, histidine-101 and serine-499 of C. trachomatis CPAF in the active center, were conserved. Thus, our results indicate that after entry, Protochlamydia-secreted CPAF induces mitochondrial dysfunction with a decrease of the membrane potential, followed by caspase-9, caspase-3 and PARP cleavages for apoptosis. More interestingly, because C. trachomatis infection can block the apoptosis, our finding implies unique features of CPAF between pathogenic and primitive

  2. RasGAP Shields Akt from Deactivating Phosphatases in Fibroblast Growth Factor Signaling but Loses This Ability Once Cleaved by Caspase-3.

    PubMed

    Cailliau, Katia; Lescuyer, Arlette; Burnol, Anne-Françoise; Cuesta-Marbán, Álvaro; Widmann, Christian; Browaeys-Poly, Edith

    2015-08-01

    Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling. PMID:26109071

  3. TIL-type protease inhibitors may be used as targeted resistance factors to enhance silkworm defenses against invasive fungi.

    PubMed

    Li, Youshan; Zhao, Ping; Liu, Huawei; Guo, Xiaomeng; He, Huawei; Zhu, Rui; Xiang, Zhonghuai; Xia, Qingyou

    2015-02-01

    Entomopathogenic fungi penetrate the insect cuticle using their abundant hydrolases. These hydrolases, which include cuticle-degrading proteases and chitinases, are important virulence factors. Our recent findings suggest that many serine protease inhibitors, especially TIL-type protease inhibitors, are involved in insect resistance to pathogenic microorganisms. To clarify the molecular mechanism underlying this resistance to entomopathogenic fungi and identify novel genes to improve the silkworm antifungal capacity, we conducted an in-depth study of serine protease inhibitors. Here, we cloned and expressed a novel silkworm TIL-type protease inhibitor, BmSPI39. In activity assays, BmSPI39 potently inhibited the virulence protease CDEP-1 of Beauveria bassiana, suggesting that it might suppress the fungal penetration of the silkworm integument by inhibiting the cuticle-degrading proteases secreted by the fungus. Phenol oxidase activation studies showed that melanization is involved in the insect immune response to fungal invasion, and that fungus-induced excessive melanization is suppressed by BmSPI39 by inhibiting the fungal cuticle-degrading proteases. To better understand the mechanism involved in the inhibition of fungal virulence by protease inhibitors, their effects on the germination of B. bassiana conidia was examined. BmSPI38 and BmSPI39 significantly inhibited the germination of B. bassiana conidia. Survival assays showed that BmSPI38 and BmSPI39 markedly improved the survival rates of silkworms, and can therefore be used as targeted resistance proteins in the silkworm. These results provided new insight into the molecular mechanisms whereby insect protease inhibitors confer resistance against entomopathogenic fungi, suggesting their potential application in medicinal or agricultural fields. PMID:25453359

  4. Taspase 1: A protease with many biological surprises

    PubMed Central

    Niizuma, Hidetaka; Cheng, Emily H; Hsieh, James J

    2015-01-01

    Taspase 1 (TASP1) cleaves the mixed-lineage leukemia (MLL) and transcription factor (TF) IIA families of nuclear proteins to orchestrate various biological processes. TASP1 is not a classical oncogene, but assists in cell proliferation and permits oncogenic initiation through cleavage of MLL and TFIIA. TASP1 is thus better classified as a “non-oncogene addiction” protease, and targeting TASP1 offers a novel and attractive anticancer therapeutic strategy. PMID:27308523

  5. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  6. Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP.

    PubMed

    Zhu, Ling; Inoue, Koichi; Yoshizumi, Satoshi; Kobayashi, Hiroshi; Zhang, Yonglong; Ouyang, Ming; Kato, Fuminori; Sugai, Motoyuki; Inouye, Masayori

    2009-05-01

    Escherichia coli mRNA interferases, such as MazF and ChpBK, are sequence-specific endoribonucleases encoded by toxin-antitoxin (TA) systems present in its genome. A MazF homologue in Staphylococcus aureus (MazF(Sa)) has been shown to inhibit cell growth when induced in E. coli. Here, we determined the cleavage site for MazF(Sa) with the use of phage MS2 RNA as a substrate and CspA, an RNA chaperone, which prevents the formation of secondary structures in the RNA substrate. MazF(Sa) specifically cleaves the RNA at a pentad sequence, U downward arrow ACAU. Bioinformatics analysis revealed that this pentad sequence is significantly abundant in several genes, including the sraP gene in the S. aureus N315 strain. This gene encodes a serine-rich protein, which is known to play an important role in adhesion of the pathogen to human tissues and thus in endovascular infection. We demonstrated that the sraP mRNA became extremely unstable in comparison with the ompA mRNA only when MazF(Sa) was induced in E. coli. Further bioinformatics analysis indicated that the pentad sequence is also significantly abundant in the mRNAs for all the pathogenic factors in S. aureus. This observation suggests a possible regulatory relationship between the MazEF(Sa) TA module and the pathogenicity in S. aureus. PMID:19251861

  7. Factor B Is the Second Lipopolysaccharide-binding Protease Zymogen in the Horseshoe Crab Coagulation Cascade.

    PubMed

    Kobayashi, Yuki; Takahashi, Toshiaki; Shibata, Toshio; Ikeda, Shunsuke; Koshiba, Takumi; Mizumura, Hikaru; Oda, Toshio; Kawabata, Shun-ichiro

    2015-07-31

    Factor B is a serine-protease zymogen in the horseshoe crab coagulation cascade, and it is the primary substrate for activated factor C, the LPS-responsive initiator of the cascade. Factor C is autocatalytically activated to α-factor C on LPS and is artificially converted to β-factor C, another activated form, by chymotrypsin. It is not known, however, whether LPS is required for the activation of factor B. Here we found that wild-type factor B expressed in HEK293S cells is activated by α-factor C, but not by β-factor C, in an LPS-dependent manner and that β-factor C loses the LPS binding activity of factor C through additional cleavage by chymotrypsin within the N-terminal LPS-binding region. Surface plasmon resonance and quartz crystal microbalance analyses revealed that wild-type factor B binds to LPS with high affinity comparable with that of factor C, demonstrating that factor B is the second LPS-binding zymogen in the cascade. An LPS-binding site of wild-type factor B was found in the N-terminal clip domain, and the activation rate of a clip domain deletion mutant was considerably slower than that of wild-type factor B. Moreover, in the presence of LPS, Triton X-100 inhibited the activation of wild-type factor B by α-factor C. We conclude that the clip domain of factor B has an important role in localizing factor B to the surface of Gram-negative bacteria or LPS released from bacteria to initiate effective proteolytic activation by α-factor C. PMID:26109069

  8. Factor B Is the Second Lipopolysaccharide-binding Protease Zymogen in the Horseshoe Crab Coagulation Cascade*

    PubMed Central

    Kobayashi, Yuki; Takahashi, Toshiaki; Shibata, Toshio; Ikeda, Shunsuke; Koshiba, Takumi; Mizumura, Hikaru; Oda, Toshio; Kawabata, Shun-ichiro

    2015-01-01

    Factor B is a serine-protease zymogen in the horseshoe crab coagulation cascade, and it is the primary substrate for activated factor C, the LPS-responsive initiator of the cascade. Factor C is autocatalytically activated to α-factor C on LPS and is artificially converted to β-factor C, another activated form, by chymotrypsin. It is not known, however, whether LPS is required for the activation of factor B. Here we found that wild-type factor B expressed in HEK293S cells is activated by α-factor C, but not by β-factor C, in an LPS-dependent manner and that β-factor C loses the LPS binding activity of factor C through additional cleavage by chymotrypsin within the N-terminal LPS-binding region. Surface plasmon resonance and quartz crystal microbalance analyses revealed that wild-type factor B binds to LPS with high affinity comparable with that of factor C, demonstrating that factor B is the second LPS-binding zymogen in the cascade. An LPS-binding site of wild-type factor B was found in the N-terminal clip domain, and the activation rate of a clip domain deletion mutant was considerably slower than that of wild-type factor B. Moreover, in the presence of LPS, Triton X-100 inhibited the activation of wild-type factor B by α-factor C. We conclude that the clip domain of factor B has an important role in localizing factor B to the surface of Gram-negative bacteria or LPS released from bacteria to initiate effective proteolytic activation by α-factor C. PMID:26109069

  9. Replacement of histidine 340 with alanine inactivates the group A Streptococcus extracellular cysteine protease virulence factor.

    PubMed

    Gubba, S; Cipriano, V; Musser, J M

    2000-06-01

    Streptococcus pyogenes expresses a highly conserved extracellular cysteine protease that is a virulence factor for invasive disease, including soft tissue infection. Site-directed mutagenesis was used to generate a His340Ala recombinant mutant protein that was made as a stable 40-kDa zymogen by Escherichia coli. Purified His340Ala protein was proteolytically inactive when bovine casein and human fibronectin were used as substrates. Wild-type 28-kDa streptococcal protease purified from S. pyogenes processed the 40-kDa mutant zymogen to a 28-kDa mature form, a result suggesting that the derivative protein retained structural integrity. The data are consistent with the hypothesis that His340 is an enzyme active site residue, an idea confirmed by recent solution of the zymogen crystal structure (T. F. Kagawa, J. C. Cooney, H. M. Baker, S. McSweeney, M. Liu, S. Gubba, J. M. Musser, and E. N. Baker, Proc. Natl. Acad. Sci. USA 97:2235-2240, 2000). The data provide additional insight into structure-function relationships in this S. pyogenes virulence factor. PMID:10816533

  10. Replacement of Histidine 340 with Alanine Inactivates the Group A Streptococcus Extracellular Cysteine Protease Virulence Factor

    PubMed Central

    Gubba, Siddeswar; Cipriano, Vincent; Musser, James M.

    2000-01-01

    Streptococcus pyogenes expresses a highly conserved extracellular cysteine protease that is a virulence factor for invasive disease, including soft tissue infection. Site-directed mutagenesis was used to generate a His340Ala recombinant mutant protein that was made as a stable 40-kDa zymogen by Escherichia coli. Purified His340Ala protein was proteolytically inactive when bovine casein and human fibronectin were used as substrates. Wild-type 28-kDa streptococcal protease purified from S. pyogenes processed the 40-kDa mutant zymogen to a 28-kDa mature form, a result suggesting that the derivative protein retained structural integrity. The data are consistent with the hypothesis that His340 is an enzyme active site residue, an idea confirmed by recent solution of the zymogen crystal structure (T. F. Kagawa, J. C. Cooney, H. M. Baker, S. McSweeney, M. Liu, S. Gubba, J. M. Musser, and E. N. Baker, Proc. Natl. Acad. Sci. USA 97:2235–2240, 2000). The data provide additional insight into structure-function relationships in this S. pyogenes virulence factor. PMID:10816533

  11. Role of Allergen Source-Derived Proteases in Sensitization via Airway Epithelial Cells

    PubMed Central

    Matsumura, Yasuhiro

    2012-01-01

    Protease activity is a characteristic common to many allergens. Allergen source-derived proteases interact with lung epithelial cells, which are now thought to play vital roles in both innate and adaptive immune responses. Allergen source-derived proteases act on airway epithelial cells to induce disruption of the tight junctions between epithelial cells, activation of protease-activated receptor-2, and the production of thymic stromal lymphopoietin. These facilitate allergen delivery across epithelial layers and enhance allergenicity or directly activate the immune system through a nonallergic mechanism. Furthermore, they cleave regulatory cell surface molecules involved in allergic reactions. Thus, allergen source-derived proteases are a potentially critical factor in the development of allergic sensitization and appear to be strongly associated with heightened allergenicity. PMID:22523502

  12. Crystal Structure of the Protease-Resistant Core Domain of Yersinia Pestis Virulence Factor Yopr

    SciTech Connect

    Schubot,F.; Cherry, S.; Austin, B.; Tropea, J.; Waugh, D.

    2005-01-01

    Yersinia pestis, the causative agent of the plague, employs a type III secretion system (T3SS) to secrete and translocate virulence factors into the cytoplasm of mammalian host cells. One of the secreted virulence factors is YopR. Little is known about the function of YopR other than that it is secreted into the extracellular milieu during the early stages of infection and that it contributes to virulence. Hoping to gain some insight into the function of YopR, we determined the crystal structure of its protease-resistant core domain, which consists of residues 38--149 out of 165 amino acids. The core domain is composed of five {alpha}-helices that display unexpected structural similarity with one domain of YopN, a central regulator of type III secretion in Y. pestis. This finding raises the possibility that YopR may play a role in the regulation of type III secretion.

  13. Proprotein convertase 5/6 cleaves platelet-derived growth factor A in the human endometrium in preparation for embryo implantation.

    PubMed

    Paule, Sarah; Nebl, Thomas; Webb, Andrew I; Vollenhoven, Beverley; Rombauts, Luk J F; Nie, Guiying

    2015-03-01

    Establishment of endometrial receptivity is vital for successful embryo implantation. Proprotein convertase 5/6 (referred to as PC6) is up-regulated in the human endometrium specifically at the time of epithelial receptivity. PC6, a serine protease of the proprotein convertase family, plays an important role in converting precursor proteins into their active forms through specific proteolysis. The proform of platelet-derived growth factor A (pro-PDGFA) requires PC cleavage to convert to the active-PDGFA. We investigated the PC6-mediated activation of PDGFA in the human endometrium during the establishment of receptivity. Proteomic analysis identified that the pro-PDGFA was increased in the conditioned medium of HEC1A cells in which PC6 was stably knocked down by small interfering RNA (PC6-siRNA). Western blot analysis demonstrated an accumulation of the pro-PDGFA but a reduction in the active-PDGFA in PC6-siRNA cell lysates and medium compared with control. PC6 cleavage of pro-PDGFA was further confirmed in vitro by incubation of recombinant pro-PDGFA with PC6. Immunohistochemistry revealed cycle-stage-specific localization of the active-PDGFA in the human endometrium. During the non-receptive phase, the active-PDGFA was barely detectable. In contrast, it was localized specifically to the apical surface of the luminal and glandular epithelium in the receptive phase. Furthermore, the active-PDGFA was detected in uterine lavage with levels being significantly higher in the receptive than the non-receptive phase. We thus identified that the secreted PDGFA may serve as a biomarker for endometrial receptivity. This is also the first study demonstrating that the active-PDGFA localizes to the apical surface of the endometrium during receptivity. PMID:25429785

  14. Immunoglobulin A1 Protease, an Exoenzyme of Pathogenic Neisseriae, Is a Potent Inducer of Proinflammatory Cytokines

    PubMed Central

    Lorenzen, Dirk R.; Düx, Frank; Wölk, Uwe; Tsirpouchtsidis, Anastasios; Haas, Gaby; Meyer, Thomas F.

    1999-01-01

    A characteristic of human pathogenic Neisseriae is the production and secretion of an immunoglobulin (Ig)A1-specific serine protease (IgA1 protease) that cleaves preferentially human IgA1 and other target proteins. Here we show a novel function for native IgA1 protease, i.e., the induction of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 from peripheral blood mononuclear cells. The capacity of IgA1 protease to elicit such cytokine responses in monocytes was enhanced in the presence of T lymphocytes. IgA1 protease did not induce the regulatory cytokine IL-10, which was, however, found in response to lipopolysaccharide and phytohemagglutinin. The immunomodulatory effects caused by IgA1 protease require a native form of the enzyme, and denaturation abolished cytokine induction. However, the proteolytic activity is not required for the cytokine induction by IgA1 protease. Our results indicate that IgA1 protease exhibits important immunostimulatory properties and may contribute substantially to the pathogenesis of neisserial infections by inducing large amounts of TNF-α and other proinflammatory cytokines. In particular, IgA1 protease may represent a key virulence determinant of bacterial meningitis. PMID:10523603

  15. The Structure of the Cell-Wall Protease from Streptococci that Inactivates the Human Complement Factor 5A

    SciTech Connect

    Brown,C.; Gu, Z.; Matsuka, Y.; Olmsted, S.; Cleary, P.; Ohlendorf, D.; Earhart, C.

    2006-01-01

    The structure of a 949-residue fragment of complement factor 5a peptidase (SCP) was determined to 1.9 Angstroms resolution. The molecule is made of five distinct domains in an elongated head-stalk structure. The structure suggests that activity of SCP can be modulated through binding of integrins to 2 RGD sequences. This structure is the first of an enzyme that is covalently attached to the cell wall of a Gram-positive bacteria. SCP is also the first functional protease containing a protease-associated domain to have its structure elucidated.

  16. Alcaligenes faecalis ZD02, a Novel Nematicidal Bacterium with an Extracellular Serine Protease Virulence Factor.

    PubMed

    Ju, Shouyong; Lin, Jian; Zheng, Jinshui; Wang, Shaoying; Zhou, Hongying; Sun, Ming

    2016-01-01

    Root knot nematodes (RKNs) are the world's most damaging plant-parasitic nematodes (PPNs), and they can infect almost all crops. At present, harmful chemical nematicides are applied to control RKNs. Using microbial nematicides has been proposed as a better management strategy than chemical control. In this study, we describe a novel nematicidal bacterium named Alcaligenes faecalis ZD02. A. faecalis ZD02 was isolated from Caenorhabditis elegans cadavers and has nematostatic and nematicidal activity, as confirmed by C. elegans growth assay and life span assay. In addition, A. faecalis ZD02 fermentation broth showed toxicity against C. elegans and Meloidogyne incognita. To identify the nematicidal virulence factor, the genome of strain ZD02 was sequenced. By comparing all of the predicted proteins of strain ZD02 to reported nematicidal virulence factors, we determined that an extracellular serine protease (Esp) has potential to be a nematicidal virulence factor, which was confirmed by bioassay on C. elegans and M. incognita. Using C. elegans as the target model, we found that both A. faecalis ZD02 and the virulence factor Esp can damage the intestines of C. elegans. The discovery that A. faecalis ZD02 has nematicidal activity provides a novel bacterial resource for the control of RKNs. PMID:26826227

  17. Membrane-associated transcription factor peptidase, site-2 protease, antagonizes ABA signaling in Arabidopsis.

    PubMed

    Zhou, Shun-Fan; Sun, Le; Valdés, Ana Elisa; Engström, Peter; Song, Ze-Ting; Lu, Sun-Jie; Liu, Jian-Xiang

    2015-10-01

    Abscisic acid plays important roles in maintaining seed dormancy while gibberellins (GA) and other phytohormones antagonize ABA to promote germination. However, how ABA signaling is desensitized during the transition from dormancy to germination is still poorly understood. We functionally characterized the role of membrane-associated transcription factor peptidase, site-2 protease (S2P), in ABA signaling during seed germination in Arabidopsis. Genetic analysis showed that loss-of-function of S2P conferred high ABA sensitivity during seed germination, and expression of the activated form of membrane-associated transcription factor bZIP17, in which the transmembrane domain and endoplasmic reticulum (ER) lumen-facing C-terminus were deleted, in the S2P mutant rescued its ABA-sensitive phenotype. MYC and green fluorescent protein (GFP)-tagged bZIP17 were processed and translocated from the ER to the nucleus in response to ABA treatment. Furthermore, genes encoding negative regulators of ABA signaling, such as the transcription factor ATHB7 and its target genes HAB1, HAB2, HAI1 and AHG3, were up-regulated in seeds of the wild-type upon ABA treatment; this up-regulation was impaired in seeds of S2P mutants. Our results suggest that S2P desensitizes ABA signaling during seed germination through regulating the activation of the membrane-associated transcription factor bZIP17 and therefore controlling the expression level of genes encoding negative regulators of ABA signaling. PMID:25919792

  18. Microbially cleaved immunoglobulins are sensed by the innate immune receptor LILRA2.

    PubMed

    Hirayasu, Kouyuki; Saito, Fumiji; Suenaga, Tadahiro; Shida, Kyoko; Arase, Noriko; Oikawa, Keita; Yamaoka, Toshifumi; Murota, Hiroyuki; Chibana, Hiroji; Nakagawa, Ichiro; Kubori, Tomoko; Nagai, Hiroki; Nakamaru, Yuji; Katayama, Ichiro; Colonna, Marco; Arase, Hisashi

    2016-01-01

    Microbial proteases degrade a variety of host proteins(1-3). However, it has remained largely unknown why microorganisms have evolved to acquire such proteases and how the host responds to microbially degraded products. Here, we have found that immunoglobulins disrupted by microbial pathogens are specifically detected by leukocyte immunoglobulin-like receptor A2 (LILRA2), an orphan activating receptor expressed on human myeloid cells. Proteases from Mycoplasma hyorhinis, Legionella pneumophila, Streptococcus pneumonia and Candida albicans cleaved the N-terminus of immunoglobulins. Identification of the immunoglobulin-cleaving protease from L. pneumophila revealed that the protease is conserved across some bacteria including Vibrio spp. and Pseudomonas aeruginosa. These microbially cleaved immunoglobulins but not normal immunoglobulins stimulated human neutrophils via LILRA2. In addition, stimulation of primary monocytes via LILRA2 inhibited the growth of L. pneumophila. When mice were infected with L. pneumophila, immunoglobulins were cleaved and recognized by LILRA2. More importantly, cleaved immunoglobulins were detected in patients with bacterial infections and stimulated LILRA2-expressing cells. Our findings demonstrate that LILRA2 is a type of innate immune receptor in the host immune system that detects immunoglobulin abnormalities caused by microbial pathogens. PMID:27572839

  19. Purification and biophysical characterization of the core protease domain of anthrax lethal factor

    SciTech Connect

    Gkazonis, Petros V.; Dalkas, Georgios A.; Chasapis, Christos T.; Vlamis-Gardikas, Alexios; Bentrop, Detlef; Spyroulias, Georgios A.

    2010-06-04

    Anthrax lethal toxin (LeTx) stands for the major virulence factor of the anthrax disease. It comprises a 90 kDa highly specific metalloprotease, the anthrax lethal factor (LF). LF possesses a catalytic Zn{sup 2+} binding site and is highly specific against MAPK kinases, thus representing the most potent native biomolecule to alter and inactivate MKK [MAPK (mitogen-activated protein kinase) kinases] signalling pathways. Given the importance of the interaction between LF and substrate for the development of anti-anthrax agents as well as the potential treatment of nascent tumours, the analysis of the structure and dynamic properties of the LF catalytic site are essential to elucidate its enzymatic properties. Here we report the recombinant expression and purification of a C-terminal part of LF (LF{sub 672-776}) that harbours the enzyme's core protease domain. The biophysical characterization and backbone assignments ({sup 1}H, {sup 13}C, {sup 15}N) of the polypeptide revealed a stable, well folded structure even in the absence of Zn{sup 2+}, suitable for high resolution structural analysis by NMR.

  20. Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web

    PubMed Central

    Fortelny, Nikolaus; Cox, Jennifer H.; Kappelhoff, Reinhild; Starr, Amanda E.; Lange, Philipp F.; Pavlidis, Paul; Overall, Christopher M.

    2014-01-01

    Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8) and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8 −/− versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically derived and

  1. Expression and Purification of Haemophilus influenzae Rhomboid Intramembrane Protease GlpG for Structural Studies.

    PubMed

    Panwar, Pankaj; Lemieux, M Joanne

    2014-01-01

    Rhomboid proteases are membrane-embedded proteases that cleave peptide bonds of transmembrane proteins. They play a variety of roles in cell signaling events. The rhomboid protease GlpG from Haemophilus influenzae (hiGlpG) is a canonical form of rhomboid protease having six transmembrane segments. In this unit, detailed protocols are presented for optimization of hiGlpG expression using the araBAD promotor system in the pBAD vector. The parameters for optimization include concentration of inducing agent, induction temperature, and time. Optimization of these key factors led to the development of a protocol yielding 1.6 to 2.5 mg/liter protein purified after ion metal affinity chromatography (IMAC). Further purification can include size exclusion chromatography (SEC). PMID:24692018

  2. Targeting the membrane-anchored serine protease testisin with a novel engineered anthrax toxin prodrug to kill tumor cells and reduce tumor burden

    PubMed Central

    Martin, Erik W.; Buzza, Marguerite S.; Driesbaugh, Kathryn H.; Liu, Shihui; Fortenberry, Yolanda M.; Leppla, Stephen H.; Antalis, Toni M.

    2015-01-01

    The membrane-anchored serine proteases are a unique group of trypsin-like serine proteases that are tethered to the cell surface via transmembrane domains or glycosyl-phosphatidylinositol-anchors. Overexpressed in tumors, with pro-tumorigenic properties, they are attractive targets for protease-activated prodrug-like anti-tumor therapies. Here, we sought to engineer anthrax toxin protective antigen (PrAg), which is proteolytically activated on the cell surface by the proprotein convertase furin to instead be activated by tumor cell-expressed membrane-anchored serine proteases to function as a tumoricidal agent. PrAg's native activation sequence was mutated to a sequence derived from protein C inhibitor (PCI) that can be cleaved by membrane-anchored serine proteases, to generate the mutant protein PrAg-PCIS. PrAg-PCIS was resistant to furin cleavage in vitro, yet cytotoxic to multiple human tumor cell lines when combined with FP59, a chimeric anthrax toxin lethal factor-Pseudomonas exotoxin fusion protein. Molecular analyses showed that PrAg-PCIS can be cleaved in vitro by several serine proteases including the membrane-anchored serine protease testisin, and mediates increased killing of testisin-expressing tumor cells. Treatment with PrAg-PCIS also potently attenuated the growth of testisin-expressing xenograft tumors in mice. The data indicates PrAg can be engineered to target tumor cell-expressed membrane-anchored serine proteases to function as a potent tumoricidal agent. PMID:26392335

  3. The pro-coagulant fibrinogenolytic serine protease isoenzymes purified from Daboia russelii russelii venom coagulate the blood through factor V activation: role of glycosylation on enzymatic activity.

    PubMed

    Mukherjee, Ashis K

    2014-01-01

    Proteases from Russell's viper venom (RVV) induce a variety of toxic effects in victim. Therefore, four new RVV protease isoenzymes of molecular mass 32901.044 Da, 333631.179 Da, 333571.472 Da, and 34594.776 Da, were characterized in this study. The first 10 N-terminal residues of these serine protease isoenzymes showed significant sequence homology with N-terminal sequences of snake venom thrombin-like and factor V-activating serine proteases, which was reconfirmed by peptide mass fingerprinting analysis. These proteases were found to be different from previously reported factor V activators isolated from snake venoms. These proteases showed significantly different fibrinogenolytic, BAEE-esterase and plasma clotting activities but no fibrinolytic, TAME-esterase or amidolytic activity against the chromogenic substrate for trypsin, thrombin, plasmin and factor Xa. Their Km and Vmax values towards fibrinogen were determined in the range of 6.6 to 10.5 µM and 111.0 to 125.5 units/mg protein, respectively. On the basis of fibrinogen degradation pattern, they may be classified as A/B serine proteases isolated from snake venom. These proteases contain ∼ 42% to 44% of N-linked carbohydrates by mass whereas partially deglycosylated enzymes showed significantly less catalytic activity as compared to native enzymes. In vitro these protease isoenzymes induce blood coagulation through factor V activation, whereas in vivo they provoke dose-dependent defibrinogenation and anticoagulant activity in the mouse model. At a dose of 5 mg/kg, none of these protease isoenzymes were found to be lethal in mice or house geckos, suggesting therapeutic application of these anticoagulant peptides for the prevention of thrombosis. PMID:24520323

  4. Protease-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Dickson, Eva F.; Goyan, Rebecca L.; Kennedy, James C.; Mackay, M.; Mendes, M. A. K.; Pottier, Roy H.

    2003-12-01

    Drugs used in disease treatment can cause damage to both malignant and normal tissue. This toxicity limits the maximum therapeutic dose. Drug targeting is of high interest to increase the therapeutic efficacy of the drug without increasing systemic toxicity. Certain tissue abnormalities, disease processes, cancers, and infections are characterized by high levels of activity of specific extracellular and/or intracellular proteases. Abnormally high activity levels of specific proteases are present at sites of physical or chemical trauma, blood clots, malignant tumors, rheumatoid arthritis, inflammatory bowel disease, gingival disease, glomerulonerphritis, and acute pancreatitis. Abnormal protease activity is suspected in development of liver thrombosis, pulmonary emphysema, atherosclerosis, and muscular dystrophy. Inactiviating disease-associated proteases by the administration of appropriate protease inhibitors has had limited success. Instead, one could use such proteases to target drugs to treat the condition. Protease mediated drug delivery offers such a possibility. Solubilizing groups are attached to insoluble drugs via a polypeptide chain which is specifically cleavable by certian proteases. When the solubilized drug enounters the protease, the solubilizing moieties are cleaved, and the drug precipitates at the disease location. Thus, a smaller systemic dosage could result in a therapeutic drug concentration at the treatment site with less systemic toxicity.

  5. Serum insulin-like growth factor-I, IGF binding protein-3 and IGFBP-3 protease activity after cranial irradiation.

    PubMed

    Tillmann, V; Shalet, S M; Price, D A; Wales, J K; Pennells, L; Soden, J; Gill, M S; Whatmore, A J; Clayton, P E

    1998-01-01

    The relationship between peak growth hormone (GH), insulin-like growth factor I (IGF-I), IGF-I binding protein 3 (IGFBP-3) and IGFBP-3 protease activity was studied in 28 children and adolescents undergoing investigation of pituitary function 0.4-14.2 years after cranial or craniospinal irradiation for the treatment of CNS tumours distant from the hypothalamic-pituitary axis (n = 16) or prophylaxis against CNS leukaemia (n = 12). Seven out of 15 patients with GH deficiency (GHD) (defined as a peak GH concentration <7.5 ng/ml in a stimulation test) had IGF-I <-2 standard deviation score (SDS). None of the 28 patients had serum IGFBP-3 concentrations measured by radioimmunoassay (RIA) <-1.5 SDS with no difference between those with and without GHD. IGFBP-3 concentrations measured by RIA were strongly correlated to IGFBP-3 band density on Western ligand blot (WLB) (r = 0.71; p < 0.0001). IGFBP-3 protease activity was negatively correlated to IGFBP-3 by RIA (r = -0.55; p < 0.01) and to IGFBP-3 by WLB (r = -0.51; p < 0.01). Twenty-two patients had normal IGFBP-3 protease activity (<30% of the activity in pregnancy serum) indicating that serum IGFBP-3 protease activity does not account for the normal levels of IGFBP-3 in RIA. Low serum IGF-I but normal IGFBP-3 concentrations and in the majority normal IGFBP-3 protease activity was found in patients in the years after CNS irradiation. Neither serum IGF-I nor IGFBP-3 can be used as a reliable index of the development of radiation-induced GHD. PMID:9701699

  6. Characterization of secreted proteases of Paenibacillus larvae, potential virulence factors involved in honeybee larval infection.

    PubMed

    Antúnez, Karina; Anido, Matilde; Schlapp, Geraldine; Evans, Jay D; Zunino, Pablo

    2009-10-01

    Paenibacillus larvae is the causative agent of American Foulbrood (AFB), the most severe bacterial disease that affects honeybee larvae. AFB causes a significant decrease in the honeybee population affecting the beekeeping industry and agricultural production. After infection of larvae, P. larvae secretes proteases that could be involved in the pathogenicity. In the present article, we present the secretion of different proteases by P. larvae. Inhibition assays confirmed the presence of metalloproteases. Two different proteases patterns (PP1 and PP2) were identified in a collection of P. larvae isolates from different geographic origin. Forty nine percent of P. larvae isolates showed pattern PP1 while 51% exhibited pattern PP2. Most isolates belonging to genotype ERIC I - BOX A presented PP2, most isolates belonging to ERIC I - BOX C presented PP1 although relations were not significant. Isolates belonging to genotypes ERIC II and ERIC III presented PP2. No correlation was observed between the secreted proteases patterns and geographic distribution, since both patterns are widely distributed in Uruguay. According to exposure bioassays, isolates showing PP2 are more virulent than those showing PP1, suggesting that difference in pathogenicity could be related to the secretion of proteases. PMID:19638278

  7. Lack of cleavage of immunoglobulin A (IgA) from rhesus monkeys by bacterial IgA1 proteases.

    PubMed Central

    Reinholdt, J; Kilian, M

    1991-01-01

    Bacterial immunoglobulin A1 (IgA1) proteases cleaving IgA1 and secretory IgA1 molecules in the hinge region are believed to be important virulence factors. Previous studies have indicated that IgA of humans, gorillas, and chimpanzees are the exclusive substrates of these enzymes. In a recent study, IgA from the rhesus monkey was found to be susceptible to the IgA1 protease activity of Streptococcus pneumoniae. In an attempt to reproduce this observation, we found that neither five isolates of S. pneumoniae nor other IgA1 protease-producing bacteria representing different cleavage specificities caused cleavage of rhesus monkey IgA. Hence, the rhesus monkey does not appear to be a suitable animal model for studies of IgA1 proteases as virulence factors. Images PMID:2037384

  8. An extracellular protease of Streptococcus gordonii hydrolyzes type IV collagen and collagen analogues.

    PubMed

    Juarez, Z E; Stinson, M W

    1999-01-01

    Streptococcus gordonii is a frequent cause of infective bacterial endocarditis, but its mechanisms of virulence are not well defined. In this study, streptococcal proteases were recovered from spent chemically defined medium (CDM) and fractionated by ammonium sulfate precipitation and by ion-exchange and gel filtration column chromatography. Three proteases were distinguished by their different solubilities in ammonium sulfate and their specificities for synthetic peptides. One of the enzymes cleaved collagen analogs Gly-Pro 4-methoxy-beta-naphthylamide, 2-furanacryloyl-Leu-Gly-Pro-Ala (FALGPA), and p-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-Arg (pZ-peptide) and was released from the streptococci while complexed to peptidoglycan fragments. Treatment of this protease with mutanolysin reduced its 180- to 200-kDa mass to 98 kDa without loss of enzymatic activity. The purified protease cleaved bovine gelatin, human placental type IV collagen, and the Aalpha chain of fibrinogen but not albumin, fibronectin, laminin, or myosin. Enzyme activity was inhibited by phenylmethylsulfonyl fluoride, indicating that it is a serine-type protease. Maximum production of the 98-kDa protease occurred during growth of S. gordonii CH1 in CDM containing 0.075% total amino acids at pH 7.0 with minimal aeration. Higher initial concentrations of amino acids prevented the release of the protease without reducing cell-associated enzyme levels, and the addition of an amino acid mixture to an actively secreting culture stopped further enzyme release. The purified protease was stored frozen at -20 degreesC for several months or heated at 50 degreesC for 10 min without loss of activity. These data indicate that S. gordonii produces an extracellular gelatinase/type IV collagenase during growth in medium containing minimal concentrations of free amino acids. Thus, the extracellular enzyme is a potential virulence factor in the amino acid-stringent, thrombotic, valvular lesions of bacterial

  9. Dengue Virus Impairs Mitochondrial Fusion by Cleaving Mitofusins

    PubMed Central

    Yu, Chia-Yi; Liang, Jian-Jong; Li, Jin-Kun; Lee, Yi-Ling; Chang, Bi-Lan; Su, Chan-I; Huang, Wei-Jheng; Lai, Michael M. C.; Lin, Yi-Ling

    2015-01-01

    Mitochondria are highly dynamic subcellular organelles participating in many signaling pathways such as antiviral innate immunity and cell death cascades. Here we found that mitochondrial fusion was impaired in dengue virus (DENV) infected cells. Two mitofusins (MFN1 and MFN2), which mediate mitochondrial fusion and participate in the proper function of mitochondria, were cleaved by DENV protease NS2B3. By knockdown and overexpression approaches, these two MFNs showed diverse functions in DENV infection. MFN1 was required for efficient antiviral retinoic acid-inducible gene I–like receptor signaling to suppress DENV replication, while MFN2 participated in maintaining mitochondrial membrane potential (MMP) to attenuate DENV-induced cell death. Cleaving MFN1 and MFN2 by DENV protease suppressed mitochondrial fusion and deteriorated DENV-induced cytopathic effects through subverting interferon production and facilitating MMP disruption. Thus, MFNs participate in host defense against DENV infection by promoting the antiviral response and cell survival, and DENV regulates mitochondrial morphology by cleaving MFNs to manipulate the outcome of infection. PMID:26717518

  10. Mammalian EGF receptor activation by the rhomboid protease RHBDL2.

    PubMed

    Adrain, Colin; Strisovsky, Kvido; Zettl, Markus; Hu, Landian; Lemberg, Marius K; Freeman, Matthew

    2011-05-01

    The epidermal growth factor receptor (EGFR) has several functions in mammalian development and disease, particularly cancer. Most EGF ligands are synthesized as membrane-tethered precursors, and their proteolytic release activates signalling. In Drosophila, rhomboid intramembrane proteases catalyse the release of EGF-family ligands; however, in mammals this seems to be primarily achieved by ADAM-family metalloproteases. We report here that EGF is an efficient substrate of the mammalian rhomboid RHBDL2. RHBDL2 cleaves EGF just outside its transmembrane domain, thereby facilitating its secretion and triggering activation of the EGFR. We have identified endogenous RHBDL2 activity in several tumour cell lines. PMID:21494248

  11. Mammalian EGF receptor activation by the rhomboid protease RHBDL2

    PubMed Central

    Adrain, Colin; Strisovsky, Kvido; Zettl, Markus; Hu, Landian; Lemberg, Marius K; Freeman, Matthew

    2011-01-01

    The epidermal growth factor receptor (EGFR) has several functions in mammalian development and disease, particularly cancer. Most EGF ligands are synthesized as membrane-tethered precursors, and their proteolytic release activates signalling. In Drosophila, rhomboid intramembrane proteases catalyse the release of EGF-family ligands; however, in mammals this seems to be primarily achieved by ADAM-family metalloproteases. We report here that EGF is an efficient substrate of the mammalian rhomboid RHBDL2. RHBDL2 cleaves EGF just outside its transmembrane domain, thereby facilitating its secretion and triggering activation of the EGFR. We have identified endogenous RHBDL2 activity in several tumour cell lines. PMID:21494248

  12. Enhanced Peptide Stability Against Protease Digestion Induced by Intrinsic Factor Binding of a Vitamin B12 Conjugate of Exendin-4

    PubMed Central

    Bonaccorso, Ron L.; Chepurny, Oleg G.; Becker-Pauly, Christoph; Holz, George G.; Doyle, Robert P.

    2015-01-01

    Peptide digestion from proteases is a significant limitation in peptide therapeutic development. It has been hypothesized that the dietary pathway of vitamin B12 (B12) may be exploited in this area, but an open question is whether B12-peptide conjugates bound to the B12 gastric uptake protein intrinsic factor (IF) can provide any stability against proteases. Herein, we describe a new conjugate of B12 with the incretin peptide exendin 4 that demonstrates picomolar agonism of the glugacon-like peptide-1 receptor (GLP1-R). Stability studies reveal that Ex-4 is digested by pancreatic proteases trypsin and chymotrypsin and by the kidney endopeptidase meprin β. Prebinding the B12 conjugate to IF, however, resulted in up to a 4-fold greater activity of the B12-Ex-4 conjugate relative to Ex-4, when the IF-B12-Ex-4 complex was exposed to 22 µg/mL of trypsin, 2.3-fold greater activity when exposed to 1.25 µg/mL of chymotrypsin, and there was no decrease in function at up to 5 µg/mL of meprin β. PMID:26260673

  13. Characterization of the immunoglobulin A protease of Ureaplasma urealyticum.

    PubMed Central

    Spooner, R K; Russell, W C; Thirkell, D

    1992-01-01

    Ureaplasma urealyticum strains of all serotypes express a specific human immunoglobulin A1 protease that cleaves immunoglobulin A1 to produce intact Fab and Fc fragments. The use of a variety of inhibitors suggests that the enzyme is a serine protease. N-terminal sequencing of the Fc digestion product showed that the enzyme cleaves between the proline and threonine residues 235 and 236 in the hinge region of the heavy chain of immunoglobulin A1. Images PMID:1587621

  14. Novel mechanisms for activated protein C cytoprotective activities involving noncanonical activation of protease-activated receptor 3

    PubMed Central

    Burnier, Laurent

    2013-01-01

    The direct cytoprotective activities of activated protein C (APC) on cells convey therapeutic, relevant, beneficial effects in injury and disease models in vivo and require the endothelial protein C receptor (EPCR) and protease activated receptor 1 (PAR1). Thrombin also activates PAR1, but its effects on cells contrast APC’s cytoprotective effects. To gain insights into mechanisms for these contrasting cellular effects, protease activated receptor 3 (PAR3) activation by APC and thrombin was studied. APC cleaved PAR3 on transfected and endothelial cells in the presence of EPCR. Remarkably, APC cleaved a synthetic PAR3 N-terminal peptide at Arg41, whereas thrombin cleaved at Lys38. On cells, APC failed to cleave R41Q-PAR3, whereas K38Q-PAR3 was still cleaved by APC but not by thrombin. PAR3 tethered-ligand peptides beginning at amino acid 42, but not those beginning at amino acid 39, conveyed endothelial barrier-protective effects. In vivo, the APC-derived PAR3 tethered-ligand peptide, but not the thrombin-derived PAR3 peptide, blunted vascular endothelial growth factor (VEGF)-induced vascular permeability. These data indicate that PAR3 cleavage by APC at Arg41 can initiate distinctive APC-like cytoprotective effects. These novel insights help explain the differentiation of APC’s cytoprotective versus thrombin’s proinflammatory effects on cells and suggest a unique contributory role for PAR3 in the complex mechanisms underlying APC cytoprotective effects. PMID:23788139

  15. SepM, a Streptococcal Protease Involved in Quorum Sensing, Displays Strict Substrate Specificity

    PubMed Central

    Biswas, Saswati; Cao, Luyang; Kim, Albert

    2015-01-01

    ABSTRACT Streptococcus mutans, a causative agent of dental caries, relies on multiple quorum-sensing (QS) pathways that coordinate the expression of factors needed for colonization in the oral cavity. S. mutans uses small peptides as QS signaling molecules that typically are secreted into the outside milieu. Competence-stimulating peptide (CSP) is one such QS signaling molecule that functions through the ComDE two-component signal transduction pathway. CSP is secreted through NlmTE, a dedicated ABC transporter that cleaves off the N-terminal leader peptide to generate a mature peptide that is 21 residues long (CSP-21). We recently identified a surface-localized protease, SepM, which further cleaves the CSP-21 peptide at the C-terminal end and removes the last 3 residues to generate CSP-18. CSP-18 is the active QS molecule that interacts with the ComD sensor kinase to activate the QS pathway. In this study, we show that SepM specifically cleaves CSP-21 between the Ala18 and Leu19 residues. We also show that SepM recognizes only Ala at position 18 and Leu at position 19, although some CSP-18 variants with a substitution at position 18 can function equally as well as the QS peptide. Furthermore, we demonstrate that SepM homologs from other streptococci are capable of processing CSP-21 to generate functional CSP-18. IMPORTANCE SepM is a membrane-associated streptococcal protease that processes competence-stimulating peptide (CSP) to generate an active quorum-sensing molecule in S. mutans. SepM belongs to the S16 family of serine proteases, and in this study, we found that SepM behaves as an endopeptidase. SepM displays strict substrate specificity and cleaves the peptide bond between the Ala and Leu residues. This is the first report of an endopeptidase that specifically cleaves these two residues. PMID:26553848

  16. Adaptive and Unstructured Mesh Cleaving

    PubMed Central

    Bronson, Jonathan R.; Sastry, Shankar P.; Levine, Joshua A.; Whitaker, Ross T.

    2015-01-01

    We propose a new strategy for boundary conforming meshing that decouples the problem of building tetrahedra of proper size and shape from the problem of conforming to complex, non-manifold boundaries. This approach is motivated by the observation that while several methods exist for adaptive tetrahedral meshing, they typically have difficulty at geometric boundaries. The proposed strategy avoids this conflict by extracting the boundary conforming constraint into a secondary step. We first build a background mesh having a desired set of tetrahedral properties, and then use a generalized stenciling method to divide, or “cleave”, these elements to get a set of conforming tetrahedra, while limiting the impacts cleaving has on element quality. In developing this new framework, we make several technical contributions including a new method for building graded tetrahedral meshes as well as a generalization of the isosurface stuffing and lattice cleaving algorithms to unstructured background meshes. PMID:26137171

  17. Antimicrobial Peptide Conformation as a Structural Determinant of Omptin Protease Specificity

    PubMed Central

    Brannon, John R.; Thomassin, Jenny-Lee; Gruenheid, Samantha

    2015-01-01

    ABSTRACT Bacterial proteases contribute to virulence by cleaving host or bacterial proteins to promote survival and dissemination. Omptins are a family of proteases embedded in the outer membrane of Gram-negative bacteria that cleave various substrates, including host antimicrobial peptides, with a preference for cleaving at dibasic motifs. OmpT, the enterohemorrhagic Escherichia coli (EHEC) omptin, cleaves and inactivates the human cathelicidin LL-37. Similarly, the omptin CroP, found in the murine pathogen Citrobacter rodentium, which is used as a surrogate model to study human-restricted EHEC, cleaves the murine cathelicidin-related antimicrobial peptide (CRAMP). Here, we compared the abilities of OmpT and CroP to cleave LL-37 and CRAMP. EHEC OmpT degraded LL-37 and CRAMP at similar rates. In contrast, C. rodentium CroP cleaved CRAMP more rapidly than LL-37. The different cleavage rates of LL-37 and CRAMP were independent of the bacterial background and substrate sequence specificity, as OmpT and CroP have the same preference for cleaving at dibasic sites. Importantly, LL-37 was α-helical and CRAMP was unstructured under our experimental conditions. By altering the α-helicity of LL-37 and CRAMP, we found that decreasing LL-37 α-helicity increased its rate of cleavage by CroP. Conversely, increasing CRAMP α-helicity decreased its cleavage rate. This structural basis for CroP substrate specificity highlights differences between the closely related omptins of C. rodentium and E. coli. In agreement with previous studies, this difference in CroP and OmpT substrate specificity suggests that omptins evolved in response to the substrates present in their host microenvironments. IMPORTANCE Omptins are recognized as key virulence factors for various Gram-negative pathogens. Their localization to the outer membrane, their active site facing the extracellular environment, and their unique catalytic mechanism make them attractive targets for novel therapeutic strategies

  18. Lysosomal serine protease CLN2 regulates tumor necrosis factor-alpha-mediated apoptosis in a Bid-dependent manner.

    PubMed

    Autefage, Hélène; Albinet, Virginie; Garcia, Virginie; Berges, Hortense; Nicolau, Marie-Laure; Therville, Nicole; Altié, Marie-Françoise; Caillaud, Catherine; Levade, Thierry; Andrieu-Abadie, Nathalie

    2009-04-24

    Apoptosis is a highly organized, energy-dependent program by which multicellular organisms eliminate damaged, superfluous, and potentially harmful cells. Although caspases are the most prominent group of proteases involved in the apoptotic process, the role of lysosomes has only recently been unmasked. This study investigated the role of the lysosomal serine protease CLN2 in apoptosis. We report that cells isolated from patients affected with late infantile neuronal ceroid lipofuscinosis (LINCL) having a deficient activity of CLN2 are resistant to the toxic effect of death ligands such as tumor necrosis factor (TNF), CD95 ligand, or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not to receptor-independent stress agents. CLN2-deficient cells exhibited a defect in TNF-induced Bid cleavage, release of cytochrome c, and caspase-9 and -3 activation. Moreover, extracts from CLN2-overexpressing cells or a CLN2 recombinant protein were able to catalyze the in vitro cleavage of Bid. Noteworthy, correction of the lysosomal enzyme defect of LINCL fibroblasts using a medium enriched in CLN2 protein enabled restoration of TNF-induced Bid and caspase-3 processing and toxicity. Conversely, transfection of CLN2-corrected cells with small interfering RNA targeting Bid abrogated TNF-induced cell death. Altogether, our study demonstrates that genetic deletion of the lysosomal serine protease CLN2 and the subsequent loss of its catalytic function confer resistance to TNF in non-neuronal somatic cells, indicating that CLN2 plays a yet unsuspected role in TNF-induced cell death. PMID:19246452

  19. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway

    PubMed Central

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-01-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061

  20. Correction of the coagulation defect in hemophilia using a factor Xa variant with novel engineered protease function

    PubMed Central

    Ivanciu, Lacramioara; Toso, Raffaella; Margaritis, Paris; Pavani, Giulia; Kim, Haein; Schlachterman, Alexander; Liu, Jian-Hua; Clerin, Valerie; Pittman, Debra D.; Rose-Miranda, Rosalind; Shields, Kathleen M.; Erbe, David V.; Tobin, James F.; Arruda, Valder R.; Camire, Rodney M.

    2011-01-01

    Effective therapies are needed to control excessive bleeding in a range of clinical conditions. We describe a surprisingly useful approach to improve hemostasis in vivo using a variant of coagulation factor Xa (FXaI16L). This conformationally pliant derivative is partially inactive due to a defect in transitioning from zymogen to protease 1,2. Using mouse models of hemophilia, we show that FXaI16L has a prolonged half-life, relative to wild-type FXa and does not cause excessive activation of coagulation. Once clotting mechanisms are activated to produce its cofactor FVa, FXaI16L is driven to the protease state and restores hemostasis in hemophilic animals upon vascular injury. Moreover, using human or murine analogs, we show that FXaI16L is more efficacious than FVIIa which is used to treat bleeding in hemophilia inhibitor patients3. Because of its underlying mechanism of action, FXaI16L may provide an effective strategy to enhance blood clot formation and act as a rapid pan-hemostatic agent for the treatment of bleeding conditions. PMID:22020385

  1. Development of a Cell-Based Fluorescence Resonance Energy Transfer Reporter for Bacillus anthracis Lethal Factor Protease

    SciTech Connect

    Kimura, R H; Steenblock, E R; Camarero, J A

    2007-03-22

    We report the construction of a cell-based fluorescent reporter for anthrax lethal factor (LF) protease activity using the principle of fluorescence resonance energy transfer (FRET). This was accomplished by engineering an Escherichia coli cell line to express a genetically encoded FRET reporter and LF protease. Both proteins were encoded in two different expression plasmids under the control of different tightly controlled inducible promoters. The FRET-based reporter was designed to contain a LF recognition sequence flanked by the FRET pair formed by CyPet and YPet fluorescent proteins. The length of the linker between both fluorescent proteins was optimized using a flexible peptide linker containing several Gly-Gly-Ser repeats. Our results indicate that this FRET-based LF reporter was readily expressed in E. coli cells showing high levels of FRET in vivo in the absence of LF. The FRET signal, however, decreased 5 times after inducing LF expression in the same cell. These results suggest that this cell-based LF FRET reporter may be used to screen genetically encoded libraries in vivo against LF.

  2. Factor XI Deficiency Alters the Cytokine Response and Activation of Contact Proteases during Polymicrobial Sepsis in Mice.

    PubMed

    Bane, Charles E; Ivanov, Ivan; Matafonov, Anton; Boyd, Kelli L; Cheng, Qiufang; Sherwood, Edward R; Tucker, Erik I; Smiley, Stephen T; McCarty, Owen J T; Gruber, Andras; Gailani, David

    2016-01-01

    Sepsis, a systemic inflammatory response to infection, is often accompanied by abnormalities of blood coagulation. Prior work with a mouse model of sepsis induced by cecal ligation and puncture (CLP) suggested that the protease factor XIa contributed to disseminated intravascular coagulation (DIC) and to the cytokine response during sepsis. We investigated the importance of factor XI to cytokine and coagulation responses during the first 24 hours after CLP. Compared to wild type littermates, factor XI-deficient (FXI-/-) mice had a survival advantage after CLP, with smaller increases in plasma levels of TNF-α and IL-10 and delayed IL-1β and IL-6 responses. Plasma levels of serum amyloid P, an acute phase protein, were increased in wild type mice 24 hours post-CLP, but not in FXI-/- mice, supporting the impression of a reduced inflammatory response in the absence of factor XI. Surprisingly, there was little evidence of DIC in mice of either genotype. Plasma levels of the contact factors factor XII and prekallikrein were reduced in WT mice after CLP, consistent with induction of contact activation. However, factor XII and PK levels were not reduced in FXI-/- animals, indicating factor XI deficiency blunted contact activation. Intravenous infusion of polyphosphate into WT mice also induced changes in factor XII, but had much less effect in FXI deficient mice. In vitro analysis revealed that factor XIa activates factor XII, and that this reaction is enhanced by polyanions such polyphosphate and nucleic acids. These data suggest that factor XI deficiency confers a survival advantage in the CLP sepsis model by altering the cytokine response to infection and blunting activation of the contact (kallikrein-kinin) system. The findings support the hypothesis that factor XI functions as a bidirectional interface between contact activation and thrombin generation, allowing the two processes to influence each other. PMID:27046148

  3. Factor XI Deficiency Alters the Cytokine Response and Activation of Contact Proteases during Polymicrobial Sepsis in Mice

    PubMed Central

    Bane, Charles E.; Ivanov, Ivan; Matafonov, Anton; Boyd, Kelli L.; Cheng, Qiufang; Sherwood, Edward R.; Tucker, Erik I.; Smiley, Stephen T.; McCarty, Owen J. T.; Gruber, Andras; Gailani, David

    2016-01-01

    Sepsis, a systemic inflammatory response to infection, is often accompanied by abnormalities of blood coagulation. Prior work with a mouse model of sepsis induced by cecal ligation and puncture (CLP) suggested that the protease factor XIa contributed to disseminated intravascular coagulation (DIC) and to the cytokine response during sepsis. We investigated the importance of factor XI to cytokine and coagulation responses during the first 24 hours after CLP. Compared to wild type littermates, factor XI-deficient (FXI-/-) mice had a survival advantage after CLP, with smaller increases in plasma levels of TNF-α and IL-10 and delayed IL-1β and IL-6 responses. Plasma levels of serum amyloid P, an acute phase protein, were increased in wild type mice 24 hours post-CLP, but not in FXI-/- mice, supporting the impression of a reduced inflammatory response in the absence of factor XI. Surprisingly, there was little evidence of DIC in mice of either genotype. Plasma levels of the contact factors factor XII and prekallikrein were reduced in WT mice after CLP, consistent with induction of contact activation. However, factor XII and PK levels were not reduced in FXI-/- animals, indicating factor XI deficiency blunted contact activation. Intravenous infusion of polyphosphate into WT mice also induced changes in factor XII, but had much less effect in FXI deficient mice. In vitro analysis revealed that factor XIa activates factor XII, and that this reaction is enhanced by polyanions such polyphosphate and nucleic acids. These data suggest that factor XI deficiency confers a survival advantage in the CLP sepsis model by altering the cytokine response to infection and blunting activation of the contact (kallikrein-kinin) system. The findings support the hypothesis that factor XI functions as a bidirectional interface between contact activation and thrombin generation, allowing the two processes to influence each other. PMID:27046148

  4. Proteomics and phylogenetic analysis of the cathepsin L protease family of the helminth pathogen Fasciola hepatica: expansion of a repertoire of virulence-associated factors.

    PubMed

    Robinson, Mark W; Tort, Jose F; Lowther, Jonathan; Donnelly, Sheila M; Wong, Emily; Xu, Weibo; Stack, Colin M; Padula, Matthew; Herbert, Ben; Dalton, John P

    2008-06-01

    Cathepsin L proteases secreted by the helminth pathogen Fasciola hepatica have functions in parasite virulence including tissue invasion and suppression of host immune responses. Using proteomics methods alongside phylogenetic studies we characterized the profile of cathepsin L proteases secreted by adult F. hepatica and hence identified those involved in host-pathogen interaction. Phylogenetic analyses showed that the Fasciola cathepsin L gene family expanded by a series of gene duplications followed by divergence that gave rise to three clades associated with mature adult worms (Clades 1, 2, and 5) and two clades specific to infective juvenile stages (Clades 3 and 4). Consistent with these observations our proteomics studies identified representatives from Clades 1, 2, and 5 but not from Clades 3 and 4 in adult F. hepatica secretory products. Clades 1 and 2 account for 67.39 and 27.63% of total secreted cathepsin Ls, respectively, suggesting that their expansion was positively driven and that these proteases are most critical for parasite survival and adaptation. Sequence comparison studies revealed that the expansion of cathepsin Ls by gene duplication was followed by residue changes in the S2 pocket of the active site. Our biochemical studies showed that these changes result in alterations in substrate binding and suggested that the divergence of the cathepsin L family produced a repertoire of enzymes with overlapping and complementary substrate specificities that could cleave host macromolecules more efficiently. Although the cathepsin Ls are produced as zymogens containing a prosegment and mature domain, all secreted enzymes identified by MS were processed to mature active enzymes. The prosegment region was highly conserved between the clades except at the boundary of prosegment and mature enzyme. Despite the lack of conservation at this section, sites for exogenous cleavage by asparaginyl endopeptidases and a Leu-Ser[downward arrow]His motif for

  5. Human recombinant endopeptidase PHEX has a strict S1' specificity for acidic residues and cleaves peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein.

    PubMed Central

    Campos, Marcelo; Couture, Constance; Hirata, Izaura Y; Juliano, Maria A; Loisel, Thomas P; Crine, Philippe; Juliano, Luiz; Boileau, Guy; Carmona, Adriana K

    2003-01-01

    The PHEX gene (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) encodes a protein (PHEX) with structural homologies to members of the M13 family of zinc metallo-endopeptidases. Mutations in the PHEX gene are responsible for X-linked hypophosphataemia in humans. However, the mechanism by which loss of PHEX function results in the disease phenotype, and the endogenous PHEX substrate(s) remain unknown. In order to study PHEX substrate specificity, combinatorial fluorescent-quenched peptide libraries containing o -aminobenzoic acid (Abz) and 2,4-dinitrophenyl (Dnp) as the donor-acceptor pair were synthesized and tested as PHEX substrates. PHEX showed a strict requirement for acidic amino acid residues (aspartate or glutamate) in S(1)' subsite, with a strong preference for aspartate. Subsites S(2)', S(1) and S(2) exhibited less defined specificity requirements, but the presence of leucine, proline or glycine in P(2)', or valine, isoleucine or histidine in P(1) precluded hydrolysis of the substrate by the enzyme. The peptide Abz-GFSDYK(Dnp)-OH, which contains the most favourable residues in the P(2) to P(2)' positions, was hydrolysed by PHEX at the N-terminus of aspartate with a k(cat)/ K(m) of 167 mM(-1) x s(-1). In addition, using quenched fluorescence peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein sequences flanked by Abz and N -(2,4-dinitrophenyl)ethylenediamine, we showed that these physiologically relevant proteins are potential PHEX substrates. Finally, our results clearly indicate that PHEX does not have neprilysin-like substrate specificity. PMID:12678920

  6. Dual Delivery of Hepatocyte and Vascular Endothelial Growth Factors via a Protease-Degradable Hydrogel Improves Cardiac Function in Rats

    PubMed Central

    Boopathy, Archana V.; Che, Pao-lin; Brown, Milton; García, Andrés J.; Davis, Michael E.

    2012-01-01

    Acute myocardial infarction (MI) caused by ischemia and reperfusion (IR) is the most common cause of cardiac dysfunction due to local cell death and a temporally regulated inflammatory response. Current therapeutics are limited by delivery vehicles that do not address spatial and temporal aspects of healing. The aim of this study was to engineer biotherapeutic delivery materials to harness endogenous cell repair to enhance myocardial repair and function. We have previously engineered poly(ethylene glycol) (PEG)-based hydrogels to present cell adhesive motifs and deliver VEGF to promote vascularization in vivo. In the current study, bioactive hydrogels with a protease-degradable crosslinker were loaded with hepatocyte and vascular endothelial growth factors (HGF and VEGF, respectively) and delivered to the infarcted myocardium of rats. Release of both growth factors was accelerated in the presence of collagenase due to hydrogel degradation. When delivered to the border zones following ischemia-reperfusion injury, there was no acute effect on cardiac function as measured by echocardiography. Over time there was a significant increase in angiogenesis, stem cell recruitment, and a decrease in fibrosis in the dual growth factor delivery group that was significant compared with single growth factor therapy. This led to an improvement in chronic function as measured by both invasive hemodynamics and echocardiography. These data demonstrate that dual growth factor release of HGF and VEGF from a bioactive hydrogel has the capacity to significantly improve cardiac remodeling and function following IR injury. PMID:23226440

  7. Protease proteomics: revealing protease in vivo functions using systems biology approaches.

    PubMed

    Doucet, Alain; Overall, Christopher M

    2008-10-01

    Proteases irreversibly modify proteins by cleaving their amide bonds and are implicated in virtually every important biological process such as immunity, development and tissue repair. Accordingly, it is easy to see that deregulated proteolysis is a pathognomic feature of many diseases. Most of the current information available on proteases was acquired using in vitro methods, which reveals molecular structure, enzyme kinetics and active-site specificity. However, considerably less is known about the relevant biological functions and combined roles of proteases in moulding the proteome. Although models using genetically modified animals are powerful, they are slow to develop, they can be difficult to interpret, and while useful, they remain only models of human disease. Therefore, to understand how proteases accomplish their tasks in organisms and how they participate in pathology, we need to elucidate the protease degradome-the repertoire of proteases expressed by a cell, a tissue or an organism at a particular time-their expression level, activation state, their biological substrates, also known as the substrate degradome-the repertoire of substrates for each protease-and the effect of the activity of each protease on the pathways of the system under study. Achieving this goal is challenging because several proteases might cleave the same protein, and proteases also form pathways and interact to form the protease web [Overall, C.M., Kleifeld, O., 2006. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6 (3), 227-239]. Hence, the net proteolytic potential of the degradome at a particular time on a substrate and pathway must also be understood. Proteomics offers one of the few routes to the understanding of proteolysis in complex in vivo systems and especially in man where genetic manipulations are impossible. The aim of this chapter is to review methods and tools that allow

  8. Host Factors That Interact with the Pestivirus N-Terminal Protease, Npro, Are Components of the Ribonucleoprotein Complex

    PubMed Central

    Jefferson, Matthew; Donaszi-Ivanov, Andras; Pollen, Sean; Dalmay, Tamas; Saalbach, Gerhard

    2014-01-01

    ABSTRACT The viral N-terminal protease Npro of pestiviruses counteracts cellular antiviral defenses through inhibition of IRF3. Here we used mass spectrometry to identify a new role for Npro through its interaction with over 55 associated proteins, mainly ribosomal proteins and ribonucleoproteins, including RNA helicase A (DHX9), Y-box binding protein (YBX1), DDX3, DDX5, eIF3, IGF2BP1, multiple myeloma tumor protein 2, interleukin enhancer binding factor 3 (IEBP3), guanine nucleotide binding protein 3, and polyadenylate-binding protein 1 (PABP-1). These are components of the translation machinery, ribonucleoprotein particles (RNPs), and stress granules. Significantly, we found that stress granule formation was inhibited in MDBK cells infected with a noncytopathic bovine viral diarrhea virus (BVDV) strain, Kyle. However, ribonucleoproteins binding to Npro did not inhibit these proteins from aggregating into stress granules. Npro interacted with YBX1 though its TRASH domain, since the mutant C112R protein with an inactive TRASH domain no longer redistributed to stress granules. Interestingly, RNA helicase A and La autoantigen relocated from a nuclear location to form cytoplasmic granules with Npro. To address a proviral role for Npro in RNP granules, we investigated whether Npro affected RNA interference (RNAi), since interacting proteins are involved in RISC function during RNA silencing. Using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) silencing with small interfering RNAs (siRNAs) followed by Northern blotting of GAPDH, expression of Npro had no effect on RNAi silencing activity, contrasting with other viral suppressors of interferon. We propose that Npro is involved with virus RNA translation in the cytoplasm for virus particle production, and when translation is inhibited following stress, it redistributes to the replication complex. IMPORTANCE Although the pestivirus N-terminal protease, Npro, has been shown to have an important role in degrading IRF3 to

  9. Functional and Structural Characterization of Vibrio cholerae Extracellular Serine Protease B, VesB*

    PubMed Central

    Gadwal, Shilpa; Korotkov, Konstantin V.; Delarosa, Jaclyn R.; Hol, Wim G. J.; Sandkvist, Maria

    2014-01-01

    The chymotrypsin subfamily A of serine proteases consists primarily of eukaryotic proteases, including only a few proteases of bacterial origin. VesB, a newly identified serine protease that is secreted by the type II secretion system in Vibrio cholerae, belongs to this subfamily. VesB is likely produced as a zymogen because sequence alignment with trypsinogen identified a putative cleavage site for activation and a catalytic triad, His-Asp-Ser. Using synthetic peptides, VesB efficiently cleaved a trypsin substrate, but not chymotrypsin and elastase substrates. The reversible serine protease inhibitor, benzamidine, inhibited VesB and served as an immobilized ligand for VesB affinity purification, further indicating its relationship with trypsin-like enzymes. Consistent with this family of serine proteases, N-terminal sequencing implied that the propeptide is removed in the secreted form of VesB. Separate mutagenesis of the activation site and catalytic serine rendered VesB inactive, confirming the importance of these features for activity, but not for secretion. Similar to trypsin but, in contrast to thrombin and other coagulation factors, Na+ did not stimulate the activity of VesB, despite containing the Tyr250 signature. The crystal structure of catalytically inactive pro-VesB revealed that the protease domain is structurally similar to trypsinogen. The C-terminal domain of VesB was found to adopt an immunoglobulin (Ig)-fold that is structurally homologous to Ig-folds of other extracellular Vibrio proteins. Possible roles of the Ig-fold domain in stability, substrate specificity, cell surface association, and type II secretion of VesB, the first bacterial multidomain trypsin-like protease with known structure, are discussed. PMID:24459146

  10. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction

    PubMed Central

    Koizumi, Shun; Irie, Taro; Hirayama, Shoshiro; Sakurai, Yasuyuki; Yashiroda, Hideki; Naguro, Isao; Ichijo, Hidenori; Hamazaki, Jun; Murata, Shigeo

    2016-01-01

    In response to proteasome dysfunction, mammalian cells upregulate proteasome gene expression by activating Nrf1. Nrf1 is an endoplasmic reticulum-resident transcription factor that is continually retrotranslocated and degraded by the proteasome. Upon proteasome inhibition, Nrf1 escapes degradation and is cleaved to become active. However, the processing enzyme for Nrf1 remains obscure. Here we show that the aspartyl protease DNA-damage inducible 1 homolog 2 (DDI2) is required to cleave and activate Nrf1. Deletion of DDI2 reduced the cleaved form of Nrf1 and increased the full-length cytosolic form of Nrf1, resulting in poor upregulation of proteasomes in response to proteasome inhibition. These defects were restored by adding back wild-type DDI2 but not protease-defective DDI2. Our results provide a clue for blocking compensatory proteasome synthesis to improve cancer therapies targeting proteasomes. DOI: http://dx.doi.org/10.7554/eLife.18357.001 PMID:27528193

  11. Supermarket Proteases.

    ERIC Educational Resources Information Center

    Hagar, William G.; Bullerwell, Lornie D.

    2003-01-01

    Presents a laboratory activity on enzymes. Uses common items found in the supermarket that contain protease enzymes, such as contact lens cleaner and meat tenderizer. Demonstrates the digestion of gelatin proteins as part of enzymatic reactions. (Author/SOE)

  12. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: an integrin-binding cysteine protease.

    PubMed

    Kagawa, T F; Cooney, J C; Baker, H M; McSweeney, S; Liu, M; Gubba, S; Musser, J M; Baker, E N

    2000-02-29

    Pathogenic bacteria secrete protein toxins that weaken or disable their host, and thereby act as virulence factors. We have determined the crystal structure of streptococcal pyrogenic exotoxin B (SpeB), a cysteine protease that is a major virulence factor of the human pathogen Streptococcus pyogenes and participates in invasive disease episodes, including necrotizing fasciitis. The structure, determined for the 40-kDa precursor form of SpeB at 1.6-A resolution, reveals that the protein is a distant homologue of the papain superfamily that includes the mammalian cathepsins B, K, L, and S. Despite negligible sequence identity, the protease portion has the canonical papain fold, albeit with major loop insertions and deletions. The catalytic site differs from most other cysteine proteases in that it lacks the Asn residue of the Cys-His-Asn triad. The prosegment has a unique fold and inactivation mechanism that involves displacement of the catalytically essential His residue by a loop inserted into the active site. The structure also reveals the surface location of an integrin-binding Arg-Gly-Asp (RGD) motif that is a feature unique to SpeB among cysteine proteases and is linked to the pathogenesis of the most invasive strains of S. pyogenes. PMID:10681429

  13. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: An integrin-binding cysteine protease

    PubMed Central

    Kagawa, Todd F.; Cooney, Jakki C.; Baker, Heather M.; McSweeney, Sean; Liu, Mengyao; Gubba, Siddeswar; Musser, James M.; Baker, Edward N.

    2000-01-01

    Pathogenic bacteria secrete protein toxins that weaken or disable their host, and thereby act as virulence factors. We have determined the crystal structure of streptococcal pyrogenic exotoxin B (SpeB), a cysteine protease that is a major virulence factor of the human pathogen Streptococcus pyogenes and participates in invasive disease episodes, including necrotizing fasciitis. The structure, determined for the 40-kDa precursor form of SpeB at 1.6-Å resolution, reveals that the protein is a distant homologue of the papain superfamily that includes the mammalian cathepsins B, K, L, and S. Despite negligible sequence identity, the protease portion has the canonical papain fold, albeit with major loop insertions and deletions. The catalytic site differs from most other cysteine proteases in that it lacks the Asn residue of the Cys-His-Asn triad. The prosegment has a unique fold and inactivation mechanism that involves displacement of the catalytically essential His residue by a loop inserted into the active site. The structure also reveals the surface location of an integrin-binding Arg-Gly-Asp (RGD) motif that is a feature unique to SpeB among cysteine proteases and is linked to the pathogenesis of the most invasive strains of S. pyogenes. PMID:10681429

  14. Mycoplasma hyorhinis-Contaminated Cell Lines Activate Primary Innate Immune Cells via a Protease-Sensitive Factor

    PubMed Central

    Heidegger, Simon; Jarosch, Alexander; Schmickl, Martina; Endres, Stefan; Bourquin, Carole; Hotz, Christian

    2015-01-01

    Mycoplasma are a frequent and occult contaminant of cell cultures, whereby these prokaryotic organisms can modify many aspects of cell physiology, rendering experiments that are conducted with such contaminated cells problematic. Chronic Mycoplasma contamination in human monocytic cells lines has been associated with suppressed Toll-like receptor (TLR) function. In contrast, we show here that components derived from a Mycoplasma hyorhinis-infected cell line can activate innate immunity in non-infected primary immune cells. Release of pro-inflammatory cytokines such as IL-6 by dendritic cells in response to Mycoplasma hyorhinis-infected cell components was critically dependent on the adapter protein MyD88 but only partially on TLR2. Unlike canonical TLR2 signaling that is triggered in response to the detection of Mycoplasma infection, innate immune activation by components of Mycoplasma-infected cells was inhibited by chloroquine treatment and sensitive to protease treatment. We further show that in plasmacytoid dendritic cells, soluble factors from Mycoplasma hyorhinis-infected cells induce the production of large amounts of IFN-α. We conclude that Mycoplasma hyorhinis-infected cell lines release protein factors that can potently activate co-cultured innate immune cells via a previously unrecognized mechanism, thus limiting the validity of such co-culture experiments. PMID:26565413

  15. Mycoplasma hyorhinis-Contaminated Cell Lines Activate Primary Innate Immune Cells via a Protease-Sensitive Factor.

    PubMed

    Heidegger, Simon; Jarosch, Alexander; Schmickl, Martina; Endres, Stefan; Bourquin, Carole; Hotz, Christian

    2015-01-01

    Mycoplasma are a frequent and occult contaminant of cell cultures, whereby these prokaryotic organisms can modify many aspects of cell physiology, rendering experiments that are conducted with such contaminated cells problematic. Chronic Mycoplasma contamination in human monocytic cells lines has been associated with suppressed Toll-like receptor (TLR) function. In contrast, we show here that components derived from a Mycoplasma hyorhinis-infected cell line can activate innate immunity in non-infected primary immune cells. Release of pro-inflammatory cytokines such as IL-6 by dendritic cells in response to Mycoplasma hyorhinis-infected cell components was critically dependent on the adapter protein MyD88 but only partially on TLR2. Unlike canonical TLR2 signaling that is triggered in response to the detection of Mycoplasma infection, innate immune activation by components of Mycoplasma-infected cells was inhibited by chloroquine treatment and sensitive to protease treatment. We further show that in plasmacytoid dendritic cells, soluble factors from Mycoplasma hyorhinis-infected cells induce the production of large amounts of IFN-α. We conclude that Mycoplasma hyorhinis-infected cell lines release protein factors that can potently activate co-cultured innate immune cells via a previously unrecognized mechanism, thus limiting the validity of such co-culture experiments. PMID:26565413

  16. Polyglycine hydrolases: fungal b-lactamase-like endoproteases that cleave polyglycine regions within plant class IV chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyglycine hydrolases are secreted fungal proteases that cleave glycine-glycine peptide bonds in the inter-domain linker region of specific plant defense chitinases. Previously, we reported the catalytic activity of polyglycine hydrolases from the phytopathogens Epicoccum sorghi (Es-cmp) and Cochli...

  17. Crystal structure of cleaved vaspin (serpinA12).

    PubMed

    Pippel, Jan; Kuettner, E Bartholomeus; Ulbricht, David; Daberger, Jan; Schultz, Stephan; Heiker, John T; Sträter, Norbert

    2016-01-01

    The adipokine vaspin (serpinA12) is mainly expressed in white adipose tissue and exhibits various beneficial effects on obesity-related processes. Kallikrein 7 is the only known target protease of vaspin and is inhibited by the classical serpin inhibitory mechanism involving a cleavage of the reactive center loop between P1 (M378) and P1' (E379). Here, we present the X-ray structure of vaspin, cleaved between M378 and E379. We provide a comprehensive analysis of differences between the uncleaved and cleaved forms in the shutter, breach, and hinge regions with relation to common molecular features underlying the serpin inhibitory mode. Furthermore, we point out differences towards other serpins and provide novel data underlining the remarkable stability of vaspin. We speculate that the previously reported FKGx1Wx2x3 motif in the breach region may play a decisive role in determining the reactive center loop configuration in the native vaspin state and might contribute to the high thermostability of vaspin. Thus, this structure may provide a basis for future mutational studies. PMID:26529565

  18. Ubiquitin-specific Protease 19 (USP19) Regulates Hypoxia-inducible Factor 1α (HIF-1α) during Hypoxia*

    PubMed Central

    Altun, Mikael; Zhao, Bin; Velasco, Kelly; Liu, Haiyin; Hassink, Gerco; Paschke, Julia; Pereira, Teresa; Lindsten, Kristina

    2012-01-01

    A proper cellular adaptation to low oxygen levels is essential for processes such as development, growth, metabolism, and angiogenesis. The response to decrease in oxygen supply, referred to as hypoxia, is also involved in numerous human diseases including cancer, inflammatory conditions, and vascular disease. The hypoxia-inducible factor 1-α (HIF-1α), a key player in the hypoxic response, is kept under stringent regulation. At normoxia, the levels are kept low as a consequence of the efficient degradation by the ubiquitin-proteasome system, and in response to hypoxia, the degradation is blocked and the accumulating HIF-1α promotes a transcriptional response essential for proper adaptation and survival. Here we show that the ubiquitin-specific protease-19 (USP19) interacts with components of the hypoxia pathway including HIF-1α and rescues it from degradation independent of its catalytic activity. In the absence of USP19, cells fail to mount an appropriate response to hypoxia, indicating an important role for this enzyme in normal or pathological conditions. PMID:22128162

  19. Structural Basis of the Recruitment of Ubiquitin-specific Protease USP15 by Spliceosome Recycling Factor SART3.

    PubMed

    Zhang, Qi; Harding, Rachel; Hou, Feng; Dong, Aiping; Walker, John R; Bteich, Joseph; Tong, Yufeng

    2016-08-12

    Ubiquitin-specific proteases (USPs) USP15 and USP4 belong to a subset of USPs featuring an N-terminal tandem domain in USP (DUSP) and ubiquitin-like (UBL) domain. Squamous cell carcinoma antigen recognized by T-cell 3 (SART3), a spliceosome recycling factor, binds to the DUSP-UBL domain of USP15 and USP4, recruiting them to the nucleus from the cytosol to control deubiquitination of histone H2B and spliceosomal proteins, respectively. To provide structural insight, we solved crystal structures of SART3 in the apo-form and in complex with the DUSP-UBL domain of USP15 at 2.0 and 3.0 Å, respectively. Structural analysis reveals SART3 contains 12 half-a-tetratricopeptide (HAT) repeats, organized into two subdomains, HAT-N and HAT-C. SART3 dimerizes through the concave surface of HAT-C, whereas the HAT-C convex surface binds USP15 in a novel bipartite mode. Isothermal titration calorimetry measurements and mutagenesis analysis confirmed key residues of USP15 involved in the interaction and indicated USP15 binds 20-fold stronger than USP4. PMID:27255711

  20. The expression and the functional roles of tissue factor and protease-activated receptor-2 on SW620 cells.

    PubMed

    Zhou, Hong; Hu, Hongxin; Shi, Wenxia; Ling, Shucai; Wang, Ting; Wang, Haibo

    2008-11-01

    Tissue factor (TF) is believed to play an important role in tissue repair, inflammation, angiogenesis, and tumor metastasis. Protease-activated receptors (PARs) are widely expressed on various cells including tumor cells and associated with many pathological mechanisms. In the present study, the expression of TF and PAR1, PAR2 on human colon cancer cells (SW620 and SW480) was investigated and their functional roles on the behavior of tumor cells were evaluated. It was demonstrated that SW620 and SW480 cells expressed TF at antigen, activity and mRNA levels. However, the highly metastatic cell line SW620 showed slightly higher TF expression than the low metastatic cell line SW480. The PAR2 antigen was strongly expressed on the membrane of SW620 cells, but not on SW480 cells. The PAR1 antigen was not observed in SW620 or SW480 cells, while PAR1 and PAR2 mRNA was detected in SW620 and SW480 cells. The migratory potential of SW620 was stronger than that of SW480 seen in Boyden chambers. PAR2 agonist (SLIGKV-NH2) and factor VIIa significantly stimulated SW620 cell proliferation, migratory activity, and interleukin 8 (IL-8) secretion compared to control. The stimulating effects of factor VIIa could be inhibited by anti-TF and anti-PAR2 but not anti-PAR1 antibodies. In summary, this study demonstrates that TF and PAR2 are strongly expressed on highly metastatic colonic tumor cells and are closely associated with the proliferation and migration of the cells. TF may elucidate its roles in colonic cancer invasion and metastasis via PAR2 pathway. PMID:18949403

  1. Screen of Non-annotated Small Secreted Proteins of Pseudomonas syringae Reveals a Virulence Factor That Inhibits Tomato Immune Proteases.

    PubMed

    Shindo, Takayuki; Kaschani, Farnusch; Yang, Fan; Kovács, Judit; Tian, Fang; Kourelis, Jiorgos; Hong, Tram Ngoc; Colby, Tom; Shabab, Mohammed; Chawla, Rohini; Kumari, Selva; Ilyas, Muhammad; Hörger, Anja C; Alfano, James R; van der Hoorn, Renier A L

    2016-09-01

    Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) is an extracellular model plant pathogen, yet its potential to produce secreted effectors that manipulate the apoplast has been under investigated. Here we identified 131 candidate small, secreted, non-annotated proteins from the PtoDC3000 genome, most of which are common to Pseudomonas species and potentially expressed during apoplastic colonization. We produced 43 of these proteins through a custom-made gateway-compatible expression system for extracellular bacterial proteins, and screened them for their ability to inhibit the secreted immune protease C14 of tomato using competitive activity-based protein profiling. This screen revealed C14-inhibiting protein-1 (Cip1), which contains motifs of the chagasin-like protease inhibitors. Cip1 mutants are less virulent on tomato, demonstrating the importance of this effector in apoplastic immunity. Cip1 also inhibits immune protease Pip1, which is known to suppress PtoDC3000 infection, but has a lower affinity for its close homolog Rcr3, explaining why this protein is not recognized in tomato plants carrying the Cf-2 resistance gene, which uses Rcr3 as a co-receptor to detect pathogen-derived protease inhibitors. Thus, this approach uncovered a protease inhibitor of P. syringae, indicating that also P. syringae secretes effectors that selectively target apoplastic host proteases of tomato, similar to tomato pathogenic fungi, oomycetes and nematodes. PMID:27603016

  2. Modulation of the Bacillus anthracis secretome by the immune inhibitor A1 protease.

    PubMed

    Pflughoeft, Kathryn J; Swick, Michelle C; Engler, David A; Yeo, Hye-Jeong; Koehler, Theresa M

    2014-01-01

    The Bacillus anthracis secretome includes protective antigen, lethal factor, and edema factor, which are the components of anthrax toxin, and other proteins with known or potential roles in anthrax disease. Immune inhibitor A1 (InhA1) is a secreted metalloprotease that is unique to pathogenic members of the Bacillus genus and has been associated with cleavage of host proteins during infection. Here, we report the effect of InhA1 on the B. anthracis secretome. Differential in-gel electrophoresis of proteins present in culture supernatants from a parent strain and an isogenic inhA1-null mutant revealed multiple differences. Of the 1,340 protein spots observed, approximately one-third were less abundant and one-third were more abundant in the inhA1 secretome than in the parent strain secretome. Proteases were strongly represented among those proteins exhibiting a 9-fold or greater change. InhA1 purified from a B. anthracis culture supernatant directly cleaved each of the anthrax toxin proteins as well as an additional secreted protease, Npr599. The conserved zinc binding motif HEXXH of InhA1 (HEYGH) was critical for its proteolytic activity. Our data reveal that InhA1 directly and indirectly modulates the form and/or abundance of over half of all the secreted proteins of B. anthracis. The proteolytic activity of InhA1 on established secreted virulence factors, additional proteases, and other secreted proteins suggests that this major protease plays an important role in virulence not only by cleaving mammalian substrates but also by modulating the B. anthracis secretome itself. PMID:24214942

  3. Torso-like mediates extracellular accumulation of Furin-cleaved Trunk to pattern the Drosophila embryo termini

    PubMed Central

    Johnson, Travis K.; Henstridge, Michelle A.; Herr, Anabel; Moore, Karyn A.; Whisstock, James C.; Warr, Coral G.

    2015-01-01

    Patterning of the Drosophila embryonic termini is achieved by localized activation of the Torso receptor by the growth factor Trunk. Governing this event is the perforin-like protein Torso-like, which is localized to the extracellular space at the embryo poles and has long been proposed to control localized proteolytic activation of Trunk. However, a protease involved in terminal patterning remains to be identified, and the role of Torso-like remains unknown. Here we find that Trunk is cleaved intracellularly by Furin proteases. We further show that Trunk is secreted, and that levels of extracellular Trunk are greatly reduced in torso-like null mutants. On the basis of these and previous findings, we suggest that Torso-like functions to mediate secretion of Trunk, thus providing the mechanism for spatially restricted activation of Torso. Our data represent an alternative mechanism for the spatial control of receptor signalling, and define a different role for perforin-like proteins in eukaryotes. PMID:26508274

  4. Type II transmembrane serine proteases as potential targets for cancer therapy.

    PubMed

    Murray, Andrew S; Varela, Fausto A; List, Karin

    2016-09-01

    Carcinogenesis is accompanied by increased protein and activity levels of extracellular cell-surface proteases that are capable of modifying the tumor microenvironment by directly cleaving the extracellular matrix, as well as activating growth factors and proinflammatory mediators involved in proliferation and invasion of cancer cells, and recruitment of inflammatory cells. These complex processes ultimately potentiate neoplastic progression leading to local tumor cell invasion, entry into the vasculature, and metastasis to distal sites. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression. In this review the knowledge collected over the past two decades about the molecular mechanisms underlying the pro-cancerous properties of selected TTSPs will be summarized. Furthermore, we will discuss how these insights may facilitate the translation into clinical settings in the future by specifically targeting TTSPs as part of novel cancer treatment regimens. PMID:27078673

  5. Type II transmembrane serine proteases as potential targets for cancer therapy

    PubMed Central

    Murray, Andrew S.; Varela, Fausto A.

    2016-01-01

    Carcinogenesis is accompanied by increased protein and activity levels of extracellular cell-surface proteases that are capable of modifying the tumor micro-environment by directly cleaving the extracellular matrix, as well as activating growth factors and proinflammatory mediators involved in proliferation and invasion of cancer cells, and recruitment of inflammatory cells. These complex processes ultimately potentiate neoplastic progression leading to local tumor cell invasion, entry into the vasculature, and metastasis to distal sites. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression. In this review the knowledge collected over the past two decades about the molecular mechanisms underlying the pro-cancerous properties of selected TTSPs will be summarized. Furthermore, we will discuss how these insights may facilitate the translation into clinical settings in the future by specifically targeting TTSPs as part of novel cancer treatment regimens. PMID:27078673

  6. Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes.

    PubMed Central

    Kapur, V; Majesky, M W; Li, L L; Black, R A; Musser, J M

    1993-01-01

    Streptococcal pyrogenic exotoxin B (SPE B), a conserved extracellular cysteine protease expressed by the human pathogenic bacterium Streptococcus pyogenes, was purified and shown to cleave inactive human interleukin 1 beta precursor (pIL-1 beta) to produce biologically active IL-1 beta. SPE B cleaves pIL-1 beta one residue amino-terminal to the site where a recently characterized endogenous human cysteine protease acts. IL-1 beta resulting from cleavage of pIL-1 beta by SPE B induced nitric oxide synthase activity in vascular smooth muscle cells and killed of the human melanoma A375 line. Two additional naturally occurring SPE B variants cleaved pIL-1 beta in a similar fashion. By demonstrating that SPE B catalyzes the formation of biologically active IL-1 beta from inactive pIL-1 beta, our data add a further dimension to an emerging theme in microbial pathogenesis that bacterial and viral virulence factors act directly on host cytokine pathways. The data also contribute to an enlarging literature demonstrating that microbial extracellular cysteine proteases are important in host-parasite interactions. Images Fig. 1 Fig. 2 Fig. 4 PMID:7689226

  7. Conformational Lability in Serine Protease Active Sites: Structures of Hepatocyte Growth Factor Activator (HGFA) Alone and with the Inhibitory Domain from HGFA Inhibitor-1B

    SciTech Connect

    Shia, Steven; Stamos, Jennifer; Kirchhofer, Daniel; Fan, Bin; Wu, Judy; Corpuz, Raquel T.; Santell, Lydia; Lazarus, Robert A.; Eigenbrot, Charles

    2010-07-20

    Hepatocyte growth factor activator (HGFA) is a serine protease that converts hepatocyte growth factor (HGF) into its active form. When activated HGF binds its cognate receptor Met, cellular signals lead to cell growth, differentiation, and migration, activities which promote tissue regeneration in liver, kidney and skin. Intervention in the conversion of HGF to its active form has the potential to provide therapeutic benefit where HGF/Met activity is associated with tumorigenesis. To help identify ways to moderate HGF/Met effects, we have determined the molecular structure of the protease domain of HGFA. The structure we determined, at 2.7 {angstrom} resolution, with no pseudo-substrate or inhibitor bound is characterized by an unconventional conformation of key residues in the enzyme active site. In order to find whether this apparently non-enzymatically competent arrangement would persist in the presence of a strongly-interacting inhibitor, we also have determined, at 2.6 {angstrom} resolution, the X-ray structure of HGFA complexed with the first Kunitz domain (KD1) from the physiological inhibitor hepatocyte growth factor activator inhibitor 1B (HAI-1B). In this complex we observe a rearranged substrate binding cleft that closely mirrors the cleft of other serine proteases, suggesting an extreme conformational dynamism. We also characterize the inhibition of 16 serine proteases by KD1, finding that the previously reported enzyme specificity of the intact extracellular region of HAI-1B resides in KD1 alone. We find that HGFA, matriptase, hepsin, plasma kallikrein and trypsin are potently inhibited, and use the complex structure to rationalize the structural basis of these results.

  8. The structure of a universally employed enzyme: V8 protease from Staphylococcus aureus

    SciTech Connect

    Prasad, Lata; Leduc, Yvonne; Hayakawa, Koto; Delbaere, Louis T.J.

    2008-06-27

    V8 protease, an extracellular protease of Staphylococcus aureus, is related to the pancreatic serine proteases. The enzyme cleaves peptide bonds exclusively on the carbonyl side of aspartate and glutamate residues. Unlike the pancreatic serine proteases, V8 protease possesses no disulfide bridges. This is a major evolutionary difference, as all pancreatic proteases have at least two disulfide bridges. The structure of V8 protease shows structural similarity with several other serine proteases, specifically the epidermolytic toxins A and B from S. aureus and trypsin, in which the conformation of the active site is almost identical. V8 protease is also unique in that the positively charged N-terminus is involved in determining the substrate-specificity of the enzyme.

  9. Two mitochondrial matrix proteases act sequentially in the processing of mammalian matrix enzymes.

    PubMed

    Kalousek, F; Hendrick, J P; Rosenberg, L E

    1988-10-01

    The imported precursors of the mammalian matrix enzymes malate dehydrogenase [(S)-malate:NAD+ oxidoreductase, EC 1.1.1.37] and ornithine transcarbamylase (carbamoyl-phosphate:L-ornithine carbamoyltransferase, EC 2.1.3.3) are cleaved to their mature subunits in two steps, each catalyzed by matrix-localized processing proteases. The number and properties of these proteases are the subjects of this report. We have identified and characterized two distinct protease activities in a crude matrix fraction from rat liver: processing protease I, which cleaves these precursors to the corresponding intermediate form; and processing protease II, which cleaves the intermediate forms to mature subunits. Protease I is insensitive to chelation by EDTA and to inactivation with N-ethylmaleimide; protease II is inhibited by 5 mM EDTA and is inactivated by treatment with N-ethylmaleimide. We have prepared from mitochondrial matrix an 800-fold-enriched protease I fraction free of protease II activity by using the following steps: ion exchange, hydroxyapatite, molecular sieving, and hydrophobic chromatography. Using similar procedures, we also have prepared an approximately 2000-fold-enriched protease II fraction, which has a trace amount of contaminating protease I. This enriched protease II fraction has little or no cleavage activity toward mitochondrial precursors but rapidly and efficiently converts intermediate forms to mature size. Finally, we show that protease I alone is sufficient to cleave the precursor of a third nuclear-encoded mitochondrial protein subunit--the beta subunit of propionyl-CoA carboxylase [propanoyl-CoA:carbon dioxide ligase (ADP-forming), EC 6.4.1.3]--to its mature size. PMID:3050998

  10. Function of site-2 proteases in bacteria and bacterial pathogens

    PubMed Central

    Schneider, Jessica S.; Glickman, Michael S.

    2014-01-01

    Site-2 Proteases (S2Ps) are a class of intramembrane metalloproteases named after the founding member of this protein family, human S2P, which cleaves Sterol Regulatory Element Binding Proteins which control cholesterol and fatty acid biosynthesis. S2Ps are widely distributed in bacteria and participate in diverse pathways that control such diverse functions as membrane integrity, sporulation, lipid biosynthesis, pheromone production, virulence, and others. The most common signaling mechanism mediated by S2Ps is the coupled degradation of transmembrane anti-Sigma factors to activate ECF Sigma factor regulons. However, additional signaling mechanisms continue to emerge as more prokaryotic S2Ps are characterized, including direct proteolysis of membrane embedded transcription factors and proteolysis of non-transcriptional membrane proteins or membrane protein remnants. In this review we seek to comprehensively review the functions of S2Ps in bacteria and bacterial pathogens and attempt to organize these proteases into conceptual groups that will spur further study. PMID:24099002

  11. The SpeB virulence factor of Streptococcus pyogenes, a multifunctional secreted and cell surface molecule with strepadhesin, laminin-binding and cysteine protease activity.

    PubMed

    Hytönen, J; Haataja, S; Gerlach, D; Podbielski, A; Finne, J

    2001-01-01

    The interactions between pathogenic bacteria and the host need to be resolved at the molecular level in order to develop novel vaccines and drugs. We have previously identified strepadhesin, a novel glycoprotein-binding activity in Streptococcus pyogenes, which is regulated by Mga, a regulator of streptococcal virulence factors. We have now identified the protein responsible for the strepadhesin activity and find that (i) strepadhesin activity is carried by SpeB, streptococcal pyrogenic exotoxin with cysteine protease activity; (ii) SpeB carries laminin-binding activity of the bacteria; and (iii) SpeB is not only a secreted molecule but also occurs unexpectedly tightly bound to the bacterial cell surface. Thus, in contrast to the previous view of SpeB as mainly an extracellular protease, it is also present as a streptococcal surface molecule with binding activity to laminin and other glycoproteins. PMID:11136470

  12. Matrilysin-1 (MMP7) cleaves galectin-3 and inhibits wound healing in intestinal epithelial cells

    PubMed Central

    Puthenedam, Manjula; Wu, Feng; Shetye, Alysha; Michaels, Alex; Rhee, Ki-Jong; Kwon, John H

    2010-01-01

    Background Galectin-3 is an animal lectin that has been implicated in wound healing and is decreased in inflammatory bowel disease (IBD). Matrix metalloproteinase-7 (MMP7) also known as matrilysin-1, a protease shown to cleave extracellular matrix proteins, is highly expressed in IBD tissues, especially at the leading edge of gastrointestinal ulcers. The ability of MMP7 to cleave galectin-3 and influence wound healing has not been reported previously. Aim To determine whether MMP7 cleaves galectin-3 and modulates wound healing in intestinal epithelial cells. Methods The cleaved fragments of galectin-3 were identified by N-terminal sequencing and mass spectrometry. Western blotting was used to detect the cleaved galectin-3 products in a colonic epithelial cell line (T84 cells). Cell migration was studied by in vitro scratch method. Results We demonstrate for the first time that MMP7 cleaves galectin-3 in vitro, resulting in three cleaved fragments (20.2 kDa, 18.9 kDa and 15.5 kDa). Exogenous treatment of T84 cells with recombinant MMP7 resulted in the appearance of secreted galectin-3 cleavage fragments in the supernatant. MMP7 inhibited cell migration and resulted in wound retraction and the addition of MMP7 to galectin-3 abrogated the wound healing and cell migration induced by galectin-3. Conclusions We have demonstrated that galectin-3 is a substrate for MMP7. Cleavage of galectin-3 may be one mechanism by which MMP7 inhibits wound healing. This study has significance in understanding delayed wound healing in chronic intestinal diseases like intestinal ulcers and IBD where MMP7 protein expression is elevated with a decreased galectin-3 protein expression. PMID:20812334

  13. A bead-based cleavage method for large-scale identification of protease substrates

    PubMed Central

    Wang, Chunli; Ye, Mingliang; Wei, Xiaoluan; Bian, Yangyang; Cheng, Kai; Zou, Hanfa

    2016-01-01

    Proteolysis is a major form of post translational modification which occurs when a protease cleaves peptide bonds in a target protein to modify its activity. Tracking protease substrates is indispensable for understanding its cellular functions. However, it is difficult to directly identify protease substrates because the end products of proteolysis, the cleaved protein fragments, must be identified among the pool of cellular proteins. Here we present a bead-based cleavage approach using immobilized proteome as the screening library to identify protease substrates. This method enables efficient separation of proteolyzed proteins from background protein mixture. Using caspase-3 as the model protease, we have identified 1159 high confident substrates, among which, strikingly, 43.9% of substrates undergo degradation during apoptosis. The huge number of substrates and positive support of in vivo evidence indicate that the BBC method is a powerful tool for protease substrates identification. PMID:26935269

  14. Mirolase, a novel subtilisin-like serine protease from the periodontopathogen Tannerella forsythia

    PubMed Central

    Ksiazek, Miroslaw; Karim, Abdulkarim Y.; Bryzek, Danuta; Enghild, Jan J.; Thøgersen, Ida B.; Koziel, Joanna; Potempa, Jan

    2015-01-01

    The genome of Tannerella forsythia, an etiologic factor of chronic periodontitis, contains several genes encoding putative proteases. Here, we characterized a subtilisin-like serine protease of T. forsythia referred to as mirolase. Recombinant full-length latent promirolase (85 kDa, without its signal peptide) processed itself through sequential autoproteolytic cleavages into a mature enzyme of 40 kDa. Mirolase latency was driven by the N-terminal prodomain (NTP). In stark contrast to almost all known subtilases, the cleaved NTP remained non-covalently associated with mirolase, inhibiting its proteolytic, but not amidolytic, activity. Full activity was observed only after the NTP was gradually, and fully, degraded. Both activity and processing was absolutely dependent on calcium ions, which were also essential for enzyme stability. As a consequence, both serine protease inhibitors and calcium ions chelators inhibited mirolase activity. Activity assays using an array of chromogenic substrates revealed that mirolase specificity is driven not only by the substrate-binding subsite S1, but also by other subsites. Taken together mirolase is a calcium-dependent serine protease of the S8 family with the unique mechanism of activation that may contribute to T. forsythia pathogenicity by degradation of fibrinogen, hemoglobin and the antimicrobial peptide LL-37. PMID:25391881

  15. Granulocyte proteases do not process endothelial cell-derived unusually large von Willebrand factor multimers to plasma vWF in vivo.

    PubMed

    Phillips, M D; Vu, C; Nolasco, L; Moake, J L

    1991-06-01

    The unusually large von Willebrand factor (ULvWF) multimers present within endothelial cells and platelets are larger than the vWF multimers normally found in adult human plasma. Furthermore, ULvWF multimers are cleared rapidly from the circulation if they are released by intense endothelial cell stimulation. The mechanisms by which the ULvWF multimers are processed to large plasma vWF multimers are not known. It has been demonstrated that granulocyte proteases are capable of decreasing vWF multimer size in vitro, and that some patients with myeloproliferative syndromes have a relative absence of large plasma vWF multimers in sodium citrate-anticoagulated plasma samples. In order to assess the influence of granulocyte proteases on vWF multimer size, we evaluated the vWF multimeric patterns in 94 plasma samples from 60 patients with neutrophil counts that were either considerably elevated or extremely reduced. In 83 of 94 plasma samples, the vWF multimeric patterns were normal. No patients with very low neutrophil counts had ULvWF multimers present. These observations suggest that granulocyte proteases are not likely to be involved in vivo in the processing of ULvWF multimers from endothelial cells to the smaller vWF forms in circulation. PMID:2069167

  16. A new fusion protein platform for quantitatively measuring activity of multiple proteases

    PubMed Central

    2014-01-01

    Background Recombinant proteins fused with specific cleavage sequences are widely used as substrate for quantitatively analyzing the activity of proteases. Here we propose a new fusion platform for multiple proteases, by using diaminopropionate ammonia-lyase (DAL) as the fusion protein. It was based on the finding that a fused His6-tag could significantly decreases the activities of DAL from E. coli (eDAL) and Salmonella typhimurium (sDAL). Previously, we have shown that His6GST-tagged eDAL could be used to determine the activity of tobacco etch virus protease (TEVp) under different temperatures or in the denaturant at different concentrations. In this report, we will assay different tags and cleavage sequences on DAL for expressing yield in E. coli, stability of the fused proteins and performance of substrate of other common proteases. Results We tested seven different protease cleavage sequences (rhinovirus 3C, TEV protease, factor Xa, Ssp DnaB intein, Sce VMA1 intein, thrombin and enterokinase), three different tags (His6, GST, CBD and MBP) and two different DALs (eDAL and sDAL), for their performance as substrate to the seven corresponding proteases. Among them, we found four active DAL-fusion substrates suitable for TEVp, factor Xa, thrombin and DnaB intein. Enterokinase cleaved eDAL at undesired positions and did not process sDAL. Substitution of GST with MBP increase the expression level of the fused eDAL and this fusion protein was suitable as a substrate for analyzing activity of rhinovirus 3C. We demonstrated that SUMO protease Ulp1 with a N-terminal His6-tag or MBP tag displayed different activity using the designed His6SUMO-eDAL as substrate. Finally, owing to the high level of the DAL-fusion protein in E. coli, these protein substrates can also be detected directly from the crude extract. Conclusion The results show that our designed DAL-fusion proteins can be used to quantify the activities of both sequence- and conformational-specific proteases, with

  17. Transcriptional activation of mouse mast cell Protease-7 by activin and transforming growth factor-beta is inhibited by microphthalmia-associated transcription factor.

    PubMed

    Funaba, Masayuki; Ikeda, Teruo; Murakami, Masaru; Ogawa, Kenji; Tsuchida, Kunihiro; Sugino, Hiromu; Abe, Matanobu

    2003-12-26

    Previous studies have revealed that activin A and transforming growth factor-beta1 (TGF-beta1) induced migration and morphological changes toward differentiation in bone marrow-derived cultured mast cell progenitors (BMCMCs). Here we show up-regulation of mouse mast cell protease-7 (mMCP-7), which is expressed in differentiated mast cells, by activin A and TGF-beta1 in BMCMCs, and the molecular mechanism of the gene induction of mmcp-7. Smad3, a signal mediator of the activin/TGF-beta pathway, transcriptionally activated mmcp-7. Microphthalmia-associated transcription factor (MITF), a tissue-specific transcription factor predominantly expressed in mast cells, melanocytes, and heart and skeletal muscle, inhibited Smad3-mediated mmcp-7 transcription. MITF associated with Smad3, and the C terminus of MITF and the MH1 and linker region of Smad3 were required for this association. Complex formation between Smad3 and MITF was neither necessary nor sufficient for the inhibition of Smad3 signaling by MITF. MITF inhibited the transcriptional activation induced by the MH2 domain of Smad3. In addition, MITF-truncated N-terminal amino acids could associate with Smad3 but did not inhibit Smad3-mediated transcription. The level of Smad3 was decreased by co-expression of MITF but not of dominant-negative MITF, which resulted from proteasomal protein degradation. The changes in the level of Smad3 protein were paralleled by those in Smad3-mediated signaling activity. These findings suggest that MITF negatively regulates Smad-dependent activin/TGF-beta signaling in a tissue-specific manner. PMID:14527958

  18. EspP, an Extracellular Serine Protease from Enterohemorrhagic E. coli, Reduces Coagulation Factor Activities, Reduces Clot Strength, and Promotes Clot Lysis

    PubMed Central

    Rand, Margaret L.; Mian, Hira S.; Brnjac, Elena; Sandercock, Linda E.; Akula, Indira; Julien, Jean-Philippe; Pai, Emil F.; Chesney, Alden E.

    2016-01-01

    Background EspP (E. coli secreted serine protease, large plasmid encoded) is an extracellular serine protease produced by enterohemorrhagic E. coli (EHEC) O157:H7, a causative agent of diarrhea-associated Hemolytic Uremic Syndrome (D+HUS). The mechanism by which EHEC induces D+HUS has not been fully elucidated. Objectives We investigated the effects of EspP on clot formation and lysis in human blood. Methods Human whole blood and plasma were incubated with EspPWT at various concentrations and sampled at various time points. Thrombin time (TT), prothrombin time (PT), and activated partial thromboplastin time (aPTT), coagulation factor activities, and thrombelastgraphy (TEG) were measured. Results and Conclusions Human whole blood or plasma incubated with EspPWT was found to have prolonged PT, aPTT, and TT. Furthermore, human whole blood or plasma incubated with EspPWT had reduced activities of coagulation factors V, VII, VIII, and XII, as well as prothrombin. EspP did not alter the activities of coagulation factors IX, X, or XI. When analyzed by whole blood TEG, EspP decreased the maximum amplitude of the clot, and increased the clot lysis. Our results indicate that EspP alters hemostasis in vitro by decreasing the activities of coagulation factors V, VII, VIII, and XII, and of prothrombin, by reducing the clot strength and accelerating fibrinolysis, and provide further evidence of a functional role for this protease in the virulence of EHEC and the development of D+HUS. PMID:26934472

  19. Botulinum neurotoxin: a deadly protease with applications to human medicine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) are some of the most potent biological toxins to humans. They are synthesized by the gram-positive, spore-forming bacterium Clostridium botulinum. BoNT is secreted from the bacterium as a ~150 kDa polypeptide which is cleaved by bacterial or host proteases into a ~50 kD...

  20. Caught in the act: the crystal structure of cleaved cathepsin L bound to the active site of Cathepsin L.

    PubMed

    Sosnowski, Piotr; Turk, Dušan

    2016-04-01

    Cathepsin L is a ubiquitously expressed papain-like cysteine protease involved in the endosomal degradation of proteins and has numerous roles in physiological and pathological processes, such as arthritis, osteoporosis, and cancer. Insight into the specificity of cathepsin L is important for elucidating its physiological roles and drug discovery. To study interactions with synthetic ligands, we prepared a presumably inactive mutant and crystallized it. Unexpectedly, the crystal structure determined at 1.4 Å revealed that the cathepsin L molecule is cleaved, with the cleaved region trapped in the active site cleft of the neighboring molecule. Hence, the catalytic mutant demonstrated low levels of catalytic activity. PMID:26992470

  1. Asparaginyl endopeptidase cleaves TDP-43 in brain.

    PubMed

    Herskowitz, Jeremy H; Gozal, Yair M; Duong, Duc M; Dammer, Eric B; Gearing, Marla; Ye, Keqiang; Lah, James J; Peng, Junmin; Levey, Allan I; Seyfried, Nicholas T

    2012-08-01

    TAR DNA-binding protein 43 (TDP-43) is a nuclear protein involved in RNA splicing and a major protein component in ubiquitin-positive, tau-negative inclusions of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Under disease conditions, TDP-43 redistributes to the cytoplasm where it can be phosphorylated, ubiquitinated, and proteolytically cleaved. Enzymes responsible for TDP-43 proteolytic processing in brain remain largely unreported. Using a MS approach, we identified two truncated TDP-43 peptides, terminating C-terminal to asparagines 291 (N291) and 306 (N306). The only documented mammalian enzyme capable of cleaving C-terminal to asparagine is asparaginyl endopeptidase (AEP). TDP-43-immunoreactive fragments (~35 and 32 kDa) predicted to be generated by AEP cleavage at N291 and N306 were observed by Western blot analyses of postmortem frontotemporal lobar degeneration brain tissue and cultured human cells over-expressing TDP-43. Studies in vitro determined that AEP can directly cleave TDP-43 at seven sites, including N291 and N306. Western blots of brain homogenates isolated from AEP-null mice and wild-type littermate controls revealed that TDP-43 proteolytic fragments were substantially reduced in the absence of AEP in vivo. Taken together, we conclude that TDP-43 is cleaved by AEP in brain. Moreover, these data highlight the utility of combining proteomic strategies in vitro and in vivo to provide insight into TDP-43 biology that will fuel the design of more detailed models of disease pathogenesis. PMID:22718532

  2. Optimized catalytic DNA-cleaving ribozymes

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1996-01-01

    The present invention discloses nucleic acid enzymes capable of cleaving nucleic acid molecules, including single-stranded DNA, in a site-specific manner under physiologic conditions, as well as compositions including same. The present invention also discloses methods of making and using the disclosed enzymes and compositions.

  3. Global Substrate Profiling of Proteases in Human Neutrophil Extracellular Traps Reveals Consensus Motif Predominantly Contributed by Elastase

    PubMed Central

    Knudsen, Giselle M.; Perera, Natascha C.; Jenne, Dieter E.; Murphy, John E.; Craik, Charles S.; Hermiston, Terry W.

    2013-01-01

    Neutrophil extracellular traps (NETs) consist of antimicrobial molecules embedded in a web of extracellular DNA. Formation of NETs is considered to be a defense mechanism utilized by neutrophils to ensnare and kill invading pathogens, and has been recently termed NETosis. Neutrophils can be stimulated to undergo NETosis ex vivo, and are predicted to contain high levels of serine proteases, such as neutrophil elastase (NE), cathepsin G (CG) and proteinase 3 (PR3). Serine proteases are important effectors of neutrophil-mediated immunity, which function directly by degrading pathogenic virulent factors and indirectly via proteolytic activation or deactivation of cytokines, chemokines and receptors. In this study, we utilized a diverse and unbiased peptide library to detect and profile protease activity associated with NETs induced by phorbol-12-myristate-13-acetate (PMA). We obtained a “proteolytic signature” from NETs derived from healthy donor neutrophils and used proteomics to assist in the identification of the source of this proteolytic activity. In addition, we profiled each neutrophil serine protease and included the newly identified enzyme, neutrophil serine protease 4 (NSP4). Each enzyme had overlapping yet distinct endopeptidase activities and often cleaved at unique sites within the same peptide substrate. The dominant proteolytic activity in NETs was attributed to NE; however, cleavage sites corresponding to CG and PR3 activity were evident. When NE was immunodepleted, the remaining activity was attributed to CG and to a lesser extent PR3 and NSP4. Our results suggest that blocking NE activity would abrogate the major protease activity associated with NETs. In addition, the newly identified substrate specificity signatures will guide the design of more specific probes and inhibitors that target NET-associated proteases. PMID:24073241

  4. Fluorous-based Peptide Microarrays for Protease Screening

    PubMed Central

    Collet, Beatrice Y. M.; Nagashima, Tadamichi; Yu, Marvin S.; Pohl, Nicola L. B.

    2009-01-01

    As ever more protease sequences are uncovered through genome sequencing projects, efficient parallel methods to discover the potential substrates of these proteases becomes crucial. Herein we describe the first use of fluorous-based microarrays to probe peptide sequences and begin to define the scope and limitations of fluorous microarray technologies for the screening of proteases. Comparison of a series of serine proteases showed that their ability to cleave peptide substrates in solution was maintained upon immobilization of these substrates onto fluorous-coated glass slides. The fluorous surface did not serve to significantly inactivate the enzymes. However, addition of hydrophilic components to the peptide sequences could induce lower rates of substrate cleavage with enzymes such as chymotrypsin with affinities to hydrophobic moieties. This work represents the first step to creating robust protease screening platforms using noncovalent microarray interface that can easily incorporate a range of compounds on the same slide. PMID:20161483

  5. A Cell-Based Assay Reveals Nuclear Translocation of Intracellular Domains Released by SPPL Proteases.

    PubMed

    Mentrup, Torben; Häsler, Robert; Fluhrer, Regina; Saftig, Paul; Schröder, Bernd

    2015-08-01

    During regulated intramembrane proteolysis (RIP) a membrane-spanning substrate protein is cleaved by an ectodomain sheddase and an intramembrane cleaving protease. A cytoplasmic intracellular domain (ICD) is liberated, which can migrate to the nucleus thereby influencing transcriptional regulation. Signal peptide peptidase-like (SPPL) 2a and 2b have been implicated in RIP of type II transmembrane proteins. Even though SPPL2a might represent a potential pharmacological target for treatment of B-cell-mediated autoimmunity, no specific and potent inhibitors for this enzyme are currently available. We report here on the first quantitative cell-based assay for measurement of SPPL2a/b activity. Demonstrating the failure of standard Gal4/VP16 reporter assays for SPPL2a/b analysis, we have devised a novel system employing β-galactosidase (βGal) complementation. This is based on detecting nuclear translocation of the proteolytically released substrate ICDs, which results in specific restoration of βGal activity. Utilizing this potentially high-throughput compatible new setup, we demonstrate nuclear translocation of the ICDs from integral membrane protein 2B (ITM2B), tumor necrosis factor (TNF) and CD74 and identify secreted frizzled-related protein 2 (SFRP2) as potential transcriptional downstream target of the CD74 ICD. We show that the presented assay is easily adaptable to other intramembrane proteases and therefore represents a valuable tool for the functional analysis and development of new inhibitors of this class of enzymes. PMID:25824657

  6. Urokinase-type Plasminogen Activator-like Proteases in Teleosts Lack Genuine Receptor-binding Epidermal Growth Factor-like Domains*

    PubMed Central

    Bager, René; Kristensen, Thomas K.; Jensen, Jan K.; Szczur, Agnieszka; Christensen, Anni; Andersen, Lisbeth M.; Johansen, Jesper S.; Larsen, Niels; Baatrup, Erik; Huang, Mingdong; Ploug, Michael; Andreasen, Peter A.

    2012-01-01

    Plasminogen activation catalyzed by urokinase-type plasminogen activator (uPA) plays an important role in normal and pathological tissue remodeling processes. Since its discovery in the mid-1980s, the cell membrane-anchored urokinase-type plasminogen activator receptor (uPAR) has been believed to be central to the functions of uPA, as uPA-catalyzed plasminogen activation activity appeared to be confined to cell surfaces through the binding of uPA to uPAR. However, a functional uPAR has so far only been identified in mammals. We have now cloned, recombinantly produced, and characterized two zebrafish proteases, zfuPA-a and zfuPA-b, which by several criteria are the fish orthologs of mammalian uPA. Thus, both proteases catalyze the activation of fish plasminogen efficiently and both proteases are inhibited rapidly by plasminogen activator inhibitor-1 (PAI-1). But zfuPA-a differs from mammalian uPA by lacking the exon encoding the uPAR-binding epidermal growth factor-like domain; zfuPA-b differs from mammalian uPA by lacking two cysteines of the epidermal growth factor-like domain and a uPAR-binding sequence comparable with that found in mammalian uPA. Accordingly, no zfuPA-b binding activity could be found in fish white blood cells or fish cell lines. We therefore propose that the current consensus of uPA-catalyzed plasminogen activation taking place on cell surfaces, derived from observations with mammals, is too narrow. Fish uPAs appear incapable of receptor binding in the manner known from mammals and uPA-catalyzed plasminogen activation in fish may occur mainly in solution. Studies with nonmammalian vertebrate species are needed to obtain a comprehensive understanding of the mechanism of plasminogen activation. PMID:22733817

  7. The Host Targeting motif in exported Plasmodium proteins is cleaved in the parasite endoplasmic reticulum

    PubMed Central

    Osborne, Andrew R.; Speicher, Kaye D.; Tamez, Pamela A.; Bhattacharjee, Souvik; Speicher, David W.; Haldar, Kasturi

    2010-01-01

    During the blood stage of its lifecycle, the malaria parasite resides and replicates inside a membrane vacuole within its host cell, the human erythrocyte. The parasite exports many proteins across the vacuole membrane and into the host cell cytoplasm. Most exported proteins are characterized by the presence of a Host Targeting (HT) motif, also referred to as a Plasmodium Export Element (PEXEL), which corresponds to the consensus sequence RxLxE/D/Q. During export the HT motif is cleaved by an unknown protease. Here, we generate parasite lines expressing HT motif containing proteins that are localized to different compartments within the parasite or host cell. We find that the HT motif in a protein that is retained in the parasite endoplasmic reticulum, is cleaved and N-acetylated as efficiently as a protein that is exported. This shows that cleavage of the HT motif occurs early in the secretory pathway, in the parasite endoplasmic reticulum. PMID:20117149

  8. Cleaved-edge-overgrowth nanogap electrodes

    NASA Astrophysics Data System (ADS)

    Luber, Sebastian M.; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc

    2011-02-01

    We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 MΩ range with kΩ lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.

  9. Substrate properties of C1 inhibitor Ma (alanine 434----glutamic acid). Genetic and structural evidence suggesting that the P12-region contains critical determinants of serine protease inhibitor/substrate status.

    PubMed

    Skriver, K; Wikoff, W R; Patston, P A; Tausk, F; Schapira, M; Kaplan, A P; Bock, S C

    1991-05-15

    The serine protease inhibitor (serpin) C1 inhibitor inactivates enzymes involved in the regulation of vascular permeability. A patient from the Ma family with the genetic disorder hereditary angioedema inherited a dysfunctional C1 inhibitor allele. Relative to normal plasma, the patients's plasma contained an additional C1 inhibitor immunoreactive band, which comigrated with normal C1 inhibitor cleaved by plasma kallikrein, C1s, or factor XIIa. C1 inhibitor Ma did not react with a monoclonal antibody to a neoepitope that is present in complexed and cleaved normal C1 inhibitor, suggesting conformational differences between cleaved normal C1- inhibitor and cleaved C1 inhibitor Ma. Molecular cloning and sequencing of exon 8 of the C1 inhibitor Ma allele revealed a single C to A mutation, changing alanine 434 to glutamic acid. Ala 434 of C1 inhibitor aligns with the P12 residue of the prototypical serpin alpha 1-antitrypsin. The P12 amino acid of all inhibitory serpins is alanine, and it is present in a highly conserved region on the amino-terminal side of the serpin-reactive center loop. Whereas normal C1 inhibitor expressed by transfected COS-1 cells formed complexes with and was cleaved by kallikrein, fXIIa, and C1s, COS-1-expressed Ala434---Glu C1 inhibitor was cleaved by these enzymes but did not form complexes with them. These results, together with evidence from other studies, suggest that serpin protease inhibitor activity is the result of protein conformational change that occurs when the P12 region of a serpin moves from a surface location, on the reactive site loop of the native molecule, to an internal location within sheet A of the complexed inhibitor. PMID:2026621

  10. Role for Serine Protease HtrA (DegP) of Streptococcus pyogenes in the Biogenesis of Virulence Factors SpeB and the Hemolysin Streptolysin S

    PubMed Central

    Lyon, William R.; Caparon, Michael G.

    2004-01-01

    The serine protease HtrA is involved in the folding and maturation of secreted proteins, as well as in the degradation of proteins that misfold during secretion. Depletion of HtrA has been shown to affect the sensitivity of many organisms to thermal and environmental stresses, as well as being essential for virulence in many pathogens. In the present study, we compared the behaviors of several different HtrA mutants of the gram-positive pathogen Streptococcus pyogenes (group A streptococcus). Consistent with prior reports, insertional inactivation of htrA, the gene that encodes HtrA, resulted in a mutant that grew poorly at 37°C. However, an identical phenotype was observed when a similar polar insertion was placed immediately downstream of htrA in the streptococcal chromosome, suggesting that the growth defect of the insertion mutant was not a direct result of insertional inactivation of htrA. This conclusion was supported by the observation that a nonpolar deletion mutation of htrA did not produce the growth defect. However, this mutation did affect the production of several secreted virulence factors whose biogenesis requires extensive processing. For the SpeB cysteine protease, the loss of HtrA was associated with a failure to proteolytically process the zymogen to an active protease. For the streptolysin S hemolysin, a dramatic increase in hemolytic activity resulted from the depletion of HtrA. Interestingly, HtrA-deficient mutants were not attenuated in a murine model of subcutaneous infection. These data add to the growing body of information that implies an important role for HtrA in the biogenesis of secreted proteins in gram-positive bacteria. PMID:14977969

  11. Role for serine protease HtrA (DegP) of Streptococcus pyogenes in the biogenesis of virulence factors SpeB and the hemolysin streptolysin S.

    PubMed

    Lyon, William R; Caparon, Michael G

    2004-03-01

    The serine protease HtrA is involved in the folding and maturation of secreted proteins, as well as in the degradation of proteins that misfold during secretion. Depletion of HtrA has been shown to affect the sensitivity of many organisms to thermal and environmental stresses, as well as being essential for virulence in many pathogens. In the present study, we compared the behaviors of several different HtrA mutants of the gram-positive pathogen Streptococcus pyogenes (group A streptococcus). Consistent with prior reports, insertional inactivation of htrA, the gene that encodes HtrA, resulted in a mutant that grew poorly at 37 degrees C. However, an identical phenotype was observed when a similar polar insertion was placed immediately downstream of htrA in the streptococcal chromosome, suggesting that the growth defect of the insertion mutant was not a direct result of insertional inactivation of htrA. This conclusion was supported by the observation that a nonpolar deletion mutation of htrA did not produce the growth defect. However, this mutation did affect the production of several secreted virulence factors whose biogenesis requires extensive processing. For the SpeB cysteine protease, the loss of HtrA was associated with a failure to proteolytically process the zymogen to an active protease. For the streptolysin S hemolysin, a dramatic increase in hemolytic activity resulted from the depletion of HtrA. Interestingly, HtrA-deficient mutants were not attenuated in a murine model of subcutaneous infection. These data add to the growing body of information that implies an important role for HtrA in the biogenesis of secreted proteins in gram-positive bacteria. PMID:14977969

  12. Identification of homologues to the pathogenicity factor Pat-1, a putative serine protease of Clavibacter michiganensis subsp. michiganensis.

    PubMed

    Burger, Annette; Gräfen, Ines; Engemann, Jutta; Niermann, Erik; Pieper, Martina; Kirchner, Oliver; Gartemann, Karl-Heinz; Eichenlaub, Rudolf

    2005-01-01

    Hybridization of Clavibacter michiganensis subsp. michiganensis total DNA against the pathogenicity gene pat-1 indicated the presence of pat-1 homologous nucleotide sequences on the chromosome and on plasmid pCM2. Isolation of the corresponding DNA fragments and nucleotide sequence determination showed that there are three pat-1 homologous genes: chpA (chromosome) and phpA and phpB (plasmid pCM2). The gene products share common characteristics, i.e. a signal sequence for Sec-dependent secretion, a serine protease motif, and six cysteine residues at conserved positions. Gene chpA located on the chromosome is a pseudogene since it contains a translational stop codon after 97 of 280 amino acids. In contrast to pat-1, cloning of the plasmid encoded homologs phpA and phpB into the avirulent plasmid free Cmm strain CMM100 did not result in a virulent phenotype. So far, no proteolytic activity could be demonstrated for Pat-1, however, site specific mutagenesis of pat-1 showed that the serine residue in the motif GDSGG is required for the virulent phenotype of pat-1 and thus Pat-1 could be a functional protease. PMID:16255147

  13. Comparative one-factor-at-a-time, response surface (statistical) and bench-scale bioreactor level optimization of thermoalkaline protease production from a psychrotrophic Pseudomonas putida SKG-1 isolate

    PubMed Central

    2011-01-01

    Background Production of alkaline protease from various bacterial strains using statistical methods is customary now-a-days. The present work is first attempt for the production optimization of a solvent stable thermoalkaline protease by a psychrotrophic Pseudomonas putida isolate using conventional, response surface methods, and fermentor level optimization. Results The pre-screening medium amended with optimized (w/v) 1.0% glucose, 2.0% gelatin and 0.5% yeast extract, produced 278 U protease ml-1 at 72 h incubation. Enzyme production increased to 431 Uml-1 when Mg2+ (0.01%, w/v) was supplemented. Optimization of physical factors further enhanced protease to 514 Uml-1 at pH 9.0, 25°C and 200 rpm within 60 h. The combined effect of conventionally optimized variables (glucose, yeast extract, MgSO4 and pH), thereafter predicted by response surface methodology yielded 617 U protease ml-1 at glucose 1.25% (w/v), yeast extract 0.5% (w/v), MgSO4 0.01% (w/v) and pH 8.8. Bench-scale bioreactor level optimization resulted in enhanced production of 882 U protease ml-1 at 0.8 vvm aeration and 150 rpm agitation during only 48 h incubation. Conclusions The optimization of fermentation variables using conventional, statistical approaches and aeration/agitation at fermentor level resulted in ~13.5 folds increase (882 Uml-1) in protease production compared to un-optimized conditions (65 Uml-1). This is the highest level of thermoalkaline protease reported so far by any psychrotrophic bacterium. PMID:22204659

  14. Characterization and inhibition of norovirus proteases of genogroups I and II using a fluorescence resonance energy transfer assay

    SciTech Connect

    Chang, Kyeong-Ok; Takahashi, Daisuke; Prakash, Om; Kim, Yunjeong

    2012-02-20

    Noroviruses are the major cause of food- or water-borne gastroenteritis outbreaks in humans. The norovirus protease that cleaves a large viral polyprotein to nonstructural proteins is essential for virus replication and an attractive target for antiviral drug development. Noroviruses show high genetic diversity with at least five genogroups, GI-GV, of which GI and GII are responsible for the majority of norovirus infections in humans. We cloned and expressed proteases of Norwalk virus (GI) and MD145 virus (GII) and characterized the enzymatic activities with fluorescence resonance energy transfer substrates. We demonstrated that the GI and GII proteases cleaved the substrates derived from the naturally occurring cleavage site in the open reading frame (ORF) 1 of G1 norovirus with similar efficiency, and that enzymatic activity of both proteases was inhibited by commercial protease inhibitors including chymostatin. The interaction of chymostatin to Norwalk virus protease was validated by nuclear magnetic resonance (NMR) spectroscopy.

  15. The S. pombe translation initiation factor eIF4G is Sumoylated and associates with the SUMO protease Ulp2.

    PubMed

    Jongjitwimol, Jirapas; Feng, Min; Zhou, Lihong; Wilkinson, Oliver; Small, Lauren; Baldock, Robert; Taylor, Deborah L; Smith, Duncan; Bowler, Lucas D; Morley, Simon J; Watts, Felicity Z

    2014-01-01

    SUMO is a small post-translational modifier, that is attached to lysine residues in target proteins. It acts by altering protein-protein interactions, protein localisation and protein activity. SUMO chains can also act as substrates for ubiquitination, resulting in proteasome-mediated degradation of the target protein. SUMO is removed from target proteins by one of a number of specific proteases. The processes of sumoylation and desumoylation have well documented roles in DNA metabolism and in the maintenance of chromatin structure. To further analyse the role of this modification, we have purified protein complexes containing the S. pombe SUMO protease, Ulp2. These complexes contain proteins required for ribosome biogenesis, RNA stability and protein synthesis. Here we have focussed on two translation initiation factors that we identified as co-purifying with Ulp2, eIF4G and eIF3h. We demonstrate that eIF4G, but not eIF3h, is sumoylated. This modification is increased under conditions that produce cytoplasmic stress granules. Consistent with this we observe partial co-localisation of eIF4G and SUMO in stressed cells. Using HeLa cells, we demonstrate that human eIF4GI is also sumoylated; in vitro studies indicate that human eIF4GI is modified on K1368 and K1588, that are located in the C-terminal eIF4A- and Mnk-binding sites respectively. PMID:24818994

  16. Extracellular proteases as targets for drug development.

    PubMed

    Cudic, Mare; Fields, Gregg B

    2009-08-01

    Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV) and cysteine proteases (cathepsin B) are discussed herein. PMID:19689354

  17. Identification and Characterization of IgdE, a Novel IgG-degrading Protease of Streptococcus suis with Unique Specificity for Porcine IgG.

    PubMed

    Spoerry, Christian; Seele, Jana; Valentin-Weigand, Peter; Baums, Christoph G; von Pawel-Rammingen, Ulrich

    2016-04-01

    Streptococcus suisis a major endemic pathogen of pigs causing meningitis, arthritis, and other diseases. ZoonoticS. suisinfections are emerging in humans causing similar pathologies as well as severe conditions such as toxic shock-like syndrome. Recently, we discovered an IdeS family protease ofS. suisthat exclusively cleaves porcine IgM and represents the first virulence factor described, linkingS. suisto pigs as their natural host. Here we report the identification and characterization of a novel, unrelated protease ofS. suisthat exclusively targets porcine IgG. This enzyme, designated IgdE forimmunoglobulinG-degradingenzyme ofS. suis, is a cysteine protease distinct from previous characterized streptococcal immunoglobulin degrading proteases of the IdeS family and mediates efficient cleavage of the hinge region of porcine IgG with a high degree of specificity. The findings that allS. suisstrains investigated possess the IgG proteolytic activity and that piglet serum samples contain specific antibodies against IgdE strongly indicate that the protease is expressedin vivoduring infection and represents a novel and putative important bacterial virulence/colonization determinant, and a thus potential therapeutic target. PMID:26861873

  18. Post-translational control of genetic circuits using Potyvirus proteases.

    PubMed

    Fernandez-Rodriguez, Jesus; Voigt, Christopher A

    2016-07-27

    Genetic engineering projects often require control over when a protein is degraded. To this end, we use a fusion between a degron and an inactivating peptide that can be added to the N-terminus of a protein. When the corresponding protease is expressed, it cleaves the peptide and the protein is degraded. Three protease:cleavage site pairs from Potyvirus are shown to be orthogonal and active in exposing degrons, releasing inhibitory domains and cleaving polyproteins. This toolbox is applied to the design of genetic circuits as a means to control regulator activity and degradation. First, we demonstrate that a gate can be constructed by constitutively expressing an inactivated repressor and having an input promoter drive the expression of the protease. It is also shown that the proteolytic release of an inhibitory domain can improve the dynamic range of a transcriptional gate (200-fold repression). Next, we design polyproteins containing multiple repressors and show that their cleavage can be used to control multiple outputs. Finally, we demonstrate that the dynamic range of an output can be improved (8-fold to 190-fold) with the addition of a protease-cleaved degron. Thus, controllable proteolysis offers a powerful tool for modulating and expanding the function of synthetic gene circuits. PMID:27298256

  19. Synergistic action of protease-modulating matrix and autologous growth factors in healing of diabetic foot ulcers. A prospective randomized trial.

    PubMed

    Kakagia, Despoina D; Kazakos, Konstantinos J; Xarchas, Konstantinos C; Karanikas, Michael; Georgiadis, George S; Tripsiannis, Gregory; Manolas, Constantinos

    2007-01-01

    This study tests the hypothesis that addition of a protease-modulating matrix enhances the efficacy of autologous growth factors in diabetic ulcers. Fifty-one patients with chronic diabetic foot ulcers were managed as outpatients at the Democritus University Hospital of Alexandroupolis and followed up for 8 weeks. All target ulcers were > or = 2.5 cm in any one dimension and had been previously treated only with moist gauze. Patients were randomly allocated in three groups of 17 patients each: Group A was treated only with the oxidized regenerated cellulose/collagen biomaterial (Promogran, Johnson & Johnson, New Brunswick, NJ), Group B was treated only with autologous growth factors delivered by Gravitational Platelet Separation System (GPS, Biomet), and Group C was managed by a combination of both. All ulcers were digitally photographed at initiation of the study and then at change of dressings once weekly. Computerized planimetry (Texas Health Science Center ImageTool, Version 3.0) was used to assess ulcer dimensions that were analyzed for homogeneity and significance using the Statistical Package for Social Sciences, Version 13.0. Post hoc analysis revealed that there was significantly greater reduction of all three dimensions of the ulcers in Group C compared to Groups A and B (all P<.001). Although reduction of ulcer dimensions was greater in Group A than in Group B, these differences did not reach statistical significance. It is concluded that protease-modulating dressings act synergistically with autologous growth factors and enhance their efficacy in diabetic foot ulcers. PMID:17967712

  20. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis

    PubMed Central

    DUHAIME, MICHAEL J.; PAGE, KHALIPH O.; VARELA, FAUSTO A.; MURRAY, ANDREW S.; SILVERMAN, MICHAEL E.; ZORATTI, GINA L.; LIST, KARIN

    2016-01-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas. PMID:26297835

  1. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis.

    PubMed

    Duhaime, Michael J; Page, Khaliph O; Varela, Fausto A; Murray, Andrew S; Silverman, Michael E; Zoratti, Gina L; List, Karin

    2016-07-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas. PMID:26297835

  2. Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis

    PubMed Central

    Zimbler, Daniel L.; Eddy, Justin L.; Schroeder, Jay A.

    2015-01-01

    Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. PMID:26553463

  3. Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis.

    PubMed

    Zimbler, Daniel L; Eddy, Justin L; Schroeder, Jay A; Lathem, Wyndham W

    2016-01-01

    Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. PMID:26553463

  4. Vialinin A and thelephantin G, potent inhibitors of tumor necrosis factor-α production, inhibit sentrin/SUMO-specific protease 1 enzymatic activity.

    PubMed

    Yoshioka, Yasukiyo; Namiki, Daisuke; Makiuchi, Mao; Sugaya, Kouichi; Onose, Jun-Ichi; Ashida, Hitoshi; Abe, Naoki

    2016-09-01

    Several p-terphenyl compounds have been isolated from the edible Chinese mushroom Thelephora vialis. Vialinin A, a p-terphenyl compound, strongly inhibits tumor necrosis factor-α production and release. Vialinin A inhibits the enzymatic activity of ubiquitin-specific peptidase 5, one of the target molecules in RBL-2H3 cells. Here we examined the inhibitory effect of p-terphenyl compounds, including vialinin A, against sentrin/SUMO-specific protease 1 (SENP1) enzymatic activity. The half maximal inhibitory concentration values of vialinin A and thelephantin G against full-length SENP1 were 1.64±0.23μM and 2.48±0.02μM, respectively. These findings suggest that p-terphenyl compounds are potent SENP1 inhibitors. PMID:27491710

  5. The human brm protein is cleaved during apoptosis: the role of cathepsin G.

    PubMed

    Biggs, J R; Yang, J; Gullberg, U; Muchardt, C; Yaniv, M; Kraft, A S

    2001-03-27

    The human brm (hbrm) protein (homologue of the Drosophila melanogaster brahma and Saccharomyces cervisiae SNF-2 proteins) is part of a polypeptide complex believed to regulate chromatin conformation. We have shown that the hbrm protein is cleaved in NB4 leukemic cells after induction of apoptosis by UV-irradiation, DNA damaging agents, or staurosporine. Because hbrm is found only in the nucleus, we have investigated the nature of the proteases that may regulate the degradation of this protein during apoptosis. In an in vitro assay, the hbrm protein could not be cleaved by caspase-3, -7, or -6, the "effector" caspases generally believed to carry out the cleavage of nuclear protein substrates. In contrast, we find that cathepsin G, a granule enzyme found in NB4 cells, cleaves hbrm in a pattern similar to that observed in vivo during apoptosis. In addition, a peptide inhibitor of cathepsin G blocks hbrm cleavage during apoptosis but does not block activation of caspases or cleavage of the nuclear protein polyADP ribose polymerase (PARP). Although localized in granules and in the Golgi complex in untreated cells, cathepsin G becomes diffusely distributed during apoptosis. Cleavage by cathepsin G removes a 20-kDa fragment containing a bromodomain from the carboxyl terminus of hbrm. This cleavage disrupts the association between hbrm and the nuclear matrix; the 160-kDa hbrm cleavage fragment is less tightly associated with the nuclear matrix than full-length hbrm. PMID:11259672

  6. Mass spectrometry-assisted confirmation of the inability of dipeptidyl peptidase-4 to cleave goldfish peptide YY(1-36) and the lack of anorexigenic effects of peptide YY(3-36) in goldfish (Carassius auratus).

    PubMed

    Gonzalez, R; Unniappan, S

    2016-06-01

    Dipeptidyl peptidase-4 (DPP4) is a serine protease of great interest because it has been shown to modulate the activity of several peptidergic factors including peptide YY (PYY) and glucagon-like peptide-1/2. While PYY(1-36) is orexigenic in mammals, PYY(3-36) recently garnered interest as a potent anorexigen. In silico phylogenetic analysis found that the DPP4 cleavage sites are absent in fish PYY sequences. However, no studies were conducted to show that indeed PYY(3-36) is not produced by DPP4 in fish. If DPP4 does not cleave PYY(1-36), is PYY(3-36) an anorexigen in fish? The objectives of this research were to (1) test whether DPP4 cleaves goldfish PYY(1-36) and (2) determine whether PYY(3-36) is an anorexigen in goldfish. First, we identified the highly conserved catalytic region of DPP4 in goldfish. Abundant expression of DPP4 mRNA was found within the gastrointestinal tract. We also report the first MALDI-MS cleavage analysis of DPP4 effects on PYY(1-36) in a non-mammalian vertebrate. Our novel results indicate that DPP4 is unable to cleave goldfish PYY(1-36) to PYY(3-36) in vitro. It also confirms a previously held hypothesis that DPP4 is unable to cleave fish PYY(1-36) that contains N-terminal proline-proline residues. PYY(3-36) had no effects on food intake of goldfish. The appetite inhibitory effects of intraperitoneal and intracerebroventricular injections of 10 ng/g body weight gfPYY(1-36) were abolished by coinjections of BIBP3226, a Y1 receptor antagonist. These results are significant because it shows the lack of generation of endogenous PYY(3-36) and its anorectic effects in goldfish. PMID:26676513

  7. Investigations with Protease.

    ERIC Educational Resources Information Center

    Yip, Din Yan

    1997-01-01

    Presents two simple and reliable ways for measuring protease activity that can be used for a variety of investigations in a range of biology class levels. The investigations use protease from a variety of sources. (DDR)

  8. The Chlamydia trachomatis Protease CPAF Contains a Cryptic PDZ-Like Domain with Similarity to Human Cell Polarity and Tight Junction PDZ-Containing Proteins

    PubMed Central

    Mou, Rui; Valdivia, Raphael H.; McCafferty, Dewey G.

    2016-01-01

    The need for more effective anti-chlamydial therapeutics has sparked research efforts geared toward further understanding chlamydial pathogenesis mechanisms. Recent studies have implicated the secreted chlamydial serine protease, chlamydial protease-like activity factor (CPAF) as potentially important for chlamydial pathogenesis. By mechanisms that remain to be elucidated, CPAF is directed to a discrete group of substrates, which are subsequently cleaved or degraded. While inspecting the previously solved CPAF crystal structure, we discovered that CPAF contains a cryptic N-terminal PSD95 Dlg ZO-1 (PDZ) domain spanning residues 106–212 (CPAF106-212). This PDZ domain is unique in that it bears minimal sequence similarity to canonical PDZ-forming sequences and displays little sequence and structural similarity to known chlamydial PDZ domains. We show that the CPAF106-212 sequence is homologous to PDZ domains of human tight junction proteins. PMID:26829550

  9. CLIP proteases and Plasmodium melanization in Anopheles gambiae.

    PubMed

    Barillas-Mury, Carolina

    2007-07-01

    Melanization is a potent immune response mediated by phenoloxidase (PO). Multiple Clip-domain serine proteases (CLIP) regulate PO activation as part of a complex cascade of proteases that are cleaved sequentially. The role of several CLIP as key activators or suppressors of the melanization responses of Anopheles gambiae to Plasmodium berghei (murine malaria) has been established recently using a genome-wide reverse genetics approach. Important differences in regulation of PO activation between An. gambiae strains were also identified. This review summarizes these findings and discusses our current understanding of the An. gambiae melanization responses to Plasmodium. PMID:17512801

  10. Enteroviral proteases: structure, host interactions and pathogenicity.

    PubMed

    Laitinen, Olli H; Svedin, Emma; Kapell, Sebastian; Nurminen, Anssi; Hytönen, Vesa P; Flodström-Tullberg, Malin

    2016-07-01

    Enteroviruses are common human pathogens, and infections are particularly frequent in children. Severe infections can lead to a variety of diseases, including poliomyelitis, aseptic meningitis, myocarditis and neonatal sepsis. Enterovirus infections have also been implicated in asthmatic exacerbations and type 1 diabetes. The large disease spectrum of the closely related enteroviruses may be partially, but not fully, explained by differences in tissue tropism. The molecular mechanisms by which enteroviruses cause disease are poorly understood, but there is increasing evidence that the two enteroviral proteases, 2A(pro) and 3C(pro) , are important mediators of pathology. These proteases perform the post-translational proteolytic processing of the viral polyprotein, but they also cleave several host-cell proteins in order to promote the production of new virus particles, as well as to evade the cellular antiviral immune responses. Enterovirus-associated processing of cellular proteins may also contribute to pathology, as elegantly demonstrated by the 2A(pro) -mediated cleavage of dystrophin in cardiomyocytes contributing to Coxsackievirus-induced cardiomyopathy. It is likely that improved tools to identify targets for these proteases will reveal additional host protein substrates that can be linked to specific enterovirus-associated diseases. Here, we discuss the function of the enteroviral proteases in the virus replication cycle and review the current knowledge regarding how these proteases modulate the infected cell in order to favour virus replication, including ways to avoid detection by the immune system. We also highlight new possibilities for the identification of protease-specific cellular targets and thereby a way to discover novel mechanisms contributing to disease. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27145174

  11. Dysregulation of protease and protease inhibitors in a mouse model of human pelvic organ prolapse.

    PubMed

    Budatha, Madhusudhan; Silva, Simone; Montoya, Teodoro Ignacio; Suzuki, Ayako; Shah-Simpson, Sheena; Wieslander, Cecilia Karin; Yanagisawa, Masashi; Word, Ruth Ann; Yanagisawa, Hiromi

    2013-01-01

    Mice deficient for the fibulin-5 gene (Fbln5(-/-)) develop pelvic organ prolapse (POP) due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP)-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5(-/-) mice, herein named V1 (25 kDa). V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS) 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5(-/-) mice. PRSS3 was (a) localized in epithelial secretions, (b) detected in media of vaginal organ culture from both Fbln5(-/-) and wild type mice, and (c) cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin) and Elafin] was dysregulated in Fbln5(-/-) epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice. PMID:23437119

  12. Endonuclease V cleaves at inosines in RNA.

    PubMed

    Vik, Erik Sebastian; Nawaz, Meh Sameen; Strøm Andersen, Pernille; Fladeby, Cathrine; Bjørås, Magnar; Dalhus, Bjørn; Alseth, Ingrun

    2013-01-01

    Endonuclease V orthologues are highly conserved proteins found in all kingdoms of life. While the prokaryotic enzymes are DNA repair proteins for removal of deaminated adenosine (inosine) from the genome, no clear role for the eukaryotic counterparts has hitherto been described. Here we report that human endonuclease V (ENDOV) and also Escherichia coli endonuclease V are highly active ribonucleases specific for inosine in RNA. Inosines are normal residues in certain RNAs introduced by specific deaminases. Adenosine-to-inosine editing is essential for proper function of these transcripts and defects are linked to various human disease. Here we show that human ENDOV cleaves an RNA substrate containing inosine in a position corresponding to a biologically important site for deamination in the Gabra-3 transcript of the GABA(A) neurotransmitter. Further, human ENDOV specifically incises transfer RNAs with inosine in the wobble position. This previously unknown RNA incision activity may suggest a role for endonuclease V in normal RNA metabolism. PMID:23912683

  13. Endonuclease V cleaves at inosines in RNA

    PubMed Central

    Sebastian Vik, Erik; Sameen Nawaz, Meh; Strøm Andersen, Pernille; Fladeby, Cathrine; Bjørås, Magnar; Dalhus, Bjørn; Alseth, Ingrun

    2013-01-01

    Endonuclease V orthologues are highly conserved proteins found in all kingdoms of life. While the prokaryotic enzymes are DNA repair proteins for removal of deaminated adenosine (inosine) from the genome, no clear role for the eukaryotic counterparts has hitherto been described. Here we report that human endonuclease V (ENDOV) and also Escherichia coli endonuclease V are highly active ribonucleases specific for inosine in RNA. Inosines are normal residues in certain RNAs introduced by specific deaminases. Adenosine-to-inosine editing is essential for proper function of these transcripts and defects are linked to various human disease. Here we show that human ENDOV cleaves an RNA substrate containing inosine in a position corresponding to a biologically important site for deamination in the Gabra-3 transcript of the GABAA neurotransmitter. Further, human ENDOV specifically incises transfer RNAs with inosine in the wobble position. This previously unknown RNA incision activity may suggest a role for endonuclease V in normal RNA metabolism. PMID:23912683

  14. Ubiquitin-specific protease 7 expression is a prognostic factor in epithelial ovarian cancer and correlates with lymph node metastasis

    PubMed Central

    Ma, Ming; Yu, Nina

    2016-01-01

    Objective Ubiquitin-specific protease 7 (USP7) is a common target of herpesviruses and is important in the DNA damage response, which is also upregulated in several cancers, including prostate, colon, liver, and lung cancers. However, less is known about its expression in ovarian cancer tissues. The role of USP7 in epithelial ovarian cancer (EOC) has not yet been investigated. Materials and methods We recruited 141 patients from Linyi People’s Hospital between June 1999 and June 2013, all pathologically diagnosed with primary EOC. Their clinical data were collected, and the expression of USP7 in the tumor tissues was determined using immunohistochemistry. The correlations between USP7 expression and the clinicopathological variables of patients with EOC were assessed using Spearman’s rank correlation test. Kaplan–Meier analysis and Cox regression analysis were used to identify the prognosis value of USP7. The function of USP7 in the EOC cells was also detected in vitro. Results Among the 141 cases, USP7 expression was high in 59 EOC samples (41.8%), and was significantly correlated with lymphatic invasion; USP7 can act as independent prognostic indicator for the overall survival (OS) of EOC, and its high expression was associated with poor OS rate. The RNA inteference and overexpression assays indicated that USP7 can positively regulate the ovarian cell vitality and invasion process. Conclusion Patients with EOC expressing high level of USP7 have worse OS compared with those with low USP7 expression. USP7 may be involved in the proliferation and invasion of EOC cells, and USP7 expression can serve as an independent predictor of EOC. PMID:27051296

  15. Alkaline protease from Spilosoma obliqua: potential applications in bio-formulations.

    PubMed

    Anwar, A; Saleemuddin, M

    2000-04-01

    Some properties of the purified alkaline protease from larvae of the insect Spilosoma obliqua (Lepidoptera) and its potential application as an additive in various bio-formulations are reported. The novel feature of the present study is the use of insect protease. The protease was found to be compatible with some of the commercial detergents tested, and was also effective in cleaving various protein substrates tested, albeit to different extents, implying broader substrate specificity and effectiveness of the protease against a wide variety of stains. This property of the protease can also be exploited by using it as an active component in enzymic debriders in view of its ability to digest various protein substrates. The insect protease appears to be potentially useful as an additive in detergent, stain remover and other bio-formulations. PMID:10744951

  16. The Eph Tyrosine Kinase Receptors EphB2 and EphA2 Are Novel Proteolytic Substrates of Tissue Factor/Coagulation Factor VIIa*

    PubMed Central

    Eriksson, Oskar; Ramström, Margareta; Hörnaeus, Katarina; Bergquist, Jonas; Mokhtari, Dariush; Siegbahn, Agneta

    2014-01-01

    Tissue factor (TF) binds the serine protease factor VIIa (FVIIa) to form a proteolytically active complex that can trigger coagulation or activate cell signaling. Here we addressed the involvement of tyrosine kinase receptors (RTKs) in TF/FVIIa signaling by antibody array analysis and subsequently found that EphB2 and EphA2 of the Eph RTK family were cleaved in their ectodomains by TF/FVIIa. We used N-terminal Edman sequencing and LC-MS/MS analysis to characterize the cleaved Eph isoforms and identified a key arginine residue at the cleavage site, in agreement with the tryptic serine protease activity of FVIIa. Protease-activated receptor 2 (PAR2) signaling and downstream coagulation activity was non-essential in this context, in further support of a direct cleavage by TF/FVIIa. EphB2 was cleaved by FVIIa concentrations in the subnanomolar range in a number of TF expressing cell types, indicating that the active cellular pool of TF was involved. FVIIa caused potentiation of cell repulsion by the EphB2 ligand ephrin-B1, demonstrating a novel proteolytical event to control Eph-mediated cell segregation. These results define Eph RTKs as novel proteolytical targets of TF/FVIIa and provide new insights into how TF/FVIIa regulates cellular functions independently of PAR2. PMID:25281742

  17. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins.

    PubMed

    Fleig, Lina; Bergbold, Nina; Sahasrabudhe, Priyanka; Geiger, Beate; Kaltak, Lejla; Lemberg, Marius K

    2012-08-24

    The ER-associated degradation (ERAD) pathway serves as an important cellular safeguard by directing incorrectly folded and unassembled proteins from the ER to the proteasome. Still, however, little is known about the components mediating ERAD of membrane proteins. Here we show that the evolutionary conserved rhomboid family protein RHBDL4 is a ubiquitin-dependent ER-resident intramembrane protease that is upregulated upon ER stress. RHBDL4 cleaves single-spanning and polytopic membrane proteins with unstable transmembrane helices, leading to their degradation by the canonical ERAD machinery. RHBDL4 specifically binds the AAA+-ATPase p97, suggesting that proteolytic processing and dislocation into the cytosol are functionally linked. The phylogenetic relationship between rhomboids and the ERAD factor derlin suggests that substrates for intramembrane proteolysis and protein dislocation are recruited by a shared mechanism. PMID:22795130

  18. Inhibitors of HGFA, Matriptase, and Hepsin Serine Proteases: A Nonkinase Strategy to Block Cell Signaling in Cancer.

    PubMed

    Han, Zhenfu; Harris, Peter K W; Jones, Darin E; Chugani, Ryan; Kim, Tommy; Agarwal, Manjula; Shen, Wei; Wildman, Scott A; Janetka, James W

    2014-11-13

    Hepatocyte growth factor activators (HGFA), matriptase, and hepsin are S1 family trypsin-like serine proteases. These proteases proteolytically cleave the single-chain zymogen precursors, pro-HGF (hepatocyte growth factor), and pro-MSP (macrophage stimulating protein) into active heterodimeric forms. HGF and MSP are activating ligands for the oncogenic receptor tyrosine kinases (RTKs), c-MET and RON, respectively. We have discovered the first substrate-based ketothiazole inhibitors of HGFA, matriptase and hepsin. The compounds were synthesized using a combination of solution and solid-phase peptide synthesis (SPPS). Compounds were tested for protease inhibition using a kinetic enzyme assay employing fluorogenic peptide substrates. Highlighted HGFA inhibitors are Ac-KRLR-kt (5g), Ac-SKFR-kt (6c), and Ac-SWLR-kt (6g) with K is = 12, 57, and 63 nM, respectively. We demonstrated that inhibitors block the conversion of native pro-HGF and pro-MSP by HGFA with equivalent potency. Finally, we show that inhibition causes a dose-dependent decrease of c-MET signaling in MDA-MB-231 breast cancer cells. This preliminary investigation provides evidence that HGFA is a promising therapeutic target in breast cancer and other tumor types driven by c-MET and RON. PMID:25408834

  19. Inhibitors of HGFA, Matriptase, and Hepsin Serine Proteases: A Nonkinase Strategy to Block Cell Signaling in Cancer

    PubMed Central

    2014-01-01

    Hepatocyte growth factor activators (HGFA), matriptase, and hepsin are S1 family trypsin-like serine proteases. These proteases proteolytically cleave the single-chain zymogen precursors, pro-HGF (hepatocyte growth factor), and pro-MSP (macrophage stimulating protein) into active heterodimeric forms. HGF and MSP are activating ligands for the oncogenic receptor tyrosine kinases (RTKs), c-MET and RON, respectively. We have discovered the first substrate-based ketothiazole inhibitors of HGFA, matriptase and hepsin. The compounds were synthesized using a combination of solution and solid-phase peptide synthesis (SPPS). Compounds were tested for protease inhibition using a kinetic enzyme assay employing fluorogenic peptide substrates. Highlighted HGFA inhibitors are Ac-KRLR-kt (5g), Ac-SKFR-kt (6c), and Ac-SWLR-kt (6g) with Kis = 12, 57, and 63 nM, respectively. We demonstrated that inhibitors block the conversion of native pro-HGF and pro-MSP by HGFA with equivalent potency. Finally, we show that inhibition causes a dose-dependent decrease of c-MET signaling in MDA-MB-231 breast cancer cells. This preliminary investigation provides evidence that HGFA is a promising therapeutic target in breast cancer and other tumor types driven by c-MET and RON. PMID:25408834

  20. Cleavage of CD14 and LBP by a protease from Prevotella intermedia

    PubMed Central

    Deschner, James; Singhal, Anuradha; Long, Ping; Liu, Chau-Ching; Piesco, Nicholas

    2016-01-01

    Periodontitis is an inflammatory disease caused by subgingival microorganisms and their components, such as lipopolysaccharide (LPS). Responses of the host to LPS are mediated by CD14 and LPS-binding protein (LBP). In this study, it was determined that proteases from a periodontal pathogen, Prevotella intermedia, cleave CD14 and LBP, and thereby modulate the virulence of LPS. Culture supernatants from two strains of P. intermedia (ATCC 25611 and 25261) cleaved CD14 and LBP in a concentration-dependent manner. Zymographic and molecular mass analysis revealed the presence of a membrane-associated, 170-kDa, monomeric protease. Class-specific inhibitors and stimulators demonstrated that this enzyme is a metal-requiring, thiol-activated, cysteine protease. The protease was stable over a wide range of temperatures (4–56 °C) and pH values (4.5–8.5). This enzyme also decreased the expression of interleukin-1β (IL-1β)-specific mRNA in the LPS-activated macrophage-like cell lines U937 and THP-1 in a concentration-dependent manner, indicating that it also cleaves membrane-associated CD14. Furthermore, addition of soluble CD14 abrogated protease-mediated inhibition of IL-1 mRNA expression induced by LPS. The observations suggest that proteolysis of CD14 and LBP by P. intermedia protease might modulate the virulence of LPS at sites of periodontal infections. PMID:12728301

  1. Mannose-binding lectin and its associated proteases (MASPs) mediate coagulation and its deficiency is a risk factor in developing complications from infection, including disseminated intravascular coagulation

    PubMed Central

    Takahashi, Kazue; Chang, Wei-Chuan; Takahashi, Minoru; Pavlov, Vasile; Ishida, Yumi; La Bonte, Laura; Shi, Lei; Fujita, Teizo; Stahl, Gregory L.; Van Cott, Elizabeth M.

    2010-01-01

    The first line of host defense is the innate immune system that includes coagulation factors and pattern recognition molecules, one of which is mannose-binding lectin (MBL). Previous studies have demonstrated that MBL deficiency increases susceptibility to infection. Several mechanisms are associated with increased susceptibility to infection, including reduced opsonophagocytic killing and reduced lectin complement pathway activation. In this study, we demonstrate that MBL and MBL-associated serine protease (MASP)-1/3 together mediate coagulation factor-like activities, including thrombin-like activity. MBL and/or MASP-1/3 deficient hosts demonstrate in vivo evidence that MBL and MASP-1/3 are involved with hemostasis following injury. Staphylococcus aureus infected MBL null mice developed disseminated intravascular coagulation (DIC), which was associated with elevated blood IL-6 levels (but not TNF-α and multi-organ inflammatory responses). Infected MBL null mice also develop liver injury. These findings suggest that MBL deficiency may manifest into DIC and organ failure during infectious diseases. PMID:20399528

  2. Extracellular proteases of Trichoderma species. A review.

    PubMed

    Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet

    2005-01-01

    Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed. PMID:16003937

  3. Substrate recognition mechanism of VAMP/synaptobrevin-cleaving clostridial neurotoxins.

    PubMed

    Sikorra, Stefan; Henke, Tina; Galli, Thierry; Binz, Thomas

    2008-07-25

    Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) inhibit neurotransmitter release by proteolyzing a single peptide bond in one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors SNAP-25, syntaxin, and vesicle-associated membrane protein (VAMP)/synaptobrevin. TeNT and BoNT/B, D, F, and G of the seven known BoNTs cleave the synaptic vesicle protein VAMP/synaptobrevin. Except for BoNT/B and TeNT, they cleave unique peptide bonds, and prior work suggested that different substrate segments are required for the interaction of each toxin. Although the mode of SNAP-25 cleavage by BoNT/A and E has recently been studied in detail, the mechanism of VAMP/synaptobrevin proteolysis is fragmentary. Here, we report the determination of all substrate residues that are involved in the interaction with BoNT/B, D, and F and TeNT by means of systematic mutagenesis of VAMP/synaptobrevin. For each of the toxins, three or more residues clustered at an N-terminal site remote from the respective scissile bond are identified that affect solely substrate binding. These exosites exhibit different sizes and distances to the scissile peptide bonds for each neurotoxin. Substrate segments C-terminal of the cleavage site (P4-P4') do not play a role in the catalytic process. Mutation of residues in the proximity of the scissile bond exclusively affects the turnover number; however, the importance of individual positions at the cleavage sites varied for each toxin. The data show that, similar to the SNAP-25 proteolyzing BoNT/A and E, VAMP/synaptobrevin-specific clostridial neurotoxins also initiate substrate interaction, employing an exosite located N-terminal of the scissile peptide bond. PMID:18511418

  4. Crosstalk between Protease-activated Receptor 1 and Platelet-activating Factor Receptor Regulates Melanoma Cell Adhesion Molecule (MCAM/MUC18) Expression and Melanoma Metastasis*

    PubMed Central

    Melnikova, Vladislava O.; Balasubramanian, Krishnakumar; Villares, Gabriel J.; Dobroff, Andrey S.; Zigler, Maya; Wang, Hua; Petersson, Frederik; Price, Janet E.; Schroit, Alan; Prieto, Victor G.; Hung, Mien-Chie; Bar-Eli, Menashe

    2009-01-01

    The cellular and molecular pathways that regulate platelet activation, blood coagulation, and inflammation are emerging as critical players in cancer progression and metastasis. Here, we demonstrate a novel signaling mechanism whereby protease-activated receptor 1 (PAR1) mediates expression of melanoma cell adhesion molecule MCAM/MUC18 (MUC18), a critical marker of melanoma metastasis, via activation of platelet-activating factor receptor (PAFR) and cAMP-responsive element-binding protein (CREB). We found that PAR1 silencing with small hairpin RNA inhibits MUC18 expression in metastatic melanoma cells by inhibiting CREB phosphorylation, activity, and binding to the MUC18 promoter. We further demonstrate that the PAF/PAFR pathway mediates MUC18 expression downstream of PAR1. Indeed, PAR1 silencing down-regulates PAFR expression and PAF production, PAFR silencing blocks MUC18 expression, and re-expression of PAFR in PAR1-silenced cells rescues MUC18 expression. We further demonstrate that the PAR1-PAFR-MUC18 pathway mediates melanoma cell adhesion to microvascular endothelial cells, transendothelial migration, and metastatic retention in the lungs. Rescuing PAFR expression in PAR1-silenced cells fully restores metastatic phenotype of melanoma, indicating that PAFR plays critical role in the molecular mechanism of PAR1 action. Our results link the two pro-inflammatory G-protein-coupled receptors, PAR1 and PAFR, with the metastatic dissemination of melanoma and suggest that PAR1, PAFR, and MUC18 are attractive therapeutic targets for preventing melanoma metastasis. PMID:19703903

  5. Crosstalk between protease-activated receptor 1 and platelet-activating factor receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis.

    PubMed

    Melnikova, Vladislava O; Balasubramanian, Krishnakumar; Villares, Gabriel J; Dobroff, Andrey S; Zigler, Maya; Wang, Hua; Petersson, Frederik; Price, Janet E; Schroit, Alan; Prieto, Victor G; Hung, Mien-Chie; Bar-Eli, Menashe

    2009-10-16

    The cellular and molecular pathways that regulate platelet activation, blood coagulation, and inflammation are emerging as critical players in cancer progression and metastasis. Here, we demonstrate a novel signaling mechanism whereby protease-activated receptor 1 (PAR1) mediates expression of melanoma cell adhesion molecule MCAM/MUC18 (MUC18), a critical marker of melanoma metastasis, via activation of platelet-activating factor receptor (PAFR) and cAMP-responsive element-binding protein (CREB). We found that PAR1 silencing with small hairpin RNA inhibits MUC18 expression in metastatic melanoma cells by inhibiting CREB phosphorylation, activity, and binding to the MUC18 promoter. We further demonstrate that the PAF/PAFR pathway mediates MUC18 expression downstream of PAR1. Indeed, PAR1 silencing down-regulates PAFR expression and PAF production, PAFR silencing blocks MUC18 expression, and re-expression of PAFR in PAR1-silenced cells rescues MUC18 expression. We further demonstrate that the PAR1-PAFR-MUC18 pathway mediates melanoma cell adhesion to microvascular endothelial cells, transendothelial migration, and metastatic retention in the lungs. Rescuing PAFR expression in PAR1-silenced cells fully restores metastatic phenotype of melanoma, indicating that PAFR plays critical role in the molecular mechanism of PAR1 action. Our results link the two pro-inflammatory G-protein-coupled receptors, PAR1 and PAFR, with the metastatic dissemination of melanoma and suggest that PAR1, PAFR, and MUC18 are attractive therapeutic targets for preventing melanoma metastasis. PMID:19703903

  6. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32.

    PubMed Central

    Tomoyasu, T; Gamer, J; Bukau, B; Kanemori, M; Mori, H; Rutman, A J; Oppenheim, A B; Yura, T; Yamanaka, K; Niki, H

    1995-01-01

    Escherichia coli FtsH is an essential integral membrane protein that has an AAA-type ATPase domain at its C-terminal cytoplasmic part, which is homologous to at least three ATPase subunits of the eukaryotic 26S proteasome. We report here that FtsH is involved in degradation of the heat-shock transcription factor sigma 32, a key element in the regulation of the E. coli heat-shock response. In the temperature-sensitive ftsH1 mutant, the amount of sigma 32 at a non-permissive temperature was higher than in the wild-type under certain conditions due to a reduced rate of degradation. In an in vitro system with purified components, FtsH catalyzed ATP-dependent degradation of biologically active histidine-tagged sigma 32. FtsH has a zinc-binding motif similar to the active site of zinc-metalloproteases. Protease activity of FtsH for histidine-tagged sigma 32 was stimulated by Zn2+ and strongly inhibited by the heavy metal chelating agent o-phenanthroline. We conclude that FtsH is a novel membrane-bound, ATP-dependent metalloprotease with activity for sigma 32. These findings indicate a new mechanism of gene regulation in E. coli. Images PMID:7781608

  7. A true autoactivating enzyme. Structural insight into mannose-binding lectin-associated serine protease-2 activations.

    PubMed

    Gál, Péter; Harmat, Veronika; Kocsis, Andrea; Bián, Tünde; Barna, László; Ambrus, Géza; Végh, Barbara; Balczer, Júlia; Sim, Robert B; Náray-Szabó, Gábor; Závodszky, Péter

    2005-09-30

    Few reports have described in detail a true autoactivation process, where no extrinsic cleavage factors are required to initiate the autoactivation of a zymogen. Herein, we provide structural and mechanistic insight into the autoactivation of a multidomain serine protease: mannose-binding lectin-associated serine protease-2 (MASP-2), the first enzymatic component in the lectin pathway of complement activation. We characterized the proenzyme form of a MASP-2 catalytic fragment encompassing its C-terminal three domains and solved its crystal structure at 2.4 A resolution. Surprisingly, zymogen MASP-2 is capable of cleaving its natural substrate C4, with an efficiency about 10% that of active MASP-2. Comparison of the zymogen and active structures of MASP-2 reveals that, in addition to the activation domain, other loops of the serine protease domain undergo significant conformational changes. This additional flexibility could play a key role in the transition of zymogen MASP-2 into a proteolytically active form. Based on the three-dimensional structures of proenzyme and active MASP-2 catalytic fragments, we present model for the active zymogen MASP-2 complex and propose a mechanism for the autoactivation process. PMID:16040602

  8. High resolution structure of cleaved Serpin 42 Da from Drosophila melanogaster

    PubMed Central

    2014-01-01

    Background The Drosophila melanogaster Serpin 42 Da gene (previously Serpin 4) encodes a serine protease inhibitor that is capable of remarkable functional diversity through the alternative splicing of four different reactive centre loop exons. Eight protein isoforms of Serpin 42 Da have been identified to date, targeting the protease inhibitor to both different proteases and cellular locations. Biochemical and genetic studies suggest that Serpin 42 Da inhibits target proteases through the classical serpin ‘suicide’ inhibition mechanism, however the crystal structure of a representative Serpin 42 Da isoform remains to be determined. Results We report two high-resolution crystal structures of Serpin 42 Da representing the A/B isoforms in the cleaved conformation, belonging to two different space-groups and diffracting to 1.7 Å and 1.8 Å. Structural analysis reveals the archetypal serpin fold, with the major elements of secondary structure displaying significant homology to the vertebrate serpin, neuroserpin. Key residues known to have central roles in the serpin inhibitory mechanism are conserved in both the hinge and shutter regions of Serpin 42 Da. Furthermore, these structures identify important conserved interactions that appear to be of crucial importance in allowing the Serpin 42 Da fold to act as a versatile template for multiple reactive centre loops that have different sequences and protease specificities. Conclusions In combination with previous biochemical and genetic studies, these structures confirm for the first time that the Serpin 42 Da isoforms are typical inhibitory serpin family members with the conserved serpin fold and inhibitory mechanism. Additionally, these data reveal the remarkable structural plasticity of serpins, whereby the basic fold is harnessed as a template for inhibition of a large spectrum of proteases by reactive centre loop exon ‘switching’. This is the first structure of a Drosophila serpin reported to date

  9. The Activity of σV, an Extracytoplasmic Function σ Factor of Bacillus subtilis, Is Controlled by Regulated Proteolysis of the Anti-σ Factor RsiV

    PubMed Central

    Hastie, Jessica L.; Williams, Kyle B.

    2013-01-01

    During growth in the environment, bacteria encounter stresses which can delay or inhibit their growth. To defend against these stresses, bacteria induce both resistance and repair mechanisms. Many bacteria regulate these resistance mechanisms using a group of alternative σ factors called extracytoplasmic function (ECF) σ factors. ECF σ factors represent the largest and most diverse family of σ factors. Here, we demonstrate that the activation of a member of the ECF30 subfamily of ECF σ factors, σV in Bacillus subtilis, is controlled by the proteolytic destruction of the anti-σ factor RsiV. We will demonstrate that the degradation of RsiV and, thus, the activation of σV requires multiple proteolytic steps. Upon exposure to the inducer lysozyme, the extracellular domain of RsiV is removed by an unknown protease, which cleaves at site 1. This cleavage is independent of PrsW, the B. subtilis site 1 protease, which cleaves the anti-σ factor RsiW. Following cleavage by the unknown protease, the N-terminal portion of RsiV requires further processing, which requires the site 2 intramembrane protease RasP. Our data indicate that the N-terminal portion of RsiV from amino acid 1 to 60, which lacks the extracellular domain, is constitutively degraded unless RasP is absent, indicating that RasP cleavage is constitutive. This suggests that the regulatory step in RsiV degradation and, thus, σV activation are controlled at the level of the site 1 cleavage. Finally, we provide evidence that increased resistance to lysozyme decreases σV activation. Collectively, these data provide evidence that the mechanism for σV activation in B. subtilis is controlled by regulated intramembrane proteolysis (RIP) and requires the site 2 protease RasP. PMID:23687273

  10. Regulation of protease production in Clostridium sporogenes.

    PubMed Central

    Allison, C; Macfarlane, G T

    1990-01-01

    The physiological and nutritional factors that regulate protease synthesis in Clostridium sporogenes C25 were studied in batch and continuous cultures. Formation of extracellular proteases occurred at the end of active growth and during the stationary phase in batch cultures. Protease production was inversely related to growth rate in glucose-excess and glucose-limited chemostats over the range D = 0.05 to 0.70 h-1. In pulse experiments, glucose, ammonia, phosphate, and some amino acids (tryptophan, proline, tyrosine, and isoleucine) strongly repressed protease synthesis. This repression was not relieved by addition of 4 mM cyclic AMP, cyclic GMP, or dibutyryl cyclic AMP. Protease formation was markedly inhibited by 4 mM ATP and ADP, but GTP and GDP had little effect on the process. It is concluded that protease production by C. sporogenes is strongly influenced by the amount of energy available to the cells, with the highest levels of protease synthesis occurring under energy-limiting conditions. PMID:2268158

  11. A biotechnology perspective of fungal proteases

    PubMed Central

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira, Edivaldo Ximenes; Pessoa, Adalberto; Magalhães, Pérola Oliveira

    2015-01-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:26273247

  12. A biotechnology perspective of fungal proteases.

    PubMed

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira Filho, Edivaldo Ximenes; Pessoa Junior, Adalberto; Magalhães, Pérola Oliveira

    2015-06-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:26273247

  13. Analysis of the immunoglobulin A protease gene of Streptococcus sanguis.

    PubMed Central

    Gilbert, J V; Plaut, A G; Wright, A

    1991-01-01

    The amino acid sequence T-P-P-T-P-S-P-S is tandemly duplicated in the heavy chain of human immunoglobulin A1 (IgA1), the major antibody in secretions. The bacterial pathogen Streptococcus sanguis, a precursor to dental caries and a cause of bacterial endocarditis, yields IgA protease that cleaves only the Pro-Thr peptide bond in the left duplication, while the type 2 IgA proteases of the genital pathogen Neisseria gonorrhoeae and the respiratory pathogen Haemophilus influenzae cleave only the P-T bond in the right half. We have sequenced the entire S. sanguis iga gene cloned into Escherichia coli. A segment consisting of 20 amino acids tandemly repeated 10 times, of unknown function, occurs near the amino-terminal end of the enzyme encoded in E. coli. Identification of a predicted zinc-binding region in the S. sanguis enzyme and the demonstration that mutations in this region result in production of a catalytically inactive protein support the idea that the enzyme is a metalloprotease. The N. gonorrhoeae and H. influenzae enzymes were earlier shown to be serine-type proteases, while the Bacteroides melaninogenicus IgA protease was shown to be a cysteine-type enzyme. The streptococcal IgA protease amino acid sequence has no significant homology with either of the two previously determined IgA protease sequences, that of type 2 N. gonorrhoeae and type 1 H. influenzae. The differences in both structure and mechanism among these functionally analogous enzymes underscore their role in the infectious process and offer some prospect of therapeutic intervention. Images PMID:1987065

  14. A disintegrin and metalloprotease with thrombospondin type I motif 7: a new protease for connective tissue growth factor in hepatic progenitor/oval cell niche.

    PubMed

    Pi, Liya; Jorgensen, Marda; Oh, Seh-Hoon; Protopapadakis, Yianni; Gjymishka, Altin; Brown, Alicia; Robinson, Paulette; Liu, Chuanju; Scott, Edward W; Schultz, Gregory S; Petersen, Bryon E

    2015-06-01

    Hepatic progenitor/oval cell (OC) activation occurs when hepatocyte proliferation is inhibited and is tightly associated with the fibrogenic response during severe liver damage. Connective tissue growth factor (CTGF) is important for OC activation and contributes to the pathogenesis of liver fibrosis. By using the Yeast Two-Hybrid approach, we identified a disintegrin and metalloproteinase with thrombospondin repeat 7 (ADAMTS7) as a CTGF binding protein. In vitro characterization demonstrated CTGF binding and processing by ADAMTS7. Moreover, Adamts7 mRNA was induced during OC activation, after the implantation of 2-acetylaminofluorene with partial hepatectomy in rats or on feeding a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet in mice. X-Gal staining showed Adamts7 expression in hepatocyte nuclear factor 4α(+) hepatocytes and desmin(+) myofibroblasts surrounding reactive ducts in DDC-treated Adamts7(-/-) mice carrying a knocked-in LacZ gene. Adamts7 deficiency was associated with higher transcriptional levels of Ctgf and OC markers and enhanced OC proliferation compared to Adamts7(+/+) controls during DDC-induced liver injury. We also observed increased α-smooth muscle actin and procollagen type I mRNAs, large fibrotic areas in α-smooth muscle actin and Sirius red staining, and increased production of hepatic collagen by hydroxyproline measurement. These results suggest that ADAMTS7 is a new protease for CTGF protein and a novel regulator in the OC compartment, where its absence causes CTGF accumulation, leading to increased OC activation and biliary fibrosis. PMID:25843683

  15. Sam68 is cleaved by caspases under apoptotic cell death induced by ionizing radiation.

    PubMed

    Cho, Seong-Jun; Choi, Moo Hyun; Nam, Seon Young; Kim, Ji Young; Kim, Cha Soon; Pyo, Suhkneung; Yang, Kwang Hee

    2015-03-01

    The RNA-binding protein Sam68, a mitotic substrate of tyrosine kinases, has been reported to participate in the cell cycle, apoptosis, and signaling. In particular, overexpression of Sam68 protein is known to suppress cell growth and cell cycle progression in NIH3T3 cells. Although Sam68 is involved in many cellular activities, the function of Sam68, especially in response to apoptotic stimulation, is not well understood. In this study, we found that Sam68 protein is cleaved in immune cells undergoing apoptosis induced by γ-radiation. Moreover, we found that Sam68 cleavage was induced by apoptotic stimuli containing γ-radiation in a caspase-dependent manner. In particular, we showed that activated casepase-3, 7, 8 and 9 can directly cleave Sam68 protein through in vitro protease cleavage assay. Finally, we found that the knockdown of Sam68 attenuated γ-radiation-induced cell death and growth suppression. Conclusively, the cleavage of Sam68 is a new indicator for the cell damaging effects of ionizing radiation. PMID:25666188

  16. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins.

    PubMed

    Malakhov, Michael P; Mattern, Michael R; Malakhova, Oxana A; Drinker, Mark; Weeks, Stephen D; Butt, Tauseef R

    2004-01-01

    SUMO (small ubiquitin-related modifier) modulates protein structure and function by covalently binding to the lysine side chains of the target proteins. Yeast cells contain two SUMO proteases, Ulp1 and Ulp2, that cleave sumoylated proteins in the cell. Ulp1 (SUMO protease 1) processes the SUMO precursor to its mature form and also de-conjugates SUMO from side chain lysines of target proteins. Here we demonstrate that attachment of SUMO to the N-terminus of under-expressed proteins dramatically enhances their expression in E. coli. SUMO protease 1 was able to cleave a variety of SUMO fusions robustly and with impeccable specificity. Purified recombinant SUMO-GFPs were efficiently cleaved when any amino acid, except proline, was in the+1 position of the cleavage site. The enzyme was active over a broad range of buffer and temperature conditions. Purification of certain recombinant proteins is accomplished by production of Ub-fusions from which Ub can be subsequently removed by de-ubiquitinating enzymes (DUBs). However, DUBs are unstable enzymes that are difficult to produce and inexpensive DUBs are not available commercially. Our findings demonstrate that SUMO protease 1/SUMO-fusion system may be preferable to DUB/Ub-fusion. Enhanced expression and solubility of proteins fused to SUMO combined with broad specificity and highly efficient cleavage properties of the SUMO protease 1 indicates that SUMO-fusion technology will become a useful tool in purification of proteins and peptides. PMID:15263846

  17. Purification of a Factor from Human Placenta That Stimulates Capillary Endothelial Cell Protease Production, DNA Synthesis, and Migration

    NASA Astrophysics Data System (ADS)

    Moscatelli, David; Presta, Marco; Rifkin, Daniel B.

    1986-04-01

    A protein that stimulates the production of plasminogen activator and latent collagenase in cultured bovine capillary endothelial cells has been purified 106-fold from term human placenta by using a combination of heparin affinity chromatography, ion-exchange chromatography, and gel chromatography. The purified molecule has a molecular weight of 18,700 as determined by NaDodSO4/PAGE under both reducing and nonreducing conditions. The purified molecule stimulates the production of plasminogen activator and latent collagenase in a dose-dependent manner between 0.1 and 10 ng of protein/ml. The purified protein also stimulates DNA synthesis and chemotaxis in capillary endothelial cells in the same concentration range. Thus, this molecule has all of the properties predicted for an angiogenic factor.

  18. Effect of gastrointestinal proteases on purified human intrinsic factor-vitamin B12 (IF-B12) complex.

    PubMed

    Srikumar, K; Premalatha, R

    2003-04-01

    Intrinsic factor (IF) from human gastric juice was purified and complexed with vitamin B12 (IF-B12 complex) on Sepharose-vitamin B12 affinity matrix. By labeling studies, using [(57)Co] vitamin B12 and (125)I, the specific B12 binding activity of IF was found to be 23 microg B12/mg protein, and the molecular size by gel filtration 60 kDa. Proteolysis of the IF-B12 complex by sequential treatment with pepsin, trypsin, alpha-chymotrypsin and carboxypeptidase A, followed by chromatography of proteolysed complex and IF-B12 showed higher mobility of proteolysed fraction. Gel filtration, however, showed same molecular size for both proteolysed and the IF-B12 complex. On SDS-PAGE, purified IF-B12 appeared as a single band of 60 kDa. The proteolysed complex had higher mobility on SDS-PAGE and did not bind to zirconium phosphate gel. Immunodiffusion with rabbit antisera had positive reaction with IF-B12, but there was no reaction with the proteolysed sample. PMID:22900303

  19. Pentapeptide Boronic Acid Inhibitors of Mycobacterium tuberculosis MycP1 Protease

    PubMed Central

    Frasinyuk, Mykhaylo S.; Kwiatkowski, Stefan; Wagner, Jonathan M.; Evans, Timothy J.; Reed, Robert W.; Korotkov, Konstantin V.; Watt, David S.

    2014-01-01

    Mycosin protease-1 (MycP1) cleaves ESX secretion-associated protein B (EspB) that is a virulence factor of Mycobacterium tuberculosis, and accommodates an octapeptide, AVKAASLG, as a short peptide substrate. Because peptidoboronic acids are known inhibitors of serine proteases, the synthesis and binding of a boronic acid analog of the pentapeptide cleavage product, AVKAA, was studied using MycP1 variants from M. thermoresistible (MycP1mth), M. smegmatis (MycP1msm) and M. tuberculosis (MycP1mtu). We synthesized the boropentapeptide, HAlaValLysAlaAlaB(OH)2 (1) and the analogous pinanediol PD-protected HAlaValLysAlaAlaBO2(PD) (2) using an Fmoc/Boc peptide strategy. The pinanediol boropentapeptide 2 displayed IC50 values 121.6±25.3 μM for MycP1mth, 93.2±37.3 μM for MycP1msm and 37.9±5.2 μM for MycP1mtu. Such relatively strong binding creates a chance for crystalizing the complex with 2 and finding the structure of the unknown MycP1 catalytic site that would potentially facilitate the development of new anti-tuberculosis drugs. PMID:24915878

  20. Structural, kinetic, and thermodynamic studies of specificity designed HIV-1 protease

    SciTech Connect

    Alvizo, Oscar; Mittal, Seema; Mayo, Stephen L.; Schiffer, Celia A.

    2012-10-23

    HIV-1 protease recognizes and cleaves more than 12 different substrates leading to viral maturation. While these substrates share no conserved motif, they are specifically selected for and cleaved by protease during viral life cycle. Drug resistant mutations evolve within the protease that compromise inhibitor binding but allow the continued recognition of all these substrates. While the substrate envelope defines a general shape for substrate recognition, successfully predicting the determinants of substrate binding specificity would provide additional insights into the mechanism of altered molecular recognition in resistant proteases. We designed a variant of HIV protease with altered specificity using positive computational design methods and validated the design using X-ray crystallography and enzyme biochemistry. The engineered variant, Pr3 (A28S/D30F/G48R), was designed to preferentially bind to one out of three of HIV protease's natural substrates; RT-RH over p2-NC and CA-p2. In kinetic assays, RT-RH binding specificity for Pr3 increased threefold compared to the wild-type (WT), which was further confirmed by isothermal titration calorimetry. Crystal structures of WT protease and the designed variant in complex with RT-RH, CA-p2, and p2-NC were determined. Structural analysis of the designed complexes revealed that one of the engineered substitutions (G48R) potentially stabilized heterogeneous flap conformations, thereby facilitating alternate modes of substrate binding. Our results demonstrate that while substrate specificity could be engineered in HIV protease, the structural pliability of protease restricted the propagation of interactions as predicted. These results offer new insights into the plasticity and structural determinants of substrate binding specificity of the HIV-1 protease.

  1. Co-expression of the protease furin in Nicotiana benthamiana leads to efficient processing of latent transforming growth factor-β1 into a biologically active protein.

    PubMed

    Wilbers, Ruud H P; Westerhof, Lotte B; van Raaij, Debbie R; van Adrichem, Marloes; Prakasa, Andreas D; Lozano-Torres, Jose L; Bakker, Jaap; Smant, Geert; Schots, Arjen

    2016-08-01

    Transforming growth factor beta (TGF-β) is a signalling molecule that plays a key role in developmental and immunological processes in mammals. Three TGF-β isoforms exist in humans, and each isoform has unique therapeutic potential. Plants offer a platform for the production of recombinant proteins, which is cheap and easy to scale up and has a low risk of contamination with human pathogens. TGF-β3 has been produced in plants before using a chloroplast expression system. However, this strategy requires chemical refolding to obtain a biologically active protein. In this study, we investigated the possibility to transiently express active human TGF-β1 in Nicotiana benthamiana plants. We successfully expressed mature TGF-β1 in the absence of the latency-associated peptide (LAP) using different strategies, but the obtained proteins were inactive. Upon expression of LAP-TGF-β1, we were able to show that processing of the latent complex by a furin-like protease does not occur in planta. The use of a chitinase signal peptide enhanced the expression and secretion of LAP-TGF-β1, and co-expression of human furin enabled the proteolytic processing of latent TGF-β1. Engineering the plant post-translational machinery by co-expressing human furin also enhanced the accumulation of biologically active TGF-β1. This engineering step is quite remarkable, as furin requires multiple processing steps and correct localization within the secretory pathway to become active. Our data demonstrate that plants can be a suitable platform for the production of complex proteins that rely on specific proteolytic processing. PMID:26834022

  2. MicroRNA-17-mediated down-regulation of apoptotic protease activating factor 1 attenuates apoptosome formation and subsequent apoptosis of cardiomyocytes.

    PubMed

    Song, Seungjun; Seo, Hyang-Hee; Lee, Se-Yeon; Lee, Chang Yeon; Lee, Jiyun; Yoo, Kyung-Jong; Yoon, Cheesoon; Choi, Eunhyun; Hwang, Ki-Chul; Lee, Seahyoung

    2015-09-18

    Heart diseases such as myocardial infarction (MI) can damage individual cardiomyocytes, leading to the activation of cell death programs. The most scrutinized type of cell death in the heart is apoptosis, and one of the key events during the propagation of apoptotic signaling is the formation of apoptosomes, which relay apoptotic signals by activating caspase-9. As one of the major components of apoptosomes, apoptotic protease activating factor 1 (Apaf-1) facilitates the formation of apoptosomes containing cytochrome c (Cyto-c) and deoxyadenosine triphosphate (dATP). Thus, it may be possible to suppress the activation of the apoptotic program by down-regulating the expression of Apaf-1 using miRNAs. To validate this hypothesis, we selected a number of candidate miRNAs that were expected to target Apaf-1 based on miRNA target prediction databases. Among these candidate miRNAs, we empirically identified miR-17 as a novel Apaf-1-targeting miRNA. The delivery of exogenous miR-17 suppressed Apaf-1 expression and consequently attenuated formation of the apoptosome complex containing caspase-9, as demonstrated by co-immunoprecipitation and immunocytochemistry. Furthermore, miR-17 suppressed the cleavage of procaspase-9 and the subsequent activation of caspase-3, which is downstream of activated caspase-9. Cell viability tests also indicated that miR-17 pretreatment significantly prevented the norepinephrine-induced apoptosis of cardiomyocytes, suggesting that down-regulation of apoptosome formation may be an effective strategy to prevent cellular apoptosis. These results demonstrate the potential of miR-17 as an effective anti-apoptotic agent. PMID:26265044

  3. Alterations in the expression of protease-activated receptor 1 and tumor necrosis factor-α in the basilar artery of rats following a subarachnoid hemorrhage

    PubMed Central

    LI, GANG; WANG, QING-SONG; LIN, TING-TING

    2016-01-01

    The present study aimed to investigate the expression of protease-activated receptor 1 (PAR1) and tumor necrosis factor (TNF)-α in a rat model of subarachnoid hemorrhage (SAH)-induced cerebral vasospasm (CVS). The rat models were established by twice injecting blood into the cisterna magna, after which the following experimental groups were established: The normal group, the SAH3d group, the SAH5d group and the SAH7d group. The rats were perfused and the basilar artery was removed for histological examination. The cross-sectional area of the basilar artery lumen was measured using computer software; and the protein expression of PAR1 and TNF-α was detected by immunohistochemistry. The cross-sectional area of the basilar artery of the rats in the SAH model groups was significantly decreased in a time-dependent manner, as compared with the normal group. The protein expression of PAR1 and TNF-α in the SAH3d, SAH5d and SAH7d groups was significantly increased over time (P<0.05), as compared with the normal group. CVS was detected in the basilar artery, and was associated with wall thickening and significant narrowing of the lumen, thus suggesting that the present model may be used for investigating cerebrovascular disease following SAH. The immunohistochemical analyses demonstrated that the protein expression of PAR1 and TNF-α was significantly increased in the basilar artery of the SAH model rats, and were positively correlated with the degree of CVS. PMID:26997984

  4. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets.

    PubMed

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  5. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets

    PubMed Central

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C.

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein–protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  6. MIB–MIP is a mycoplasma system that captures and cleaves immunoglobulin G

    PubMed Central

    Arfi, Yonathan; Minder, Laetitia; Di Primo, Carmelo; Le Roy, Aline; Ebel, Christine; Coquet, Laurent; Claverol, Stephane; Vashee, Sanjay; Jores, Joerg; Blanchard, Alain; Sirand-Pugnet, Pascal

    2016-01-01

    Mycoplasmas are “minimal” bacteria able to infect humans, wildlife, and a large number of economically important livestock species. Mycoplasma infections include a spectrum of clinical manifestations ranging from simple fever to fulminant inflammatory diseases with high mortality rates. These infections are mostly chronic, suggesting that mycoplasmas have developed means to evade the host immune response. Here we present and functionally characterize a two-protein system from Mycoplasma mycoides subspecies capri that is involved in the capture and cleavage of IgG. The first component, Mycoplasma Ig binding protein (MIB), is an 83-kDa protein that is able to tightly bind to the Fv region of a wide range of IgG. The second component, Mycoplasma Ig protease (MIP), is a 97-kDa serine protease that is able to cleave off the VH domain of IgG. We demonstrate that MIB is necessary for the proteolytic activity of MIP. Cleavage of IgG requires a sequential interaction of the different partners of the system: first MIB captures the IgG, and then MIP is recruited to the MIB–IgG complex, enabling protease activity. MIB and MIP are encoded by two genes organized in tandem, with homologs found in the majority of pathogenic mycoplasmas and often in multiple copies. Phylogenetic studies suggest that genes encoding the MIB–MIP system are specific to mycoplasmas and have been disseminated by horizontal gene transfer. These results highlight an original and complex system targeting the host immunoglobulins, playing a potentially key role in the immunity evasion by mycoplasmas. PMID:27114507

  7. MIB-MIP is a mycoplasma system that captures and cleaves immunoglobulin G.

    PubMed

    Arfi, Yonathan; Minder, Laetitia; Di Primo, Carmelo; Le Roy, Aline; Ebel, Christine; Coquet, Laurent; Claverol, Stephane; Vashee, Sanjay; Jores, Joerg; Blanchard, Alain; Sirand-Pugnet, Pascal

    2016-05-10

    Mycoplasmas are "minimal" bacteria able to infect humans, wildlife, and a large number of economically important livestock species. Mycoplasma infections include a spectrum of clinical manifestations ranging from simple fever to fulminant inflammatory diseases with high mortality rates. These infections are mostly chronic, suggesting that mycoplasmas have developed means to evade the host immune response. Here we present and functionally characterize a two-protein system from Mycoplasma mycoides subspecies capri that is involved in the capture and cleavage of IgG. The first component, Mycoplasma Ig binding protein (MIB), is an 83-kDa protein that is able to tightly bind to the Fv region of a wide range of IgG. The second component, Mycoplasma Ig protease (MIP), is a 97-kDa serine protease that is able to cleave off the VH domain of IgG. We demonstrate that MIB is necessary for the proteolytic activity of MIP. Cleavage of IgG requires a sequential interaction of the different partners of the system: first MIB captures the IgG, and then MIP is recruited to the MIB-IgG complex, enabling protease activity. MIB and MIP are encoded by two genes organized in tandem, with homologs found in the majority of pathogenic mycoplasmas and often in multiple copies. Phylogenetic studies suggest that genes encoding the MIB-MIP system are specific to mycoplasmas and have been disseminated by horizontal gene transfer. These results highlight an original and complex system targeting the host immunoglobulins, playing a potentially key role in the immunity evasion by mycoplasmas. PMID:27114507

  8. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes.

    PubMed

    Edgington, Laura E; Verdoes, Martijn; Bogyo, Matthew

    2011-12-01

    Proteases are enzymes that cleave peptide bonds in protein substrates. This process can be important for regulated turnover of a target protein but it can also produce protein fragments that then perform other functions. Because the last few decades of protease research have confirmed that proteolysis is an essential regulatory process in both normal physiology and in multiple disease-associated conditions, there has been an increasing interest in developing methods to image protease activity. Proteases are also considered to be one of the few 'druggable' classes of proteins and therefore a large number of small molecule based inhibitors of proteases have been reported. These compounds serve as a starting point for the design of probes that can be used to target active proteases for imaging applications. Currently, several classes of fluorescent probes have been developed to visualize protease activity in live cells and even whole organisms. The two primary classes of protease probes make use of either peptide/protein substrates or covalent inhibitors that produce a fluorescent signal when bound to an active protease target. This review outlines some of the most recent advances in the design of imaging probes for proteases. In particular, it highlights the strengths and weaknesses of both substrate-based and activity-based probes and their applications for imaging cysteine proteases that are important biomarkers for multiple human diseases. PMID:22098719

  9. Far-field radiation from a cleaved cylindrical dielectric waveguide

    SciTech Connect

    Cerjan, C.

    1996-07-09

    Angular spread in the far-field radiation pattern of a cleaved dielectric waveguide is determined from the modal structure at the surface of the waveguide using the Smythe vector integral formulation. Essential features: First, a mode exists in the fiber that has no wavelength cutoff--the so-called HE{sub 11} mode. This mode arises when non-azimuthal angular dependence of the incoming radiation is present. Second, the energy flow from this hybrid mode fills the fiber face and is not annularly shaped as opposed to the symmetric TE and TM modes. Third, the HE{sub 11} mode is not polarization dependent in contrast to the TE and TM modes. Fourth, for small differences in the refractive indices between the core and cladding regions, only the HE{sub 11} mode will be supported until the next modes appear around 3.33{lambda}. At this point, three new modes can propagate and the model structure of the radiation becomes more complicated. Fifth, the far-field radiation pattern will have negligibly small angular dependence in the phases of the vector fields when only the lowest mode is present; the amplitude has an overall angular dependent form factor. Furthermore, when other modes are present (above 3.33{lambda}), the phase of the vector fields will acquire an angular dependence.

  10. Tigutcystatin, a cysteine protease inhibitor from Triatoma infestans midgut expressed in response to Trypanosoma cruzi

    SciTech Connect

    Buarque, Diego S.; Spindola, Leticia M.N.; Martins, Rafael M.; Braz, Gloria R.C.; Tanaka, Aparecida S.

    2011-09-23

    Highlights: {yields} Tigutcystatin inhibits Trypanosoma cruzi cysteine proteases with high specificity. {yields} Tigutcystatin expression is up-regulated in response to T. cruzi infection. {yields} It is the first cysteine proteases inhibitor characterized from a triatomine insect. -- Abstract: The insect Triatoma infestans is a vector of Trypanosoma cruzi, the etiological agent of Chagas disease. A cDNA library was constructed from T. infestans anterior midgut, and 244 clones were sequenced. Among the EST sequences, an open reading frame (ORF) with homology to a cystatin type 2 precursor was identified. Then, a 288-bp cDNA fragment encoding mature cystatin (lacking signal peptide) named Tigutcystatin was cloned fused to a N-terminal His tag in pET-14b vector, and the protein expressed in Escherichia coli strain Rosetta gami. Tigutcystatin purified and cleaved by thrombin to remove His tag presented molecular mass of 11 kDa and 10,137 Da by SDS-PAGE and MALDI-TOF mass spectrometry, respectively. Purified Tigutcystatin was shown to be a tight inhibitor towards cruzain, a T. cruzi cathepsin L-like enzyme (K{sub i} = 3.29 nM) and human cathepsin L (K{sub i} = 3.78 nM). Tissue specific expression analysis showed that Tigutcystatin was mostly expressed in anterior midgut, although amplification in small intestine was also detected by semi quantitative RT-PCR. qReal time PCR confirmed that Tigutcystatin mRNA is significantly up-regulated in anterior midgut when T. infestans is infected with T. cruzi. Together, these results indicate that Tigutcystatin may be involved in modulation of T. cruzi in intestinal tract by inhibiting parasite cysteine proteases, which represent the virulence factors of this protozoan.

  11. Comparison of flat cleaved and cylindrical diffusing fibers as treatment sources for interstitial photodynamic therapy

    SciTech Connect

    Baran, Timothy M. Foster, Thomas H.

    2014-02-15

    Purpose: For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Methods: Treatment planning software for iPDT was developed based on graphics processing unit enhanced Monte Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D{sub 90}) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. Results: When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180–8080 J in order to deposit 90 J/cm{sup 2} in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270–2350 J (333–1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485–3600 J

  12. A novel protease activity assay using a protease-responsive chaperone protein

    SciTech Connect

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  13. German cockroach proteases and protease-activated receptor-2 regulate chemokine production and dendritic cell recruitment.

    PubMed

    Day, Scottie B; Ledford, John R; Zhou, Ping; Lewkowich, Ian P; Page, Kristen

    2012-01-01

    We recently showed that serine proteases in German cockroach (GC) feces (frass) decreased experimental asthma through the activation of protease-activated receptor (PAR)-2. Since dendritic cells (DCs) play an important role in the initiation of asthma, we queried the role of GC frass proteases in modulating CCL20 (chemokine C-C motif ligand 20) and granulocyte macrophage colony-stimulating factor (GM-CSF) production, factors that regulate pulmonary DCs. A single exposure to GC frass resulted in a rapid, but transient, increase in GM-CSF and a steady increase in CCL20 in the airways of mice. Instillation of protease-depleted GC frass or instillation of GC frass in PAR-2-deficient mice significantly decreased chemokine release. A specific PAR-2-activating peptide was also sufficient to induce CCL20 production. To directly assess the role of the GC frass protease in chemokine release, we enriched the protease from GC frass and confirmed that the protease was sufficient to induce both GM-CSF and CCL20 production in vivo. Primary airway epithelial cells produced both GM-CSF and CCL20 in a protease- and PAR-2-dependent manner. Finally, we show a decreased percentage of myeloid DCs in the lung following allergen exposure in PAR-2-deficient mice compared to wild-type mice. However, there was no difference in GC frass uptake. Our data indicate that, through the activation of PAR-2, allergen-derived proteases are sufficient to induce CCL20 and GM-CSF production in the airways. This leads to increased recruitment and/or differentiation of myeloid DC populations in the lungs and likely plays an important role in the initiation of allergic airway responses. PMID:21876326

  14. Milk-clotting mechanism of Dregea sinensis Hemsl. protease.

    PubMed

    Zhang, Yali; Wang, Hongyan; Tao, Liang; Huang, Ai-xiang

    2015-12-01

    Dregea sinensis Hemsl. is used as a milk coagulant to produce goat milk cakes in Yunnan, China. However, the composition of milk-clotting compounds and the related mechanism have not been reported. Crude protease was extracted from the stem, purified, and then separated with a Millipore ultrafiltration centrifuge tube. Cysteine protease (procerain B) was identified as the main milk-clotting protein through electrospray ionization mass spectrometry, and its molecular weight was 23.8 kDa. The protease can partially degrade α-casein (CN) and completely degrade β- and κ-CN, and κ-CN degradation resulted in milk clotting. The molecular weight and AA sequence of the peptide fractions were determined through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and a peptide sequencer, respectively. The enzyme cleaved κ-CN at Ala90-Gln91 and produced deputy κ-CN and caseinomacropeptide with molecular weights of 12 and 6.9 kDa, respectively. This cleavage site differed from the majority of chymosins cleaved at Phe105-Met106. PMID:26506540

  15. Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments.

    PubMed

    Nishimura, Kenji; Kato, Yusuke; Sakamoto, Wataru

    2016-08-01

    Chloroplasts originated from the endosymbiosis of ancestral cyanobacteria and maintain transcription and translation machineries for around 100 proteins. Most endosymbiont genes, however, have been transferred to the host nucleus, and the majority of the chloroplast proteome is composed of nucleus-encoded proteins that are biosynthesized in the cytosol and then imported into chloroplasts. How chloroplasts and the nucleus communicate to control the plastid proteome remains an important question. Protein-degrading machineries play key roles in chloroplast proteome biogenesis, remodeling, and maintenance. Research in the past few decades has revealed more than 20 chloroplast proteases, which are localized to specific suborganellar locations. In particular, two energy-dependent processive proteases of bacterial origin, Clp and FtsH, are central to protein homeostasis. Processing endopeptidases such as stromal processing peptidase and thylakoidal processing peptidase are involved in the maturation of precursor proteins imported into chloroplasts by cleaving off the amino-terminal transit peptides. Presequence peptidases and organellar oligopeptidase subsequently degrade the cleaved targeting peptides. Recent findings have indicated that not only intraplastidic but also extraplastidic processive protein-degrading systems participate in the regulation and quality control of protein translocation across the envelopes. In this review, we summarize current knowledge of the major chloroplast proteases in terms of type, suborganellar localization, and diversification. We present details of these degradation processes as case studies according to suborganellar compartment (envelope, stroma, and thylakoids). Key questions and future directions in this field are discussed. PMID:27288365

  16. alpha 1-Antichymotrypsin is the human plasma inhibitor of macrophage ectoenzymes that cleave pro-macrophage stimulating protein.

    PubMed

    Skeel, A; Leonard, E J

    2001-06-15

    Macrophage stimulating protein (MSP) is secreted as 78-kDa single chain pro-MSP, which is converted to biologically active, disulfide-linked alphabeta chain MSP by cleavage at Arg(483)-Val(484). Murine resident peritoneal macrophages have two cell surface proteolytic activities that cleave pro-MSP. One is a pro-MSP convertase, which cleaves pro-MSP to active MSP; the other degrades pro-MSP. The degrading protease is inhibited by soybean trypsin inhibitor or by low concentrations of blood plasma, which allows the convertase to cleave pro-MSP to MSP. Using pro-MSP cleavage as the assay, we purified the inhibitor from human plasma. The bulk of the plasma protein was removed by salting out and by isoelectric precipitation of albumin. Highly purified inhibitor was then obtained in three steps: dye-ligand binding and elution, ion exchange chromatography, and high performance liquid chromatography gel filtration. After SDS-polyacrylamide gel electrophoresis and transfer to a polyvinylidene membrane, N-terminal sequencing of the product identified it as alpha(1)-antichymotrypsin. The mean concentration of alpha(1)-antichymotrypsin in human plasma is 7 micrometer. At this concentration, alpha(1)-antichymotrypsin inhibits both macrophage enzymes. A concentration of 0.4 micrometer, which is in the expected concentration range in extracellular fluid, preferentially inhibits the degrading enzyme, which allows for cleavage to active MSP by the pro-MSP convertase. PMID:11274154

  17. Lipopolysaccharide and Tumor Necrosis Factor Alpha Inhibit Interferon Signaling in Hepatocytes by Increasing Ubiquitin-Like Protease 18 (USP18) Expression

    PubMed Central

    MacParland, Sonya A.; Ma, Xue-Zhong; Chen, Limin; Khattar, Ramzi; Cherepanov, Vera; Selzner, Markus; Feld, Jordan J.; Selzner, Nazia

    2016-01-01

    ABSTRACT Inflammation may be maladaptive to the control of viral infection when it impairs interferon (IFN) responses, enhancing viral replication and spread. Dysregulated immunity as a result of inappropriate innate inflammatory responses is a hallmark of chronic viral infections such as, hepatitis B virus and hepatitis C virus (HCV). Previous studies from our laboratory have shown that expression of an IFN-stimulated gene (ISG), ubiquitin-like protease (USP)18 is upregulated in chronic HCV infection, leading to impaired hepatocyte responses to IFN-α. We examined the ability of inflammatory stimuli, including tumor necrosis factor alpha (TNF-α), lipopolysaccharide (LPS), interleukin-6 (IL-6) and IL-10 to upregulate hepatocyte USP18 expression and blunt the IFN-α response. Human hepatoma cells and primary murine hepatocytes were treated with TNF-α/LPS/IL-6/IL-10 and USP18, phosphorylated (p)-STAT1 and myxovirus (influenza virus) resistance 1 (Mx1) expression was determined. Treatment of Huh7.5 cells and primary murine hepatocytes with LPS and TNF-α, but not IL-6 or IL-10, led to upregulated USP18 expression and induced an IFN-α refractory state, which was reversed by USP18 knockdown. Liver inflammation was induced in vivo using a murine model of hepatic ischemia/reperfusion injury. Hepatic ischemia/reperfusion injury led to an induction of USP18 expression in liver tissue and promotion of lymphocytic choriomeningitis replication. These data demonstrate that certain inflammatory stimuli (TNF-α and LPS) but not others (IL-6 and IL-10) target USP18 expression and thus inhibit IFN signaling. These findings represent a new paradigm for how inflammation alters hepatic innate immune responses, with USP18 representing a potential target for intervention in various inflammatory states. IMPORTANCE Inflammation may prevent the control of viral infection when it impairs the innate immune response, enhancing viral replication and spread. Blunted immunity as a result of

  18. Cleavage of a Recombinant Human Immunoglobulin A2 (IgA2)-IgA1 Hybrid Antibody by Certain Bacterial IgA1 Proteases

    PubMed Central

    Senior, Bernard W.; Dunlop, James I.; Batten, Margaret R.; Kilian, Mogens; Woof, Jenny M.

    2000-01-01

    To understand more about the factors influencing the cleavage of immunoglobulin A1 (IgA1) by microbial IgA1 proteases, a recombinant human IgA2/IgA1 hybrid molecule was generated. In the hybrid, termed IgA2/A1 half hinge, a seven-amino-acid sequence corresponding to one half of the duplicated sequence making up the IgA1 hinge was incorporated into the equivalent site in IgA2. Insertion of the IgA1 half hinge into IgA2 did not affect antigen binding capacity or the functional activity of the hybrid molecule, as judged by its ability to bind to IgA Fcα receptors and trigger respiratory bursts in neutrophils. Although the IgA2/A1 hybrid contained only half of the IgA1 hinge, it was found to be cleaved by a variety of different bacterial IgA1 proteases, including representatives of those that cleave IgA1 in the different duplicated halves of the hinge, namely, those of Prevotella melaninogenica, Streptococcus pneumoniae, S. sanguis, Neisseria meningitidis types 1 and 2, N. gonorrhoeae types 1 and 2, and Haemophilus influenzae type 2. Thus, for these enzymes the recognition site for IgA1 cleavage is contained within half of the IgA1 hinge region; additional distal elements, if required, are provided by either an IgA1 or an IgA2 framework. In contrast, the IgA2/A1 hybrid appeared to be resistant to cleavage with S. oralis and some H. influenzae type 1 IgA1 proteases, suggesting these enzymes require additional determinants for efficient substrate recognition. PMID:10639405

  19. Cleavage of a recombinant human immunoglobulin A2 (IgA2)-IgA1 hybrid antibody by certain bacterial IgA1 proteases.

    PubMed

    Senior, B W; Dunlop, J I; Batten, M R; Kilian, M; Woof, J M

    2000-02-01

    To understand more about the factors influencing the cleavage of immunoglobulin A1 (IgA1) by microbial IgA1 proteases, a recombinant human IgA2/IgA1 hybrid molecule was generated. In the hybrid, termed IgA2/A1 half hinge, a seven-amino-acid sequence corresponding to one half of the duplicated sequence making up the IgA1 hinge was incorporated into the equivalent site in IgA2. Insertion of the IgA1 half hinge into IgA2 did not affect antigen binding capacity or the functional activity of the hybrid molecule, as judged by its ability to bind to IgA Fcalpha receptors and trigger respiratory bursts in neutrophils. Although the IgA2/A1 hybrid contained only half of the IgA1 hinge, it was found to be cleaved by a variety of different bacterial IgA1 proteases, including representatives of those that cleave IgA1 in the different duplicated halves of the hinge, namely, those of Prevotella melaninogenica, Streptococcus pneumoniae, S. sanguis, Neisseria meningitidis types 1 and 2, N. gonorrhoeae types 1 and 2, and Haemophilus influenzae type 2. Thus, for these enzymes the recognition site for IgA1 cleavage is contained within half of the IgA1 hinge region; additional distal elements, if required, are provided by either an IgA1 or an IgA2 framework. In contrast, the IgA2/A1 hybrid appeared to be resistant to cleavage with S. oralis and some H. influenzae type 1 IgA1 proteases, suggesting these enzymes require additional determinants for efficient substrate recognition. PMID:10639405

  20. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  1. Evaluation on Potential Contributions of Protease Activated Receptors Related Mediators in Allergic Inflammation

    PubMed Central

    Zhang, Huiyun; Zeng, Xiaoning; He, Shaoheng

    2014-01-01

    Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy. PMID:24876677

  2. Protease IV, a quorum sensing-dependent protease of Pseudomonas aeruginosa modulates insect innate immunity.

    PubMed

    Park, Su-Jin; Kim, Soo-Kyoung; So, Yong-In; Park, Ha-Young; Li, Xi-Hui; Yeom, Doo Hwan; Lee, Mi-Nan; Lee, Bok-Luel; Lee, Joon-Hee

    2014-12-01

    In Pseudomonas aeruginosa, quorum sensing (QS) plays an essential role in pathogenesis and the QS response controls many virulence factors. Using a mealworm, Tenebrio molitor as a host model, we found that Protease IV, a QS-regulated exoprotease of P. aeruginosa functions as a key virulence effector causing the melanization and death of T. molitor larvae. Protease IV was able to degrade zymogens of spätzle processing enzyme (SPE) and SPE-activating enzyme (SAE) without the activation of the antimicrobial peptide (AMP) production. Since SPE and SAE function to activate spätzle, a ligand of Toll receptor in the innate immune system of T. molitor, we suggest that Protease IV may interfere with the activation of the Toll signaling. Independently of the Toll pathway, the melanization response, another innate immunity was still generated, since Protease IV directly converted Tenebrio prophenoloxidase into active phenoloxidase. Protease IV also worked as an important factor in the virulence to brine shrimp and nematode. These results suggest that Protease IV provides P. aeruginosa with a sophisticated way to escape the immune attack of host by interfering with the production of AMPs. PMID:25315216

  3. BACE2, a β-secretase homolog, cleaves at the β site and within the amyloid-β region of the amyloid-β precursor protein

    PubMed Central

    Farzan, Michael; Schnitzler, Christine E.; Vasilieva, Natalya; Leung, Doris; Choe, Hyeryun

    2000-01-01

    Production of amyloid-β protein (Aβ) is initiated by a β-secretase that cleaves the Aβ precursor protein (APP) at the N terminus of Aβ (the β site). A recently identified aspartyl protease, BACE, cleaves the β site and at residue 11 within the Aβ region of APP. Here we show that BACE2, a BACE homolog, cleaves at the β site and more efficiently at a different site within Aβ. The Flemish missense mutation of APP, implicated in a form of familial Alzheimer's disease, is adjacent to this latter site and markedly increases Aβ production by BACE2 but not by BACE. BACE and BACE2 respond identically to conservative β-site mutations, and alteration of a common active site Arg inhibits β-site cleavage but not cleavage within Aβ by both enzymes. These data suggest that BACE2 contributes to Aβ production in individuals bearing the Flemish mutation, and that selective inhibition of these highly similar proteases may be feasible and therapeutically advantageous. PMID:10931940

  4. Pneumococcal IgA1 protease subverts specific protection by human IgA1.

    PubMed

    Janoff, E N; Rubins, J B; Fasching, C; Charboneau, D; Rahkola, J T; Plaut, A G; Weiser, J N

    2014-03-01

    Bacterial immunoglobulin A1 (IgA1) proteases may sabotage the protective effects of IgA. In vitro, both exogenous and endogenously produced IgA1 protease inhibited phagocytic killing of Streptococcus pneumoniae by capsule-specific IgA1 human monoclonal antibodies (hMAbs) but not IgA2. These IgA1 proteases cleaved and reduced binding of the the effector Fcα1 heavy chain but not the antigen-binding F(ab)/light chain to pneumococcal surfaces. In vivo, IgA1 protease-resistant IgA2, but not IgA1 protease-sensitive IgA1, supported 60% survival in mice infected with wild-type S. pneumoniae. IgA1 hMAbs protected mice against IgA1 protease-deficient but not -producing pneumococci. Parallel mouse sera with human IgA2 showed more efficient complement-mediated reductions in pneumococci with neutrophils than did IgA1, particularly with protease-producing organisms. After natural human pneumococcal bacteremia, purified serum IgG inhibited IgA1 protease activity in 7 of 11 patients (64%). These observations provide the first evidence in vivo that IgA1 protease can circumvent killing of S. pneumoniae by human IgA. Acquisition of IgA1 protease-neutralizing IgG after infection directs attention to IgA1 protease both as a determinant of successful colonization and infection and as a potential vaccine candidate. PMID:23820749

  5. Modifications of both selectivity factor and upstream binding factor contribute to poliovirus-mediated inhibition of RNA polymerase I transcription.

    PubMed

    Banerjee, Rajeev; Weidman, Mary K; Navarro, Sonia; Comai, Lucio; Dasgupta, Asim

    2005-08-01

    Soon after infection, poliovirus (PV) shuts off host-cell transcription, which is catalysed by all three cellular RNA polymerases. rRNA constitutes more than 50 % of all cellular RNA and is transcribed from rDNA by RNA polymerase I (pol I). Here, evidence has been provided suggesting that both pol I transcription factors, SL-1 (selectivity factor) and UBF (upstream binding factor), are modified and inactivated in PV-infected cells. The viral protease 3C(pro) appeared to cleave the TATA-binding protein-associated factor 110 (TAF(110)), a subunit of the SL-1 complex, into four fragments in vitro. In vitro protease-cleavage assays using various mutants of TAF(110) and purified 3C(pro) indicated that the Q(265)G(266) and Q(805)G(806) sites were cleaved by 3C(pro). Both SL-1 and UBF were depleted in PV-infected cells and their disappearance correlated with pol I transcription inhibition. rRNA synthesis from a template containing a human pol I promoter demonstrated that both SL-1 and UBF were necessary to restore pol I transcription fully in PV-infected cell extracts. These results suggested that both SL-1 and UBF are transcriptionally inactivated in PV-infected HeLa cells. PMID:16033979

  6. Protease inhibitors decrease IgG shedding from Staphylococcus aureus, increasing complement activation and phagocytosis efficiency.

    PubMed

    Fernandez Falcon, Maria F; Echague, Charlene G; Hair, Pamela S; Nyalwidhe, Julius O; Cunnion, Kenji M

    2011-10-01

    Staphylococcus aureus is a major pathogen for immunologically intact humans and its pathogenesis is a model system for evasion of host defences. Antibodies and complement are essential elements of the humoral immune system for prevention and control of S. aureus infections. The specific hypothesis for the proposed research is that S. aureus modifies humoral host defences by cleaving IgG that has bound to the bacterial surface, thereby inhibiting opsonophagocytosis. S. aureus was coated with pooled, purified human IgG and assayed for the shedding of cleaved IgG fragments using ELISA and Western blot analysis. Surface-bound IgG was shed efficiently from S. aureus in the absence of host blood proteins. Broad-spectrum protease inhibitors prevented cleavage of IgG from the S. aureus surface, suggesting that staphylococcal proteases are responsible for IgG cleavage. Serine protease inhibitors and cysteine protease inhibitors decreased the cleavage of surface-bound IgG; however, a metalloprotease inhibitor had no effect. Using protease inhibitors to prevent the cleavage of surface-bound IgG increased the binding of complement C3 fragments on the surface of S. aureus, increased the association with human neutrophils and increased phagocytosis by human neutrophils. PMID:21636671

  7. RNA-Cleaving DNA Enzymes with Altered Regio- or Enantioselectivity

    NASA Technical Reports Server (NTRS)

    Ordoukhanian, Phillip; Joyce, Gerald F.

    2002-01-01

    In vitro evolution methods were used to obtain DNA enzymes that cleave either a 2',5' - phosphodiester following a wibonucleotide or a 3',5' -phosphodiester following an L-ribonucleotide. Both enzymes can operate in an intermolecular reaction format with multiple turnover. The DNA enzyme that cleaves a 2',5' -phosphodiester exhibits a k(sub cat) of approx. 0.01/ min and catalytic efficiency, k(sub cat)/k(sub m) of approx. 10(exp 5)/ M min. The enzyme that cleaves an L-ribonudeotide is about 10-fold slower and has a catalytic efficiency of approx. 4 x 10(exp 5)/ M min. Both enzymes require a divalent metal cation for their activity and have optimal catalytic rate at pH 7-8 and 35-50 C. In a comparison of each enzyme s activity with either its corresponding substrate that contains an unnatural ribonudeotide or a substrate that instead contains a standard ribonucleotide, the 2',5' -phosphodiester-deaving DNA enzyme exhibited a regioselectivity of 6000- fold, while the L-ribonucleotide-cleaving DNA enzyme exhibited an enantioselectivity of 50-fold. These molecules demonstrate how in vitro evolution can be used to obtain regio- and enantioselective catalysts that exhibit specificities for nonnatural analogues of biological compounds.

  8. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  9. A Structural Study of Norovirus 3C Protease Specificity: Binding of a Designed Active Site-Directed Peptide Inhibitor†

    PubMed Central

    2010-01-01

    Noroviruses are the major cause of human epidemic nonbacterial gastroenteritis. Viral replication requires a 3C cysteine protease that cleaves a 200 kDa viral polyprotein into its constituent functional proteins. Here we describe the X-ray structure of the Southampton norovirus 3C protease (SV3CP) bound to an active site-directed peptide inhibitor (MAPI) which has been refined at 1.7 Å resolution. The inhibitor, acetyl-Glu-Phe-Gln-Leu-Gln-X, which is based on the most rapidly cleaved recognition sequence in the 200 kDa polyprotein substrate, reacts covalently through its propenyl ethyl ester group (X) with the active site nucleophile, Cys 139. The structure permits, for the first time, the identification of substrate recognition and binding groups in a noroviral 3C protease and thus provides important new information for the development of antiviral prophylactics. PMID:21128685

  10. Characterization of the Self-Cleaving Effector Protein NopE1 of Bradyrhizobium japonicum ▿

    PubMed Central

    Schirrmeister, Jana; Friedrich, Lars; Wenzel, Mandy; Hoppe, Markus; Wolf, Christine; Göttfert, Michael; Zehner, Susanne

    2011-01-01

    NopE1 is a type III-secreted protein of the symbiont Bradyrhizobium japonicum which is expressed in nodules. In vitro it exhibits self-cleavage in a duplicated domain of unknown function (DUF1521) but only in the presence of calcium. Here we show that either domain is self-sufficient for cleavage. An exchange of the aspartic acid residue at the cleavage site with asparagine prevented cleavage; however, cleavage was still observed with glutamic acid at the same position, indicating that a negative charge at the cleavage site is sufficient. Close to each cleavage site, an EF-hand-like motif is present. A replacement of one of the conserved aspartic acid residues with alanine prevented cleavage at the neighboring site. Except for EDTA, none of several protease inhibitors blocked cleavage, suggesting that a known protease-like mechanism is not involved in the reaction. In line with this, the reaction takes place within a broad pH and temperature range. Interestingly, magnesium, manganese, and several other divalent cations did not induce cleavage, indicating a highly specific calcium-binding site. Based on results obtained by blue-native gel electrophoresis, it is likely that the uncleaved protein forms a dimer and that the fragments of the cleaved protein oligomerize. A database search reveals that the DUF1521 domain is present in proteins encoded by Burkholderia phytofirmans PsNJ (a plant growth-promoting betaproteobacterium) and Vibrio coralliilyticus ATCC BAA450 (a pathogenic gammaproteobacterium). Obviously, this domain is more widespread in proteobacteria, and it might contribute to the interaction with hosts. PMID:21642459

  11. Protease determination using an optimized alcohol enzyme electrode.

    PubMed

    Bardeletti, G; Carillon, C

    1993-12-01

    A new method for the determination of protease activities is described. In this large family, trypsin is used as a protease model that cleaves the ethyl or methyl ester of artificial substrates producing ethanol or methanol. Alcohol is detected using an alcohol oxidase enzyme electrode. The H2O2 production that occurs is measured amperometrically. At 30 degrees C, in a 0.1M phosphate buffer, pH 7.5, the enzyme electrode response for ethanol was calibrated at 3.10(-6)-3.10(-3)M and for methanol from 3.10(-7) to 4.10(-4)M in the cell measurement. Trypsin levels as determined by the proposed method and by a conventional spectrophotometric method are in good agreement when using the same measurement conditions. A detection limit of 10 U.L-1 and a linear calibration curve of 10-100,000 U.L-1 in the sample were obtained. Measuring time for the required trypsin solution concentration was from 4 min (for the most dilute samples) to 1 min (for the most concentrate samples). In a typical experiment, protease measurements did not inactivate the alcohol oxidase on the probe, nor did a more classical use for alcohol detection. The procedure developed could permit any protease estimation on the condition that they hydrolyze ester bonds from synthetic substrate. PMID:8109959

  12. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1.

    PubMed

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. PMID:27528192

  13. Same fold with different mobility: backbone dynamics of small protease inhibitors from the desert locust, Schistocerca gregaria.

    PubMed

    Szenthe, Borbála; Gáspári, Zoltán; Nagy, Attila; Perczel, András; Gráf, László

    2004-03-30

    SGCI (Schistocerca gregaria chymotrypsin inhibitor) and SGTI (Sch. gregaria trypsin inhibitor) are small, 35-residue serine protease inhibitors with intriguing taxon specificity: SGTI is specific for arthropod proteases while SGCI is an excellent inhibitor on both mammalian and arthropodal enzymes. Here we report the cloning, expression, and (15)N backbone dynamics investigations of these peptides. Successful expression could be achieved by a "dimeric" construct similar to the natural precursor of the inhibitors. An engineered methionine residue between the two modules served as a unique cyanogen bromide cleavage site to cleave the precursor and physically separate SGCI and SGTI. The overall correlation time of the precursor (5.29 ns) as well as the resulted SGCI (3.14 ns) and SGTI (2.96 ns) are as expected for proteins of this size. General order parameters (S(2)) for the inhibitors are lower than those characteristic of well-folded proteins. Values in the binding loop region are even lower. Interestingly, the distribution of residues for which a chemical exchange (R(ex)) term should be considered is strikingly different in SGCI and SGTI. Together with H-D exchange studies, this indicates that the internal dynamics of the two closely related molecules differ. We suggest that the dynamic properties of these inhibitors is one of the factors that determine their specificity. PMID:15035609

  14. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1

    PubMed Central

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. DOI: http://dx.doi.org/10.7554/eLife.17721.001 PMID:27528192

  15. Effect of proteases on the. beta. -thromboglobulin radioimmunoassay

    SciTech Connect

    Donlon, J.A.; Helgeson, E.A.; Donlon, M.A.

    1985-02-11

    Rat peritoneal mast cells and mast cell granules were evaluated by radioimmunoassay for the presence of ..beta..-thromboglobulin and platelet factor 4. The initial assays indicated that a ..beta..-thromboglobulin cross reacting material was released from mast cells by compound 48/80 in a similar dose-dependent manner as histamine release. The material was also found to be associated with purified granules. However, the use of protease inhibitors in the buffers completely abolished the positive assays. Further evaluation of the effects of various proteases on the ..beta..-thromboglobulin assay indicated that elastase would also generate a false positive assay which could then be neutralized by the use of ..cap alpha../sub 1/-antitrypsin as a protease inhibitor. There was no protease effect on the platelet factor 4 radioimmunoassay which always showed no detectable amounts with mast cells, granules or proteases. These results clearly indicate the artifactual positive assays which can arise when using certain radioimmunoassay tests in the presence of cell proteases. The use of protease inhibitors is a necessary control when applying a radioimmunoassay to a system with potentially active proteases. 24 references, 2 figures, 4 tables.

  16. Taspase1: a 'misunderstood' protease with translational cancer relevance.

    PubMed

    Wünsch, D; Hahlbrock, A; Jung, S; Schirmeister, T; van den Boom, J; Schilling, O; Knauer, S K; Stauber, R H

    2016-06-30

    Proteolysis is not only a critical requirement for life, but the executing enzymes also play important roles in numerous pathological conditions, including cancer. Therefore, targeting proteases is clearly relevant for improving cancer patient care. However, to effectively control proteases, a profound knowledge of their mechanistic function as well as their regulation and downstream signalling in health and disease is required. The highly conserved protease Threonine Aspartase1 (Taspase1) is overexpressed in numerous liquid and solid malignancies and was characterized as a 'non-oncogene addiction' protease. Although Taspase1 was shown to cleave various regulatory proteins in humans as well as leukaemia provoking mixed lineage leukaemia fusions, our knowledge on its detailed functions and the underlying mechanisms contributing to cancer is still incomplete. Despite superficial similarity to type 2 asparaginases as well as Ntn proteases, such as the proteasome, Taspase1-related research so far gives us the picture of a unique protease exhibiting special features. Moreover, neither effective genetic nor chemical inhibitors for this enzyme are available so far, thus hampering not only to further dissect Taspase1's pathobiological functions but also precluding the assessment of its clinical impact. Based on recent insights, we here critically review the current knowledge of Taspase1's structure-function relationship and its mechanistic relevance for tumorigenesis obtained from in vitro and in vivo cancer models. We provide a comprehensive overview of tumour entities for which Taspase1 might be of predictive and therapeutic value, and present the respective experimental evidence. To stimulate progress in the field, a comprehensive overview of Taspase1 targeting approaches is presented, including coverage of Taspase1-related patents. We conclude by discussing future inhibition strategies and relevant challenges, which need to be resolved by the field. PMID:26657154

  17. Trichuris suis: thiol protease activity from adult worms.

    PubMed

    Hill, D E; Sakanari, J A

    1997-01-01

    Trichuris suis, the whipworm of swine, causes anemia, weight loss, anorexia, mucohemorrhagic diarrhea, and death in heavy infections. A zinc metalloprotease has been suggested to play a role in the severe enteric pathology associated with infection and the infiltration of opportunistic bacteria into deeper tissues in the swine colon. In this study, a thiol protease from gut extracts of adult T. suis and from excretory/secretory components (E/S) of adult worms was characterized using fluorogenic peptide substrates and protein substrate gels. The protease cleaved the fluorogenic substrate Z-Phe-Arg-AMC, and this cleavage was completely inhibited by the thiol protease inhibitors E-64, leupeptin, Z-Phe-Ala-CH2F, and Z-Phe-Arg-CH2F. Gelatin substrate gels and fluorescence assays using both the gut and the stichosome extracts and E/S revealed enhanced activity when 2 mM dithiothreitol or 5 mM cysteine was included in the incubation buffer, and optimal activity was seen over a pH range of 5.5 to 8.5. Incubation of gut extracts or E/S material with inhibitors of aspartic, serine, or metalloproteases had no effect on the cleavage of Z-Phe-Arg-AMC. Thiol protease activity was found in extracts of gut tissue but not in the extracts of stichocytes of adult worms. N-terminal amino acid sequencing of the protease revealed sequence homologies with cathepsin B-like thiol protease identified from parasitic and free-living nematodes. PMID:9024202

  18. Meprin A impairs epithelial barrier function, enhances monocyte migration, and cleaves the tight junction protein occludin

    PubMed Central

    Bao, Jialing; Yura, Renee E.; Matters, Gail L.; Bradley, S. Gaylen; Shi, Pan; Tian, Fang

    2013-01-01

    Meprin metalloproteases are highly expressed at the luminal interface of the intestine and kidney and in certain leukocytes. Meprins cleave a variety of substrates in vitro, including extracellular matrix proteins, adherens junction proteins, and cytokines, and have been implicated in a number of inflammatory diseases. The linkage between results in vitro and pathogenesis, however, has not been elucidated. The present study aimed to determine whether meprins are determinative factors in disrupting the barrier function of the epithelium. Active meprin A or meprin B applied to Madin-Darby canine kidney (MDCK) cell monolayers increased permeability to fluorescein isothiocyanate-dextran and disrupted immunostaining of the tight junction protein occludin but not claudin-4. Meprin A, but not meprin B, cleaved occludin in MDCK monolayers. Experiments with recombinant occludin demonstrated that meprin A cleaves the protein between Gly100 and Ser101 on the first extracellular loop. In vivo experiments demonstrated that meprin A infused into the mouse bladder increased the epithelium permeability to sodium fluorescein. Furthermore, monocytes from meprin knockout mice on a C57BL/6 background were less able to migrate through an MDCK monolayer than monocytes from their wild-type counterparts. These results demonstrate the capability of meprin A to disrupt epithelial barriers and implicate occludin as one of the important targets of meprin A that may modulate inflammation. PMID:23804454

  19. Thrombin stimulates insulin secretion via protease-activated receptor-3

    PubMed Central

    Hänzelmann, Sonja; Wang, Jinling; Güney, Emre; Tang, Yunzhao; Zhang, Enming; Axelsson, Annika S; Nenonen, Hannah; Salehi, Albert S; Wollheim, Claes B; Zetterberg, Eva; Berntorp, Erik; Costa, Ivan G; Castelo, Robert; Rosengren, Anders H

    2015-01-01

    The disease mechanisms underlying type 2 diabetes (T2D) remain poorly defined. Here we aimed to explore the pathophysiology of T2D by analyzing gene co-expression networks in human islets. Using partial correlation networks we identified a group of co-expressed genes (‘module’) including F2RL2 that was associated with glycated hemoglobin. F2Rl2 is a G-protein-coupled receptor (GPCR) that encodes protease-activated receptor-3 (PAR3). PAR3 is cleaved by thrombin, which exposes a 6-amino acid sequence that acts as a ‘tethered ligand’ to regulate cellular signaling. We have characterized the effect of PAR3 activation on insulin secretion by static insulin secretion measurements, capacitance measurements, studies of diabetic animal models and patient samples. We demonstrate that thrombin stimulates insulin secretion, an effect that was prevented by an antibody that blocks the thrombin cleavage site of PAR3. Treatment with a peptide corresponding to the PAR3 tethered ligand stimulated islet insulin secretion and single β-cell exocytosis by a mechanism that involves activation of phospholipase C and Ca2+ release from intracellular stores. Moreover, we observed that the expression of tissue factor, which regulates thrombin generation, was increased in human islets from T2D donors and associated with enhanced β-cell exocytosis. Finally, we demonstrate that thrombin generation potential in patients with T2D was associated with increased fasting insulin and insulinogenic index. The findings provide a previously unrecognized link between hypercoagulability and hyperinsulinemia and suggest that reducing thrombin activity or blocking PAR3 cleavage could potentially counteract the exaggerated insulin secretion that drives insulin resistance and β-cell exhaustion in T2D. PMID:26742564

  20. The Proteolytic Activation of (H3N2) Influenza A Virus Hemagglutinin Is Facilitated by Different Type II Transmembrane Serine Proteases

    PubMed Central

    Kühn, Nora; Bergmann, Silke; Kösterke, Nadine; Lambertz, Ruth L. O.; Keppner, Anna; van den Brand, Judith M. A.; Weiß, Siegfried; Hummler, Edith; Hatesuer, Bastian

    2016-01-01

    ABSTRACT Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT), have been shown to cleave influenza virus HA for viral activation and infectivity in vitro. Recently, we reported that inactivation of a single HA-activating protease gene, Tmprss2, in knockout mice inhibits the spread of H1N1 influenza viruses. However, after infection of Tmprss2 knockout mice with an H3N2 influenza virus, only a slight increase in survival was observed, and mice still lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are expressed in the same cell types of the mouse lung. Deletion of Tmprss4 alone in knockout mice does not protect them from body weight loss and death upon infection with H3N2 influenza virus. In contrast, Tmprss2−/− Tmprss4−/− double-knockout mice showed a remarkably reduced virus spread and lung pathology, in addition to reduced body weight loss and mortality. Thus, our results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influenza virus in vivo. IMPORTANCE Influenza epidemics and recurring pandemics are responsible for significant global morbidity and mortality. Due to high variability of the virus genome, resistance to available antiviral drugs is frequently observed, and new targets for treatment of influenza are needed. Host cell factors essential for processing of the virus hemagglutinin represent very suitable drug targets because the virus is dependent on these host factors for replication. We reported previously that Tmprss2-deficient mice are protected against H1N1 virus infections, but only marginal protection against H3N2 virus infections was observed. Here we show that deletion of two host protease genes, Tmprss2 and

  1. Highly efficient recombinant production and purification of streptococcal cysteine protease streptopain with increased enzymatic activity.

    PubMed

    Lane, Michael D; Seelig, Burckhard

    2016-05-01

    Streptococcus pyogenes produces the cysteine protease streptopain (SpeB) as a critical virulence factor for pathogenesis. Despite having first been described seventy years ago, this protease still holds mysteries which are being investigated today. Streptopain can cleave a wide range of human proteins, including immunoglobulins, the complement activation system, chemokines, and structural proteins. Due to the broad activity of streptopain, it has been challenging to elucidate the functional results of its action and precise mechanisms for its contribution to S. pyogenes pathogenesis. To better study streptopain, several expression and purification schemes have been developed. These methods originally involved isolation from S. pyogenes culture but were more recently expanded to include recombinant Escherichia coli expression systems. While substantially easier to implement, the latter recombinant approach can prove challenging to reproduce, often resulting in mostly insoluble protein and poor purification yields. After extensive optimization of a wide range of expression and purification conditions, we applied the autoinduction method of protein expression and developed a two-step column purification scheme that reliably produces large amounts of purified soluble and highly active streptopain. This method reproducibly yielded 3 mg of streptopain from 50 mL of expression culture at >95% purity, with an activity of 5306 ± 315 U/mg, and no remaining affinity tags or artifacts from recombinant expression. This improved method therefore enables the facile production of the important virulence factor streptopain at higher yields, with no purification scars that might bias functional studies, and with an 8.1-fold increased enzymatic activity compared to previously described procedures. PMID:26773742

  2. Structure-based design and functional studies of novel noroviral 3C protease chimaeras offer insights into substrate specificity

    PubMed Central

    Herod, Morgan R.; Prince, Cynthia A.; Skilton, Rachel J.; Ward, Vernon K.; Cooper, Jonathan B.; Clarke, Ian N.

    2014-01-01

    The norovirus NS6 protease is a key target for anti-viral drug development. Noroviruses encode a 2200 amino acid polyprotein which is cleaved by this critical protease at five defined boundary substrates into six mature non-structural (NS) proteins. Studies of the human norovirus (HNV) NS6 protease, in the context of a full ORF1 polyprotein, have been severely hampered because HNVs are not culturable. Thus, investigations into the HNV NS6 protease have been largely restricted to in vitro assays using Escherichia coli-expressed, purified enzyme. The NS6 protease is formed of two distinct domains joined by a linking loop. Structural data suggest that domain 2 of the protease possesses substantial substrate binding pockets which form the bulk of the interactions with the NS boundaries and largely dictate boundary specificity and cleavage. We have constructed chimaeric murine norovirus (MNV) genomes carrying individual domains from the HNV protease and demonstrated by cell transfection that chimaeric HNV proteases have functional activity in the context of the full-length ORF1 polyprotein. Although domain 2 primarily confers boundary specificity, our data suggest that an inter-domain interaction exists within HNV NS6 protease which influences cleavage of specific substrates. The present study also shows that chimaeric MNVs provide improved models for studying HNV protein function in the context of a full ORF1 polyprotein. PMID:25275273

  3. Structure-based design and functional studies of novel noroviral 3C protease chimaeras offer insights into substrate specificity.

    PubMed

    Herod, Morgan R; Prince, Cynthia A; Skilton, Rachel J; Ward, Vernon K; Cooper, Jonathan B; Clarke, Ian N

    2014-12-15

    The norovirus NS6 protease is a key target for anti-viral drug development. Noroviruses encode a 2200 amino acid polyprotein which is cleaved by this critical protease at five defined boundary substrates into six mature non-structural (NS) proteins. Studies of the human norovirus (HNV) NS6 protease, in the context of a full ORF1 polyprotein, have been severely hampered because HNVs are not culturable. Thus, investigations into the HNV NS6 protease have been largely restricted to in vitro assays using Escherichia coli-expressed, purified enzyme. The NS6 protease is formed of two distinct domains joined by a linking loop. Structural data suggest that domain 2 of the protease possesses substantial substrate binding pockets which form the bulk of the interactions with the NS boundaries and largely dictate boundary specificity and cleavage. We have constructed chimaeric murine norovirus (MNV) genomes carrying individual domains from the HNV protease and demonstrated by cell transfection that chimaeric HNV proteases have functional activity in the context of the full-length ORF1 polyprotein. Although domain 2 primarily confers boundary specificity, our data suggest that an inter-domain interaction exists within HNV NS6 protease which influences cleavage of specific substrates. The present study also shows that chimaeric MNVs provide improved models for studying HNV protein function in the context of a full ORF1 polyprotein. PMID:25275273

  4. Inhibitors of rhomboid proteases.

    PubMed

    Wolf, Eliane V; Verhelst, Steven H L

    2016-03-01

    Rhomboid proteases form one of the most widespread families of intramembrane proteases. They utilize a catalytic serine-histidine dyad located several Å below the surface of the membrane for substrate hydrolysis. Multiple studies have implicated rhomboid proteases in biologically and medically relevant processes. Several assays have been developed that are able to monitor rhomboid activity. With the aid of these assays, different types of inhibitors have been found, all based on electrophiles that covalently react with the active site machinery. Although the currently available inhibitors have limited selectivity and moderate potency, they can function as research tools and as starting point for the development of activity-based probes, which are reagents that can specifically detect active rhomboid species. Structural studies on complexes of inhibitors with the Escherichia coli rhomboid GlpG have provided insight into how substrate recognition may occur. Future synthetic efforts, aided by high-throughput screening or structure-based design, may lead to more potent and selective inhibitors for this interesting family of proteases. PMID:26166068

  5. Inner membrane protease I, an enzyme mediating intramitochondrial protein sorting in yeast.

    PubMed Central

    Schneider, A; Behrens, M; Scherer, P; Pratje, E; Michaelis, G; Schatz, G

    1991-01-01

    Several precursors transported from the cytoplasm to the intermembrane space of yeast mitochondria are first cleaved by the MAS-encoded protease in the matrix space and then by additional proteases that have not been characterized. We have now developed a specific assay for one of these other proteases. The enzyme is an integral protein of the inner membrane; it requires divalent cations and acidic phospholipid for activity, and is defective in yeast mutant pet ts2858 which accumulates an incompletely processed cytochrome b2 precursor. The protease contains a 21.4 kd subunit whose C-terminal part is exposed on the outer face of the inner membrane. An antibody against this polypeptide inhibits the activity of the protease. As overproduction of the polypeptide does not increase the activity of the protease in mitochondria, the enzyme may be a hetero-oligomer. This 'inner membrane protease I' shares several key features with the leader peptidase of Escherichia coli and the signal peptidase of the endoplasmic reticulum. Images PMID:1991446

  6. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases.

    PubMed

    Lecaille, Fabien; Lalmanach, Gilles; Andrault, Pierre-Marie

    2016-03-01

    Lung antimicrobial proteins and peptides (AMPs) are major sentinels of innate immunity by preventing microbial colonization and infection. Nevertheless bactericidal activity of AMPs against Gram-positive and Gram-negative bacteria is compromised in patients with chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) and asthma. Evidence is accumulating that expression of harmful human serine proteases, matrix metalloproteases and cysteine cathepsins is markedely increased in these chronic lung diseases. The local imbalance between proteases and protease inhibitors compromises lung tissue integrity and function, by not only degrading extracellular matrix components, but also non-matrix proteins. Despite the fact that AMPs are somewhat resistant to proteolytic degradation, some human proteases cleave them efficiently and impair their antimicrobial potency. By contrast, certain AMPs may be effective as antiproteases. Host proteases participate in concert with bacterial proteases in the degradation of key innate immunity peptides/proteins and thus may play immunomodulatory activities during chronic lung diseases. In this context, the present review highlights the current knowledge and recent discoveries on the ability of host enzymes to interact with AMPs, providing a better understanding of the role of human proteases in innate host defense. PMID:26341472

  7. Analyzing Protease Specificity and Detecting in Vivo Proteolytic Events Using Tandem Mass Spectrometry

    SciTech Connect

    Gupta, Nitin; Hixson, Kim K.; Culley, David E.; Smith, Richard D.; Pevzner, Pavel A.

    2010-07-01

    While trypsin remains the most commonly used protease in mass spectrometry, other proteases may be employed for increasing peptide-coverage or generating overlapping peptides. Knowledge of the accurate specifcity rules of these proteases is helpful for database search tools to detect peptides, and becomes crucial when mass spectrometry is used to discover in vivo proteolytic cleavages. In this study, we use tandem mass spectrometry to analyze the specifcity rules of selected proteases and describe MS- Proteolysis, a software tool for identifying putative sites of in vivo proteolytic cleavage. Our analysis suggests that the specifcity rules for some commonly used proteases can be improved, e.g., we find that V8 protease cuts not only after Asp and Glu, as currently expected, but also shows a smaller propensity to cleave after Gly for the conditions tested in this study. Finally, we show that comparative analysis of multiple proteases can be used to detect putative in vivo proteolytic sites on a proteome-wide scale.

  8. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.

    PubMed

    Alcaine, S D; Tilton, L; Serrano, M A C; Wang, M; Vachet, R W; Nugen, S R

    2015-10-01

    Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs. PMID:26245682

  9. Structure of the catalytic domain of the hepatitis C virus NS2-3 protease

    SciTech Connect

    Lorenz,I.; Marcotrigiano, J.; Dentzer, T.; Rice, C.

    2006-01-01

    Hepatitis C virus is a major global health problem affecting an estimated 170 million people worldwide. Chronic infection is common and can lead to cirrhosis and liver cancer. There is no vaccine available and current therapies have met with limited success. The viral RNA genome encodes a polyprotein that includes two proteases essential for virus replication. The NS2-3 protease mediates a single cleavage at the NS2/NS3 junction, whereas the NS3-4A protease cleaves at four downstream sites in the polyprotein. NS3-4A is characterized as a serine protease with a chymotrypsin-like fold, but the enzymatic mechanism of the NS2-3 protease remains unresolved. Here we report the crystal structure of the catalytic domain of the NS2-3 protease at 2.3 Angstroms resolution. The structure reveals a dimeric cysteine protease with two composite active sites. For each active site, the catalytic histidine and glutamate residues are contributed by one monomer, and the nucleophilic cysteine by the other. The carboxy-terminal residues remain coordinated in the two active sites, predicting an inactive post-cleavage form. Proteolysis through formation of a composite active site occurs in the context of the viral polyprotein expressed in mammalian cells. These features offer unexpected insights into polyprotein processing by hepatitis C virus and new opportunities for antiviral drug design.

  10. The C2H2-type transcription factor, FlbC, is involved in the transcriptional regulation of Aspergillus oryzae glucoamylase and protease genes specifically expressed in solid-state culture.

    PubMed

    Tanaka, Mizuki; Yoshimura, Midori; Ogawa, Masahiro; Koyama, Yasuji; Shintani, Takahiro; Gomi, Katsuya

    2016-07-01

    Aspergillus oryzae produces a large amount of secreted proteins in solid-state culture, and some proteins such as glucoamylase (GlaB) and acid protease (PepA) are specifically produced in solid-state culture, but rarely in submerged culture. From the disruption mutant library of A. oryzae transcriptional regulators, we successfully identified a disruption mutant showing an extremely low production level of GlaB but a normal level of α-amylase production. This strain was a disruption mutant of the C2H2-type transcription factor, FlbC, which is reported to be involved in the regulation of conidiospore development. Disruption mutants of other upstream regulators comprising a conidiation regulatory network had no apparent effect on GlaB production in solid-state culture. In addition to GlaB, the production of acid protease in solid-state culture was also markedly decreased by flbC disruption. Northern blot analyses revealed that transcripts of glaB and pepA were significantly decreased in the flbC disruption strain. These results suggested that FlbC is involved in the transcriptional regulation of genes specifically expressed under solid-state cultivation conditions, possibly independent of the conidiation regulatory network. PMID:26960315

  11. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins alphavbeta3 and alphaIIbbeta3.

    PubMed

    Stockbauer, K E; Magoun, L; Liu, M; Burns, E H; Gubba, S; Renish, S; Pan, X; Bodary, S C; Baker, E; Coburn, J; Leong, J M; Musser, J M

    1999-01-01

    The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin alphavbeta3 (also known as the vitronectin receptor) or alphaIIbbeta3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin alphaIIbbeta3. Defined beta3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing alphavbeta3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions. PMID:9874803

  12. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins αvβ3 and αIIbβ3

    PubMed Central

    Stockbauer, Kathryn E.; Magoun, Loranne; Liu, Mengyao; Burns, Eugene H.; Gubba, Siddeswar; Renish, Sarah; Pan, Xi; Bodary, Sarah C.; Baker, Elizabeth; Coburn, Jenifer; Leong, John M.; Musser, James M.

    1999-01-01

    The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin αvβ3 (also known as the vitronectin receptor) or αIIbβ3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin αIIbβ3. Defined β3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing αvβ3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions. PMID:9874803

  13. Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Improves Regeneration After Injury.

    PubMed

    Lutz, David; Kataria, Hardeep; Kleene, Ralf; Loers, Gabriele; Chaudhary, Harshita; Guseva, Daria; Wu, Bin; Jakovcevski, Igor; Schachner, Melitta

    2016-07-01

    Myelin basic protein (MBP) is a serine protease that cleaves neural cell adhesion molecule L1 and generates a transmembrane L1 fragment which facilitates L1-dependent functions in vitro, such as neurite outgrowth, neuronal cell migration and survival, myelination by Schwann cells as well as Schwann cell proliferation, migration, and process formation. Ablation and blocking of MBP or disruption of its proteolytic activity by mutation of a proteolytically active serine residue abolish L1-dependent cellular responses. In utero injection of adeno-associated virus encoding proteolytically active MBP into MBP-deficient shiverer mice normalizes differentiation, myelination, and synaptogenesis in the developing postnatal spinal cord, in contrast to proteolytically inactive MBP. Application of active MBP to the injured wild-type spinal cord and femoral nerve augments levels of a transmembrane L1 fragment, promotes remyelination, and improves functional recovery after injury. Application of MBP antibody impairs recovery. Virus-mediated expression of active MBP in the lesion site after spinal cord injury results in improved functional recovery, whereas injection of virus encoding proteolytically inactive MBP fails to do so. The present study provides evidence for a novel L1-mediated function of MBP in the developing spinal cord and in the injured adult mammalian nervous system that leads to enhanced recovery after acute trauma. PMID:26081148

  14. Substrate-Induced Conformational Changes Occur in All Cleaved Forms of Caspase-6

    SciTech Connect

    S Vaidya; E Velazquez-Delgado; G Abbruzzese; J Hardy

    2011-12-31

    Caspase-6 is an apoptotic cysteine protease that also governs disease progression in Huntington's and Alzheimer's diseases. Caspase-6 is of great interest as a target for treatment of these neurodegenerative diseases; however, the molecular basis of caspase-6 function and regulation remains poorly understood. In the recently reported structure of caspase-6, the 60's and 130's helices at the base of the substrate-binding groove extend upward, in a conformation entirely different from that of any other caspase. Presently, the central question about caspase-6 structure and function is whether the extended conformation is the catalytically competent conformation or whether the extended helices must undergo a large conformational rearrangement in order to bind substrate. We have generated a series of caspase-6 cleavage variants, including a novel constitutively two-chain form, and determined crystal structures of caspase-6 with and without the intersubunit linker. This series allows evaluation of the role of the prodomain and intersubunit linker on caspase-6 structure and function before and after substrate binding. Caspase-6 is inherently more stable than closely related caspases. Cleaved caspase-6 with both the prodomain and the linker present is the most stable, indicating that these two regions act in concert to increase stability, but maintain the extended conformation in the unliganded state. Moreover, these data suggest that caspase-6 undergoes a significant conformational change upon substrate binding, adopting a structure that is more like canonical caspases.

  15. Emerging role of the interleukin-8 cleaving enzyme SpyCEP in clinical Streptococcus pyogenes infection.

    PubMed

    Turner, Claire E; Kurupati, Prathiba; Jones, Michael D; Edwards, Robert J; Sriskandan, Shiranee

    2009-08-15

    Neutrophil chemoattractant interleukin (IL)-8 is cleaved and inactivated by the Streptococcus pyogenes cell envelope protease SpyCEP. A range of clinical S. pyogenes strains of differing emm type demonstrated SpyCEP activity, although transcription of the SpyCEP gene cepA differed 1000-fold between isolates. Disruption of the 2-component regulatory system covR/S in pharyngeal isolates increased cepA transcription 100-fold; this finding is consistent with endogenous CovR/S-mediated repression of cepA being responsible for low SpyCEP expression in some S. pyogenes strains associated with pharyngitis. Among patients with invasive S. pyogenes infection, disease severity and outcome were associated with the SpyCEP activity of the isolate. Lethal invasive isolate H292 (emm81) expressed more cepA than did other tested isolates. This strain carried a unique covR mutation that impaired binding to the cepA promoter. CovR/S sequence comparison in other clinical isolates revealed community-wide dissemination of covS mutations but not covR mutations. The results highlight a potential hazard and underline the importance of continuing molecular epidemiological surveillance for community-wide dissemination of CovR/S mutant hyperinvasive strains. PMID:19591574

  16. Substrate-induced conformational changes occur in all cleaved forms of caspase-6

    PubMed Central

    Vaidya, Sravanti; Velázquez-Delgado, Elih M.; Abbruzzese, Genevieve; Hardy, Jeanne A.

    2010-01-01

    Caspase-6 is an apoptotic cysteine protease that also governs disease progression in Huntington’s and Alzheimer’s Diseases. Caspase-6 is of great interest as a target for treatment of these neurodegenerative diseases, however the molecular basis of caspase-6 function and regulation remains poorly understood. In the recently reported structure of caspase-6, the 60’s and 130’s helices at the base of the substrate-binding groove extend upward, in a conformation entirely different from that of any other caspase. Presently, the central question about caspase-6 structure and function is whether the extended conformation is the catalytically competent conformation or whether the extended helices must undergo a large conformational rearrangement in order to bind substrate. We have generated a series of caspase-6 cleavage variants including a novel constitutively two-chain form and determined crystal structures of caspase-6 with and without the intersubunit linker. This series allows evaluation of the role of the prodomain and intersubunit linker on caspase-6 structure and function before and after substrate binding. Caspase-6 is inherently more stable than closely related caspases. Cleaved caspase-6 with both the prodomain and linker present is the most stable indicating that these two regions act in concert to increase stability, but maintain the extended conformation in the unliganded state. Most importantly, these data suggest that caspase-6 undergoes a significant conformational change upon substrate binding, adopting a structure that is more like canonical caspases. PMID:21111746

  17. Beta-secretase-cleaved amyloid precursor protein in Alzheimer brain: a morphologic study.

    PubMed

    Sennvik, Kristina; Bogdanovic, N; Volkmann, Inga; Fastbom, J; Benedikz, E

    2004-01-01

    beta-amyloid (Abeta) is the main constituent of senile plaques seen in Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases beta- and gamma-secretase. In this study, we examined content and localization of beta-secretase-cleaved APP (beta-sAPP) in brain tissue sections from the frontal, temporal and occipital lobe. Strong granular beta-sAPP staining was found throughout the gray matter of all three areas, while white matter staining was considerably weaker. beta-sAPP was found to be localized in astrocytes and in axons. We found the beta-sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal beta-sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. beta-sAPP was also found surrounding senile plaques and cerebral blood vessels. The results presented here show altered beta-sAPP staining in the AD brain, suggestive of abnormal processing and transport of APP. PMID:15090268

  18. Cleavage of DAP5 by coxsackievirus B3 2A protease facilitates viral replication and enhances apoptosis by altering translation of IRES-containing genes.

    PubMed

    Hanson, P J; Ye, X; Qiu, Y; Zhang, H M; Hemida, M G; Wang, F; Lim, T; Gu, A; Cho, B; Kim, H; Fung, G; Granville, D J; Yang, D

    2016-05-01

    Cleavage of eukaryotic translation initiation factor 4G (eIF4G) by enterovirus proteases during infection leads to the shutoff of cellular cap-dependent translation, but does not affect the initiation of cap-independent translation of mRNAs containing an internal ribosome entry site (IRES). Death-associated protein 5 (DAP5), a structural homolog of eIF4G, is a translation initiation factor specific for IRES-containing mRNAs. Coxsackievirus B3 (CVB3) is a positive single-stranded RNA virus and a primary causal agent of human myocarditis. Its RNA genome harbors an IRES within the 5'-untranslated region and is translated by a cap-independent, IRES-driven mechanism. Previously, we have shown that DAP5 is cleaved during CVB3 infection. However, the protease responsible for cleavage, cleavage site and effects on the translation of target genes during CVB3 infection have not been investigated. In the present study, we demonstrated that viral protease 2A but not 3C is responsible for DAP5 cleavage, generating 45- and 52-kDa N- (DAP5-N) and C-terminal (DAP5-C) fragments, respectively. By site-directed mutagenesis, we found that DAP5 is cleaved at amino acid G434. Upon cleavage, DAP5-N largely translocated to the nucleus at the later time points of infection, whereas the DAP5-C largely remained in the cytoplasm. Overexpression of these DAP5 truncates demonstrated that DAP5-N retained the capability of initiating IRES-driven translation of apoptosis-associated p53, but not the prosurvival Bcl-2 (B-cell lymphoma 2) when compared with the full-length DAP5. Similarly, DAP5-N expression promoted CVB3 replication and progeny release; on the other hand, DAP5-C exerted a dominant-negative effect on cap-dependent translation. Taken together, viral protease 2A-mediated cleavage of DAP5 results in the production of two truncates that exert differential effects on protein translation of the IRES-containing genes, leading to enhanced host cell death. PMID:26586572

  19. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    PubMed

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation. PMID:27114461

  20. Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli.

    PubMed

    Weiss, André; Joerss, Hanna; Brockmeyer, Jens

    2014-01-01

    EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins) by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI), α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition. PMID:25347319

  1. Structural and Functional Characterization of Cleavage and Inactivation of Human Serine Protease Inhibitors by the Bacterial SPATE Protease EspPα from Enterohemorrhagic E. coli

    PubMed Central

    Weiss, André; Joerss, Hanna; Brockmeyer, Jens

    2014-01-01

    EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins) by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI), α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition. PMID:25347319

  2. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects

    PubMed Central

    Vassar, Robert; Kuhn, Peer-Hendrik; Haass, Christian; Kennedy, Matthew E.; Rajendran, Lawrence; Wong, Philip C.; Lichtenthaler, Stefan F.

    2014-01-01

    The β-site APP cleaving enzymes 1 and 2 (BACE1 and BACE2) were initially identified as transmembrane aspartyl proteases cleaving the amyloid precursor protein (APP). BACE1 is a major drug target for Alzheimer’s disease because BACE1-mediated cleavage of APP is the first step in the generation of the pathogenic amyloid-β peptides. BACE1, which is highly expressed in the nervous system, is also required for myelination by cleaving neuregulin 1. Several recent proteomic and in vivo studies usingBACE1-andBACE2-deficient mice demonstrate a much wider range of physiological substrates and functions for both proteases within and outside of the nervous system. For BACE1 this includes axon guidance, neurogenesis, muscle spindle formation, and neuronal network functions, whereas BACE2 was shown to be involved in pigmentation and pancreatic β-cell function. This review highlights the recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer’s disease. PMID:24646365

  3. Effect of mutations in the human immunoglobulin A1 (IgA1) hinge on its susceptibility to cleavage by diverse bacterial IgA1 proteases.

    PubMed

    Senior, Bernard W; Woof, Jenny M

    2005-03-01

    Components of the human immunoglobulin A1 (IgA1) hinge governing sensitivity to cleavage by bacterial IgA1 proteases were investigated. Recombinant antibodies with distinct hinge mutations were constructed from a hybrid comprised of human IgA2 bearing half of the human IgA1 hinge region. This hybrid antibody and all the mutant antibodies derived from it were resistant to cleavage by the IgA1 proteases from Streptococcus oralis and Streptococcus mitis biovar 1 strains but were cleaved to various degrees by those of Streptococcus pneumoniae, some Streptococcus sanguis strains, and the type 1 and 2 IgA1 proteases of Haemophilus influenzae, Neisseria meningitidis, and Neisseria gonorrhoeae. Remarkably, those proteases that cleave a Pro-Ser peptide bond in the wild-type IgA1 hinge were able to cleave mutant antibodies lacking a Pro-Ser peptide bond in the hinge, and those that cleave a Pro-Thr peptide bond in the wild-type IgA1 hinge were able to cleave mutant antibodies devoid of a Pro-Thr peptide bond in the hinge. Thus, the enzymes can cleave alternatives to their preferred postproline peptide bond when such a bond is unavailable. Peptide sequence analysis of a representative antibody digestion product confirmed this conclusion. The presence of a cleavable peptide bond near the CH2 end of the hinge appeared to result in greater cleavage than if the scissile bond was at the CH1 end of the hinge. Proline-to-serine substitution at residue 230 in a hinge containing potentially cleavable Pro-Ser and Pro-Thr peptide bonds increased the resistance of the antibody to cleavage by many IgA1 proteases. PMID:15731049

  4. Biochemical analysis of hatchet self-cleaving ribozymes

    PubMed Central

    Li, Sanshu; Lünse, Christina E.; Harris, Kimberly A.; Breaker, Ronald R.

    2015-01-01

    Hatchet RNAs are members of a novel self-cleaving ribozyme class that was recently discovered by using a bioinformatics search strategy. The consensus sequence and secondary structure of this class includes 13 highly conserved and numerous other modestly conserved nucleotides interspersed among bulges linking four base-paired substructures. A representative hatchet ribozyme from a metagenomic source requires divalent ions such as Mg2+ to promote RNA strand scission with a maximum rate constant of ∼4 min−1. As with all other small self-cleaving ribozymes discovered to date, hatchet ribozymes employ a general mechanism for catalysis involving the nucleophilic attack of a ribose 2′-oxygen atom on an adjacent phosphorus center. Kinetic characteristics of the reaction demonstrate that members of this ribozyme class have an essential requirement for divalent metal ions and that they might have a complex active site that employs multiple catalytic strategies to accelerate RNA cleavage by internal phosphoester transfer. PMID:26385510

  5. Cleaved thin-film probes for scanning tunneling microscopy.

    PubMed

    Siahaan, T; Kurnosikov, O; Barcones, B; Swagten, H J M; Koopmans, B

    2016-01-22

    We introduce an alternative type of probe for scanning tunneling microscopy (STM). Instead of using a needle-like tip made from a piece of metallic wire, a sharp-edged cleaved insulating substrate, which is initially covered by a thin conductive film, is used. The sharp tip is formed at the intersection of the two cleaved sides. Using this approach a variety of materials for STM probes can be used, and functionalization of STM probes is possible. The working principle of different probes made of metallic (Pt, Co, and CoB), indium-tin oxide, as well as Cu/Pt and Co/Pt multilayer films are demonstrated by STM imaging of clean Cu(001) and Cu(111) surfaces as well as the epitaxial Co clusters on Cu(111). PMID:26636763

  6. Crystal structure of a soluble cleaved HIV-1 envelope trimer.

    PubMed

    Julien, Jean-Philippe; Cupo, Albert; Sok, Devin; Stanfield, Robyn L; Lyumkis, Dmitry; Deller, Marc C; Klasse, Per-Johan; Burton, Dennis R; Sanders, Rogier W; Moore, John P; Ward, Andrew B; Wilson, Ian A

    2013-12-20

    HIV-1 entry into CD4(+) target cells is mediated by cleaved envelope glycoprotein (Env) trimers that have been challenging to characterize structurally. Here, we describe the crystal structure at 4.7 angstroms of a soluble, cleaved Env trimer that is stabilized and antigenically near-native (termed the BG505 SOSIP.664 gp140 trimer) in complex with a potent broadly neutralizing antibody, PGT122. The structure shows a prefusion state of gp41, the interaction between the component gp120 and gp41 subunits, and how a close association between the gp120 V1/V2/V3 loops stabilizes the trimer apex around the threefold axis. The complete epitope of PGT122 on the trimer involves gp120 V1, V3, and several surrounding glycans. This trimer structure advances our understanding of how Env functions and is presented to the immune system, and provides a blueprint for structure-based vaccine design. PMID:24179159

  7. T. thermophila group I introns that cleave amide bonds

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1997-01-01

    The present invention relates to nucleic acid enzymes or enzymatic RNA molecules that are capable of cleaving a variety of bonds, including phosphodiester bonds and amide bonds, in a variety of substrates. Thus, the disclosed enzymatic RNA molecules are capable of functioning as nucleases and/or peptidases. The present invention also relates to compositions containing the disclosed enzymatic RNA molecule and to methods of making, selecting, and using such enzymes and compositions.

  8. Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases

    PubMed Central

    Gaillard, Erol A.; Kota, Pradeep; Gentzsch, Martina; Dokholyan, Nikolay V.; Stutts, M. Jackson

    2010-01-01

    Mammalian airways are protected from infection by a thin film of airway surface liquid (ASL) which covers airway epithelial surfaces and acts as a lubricant to keep mucus from adhering to the epithelial surface. Precise regulation of ASL volume is essential for efficient mucus clearance and too great a reduction in ASL volume causes mucus dehydration and mucus stasis which contributes to chronic airway infection. The epithelial Na+ channel (ENaC) is the rate-limiting step that governs Na+ absorption in the airways. Recent in vitro and in vivo data have demonstrated that ENaC is a critical determinant of ASL volume and hence mucus clearance. ENaC must be cleaved by either intracellular furin-type proteases or extracellular serine proteases to be active and conduct Na+, and this process can be inhibited by protease inhibitors. ENaC can be regulated by multiple pathways, and once proteolytically cleaved ENaC may then be inhibited by intracellular second messengers such as cAMP and PIP2. In the airways, however, regulation of ENaC by proteases seems to be the predominant mode of regulation since knockdown of either endogenous serine proteases such as prostasin, or inhibitors of ENaC proteolysis such as SPLUNC1, has large effects on ENaC activity in airway epithelia. In this review, we shall discuss how ENaC is proteolytically cleaved, how this process can regulate ASL volume, and how its failure to operate correctly may contribute to chronic airway disease. PMID:20401730

  9. Metal-mediated modulation of streptococcal cysteine protease activity and its biological implications.

    PubMed

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A; Caruso, Joseph A; Kotb, Malak

    2014-07-01

    Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues (47)Cys and (195)His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625

  10. Metal-Mediated Modulation of Streptococcal Cysteine Protease Activity and Its Biological Implications

    PubMed Central

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A.; Caruso, Joseph A.

    2014-01-01

    Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues 47Cys and 195His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625

  11. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    SciTech Connect

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R.

    2014-07-25

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.

  12. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    SciTech Connect

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas; Choi, Kyung H.

    2014-03-15

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.

  13. From proteases to proteomics

    PubMed Central

    Neurath, Hans

    2001-01-01

    This personal and professional autobiography covers the 50-yr period of 1950–2000 and includes the following topics: History of the University of Washington School of Medicine and its Department of Biochemistry (Mount Rainier and the University of Washington, recruiting faculty, biology, research programs); scientific editing (publication, Biochemistry, Protein Science, electronic publication); Europe revisited (Heidelberg, approaching retirement, the German Research Center, reunion in Vienna); and 50 yr of research on proteolytic enzymes (trypsin, carboxypeptidases, mast cell proteases, future developments). PMID:11274481

  14. Properties of Hemolysin and Protease Produced by Aeromonas trota

    PubMed Central

    Takahashi, Eizo; Ozaki, Haruka; Fujii, Yoshio; Kobayashi, Hidetomo; Yamanaka, Hiroyasu; Arimoto, Sakae; Negishi, Tomoe; Okamoto, Keinosuke

    2014-01-01

    We examined the properties of exotoxins produced by Aeromonas trota (A. enteropelogenes), one of the diarrheagenic species of Aeromonadaceae. Nine of 19 A. trota isolates that grew on solid media containing erythrocytes showed hemolytic activity. However, the hemolytic activities of the culture supernatants of these hemolytic strains of A. trota were markedly lower than those of A. sobria when cultured in liquid medium, and the amount of hemolysin detected by immunoblotting using antiserum against the hemolysin produced by A. sobria was also low. A mouse intestine loop assay using living bacterial cells showed that A. trota 701 caused the significant accumulation of fluid, and antiserum against the hemolysin produced suppressed the enterotoxic action of A. trota 701. These results indicated that A. trota 701 was diarrheagenic and the hemolysin produced was the causative agent of the enterotoxic activity of A. trota. The hemolysin in A. sobria was previously shown to be secreted in a preform (inactive form) and be activated when the carboxy-terminal domain was cleaved off by proteases in the culture supernatant. Since mature hemolysin was detected in the culture supernatants of A. trota, we analyzed the extracellular protease produced by A. trota. Fifteen of 19 A. trota isolates that grew on solid media containing skim milk showed proteolytic activity. We subsequently found that most A. trota isolates possessed the serine protease gene, but not the metalloprotease gene. Therefore, we determined the nucleotide sequence of the serine protease gene and its chaperone A. trota gene. The results obtained revealed that the deduced amino acid sequences of serine protease and the chaperone were homologous to those of A. sobria with identities of 83.0% and 75.8%, respectively. PMID:24633045

  15. Proteolysis of insulin-like growth factor-binding protein-3 by human skin keratinocytes in culture in comparison to that in skin interstitial fluid: the role and regulation of components of the plasmin system.

    PubMed

    Xu, S; Savage, P; Burton, J L; Sansom, J; Holly, J M

    1997-06-01

    Proteolysis of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) is an important determinant of IGF action on cells. We have investigated this in a human skin keratinocyte cell line HaCaT. Although these cells did not normally produce an active IGFBP-3 protease, addition of plasminogen resulted in a dose-dependent proteolysis of endogenous and exogenous IGFBP-3, producing fragments similar to those cleaved by skin interstitial fluid, but different from those generated by plasmin. Protease inhibitor profiles suggested the enzyme in the conditioned medium to be a calcium-dependent serine protease. Exogenous IGFBP-3 either inhibited or slightly stimulated IGF-I-induced cell proliferation when it was coincubated or preincubated with the cells, respectively. Both effects were attenuated in the presence of plasminogen. Preincubation of cells with IGF-I or long R3 IGF-I divergently changed plasminogen activator inhibitor-1 and -2 secretion, but only IGF-I blocked IGFBP-3 proteolysis. Such inhibition was also observed in a cell-free protease assay. IGF-I, however, had no effect on plasmin-induced IGFBP-3 degradation. Together, these data indicate that an IGFBP-3 protease similar to that in skin interstitial fluid is generated in plasminogen-treated HaCaT cells, and it attenuates the effects of IGFBP-3 on IGF action. IGF-I, probably by coupling with IGFBP-3, can protect it from the action of this protease. PMID:9177397

  16. A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold.

    PubMed

    Rendón-Ramírez, Adela; Shukla, Manish; Oda, Masataka; Chakraborty, Sandeep; Minda, Renu; Dandekar, Abhaya M; Ásgeirsson, Bjarni; Goñi, Félix M; Rao, Basuthkar J

    2013-01-01

    Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues. PMID:23940667

  17. A protease-activated receptor 2 agonist (AC-264613) suppresses interferon regulatory factor 5 and decreases interleukin-12p40 production by lipopolysaccharide-stimulated macrophages: Role of p53.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-06-01

    The transcription factor interferon regulatory factor 5 (IRF5) has a key role in the production of interleukin (IL)-12 by macrophages. IRF5 is also a central mediator of toll-like receptor signaling and is a direct target of p53. Activation of protease-activated receptor 2 (PAR-2) upregulates p53 and suppresses apoptosis. This study investigated the influence of human neutrophil elastase (HNE) and PAR-2 agonists on expression of IRF5 and IL-12p40 by macrophages stimulated with lipopolysaccharide. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent macrophages showed upregulation of IRF5 expression, while HNE reduced expression of p53 and IRF5 in a concentration-dependent manner. HNE also caused a concentration-dependent decrease of IRF5 in macrophages transfected with small interfering RNA to silence p53, while silencing of β-arrestin 2 blunted the reduction of p53 or IRF5 by HNE. Incubation of macrophages with a PAR-2 agonist, AC-264613, caused a decrease of IRF5 expression and also significantly reduced p53 protein expression. HNE upregulated the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6) and caused transactivation of TLR4, while AC-264613 did not promote TLR4 transactivation. In conclusion, the PAR-2 agonist AC-264613 attenuated IRF5-associated IL-12p40 production by macrophages. PMID:26833899

  18. Broad Spectrum Activity of a Lectin-Like Bacterial Serine Protease Family on Human Leukocytes

    PubMed Central

    Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E.; Ruiz-Perez, Fernando

    2014-01-01

    The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283

  19. Broad spectrum activity of a lectin-like bacterial serine protease family on human leukocytes.

    PubMed

    Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E; Ruiz-Perez, Fernando

    2014-01-01

    The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283

  20. Novel proteases: common themes and surprising features.

    PubMed

    Vandeputte-Rutten, Lucy; Gros, Piet

    2002-12-01

    Proteases perform a wide variety of functions, inside and outside cells, regulating many biological processes. Recent years have witnessed a number of significant advances in the structural biology of proteases, including aspects of intracellular protein and peptide degradation by self-compartmentalizing proteases, activation of proteases in proteolytic cascades of regulatory pathways, and mechanisms of microbial proteases in pathogenicity. PMID:12504673

  1. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

    PubMed

    Song, Jiangning; Tan, Hao; Perry, Andrew J; Akutsu, Tatsuya; Webb, Geoffrey I; Whisstock, James C; Pike, Robert N

    2012-01-01

    The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s). Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database) with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate sequence using

  2. Inhibition of Prevotella and Capnocytophaga immunoglobulin A1 proteases by human serum.

    PubMed

    Frandsen, E V; Kjeldsen, M; Kilian, M

    1997-07-01

    Oral Prevotella and Capnocytophaga species, regularly isolated from periodontal pockets and associated with extraoral infections, secret specific immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region into intact Fab and Fc fragments. To investigate whether these enzymes are subject to inhibition in vivo in humans, we tested 34 sera from periodontally diseased and healthy individuals in an enzyme-linked immunosorbent assay for the presence and titers of inhibition of seven Prevotella and Capnocytophaga proteases. All or nearly all of the sera inhibited the IgA1 protease activity of Prevotella buccae, Prevotella oris, and Prevotella loescheii. A minor proportion of the sera inhibited Prevotella buccalis, Prevotella denticola, and Prevotella melaninogenica IgA1 proteases, while no sera inhibited Capnocytophaga ochracea IgA1 protease. All inhibition titers were low, ranging from 5 to 55, with titer being defined as the reciprocal of the dilution of serum causing 50% inhibition of one defined unit of protease activity. No correlation between periodontal disease status and the presence, absence, or titer of inhibition was observed. The nature of the low titers of inhibition in all sera of the IgA1 proteases of P. buccae, P. oris, and P. loescheii was further examined. In size exclusion chromatography, inhibitory activity corresponded to the peak volume of IgA. Additional inhibition of the P. oris IgA1 protease was found in fractions containing both IgA and IgG. Purification of the IgG fractions of five sera by passage of the sera on a protein G column resulted in recovery of inhibitory IgG antibodies against all three IgA1 proteases, with the highest titer being for the P. oris enzyme. These finding indicate that inhibitory activity is associated with enzyme-neutralizing antibodies. PMID:9220164

  3. Transient ECM protease activity promotes synaptic plasticity.

    PubMed

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 - TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  4. Transient ECM protease activity promotes synaptic plasticity

    PubMed Central

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  5. Studies on the gonococcal IgA1 protease II. Improved methods of enzyme purification and production of monoclonal antibodies to the enzyme.

    PubMed

    Blake, M S; Eastby, C

    1991-11-22

    Two types of extremely active proteases that cleave human IgA1 are produced by pathogenic Neisseria in minute concentrations. To study the antigenicity of these enzymes, a simplified method is described to purify these enzymes from large batch cultures to obtain a sufficient quantity of these IgA1 proteases to study these characteristics. In addition, we describe the production of both rabbit polyclonal and mouse monoclonal antibodies to one of these enzymes. One such monoclonal antibody seemed directed toward the active site of the IgA1 protease and inhibited its enzymatic activity. PMID:1960418

  6. In vitro evaluation of digestive and endolysosomal enzymes to cleave CML-modified Ara h 1 peptides.

    PubMed

    Mattison, Christopher P; Dinter, Jens; Berberich, Matthew J; Chung, Si-Yin; Reed, Shawndrika S; Le Gall, Sylvie; Grimm, Casey C

    2015-07-01

    Ara h 1 is a major peanut allergen. Processing-induced modifications may modulate the allergenic potency of Ara h 1. Carboxymethyl lysine (CML) modifications are a commonly described nonenzymatic modification on food proteins. In the current study, we tested the ability of digestive and endolysosomal proteases to cleave CML-modified and unmodified Ara h 1 peptides. Mass spectrometric analyses of the digested peptides demonstrate that carboxymethylation of lysine residues renders these peptides refractory to trypsin digestion. We did not detect observable differences in the simulated gastric fluid or endolysosomal digestion between the parental and CML-modified peptides. One of the tested peptides contains a lysine residue previously shown to be CML modified laying in a previously mapped linear IgE epitope, but we did not observe a difference in IgE binding between the modified and parental peptides. Our findings suggest a molecular mechanism for the increased resistance of peanut allergens modified by thermal processing, such as Ara h 1, to digestion in intestinal fluid after heating and could help explain how food processing-induced modifications may lead to more potent food allergens by acting to protect intact IgE epitopes from digestion by proteases targeting lysine residues. PMID:26288719

  7. In vitro evaluation of digestive and endolysosomal enzymes to cleave CML-modified Ara h 1 peptides

    PubMed Central

    Mattison, Christopher P; Dinter, Jens; Berberich, Matthew J; Chung, Si-Yin; Reed, Shawndrika S; Le Gall, Sylvie; Grimm, Casey C

    2015-01-01

    Ara h 1 is a major peanut allergen. Processing-induced modifications may modulate the allergenic potency of Ara h 1. Carboxymethyl lysine (CML) modifications are a commonly described nonenzymatic modification on food proteins. In the current study, we tested the ability of digestive and endolysosomal proteases to cleave CML-modified and unmodified Ara h 1 peptides. Mass spectrometric analyses of the digested peptides demonstrate that carboxymethylation of lysine residues renders these peptides refractory to trypsin digestion. We did not detect observable differences in the simulated gastric fluid or endolysosomal digestion between the parental and CML-modified peptides. One of the tested peptides contains a lysine residue previously shown to be CML modified laying in a previously mapped linear IgE epitope, but we did not observe a difference in IgE binding between the modified and parental peptides. Our findings suggest a molecular mechanism for the increased resistance of peanut allergens modified by thermal processing, such as Ara h 1, to digestion in intestinal fluid after heating and could help explain how food processing-induced modifications may lead to more potent food allergens by acting to protect intact IgE epitopes from digestion by proteases targeting lysine residues. PMID:26288719

  8. Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site.

    PubMed Central

    Wise, R J; Barr, P J; Wong, P A; Kiefer, M C; Brake, A J; Kaufman, R J

    1990-01-01

    Intracellular proteolytic processing of precursor polypeptides is an essential step in the maturation of many proteins, including plasma proteins, hormones, neuropeptides, and growth factors. Most frequently, propeptide cleavage occurs after paired basic amino acid residues. To date, no mammalian propeptide processing enzyme with such specificity has been purified or cloned and functionally characterized. We report the isolation and functional expression of a cDNA encoding a propeptide-cleaving enzyme from a human liver cell line. The encoded protein, called PACE (paired basic amino acid cleaving enzyme), has structural homology to the well-characterized subtilisin-like protease Kex2 from yeast. The functional specificity of PACE for mediating propeptide cleavage at paired basic amino acid residues was demonstrated by the enhancement of propeptide processing of human von Willebrand factor when coexpressed with PACE in COS-1 cells. Images PMID:2251280

  9. Characterization of protease IV expression in Pseudomonas aeruginosa clinical isolates.

    PubMed

    Conibear, Tim C R; Willcox, Mark D P; Flanagan, Judith L; Zhu, Hua

    2012-02-01

    Expression of protease IV by Pseudomonas aeruginosa during ocular infections contributes significantly to tissue damage. However, several P. aeruginosa strains isolated from ocular infections or inflammatory events produce very low levels of protease IV. The aim of the present study was to characterize, genetically and phenotypically, the presence and expression of the protease IV gene in a group of clinical isolates that cause adverse ocular events of varying degrees, and to elucidate the possible control mechanisms of expression associated with this virulence factor. Protease IV gene sequences from seven clinical isolates of P. aeruginosa were determined and compared to P. aeruginosa strains PAO1 and PA103-29. Production and enzyme activity of protease IV were measured in test strains and compared to that of quorum-sensing gene (lasRI) mutants and the expression of other virulence factors. Protease IV gene sequence similarities between the isolates were 97.5-99.5 %. The strains were classified into two distinct phylogenetic groups that correlated with the presence of exo-enzymes from type three secretion systems (TTSS). Protease IV concentrations produced by PAOΔlasRI mutants and the two clinical isolates with a lasRI gene deficiency were restored to levels comparable to strain PAO1 following complementation of the quorum-sensing gene deficiencies. The protease IV gene is highly conserved in P. aeruginosa clinical isolates that cause a range of adverse ocular events. Observed variations within the gene sequence appear to correlate with presence of specific TTSS genes. Protease IV expression was shown to be regulated by the Las quorum-sensing system. PMID:21921113

  10. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins

    PubMed Central

    Thomas, Marshall P.; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-01-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. Here we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein (RBP) targets, while adding RNA to recombinant RBP substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Pre-incubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G (CATG). During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps (NETs), which bind NE and CATG. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and NETs in a DNA-dependent manner. Thus, high affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation. PMID:24771851

  11. Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology.

    PubMed

    Homaei, Ahmad; Lavajoo, Fatemeh; Sariri, Reyhaneh

    2016-07-01

    Marine environment consists of the largest sources diversified genetic pool of material with an enormous potential for a wide variety of enzymes including proteases. A protease hydrolyzes the peptide bond and most of proteases possess many industrial applications. Marine proteases differ considerably from those found in internal or external organs of invertebrates and vertebrates. In common with all enzymes, external factors such as temperature, pH and type of media are important for the activity, catalytic efficiency, stability and proper functioning of proteases. In this review valuable characteristics of proteases in marine organisms and their applications are gathered from a wide literature survey. Considering their biochemical significance and their increasing importance in biotechnology, a thorough understanding of marine proteases functioning could be of prime importance. PMID:27086293

  12. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain.

    PubMed

    Urban, Sinisa; Freeman, Matthew

    2003-06-01

    Rhomboid intramembrane proteases initiate cell signaling during Drosophila development and Providencia bacterial growth by cleaving transmembrane ligand precursors. We have determined how specificity is achieved: Drosophila Rhomboid-1 is a site-specific protease that recognizes its substrate Spitz by a small region of the Spitz transmembrane domain (TMD). This substrate motif is necessary and sufficient for cleavage and is composed of residues known to disrupt helices. Rhomboids from diverse organisms including bacteria and vertebrates recognize the same substrate motif, suggesting that they use a universal targeting strategy. We used this information to search for other rhomboid substrates and identified a family of adhesion proteins from the human parasite Toxoplasma gondii, the TMDs of which were efficient substrates for rhomboid proteases. Intramembrane cleavage of these proteins is required for host cell invasion. These results provide an explanation of how rhomboid proteases achieve specificity, and allow some rhomboid substrates to be predicted from sequence information. PMID:12820957

  13. Crystal Structure of a Rhomboid Family Intramembrane Protease.

    SciTech Connect

    Wang,Y.; Zhang, Y.; Ha, Y.

    2006-01-01

    Escherichia coli GlpG is an integral membrane protein that belongs to the widespread rhomboid protease family. Rhomboid proteases, like site-2 protease (S2P) and {gamma}-secretase, are unique in that they cleave the transmembrane domain of other membrane proteins. Here we describe the 2.1 {angstrom} resolution crystal structure of the GlpG core domain. This structure contains six transmembrane segments. Residues previously shown to be involved in catalysis, including a Ser-His dyad, and several water molecules are found at the protein interior at a depth below the membrane surface. This putative active site is accessible by substrate through a large 'V-shaped' opening that faces laterally towards the lipid, but is blocked by a half-submerged loop structure. These observations indicate that, in intramembrane proteolysis, the scission of peptide bonds takes place within the hydrophobic environment of the membrane bilayer. The crystal structure also suggests a gating mechanism for GlpG that controls substrate access to its hydrophilic active site.

  14. Identification of a Novel Host-Specific IgM Protease in Streptococcus suis

    PubMed Central

    Seele, Jana; Singpiel, Alena; Spoerry, Christian; von Pawel-Rammingen, Ulrich; Valentin-Weigand, Peter

    2013-01-01

    Streptococcus suis serotype 2 is a highly invasive, extracellular pathogen in pigs with the capacity to cause severe infections in humans. This study was initiated by the finding that IgM degradation products are released after opsonization of S. suis. The objective of this work was to identify the bacterial factor responsible for IgM degradation. The results of this study showed that a member of the IdeS family, designated IdeSsuis (Immunoglobulin M-degrading enzyme of S. suis), is responsible and sufficient for IgM cleavage. Recombinant IdeSsuis was found to degrade only IgM but neither IgG nor IgA. Interestingly, Western blot analysis revealed that IdeSsuis is host specific, as it exclusively cleaves porcine IgM but not IgM from six other species, including a closely related member of the Suidae family. As demonstrated by flow cytometry and immunofluorescence microscopy, IdeSsuis modulates binding of IgM to the bacterial surface. IdeSsuis is the first prokaryotic IgM-specific protease described, indicating that this enzyme is involved in a so-far-unknown mechanism of host-pathogen interaction at an early stage of the host immune response. Furthermore, cleavage of porcine IgM by IdeSsuis is the first identified phenotype reflecting functional adaptation of S. suis to pigs as the main host. PMID:23243300

  15. Surface structure of cleaved (001) USb2 single crystal surface

    SciTech Connect

    Chen, Shao-ping

    2008-01-01

    We have achieved what we believe to be the first atomic resolution scanning tunneling microscopy (STM) images for a uranium compound USb2 taken at room temperature. The a, b, and c lattice parameters in the images confirm that the tetragonal USb2 crystals cleave on the (001) basal plane as expected. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the density of states measured by STM. Since the spacing between Sb atoms and between U atoms is the same, STM topography alone cannot unambiguously identify the surface atom species.

  16. Optical fiber alignment using cleaved-edge diffracted light

    NASA Astrophysics Data System (ADS)

    Brun, Louis C.; Bergeron, Patrick; Duguay, Michel A.; Ouellette, Francois; Tetu, Michel

    1993-08-01

    We describe a simple technique for aligning optical fibers prior to fusion splicing. The technique relies on the fact that well-cleaved fiber ends have extremely sharp edges. By making the narrow pencil of light emerging from one fiber scan laterally over the entrance face of a second fiber, and by monitoring the light diffracted past its sharp edges, we can locate precisely the geometric center of the output fiber. With this technique, we have aligned fiber cores with a mean lateral offset of 0.81 micrometers , the major part of this offset caused by the eccentricity of the core relative to the cladding's circular perimeter.

  17. The paracaspase MALT1 cleaves the LUBAC subunit HOIL1 during antigen receptor signaling.

    PubMed

    Douanne, Tiphaine; Gavard, Julie; Bidère, Nicolas

    2016-05-01

    Antigen-receptor-mediated activation of lymphocytes relies on a signalosome comprising CARMA1 (also known as CARD11), BCL10 and MALT1 (the CBM complex). The CBM activates nuclear factor κB (NF-κB) transcription factors by recruiting the 'linear ubiquitin assembly complex' (LUBAC), and unleashes MALT1 paracaspase activity. Although MALT1 enzyme shapes NF-κB signaling, lymphocyte activation and contributes to lymphoma growth, the identity of its substrates continues to be elucidated. Here, we report that the LUBAC subunit HOIL1 (also known as RBCK1) is cleaved by MALT1 following antigen receptor engagement. HOIL1 is also constitutively processed in the 'activated B-cell-like' (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), which exhibits aberrant MALT1 activity. We further show that the overexpression of MALT1-insensitive HOIL1 mitigates T-cell-receptor-mediated NF-κB activation and subsequent cytokine production in lymphocytes. Thus, our results unveil HOIL1 as a negative regulator of lymphocyte activation cleaved by MALT1. This cleavage could therefore constitute an appealing therapeutic target for modulating immune responses. PMID:27006117

  18. Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target

    NASA Astrophysics Data System (ADS)

    Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.

    1999-09-01

    Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.

  19. The C-terminal portion of the cleaved HT motif is necessary and sufficient to mediate export of proteins from the malaria parasite into its host cell

    PubMed Central

    Tarr, Sarah J; Cryar, Adam; Thalassinos, Konstantinos; Haldar, Kasturi; Osborne, Andrew R

    2013-01-01

    The malaria parasite exports proteins across its plasma membrane and a surrounding parasitophorous vacuole membrane, into its host erythrocyte. Most exported proteins contain a Host Targeting motif (HT motif) that targets them for export. In the parasite secretory pathway, the HT motif is cleaved by the protease plasmepsin V, but the role of the newly generated N-terminal sequence in protein export is unclear. Using a model protein that is cleaved by an exogenous viral protease, we show that the new N-terminal sequence, normally generated by plasmepsin V cleavage, is sufficient to target a protein for export, and that cleavage by plasmepsin V is not coupled directly to the transfer of a protein to the next component in the export pathway. Mutation of the fourth and fifth positions of the HT motif, as well as amino acids further downstream, block or affect the efficiency of protein export indicating that this region is necessary for efficient export. We also show that the fifth position of the HT motif is important for plasmepsin V cleavage. Our results indicate that plasmepsin V cleavage is required to generate a new N-terminal sequence that is necessary and sufficient to mediate protein export by the malaria parasite. PMID:23279267

  20. Cleaving yeast and Escherichia coli genomes at a single site

    SciTech Connect

    Koob, M.; Szybalski, W. )

    1990-10-12

    The 15-megabase pair Saccharomyces cerevisiae and the 4.7-megabase pair Escherichia coli genomes were completely cleaved at a single predetermined site by means of the Achilles' heel cleavage (AC) procedure. The symmetric lac operator (lacO{sub s}) was introduced into the circular Escherichia coli genome and into one of the 16 yeast chromosomes. Intact chromosomes from the resulting strains were prepared in agarose microbeads and methylated with Hha I (5{prime}-GCGC) methyltransferase (M{center dot}Hha I) in the presence of lac repressor (LacI). All Hae II sites ({prime}-{sub G}{sup A}GCGC{sub C}{sup T}) with the exception of the one in lacO{sub s}, which was protected by LacI, were modified and thus no longer recognized by Hae II. After inactivation of M{center dot}Hha I and LacI, Hae II was used to completely cleave the chromosomes specifically at the inserted lacO{sub s}. These experiments demonstrate the feasibility of using the AC approach to efficiently extend the specificity of naturally occurring restriction enzymes and create new tools for the mapping and precise molecular dissection of multimegabase genomes.

  1. The nature of the air-cleaved mica surface

    NASA Astrophysics Data System (ADS)

    Christenson, Hugo K.; Thomson, Neil H.

    2016-06-01

    The accepted image of muscovite mica is that of an inert and atomically smooth surface, easily prepared by cleavage in an ambient atmosphere. Consequently, mica is extensively used a model substrate in many fundamental studies of surface phenomena and as a substrate for AFM imaging of biomolecules. In this review we present evidence from the literature that the above picture is not quite correct. The mica used in experimental work is almost invariably cleaved in laboratory air, where a reaction between the mica surface, atmospheric CO2 and water occurs immediately after cleavage. The evidence suggests very strongly that as a result the mica surface becomes covered by up to one formula unit of K2CO3 per nm2, which is mobile under humid conditions, and crystallises under drier conditions. The properties of mica in air or water vapour cannot be fully understood without reference to the surface K2CO3, and many studies of the structure of adsorbed water on mica surfaces may need to be revisited. With this new insight, however, the air-cleaved mica should provide exciting opportunities to study phenomena such as two-dimensional ion diffusion, electrolyte effects on surface conductivity, and two-dimensional crystal nucleation.

  2. Biochemical analysis of pistol self-cleaving ribozymes

    PubMed Central

    Harris, Kimberly A.; Lünse, Christina E.; Li, Sanshu; Brewer, Kenneth I.; Breaker, Ronald R.

    2015-01-01

    Pistol RNAs are members of a distinct class of self-cleaving ribozymes that was recently discovered by using a bioinformatics search strategy. Several hundred pistol ribozymes share a consensus sequence including 10 highly conserved nucleotides and many other modestly conserved nucleotides associated with specific secondary structure features, including three base-paired stems and a pseudoknot. A representative pistol ribozyme from the bacterium Lysinibacillus sphaericus was found to promote RNA strand scission with a rate constant of ∼10 min−1 under physiological Mg2+ and pH conditions. The reaction proceeds via the nucleophilic attack of a 2′-oxygen atom on the adjacent phosphorus center, and thus adheres to the same general catalytic mechanism of internal phosphoester transfer as found with all other classes of natural self-cleaving ribozymes discovered to date. Analyses of the kinetic characteristics and the metal ion requirements of the cleavage reaction reveal that members of this ribozyme class likely use several catalytic strategies to promote the rapid cleavage of RNA. PMID:26385507

  3. Biochemical analysis of pistol self-cleaving ribozymes.

    PubMed

    Harris, Kimberly A; Lünse, Christina E; Li, Sanshu; Brewer, Kenneth I; Breaker, Ronald R

    2015-11-01

    Pistol RNAs are members of a distinct class of self-cleaving ribozymes that was recently discovered by using a bioinformatics search strategy. Several hundred pistol ribozymes share a consensus sequence including 10 highly conserved nucleotides and many other modestly conserved nucleotides associated with specific secondary structure features, including three base-paired stems and a pseudoknot. A representative pistol ribozyme from the bacterium Lysinibacillus sphaericus was found to promote RNA strand scission with a rate constant of ∼10 min(-1) under physiological Mg(2+) and pH conditions. The reaction proceeds via the nucleophilic attack of a 2'-oxygen atom on the adjacent phosphorus center, and thus adheres to the same general catalytic mechanism of internal phosphoester transfer as found with all other classes of natural self-cleaving ribozymes discovered to date. Analyses of the kinetic characteristics and the metal ion requirements of the cleavage reaction reveal that members of this ribozyme class likely use several catalytic strategies to promote the rapid cleavage of RNA. PMID:26385507

  4. Replication factor C1, the large subunit of replication factor C, is proteolytically truncated in Hutchinson-Gilford progeria syndrome.

    PubMed

    Tang, Hui; Hilton, Benjamin; Musich, Phillip R; Fang, Ding Zhi; Zou, Yue

    2012-04-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder because of a LMNA gene mutation that produces a mutant lamin A protein (progerin). Progerin also has been correlated to physiological aging and related diseases. However, how progerin causes the progeria remains unknown. Here, we report that the large subunit (RFC1) of replication factor C is cleaved in HGPS cells, leading to the production of a truncated RFC1 of ~ 75 kDa, which appears to be defective in loading proliferating cell nuclear antigen (PCNA) and pol δ onto DNA for replication. Interestingly, the cleavage can be inhibited by a serine protease inhibitor, suggesting that RFC1 is cleaved by a serine protease. Because of the crucial role of RFC in DNA replication, our findings provide a mechanistic interpretation for the observed early replicative arrest and premature aging phenotypes of HPGS and may lead to novel strategies in HGPS treatment. Furthermore, this unique truncated form of RFC1 may serve as a potential marker for HGPS. PMID:22168243

  5. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development

    NASA Astrophysics Data System (ADS)

    Engineer, Cawas B.; Ghassemian, Majid; Anderson, Jeffrey C.; Peck, Scott C.; Hu, Honghong; Schroeder, Julian I.

    2014-09-01

    Environmental stimuli, including elevated carbon dioxide levels, regulate stomatal development; however, the key mechanisms mediating the perception and relay of the CO2 signal to the stomatal development machinery remain elusive. To adapt CO2 intake to water loss, plants regulate the development of stomatal gas exchange pores in the aerial epidermis. A diverse range of plant species show a decrease in stomatal density in response to the continuing rise in atmospheric CO2 (ref. 4). To date, one mutant that exhibits deregulation of this CO2-controlled stomatal development response, hic (which is defective in cell-wall wax biosynthesis, ref. 5), has been identified. Here we show that recently isolated Arabidopsis thaliana β-carbonic anhydrase double mutants (ca1 ca4) exhibit an inversion in their response to elevated CO2, showing increased stomatal development at elevated CO2 levels. We characterized the mechanisms mediating this response and identified an extracellular signalling pathway involved in the regulation of CO2-controlled stomatal development by carbonic anhydrases. RNA-seq analyses of transcripts show that the extracellular pro-peptide-encoding gene EPIDERMAL PATTERNING FACTOR 2 (EPF2), but not EPF1 (ref. 9), is induced in wild-type leaves but not in ca1 ca4 mutant leaves at elevated CO2 levels. Moreover, EPF2 is essential for CO2 control of stomatal development. Using cell-wall proteomic analyses and CO2-dependent transcriptomic analyses, we identified a novel CO2-induced extracellular protease, CRSP (CO2 RESPONSE SECRETED PROTEASE), as a mediator of CO2-controlled stomatal development. Our results identify mechanisms and genes that function in the repression of stomatal development in leaves during atmospheric CO2 elevation, including the carbonic-anhydrase-encoding genes CA1 and CA4 and the secreted protease CRSP, which cleaves the pro-peptide EPF2, in turn repressing stomatal development. Elucidation of these mechanisms advances the understanding of

  6. Magnetite Biomineralization in Magnetospirillum magneticum Is Regulated by a Switch-like Behavior in the HtrA Protease MamE.

    PubMed

    Hershey, David M; Browne, Patrick J; Iavarone, Anthony T; Teyra, Joan; Lee, Eun H; Sidhu, Sachdev S; Komeili, Arash

    2016-08-19

    Magnetotactic bacteria are aquatic organisms that produce subcellular magnetic particles in order to orient in the earth's geomagnetic field. MamE, a predicted HtrA protease required to produce magnetite crystals in the magnetotactic bacterium Magnetospirillum magneticum AMB-1, was recently shown to promote the proteolytic processing of itself and two other biomineralization factors in vivo Here, we have analyzed the in vivo processing patterns of three proteolytic targets and used this information to reconstitute proteolysis with a purified form of MamE. MamE cleaves a custom peptide substrate with positive cooperativity, and its autoproteolysis can be stimulated with exogenous substrates or peptides that bind to either of its PDZ domains. A misregulated form of the protease that circumvents specific genetic requirements for proteolysis causes biomineralization defects, showing that proper regulation of its activity is required during magnetite biosynthesis in vivo Our results represent the first reconstitution of the proteolytic activity of MamE and show that its behavior is consistent with the previously proposed checkpoint model for biomineralization. PMID:27302060

  7. Release of biologically active kinin peptides, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin from human kininogens by two major secreted aspartic proteases of Candida parapsilosis.

    PubMed

    Bras, Grazyna; Bochenska, Oliwia; Rapala-Kozik, Maria; Guevara-Lora, Ibeth; Faussner, Alexander; Kamysz, Wojciech; Kozik, Andrzej

    2013-10-01

    In terms of infection incidence, the yeast Candida parapsilosis is the second after Candida albicans as causative agent of candidiases in humans. The major virulence factors of C. parapsilosis are secreted aspartic proteases (SAPPs) which help the pathogen to disseminate, acquire nutrients and dysregulate the mechanisms of innate immunity of the host. In the current work we characterized the action of two major extracellular proteases of C. parapsilosis, SAPP1 and SAPP2, on human kininogens, proteinaceous precursors of vasoactive and proinflammatory bradykinin-related peptides, collectively called the kinins. The kininogens, preferably the form with lower molecular mass, were effectively cleaved by SAPPs, with the release of two uncommon kinins, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin. While optimal at acidic pH (4-5), the kinin release yield was only 2-3-fold lower at neutral pH. These peptides were able to interact with cellular kinin receptors of B2 subtype and to stimulate the human endothelial cells HMEC-1 to increased secretion of proinflammatory interleukins (ILs), IL-1β and IL-6. The analysis of the stability of SAPP-generated kinins in plasma suggested that they are biologically equivalent to bradykinin, the best agonist of B2 receptor subtype and can be quickly converted to des-Arg(9)-bradykinin, the agonist of inflammation-inducible B1 receptors. PMID:23954712

  8. Protease degradable electrospun fibrous hydrogels

    PubMed Central

    Wade, Ryan J.; Bassin, Ethan J.; Rodell, Christopher B.; Burdick, Jason A.

    2015-01-01

    Electrospun nanofibers are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases (MMPs). Here, we synthesize reactive macromers that contain protease-cleavable and fluorescent peptides and are able to form both isotropic hydrogels and electrospun fibrous hydrogels through a photoinitiated polymerization. These biomimetic scaffolds are susceptible to protease-mediated cleavage in vitro in a protease dose dependent manner and in vivo in a subcutaneous mouse model using transdermal fluorescent imaging to monitor degradation. Importantly, materials containing an alternate and non-protease-cleavable peptide sequence are stable in both in vitro and in vivo settings. To illustrate the specificity in degradation, scaffolds with mixed fiber populations support selective fiber degradation based on individual fiber degradability. Overall, this represents a novel biomimetic approach to generate protease-sensitive fibrous scaffolds for biomedical applications. PMID:25799370

  9. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    SciTech Connect

    Baldwin, Michael; Russo, Crystal; Li, Xuerong; Chishti, Athar H.

    2014-08-08

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.

  10. Quantum Hall effect at a tunably sharp cleaved-edge potential

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanle; Grayson, M.; Steinke, L.; Uccelli, E.; Koblmueller, G.; Bichler, M.; Abstreiter, G.; Schmult, S.; Dietsche, W.

    2010-03-01

    We study magnetotransport in the quantum Hall (QH) regime of a two-dimensional electron system with an epitaxially overgrown sharp cleaved-edge. A thick insulating barrier is overgrown at the cleaved-edge followed by a doped layer, serving as a side gate which can control depletion or accumulation at the sharp edge, hence can convert a sharp edge into a soft edge by changing the gate bias. This geometry leads to a tunable edge potential with either the standard incompressible strips in the ``soft edge'' limit, or thin or vanishing incompressible strips in the ``sharp edge'' limit. DC magnetotransport measurements show evidence of a longitudinal resistance minimum whose width depends on the current direction. This experimental result is consistent with recent theory on the role of edge potentials in defining the QH in small samples [1]. Size effect and gate bias dependence are studied. We also report an unexplained magnetic field hysteresis at the high field side of filling factors ν=1, 2, 3, 4 in the limit of negative side-gate bias.[4pt] [1] A. Siddiki, Euro. Phys. Lett. 87, 17008(2009)

  11. Synergistic Caseinolytic Activity and Differential Fibrinogenolytic Action of Multiple Proteases of Maclura spinosa (Roxb. ex Willd.) latex

    PubMed Central

    Venkatesh, B. K.; Achar, Raghu Ram; Sharanappa, P.; Priya, B. S.; Swamy, S. Nanjunda

    2015-01-01

    Background: Kollamalayaali tribes of South India use latex of Maclura spinosa for milk curdling. This action is implicated to proteases which exhibit strong pharmacological potential in retardation of blood flow and acceleration of wound healing. Objective: To validate the presence of a proteolytic enzyme(s) in Maclura spinosa latex (MSL), and to investigate their probable role in hemostasis. Materials and Methods: Processed latex was examined for proteolytic and hemostatic activity using casein and human fibrinogen as substrates, respectively. Caseinoltyic activity was compared with two standard proteases viz., trypsin I and trypsin II. Effect of various standard protease inhibitors viz., iodoacetic acid (IAA), phenylmethylsulfonyl fluoride (PMSF), ethylene glycol tetraacetic acid, and ethylenediaminetetraacetic acid on both caseinolytic and fibrinogenolytic activities were examined. Electrophoretogram of fibrinogenolytic assays were subjected to densitometric analysis. Results: Proteolytic action of MSL was found to be highly efficient over trypsin I and trypsin II in dose-dependent caseinolytic activity (P < 0.05; specific activity of 1,080 units/mg protein). The Aα and Bβ bands of human fibrinogen were readily cleaved by MSL (for 1 μg crude protein and 30 min of incubation time). Furthermore, MSL cleaved γ subunit in dose- and time-dependent manner. Quantitative correlation of these results was obtained by densitometric analysis. The caseinolytic activity of MSL was inhibited by IAA, PMSF. While, only PMSF inhibited fibrinogenolytic activity. Conclusions: MSL contains proteolytic enzymes belonging to two distinct superfamilies viz., serine protease and cysteine proteases. The fibrinogenolytic activity of MSL is restricted to serine proteases only. The study extrapolates the use of M. spinosa latex from milk curdling to hemostasis. SUMMARY Proteolytic enzymes present in latex of Maclura spinosa can be assigned to two different protease superfamilies viz

  12. Selection of suitable detergents for obtaining an active dengue protease in its natural form from E. coli.

    PubMed

    Liew, Lynette Sin Yee; Lee, Michelle Yueqi; Wong, Ying Lei; Cheng, Jinting; Li, Qingxin; Kang, CongBao

    2016-05-01

    Dengue protease is a two-component enzyme and is an important drug target against dengue virus. The protease activity and protein stability of dengue nonstructural protein 3 (NS3) require a co-factor region from a four-span membrane protein NS2B. A natural form of dengue protease containing full-length NS2B and NS3 protease domain NS2BFL-NS3pro will be useful for dengue drug discovery. In current study, detergents that can be used for protease purification were tested. Using a water soluble protease construct, 39 detergents were selected for both NS2B and NS2BFL-NS3pro purification. The results showed that 18 detergents were able to sustain the activity of the natural dengue protease and 11 detergents could be used for NS2B purification. The results obtained in this study will be useful for biochemical and biophysical studies on dengue protease. PMID:26849963

  13. Hole Transport and Spin Effects in Cleaved-Edge-Overgrowth Quantum Wires

    NASA Astrophysics Data System (ADS)

    Sulpizio, Joseph; Quay, Charis; de Picciotto, Rafi; West, K. W.; Pfeiffer, L. N.; Goldhaber-Gordon, David

    2009-03-01

    Transport measurements on ballistic GaAs electron wires have revealed a rich set of phenomena associated with one-dimensional (1D) quantum systems. Studies of transport in hole systems are a natural extension of these experiments due to the enhanced effective mass, g-factor, and spin-orbit coupling of holes over their electron counterparts. However, only recently has the creation of ballistic hole wire devices been possible due to breakthroughs in molecular beam epitaxy using the cleaved-edge-overgrowth (CEO) technique. We present measurements of hole transport in CEO GaAs quantum wires in magnetic field in a dilution refrigerator. Based on a simple model, we extract the g-factor for different field orientations, and also discuss evidence for observing spin-orbit coupling in a 1D system.

  14. An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity.

    PubMed Central

    Graves, M C; Lim, J J; Heimer, E P; Kramer, R A

    1988-01-01

    In order to define the protease domain of human immunodeficiency virus 1, various regions of the pol open reading frame were cloned and expressed in Escherichia coli. Antiserum directed against the conserved retroviral protease active site was used to identify pol precursor and processed species containing the presumed protease domain. The smallest product that accumulates is about 11 kDa as measured by NaDodSO4/PAGE. This size agrees with that predicted from the presence in this region of two Phe-Pro sequences, which is one of the cleavage sites recognized by HIV protease. DNA encoding only the predicted 11-kDa protein was cloned, bypassing the need for autoprocessing, and the protein was expressed to a high level in E. coli. This form is active as demonstrated by its ability to specifically cleave protease-deficient pol protein in vivo in E. coli. Extracts of E. coli containing the 11-kDa protease also process human immunodeficiency virus gag substrates in vitro. These results demonstrate that the 11-kDa protease is sufficient for enzymatic activity and are consistent with a major role for this form in virus maturation. Images PMID:3282230

  15. Chemistry and Biology of Self-Cleaving Ribozymes.

    PubMed

    Jimenez, Randi M; Polanco, Julio A; Lupták, Andrej

    2015-11-01

    Self-cleaving ribozymes were discovered 30 years ago, but their biological distribution and catalytic mechanisms are only beginning to be defined. Each ribozyme family is defined by a distinct structure, with unique active sites accelerating the same transesterification reaction across the families. Biochemical studies show that general acid-base catalysis is the most common mechanism of self-cleavage, but metal ions and metabolites can be used as cofactors. Ribozymes have been discovered in highly diverse genomic contexts throughout nature, from viroids to vertebrates. Their biological roles include self-scission during rolling-circle replication of RNA genomes, co-transcriptional processing of retrotransposons, and metabolite-dependent gene expression regulation in bacteria. Other examples, including highly conserved mammalian ribozymes, suggest that many new biological roles are yet to be discovered. PMID:26481500

  16. ADAM Proteases and Gastrointestinal Function.

    PubMed

    Jones, Jennifer C; Rustagi, Shelly; Dempsey, Peter J

    2016-01-01

    A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis. PMID:26667078

  17. ADAM Proteases and Gastrointestinal Function

    PubMed Central

    Jones, Jennifer C.; Rustagi, Shelly; Dempsey, Peter J.

    2016-01-01

    A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis. PMID:26667078

  18. Ring-Cleaving Dioxygenases with a Cupin Fold

    PubMed Central

    2012-01-01

    Ring-cleaving dioxygenases catalyze key reactions in the aerobic microbial degradation of aromatic compounds. Many pathways converge to catecholic intermediates, which are subject to ortho or meta cleavage by intradiol or extradiol dioxygenases, respectively. However, a number of degradation pathways proceed via noncatecholic hydroxy-substituted aromatic carboxylic acids like gentisate, salicylate, 1-hydroxy-2-naphthoate, or aminohydroxybenzoates. The ring-cleaving dioxygenases active toward these compounds belong to the cupin superfamily, which is characterized by a six-stranded β-barrel fold and conserved amino acid motifs that provide the 3His or 2- or 3His-1Glu ligand environment of a divalent metal ion. Most cupin-type ring cleavage dioxygenases use an FeII center for catalysis, and the proposed mechanism is very similar to that of the canonical (type I) extradiol dioxygenases. The metal ion is presumed to act as an electron conduit for single electron transfer from the metal-bound substrate anion to O2, resulting in activation of both substrates to radical species. The family of cupin-type dioxygenases also involves quercetinase (flavonol 2,4-dioxygenase), which opens up two C-C bonds of the heterocyclic ring of quercetin, a wide-spread plant flavonol. Remarkably, bacterial quercetinases are capable of using different divalent metal ions for catalysis, suggesting that the redox properties of the metal are relatively unimportant for the catalytic reaction. The major role of the active-site metal ion could be to correctly position the substrate and to stabilize transition states and intermediates rather than to mediate electron transfer. The tentative hypothesis that quercetinase catalysis involves direct electron transfer from metal-bound flavonolate to O2 is supported by model chemistry. PMID:22287012

  19. Experimental Determination of the Membrane Topology of the Plasmodium Protease Plasmepsin V

    PubMed Central

    Tarr, Sarah J.; Osborne, Andrew R.

    2015-01-01

    The malaria parasite exports hundreds of proteins into its host cell. The majority of exported proteins contain a Host-Targeting motif (also known as a Plasmodium export element) that directs them for export. Prior to export, the Host-Targeting motif is cleaved by the endoplasmic reticulum-resident protease Plasmepsin V and the newly generated N-terminus is N-α-acetylated by an unidentified enzyme. The cleaved, N-α-acetylated protein is trafficked to the parasitophorous vacuole, where it is translocated across the vacuole membrane. It is clear that cleavage and N-α-acetylation of the Host-Targeting motif occur at the endoplasmic reticulum, and it has been proposed that Host-Targeting motif cleavage and N-α-acetylation occur either on the luminal or cytosolic side of the endoplasmic reticulum membrane. Here, we use self-associating ‘split’ fragments of GFP to determine the topology of Plasmepsin V in the endoplasmic reticulum membrane; we show that the catalytic protease domain of Plasmepsin V faces the endoplasmic reticulum lumen. These data support a model in which the Host-Targeting motif is cleaved and N-α-acetylated in the endoplasmic reticulum lumen. Furthermore, these findings suggest that cytosolic N-α-acetyltransferases are unlikely to be candidates for the N-α-acetyltransferase of Host-Targeting motif-containing exported proteins. PMID:25849462

  20. Development of fluorescent substrates and assays for the key autophagy-related cysteine protease enzyme, ATG4B.

    PubMed

    Nguyen, Thanh G; Honson, Nicolette S; Arns, Steven; Davis, Tara L; Dhe-Paganon, Sirano; Kovacic, Suzana; Kumar, Nag S; Pfeifer, Tom A; Young, Robert N

    2014-04-01

    The cysteine protease ATG4B plays a role in key steps of the autophagy process and is of interest as a potential therapeutic target. At an early step, ATG4B cleaves proLC3 isoforms to form LC3-I for subsequent lipidation to form LC3-II and autophagosome membrane insertion. ATG4B also cleaves phosphatidylethanolamine (PE) from LC3-II to regenerate LC3-I, enabling its recycling for further membrane biogenesis. Here, we report several novel assays for monitoring the enzymatic activity of ATG4B. An assay based on mass spectrometric analysis and quantification of cleavage of the substrate protein LC3-B was developed and, while useful for mechanistic studies, was not suitable for high throughput screening (HTS). A doubly fluorescent fluorescence resonance energy transfer (FRET) ligand YFP-LC3B-EmGFP (FRET-LC3) was constructed and shown to be an excellent substrate for ATG4B with rates of cleavage similar to that for LC3B itself. A HTS assay to identify candidate inhibitors of ATG4B utilizing FRET-LC3 as a substrate was developed and validated with a satisfactory Z' factor and high signal-to-noise ratio suitable for screening small molecule libraries. Pilot screens of the 1,280-member library of pharmacologically active compounds (LOPAC(™)) and a 3,481-member library of known drugs (KD2) gave hit rates of 0.6% and 0.5% respectively, and subsequent titrations confirmed ATG4B inhibitory activity for three compounds, both in the FRET and mass spectrometry assays. The FRET- and mass spectrometry-based assays we have developed will allow for both HTS for inhibitors of ATG4B and mechanistic approaches to study inhibition of a major component of the autophagy pathway. PMID:24735444

  1. Evolution of thrombin and other hemostatic proteases by survey of protochordate, hemichordate, and echinoderm genomes.

    PubMed

    Ponczek, Michal B; Bijak, Michal Z; Nowak, Pawel Z

    2012-06-01

    Protochordate genomes enable a prevalence of hemostasis evolution. Broad searches were performed for homologs of human serine proteases of hemostasis on the genomes of Branchiostoma floridae, Saccoglossus kowalevskii, and Strongylocentrotus purpuratus. Sequences were analyzed by multiple bioinformatic tools. The survey revealed numerous homologous components. Amphioxus was rich in some serine proteases not accompanied by gamma-carboxyglutamic or kringle domains similar more to thrombin than to other coagulation factors. The serine proteases found in amphioxus exhibited the attributes similar to those of thrombin by phylogeny relationships, sequence conservation, gene synteny, spatial structure, and ligand docking. A few plasminogen- and plasminogen activators-like proteases with kringles were also present. Those serine proteases demonstrated the greatest proximity rather to plasminogen or plasminogen activators than to thrombin. Searching for homologs of serine protease hemostatic factors in acorn worm and sea urchin revealed several components similar to those found in amphioxus. Hypothetically, the common ancestor of chordates had three separate serine proteases that evolved independently into immunoglobulin-like and kringle proteases in lancelets, and prothrombin, plasminogen activators, and plasminogen in vertebrates. Ancestral proteases evolved in vertebrates into hemostasis factors after merging the proper N-terminal domains and duplications. PMID:22752046

  2. Understanding HIV-1 protease autoprocessing for novel therapeutic development

    PubMed Central

    Huang, Liangqun; Chen, Chaoping

    2013-01-01

    In the infected cell, HIV-1 protease (PR) is initially synthesized as part of the GagPol polyprotein. PR autoprocessing is a virus-specific process by which the PR domain embedded in the precursor catalyzes proteolytic reactions responsible for liberation of free mature PRs, which then recognize and cleave at least ten different peptide sequences in the Gag and GagPol polyproteins. Despite extensive structure and function studies of the mature PRs as well as the successful development of ten US FDA-approved catalytic-site inhibitors, the precursor autoprocessing mechanism remains an intriguing yet-to-be-solved puzzle. This article discusses current understanding of the autoprocessing mechanism, in an effort to prompt the development of novel anti-HIV drugs that selectively target precursor autoprocessing. PMID:23859204

  3. MmoSTI restriction endonuclease, isolated from Morganella morganii infecting a tropical moth, Actias selene, cleaving 5'-|CCNGG-3' sequences.

    PubMed

    Skowron, Marta A; Zebrowska, Joanna; Wegrzyn, Grzegorz; Skowron, Piotr M

    2016-02-01

    A type II restriction endonuclease, MmoSTI, from the pathogenic bacterium Morganella morganii infecting a tropical moth, Actias selene, has been detected and biochemically characterized, as a potential etiological differentiation factor. The described REase recognizes interrupted palindromes, i.e., 5'-CCNGG-3' sequences and cleaves DNA leaving 5-nucleotide (nt) long, single-stranded (ss), 5'-cohesive ends, which was determined by three complementary methods: (i) cleavage of custom and standard DNA substrates, (ii) run-off sequencing of cleavage products, and (iii) shotgun cloning and sequencing of bacteriophage lambda (λ) DNA digested with MmoSTI. MmoSTI, the first 5'-CCNGG-3' REase characterized from M. morganii, is a neoschizomer of ScrFI, which cleaves DNA leaving 1-nt long, ss, 5'-cohesive ends. It is a high-frequency cutter and can be isolated from easily cultured bacteria, thus it can potentially serve as a tool for DNA manipulations. PMID:26280518

  4. Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology

    PubMed Central

    Gonçalves, Rayane Natshe; Gozzini Barbosa, Suellen Duarte

    2016-01-01

    Extracts of leaves, seeds, roots, and stem from a tropical legume, C. ensiformis, were prepared employing buffers and detergent in aqueous solution. Leaf extracts had the highest protein content and the most pronounced peptidase activity with optimal pH in the neutral to alkaline range. All extracts exhibited peaks of activity at various pH values, suggesting the presence of distinctive classes of proteases. N-α-Tosyl-L-arginine methyl ester hydrolysis was maximal at 30°C to 60°C and peptidase activity from all extracts presented very good thermal stability after 24 h incubation at 70°C. C. ensiformis proteases exhibited molecular masses of about 200–57, 40–37, and 20–15 kDa by SDS-PAGE analysis. These enzymes cleaved hemoglobin, bovine serum albumin, casein, and gelatin at different levels. Serine and metalloproteases are the major proteases in C. ensiformis extracts, modulated by divalent cations, stable at 1% of surfactant Triton X-100 and at different concentrations of the reducing agent β-mercaptoethanol. Thus, C. ensiformis expresses a particular set of proteases in distinctive organs with high activity and stability, making this legume an important source of proteases with biotechnological potential.

  5. Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants.

    PubMed

    Grosse-Holz, Friederike M; van der Hoorn, Renier A L

    2016-05-01

    Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design. PMID:26800491

  6. Cleavage of influenza A virus H1 hemagglutinin by swine respiratory bacterial proteases.

    PubMed Central

    Callan, R J; Hartmann, F A; West, S E; Hinshaw, V S

    1997-01-01

    Cleavage of influenza A virus hemagglutinin (HA) is required for expression of fusion activity and virus entry into cells. Extracellular proteases are responsible for the proteolytic cleavage activation of avirulent avian and mammalian influenza viruses and contribute to pathogenicity and tissue tropism. The relative contributions of host and microbial proteases to cleavage activation in natural infection remain to be established. We examined 23 respiratory bacterial pathogens and 150 aerobic bacterial isolates cultured from the nasal cavities of pigs for proteolytic activity. No evidence of secreted proteases was found for the bacterial pathogens, including Haemophilus parasuis, Pasteurella multocida, Actinobacillus pleuropneumoniae, Bordetella bronchiseptica, and Streptococcus suis. Proteolytic bacteria were isolated from 7 of 11 swine nasal samples and included Staphylococcus chromogenes, Staphylococcus hyicus, Aeromonas caviae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Enterococcus sp. Only P. aeruginosa secreted a protease, elastase, that cleaved influenza virus HA. However, compared to trypsin, the site of cleavage by elastase was shifted one amino acid in the carboxy-terminal direction and resulted in inactivation of the virus. Under the conditions of this study, we identified several bacterial isolates from the respiratory tracts of pigs that secrete proteases in vitro. However, none of these proteolytic isolates demonstrated direct cleavage activation of influenza virus HA. PMID:9311838

  7. Expedient screening for HIV-1 protease inhibitors using a simplified immunochromatographic assay.

    PubMed

    Kitidee, Kuntida; Khamaikawin, Wannisa; Thongkum, Weeraya; Tawon, Yardpiroon; Cressey, Tim R; Jevprasesphant, Rachaneekorn; Kasinrerk, Watchara; Tayapiwatana, Chatchai

    2016-05-15

    A colloidal gold-based immunochromatographic (IC) strip test was developed and validated for the detection of HIV-1 protease (HIV-PR) activity and inhibitory effect of HIV-PR inhibitors (PIs). It is a unique 'two-step' process requiring the combination of proteolysis of HIV-PR and an immunochromatographic reaction. Monoclonal antibodies to the free C-terminus of HIV matrix protein (HIV-MA) conjugated to gold particles and a monoclonal antibody against intact and cleaved forms of the HIV-MA are immobilized on the 'Test'-line of the IC strip. Using lopinavir, a potent HIV protease inhibitor, the IC-strip was optimized to detect inhibitory activity against HIV-protease. At a lopinavir concentration of 1000ng/mL (its suggested minimum effective concentration), a HIV-PRH6 concentration of 6mg/mL and incubation period of 60min were the optimal conditions. A preliminary comparison between a validated high-performance liquid chromatography assay and the IC-strip to semi-quantify HIV protease inhibitor concentrations (lopinavir and atazanavir) demonstrated good agreement. This simplified method is suitable for the rapid screening of novel protease inhibitors for future therapeutic use. Moreover, the IC strip could also be optimized to semi-quantify PIs concentrations in plasma samples. PMID:26490422

  8. The natural killer cell serine protease gene Lmet1 maps to mouse chromosome 10

    SciTech Connect

    Thia, K.Y.T.; Smyth, M.J.; Jenkins, N.A.; Gilbert, D.J.; Copeland, N.G.

    1995-01-01

    Cytotoxic lymphocytes play a key role in immune responses against viruses and tumors. Lymphocyte-mediated cytolysis by both cytotoxic T lymphocytes (CTL) and natural killer (NK) cells is often associated with the formation of membrane lesions on target cells caused by exocytosis of cytoplasmic granule serine proteases and a pore-forming protein, perforin. A variety of granzymes have been found to reside within the cytoplasmic granules of cytotoxic lymphocytes, but unlike perforin, isolated serine proteases are not intrinsically lytic. However, a role for serine proteases in cellular cytotoxicity has been supported by the ability of protease inhibitors to completely abrogate lymphocyte cytotoxicity, and the demonstration that serine proteases can initiate DNA fragmentation in target cells transfected or pretreated with a sublytic concentration of perforin. Granzymes cloned in human, mouse, and rat encode four granzyme activities and all are expressed in either T cells, their thymic precursors, and/or NK cells. In particular, a rat granzyme that cleaves after methionine residues, but not phenylalanine residues and its human equivalent, human Met-ase 1, are unique granzymes with restricted expression in CD3-NK cells. 24 refs., 2 figs.

  9. Structure, Mechanism and Inhibition of γ-Secretase and Presenilin-Like Proteases

    PubMed Central

    Wolfe, Michael S.

    2010-01-01

    Presenilin is the catalytic component of γ-secretase, a complex aspartyl protease and a founding member of intramembrane-cleaving proteases. γ-Secretase is involved in the pathogenesis of Alzheimer’s disease and a top target for therapeutic intervention. However, the protease complex processes a variety of transmembrane substrates, including the Notch receptor, raising concerns about toxicity. Nevertheless, γ-secretase inhibitors and modulators have been identified that allow Notch processing and signalling to continue, and promising compounds are entering clinical trials. Molecular and biochemical studies offer a model for how this protease hydrolyzes transmembrane domains in the confines of the lipid bilayer. Progress has also been made toward structure elucidation of presenilin and the γ-secretase complex by electron microscopy as well as by studying cysteine-mutant presenilins. The signal peptide peptidase (SPP) family of proteases are distantly related to presenilins. However, the SPPs work as single polypeptides without the need for cofactors and otherwise appear to be simple model systems for presenilin in the γ-secretase complex. SPP biology, structure, and inhibition will also be discussed. PMID:20482315

  10. Structural Evidence for Regulation and Specificity of Flaviviral Proteases and Evolution of the Flaviviridae Fold

    SciTech Connect

    Aleshin,A.; Shiryaev, S.; Strongin, A.; Liddington, R.

    2007-01-01

    Pathogenic members of the flavivirus family, including West Nile Virus (WNV) and Dengue Virus (DV), are growing global threats for which there are no specific treatments. The two-component flaviviral enzyme NS2B-NS3 cleaves the viral polyprotein precursor within the host cell, a process that is required for viral replication. Here, we report the crystal structure of WNV NS2B-NS3pro both in a substrate-free form and in complex with the trypsin inhibitor aprotinin/BPTI. We show that aprotinin binds in a substrate-mimetic fashion in which the productive conformation of the protease is fully formed, providing evidence for an 'induced fit' mechanism of catalysis and allowing us to rationalize the distinct substrate specificities of WNV and DV proteases. We also show that the NS2B cofactor of WNV can adopt two very distinct conformations and that this is likely to be a general feature of flaviviral proteases, providing further opportunities for regulation. Finally, by comparing the flaviviral proteases with the more distantly related Hepatitis C virus, we provide insights into the evolution of the Flaviviridae fold. Our work should expedite the design of protease inhibitors to treat a range of flaviviral infections.

  11. Cleavage of fibrinogen by the human neutrophil neutral peptide-generating protease.

    PubMed Central

    Wintroub, B U; Coblyn, J S; Kaempfer, C E; Austen, K F

    1980-01-01

    The human neutrophil peptide-generating protease, which generates a low molecular weight vasoactive peptide from a plasma protein substrate, is directly fibrinolytic and cleaves human fibrinogen in a manner distinct from plasmin. Fibrinogen was reduced from 340,000 Mr to derivatives of 270,000-325,000 Mr during interaction with the protease at enzyme-to-substrate ratios of 0.3 or 1.0 microgram/1.0 mg. The 310,000-325,000 Mr cleavage fragments exhibited prolonged thrombin-induced clotting activity but were able to be coagulated, whereas the 270,000-290,000 Mr fragments were not able to be coagulated. Anticoagulants were not generated at either enzyme dose. As analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis in 4-30% gradient gels and 10% gels stained for protein and carbohydrate, the diminution to 310,000-325,000 Mr and the prolongation of thrombin-induced clotting time resulted from cleavage of the fibrinogen A alpha chain. The further decrease in size to 270,000-290,000 Mr was associated with B beta-chain and gamma-chain cleavage and an inability to form gamma-gamma dimers. The neutral peptide-generating protease, a distinct human neutrophil neutral protease with fibrinolytic and fibrinogenolytic activities comparable to those of plasmin on a weight basis, cleaves fibrinogen in a manner that is distinct from the action of plasmin, leukocyte elastase, and leukocyte granule extracts. It may be that the concerted action of this neutrophil protease to generate a vasoactive peptide and to digest fibrinogen and fibrin facilitates neutrophil movement through vascular and extravascular sites. Images PMID:7001479

  12. Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis.

    PubMed

    Nath, R; Raser, K J; Stafford, D; Hajimohammadreza, I; Posner, A; Allen, H; Talanian, R V; Yuen, P; Gilbertsen, R B; Wang, K K

    1996-11-01

    The cytoskeletal protein non-erythroid alpha-spectrin is well documented as an endogenous calpain substrate, especially under pathophysiological conditions. In cell necrosis (e.g. maitotoxin-treated neuroblastoma SH-SY5Y cells), alpha-spectrin breakdown products (SBDPs) of 150 kDa and 145 kDa were produced by cellular calpains. In contrast, in neuronal cells undergoing apoptosis (cerebellar granule neurons subjected to low potassium and SH-SY5Y cells treated with staurosporine), an additional SBDP of 120 kDa was also observed. The formation of the 120 kDa SBDP was insensitive to calpain inhibitors but was completely blocked by an interleukin 1 beta-converting-enzyme (ICE)-like protease inhibitor, Z-Asp-CH2OC(O)-2,6-dichlorobenzene. Autolytic activation of both calpain and the ICE homologue CPP32 was also observed in apoptotic cells. alpha-Spectrin can also be cleaved in vitro by purified calpains to produce the SBDP doublet of 150/145 kDa and by ICE and ICE homologues [ICH-1, ICH-2 and CPP32(beta)] to produce a 150 kDa SBDP. In addition, CPP32 and ICE also produced a 120 kDa SBDP. Furthermore inhibition of either ICE-like protease(s) or calpain protects both granule neurons and SH-SY5Y cells against apoptosis. Our results suggest that both protease families participate in the expression of neuronal apoptosis. PMID:8920967

  13. Signaling pathways activated by a protease allergen in basophils

    PubMed Central

    Rosenstein, Rachel K.; Bezbradica, Jelena S.; Yu, Shuang; Medzhitov, Ruslan

    2014-01-01

    Allergic diseases represent a significant burden in industrialized countries, but why and how the immune system responds to allergens remain largely unknown. Because many clinically significant allergens have proteolytic activity, and many helminths express proteases that are necessary for their life cycles, host mechanisms likely have evolved to detect the proteolytic activity of helminth proteases, which may be incidentally activated by protease allergens. A cysteine protease, papain, is a prototypic protease allergen that can directly activate basophils and mast cells, leading to the production of cytokines, including IL-4, characteristic of the type 2 immune response. The mechanism of papain’s immunogenic activity remains unknown. Here we have characterized the cellular response activated by papain in basophils. We find that papain-induced IL-4 production requires calcium flux and activation of PI3K and nuclear factor of activated T cells. Interestingly, papain-induced IL-4 production was dependent on the immunoreceptor tyrosine-based activation motif (ITAM) adaptor protein Fc receptor γ-chain, even though the canonical ITAM signaling was not activated by papain. Collectively, these data characterize the downstream signaling pathway activated by a protease allergen in basophils. PMID:25369937

  14. Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments1[OPEN

    PubMed Central

    Nishimura, Kenji

    2016-01-01

    Chloroplasts originated from the endosymbiosis of ancestral cyanobacteria and maintain transcription and translation machineries for around 100 proteins. Most endosymbiont genes, however, have been transferred to the host nucleus, and the majority of the chloroplast proteome is composed of nucleus-encoded proteins that are biosynthesized in the cytosol and then imported into chloroplasts. How chloroplasts and the nucleus communicate to control the plastid proteome remains an important question. Protein-degrading machineries play key roles in chloroplast proteome biogenesis, remodeling, and maintenance. Research in the past few decades has revealed more than 20 chloroplast proteases, which are localized to specific suborganellar locations. In particular, two energy-dependent processive proteases of bacterial origin, Clp and FtsH, are central to protein homeostasis. Processing endopeptidases such as stromal processing peptidase and thylakoidal processing peptidase are involved in the maturation of precursor proteins imported into chloroplasts by cleaving off the amino-terminal transit peptides. Presequence peptidases and organellar oligopeptidase subsequently degrade the cleaved targeting peptides. Recent findings have indicated that not only intraplastidic but also extraplastidic processive protein-degrading systems participate in the regulation and quality control of protein translocation across the envelopes. In this review, we summarize current knowledge of the major chloroplast proteases in terms of type, suborganellar localization, and diversification. We present details of these degradation processes as case studies according to suborganellar compartment (envelope, stroma, and thylakoids). Key questions and future directions in this field are discussed. PMID:27288365

  15. Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptococcal IgA1 proteases.

    PubMed

    Batten, Margaret R; Senior, Bernard W; Kilian, Mogens; Woof, Jenny M

    2003-03-01

    The amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by IgA1 proteases of different species of Streptococcus were investigated. Recombinant IgA1 antibodies were generated with point mutations at proline 227 and threonine 228, the residues lying on either side of the peptide bond at which all streptococcal IgA1 proteases cleave wild-type human IgA1. The amino acid substitutions produced no major effect upon the structure of the mutant IgA1 antibodies or their functional ability to bind to Fcalpha receptors. However, the substitutions had a substantial effect upon sensitivity to cleavage with some streptococcal IgA1 proteases, with, in some cases, a single point mutation rendering the antibody resistant to a particular IgA1 protease. This effect was least marked with the IgA1 protease from Streptococcus pneumoniae, which showed no absolute requirement for either proline or threonine at residues 227 to 228. By contrast, the IgA1 proteases of Streptococcus oralis, Streptococcus sanguis, and Streptococcus mitis had an absolute requirement for proline at 227 but not for threonine at 228, which could be replaced by valine. There was evidence in S. mitis that proteases from different strains may have different amino acid requirements for cleavage. Remarkably, some streptococcal proteases appeared able to cleave the hinge at a distant alternative site if substitution prevented efficient cleavage of the original site. Hence, this study has identified key residues required for the recognition of the IgA1 hinge as a substrate by streptococcal IgA1 proteases, and it marks a preliminary step towards development of specific enzyme inhibitors. PMID:12595464

  16. Serine proteases of parasitic helminths.

    PubMed

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-02-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  17. Serine Proteases of Parasitic Helminths

    PubMed Central

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-01-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  18. Recombinant production of TEV cleaved human parathyroid hormone.

    PubMed

    Audu, Christopher O; Cochran, Jared C; Pellegrini, Maria; Mierke, Dale F

    2013-08-01

    The parathyroid hormone, PTH, is responsible for calcium and phosphate ion homeostasis in the body. The first 34 amino acids of the peptide maintain the biological activity of the hormone and is currently marketed for calcium imbalance disorders. Although several methods for the production of recombinant PTH(1-34) have been reported, most involve the use of cleavage conditions that result in a modified peptide or unfavorable side products. Herein, we detail the recombinant production of (15) N-enriched human parathyroid hormone, (15) N PTH(1-34), generated via a plasmid vector that gives reasonable yield, low-cost protease cleavage (leaving the native N-terminal serine in its amino form), and purification by affinity and size exclusion chromatography. We characterize the product by multidimensional, heteronuclear NMR, circular dichroism, and LC/MS. PMID:23794508

  19. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells

    PubMed Central

    van Kasteren, Puck B.; Bailey-Elkin, Ben A.; James, Terrence W.; Ninaber, Dennis K.; Beugeling, Corrine; Khajehpour, Mazdak; Snijder, Eric J.; Mark, Brian L.; Kikkert, Marjolein

    2013-01-01

    Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-β mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases. PMID:23401522

  20. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.

    PubMed

    Vangansewinkel, Tim; Geurts, Nathalie; Quanten, Kirsten; Nelissen, Sofie; Lemmens, Stefanie; Geboes, Lies; Dooley, Dearbhaile; Vidal, Pia M; Pejler, Gunnar; Hendrix, Sven

    2016-05-01

    An important barrier for axon regeneration and recovery after traumatic spinal cord injury (SCI) is attributed to the scar that is formed at the lesion site. Here, we investigated the effect of mouse mast cell protease (mMCP) 6, a mast cell (MC)-specific tryptase, on scarring and functional recovery after a spinal cord hemisection injury. Functional recovery was significantly impaired in both MC-deficient and mMCP6-knockout (mMCP6(-/-)) mice after SCI compared with wild-type control mice. This decrease in locomotor performance was associated with an increased lesion size and excessive scarring at the injury site. Axon growth-inhibitory chondroitin sulfate proteoglycans and the extracellular matrix components fibronectin, laminin, and collagen IV were significantly up-regulated in MC-deficient and mMCP6(-/-) mice, with an increase in scar volume between 23 and 32%. A degradation assay revealed that mMCP6 directly cleaves fibronectin and collagen IV in vitro In addition, gene expression levels of the scar components fibronectin, aggrecan, and collagen IV were increased up to 6.8-fold in mMCP6(-/-) mice in the subacute phase after injury. These data indicate that endogenous mMCP6 has scar-suppressing properties after SCI via indirect cleavage of axon growth-inhibitory scar components and alteration of the gene expression profile of these factors.-Vangansewinkel, T., Geurts, N., Quanten, K., Nelissen, S., Lemmens, S., Geboes, L., Dooley, D., Vidal, P. M., Pejler, G., Hendrix, S. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6. PMID:26917739

  1. Structure of cleaved (001) USb2 single crystal

    SciTech Connect

    Chen, Shao-ping; Hawley, Marilyn; Bauer, Eric D; Stockum, Phil B; Manoharan, Hari C

    2009-01-01

    We have achieved what we believe to be the first atomic resolution STM images for a uranium compound taken at room temperature. The a, b, and c lattice parameters in the images confirm that the USb{sub 2} crystals cleave on the (001) basal plane as expected. The a and b dimensions were equal, with the atoms arranged in a cubic pattern. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the DOS measured by STM. Some strange features observed in the STM will be discussed in conjunction with ab initio calculations. The purpose of this work is to demonstrate the power of scanning tunneling microscopy (STM) techniques combined with a theoretical underpinning to determine the surface atomic structure and properties of actinide materials, such as the quasi 2-dimensional uranium dipnictide USb{sub 2} single crystal, thereby contributing to the understanding of their surface structural and electronic properties. The members of this interesting UX{sub 2} (X=P, As, Sb, Bi) series of compounds display dual localized and itinerant 5f electron behavior within the same compound due to the hybridization of the 5f orbitals with the conduction band. With the exception of UO{sub 2}, which has to be studied at elevated temperature to generate enough carriers for STM imaging, STM techniques have not been applied successfully to the characterization of the surface atomic structure of any other single crystal actinide compound, to the best of our knowledge. However, STM has been used to a limited extent for the study of some cerium compounds. STM probes electronic properties at the atomic level and can directly provide information about the local density of filled and empty states (LDOS) states simultaneously. A STM topograph provides the local atomic arrangement and spacing of the atoms on the surface, local defect structures (e.g. steps, vacancies, and kink sites) and the presence of contaminants

  2. Effect of Target Therapy on the Content of Transcription and Growth Factors, Protein Kinase TOR, and Activity of Intracellular Proteases in Patients with Metastatic Renal Cell Carcinoma.

    PubMed

    Spirina, L V; Usynin, E A; Kondakova, I V; Yurmazov, Z A; Slonimskaya, E M

    2016-04-01

    We analyzed the dynamics of the expression of transcription factors, VEGF and its receptor VEGFR2, serine-threonine protein kinase mTOR and activity of proteasome and calpain in patients with metastatic renal cancer during therapy with tyrosine kinase inhibitor Votrient and mTOR blocker Afinitor. The expression of hypoxic nuclear factor HIF-1α in the tumor tissue decreased during therapy with the target preparations. The decrease of VEGF and its receptor VEGFR2 was observed only in patients treated with mTOR inhibitor. The increase in calpain activity in the tumor tissue was observed in both groups. These findings extend our understanding of the mechanism of action of target anticancer preparations as allow considering the studied markers as predictors in choosing optimal therapy. PMID:27165064

  3. Factor IX Amagasaki: A new mutation in the catalytic domain resulting in the loss of both coagulant and esterase activities

    SciTech Connect

    Miyata, Toshiyuki; Iwanaga, Sadaaki ); Sakai, Toshiyuki; Sugimoto, Mitsuhiko; Naka, Hiroyuki; Yamamoto, Kazukuni; Yoshioka, Akira; Fukui, Hiromu ); Mitsui, Kotoko; Kamiya, Kensyu; Umeyama, Hideaki )

    1991-11-26

    Factor IX Amagasaki (AMG) is a naturally occurring mutant of factor IX having essentially no coagulant activity, even though normal levels of antigen are detected in plasma. Factor IX AMG was purified from the patient's plasma by immunoaffinity chromatography with an anti-factor IX monoclonal antibody column. Factor IX AMG was cleaved normally by factor VIIa-tissue factor complex, yielding a two-chain factor IXa. Amino acid composition and sequence analysis of one of the tryptic peptides isolated from factor IX AMG revealed that Gly-311 had been replaced by Glu. The authors identified a one-base substitution of guanine to adenine in exon VIII by amplifying exon VIII using the polymerase chain reaction method and sequencing the product. This base mutation also supported the replacement of Gly-311 by Glu. In the purified system, factor IXa AMG did not activate for factor X in the presence of factor VIII, phospholipids, and Ca{sup 2+}, and no esterase activity toward Z-Arg-p-nitrobenzyl ester was observed. The model building of the serine protease domain of factor IXa suggests that the Gly-311 {yields} Glu exchange would disrupt the specific conformational state in the active site environment, resulting in the substrate binding site not forming properly. This is the first report to show the experimental evidence for importance of a highly conserved Gly-142 (chymotrypsinogen numbering) located in the catalytic site of mammalian serine proteases so far known.

  4. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    PubMed

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-01

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements. PMID:24356124

  5. Atomically precise, coupled quantum dots fabricated by cleaved edge overgrowth

    NASA Astrophysics Data System (ADS)

    Wegscheider, W.; Schedelbeck, G.; Bichler, M.; Abstreiter, G.

    Recent progress in the fabrication of quantum dots by molecular beam epitaxy along three directions in space is reviewed. The optical properties of different sample structures consisting of individual quantum dots, pairs of coupled dots as well as of linear arrays of dots are studied by microscopic photoluminescence spectroscopy. The high degree of control over shape, composition and position of the 7×7×7 nm3 size GaAs quantum dots, which form at the intesection of three orthogonal quantum wells, allows a detailed investigation of the influence of coupling between almost identical zero-dimensional objects. In contrast to the inhomogeneously broadened quantum well and quantum wire signals originating from the complex twofold cleaved edge overgrowth structure, the photoluminescence spetrum of an individual quantum dot exhibits a single sharp line (full width at half maximum <70μeV) almost free of background signal. Microscopic photoluminescence excitation spectroscopy directly reveals the discreteness of the energy levels of the zero-dimensional structures and justifies the denomination "artificial atoms" for the quantum dots. It is further demonstrated that an "artifical molecule", characterized by the existence of bonding and antibonding states can be assembled from two of such "artificial atoms". The coupling strength between the "artificial atoms" is adjusted by the "interatomic" distance and is reflected in the energetic separation of the bonding and antibonding levels and the linewidths of the corresponding interband transitions.

  6. Synthesis, characterization and DNA cleaving studies of new organocobaloxime derivatives.

    PubMed

    Erdem-Tuncmen, Mukadder; Karipcin, Fatma; Ozmen, Ismail

    2013-01-01

    Dioxime ligand (H2L) was synthesized by condensation reaction between 4-biphenylchloroglyoxime and 4-chloroaniline. The metal complexes of the types, [Co(HL)2(i-Pr)Py], [CoL2(i-Pr)PyB2F4] and [CoL2(i-Pr)Py(Cu(phen))2](ClO4)2 [H2L = 4-(4-chlorophenylamino)biphenylglyoxime; phen = 1,10-phenanthroline; i-Pr = isopropyl; Py = pyridine] were synthesized and characterized by elemental analysis, FT-IR, 1H NMR and magnetic susceptibility, conductivity measurements. The results of elemental analyses, IR and NMR confirmed the stoichiometry of the complexes and the formation of ligand frameworks around the metal ions. The magnetic moment measurements of the complexes indicated that the complexes are diamagnetic (low-spin d6 octahedral) except trinuclear complex. Furthermore the interaction between the dioxime ligand and its complexes with DNA has also been investigated by agarose gel electrophoresis. The trinuclear Cu2Co complex with H2O2 as a cooxidant exhibited the strongest DNA cleaving activity. PMID:23841342

  7. Detection of Cancer-Specific Proteases Using Magnetic Relaxation of Peptide-Conjugated Nanoparticles in Biological Environment.

    PubMed

    Gandhi, Sonu; Arami, Hamed; Krishnan, Kannan M

    2016-06-01

    Protease expression is closely linked to malignant phenotypes of different solid tumors; as such, their detection is promising for diagnosis and treatment of cancers, Alzheimer's, and vascular diseases. Here, we describe a new method for detecting proteases by sensitively monitoring the magnetic relaxation of monodisperse iron oxide nanoparticles (IONPs) using magnetic particle spectrometer (MPS). In this assay, tailored peptides functioning as activatable nanosensors link magnetic nanoparticles and possess selective sites that are recognizeable and cleaveable by specific proteases. When these linker peptides, labeled with biotin at N- and C-terminals, are added to the neutravidin functionalized IONPs, nanoparticles aggregate, resulting in well-defined changes in the MPS signal. However, as designed, in the presence of proteases these peptides are cleaved at predetermined sites, redispersing IONPs, and returning the MPS signal(s) close to its preaggregation state. These changes observed in all aspects of the MPS signal (peak intensity, its position as a function of field amplitude, and full width at half-maximum-when combined, these three also eliminate false positives), help to detect specific proteases, relying only on the magnetic relaxation characteristics of the functionalized nanoparticles. We demonstrate the general utility of this assay by detecting one each from the two general classes of proteases: trypsin (digestive serine protease, involved in various cancers, promoting proliferation, invasion, and metastasis) and matrix metalloproteinase (MMP-2, observed through metastasis and tumor angiogenesis). This MPS based protease-assay is rapid, reproducible, and highly sensitive and can form the basis of a feasible, high-throughput method for detection of various other proteases. PMID:27219521

  8. Isolation of the human PC6 gene encoding the putative host protease for HIV-1 gp160 processing in CD4+ T lymphocytes.

    PubMed Central

    Miranda, L; Wolf, J; Pichuantes, S; Duke, R; Franzusoff, A

    1996-01-01

    Production of infectious HIV-1 virions is dependent on the processing of envelope glycoprotein gp160 by a host cell protease. The protease in human CD4+ T lymphocytes has not been unequivocally identified, yet members of the family of mammalian subtilisin-like protein convertases (SPCs), which are soluble or membrane-bound proteases of the secretory pathway, best fulfill the criteria. These proteases are required for proprotein maturation and cleave at paired basic amino acid motifs in numerous cellular and viral glycoprotein precursors, both in vivo and in vitro. To identify the gp160 processing protease, we have used reverse transcription-PCR and Northern blot analyses to ascertain the spectrum of SPC proteases in human CD4+ T cells. We have cloned novel members of the SPC family, known as the human PC6 genes. Two isoforms of the hPC6 protease are expressed in human T cells, hPC6A and the larger hPC6B. The patterns of SPC gene expression in human T cells has been compared with the furin-defective LoVo cell line, both of which are competent in the production of infectious HIV virions. This comparison led to the conclusion that the hPC6 gene products are the most likely candidates for the host cell protease responsible for HIV-1 gp160 processing in human CD4+ T cells. Images Fig. 1 Fig. 3 PMID:8755538

  9. Advances in the development of SUMO specific protease (SENP) inhibitors.

    PubMed

    Kumar, Ashutosh; Zhang, Kam Y J

    2015-01-01

    Sumoylation is a reversible post-translational modification that involves the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to their substrate proteins. Prior to their conjugation, SUMO proteins need to be proteolytically processed from its precursor form to mature or active form. SUMO specific proteases (SENPs) are cysteine proteases that cleave the pro or inactive form of SUMO at C-terminus using its hydrolase activity to expose two glycine residues. SENPs also catalyze the de-conjugation of SUMO proteins using their isopeptidase activity, which is crucial for recycling of SUMO from substrate proteins. SENPs are important for maintaining the balance between sumoylated and unsumoylated proteins required for normal cellular physiology. Several studies reported the overexpression of SENPs in disease conditions and highlighted their role in the development of various diseases, especially cancer. In this review, we will address the current biological understanding of various SENP isoforms and their role in the pathogenesis of different cancers and other diseases. We will then discuss the advances in the development of protein-based, peptidyl and small molecule inhibitors of various SENP isoforms. Finally, we will summarize successful examples of computational screening that allowed the identification of SENP inhibitors with therapeutic potential. PMID:25893082

  10. Structural View and Substrate Specificity of Papain-like Protease from Avian Infectious Bronchitis Virus*

    PubMed Central

    Kong, Lingying; Shaw, Neil; Yan, Lingming; Lou, Zhiyong; Rao, Zihe

    2015-01-01

    Papain-like protease (PLpro) of coronaviruses (CoVs) carries out proteolytic maturation of non-structural proteins that play a role in replication of the virus and performs deubiquitination of host cell factors to scuttle antiviral responses. Avian infectious bronchitis virus (IBV), the causative agent of bronchitis in chicken that results in huge economic losses every year in the poultry industry globally, encodes a PLpro. The substrate specificities of this PLpro are not clearly understood. Here, we show that IBV PLpro can degrade Lys48- and Lys63-linked polyubiquitin chains to monoubiquitin but not linear polyubiquitin. To explain the substrate specificities, we have solved the crystal structure of PLpro from IBV at 2.15-Å resolution. The overall structure is reminiscent of the structure of severe acute respiratory syndrome CoV PLpro. However, unlike the severe acute respiratory syndrome CoV PLpro that lacks blocking loop (BL) 1 of deubiquitinating enzymes, the IBV PLpro has a short BL1-like loop. Access to a conserved catalytic triad consisting of Cys101, His264, and Asp275 is regulated by the flexible BL2. A model of ubiquitin-bound IBV CoV PLpro brings out key differences in substrate binding sites of PLpros. In particular, P3 and P4 subsites as well as residues interacting with the β-barrel of ubiquitin are different, suggesting different catalytic efficiencies and substrate specificities. We show that IBV PLpro cleaves peptide substrates KKAG-7-amino-4-methylcoumarin and LRGG-7-amino-4-methylcoumarin with different catalytic efficiencies. These results demonstrate that substrate specificities of IBV PLpro are different from other PLpros and that IBV PLpro might target different ubiquitinated host factors to aid the propagation of the virus. PMID:25609249

  11. Protease Inhibitors in View of Peptide Substrate Databases

    PubMed Central

    2016-01-01

    Protease substrate profiling has nowadays almost become a routine task for experimentalists, and the knowledge on protease peptide substrates is easily accessible via the MEROPS database. We present a shape-based virtual screening workflow using vROCS that applies the information about the specificity of the proteases to find new small-molecule inhibitors. Peptide substrate sequences for three to four substrate positions of each substrate from the MEROPS database were used to build the training set. Two-dimensional substrate sequences were converted to three-dimensional conformations through mutation of a template peptide substrate. The vROCS query was built from single amino acid queries for each substrate position considering the relative frequencies of the amino acids. The peptide-substrate-based shape-based virtual screening approach gives good performance for the four proteases thrombin, factor Xa, factor VIIa, and caspase-3 with the DUD-E data set. The results show that the method works for protease targets with different specificity profiles as well as for targets with different active-site mechanisms. As no structure of the target and no information on small-molecule inhibitors are required to use our approach, the method has significant advantages in comparison with conventional structure- and ligand-based methods. PMID:27247997

  12. Protease Inhibitors in View of Peptide Substrate Databases.

    PubMed

    Waldner, Birgit J; Fuchs, Julian E; Schauperl, Michael; Kramer, Christian; Liedl, Klaus R

    2016-06-27

    Protease substrate profiling has nowadays almost become a routine task for experimentalists, and the knowledge on protease peptide substrates is easily accessible via the MEROPS database. We present a shape-based virtual screening workflow using vROCS that applies the information about the specificity of the proteases to find new small-molecule inhibitors. Peptide substrate sequences for three to four substrate positions of each substrate from the MEROPS database were used to build the training set. Two-dimensional substrate sequences were converted to three-dimensional conformations through mutation of a template peptide substrate. The vROCS query was built from single amino acid queries for each substrate position considering the relative frequencies of the amino acids. The peptide-substrate-based shape-based virtual screening approach gives good performance for the four proteases thrombin, factor Xa, factor VIIa, and caspase-3 with the DUD-E data set. The results show that the method works for protease targets with different specificity profiles as well as for targets with different active-site mechanisms. As no structure of the target and no information on small-molecule inhibitors are required to use our approach, the method has significant advantages in comparison with conventional structure- and ligand-based methods. PMID:27247997

  13. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina

    PubMed Central

    2010-01-01

    Background Subtilisin-like serine proteases play an important role in pathogenic fungi during the penetration and colonization of their hosts. In this study, we perform an evolutionary analysis of the subtilisin-like serine protease genes of subphylum Pezizomycotina to find if there are similar pathogenic mechanisms among the pathogenic fungi with different life styles, which utilize subtilisin-like serine proteases as virulence factors. Within Pezizomycotina, nematode-trapping fungi are unique because they capture soil nematodes using specialized trapping devices. Increasing evidence suggests subtilisin-like serine proteases from nematode-trapping fungi are involved in the penetration and digestion of nematode cuticles. Here we also conduct positive selection analysis on the subtilisin-like serine protease genes from nematode-trapping fungi. Results Phylogenetic analysis of 189 subtilisin-like serine protease genes from Pezizomycotina suggests five strongly-supported monophyletic clades. The subtilisin-like serine protease genes previously identified or presumed as endocellular proteases were clustered into one clade and diverged the earliest in the phylogeny. In addition, the cuticle-degrading protease genes from entomopathogenic and nematode-parasitic fungi were clustered together, indicating that they might have overlapping pathogenic mechanisms against insects and nematodes. Our experimental bioassays supported this conclusion. Interestingly, although they both function as cuticle-degrading proteases, the subtilisin-like serine protease genes from nematode-trapping fungi and nematode-parasitic fungi were not grouped together in the phylogenetic tree. Our evolutionary analysis revealed evidence for positive selection on the subtilisin-like serine protease genes of the nematode-trapping fungi. Conclusions Our study provides new insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. Pezizomycotina subtilisins most likely evolved

  14. Simultaneous selection and counter-selection for the directed evolution of proteases in E. coli using a cytoplasmic anchoring strategy.

    PubMed

    Carrico, Zachary M; Strobel, Kathryn L; Atreya, Meera E; Clark, Douglas S; Francis, Matthew B

    2016-06-01

    With the goal of generating new enzymes that can cleave custom sequences, this article describes a selection strategy for evolving proteases with desirable characteristics. Positive selection and counter-selection are combined to select for and against specified cleavage sequences simultaneously. Cleavage of the positive selection sequence permits E. coli growth, and cleavage of the counter-selection sequence slows growth. Growth occurs when cleavage of the positive selection sequence releases β-lactamase into the periplasm where it can confer antibiotic resistance. The counter-selection traps β-lactamase in the cytoplasm, preventing antibiotic resistance and growth. Thus, proteases with a preference for the positive selection sequence relative to the counter-selection sequence grow more rapidly. This system was used to select a tobacco etch virus (TEV) protease mutant with new substrate compatibility. Biotechnol. Bioeng. 2016;113: 1187-1193. © 2015 Wiley Periodicals, Inc. PMID:26666461

  15. Streptococcal pyrogenic exotoxin B cleaves properdin and inhibits complement-mediated opsonophagocytosis.

    PubMed

    Tsao, Nina; Tsai, Wan-Hua; Lin, Yee-Shin; Chuang, Woei-Jer; Wang, Chiou-Huey; Kuo, Chih-Feng

    2006-01-20

    Streptococcal pyrogenic exotoxin B (SPE B), a cysteine protease, is an important virulence factor in group A streptococcal (GAS) infection. The reduction of phagocytic activity by SPE B may help prevent bacteria from being ingested. In this study, we investigated the mechanism SPE B uses to enable bacteria to resist opsonophagocytosis. Using Western blotting and an affinity column immobilized with SPE B, we found that both SPE B and C192S, an SPE B mutant lacking protease activity, bound to serum properdin, and that SPE B, but not C192S, degraded serum properdin. Further study showed that SPE B-treated, but not C192S-treated, serum blocked the alternative complement pathway. Reconstitution of properdin into SPE B-treated serum unblocked the alternative pathway. GAS opsonized with SPE B-treated serum was more resistant to neutrophil killing than GAS opsonized with C192S-treated or normal serum. These results suggest that a novel SPE B mechanism, one which degrades serum properdin, enables GAS to resist opsonophagocytosis. PMID:16329996

  16. Design and implementation of a particle concentration fluorescence method for the detection of HIV-1 protease inhibitors.

    PubMed

    Manetta, J V; Lai, M H; Osborne, H E; Dee, A; Margolin, N; Sportsman, J R; Vlahos, C J; Yan, S B; Heath, W F

    1992-04-01

    A critical step in the replicative cycle of the human immunodeficiency virus HIV-1 involves the proteolytic processing of the polyprotein products Prgag and Prgag-pol that are encoded by the gag and pol genes in the viral genome. Inhibitors of this processing step have the potential to be important therapeutic agents in the management of acquired immunodeficiency syndrome. Current assays for inhibitors of HIV-1 protease are slow, cumbersome, or susceptible to interference by test compounds. An approach to the generation of a rapid, sensitive assay for HIV-1 protease inhibitors that is devoid of interference problems is to use a capture system which allows for isolation of the products from the reaction mixture prior to signal quantitation. In this paper, we describe a novel method for the detection of HIV-1 protease inhibitors utilizing the concept of particle concentration fluorescence. Our approach involves the use of the HIV-1 protease peptide substrate Ser-Gln-Asn-Tyr-Pro-Ile-Val which has been modified to contain a biotin moiety on one side and a fluorescein reporter molecule on the other side of the scissile Tyr-Pro bond. This substrate is efficiently cleaved by the HIV-1 protease and the reaction can be readily quantitated. Known inhibitors of the protease were readily detected using this new assay. In addition, this approach is compatible with existing instrumentation in use for broad screening and is highly sensitive, accurate, and reproducible. PMID:1621970

  17. Specific cleavage sites of Nef proteins from human immunodeficiency virus types 1 and 2 for the viral proteases.

    PubMed Central

    Schorr, J; Kellner, R; Fackler, O; Freund, J; Konvalinka, J; Kienzle, N; Kräusslich, H G; Mueller-Lantzsch, N; Kalbitzer, H R

    1996-01-01

    Human immunodeficiency virus type 2 (HIV-2) Nef is proteolytically cleaved by the HIV-2-encoded protease. The proteolysis is not influenced by the absence or presence of the N-terminal myristoylation. The main cleavage site is located between residues 39 and 40, suggesting a protease recognition sequence, GGEY-SQFQ. As observed previously for Nef protein from HIV-1, a large, stable core domain with an apparent molecular mass of 30 kDa is produced by the proteolytic activity. Cleavage of Nef from HIV-1 in two domains by its own protease or the protease from HIV-2 is also independent of Nef myristoylation. However, processing of HIV-1 Nef by the HIV-2 protease is less selective than that by the HIV-1 protease: the obtained core fragment is heterogeneous at its N terminus and has an additional cleavage site between amino acids 99 and 100. Preliminary experiments suggest that the full-length Nef of HIV-2 and the core domain are part of the HIV-2 particles, analogous to the situation reported recently for HIV-1. PMID:8971042

  18. X-ray structure at 1.75 resolution of a norovirus 3C protease linked to an active site-directed peptide inhibitor

    SciTech Connect

    Cooper, Jon; Coates, Leighton; Hussey, Robert

    2010-01-01

    Noroviruses are recognized universally as the most important cause of human epidemic non-bacterial gastroenteritis. Viral replication requires a 3C cysteine protease that cleaves a 200kDa viral polyprotein into its constituent functional proteins. Here we describe the X-ray structure of the Southampton norovirus 3C protease (SV3CP) bound to an active site-directed peptide inhibitor (MAPI) which has been refined at 1.75 resolution, following initial MAD phasing with a selenomethionine derivative. The inhibitor, acetyl-Glu-Phe-Gln-Leu-Gln-X, based on a 3C protease cleavage recognition sequences in the 200kDa polyprotein substrate, reacts covalently through its propenylethylester group (X) with the active site nucleophile, Cys 139. The 3C protease-inhibitor structure permits, for the first time, the identification of substrate recognition and binding groups and provides important new information for the development of antiviral prophylactics.

  19. Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy.

    PubMed

    Meissner, Cathrin; Lorenz, Holger; Hehn, Beate; Lemberg, Marius K

    2015-01-01

    Mutations in PINK1 and PARK2/Parkin are a main risk factor for familial Parkinson disease. While the physiological mechanism of their activation is unclear, these proteins have been shown in tissue culture cells to serve as a key trigger for autophagy of depolarized mitochondria. Here we show that ablation of the mitochondrial rhomboid protease PARL leads to retrograde translocation of an intermembrane space-bridging PINK1 import intermediate. Subsequently, it is rerouted to the outer membrane in order to recruit PARK2, which phenocopies mitophagy induction by uncoupling agents. Consistent with a role of this retrograde translocation mechanism in neurodegenerative disease, we show that pathogenic PINK1 mutants which are not cleaved by PARL affect PINK1 kinase activity and the ability to induce PARK2-mediated mitophagy. Altogether we suggest that PARL is an important intrinsic player in mitochondrial quality control, a system substantially impaired in Parkinson disease as indicated by reduced removal of damaged mitochondria in affected patients. PMID:26101826

  20. Effect of Group A Streptococcal Cysteine Protease on Invasion of Epithelial Cells

    PubMed Central

    Tsai, Pei-Jane; Kuo, Chih-Feng; Lin, Kuei-Yuan; Lin, Yee-Shin; Lei, Huan-Yao; Chen, Fen-Fen; Wang, Jen-Ren; Wu, Jiunn-Jong

    1998-01-01

    Cysteine protease of group A streptococci (GAS) is considered an important virulence factor. However, its role in invasiveness of GAS has not been investigated. We demonstrated in this study that two strains of protease-producing GAS had the ability to invade A-549 human respiratory epithelial cells. Isogenic protease mutants were constructed by using integrational plasmids to disrupt the speB gene and confirmed by Southern hybridization and Western immunoblot analyses. No extracellular protease activity was produced by the mutants. The mutants had growth rates similar to those of the wild-type strains and produced normal levels of other extracellular proteins. When invading A-549 cells, the mutants had a two- to threefold decrease in activity compared to that of the wild-type strains. The invasion activity increased when the A-549 cells were incubated with purified cysteine protease and the mutant. However, blockage of the cysteine protease with a specific cysteine protease inhibitor, E-64, decreased the invasion activity of GAS. Intracellular growth of GAS was not found in A-549 cells. The presence or absence of protease activity did not affect the adhesive ability of GAS. These results suggested that streptococcal cysteine protease can enhance the invasion ability of GAS in human respiratory epithelial cells. PMID:9529068

  1. Effect of group A streptococcal cysteine protease on invasion of epithelial cells.

    PubMed

    Tsai, P J; Kuo, C F; Lin, K Y; Lin, Y S; Lei, H Y; Chen, F F; Wang, J R; Wu, J J

    1998-04-01

    Cysteine protease of group A streptococci (GAS) is considered an important virulence factor. However, its role in invasiveness of GAS has not been investigated. We demonstrated in this study that two strains of protease-producing GAS had the ability to invade A-549 human respiratory epithelial cells. Isogenic protease mutants were constructed by using integrational plasmids to disrupt the speB gene and confirmed by Southern hybridization and Western immunoblot analyses. No extracellular protease activity was produced by the mutants. The mutants had growth rates similar to those of the wild-type strains and produced normal levels of other extracellular proteins. When invading A-549 cells, the mutants had a two- to threefold decrease in activity compared to that of the wild-type strains. The invasion activity increased when the A-549 cells were incubated with purified cysteine protease and the mutant. However, blockage of the cysteine protease with a specific cysteine protease inhibitor, E-64, decreased the invasion activity of GAS. Intracellular growth of GAS was not found in A-549 cells. The presence or absence of protease activity did not affect the adhesive ability of GAS. These results suggested that streptococcal cysteine protease can enhance the invasion ability of GAS in human respiratory epithelial cells. PMID:9529068

  2. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Benko, Zsigmond; Elder, Robert T.; Li, Ge; Liang, Dong; Zhao, Richard Y.

    2016-01-01

    Background HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. Results A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. Conclusions This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings. PMID:26982200

  3. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted. PMID:27048482

  4. The Daiokanzoto (TJ-84) Kampo Formulation Reduces Virulence Factor Gene Expression in Porphyromonas gingivalis and Possesses Anti-Inflammatory and Anti-Protease Activities.

    PubMed

    Fournier-Larente, Jade; Azelmat, Jabrane; Yoshioka, Masami; Hinode, Daisuke; Grenier, Daniel

    2016-01-01

    Kampo formulations used in Japan to treat a wide variety of diseases and to promote health are composed of mixtures of crude extracts from the roots, bark, leaves, and rhizomes of a number of herbs. The present study was aimed at identifying the beneficial biological properties of Daiokanzoto (TJ-84), a Kampo formulation composed of crude extracts of Rhubarb rhizomes and Glycyrrhiza roots, with a view to using it as a potential treatment for periodontal disease. Daiokanzoto dose-dependently inhibited the expression of major Porphyromonas gingivalis virulence factors involved in host colonization and tissue destruction. More specifically, Daiokanzoto reduced the expression of the fimA, hagA, rgpA, and rgpB genes, as determined by quantitative real-time PCR. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to evaluate the anti-inflammatory properties of Daiokanzoto. Daiokanzoto attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. It also reduced the secretion of pro-inflammatory cytokines (IL-6 and CXCL8) by lipopolysaccharide-stimulated oral epithelial cells and gingival fibroblasts. Lastly, Daiokanzoto, dose-dependently inhibited the catalytic activity of matrix metalloproteinases (-1 and -9). In conclusion, the present study provided evidence that Daiokanzoto shows potential for treating and/or preventing periodontal disease. The ability of this Kampo formulation to act on both bacterial pathogens and the host inflammatory response, the two etiological components of periodontal disease, is of high therapeutic interest. PMID:26859747

  5. The Daiokanzoto (TJ-84) Kampo Formulation Reduces Virulence Factor Gene Expression in Porphyromonas gingivalis and Possesses Anti-Inflammatory and Anti-Protease Activities

    PubMed Central

    Fournier-Larente, Jade; Azelmat, Jabrane; Yoshioka, Masami; Hinode, Daisuke; Grenier, Daniel

    2016-01-01

    Kampo formulations used in Japan to treat a wide variety of diseases and to promote health are composed of mixtures of crude extracts from the roots, bark, leaves, and rhizomes of a number of herbs. The present study was aimed at identifying the beneficial biological properties of Daiokanzoto (TJ-84), a Kampo formulation composed of crude extracts of Rhubarb rhizomes and Glycyrrhiza roots, with a view to using it as a potential treatment for periodontal disease. Daiokanzoto dose-dependently inhibited the expression of major Porphyromonas gingivalis virulence factors involved in host colonization and tissue destruction. More specifically, Daiokanzoto reduced the expression of the fimA, hagA, rgpA, and rgpB genes, as determined by quantitative real-time PCR. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to evaluate the anti-inflammatory properties of Daiokanzoto. Daiokanzoto attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. It also reduced the secretion of pro-inflammatory cytokines (IL-6 and CXCL8) by lipopolysaccharide-stimulated oral epithelial cells and gingival fibroblasts. Lastly, Daiokanzoto, dose-dependently inhibited the catalytic activity of matrix metalloproteinases (-1 and -9). In conclusion, the present study provided evidence that Daiokanzoto shows potential for treating and/or preventing periodontal disease. The ability of this Kampo formulation to act on both bacterial pathogens and the host inflammatory response, the two etiological components of periodontal disease, is of high therapeutic interest. PMID:26859747

  6. Transforming growth factor-β1 and extracellular matrix protease expression in the uterosacral ligaments of patients with and without pelvic organ prolapse

    PubMed Central

    Leegant, Ava; Zuckerwise, Lisa C.; Downing, Keith; Brouwer-Visser, Jurriaan; Zhu, Changcheng; Cossio, Maria Jose; Strube, Felix; Xie, Xianhong; Banks, Erika; Huang, Gloria S

    2015-01-01

    Objectives This study was undertaken to evaluate the expression of transforming growth factor-β1 (TGF-β1) and matrix metalloproteinase 9 (MMP-9), key regulators of the extracellular matrix composition, in the uterosacral ligaments (USL) of women with pelvic organ prolapse compared with controls. Methods Under IRB approval, USL samples were obtained from women undergoing vaginal hysterectomy for stage two or greater pelvic organ prolapse (cases, n=21) and from women without pelvic organ prolapse undergoing vaginal hysterectomy for benign indications (controls, n=19). Hematoxylin and eosin and trichrome staining were performed on the USL sections, and the distribution of smooth muscle and fibrous tissue quantified. Immunohistochemical staining was performed using anti-TGF-β1 and anti-MMP-9 antibodies. The expression of TGF-β1 and MMP-9 was evaluated by the pathologist, who was blinded to all clinical data. Results TGF-β1 expression positively correlated with MMP-9 expression (R=0.4, P=0.01). The expression of TGF-β1 and MMP-9 were similar in subjects with pelvic organ prolapse versus controls. There was a significant increase in fibrous tissue (P=0.008), and a corresponding decrease in smooth muscle (P=0.03), associated with increasing age. TGF-β1 expression, but not MMP-9 expression, also significantly increased with age (P=0.02). Discussion Although our study uncovered age-related alterations in USL composition and TGF-β1 expression, there was no difference in the expression of TGF-β1 or MMP-9 in the subjects with pelvic organ prolapse versus controls. PMID:25185601

  7. Identification and structural analysis of four serine proteases in a monotreme, the platypus, Ornithorhynchus anatinus.

    PubMed

    Poorafshar, M; Aveskogh, M; Munday, B; Hellman, L

    2000-11-01

    To study the emergence of the major subfamilies of serine proteases during vertebrate evolution, we present here the primary structure of four serine proteases expressed in the spleen of a monotreme, the platypus, Ornithorhynchus anatinus. Partial cDNA clones for four serine proteases were isolated by a PCR-based strategy. This strategy is based on the high level of sequence identity between various members of the large gene family of trypsin-related serine proteases, over two highly conserved regions, those of the histidine and the serine of the catalytic triad. The partial cDNA clones were used to isolate full-length or almost full-length cDNA clones for three of these proteases from a platypus spleen cDNA library. By phylogenetic analysis, these three clones were identified as being the platypus homologues of human coagulation factor X, neutrophil elastase, and a protease distantly related to the T-cell granzymes. The remaining partial clone was found to represent a close homologue of human complement factor D (adipsin). The isolation of these four clones shows that several of the major subfamilies of serine proteases had evolved as separate subfamilies long before the radiation of the major mammalian lineages of today, the monotremes, the marsupials, and the placental mammals. Upon comparison of the corresponding proteases of monotremes and eutherian mammals, the coagulation and complement proteases were shown to display a higher degree of conservation compared to the hematopoietic proteases N-elastase and the T-cell granzymes. This latter finding indicates a higher evolutionary pressure to maintain specific functions in the complement and coagulation enzymes compared to many of the hematopoietic serine proteases. PMID:11132153

  8. Identification of BACE2 as an avid ß-amyloid-degrading protease

    PubMed Central

    2012-01-01

    Background Proteases that degrade the amyloid ß-protein (Aß) have emerged as key players in the etiology and potential treatment of Alzheimer’s disease (AD), but it is unlikely that all such proteases have been identified. To discover new Aß-degrading proteases (AßDPs), we conducted an unbiased, genome-scale, functional cDNA screen designed to identify proteases capable of lowering net Aß levels produced by cells, which were subsequently characterized for Aß-degrading activity using an array of downstream assays. Results The top hit emerging from the screen was ß-site amyloid precursor protein-cleaving enzyme 2 (BACE2), a rather unexpected finding given the well-established role of its close homolog, BACE1, in the production of Aß. BACE2 is known to be capable of lowering Aß levels via non-amyloidogenic processing of APP. However, in vitro, BACE2 was also found to be a particularly avid AßDP, with a catalytic efficiency exceeding all known AßDPs except insulin-degrading enzyme (IDE). BACE1 was also found to degrade Aß, albeit ~150-fold less efficiently than BACE2. Aß is cleaved by BACE2 at three peptide bonds—Phe19-Phe20, Phe20-Ala21, and Leu34-Met35—with the latter cleavage site being the initial and principal one. BACE2 overexpression in cultured cells was found to lower net Aß levels to a greater extent than multiple, well-established AßDPs, including neprilysin (NEP) and endothelin-converting enzyme-1 (ECE1), while showing comparable effectiveness to IDE. Conclusions This study identifies a new functional role for BACE2 as a potent AßDP. Based on its high catalytic efficiency, its ability to degrade Aß intracellularly, and other characteristics, BACE2 represents a particulary strong therapeutic candidate for the treatment or prevention of AD. PMID:22986058

  9. Molecular Determinants of Substrate Specificity for Semliki Forest Virus Nonstructural Protease

    PubMed Central

    Lulla, Aleksei; Lulla, Valeria; Tints, Kairit; Ahola, Tero; Merits, Andres

    2006-01-01

    The C-terminal cysteine protease domain of Semliki Forest virus nonstructural protein 2 (nsP2) regulates the virus life cycle by sequentially cleaving at three specific sites within the virus-encoded replicase polyprotein P1234. The site between nsP3 and nsP4 (the 3/4 site) is cleaved most efficiently. Analysis of Semliki Forest virus-specific cleavage sites with shuffled N-terminal and C-terminal half-sites showed that the main determinants of cleavage efficiency are located in the region preceding the cleavage site. Random mutagenesis analysis revealed that amino acid residues in positions P4, P3, P2, and P1 of the 3/4 cleavage site cannot tolerate much variation, whereas in the P5 position most residues were permitted. When mutations affecting cleavage efficiency were introduced into the 2/3 and 3/4 cleavage sites, the resulting viruses remained viable but had similar defects in P1234 processing as observed in the in vitro assay. Complete blockage of the 3/4 cleavage was found to be lethal. The amino acid in position P1′ had a significant effect on cleavage efficiency, and in this regard the protease markedly preferred a glycine residue over the tyrosine natively present in the 3/4 site. Therefore, the cleavage sites represent a compromise between protease recognition and other requirements of the virus life cycle. The protease recognizes at least residues P4 to P1′, and the P4 arginine residue plays an important role in the fast cleavage of the 3/4 site. PMID:16699022

  10. Secreted proteases from Actinobacillus pleuropneumoniae serotype 1 degrade porcine gelatin, hemoglobin and immunoglobulin A.

    PubMed Central

    Negrete-Abascal, E; Tenorio, V R; Serrano, J J; Garcia, C; de la Garza, M

    1994-01-01

    It was found that 48 hour cultures of Actinobacillus pleuropneumoniae secreted proteases into the medium. Electrophoresis in polyacrylamide gels (10%) copolymerized with porcine gelatin (0.1%), of the 70% (NH4)2SO4 precipitate from the culture supernatants, displayed protease activities of different molecular weights: > 200, 200, 90, 80, 70 and 50 kDa. They had activity over a broad range of pHs (4-8), with an optimal pH of 6-7. All were inhibited by 10 mM EDTA, and reactivated by 10 mM calcium. They were stable at -20 degrees C for more than a month. The proteases also degraded porcine IgA and porcine, human, and bovine hemoglobin, although they appeared to be less active against the hemoglobins. The IgA was totally cleaved in 48 h, using supernatants concentrated with polyvinyl pyrrolidone or the 70% (NH4)2SO4. Extracellular proteases could play a role in virulence. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:8004545

  11. Extracellular proteolysis of apolipoprotein E (apoE) by secreted serine neuronal protease.

    PubMed

    Tamboli, Irfan Y; Heo, Dongeun; Rebeck, G William

    2014-01-01

    Under normal conditions, brain apolipoprotein E (apoE) is secreted and lipidated by astrocytes, then taken up by neurons via receptor mediated endocytosis. Free apoE is either degraded in intraneuronal lysosomal compartments or released. Here we identified a novel way by which apoE undergoes proteolysis in the extracellular space via a secreted neuronal protease. We show that apoE is cleaved in neuronal conditioned media by a secreted serine protease. This apoE cleavage was inhibited by PMSF and α1-antichymotrypsin, but not neuroserpin-1 or inhibitors of thrombin and cathepsin G, supporting its identity as a chymotrypsin like protease. In addition, apoE incubation with purified chymotrypsin produced a similar pattern of apoE fragments. Analysis of apoE fragments by mass spectrometry showed cleavages occurring at the C-terminal side of apoE tryptophan residues, further supporting our identification of cleavage by chymotrypsin like protease. Hippocampal neurons were more efficient in mediating this apoE cleavage than cortical neurons. Proteolysis of apoE4 generated higher levels of low molecular weight fragments compared to apoE3. Primary glial cultures released an inhibitor of this proteolytic activity. Together, these studies reveal novel mechanism by which apoE can be regulated and therefore could be useful in designing apoE directed AD therapeutic approaches. PMID:24675880

  12. Extracellular Proteolysis of Apolipoprotein E (apoE) by Secreted Serine Neuronal Protease

    PubMed Central

    Tamboli, Irfan Y.; Heo, Dongeun; Rebeck, G. William

    2014-01-01

    Under normal conditions, brain apolipoprotein E (apoE) is secreted and lipidated by astrocytes, then taken up by neurons via receptor mediated endocytosis. Free apoE is either degraded in intraneuronal lysosomal compartments or released. Here we identified a novel way by which apoE undergoes proteolysis in the extracellular space via a secreted neuronal protease. We show that apoE is cleaved in neuronal conditioned media by a secreted serine protease. This apoE cleavage was inhibited by PMSF and α1-antichymotrypsin, but not neuroserpin-1 or inhibitors of thrombin and cathepsin G, supporting its identity as a chymotrypsin like protease. In addition, apoE incubation with purified chymotrypsin produced a similar pattern of apoE fragments. Analysis of apoE fragments by mass spectrometry showed cleavages occuring at the C-terminal side of apoE tryptophan residues, further supporting our identification of cleavage by chymotrypsin like protease. Hippocampal neurons were more efficient in mediating this apoE cleavage than cortical neurons. Proteolysis of apoE4 generated higher levels of low molecular weight fragments compared to apoE3. Primary glial cultures released an inhibitor of this proteolytic activity. Together, these studies reveal novel mechanism by which apoE can be regulated and therefore could be useful in designing apoE directed AD therapeutic approaches. PMID:24675880

  13. Substrate specificity of the ubiquitin and Ubl proteases

    PubMed Central

    Ronau, Judith A; Beckmann, John F; Hochstrasser, Mark

    2016-01-01

    Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families. PMID:27012468

  14. Beneficial effects of secretory leukocyte protease inhibitor after spinal cord injury

    PubMed Central

    Ghasemlou, Nader; Bouhy, Delphine; Yang, Jingxuan; López-Vales, Rubèn; Haber, Michael; Thuraisingam, Thusanth; He, Guoan; Radzioch, Danuta; Ding, Aihao

    2010-01-01

    Secretory leukocyte protease inhibitor is a serine protease inhibitor produced by various cell types, including neutrophils and activated macrophages, and has anti-inflammatory properties. It has been shown to promote wound healing in the skin and other non-neural tissues, however, its role in central nervous system injury was not known. We now report a beneficial role for secretory leukocyte protease inhibitor after spinal cord injury. After spinal cord contusion injury in mice, secretory leukocyte protease inhibitor is expressed primarily by astrocytes and neutrophils but not macrophages. We show, using transgenic mice over-expressing secretory leukocyte protease inhibitor, that this molecule has an early protective effect after spinal cord contusion injury. Furthermore, wild-type mice treated for the first week after spinal cord contusion injury with recombinant secretory leukocyte protease inhibitor exhibit sustained improvement in locomotor control and reduced secondary tissue damage. Recombinant secretory leukocyte protease inhibitor injected intraperitoneally localizes to the nucleus of circulating leukocytes, is detected in the injured spinal cord, reduces activation of nuclear factor-κB and expression of tumour necrosis factor-α. Administration of recombinant secretory leukocyte protease inhibitor might therefore be useful for the treatment of acute spinal cord injury. PMID:20047904

  15. Amino acid sequence requirements in the human IgA1 hinge for cleavage by streptococcal IgA1 proteases.

    PubMed

    Senior, B W; Batten, M R; Kilian, M; Woof, J M

    2002-08-01

    All the IgA1 proteases of the different pathogenic species of Streptococcus cleave the hinge of the alpha chain of human IgA1 only at one proline-threonine peptide bond. In order to study the importance of these amino acids for cleavage, several hinge mutant recombinant IgA1 antibodies were constructed. The mutations were found to be without major effect upon the structure or functional abilities of the antibodies. However, they had a major effect upon their sensitivity to cleavage by some of the IgA1 proteases. PMID:12196126

  16. Crystallisation and preliminary X-ray diffraction analysis of the protease from Southampton norovirus complexed with a Michael-acceptor inhibitor

    SciTech Connect

    Coates, Leighton; Cooper, Jon; Hussey, Robert

    2008-01-01

    Noroviruses are the predominant cause of human epidemic nonbacterial gastroenteritis. Viral replication requires a cysteine protease that cleaves a 200 kDa viral polyprotein into its constituent functional parts. Here, the crystallization of the recombinant protease from the Southampton norovirus is described. While the native crystals were found to diffract only to medium resolution (2.9 {angstrom}), cocrystals of an inhibitor complex diffracted X-rays to 1.7 {angstrom} resolution. The polypeptide inhibitor (Ac-EFQLQ-propenyl ethyl ester) possesses an amino-acid sequence designed to match the substrate specificity of the enzyme, but was synthesized with a reactive Michael acceptor group at the C-terminal end.

  17. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense.

    PubMed

    Caffrey, C R; Hansell, E; Lucas, K D; Brinen, L S; Alvarez Hernandez, A; Cheng, J; Gwaltney, S L; Roush, W R; Stierhof, Y D; Bogyo, M; Steverding, D; McKerrow, J H

    2001-11-01

    Cysteine protease activity of African trypanosome parasites is a target for new chemotherapy using synthetic protease inhibitors. To support this effort and further characterize the enzyme, we expressed and purified rhodesain, the target protease of Trypanosoma brucei rhodesiense (MVAT4 strain), in reagent quantities from Pichia pastoris. Rhodesain was secreted as an active, mature protease. Site-directed mutagenesis of a cryptic glycosylation motif not previously identified allowed production of rhodesain suitable for crystallization. An invariable ER(A/V)FNAA motif in the pro-peptide sequence of rhodesain was identified as being unique to the genus Trypanosoma. Antibodies to rhodesain localized the protease in the lysosome and identified a 40-kDa protein in long slender forms of T. b. rhodesiense and all life-cycle stages of T. b. brucei. With the latter parasite, protease expression was five times greater in short stumpy trypanosomes than in the other stages. Radiolabeled active site-directed inhibitors identified brucipain as the major cysteine protease in T. b. brucei. Peptidomimetic vinyl sulfone and epoxide inhibitors designed to interact with the S2, S1 and S' subsites of the active site cleft revealed differences between rhodesain and the related trypanosome protease cruzain. Using fluorogenic dipeptidyl substrates, rhodesain and cruzain had acid pH optima, but unlike some mammalian cathepsins retained significant activity and stability up to pH 8.0, consistent with a possible extracellular function. S2 subsite mapping of rhodesain and cruzain with fluorogenic peptidyl substrates demonstrates that the presence of alanine rather than glutamate at S2 prevents rhodesain from cleaving substrates in which P2 is arginine. PMID:11704274

  18. A continuous spectrophotometric assay for Pseudomonas aeruginosa LasA protease (staphylolysin) using a two-stage enzymatic reaction.

    PubMed

    Kessler, Efrat; Safrin, Mary; Blumberg, Shmaryahu; Ohman, Dennis E

    2004-05-15

    Pseudomonas aeruginosa LasA protease is a secreted metalloendopeptidase that can lyse Staphylococcus aureus cells by cleaving the pentaglycine bridges of their peptidoglycan. It can also degrade elastin and stimulate shedding of cell-surface proteoglycans, activities implicated in pathogenesis of P. aeruginosa infections. The activity of LasA protease can be assayed spectrophotometrically by following the reduction in turbidity of S. aureus cell suspensions. This assay, however, does not permit kinetic studies and its reproducibility is poor. Here we describe a two-stage enzymatic reaction for the continuous measurement of LasA protease activity using a defined substrate, succinyl-Gly-Gly-Phe-4-nitroanilide, supplemented with Streptomyces griseus aminopeptidase. Cleavage of the Gly-Phe bond by LasA protease is followed by hydrolysis of the product Phe-4-nitroanilide by the aminopeptidase and the rate of release of the chromophore (4-nitroaniline) is measured spectrophotometrically using a 96-well microplate reader. Activity of nanogram amounts of LasA protease could be determined within a few minutes. Furthermore, this assay permitted the determination of Km and kcat values for LasA protease, which were 0.46 mM and 11.8s(-1), respectively. Pseudomonas elastase was also active in the assay. However, it was less effective than LasA protease and its activity was inhibited by phosphoramidon. The assay is highly sensitive and reproducible, providing a convenient tool for further studies of LasA protease function(s) and mechanism of action. PMID:15113701

  19. Exogenous proteases for meat tenderization.

    PubMed

    Bekhit, Alaa A; Hopkins, David L; Geesink, Geert; Bekhit, Adnan A; Franks, Philip

    2014-01-01

    The use of exogenous proteases to improve meat tenderness has attracted much interest recently, with a view to consistent production of tender meat and added value to lower grade meat cuts. This review discusses the sources, characteristics, and use of exogenous proteases in meat tenderization to highlight the specificity of the proteases toward meat proteins and their impact on meat quality. Plant enzymes (such as papain, bromelain, and ficin) have been extensively investigated as meat tenderizers. New plant proteases (actinidin and zingibain) and microbial enzyme preparations have been of recent interest due to controlled meat tenderization and other advantages. Successful use of these enzymes in fresh meat requires their enzymatic kinetics and characteristics to be determined, together with an understanding of the impact of the surrounding environmental conditions of the meat (pH, temperature) on enzyme function. This enables the optimal conditions for tenderizing fresh meat to be established, and the elimination or reduction of any negative impacts on other quality attributes. PMID:24499119

  20. Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u.

    PubMed

    Chen, Chia-yi; Malchus, Nicole S; Hehn, Beate; Stelzer, Walter; Avci, Dönem; Langosch, Dieter; Lemberg, Marius K

    2014-11-01

    Signal peptide peptidase (SPP) catalyzes intramembrane proteolysis of signal peptides at the endoplasmic reticulum (ER), but has also been suggested to play a role in ER-associated degradation (ERAD). Here, we show that SPP forms a complex with the ERAD factor Derlin1 and the E3 ubiquitin ligase TRC8 to cleave the unfolded protein response (UPR) regulator XBP1u. Cleavage occurs within a so far unrecognized type II transmembrane domain, which renders XBP1u as an SPP substrate through specific sequence features. Additionally, Derlin1 acts in the complex as a substrate receptor by recognizing the luminal tail of XBP1u. Remarkably, this interaction of Derlin1 with XBP1u obviates the need for ectodomain shedding prior to SPP cleavage, commonly required for intramembrane cuts. Furthermore, we show that XBP1u inhibits the UPR transcription factor XBP1s by targeting it toward proteasomal degradation. Thus, we identify an ERAD complex that controls the abundance of XBP1u and thereby tunes signaling through the UPR. PMID:25239945

  1. Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u

    PubMed Central

    Chen, Chia-yi; Malchus, Nicole S; Hehn, Beate; Stelzer, Walter; Avci, Dönem; Langosch, Dieter; Lemberg, Marius K

    2014-01-01

    Signal peptide peptidase (SPP) catalyzes intramembrane proteolysis of signal peptides at the endoplasmic reticulum (ER), but has also been suggested to play a role in ER-associated degradation (ERAD). Here, we show that SPP forms a complex with the ERAD factor Derlin1 and the E3 ubiquitin ligase TRC8 to cleave the unfolded protein response (UPR) regulator XBP1u. Cleavage occurs within a so far unrecognized type II transmembrane domain, which renders XBP1u as an SPP substrate through specific sequence features. Additionally, Derlin1 acts in the complex as a substrate receptor by recognizing the luminal tail of XBP1u. Remarkably, this interaction of Derlin1 with XBP1u obviates the need for ectodomain shedding prior to SPP cleavage, commonly required for intramembrane cuts. Furthermore, we show that XBP1u inhibits the UPR transcription factor XBP1s by targeting it toward proteasomal degradation. Thus, we identify an ERAD complex that controls the abundance of XBP1u and thereby tunes signaling through the UPR. PMID:25239945

  2. Efficient proteolysis and application of an alkaline protease from halophilic Bacillus sp. EMB9.

    PubMed

    Sinha, Rajeshwari; Srivastava, A K; Khare, S K

    2014-10-01

    A salt-stable alkaline protease from moderately halophilic Bacillus sp. EMB9, isolated from the western coast of India, is described. This protease was capable of efficiently removing silver from used/waste X-Ray films, as well as hydrolyzing defatted soy flour with 31% degree of hydrolysis (DH). Production of the protease was optimized by using response surface methodology. Ca(2+) and NaCl were the most critical factors in enhancing the yield. Under optimized culture conditions, a maximum of 369 U protease/mL was obtained, which is quite comparable to the yields of commercial proteases. The elevated production level coupled with ability to efficiently hydrolyze protein-laden soy flour and complete recovery of silver from used X-Ray films makes it a prospective industrial enzyme. PMID:24905047

  3. Interdomain Contacts and the Stability of Serralysin Protease from Serratia marcescens

    PubMed Central

    Zhang, Liang; Morrison, Anneliese J.; Thibodeau, Patrick H.

    2015-01-01

    The serralysin family of bacterial metalloproteases is associated with virulence in multiple modes of infection. These extracellular proteases are members of the Repeats-in-ToXin (RTX) family of toxins and virulence factors, which mediated virulence in E. coli, B. pertussis, and P. aeruginosa, as well as other animal and plant pathogens. The serralysin proteases are structurally dynamic and their folding is regulated by calcium binding to a C-terminal domain that defines the RTX family of proteins. Previous studies have suggested that interactions between N-terminal sequences and this C-terminal domain are important for the high thermal and chemical stabilities of the RTX proteases. Extending from this, stabilization of these interactions in the native structure may lead to hyperstabilization of the folded protein. To test this hypothesis, cysteine pairs were introduced into the N-terminal helix and the RTX domain and protease folding and activity were assessed. Under stringent pH and temperature conditions, the disulfide-bonded mutant showed increased protease activity and stability. This activity was dependent on the redox environment of the refolding reaction and could be blocked by selective modification of the cysteine residues before protease refolding. These data demonstrate that the thermal and chemical stability of these proteases is, in part, mediated by binding between the RTX domain and the N-terminal helix and demonstrate that stabilization of this interaction can further stabilize the active protease, leading to additional pH and thermal tolerance. PMID:26378460

  4. Identification of Protease Specificity by Combining Proteome-Derived Peptide Libraries and Quantitative Proteomics.

    PubMed

    Biniossek, Martin L; Niemer, Melanie; Maksimchuk, Ken; Mayer, Bettina; Fuchs, Julian; Huesgen, Pitter F; McCafferty, Dewey G; Turk, Boris; Fritz, Guenther; Mayer, Jens; Haecker, Georg; Mach, Lukas; Schilling, Oliver

    2016-07-01

    We present protease specificity profiling based on quantitative proteomics in combination with proteome-derived peptide libraries. Peptide libraries are generated by endoproteolytic digestion of proteomes without chemical modification of primary amines before exposure to a protease under investigation. After incubation with a test protease, treated and control libraries are differentially isotope-labeled using cost-effective reductive dimethylation. Upon analysis by liquid chromatography-tandem mass spectrometry, cleavage products of the test protease appear as semi-specific peptides that are enriched for the corresponding isotope label. We validate our workflow with two proteases with well-characterized specificity profiles: trypsin and caspase-3. We provide the first specificity profile of a protease encoded by a human endogenous retrovirus and for chlamydial protease-like activity factor (CPAF). For CPAF, we also highlight the structural basis of negative subsite cooperativity between subsites S1 and S2'. For A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) -4, -5, and -15, we show a canonical preference profile, including glutamate in P1 and glycine in P3'. In total, we report nearly 4000 cleavage sites for seven proteases. Our protocol is fast, avoids enrichment or synthesis steps, and enables probing for lysine selectivity as well as subsite cooperativity. Due to its simplicity, we anticipate usability by most proteomic laboratories. PMID:27122596

  5. Two Proteases, Trypsin Domain-containing 1 (Tysnd1) and Peroxisomal Lon Protease (PsLon), Cooperatively Regulate Fatty Acid β-Oxidation in Peroxisomal Matrix*

    PubMed Central

    Okumoto, Kanji; Kametani, Yukari; Fujiki, Yukio

    2011-01-01

    The molecular mechanisms underlying protein turnover and enzyme regulation in the peroxisomal matrix remain largely unknown. Trypsin domain-containing 1 (Tysnd1) and peroxisomal Lon protease (PsLon) are newly identified peroxisomal matrix proteins that harbor both a serine protease-like domain and a peroxisome-targeting signal 1 (PTS1) sequence. Tysnd1 processes several PTS1-containing proteins and cleaves N-terminal presequences from PTS2-containing protein precursors. Here we report that knockdown of Tysnd1, but not PsLon, resulted in accumulation of endogenous β-oxidation enzymes in their premature form. The protease activity of Tysnd1 was inactivated by intermolecular self-conversion of the 60-kDa form to 15- and 45-kDa chains, which were preferentially degraded by PsLon. Peroxisomal β-oxidation of a very long fatty acid was significantly decreased by knockdown of Tysnd1 and partially lowered by PsLon knockdown. Taken together, these data suggest that Tysnd1 is a key regulator of the peroxisomal β-oxidation pathway via proteolytic processing of β-oxidation enzymes. The proteolytic activity of oligomeric Tysnd1 is in turn controlled by self-cleavage of Tysnd1 and degradation of Tysnd1 cleavage products by PsLon. PMID:22002062

  6. An ion-gating multinanochannel system based on a copper-responsive self-cleaving DNAzyme.

    PubMed

    Chen, Yang; Zhou, Di; Meng, Zheyi; Zhai, Jin

    2016-08-21

    We developed an ion-gating nanochannel composite system by immobilizing a Cu(2+)-responsive self-cleaving DNAzyme into PET conical multinanochannels, which could control the ion transport by regulating the surface charge density of the channels. PMID:27443504

  7. Type II restriction endonucleases cleave single-stranded DNAs in general.

    PubMed Central

    Nishigaki, K; Kaneko, Y; Wakuda, H; Husimi, Y; Tanaka, T

    1985-01-01

    Restriction endonucleases (13 out of 18 species used for the test) were certified to cleave single-stranded(ss)DNA. Such enzymes as AvaII, HaeII, DdeI, AluI, Sau3AI, AccII,TthHB8I and HapII were newly reported to cleave ssDNA. A model to account for the cleavage of ssDNA by restriction enzymes was proposed with supportive data. The essential part of the model was that restriction enzymes preferentially cleave transiently formed secondary structures (called canonical structures) in ssDNA composed of two recognition sequences with two fold rotational symmetry. This means that a restriction enzyme can cleave ssDNAs in general so far as the DNAs have the sequences of restriction sites for the enzyme, and that the rate of cleavage depends on the stabilities of canonical structures. Images PMID:2994012

  8. Biotechnology of Cold-Active Proteases

    PubMed Central

    Joshi, Swati; Satyanarayana, Tulasi

    2013-01-01

    The bulk of Earth’s biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review. PMID:24832807

  9. Analysis of the Proteolytic Processing of ABCA3: Identification of Cleavage Site and Involved Proteases

    PubMed Central

    Hofmann, Nicole; Galetskiy, Dmitry; Rauch, Daniela; Wittmann, Thomas; Marquardt, Andreas; Griese, Matthias; Zarbock, Ralf

    2016-01-01

    Rationale ABCA3 is a lipid transporter in the limiting membrane of lamellar bodies in alveolar type II cells. Mutations in the ABCA3 gene cause respiratory distress syndrome in new-borns and childhood interstitial lung disease. ABCA3 is N-terminally cleaved by an as yet unknown protease, a process believed to regulate ABCA3 activity. Methods The exact site where ABCA3 is cleaved was localized using mass spectrometry (MS). Proteases involved in ABCA3 processing were identified using small molecule inhibitors and siRNA mediated gene knockdown. Results were verified by in vitro digestion of a synthetic peptide substrate mimicking ABCA3’s cleavage region, followed by MS analysis. Results We found that cleavage of ABCA3 occurs after Lys174 which is located in the proteins’ first luminal loop. Inhibition of cathepsin L and, to a lesser extent, cathepsin B resulted in attenuation of ABCA3 cleavage. Both enzymes showed activity against the ABCA3 peptide in vitro with cathepsin L being more active. Conclusion We show here that, like some other proteins of the lysosomal membrane, ABCA3 is a substrate of cathepsin L. Therefore, cathepsin L may represent a potential target to therapeutically influence ABCA3 activity in ABCA3-associated lung disease. PMID:27031696

  10. Impact of the Pla protease substrate α2-antiplasmin on the progression of primary pneumonic plague.

    PubMed

    Eddy, Justin L; Schroeder, Jay A; Zimbler, Daniel L; Bellows, Lauren E; Lathem, Wyndham W

    2015-12-01

    Many pathogens usurp the host hemostatic system during infection to promote pathogenesis. Yersinia pestis, the causative agent of plague, expresses the plasminogen activator protease Pla, which has been shown in vitro to target and cleave multiple proteins within the fibrinolytic pathway, including the plasmin inhibitor α2-antiplasmin (A2AP). It is not known, however, if Pla inactivates A2AP in vivo; the role of A2AP during respiratory Y. pestis infection is not known either. Here, we show that Y. pestis does not appreciably cleave A2AP in a Pla-dependent manner in the lungs during experimental pneumonic plague. Furthermore, following intranasal infection with Y. pestis, A2AP-deficient mice exhibit no difference in survival time, bacterial burden in the lungs, or dissemination from wild-type mice. Instead, we found that in the absence of Pla, A2AP contributes to the control of the pulmonary inflammatory response during infection by reducing neutrophil recruitment and cytokine production, resulting in altered immunopathology of the lungs compared to A2AP-deficient mice. Thus, our data demonstrate that A2AP is not significantly affected by the Pla protease during pneumonic plague, and although A2AP participates in immune modulation in the lungs, it has limited impact on the course or ultimate outcome of the infection. PMID:26438794

  11. Allosteric antibody inhibition of human hepsin protease.

    PubMed

    Koschubs, Tobias; Dengl, Stefan; Dürr, Harald; Kaluza, Klaus; Georges, Guy; Hartl, Christiane; Jennewein, Stefan; Lanzendörfer, Martin; Auer, Johannes; Stern, Alvin; Huang, Kuo-Sen; Packman, Kathryn; Gubler, Ueli; Kostrewa, Dirk; Ries, Stefan; Hansen, Silke; Kohnert, Ulrich; Cramer, Patrick; Mundigl, Olaf

    2012-03-15

    Hepsin is a type II transmembrane serine protease that is expressed in several human tissues. Overexpression of hepsin has been found to correlate with tumour progression and metastasis, which is so far best studied for prostate cancer, where more than 90% of such tumours show this characteristic. To enable improved future patient treatment, we have developed a monoclonal humanized antibody that selectively inhibits human hepsin and does not inhibit other related proteases. We found that our antibody, hH35, potently inhibits hepsin enzymatic activity at nanomolar concentrations. Kinetic characterization revealed non-linear, slow, tight-binding inhibition. This correlates with the crystal structure we obtained for the human hepsin-hH35 antibody Fab fragment complex, which showed that the antibody binds hepsin around α3-helix, located far from the active centre. The unique allosteric mode of inhibition of hH35 is distinct from the recently described HGFA (hepatocyte growth factor activator) allosteric antibody inhibition. We further explain how a small change in the antibody design induces dramatic structural rearrangements in the hepsin antigen upon binding, leading to complete enzyme inactivation. PMID:22132769

  12. Improved fabrication of HgI/sub 2/ nuclear radiation detectors by machine-cleaving

    SciTech Connect

    Levi, A.; Burger, A.; Schieber, M.; Vandenberg, L.; Yellon, W.B.; Alkire, R.W.

    1982-01-01

    The perfection of machine-cleaved sections from HgI/sub 2/ bulk crystals was examined. The perfection of the machine-cleaved sections as established by gamma diffraction rocking curves was found to be much better than the perfection of hand-cleaved sections or as grown thin platelets, reaching a perfection similar to that of the wire-sawn sections of HgI/sub 2/. A correlation between the perfection and the thickness of the machine-cleaved section was also found, i.e., the thicker the cleaved-section the more perfect it is. The reproducibility of the fabrication was significantly improved by using machine cleaving in the process of fabrication. Large single crystals of HgI/sub 2/ weighing 20 to 200 g, can be grown from the vapor phase using the TOM Technique. In order to fabricate nuclear radiation detectors from these single crystals, thin sections of about 0.4 to 0.8 mm thickness have to be prepared. Up till now, the state-of-the-art of fabricating HgI/sub 2/ nuclear radiation detectors involved two methods to get thin sections from the large single crystals: (1) hand-cleaving using a razor-blade and (2) solution wire sawing. The chemical wire sawing method involves a loss of about 50% of the crystal volume and is usually followed by a chemical polishing process which involves a significant loss of volume of the original volume. This procedure is complicated and wasteful. The traditional fabrication method, i.e., hand-cleaving followed by rapid nonselective chemical etching, is simpler and less wasteful.

  13. Stop-cleaved InGaAsP laser monolithically integrated with a monitoring detector

    SciTech Connect

    Antreasyan, A.; Chen, C.Y.; Napholtz, S.G.; Wilt, D.P.

    1985-11-01

    We report the monolithic fabrication of a stop-cleaved laser with a monitoring detector. Stop-cleaved, double channel planar buried heterostructure lasers with threshold currents of 57 mA have been obtained emitting at 1.3-..mu..m wavelength. For the monitoring detector on the same substrate we have estimated a quantum efficiency of 31% from the measured responsivity of 14.4 ..mu..A/mW and the theoretical diffraction coupling efficiency.

  14. Etching of deep grooves for the precise positioning of cleaves in semiconductor lasers

    SciTech Connect

    Bowers, J.E.; Hemenway, B.R.; Wilt, D.P.

    1985-03-01

    Photoelectrochemical etching of InP is used to etch deep (80 ..mu..m), narrow (20 ..mu..m) grooves. The grooves are used to precisely position cleaves in semiconductor lasers and to demonstrate the first wafer processing of long/short cleaved-coupled-cavity (C/sup 3/) lasers. Large numbers of low threshold C/sup 3/ lasers wth very similar cavity lengths were obtained.

  15. Proteolytic Activation of the Essential Parasitophorous Vacuole Cysteine Protease SERA6 Accompanies Malaria Parasite Egress from Its Host Erythrocyte*

    PubMed Central

    Ruecker, Andrea; Shea, Michael; Hackett, Fiona; Suarez, Catherine; Hirst, Elizabeth M. A.; Milutinovic, Katarina; Withers-Martinez, Chrislaine; Blackman, Michael J.

    2012-01-01

    The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). The PV and host cell membranes eventually rupture, releasing merozoites in a process called egress. Certain inhibitors of serine and cysteine proteases block egress, indicating a crucial role for proteases. The Plasmodium falciparum genome encodes nine serine-repeat antigens (SERAs), each of which contains a central domain homologous to the papain-like (clan CA, family C1) protease family. SERA5 and SERA6 are indispensable in blood-stage parasites, but the function of neither is known. Here we show that SERA6 localizes to the PV where it is precisely cleaved just prior to egress by an essential serine protease called PfSUB1. Mutations that replace the predicted catalytic Cys of SERA6, or that block SERA6 processing by PfSUB1, could not be stably introduced into the parasite genomic sera6 locus, indicating that SERA6 is an essential enzyme and that processing is important for its function. We demonstrate that cleavage of SERA6 by PfSUB1 converts it to an active cysteine protease. Our observations reveal a proteolytic activation step in the malarial PV that may be required for release of the parasite from its host erythrocyte. PMID:22984267

  16. The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors.

    PubMed

    Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen

    2016-11-15

    Particular peptides generated from the vicilin-class(7S) globulin of the cocoa beans by acid-induced proteolysis during cocoa fermentation are essential precursors of the cocoa-specific aroma notes. As revealed by in vitro studies, the formation of the cocoa-specific aroma precursors depends on the particular cleavage specificity of the cocoa aspartic protease, which cannot be substituted by pepsin. Therefore, we have investigated the effects of aspartic protease inhibitors on both enzymes and comparatively studied their cleavage specificities using different protein substrates and MALDI-TOF mass spectrometric analyses of the generated oligopeptides. Three classes of cleavage sites have been identified and characterized: (I) sequences exclusively cleaved by the cocoa enzyme, (II) sequences cleaved by both pepsin and the cocoa enzyme, and (III) those cleaved exclusively by pepsin. In contrast to most aspartic proteases from other origins, basic amino acid residues, particularly lysine, were found to be abundant in the specific cleavage sites of the cocoa enzyme. PMID:27283639

  17. ENaC regulation by proteases and shear stress

    PubMed Central

    Shi, Shujie; Carattino, Marcelo D.; Hughey, Rebecca P.; Kleyman, Thomas R.

    2013-01-01

    Epithelial Na+ channels (ENaCs) are comprised of subunits that have large extracellular regions linked to membrane spanning domains where the channel pore and gate reside. A variety of external factors modify channel activity by interacting at sites within extracellular regions that lead to conformational changes that are transmitted to the channel gate and alter channel open probability. Our review addresses two external factors that have important roles in regulating channel activity, proteases and laminar shear stress. PMID:23547932

  18. Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot

    PubMed Central

    Gulla, Krishana C; Gupta, Kshitij; Krarup, Anders; Gal, Peter; Schwaeble, Wilhelm J; Sim, Robert B; O’Connor, C David; Hajela, Krishnan

    2010-01-01

    The lectin pathway of complement is activated upon binding of mannan-binding lectin (MBL) or ficolins (FCNs) to their targets. Upon recognition of targets, the MBL-and FCN-associated serine proteases (MASPs) are activated, allowing them to generate the C3 convertase C4b2a. Recent findings indicate that the MASPs also activate components of the coagulation system. We have previously shown that MASP-1 has thrombin-like activity whereby it cleaves and activates fibrinogen and factor XIII. MASP-2 has factor Xa-like activity and activates prothrombin through cleavage to form thrombin. We now report that purified L-FCN-MASPs complexes, bound from serum to N-acetylcysteine-Sepharose, or MBL-MASPs complexes, bound to mannan-agarose, generate clots when incubated with calcified plasma or purified fibrinogen and factor XIII. Plasmin digestion of the clot and analysis using anti-D-dimer antibodies revealed that the clot was made up of fibrin and was similar to that generated by thrombin in normal human plasma. Fibrinopeptides A and B (FPA and FPB, respectively) were released after fibrinogen cleavage by L-FCN-MASPs complexes captured on N-acetylcysteine-Sepharose. Studies of inhibition of fibrinopeptide release indicated that the dominant pathway for clotting catalysed by the MASPs is via MASP-2 and prothrombin activation, as hirudin, a thrombin inhibitor that does not inhibit MASP-1 and MASP-2, substantially inhibits fibrinopeptide release. In the light of their potent chemoattractant effects on neutrophil and fibroblast recruitment, the MASP-mediated release of FPA and FPB may play a role in early immune activation. Additionally, MASP-catalysed deposition and polymerization of fibrin on the surface of micro-organisms may be protective by limiting the dissemination of infection. PMID:20002787

  19. Nuclear localization of the caspase-3-cleaved form of p73 in anoikis

    PubMed Central

    Alsafadi, Samar; Tourpin, Sophie; Bessoltane, Nadia; Salomé-Desnoulez, Sophie; Vassal, Gilles; André, Fabrice; Ahomadegbe, Jean-Charles

    2016-01-01

    The transcription factor p73 is a homologue of p53 that can be expressed as pro- or anti-apoptotic isoforms. Unlike p53, p73 is rarely mutated or lost in cancers and it is found to replace defective p53 inducing apoptosis. Here, we investigated the p73 involvement in anoikis, a type of apoptosis caused by inadequate cell-matrix interactions. Breast cancer cell lines with different p53 status were treated with doxorubicin (DOX) or docetaxel (DOC) and cells detached from the extracellular matrix were analyzed. We demonstrate for the first time that DOX-induced cell detachment is associated with p73 cleavage and caspase activation, independently of the p53 status. However, we did not detect p73 cleavage or caspase activation in detached cells under DOC treatment. Overexpressing the apoptotic isoform of p73 led to cell detachment associated with p73 cleavage and caspase activation. Interestingly, p73 cleaved forms localize to the nucleus during the late phase of cell death indicating an increase in the transcriptional activity. Our study suggests that the cleavage of p73 on specific sites may release its pro-apoptotic function and contribute to cell death. PMID:26575022

  20. In vitro evolution of distinct self-cleaving ribozymes in diverse environments

    PubMed Central

    Popović, Milena; Fliss, Palmer S.; Ditzler, Mark A.

    2015-01-01

    In vitro evolution experiments have long been used to evaluate the roles of RNA in both modern and ancient biology, and as a tool for biotechnology applications. The conditions under which these experiments have been conducted, however, do not reflect the range of cellular environments in modern biology or our understanding of chemical environments on the early earth, when the atmosphere and oceans were largely anoxic and soluble Fe2+ was abundant. To test the impact of environmental factors relevant to RNA's potential role in the earliest forms of life, we evolved populations of self-cleaving ribozymes in an anoxic atmosphere with varying pH in the presence of either Fe2+ or Mg2+. Populations evolved under these different conditions are dominated by different sequences and secondary structures, demonstrating global differences in the underlying fitness landscapes. Comparisons between evolutionary outcomes and catalytic activities also indicate that Mg2+ can readily take the place of Fe2+ in supporting the catalysis of RNA cleavage at neutral pH, but not at lower pH. These results highlight the importance of considering the specific environments in which functional biopolymers evolve when evaluating their potential roles in the origin of life, extant biology, or biotechnology. PMID:26130717

  1. In vitro evolution of distinct self-cleaving ribozymes in diverse environments.

    PubMed

    Popović, Milena; Fliss, Palmer S; Ditzler, Mark A

    2015-08-18

    In vitro evolution experiments have long been used to evaluate the roles of RNA in both modern and ancient biology, and as a tool for biotechnology applications. The conditions under which these experiments have been conducted, however, do not reflect the range of cellular environments in modern biology or our understanding of chemical environments on the early earth, when the atmosphere and oceans were largely anoxic and soluble Fe(2+) was abundant. To test the impact of environmental factors relevant to RNA's potential role in the earliest forms of life, we evolved populations of self-cleaving ribozymes in an anoxic atmosphere with varying pH in the presence of either Fe(2+) or Mg(2+). Populations evolved under these different conditions are dominated by different sequences and secondary structures, demonstrating global differences in the underlying fitness landscapes. Comparisons between evolutionary outcomes and catalytic activities also indicate that Mg(2+) can readily take the place of Fe(2+) in supporting the catalysis of RNA cleavage at neutral pH, but not at lower pH. These results highlight the importance of considering the specific environments in which functional biopolymers evolve when evaluating their potential roles in the origin of life, extant biology, or biotechnology. PMID:26130717

  2. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer's disease

    PubMed Central

    Zhang, Zhentao; Song, Mingke; Liu, Xia; Su Kang, Seong; Duong, Duc M.; Seyfried, Nicholas T.; Cao, Xuebing; Cheng, Liming; Sun, Yi E.; Ping Yu, Shan; Jia, Jianping; Levey, Allan I.; Ye, Keqiang

    2015-01-01

    The age-dependent deposition of amyloid-β peptides, derived from amyloid precursor protein (APP), is a neuropathological hallmark of Alzheimer's disease (AD). Despite age being the greatest risk factor for AD, the molecular mechanisms linking ageing to APP processing are unknown. Here we show that asparagine endopeptidase (AEP), a pH-controlled cysteine proteinase, is activated during ageing and mediates APP proteolytic processing. AEP cleaves APP at N373 and N585 residues, selectively influencing the amyloidogenic fragmentation of APP. AEP is activated in normal mice in an age-dependent manner, and is strongly activated in 5XFAD transgenic mouse model and human AD brains. Deletion of AEP from 5XFAD or APP/PS1 mice decreases senile plaque formation, ameliorates synapse loss, elevates long-term potentiation and protects memory. Blockade of APP cleavage by AEP in mice alleviates pathological and behavioural deficits. Thus, AEP acts as a δ-secretase, contributing to the age-dependent pathogenic mechanisms in AD. PMID:26549211

  3. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer's disease.

    PubMed

    Zhang, Zhentao; Song, Mingke; Liu, Xia; Su Kang, Seong; Duong, Duc M; Seyfried, Nicholas T; Cao, Xuebing; Cheng, Liming; Sun, Yi E; Ping Yu, Shan; Jia, Jianping; Levey, Allan I; Ye, Keqiang

    2015-01-01

    The age-dependent deposition of amyloid-β peptides, derived from amyloid precursor protein (APP), is a neuropathological hallmark of Alzheimer's disease (AD). Despite age being the greatest risk factor for AD, the molecular mechanisms linking ageing to APP processing are unknown. Here we show that asparagine endopeptidase (AEP), a pH-controlled cysteine proteinase, is activated during ageing and mediates APP proteolytic processing. AEP cleaves APP at N373 and N585 residues, selectively influencing the amyloidogenic fragmentation of APP. AEP is activated in normal mice in an age-dependent manner, and is strongly activated in 5XFAD transgenic mouse model and human AD brains. Deletion of AEP from 5XFAD or APP/PS1 mice decreases senile plaque formation, ameliorates synapse loss, elevates long-term potentiation and protects memory. Blockade of APP cleavage by AEP in mice alleviates pathological and behavioural deficits. Thus, AEP acts as a δ-secretase, contributing to the age-dependent pathogenic mechanisms in AD. PMID:26549211

  4. Molecular Imaging of Proteases in Cancer

    PubMed Central

    Yang, Yunan; Hong, Hao; Zhang, Yin; Cai, Weibo

    2010-01-01

    Proteases play important roles during tumor angiogenesis, invasion, and metastasis. Various molecular imaging techniques have been employed for protease imaging: optical (both fluorescence and bioluminescence), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). In this review, we will summarize the current status of imaging proteases in cancer with these techniques. Optical imaging of proteases, in particular with fluorescence, is the most intensively validated and many of the imaging probes are already commercially available. It is generally agreed that the use of activatable probes is the most accurate and appropriate means for measuring protease activity. Molecular imaging of proteases with other techniques (i.e. MRI, SPECT, and PET) has not been well-documented in the literature which certainly deserves much future effort. Optical imaging and molecular MRI of protease activity has very limited potential for clinical investigation. PET/SPECT imaging is suitable for clinical investigation; however the optimal probes for PET/SPECT imaging of proteases in cancer have yet to be developed. Successful development of protease imaging probes with optimal in vivo stability, tumor targeting efficacy, and desirable pharmacokinetics for clinical translation will eventually improve cancer patient management. Not limited to cancer, these protease-targeted imaging probes will also have broad applications in other diseases such as arthritis, atherosclerosis, and myocardial infarction. PMID:20234801

  5. Rhinovirus 3C protease facilitates specific nucleoporin cleavage and mislocalisation of nuclear proteins in infected host cells.

    PubMed

    Walker, Erin J; Younessi, Parisa; Fulcher, Alex J; McCuaig, Robert; Thomas, Belinda J; Bardin, Philip G; Jans, David A; Ghildyal, Reena

    2013-01-01

    Human Rhinovirus (HRV) infection results in shut down of essential cellular processes, in part through disruption of nucleocytoplasmic transport by cleavage of the nucleoporin proteins (Nups) that make up the host cell nuclear pore. Although the HRV genome encodes two proteases (2A and 3C) able to cleave host proteins such as Nup62, little is known regarding the specific contribution of each. Here we use transfected as well as HRV-infected cells to establish for the first time that 3C protease is most likely the mediator of cleavage of Nup153 during HRV infection, while Nup62 and Nup98 are likely to be targets of HRV2A protease. HRV16 3C protease was also able to elicit changes in the appearance and distribution of the nuclear speckle protein SC35 in transfected cells, implicating it as a key mediator of the mislocalisation of SC35 in HRV16-infected cells. In addition, 3C protease activity led to the redistribution of the nucleolin protein out of the nucleolus, but did not affect nuclear localisation of hnRNP proteins, implying that complete disruption of nucleocytoplasmic transport leading to relocalisation of hnRNP proteins from the nucleus to the cytoplasm in HRV-infected cells almost certainly requires 2A in addition to 3C protease. Thus, a specific role for HRV 3C protease in cleavage and mislocalisation of host cell nuclear proteins, in concert with 2A, is implicated for the first time in HRV pathogenesis. PMID:23951130

  6. Induction of apoptosis by the transcription factor c-Jun.

    PubMed Central

    Bossy-Wetzel, E; Bakiri, L; Yaniv, M

    1997-01-01

    c-Jun, a signal-transducing transcription factor of the AP-1 family, normally implicated in cell cycle progression, differentiation and cell transformation, recently has also been linked to apoptosis. To explore further the functional roles of c-Jun, a conditional allele was generated by fusion of c-Jun with the hormone-binding domain of the human estrogen receptor (ER). Here we demonstrate that increased c-Jun activity is sufficient to trigger apoptotic cell death in NIH 3T3 fibroblasts. c-Jun-induced apoptosis is evident at high serum levels, but is enhanced further in factor-deprived fibroblasts. Furthermore, apoptosis by c-Jun is not accompanied by an increase in DNA synthesis. Constitutive overexpression of the apoptosis inhibitor protein Bcl-2 delays the c-Jun-mediated cell death. The regions of c-Jun necessary for apoptosis induction include the amino-terminal transactivation and the carboxy-terminal leucine zipper domain, suggesting that c-Jun may activate cell death by acting as a transcriptional regulator. We further show that alpha-fodrin, a substrate of the interleukin 1beta-converting enzyme (ICE) and CED-3 family of cysteine proteases, becomes proteolytically cleaved in cells undergoing cell death by increased c-Jun activity. Moreover, cell-permeable irreversible peptide inhibitors of the ICE/CED-3 family of cysteine proteases prevented the cell death. PMID:9130714

  7. Comparative analysis of immunoglobulin A1 protease activity among bacteria representing different genera, species, and strains.

    PubMed Central

    Reinholdt, J; Kilian, M

    1997-01-01

    Immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region are produced constitutively by a number of pathogens, including Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, and Streptococcus pneumoniae, as well as by some members of the resident oropharyngeal flora. Whereas IgA1 proteases have been shown to interfere with the functions of IgA antibodies in vitro, the exact role of these enzymes in the relationship of bacteria to a human host capable of responding with enzyme-neutralizing antibodies is not clear. Conceivably, the role of IgA1 proteases may depend on the quantity of IgA1 protease generated as well as on the balance between secreted and cell-associated forms of the enzyme. Therefore, we have compared levels of IgA1 protease activity in cultures of 38 bacterial strains representing different genera and species as well as strains of different pathogenic potential. Wide variation in activity generation rate was found overall and within some species. High activity was not an exclusive property of bacteria with documented pathogenicity. Almost all activity of H. influenzae, N. meningitidis, and N. gonorrhoeae strains was present in the supernatant. In contrast, large proportions of the activity in Streptococcus, Prevotella, and Capnocytophaga species was cell associated at early stationary phase, suggesting that the enzyme may play the role of a surface antigen. Partial release of cell-associated activity occurred during stationary phase. Within some taxa, the degree of activity variation correlated with degree of antigenic diversity of the enzyme as determined previously. This finding may indicate that the variation observed is of biological significance. PMID:9353019

  8. NSP4, an elastase-related protease in human neutrophils with arginine specificity.

    PubMed

    Perera, Natascha C; Schilling, Oliver; Kittel, Heike; Back, Walter; Kremmer, Elisabeth; Jenne, Dieter E

    2012-04-17

    Neutrophil serine proteases (NSPs) in cytoplasmic granules of neutrophils are regarded as important antimicrobial defense weapons after engulfment and exposure of pathogens to the content of primary granules. Despite intensive studies on neutrophils during the last three decades, only three active serine proteases, neutrophil elastase (NE), cathepsin G (CG), and proteinase 3 (PR3) have been identified in these short-lived cells. Here, we report on the identification of a fourth serine protease (NSP4) with 39% identity to NE and PR3, but arginine specificity, yet sharing features like propeptide processing by dipeptidyl peptidase I, storage, and release as an active enzyme with the three active proteases. We established monoclonal antibodies against NSP4, excluded cross-reactivity to human granzymes, NE, CG, PR3, and azurocidin, and screened for NSP4 protein expression in various human tissues and blood leukocyte populations. Only granulocyte precursors and neutrophil populations from peripheral blood were positive. The content of NSP4 in neutrophil lysates, however, was about 20-fold lower compared with CG. Upon neutrophil activation, NSP4 was released into the supernatant. Profiling its specificity with peptide libraries from Escherichia coli revealed a preference for arginine in P1; it cleaved Tyr-Arg-Phe-Arg-AMC and Ala-Pro-Nva-thiobenzyl esters. NSP4 was inhibited by α(1)-proteinase inhibitor (α(1)-antitrypsin), C1 inhibitor, and most efficiently by antithrombin-heparin, but not by elafin, secretory leukocyte protease inhibitor, α(1)-antichymotrypsin, and monocyte-neutrophil elastase inhibitor. Functional specialization and preferred natural substrates of NSP4 remain to be determined to understand the biological interplay of all four NSPs during neutrophil responses. PMID:22474388

  9. Localization of the Clostridium difficile Cysteine Protease Cwp84 and Insights into Its Maturation Process▿

    PubMed Central

    ChapetónMontes, Diana; Candela, Thomas; Collignon, Anne; Janoir, Claire

    2011-01-01

    Clostridium difficile is a nosocomial pathogen involved in antibiotic-associated diarrhea. C. difficile expresses a cysteine protease, Cwp84, which has been shown to degrade some proteins of the extracellular matrix and play a role in the maturation of the precursor of the S-layer proteins. We sought to analyze the localization and the maturation process of this protease. Two identifiable forms of the protease were found to be associated in the bacteria: a form of ∼80 kDa and a cleaved one of 47 kDa, identified as the mature protease. They were found mainly in the bacterial cell surface fractions and weakly in the extracellular fraction. The 80-kDa protein was noncovalently associated with the S-layer proteins, while the 47-kDa form was found to be tightly associated with the underlying cell wall. Our data supported that the anchoring of the Cwp84 47-kDa form is presumably due to a reassociation of the secreted protein. Moreover, we showed that the complete maturation of the recombinant protein Cwp8430-803 is a sequential process beginning at the C-terminal end, followed by one or more cleavages at the N-terminal end. The processing sites of recombinant Cwp84 are likely to be residues Ser-92 and Lys-518. No proteolytic activity was detected with the mature recombinant protease Cwp8492-518 (47 kDa). In contrast, a fragment including the propeptide (Cwp8430-518) displayed proteolytic activity on azocasein and fibronectin. These results showed that Cwp84 is processed essentially at the bacterial cell surface and that its different forms may display different proteolytic activities. PMID:21784932

  10. Characterization of cysteine proteases in Malian medicinal plants.

    PubMed

    Bah, Sékou; Paulsen, Berit S; Diallo, Drissa; Johansen, Harald T

    2006-09-19

    Extracts form 10 different Malian medicinal plants with a traditional use against schistosomiasis were investigated for their possible content of proteolytic activity. The proteolytic activity was studied by measuring the hydrolysis of two synthetic peptide substrates Z-Ala-Ala-Asn-NHMec and Z-Phe-Arg-NHMec. Legumain- and papain-like activities were found in all tested crude extracts except those from Entada africana, with the papain-like activity being the strongest. Cissus quadrangularis, Securidaca longepedunculata and Stylosanthes erecta extracts showed high proteolytic activities towards both substrates. After gel filtration the proteolytic activity towards the substrate Z-Ala-Ala-Asn-NHMec in root extract of Securidaca longepedunculata appeared to have Mr of 30 and 97kDa, while the activity in extracts from Cissus quadrangularis was at 39kDa. Enzymatic activity cleaving the substrate Z-Phe-Arg-NHMec showed apparent Mr of 97 and 26kDa in extracts from roots and leaves of Securidaca longepedunculata, while in Cissus quadrangularis extracts the activity eluted at 39 and 20kDa, with the highest activity in the latter. All Z-Phe-Arg-NHMec activities were inhibited by E-64 but unaffected by PMSF. The legumain activity was unaffected by E-64 and PMSF. The SDS-PAGE analysis exhibited five distinct gelatinolytic bands for Cissus quadrangularis extracts (115, 59, 31, 22 and 20kDa), while two bands (59 and 30kDa) were detected in Securidaca longepedunculata extracts. The inhibition profile of the gelatinolytic bands and that of the hydrolysis of the synthetic substrates indicate the cysteine protease class of the proteolytic activities. Several cysteine protease activities with different molecular weights along with a strong variability of these activities between species as well as between plant parts from the same species were observed. PMID:16621376

  11. A Trichomonas vaginalis Rhomboid Protease and Its Substrate Modulate Parasite Attachment and Cytolysis of Host Cells

    PubMed Central

    Riestra, Angelica M.; Gandhi, Shiv; Sweredoski, Michael J.; Moradian, Annie; Hess, Sonja; Urban, Sinisa; Johnson, Patricia J.

    2015-01-01

    Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis. PMID:26684303

  12. Production and functional activity of a recombinant von Willebrand factor-A domain from human complement factor B.

    PubMed Central

    Williams, S C; Hinshelwood, J; Perkins, S J; Sim, R B

    1999-01-01

    Factor B is a five-domain 90 kDa serine protease proenzyme which is part of the human serum complement system. It binds to other complement proteins C3b and properdin, and is activated by the protease factor D. The fourth domain of factor B is homologous to the type A domain of von Willebrand Factor (vWF-A). A full-length human factor B cDNA clone was used to amplify the region encoding the vWF-A domain (amino acids 229-444 of factor B). A fusion protein expression system was then used to generate it in high yield in Escherichia coli, where thrombin cleavage was used to separate the vWF-A domain from its fusion protein partner. A second vWF-A domain with improved stability and solubility was created using a Cys(267)-->Ser mutation and a four-residue C-terminal extension of the first vWF-A domain. The recombinant domains were investigated by analytical gel filtration, sucrose density centrifugation and analytical ultracentrifugation, in order to show that both domains were monomeric and possessed compact structures that were consistent with known vWF-A crystal structures. This expression system and its characterization permitted the first investigation of the function of the isolated vWF-A domain. It was able to inhibit substantially the binding of (125)I-labelled factor B to immobilized C3b. This demonstrated both the presence of a C3b binding site in this portion of factor B and a ligand-binding property of the vWF-A domain. The site at which factor D cleaves factor B is close to the N-terminus of both recombinant vWF-A domains. Factor D was shown to cleave the vWF-A domain in the presence or absence of C3b, whereas the cleavage of intact factor B under the same conditions occurs only in the presence of C3b. PMID:10477273

  13. Quantitative characterization of the activation steps of mannan-binding lectin (MBL)-associated serine proteases (MASPs) points to the central role of MASP-1 in the initiation of the complement lectin pathway.

    PubMed

    Megyeri, Márton; Harmat, Veronika; Major, Balázs; Végh, Ádám; Balczer, Júlia; Héja, Dávid; Szilágyi, Katalin; Datz, Dániel; Pál, Gábor; Závodszky, Péter; Gál, Péter; Dobó, József

    2013-03-29

    Mannan-binding lectin (MBL)-associated serine proteases, MASP-1 and MASP-2, have been thought to autoactivate when MBL/ficolin·MASP complexes bind to pathogens triggering the complement lectin pathway. Autoactivation of MASPs occurs in two steps: 1) zymogen autoactivation, when one proenzyme cleaves another proenzyme molecule of the same protease, and 2) autocatalytic activation, when the activated protease cleaves its own zymogen. Using recombinant catalytic fragments, we demonstrated that a stable proenzyme MASP-1 variant (R448Q) cleaved the inactive, catalytic site Ser-to-Ala variant (S646A). The autoactivation steps of MASP-1 were separately quantified using these mutants and the wild type enzyme. Analogous mutants were made for MASP-2, and rate constants of the autoactivation steps as well as the possible cross-activation steps between MASP-1 and MASP-2 were determined. Based on the rate constants, a kinetic model of lectin pathway activation was outlined. The zymogen autoactivation rate of MASP-1 is ∼3000-fold higher, and the autocatalytic activation of MASP-1 is about 140-fold faster than those of MASP-2. Moreover, both activated and proenzyme MASP-1 can effectively cleave proenzyme MASP-2. MASP-3, which does not autoactivate, is also cleaved by MASP-1 quite efficiently. The structure of the catalytic region of proenzyme MASP-1 R448Q was solved at 2.5 Å. Proenzyme MASP-1 R448Q readily cleaves synthetic substrates, and it is inhibited by a specific canonical inhibitor developed against active MASP-1, indicating that zymogen MASP-1 fluctuates between an inactive and an active-like conformation. The determined structure provides a feasible explanation for this phenomenon. In summary, autoactivation of MASP-1 is crucial for the activation of MBL/ficolin·MASP complexes, and in the proenzymic phase zymogen MASP-1 controls the process. PMID:23386610

  14. Quantitative Characterization of the Activation Steps of Mannan-binding Lectin (MBL)-associated Serine Proteases (MASPs) Points to the Central Role of MASP-1 in the Initiation of the Complement Lectin Pathway*

    PubMed Central

    Megyeri, Márton; Harmat, Veronika; Major, Balázs; Végh, Ádám; Balczer, Júlia; Héja, Dávid; Szilágyi, Katalin; Datz, Dániel; Pál, Gábor; Závodszky, Péter; Gál, Péter; Dobó, József

    2013-01-01

    Mannan-binding lectin (MBL)-associated serine proteases, MASP-1 and MASP-2, have been thought to autoactivate when MBL/ficolin·MASP complexes bind to pathogens triggering the complement lectin pathway. Autoactivation of MASPs occurs in two steps: 1) zymogen autoactivation, when one proenzyme cleaves another proenzyme molecule of the same protease, and 2) autocatalytic activation, when the activated protease cleaves its own zymogen. Using recombinant catalytic fragments, we demonstrated that a stable proenzyme MASP-1 variant (R448Q) cleaved the inactive, catalytic site Ser-to-Ala variant (S646A). The autoactivation steps of MASP-1 were separately quantified using these mutants and the wild type enzyme. Analogous mutants were made for MASP-2, and rate constants of the autoactivation steps as well as the possible cross-activation steps between MASP-1 and MASP-2 were determined. Based on the rate constants, a kinetic model of lectin pathway activation was outlined. The zymogen autoactivation rate of MASP-1 is ∼3000-fold higher, and the autocatalytic activation of MASP-1 is about 140-fold faster than those of MASP-2. Moreover, both activated and proenzyme MASP-1 can effectively cleave proenzyme MASP-2. MASP-3, which does not autoactivate, is also cleaved by MASP-1 quite efficiently. The structure of the catalytic region of proenzyme MASP-1 R448Q was solved at 2.5 Å. Proenzyme MASP-1 R448Q readily cleaves synthetic substrates, and it is inhibited by a specific canonical inhibitor developed against active MASP-1, indicating that zymogen MASP-1 fluctuates between an inactive and an active-like conformation. The determined structure provides a feasible explanation for this phenomenon. In summary, autoactivation of MASP-1 is crucial for the activation of MBL/ficolin·MASP complexes, and in the proenzymic phase zymogen MASP-1 controls the process. PMID:23386610

  15. Polyglycine hydrolases: Fungal β-lactamase-like endoproteases that cleave polyglycine regions within plant class IV chitinases

    PubMed Central

    Naumann, Todd A; Naldrett, Michael J; Ward, Todd J; Price, Neil P J

    2015-01-01

    Polyglycine hydrolases are secreted fungal proteases that cleave glycine–glycine peptide bonds in the inter-domain linker region of specific plant defense chitinases. Previously, we reported the catalytic activity of polyglycine hydrolases from the phytopathogens Epicoccum sorghi (Es-cmp) and Cochliobolus carbonum (Bz-cmp). Here we report the identity of their encoding genes and the primary amino acid sequences of the proteins responsible for these activities. Peptides from a tryptic digest of Es-cmp were analyzed by LC-MS/MS and the spectra obtained were matched to a draft genome sequence of E. sorghi. From this analysis, a 642 amino acid protein containing a predicted β-lactamase catalytic region of 280 amino acids was identified. Heterologous strains of the yeast Pichia pastoris were created to express this protein and its homolog from C. carbonum from their cDNAs. Both strains produced recombinant proteins with polyglycine hydrolase activity as shown by SDS-PAGE and MALDI-MS based assays. Site directed mutagenesis was used to mutate the predicted catalytic serine of Es-cmp to glycine, resulting in loss of catalytic activity. BLAST searching of publicly available fungal genomes identified full-length homologous proteins in 11 other fungi of the class Dothideomycetes, and in three fungi of the related class Sordariomycetes while significant BLAST hits extended into the phylum Basidiomycota. Multiple sequence alignment led to the identification of a network of seven conserved tryptophans that surround the β-lactamase-like region. This is the first report of a predicted β-lactamase that is an endoprotease. PMID:25966977

  16. Arabidopsis AtSerpin1, Crystal Structure and in Vivo Interaction with Its Target Protease RESPONSIVE TO DESICCATION-21 (RD21)*

    PubMed Central

    Lampl, Nardy; Budai-Hadrian, Ofra; Davydov, Olga; Joss, Tom V.; Harrop, Stephen J.; Curmi, Paul M. G.; Roberts, Thomas H.; Fluhr, Robert

    2010-01-01

    In animals, protease inhibitors of the serpin family are associated with many physiological processes, including blood coagulation and innate immunity. Serpins feature a reactive center loop (RCL), which displays a protease target sequence as a bait. RCL cleavage results in an irreversible, covalent serpin-protease complex. AtSerpin1 is an Arabidopsis protease inhibitor that is expressed ubiquitously throughout the plant. The x-ray crystal structure of recombinant AtSerpin1 in its native stressed conformation was determined at 2.2 Å. The electrostatic surface potential below the RCL was found to be highly positive, whereas the breach region critical for RCL insertion is an unusually open structure. AtSerpin1 accumulates in plants as a full-length and a cleaved form. Fractionation of seedling extracts by nonreducing SDS-PAGE revealed the presence of an additional slower migrating complex that was absent when leaves were treated with the specific cysteine protease inhibitor l-trans-epoxysuccinyl-l-leucylamido (4-guanidino)butane. Significantly, RESPONSIVE TO DESICCATION-21 (RD21) was the major protease labeled with the l-trans-epoxysuccinyl-l-leucylamido (4-guanidino)butane derivative DCG-04 in wild type extracts but not in extracts of mutant plants constitutively overexpressing AtSerpin1, indicating competition. Fractionation by nonreducing SDS-PAGE followed by immunoblotting with RD21-specific antibody revealed that the protease accumulated both as a free enzyme and in a complex with AtSerpin1. Importantly, both RD21 and AtSerpin1 knock-out mutants lacked the serpin-protease complex. The results establish that the major Arabidopsis plant serpin interacts with RD21. This is the first report of the structure and in vivo interaction of a plant serpin with its target protease. PMID:20181955

  17. Arabidopsis AtSerpin1, Crystal Structure and in Vivo Interaction with Its Target Protease RESPONSIVE TO DESICCATION-21 (RD21)

    SciTech Connect

    Lampl, Nardy; Budai-Hadrian, Ofra; Davydov, Olga; Joss, Tom V.; Harrop, Stephen J.; Curmi, Paul M.G.; Roberts, Thomas H.; Fluhr, Robert

    2010-05-25

    In animals, protease inhibitors of the serpin family are associated with many physiological processes, including blood coagulation and innate immunity. Serpins feature a reactive center loop (RCL), which displays a protease target sequence as a bait. RCL cleavage results in an irreversible, covalent serpin-protease complex. AtSerpin1 is an Arabidopsis protease inhibitor that is expressed ubiquitously throughout the plant. The x-ray crystal structure of recombinant AtSerpin1 in its native stressed conformation was determined at 2.2 {angstrom}. The electrostatic surface potential below the RCL was found to be highly positive, whereas the breach region critical for RCL insertion is an unusually open structure. AtSerpin1 accumulates in plants as a full-length and a cleaved form. Fractionation of seedling extracts by nonreducing SDS-PAGE revealed the presence of an additional slower migrating complex that was absent when leaves were treated with the specific cysteine protease inhibitor l-trans-epoxysuccinyl-l-leucylamido (4-guanidino)butane. Significantly, RESPONSIVE TO DESICCATION-21 (RD21) was the major protease labeled with the l-trans-epoxysuccinyl-l-leucylamido (4-guanidino)butane derivative DCG-04 in wild type extracts but not in extracts of mutant plants constitutively overexpressing AtSerpin1, indicating competition. Fractionation by nonreducing SDS-PAGE followed by immunoblotting with RD21-specific antibody revealed that the protease accumulated both as a free enzyme and in a complex with AtSerpin1. Importantly, both RD21 and AtSerpin1 knock-out mutants lacked the serpin-protease complex. The results establish that the major Arabidopsis plant serpin interacts with RD21. This is the first report of the structure and in vivo interaction of a plant serpin with its target protease.

  18. Advances in protease engineering for laundry detergents.

    PubMed

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents. PMID:25579194

  19. 2A self-cleaving peptide-based multi-gene expression system in the silkworm Bombyx mori

    PubMed Central

    Wang, Yuancheng; Wang, Feng; Wang, Riyuan; Zhao, Ping; Xia, Qingyou

    2015-01-01

    Fundamental and applied studies of silkworms have entered the functional genomics era. Here, we report a multi-gene expression system (MGES) based on 2A self-cleaving peptide (2A), which regulates the simultaneous expression and cleavage of multiple gene targets in the silk gland of transgenic silkworms. First, a glycine-serine-glycine spacer (GSG) was found to significantly improve the cleavage efficiency of 2A. Then, the cleavage efficiency of six types of 2As with GSG was analyzed. The shortest porcine teschovirus-1 2A (P2A-GSG) exhibited the highest cleavage efficiency in all insect cell lines that we tested. Next, P2A-GSG successfully cleaved the artificial human serum albumin (66 kDa) linked with human acidic fibroblast growth factor (20.2 kDa) fusion genes and vitellogenin receptor fragment (196 kD) of silkworm linked with EGFP fusion genes, importantly, vitellogenin receptor protein was secreted to the outside of cells. Furthermore, P2A-GSG successfully mediated the simultaneous expression and cleavage of a DsRed and EGFP fusion gene in silk glands and caused secretion into the cocoon of transgenic silkworms using our sericin1 expression system. We predicted that the MGES would be an efficient tool for gene function research and innovative research on various functional silk materials in medicine, cosmetics, and other biomedical areas. PMID:26537835

  20. Proteases in biological control and biotechnology

    SciTech Connect

    Cunningham, D.D.; Long, G.L.

    1987-01-01

    This book explores the role of proteases in biological control systems and diseases, examines their structures and evolution, and reviews the methods by which proteases and protease inhibitors are engineered. In addition, the use of recombinant DNA technology is explained throughout the volume. Specific topics examined include: the versatility of proteolytic enzymes, the intricate proteolytic control mechanisms in hemostasis and their application to thrombolytic therapy, the evolution of proteolytic enzymes, and the role of limited proteolytic processing in several biological control processes.

  1. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  2. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  3. Inhibition of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa by human serum paraoxonase.

    PubMed

    Aybey, Aynur; Demirkan, Elif

    2016-02-01

    The role of quorum sensing (QS) in the regulation of virulence factor production in Pseudomonas aeruginosa is well established. Increased antibiotic resistance in this bacterium has led to the search for new treatment options, and inhibition of the QS system has been explored for potential therapeutic benefits. If the use of QS inhibitory agents were to lead to a reduction in bacterial virulence, new approaches in the treatment of P. aeruginosa infections could be further developed. Accordingly, we examined whether human serum paraoxonase 1 (hPON1), which uses lactonase activity to hydrolyse N-acyl homoserine lactones, could cleave P. aeruginosa-derived signalling molecules. hPON1 was purified using ammonium sulfate precipitation and hydrophobic interaction chromatography (Sepharose 4B-L-tyrosine-1-naphthylamine). Different concentrations of hPON1 were found to reduce various virulence factors including pyocyanin, rhamnolipid, elastase, staphylolytic LasA protease and alkaline protease. Although treatment with 0.1-10 mg hPON1 ml(-1) did not show a highly inhibitory effect on elastase and staphylolytic LasA protease production, it resulted in good inhibitory effects on alkaline protease production at concentrations as low as 0.1 mg ml(-1). hPON1 also reduced the production of pyocyanin and rhamnolipid at a concentration of 1.25 mg ml(-1 )(within a range of 0.312-5 mg ml(-1)). In addition, rhamnolipid, an effective biosurfactant reported to stimulate the biodegradation of hydrocarbons, was able to degrade oil only in the absence of hPON1. PMID:26654051

  4. A peptide immunization approach to counteract a Staphylococcus aureus protease defense against host immunity.

    PubMed

    Jordan, Robert E; Fernandez, Jeffrey; Brezski, Randall J; Greenplate, Allison R; Knight, David M; Raju, T Shantha; Lynch, A Simon

    2016-04-01

    Pathogens that induce acute and chronic infections, as well as certain cancers, employ numerous strategies to thwart host cellular and humoral immune defenses. One proposed evasion mechanism against humoral immunity is a localized expression of extracellular proteases that cleave the IgG hinge and disable host IgG functions. Host immunity appears to be prepared to counter such a proteolytic tactic by providing a group of autoantibodies, denoted anti-hinge antibodies that specifically bind to cleaved IgGs and provide compensating functional restoration in vitro. These respective counter-measures highlight the complex interrelationships among pathogens and host immunity and suggested to us a possible means for therapeutic intervention. In this study, we combined an investigation of pathogen-mediated proteolysis of host IgGs with an immunization strategy to boost host anti-hinge antibodies. In a Staphylococcus aureus infection model using an artificial tissue cage (wiffle ball) implanted into rabbits, cleaved rabbit IgGs were detected in abundance in the abscesses of untreated animals early after infection. However, in animals previously immunized with peptide analogs of the cleaved IgG hinge to generate substantial anti-hinge antibody titers, S. aureus colony formation was markedly reduced compared to control animals or those similarly immunized with a scrambled peptide sequence. The results of this study demonstrate that extensive local proteolysis of IgGs occurs in a test abscess setting and that immunization to increase host anti-hinge antibodies provided substantial acute protection against bacterial growth. PMID:26905931

  5. Proteolytic crosstalk in multi-protease networks

    NASA Astrophysics Data System (ADS)

    Ogle, Curtis T.; Mather, William H.

    2016-04-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.

  6. Proteolytic crosstalk in multi-protease networks.

    PubMed

    Ogle, Curtis T; Mather, William H

    2016-01-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete ('queue') for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics. PMID:27042892

  7. Expression and partial biochemical characterization of a recombinant serine protease from Bothrops pauloensis snake venom.

    PubMed

    Isabel, Thais F; Costa, Guilherme Nunes Moreira; Pacheco, Isabela B; Barbosa, Luana G; Santos-Junior, Célio D; Fonseca, Fernando P P; Boldrini França, Johara; Henrique-Silva, Flávio; Yoneyama, Kelly A G; Rodrigues, Renata S; Rodrigues, Veridiana de Melo

    2016-06-01

    Snake venom serine proteases (SVSPs) are enzymes capable of interfering at several points of hemostasis. Some serine proteases present thrombin-like activity, which makes them targets for the development of therapeutics agents in the treatment of many hemostatic disorders. In this study, a recombinant thrombin-like serine protease, denominated rBpSP-II, was obtained from cDNA of the Bothrops pauloensis venom gland and was characterized enzymatically and biochemically. The enzyme rBpSP-II showed clotting activity on bovine plasma and proteolytic activity on fibrinogen, cleaving exclusively the Aα chain. The evaluation of rBpSP-II activity on chromogenic substrates demonstrated thrombin-like activity of the enzyme due to its capacity to hydrolyze the thrombin substrate. These characteristics make rBpSP-II an attractive molecule for additional studies. Further research is needed to verify whether rBpSP-II can serve as a template for the synthesis of therapeutic agents to treat hemostatic disorders. PMID:26965926

  8. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication

    SciTech Connect

    Ratia, Kiira; Pegan, Scott; Takayama, Jun; Sleeman, Katrina; Coughlin, Melissa; Baliji, Surendranath; Chaudhuri, Rima; Fu, Wentao; Prabhakar, Bellur S.; Johnson, Michael E.; Baker, Susan C.; Ghosh, Arun K.; Mesecar, Andrew D.

    2008-10-27

    We report the discovery and optimization of a potent inhibitor against the papain-like protease (PLpro) from the coronavirus that causes severe acute respiratory syndrome (SARS-CoV). This unique protease is not only responsible for processing the viral polyprotein into its functional units but is also capable of cleaving ubiquitin and ISG15 conjugates and plays a significant role in helping SARS-CoV evade the human immune system. We screened a structurally diverse library of 50,080 compounds for inhibitors of PLpro and discovered a noncovalent lead inhibitor with an IC{sub 50} value of 20 {mu}M, which was improved to 600 nM via synthetic optimization. The resulting compound, GRL0617, inhibited SARS-CoV viral replication in Vero E6 cells with an EC{sub 50} of 15 {mu}M and had no associated cytotoxicity. The X-ray structure of PLpro in complex with GRL0617 indicates that the compound has a unique mode of inhibition whereby it binds within the S4-S3 subsites of the enzyme and induces a loop closure that shuts down catalysis at the active site. These findings provide proof-of-principle that PLpro is a viable target for development of antivirals directed against SARS-CoV, and that potent noncovalent cysteine protease inhibitors can be developed with specificity directed toward pathogenic deubiquitinating enzymes without inhibiting host DUBs.

  9. Effects of urine composition on epithelial Na+ channel-targeted protease activity.

    PubMed

    Berman, Jonathan M; Awayda, Ryan G; Awayda, Mouhamed S

    2015-11-01

    We examined human urinary proteolytic activity toward the Epithelial Sodium Channel (ENaC). We focused on two sites in each of alpha and gamma ENaC that are targets of endogenous and exogenous proteases. We examined the effects of ionic strength, pH and urinary H(+)-buffers, metabolic intermediates, redox molecules, and large urinary proteins. Monoatomic cations caused the largest effect, with sodium inhibiting activity in the 15-515 mEq range. Multivalent cations zinc and copper inhibited urinary proteolytic activity at concentrations below 100 μmol/L. Similar to sodium, urea caused a 30% inhibition in the 0-500 mmol/L range. This was not observed with acetone and ethanol. Modulating urinary redox status modified activity with H2O2 stimulated and ascorbate inhibited activity. Minimal effects (<10%) were observed with caffeine, glucose, several TCA cycle intermediates, salicylic acid, inorganic phosphate, albumin, creatinine, and Tamm-Horsfall protein. The cumulative activity of ENaC-cleaving proteases was highest at neutral pH, however, alpha and gamma proteases exhibited an inverse dependence with alpha stimulated at acidic and gamma stimulated at alkaline pH. These data indicate that ENaC-targeting urinary proteolytic activity is sensitive to sodium, urea and pH and changes in these components can modify channel cleavage and activation status, and likely downstream sodium absorption unrelated to changes in protein or channel density. PMID:26564065

  10. [Physiology of protease-activated receptors (PARs): involvement of PARs in digestive functions].

    PubMed

    Kawabata, A; Kuroda, R; Hollenberg, M D

    1999-10-01

    The protease-activated receptor (PAR), a G protein-coupled receptor present on cell surface, mediates cellular actions of extracellular proteases. Proteases cleave the extracellular N-terminal of PAR molecules at a specific site, unmasking and exposing a novel N-terminal, a tethered ligand, that binds to the body of receptor molecules resulting in receptor activation. Amongst four distinct PARs that have been cloned, PARs 1, 3 and 4 are activated by thrombin, but PAR-2 is activated by trypsin or mast cell tryptase. Human platelets express two distinct thrombin receptors, PAR-1 and PAR-4, while murine platelets express PAR-3 and PAR-4. Apart from roles of PARs in platelet activation, PARs are distributed to a number of organs in various species, predicting their physiological importance. We have been evaluating agonists specific for each PAR, using multiple procedures including a HEK cell calcium signal receptor desensitization assay. Using specific agonists that we developed, we found the following: 1) the salivary glands express PAR-2 mRNA and secret saliva in response to PAR-2 activation; 2) pancreatic juice secretion occurs following in vivo PAR-2 activation; 3) PAR-1 and PAR-2 modulate duodenal motility. Collectively, PAR plays various physiological and/or pathophysiological roles, especially in the digestive systems, and could be a novel target for drug development. PMID:10629876

  11. Expanding proteome coverage with orthogonal-specificity α-Lytic proteases

    SciTech Connect

    Meyer, Jesse G.; Kim, Sangtae; Maltby, David A.; Ghassemian, Majid; Bandeira, Nuno; Komives, Elizabeth A.

    2014-03-01

    Bottom-up proteomics studies traditionally involve proteome digestion with a single protease, trypsin. However, trypsin alone does not generate peptides that encompass the entire proteome. Alternative proteases have been explored, but most have specificity for charged amino acid side chains. Therefore, additional proteases that improve proteome coverage by cleavage at sequences complimentary to trypsin may increase proteome coverage. We demonstrate the novel application of two proteases for bottom-up proteomics: wild type alpha-lytic protease (WaLP), and an active site mutant of WaLP, M190A alpha-lytic protease (MaLP). We assess several relevant factors including MS/MS fragmentation, peptide length, peptide yield, and protease specificity. By combining data from separate digestions with trypsin, LysC, WaLP, and MaLP, proteome coverage was increased 101% compared to trypsin digestion alone. To demonstrate how the gained sequence coverage can access additional PTM information, we show identification of a number of novel phosphorylation sites in the S. pombe proteome and include an illustrative example from the protein MPD2, wherein two novel sites are identified, one in a tryptic peptide too short to identify and the other in a sequence devoid of tryptic sites. The specificity of WaLP and MaLP for aliphatic amino acid side chains was particularly valuable for coverage of membrane protein sequences, which increased 350% when the data from trypsin, LysC, WaLP, and MaLP were combined.

  12. Modulation of the epithelial sodium channel (ENaC) by bacterial metalloproteases and protease inhibitors.

    PubMed

    Butterworth, Michael B; Zhang, Liang; Liu, Xiaoning; Shanks, Robert M; Thibodeau, Patrick H

    2014-01-01

    The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP) from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC), leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions. PMID:24963801

  13. Hepatitis B or Hepatitis C Virus Infection Is a Risk Factor for Severe Hepatic Cytolysis after Initiation of a Protease Inhibitor-Containing Antiretroviral Regimen in Human Immunodeficiency Virus-Infected Patients

    PubMed Central

    Savès, Marianne; Raffi, François; Clevenbergh, Philippe; Marchou, Bruno; Waldner-Combernoux, Anne; Morlat, Philippe; Le Moing, Vincent; Rivière, Catherine; Chêne, Geneviève; Leport, Catherine

    2000-01-01

    In a cohort of 1,047 human immunodeficiency virus type 1-infected patients started on protease inhibitors (PIs), the incidence of severe hepatic cytolysis (alanine aminotransferase concentration five times or more above the upper limit of the normal level ≥ 5N) was 5% patient-years after a mean follow-up of 5 months. Only positivity for hepatitis C virus antibodies (hazard ratio [HR], 7.95; P < 10−3) or hepatitis B virus surface antigen (HR, 6.67; P < 10−3) was associated with severe cytolysis. Before starting patients on PIs, assessment of liver enzyme levels and viral coinfections is necessary. PMID:11083658

  14. The Caspase-8 Homolog Dredd Cleaves Imd and Relish but Is Not Inhibited by p35*

    PubMed Central

    Kim, Chan-Hee; Paik, Donggi; Rus, Florentina; Silverman, Neal

    2014-01-01

    In Drosophila, the Imd pathway is activated by diaminopimelic acid-type peptidoglycan and triggers the humoral innate immune response, including the robust induction of antimicrobial peptide gene expression. Imd and Relish, two essential components of this pathway, are both endoproteolytically cleaved upon immune stimulation. Genetic analyses have shown that these cleavage events are dependent on the caspase-8 like Dredd, suggesting that Imd and Relish are direct substrates of Dredd. Among the seven Drosophila caspases, we find that Dredd uniquely promotes Imd and Relish processing, and purified recombinant Dredd cleaves Imd and Relish in vitro. In addition, interdomain cleavage of Dredd is not required for Imd or Relish processing and is not observed during immune stimulation. Baculovirus p35, a suicide substrate of executioner caspases, is not cleaved by purified Dredd in vitro. Consistent with this biochemistry but contrary to earlier reports, p35 does not interfere with Imd signaling in S2* cells or in vivo. PMID:24891502

  15. High-throughput assay and engineering of self-cleaving ribozymes by sequencing

    PubMed Central

    Kobori, Shungo; Nomura, Yoko; Miu, Anh; Yokobayashi, Yohei

    2015-01-01

    Self-cleaving ribozymes are found in all domains of life and are believed to play important roles in biology. Additionally, self-cleaving ribozymes have been the subject of extensive engineering efforts for applications in synthetic biology. These studies often involve laborious assays of multiple individual variants that are either designed rationally or discovered through selection or screening. However, these assays provide only a limited view of the large sequence space relevant to the ribozyme function. Here, we report a strategy that allows quantitative characterization of greater than 1000 ribozyme variants in a single experiment. We generated a library of predefined ribozyme variants that were converted to DNA and analyzed by high-throughput sequencing. By counting the number of cleaved and uncleaved reads of every variant in the library, we obtained a complete activity profile of the ribozyme pool which was used to both analyze and engineer allosteric ribozymes. PMID:25829176

  16. New classes of self-cleaving ribozymes revealed by comparative genomics analysis.

    PubMed

    Weinberg, Zasha; Kim, Peter B; Chen, Tony H; Li, Sanshu; Harris, Kimberly A; Lünse, Christina E; Breaker, Ronald R

    2015-08-01

    Enzymes made of RNA catalyze reactions that are essential for protein synthesis and RNA processing. However, such natural ribozymes are exceedingly rare, as evidenced by the fact that the discovery rate for new classes has dropped to one per decade from about one per year during the 1980s. Indeed, only 11 distinct ribozyme classes have been experimentally validated to date. Recently, we recognized that self-cleaving ribozymes frequently associate with certain types of genes from bacteria. Herein we exploited this association to identify divergent architectures for two previously known ribozyme classes and to discover additional noncoding RNA motifs that are self-cleaving RNA candidates. We identified three new self-cleaving classes, which we named twister sister, pistol and hatchet, from this collection, suggesting that even more ribozymes remain hidden in modern cells. PMID:26167874

  17. New classes of self-cleaving ribozymes revealed by comparative genomics analysis

    PubMed Central

    Weinberg, Zasha; Kim, Peter B.; Chen, Tony H.; Li, Sanshu; Harris, Kimberly A.; Lünse, Christina E.; Breaker, Ronald R.

    2015-01-01

    Enzymes made of RNA catalyze reactions that are essential for protein synthesis and RNA processing. However, such natural ribozymes are exceedingly rare, as evident by the fact that the discovery rate for new classes has dropped to one per decade from about one per year during the 1980s. Indeed, only 11 distinct ribozyme classes have been experimentally validated to date. Recently, we recognized that self-cleaving ribozymes frequently associate with certain types of genes from bacteria. Herein this synteny was exploited to identify divergent architectures for two previously known ribozyme classes and to discover additional noncoding RNA motifs that are self-cleaving RNA candidates. Three new self-cleaving classes, named twister sister, pistol and hatchet, have been identified from this collection, suggesting that even more ribozymes remain hidden in modern cells. PMID:26167874

  18. Nematicidal bacteria associated to pinewood nematode produce extracellular proteases.

    PubMed

    Paiva, Gabriel; Proença, Diogo Neves; Francisco, Romeu; Verissimo, Paula; Santos, Susana S; Fonseca, Luís; Abrantes, Isabel M O; Morais, Paula V

    2013-01-01

    Bacteria associated with the nematode Bursaphelenchus xylophilus, a pathogen of trees and the causal agent of pine wilt disease (PWD) may play a role in the disease. In order to evaluate their role (positive or negative to the tree), strains isolated from the track of nematodes from infected Pinus pinaster trees were screened, in vitro, for their nematicidal potential. The bacterial products, from strains more active in killing nematodes, were screened in order to identify and characterize the nematicidal agent. Forty-seven strains were tested and, of these, 21 strains showed capacity to produce extracellular products with nematicidal activity. All Burkholderia strains were non-toxic. In contrast, all Serratia strains except one exhibited high toxicity. Nematodes incubated with Serratia strains showed, by SEM observation, deposits of bacteria on the nematode cuticle. The most nematicidal strain, Serratia sp. A88copa13, produced proteases in the supernatant. The use of selective inhibitors revealed that a serine protease with 70 kDa was majorly responsible for the toxicity of the supernatant. This extracellular serine protease is different phylogenetically, in size and biochemically from previously described proteases. Nematicidal assays revealed differences in nematicidal activity of the proteases to different species of Bursaphelenchus, suggesting its usefulness in a primary screen of the nematodes. This study offers the basis for further investigation of PWD and brings new insights on the role bacteria play in the defense of pine trees against B. xylophilus. Understanding all the factors involved is important in order to develop strategies to control B. xylophilus dispersion. PMID:24244546

  19. Nematicidal Bacteria Associated to Pinewood Nematode Produce Extracellular Proteases

    PubMed Central

    Francisco, Romeu; Verissimo, Paula; Santos, Susana S.; Fonseca, Luís; Abrantes, Isabel M. O.; Morais, Paula V.

    2013-01-01

    Bacteria associated with the nematode Bursaphelenchus xylophilus, a pathogen of trees and the causal agent of pine wilt disease (PWD) may play a role in the disease. In order to evaluate their role (positive or negative to the tree), strains isolated from the track of nematodes from infected Pinus pinaster trees were screened, in vitro, for their nematicidal potential. The bacterial products, from strains more active in killing nematodes, were screened in order to identify and characterize the nematicidal agent. Forty-seven strains were tested and, of these, 21 strains showed capacity to produce extracellular products with nematicidal activity. All Burkholderia strains were non-toxic. In contrast, all Serratia strains except one exhibited high toxicity. Nematodes incubated with Serratia strains showed, by SEM observation, deposits of bacteria on the nematode cuticle. The most nematicidal strain, Serratia sp. A88copa13, produced proteases in the supernatant. The use of selective inhibitors revealed that a serine protease with 70 kDa was majorly responsible for the toxicity of the supernatant. This extracellular serine protease is different phylogenetically, in size and biochemically from previously described proteases. Nematicidal assays revealed differences in nematicidal activity of the proteases to different species of Bursaphelenchus, suggesting its usefulness in a primary screen of the nematodes. This study offers the basis for further investigation of PWD and brings new insights on the role bacteria play in the defense of pine trees against B. xylophilus. Understanding all the factors involved is important in order to develop strategies to control B. xylophilus dispersion. PMID:24244546

  20. The yeast ubiquitin protease, Ubp3p, promotes protein stability.

    PubMed Central

    Brew, Christine T; Huffaker, Tim C

    2002-01-01

    Stu1p is a microtubule-associated protein required for spindle assembly. In this article we show that the temperature-sensitive stu1-5 allele is synthetically lethal in combination with ubp3, gim1-gim5, and kem1 mutations. The primary focus of this article is on the stu1-5 ubp3 interaction. Ubp3 is a deubiquitination enzyme and a member of a large family of cysteine proteases that cleave ubiquitin moieties from protein substrates. UBP3 is the only one of 16 UBP genes in yeast whose loss is synthetically lethal with stu1-5. Stu1p levels in stu1-5 cells are several-fold lower than the levels in wild-type cells and the stu1-5 temperature sensitivity can be rescued by additional copies of stu1-5. These results indicate that the primary effect of the stu1-5 mutation is to make the protein less stable. The levels of Stu1p are even lower in ubp3Delta stu1-5 cells, suggesting that Ubp3p plays a role in promoting protein stability. We also found that ubp3Delta produces growth defects in combination with mutations in other genes that decrease protein stability. Overall, these data support the idea that Ubp3p has a general role in the reversal of protein ubiquitination. PMID:12454057

  1. Entropy-Driven Selectivity for Chain Scission: Where Macromolecules Cleave.

    PubMed

    Pahnke, Kai; Brandt, Josef; Gryn'ova, Ganna; Lin, Ching Y; Altintas, Ozcan; Schmidt, Friedrich G; Lederer, Albena; Coote, Michelle L; Barner-Kowollik, Christopher

    2016-01-22

    We show that, all other conditions being equal, bond cleavage in the middle of molecules is entropically much more favored than bond cleavage at the end. Multiple experimental and theoretical approaches have been used to study the selectivity for bond cleavage or dissociation in the middle versus the end of both covalent and supramolecular adducts and the extensive implications for other fields of chemistry including, e.g., chain transfer, polymer degradation, and control agent addition are discussed. The observed effects, which are a consequence of the underlying entropic factors, were predicted on the basis of simple theoretical models and demonstrated via high-temperature (HT) NMR spectroscopy of self-assembled supramolecular diblock systems as well as temperature-dependent size-exclusion chromatography (TD SEC) of covalently bonded Diels-Alder step-growth polymers. PMID:26663567

  2. Secretory Leukocyte Protease Inhibitor Suppresses the Inflammation and Joint Damage of Bacterial Cell Wall–Induced Arthritis

    PubMed Central

    Song, Xiao-yu; Zeng, Li; Jin, Wenwen; Thompson, John; Mizel, Diane E.; Lei, Ke-jian; Billinghurst, R.C.; Poole, A. Robin; Wahl, Sharon M.

    1999-01-01

    Disruption of the balance between proteases and protease inhibitors is often associated with pathologic tissue destruction. To explore the therapeutic potential of secretory leukocyte protease inhibitor (SLPI) in erosive joint diseases, we cloned, sequenced, and expressed active rat SLPI, which shares the protease-reactive site found in human SLPI. In a rat streptococcal cell wall (SCW)-induced model of inflammatory erosive polyarthritis, endogenous SLPI was unexpectedly upregulated at both mRNA and protein levels in inflamed joint tissues. Systemic delivery of purified recombinant rat SLPI inhibited joint inflammation and cartilage and bone destruction. Inflammatory pathways as reflected by circulating tumor necrosis factor α and nuclear factor κB activation and cartilage resorption detected by circulating levels of type II collagen collagenase-generated cleavage products were all diminished by SLPI treatment in acute and chronic arthritis, indicating that the action of SLPI may extend beyond inhibition of serine proteases. PMID:10449524

  3. ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin.

    PubMed Central

    Eytan, E; Ganoth, D; Armon, T; Hershko, A

    1989-01-01

    Previous studies have indicated that the ATP-dependent 26S protease complex that degrades proteins conjugated to ubiquitin is formed by the assembly of three factors in an ATP-requiring process. We now identify one of the factors as the 20S "multicatalytic" protease, a complex of low molecular weight subunits widely distributed in eukaryotic cells. Comparison of the subunit compositions of purified 20S and 26S complexes indicates that the former is an integral part of the latter. By the use of detergent treatment to activate latent protease activity, we show that the 20S protease becomes incorporated into the 26S complex in the ATP-dependent assembly process. It thus seems that the 20S protease is the "catalytic core" of the 26S complex of the ubiquitin proteolytic pathway. Images PMID:2554287

  4. Low-threshold, high quantum efficiency stop-cleaved InGaAsP semiconductor lasers

    SciTech Connect

    Antreasyan, A.; Chen, C.Y.; Napholtz, S.G.; Wilt, D.P.

    1985-08-15

    InGaAsP double-channel--planar-buried-heterostructure lasers with stop-cleaved mirrors emitting at 1.3 ..mu..m have been fabricated. Threshold currents as low as 18 mA and differential quantum efficiencies as high as 39% have been obtained. Furthermore, we have achieved a yield greater than 50% in obtaining good quality facets utilizing the stop-cleaving technique. Our result represents one of the lowest threshold currents obtained so far at 1.3-..mu..m wavelength among the structures designed for monolithic optoelectronic integration.

  5. Monolithically integrated external feedback InGaAsP lasers using stop-cleaving technique

    SciTech Connect

    Antreasyan, A.; Chen, C.Y.; Napholtz, S.G.; Wilt, D.P.; Ostermayer, F.W.

    1986-02-15

    We have developed a monolithically integrated external feedback laser utilizing a pair of stop-cleaved double channel planar buried heterostructure lasers emitting at 1.3 ..mu..m. The external feedback is provided by the stop cleaved facet of the second cavity. A sidemode rejection ratio of 200 : 1 has been obtained with a laser having a 250-..mu..m cavity length and an external resonator length of 200 ..mu..m. Since both lasers are fabricated in a self-aligned structure, this device may prove to be a powerful scheme for injection locking to reduce dynamic linewidth.

  6. Cleaved-coupled-cavity lasers with large cavity length ratios for enhanced stability

    SciTech Connect

    Bowers, J.E.; Bjorkholm, J.E.; Burrus, C.A.; Coldren, L.A.; Hemenway, B.R.; Wilt, D.P.

    1984-05-01

    The fabrication and operation of the first cleaved-coupled-cavity (C/sup 3/) semiconductor lasers with large cavity length ratios are described. The internal cleaved facet is precisely positioned by photochemically etching a groove through most of the wafer. Single longitudinal mode operation is obtained over a temperature range of 21 /sup 0/C and over a current range of threshold to greater than four times threshold. Sidemode suppression of 100:1 was measured when the laser was modulated at 350 MHz with an extinction ratio greater than 10:1. These results are experimentally and theoretically compared to approximately equal length C/sup 3/ lasers.

  7. Spindle-to-cortex communication in cleaving, polyspermic Xenopus eggs

    PubMed Central

    Field, Christine M.; Groen, Aaron C.; Nguyen, Phuong A.; Mitchison, Timothy J.

    2015-01-01

    Mitotic spindles specify cleavage planes in early embryos by communicating their position and orientation to the cell cortex using microtubule asters that grow out from the spindle poles during anaphase. Chromatin also plays a poorly understood role. Polyspermic fertilization provides a natural experiment in which aster pairs from the same spindle (sister asters) have chromatin between them, whereas asters pairs from different spindles (nonsisters) do not. In frogs, only sister aster pairs induce furrows. We found that only sister asters recruited two conserved furrow-inducing signaling complexes, chromosome passenger complex (CPC) and Centralspindlin, to a plane between them. This explains why only sister pairs induce furrows. We then investigated factors that influenced CPC recruitment to microtubule bundles in intact eggs and a cytokinesis extract system. We found that microtubule stabilization, optimal starting distance between asters, and proximity to chromatin all favored CPC recruitment. We propose a model in which proximity to chromatin biases initial CPC recruitment to microtubule bundles between asters from the same spindle. Next a positive feedback between CPC recruitment and microtubule stabilization promotes lateral growth of a plane of CPC-positive microtubule bundles out to the cortex to position the furrow. PMID:26310438

  8. Spindle-to-cortex communication in cleaving, polyspermic Xenopus eggs.

    PubMed

    Field, Christine M; Groen, Aaron C; Nguyen, Phuong A; Mitchison, Timothy J

    2015-10-15

    Mitotic spindles specify cleavage planes in early embryos by communicating their position and orientation to the cell cortex using microtubule asters that grow out from the spindle poles during anaphase. Chromatin also plays a poorly understood role. Polyspermic fertilization provides a natural experiment in which aster pairs from the same spindle (sister asters) have chromatin between them, whereas asters pairs from different spindles (nonsisters) do not. In frogs, only sister aster pairs induce furrows. We found that only sister asters recruited two conserved furrow-inducing signaling complexes, chromosome passenger complex (CPC) and Centralspindlin, to a plane between them. This explains why only sister pairs induce furrows. We then investigated factors that influenced CPC recruitment to microtubule bundles in intact eggs and a cytokinesis extract system. We found that microtubule stabilization, optimal starting distance between asters, and proximity to chromatin all favored CPC recruitment. We propose a model in which proximity to chromatin biases initial CPC recruitment to microtubule bundles between asters from the same spindle. Next a positive feedback between CPC recruitment and microtubule stabilization promotes lateral growth of a plane of CPC-positive microtubule bundles out to the cortex to position the furrow. PMID:26310438

  9. The cleaved cytoplasmic tail of polycystin-1 regulates Src-dependent STAT3 activation.

    PubMed

    Talbot, Jeffrey J; Song, Xuewen; Wang, Xiaofang; Rinschen, Markus M; Doerr, Nicholas; LaRiviere, Wells B; Schermer, Bernhard; Pei, York P; Torres, Vicente E; Weimbs, Thomas

    2014-08-01

    Polycystin-1 (PC1) mutations result in proliferative renal cyst growth and progression to renal failure in autosomal dominant polycystic kidney disease (ADPKD). The transcription factor STAT3 (signal transducer and activator of transcription 3) was shown to be activated in cyst-lining cells in ADPKD and PKD mouse models and may drive renal cyst growth, but the mechanisms leading to persistent STAT3 activation are unknown. A proteolytic fragment of PC1 corresponding to the cytoplasmic tail, PC1-p30, is overexpressed in ADPKD. Here, we show that PC1-p30 interacts with the nonreceptor tyrosine kinase Src, resulting in Src-dependent activation of STAT3 by tyrosine phosphorylation. The PC1-p30-mediated activation of Src/STAT3 was independent of JAK family kinases and insensitive to the STAT3 inhibitor suppressor of cytokine signaling 3. Signaling by the EGF receptor (EGFR) or cAMP amplified the activation of Src/STAT3 by PC1-p30. Expression of PC1-p30 changed the cellular response to cAMP signaling. In the absence of PC1-p30, cAMP dampened EGFR- or IL-6-dependent activation of STAT3; in the presence of PC1-p30, cAMP amplified Src-dependent activation of STAT3. In the polycystic kidney (PCK) rat model, activation of STAT3 in renal cystic cells depended on vasopressin receptor 2 (V2R) signaling, which increased cAMP levels. Genetic inhibition of vasopressin expression or treatment with a pharmacologic V2R inhibitor strongly suppressed STAT3 activation and reduced renal cyst growth. These results suggest that PC1, via its cleaved cytoplasmic tail, integrates signaling inputs from EGFR and cAMP, resulting in Src-dependent activation of STAT3 and a proliferative response. PMID:24578126

  10. The pseudorabies virus vhs protein cleaves RNA containing an IRES sequence.

    PubMed

    Liu, Ya-Fen; Tsai, Pei-Yun; Chulakasian, Songkhla; Lin, Fong-Yuan; Hsu, Wei-Li

    2016-03-01

    The virion host shutoff protein (vhs), encoded by the gene UL41, has RNase activity and is the key regulator of the early host shutoff response induced by type 1 herpes simplex virus. Despite low amino acid similarity, the vhs protein of the swine herpesvirus, pseudorabies virus (PrV), also exhibits RNase activity. However, the mechanism underlying the action of vhs remains undefined. Here, we report that the RNA degradation profile of PrV vhs is similar, but not identical, to that of type 1 herpes simplex virus vhs. Notably, the presence of a cap structure enhances both the degradation rate and the preferential targeting of the vhs protein towards the 3'-end of the encephalomyocarditis virus internal ribosome entry site (IRES). Furthermore, type 1 herpes simplex virus vhs produces a simple degradation pattern, but PrV vhs gives rise to multiple intermediates. The results of northern blotting using probes recognizing various regions of the RNA substrate found that PrV vhs also cleaves downstream of the IRES region and this vhs protein overall shows 5' to 3' RNase activity. Moreover, addition of the translation initiation factors eIF4H and eIF4B significantly increased the RNase activity of recombinant PrV vhs against capped RNA. Nonetheless, these proteins did not fully reconstitute the IRES-directed targeting pattern observed for vhs translated in a rabbit reticular lysate system. The interaction between PrV vhs and eIF4H/eIF4B implies that the translation initiation machinery within the cell is able to stimulate the nuclease activity of PrV vhs. However, this process remains inefficient in terms of the IRES-targeting pattern. PMID:26744129

  11. 3D Traction Stresses Activate Protease-Dependent Invasion of Cancer Cells

    PubMed Central

    Aung, Aereas; Seo, Young N.; Lu, Shaoying; Wang, Yingxiao; Jamora, Colin; del Álamo, Juan C.; Varghese, Shyni

    2014-01-01

    Cell invasion and migration that occurs, for example, in cancer metastasis is rooted in the ability of cells to navigate through varying levels of physical constraint exerted by the extracellular matrix. Cancer cells can invade matrices in either a protease-independent or a protease-dependent manner. An emerging critical component that influences the mode of cell invasion is the traction stresses generated by the cells in response to the physicostructural properties of the extracellular matrix. In this study, we have developed a reference-free quantitative assay for measuring three-dimensional (3D) traction stresses generated by cells during the initial stages of invasion into matrices exerting varying levels of mechanical resistance. Our results show that as cells encounter higher mechanical resistance, a larger fraction of them shift to protease-mediated invasion, and this process begins at lower values of cell invasion depth. On the other hand, the compressive stress generated by the cells at the onset of protease-mediated invasion is found to be independent of matrix stiffness, suggesting that 3D traction stress is a key factor in triggering protease-mediated cancer cell invasion. At low 3D compressive traction stresses, cells utilize bleb formation to indent the matrix in a protease independent manner. However, at higher stress values, cells utilize invadopodia-like structures to mediate protease-dependent invasion into the 3D matrix. The critical value of compressive traction stress at the transition from a protease-independent to a protease-dependent mode of invasion is found to be ∼165 Pa. PMID:25468332

  12. Evidence for possible involvement of an elastolytic serine protease in aspergillosis.

    PubMed Central

    Kolattukudy, P E; Lee, J D; Rogers, L M; Zimmerman, P; Ceselski, S; Fox, B; Stein, B; Copelan, E A

    1993-01-01

    A number of isolates of Aspergillus fumigatus obtained from the hospital environment produced extracellular elastolytic activity. This activity was found to be catalyzed by a single 33-kDa protein which was purified and characterized to be a serine protease. A. fumigatus, when grown on the insoluble structural material obtained from murine and bovine lung, produced the same extracellular 33-kDa elastolytic protease, indicating that this enzyme is likely to be produced when the organism infects the lung. Polymerase chain reaction with an oligonucleotide primer based on the N-terminal amino acid sequence of the elastolytic enzyme yielded a cDNA which was cloned and sequenced. The active serine motif showed more similarity to subtilisin than to mammalian elastase. The amino acid sequence showed 80% identity to the alkaline protease from Aspergillus oryzae. Screening of hospital isolates of Aspergillus flavus showed great variation in the production of elastolytic activity and a much lower level of activity than that produced by A. fumigatus. The elastolytic protease from A. flavus was shown to be a serine protease susceptible to modification and inactivation by active serine and histidine-directed reagents. This protease cross-reacted with the antibodies prepared against the elastolytic protease from A. fumigatus. Immunogold localization of the elastolytic enzyme showed that A. fumigatus germinating and penetrating into the lungs of neutropenic mice secreted the elastolytic protease. An elastase-deficient mutant generated from a highly virulent isolate of A. fumigatus caused drastically reduced mortality when nasally introduced into the lung of neutropenic mice. All of the evidence suggests that extracellular elastolytic protease is a significant virulence factor in invasive aspergillosis. Images PMID:8500876

  13. Tissue dissociation enzyme neutral protease assessment.

    PubMed

    Breite, A G; Dwulet, F E; McCarthy, R C

    2010-01-01

    Neutral proteases, essential components of purified tissue dissociation enzymes required for successful human islet isolation, show variable activities and effects of substrate on their activities. Initially we used a spectrophotometric endpoint assay with azocasein substrate to measure neutral protease activity. After critical review of the results, we observed these data to be inconsistent and not correlating expected differences in specific activities between thermolysin and Bacillus polymyxa proteases. This observation led to the development of a fluorescent microplate assay using fluorescein isothyocyanate-conjugated bovine serum albumin (FITC-BSA) as the substrate. This simpler, more flexible method offered a homogeneous, kinetic enzyme assay allowing determination of steady state reaction rates of sample replicates at various dilutions. The assay had a linear range of 4- to 8-fold and interassay coefficients of variation for B polymyxa protease and thermolysin of <9% and <15%, respectively, which were lower than those using the spectrophotometric endpoint assay, namely, 54% and 36%, respectively. This format allowed for incorporation of enzyme inhibitors, as illustrated by addition of sulfhydryl protease inhibitors, which, consistent with earlier reports, strongly indicated that the main contaminant in purified collagenase preparations was clostripain. Determination of the specific activities for several purified neutral proteases showed that the B polymyxa and Clostridium histolyticum proteases had approximately 40% and 15% specific activities, respectively, of those obtained with purified thermolysin, indicating the different characteristics of neutral protease enzymes for cell isolation procedures. PMID:20692405

  14. Modification of calcite crystal morphology by designed phosphopeptides and primary structures and substrate specifities of the cysteine proteases mexicain and chymomexicain

    NASA Astrophysics Data System (ADS)

    Lian, Zhirui

    In order to better understand the mechanism of biomineralization, we have undertaken to synthesize polypeptide model compounds of well-defined structure that can interact with specific faces of calcite and alter its crystal morphology. These peptides were designed based on the structure of alpha-helical winter flounder antifreeze polypeptide HPLC-6. In these peptides, from one to three of the threonine residues in HPLC-6 were substituted by phosphoserine or phosphotyrosine. CD spectra show that all the peptides have virtually the same alpha-helicity, i.e., about 90% at 4°C and 50% at 25°C. However, only peptides which contain at least two phosphate groups spaced 16.8-A apart can modify the crystal morphology of the calcite. The newly developed surface has been tentatively identified as the (001) basal face. Molecular modeling indicates that the spacing of phosphate groups allows for a good match with crystal lattice ions on the (001) plane. Another peptide, CBP-3D, in which the three threonine residues in HPLC-6 were substituted by aspartic acids, appears to bind only to {104} rhombohedral faces of calcite. These experiments suggest that conformation and orientation of the binding ligands in the peptide are important factors governing the mutual recognition of crystal surface and proteins. The complete amino acid sequences of the cysteine proteases mexicain and chymomexicain, isolated from the latex of the plant Pileus mexicanus , were determined by Edman degradation of proteolytic fragments. Mexicain and chymomexicain show-high sequence homology to the papain family of cysteine protease. Mexicain and chymomexicain are monomeric polypeptides, with molecular masses of 23,762 Da and 23,694 Da, respectively, and both contain three deduced disulfide bonds. The proteolytic substrate specificities of mexicain and chymomexicain were studied by digesting a series of synthetic peptides and analyzing the fragments by mass spectrometry. The two proteases showed virtually

  15. Inherent dynamics within the Crimean-Congo Hemorrhagic fever virus protease are localized to the same region as substrate interactions

    SciTech Connect

    Eisenmesser, Elan Z.; Capodagli, Glenn; Armstrong, Geoffrey S.; Holliday, Michael; Isern, Nancy G.; Zhang, Fengli; Pegan, Scott D.

    2015-05-01

    Crimean-Congo Hemorrhagic fever virus (CCHFV) is one of several lethal viruses that encodes for a viral ovarian tumor domain (vOTU), which serves to cleave and remove multiple proteins involved in cellular signaling such as ubiquitin (Ub) and interferon stimulated gene produce 15 (ISG15). Such manipulation of the host cell machinery serves to downregulate the host response and, therefore, complete characterization of these proteases is important. While several structures of the CCHFV vOTU protease have been solved, both free and bound to Ub and ISG15, few structural differences have been found and little insight has been gained as to the dynamic plasticity of this protease. Therefore, we have used NMR relaxation experiments to probe the dynamics of CCHV vOTU, both alone and in complex with Ub, thereby discovering a highly dynamic protease that exhibits conformational exchange within the same regions found to engage its Ub substrate. These experiments reveal a structural plasticity around the N-terminal regions of CCHV vOTU, which are unique to vOTUs, and provide a rationale for engaging multiple substrates with the same binding site.

  16. A Neisseria gonorrhoeae Immunoglobulin A1 Protease Mutant Is Infectious in the Human Challenge Model of Urethral Infection

    PubMed Central

    Johannsen, Diana B.; Johnston, David M.; Koymen, Hakan O.; Cohen, Myron S.; Cannon, Janne G.

    1999-01-01

    Many mucosal pathogens, including Neisseria gonorrhoeae, produce proteases that cleave immunoglobulin A (IgA), the predominant immunoglobulin class produced at mucosal surfaces. While considerable circumstantial evidence suggests that IgA1 protease contributes to gonococcal virulence, there is no direct evidence that N. gonorrhoeae requires IgA1 protease activity to infect a human host. We constructed a N. gonorrhoeae iga mutant without introducing new antibiotic resistance markers into the final mutant strain and used human experimental infection to test the ability of the mutant to colonize the male urethra and to cause gonococcal urethritis. Four of the five male volunteers inoculated with the Iga− mutant became infected. In every respect—clinical signs and symptoms, incubation period between inoculation and infection, and the proportion of volunteers infected—the outcome of human experimental infection with FA1090iga was indistinguishable from that previously reported for a variant of parent strain FA1090 matching the mutant in expression of Opa proteins, lipooligosaccharide, and pilin. These results indicate that N. gonorrhoeae does not require IgA1 protease production to cause experimental urethritis in males. PMID:10338512

  17. Molecular Mechanisms of Viral and Host Cell Substrate Recognition by Hepatitis C Virus NS3/4A Protease

    SciTech Connect

    Romano, Keith P.; Laine, Jennifer M.; Deveau, Laura M.; Cao, Hong; Massi, Francesca; Schiffer, Celia A.

    2011-08-16

    Hepatitis C NS3/4A protease is a prime therapeutic target that is responsible for cleaving the viral polyprotein at junctions 3-4A, 4A4B, 4B5A, and 5A5B and two host cell adaptor proteins of the innate immune response, TRIF and MAVS. In this study, NS3/4A crystal structures of both host cell cleavage sites were determined and compared to the crystal structures of viral substrates. Two distinct protease conformations were observed and correlated with substrate specificity: (i) 3-4A, 4A4B, 5A5B, and MAVS, which are processed more efficiently by the protease, form extensive electrostatic networks when in complex with the protease, and (ii) TRIF and 4B5A, which contain polyproline motifs in their full-length sequences, do not form electrostatic networks in their crystal complexes. These findings provide mechanistic insights into NS3/4A substrate recognition, which may assist in a more rational approach to inhibitor design in the face of the rapid acquisition of resistance.

  18. Enabling Low Cost Biopharmaceuticals: A Systematic Approach to Delete Proteases from a Well-Known Protein Production Host Trichoderma reesei

    PubMed Central

    Landowski, Christopher P.; Huuskonen, Anne; Wahl, Ramon; Westerholm-Parvinen, Ann; Kanerva, Anne; Hänninen, Anna-Liisa; Salovuori, Noora; Penttilä, Merja; Natunen, Jari; Ostermeier, Christian; Helk, Bernhard; Saarinen, Juhani; Saloheimo, Markku

    2015-01-01

    The filamentous fungus Trichoderma reesei has tremendous capability to secrete proteins. Therefore, it would be an excellent host for producing high levels of therapeutic proteins at low cost. Developing a filamentous fungus to produce sensitive therapeutic proteins requires that protease secretion is drastically reduced. We have identified 13 major secreted proteases that are related to degradation of therapeutic antibodies, interferon alpha 2b, and insulin like growth factor. The major proteases observed were aspartic, glutamic, subtilisin-like, and trypsin-like proteases. The seven most problematic proteases were sequentially removed from a strain to develop it for producing therapeutic proteins. After this the protease activity in the supernatant was dramatically reduced down to 4% of the original level based upon a casein substrate. When antibody was incubated in the six protease deletion strain supernatant, the heavy chain remained fully intact and no degradation products were observed. Interferon alpha 2b and insulin like growth factor were less stable in the same supernatant, but full length proteins remained when incubated overnight, in contrast to the original strain. As additional benefits, the multiple protease deletions have led to faster strain growth and higher levels of total protein in the culture supernatant. PMID:26309247

  19. C-Terminal extension of a plant cysteine protease modulates proteolytic activity through a partial inhibitory mechanism.

    PubMed

    Dutta, Sruti; Choudhury, Debi; Dattagupta, Jiban K; Biswas, Sampa

    2011-09-01

    The amino acid sequence of ervatamin-C, a thermostable cysteine protease from a tropical plant, revealed an additional 24-amino-acid extension at its C-terminus (CT). The role of this extension peptide in zymogen activation, catalytic activity, folding and stability of the protease is reported. For this study, we expressed two recombinant forms of the protease in Escherichia coli, one retaining the CT-extension and the other with it truncated. The enzyme with the extension shows autocatalytic zymogen activation at a higher pH of 8.0, whereas deletion of the extension results in a more active form of the enzyme. This CT-extension was not found to be cleaved during autocatalysis or by limited proteolysis by different external proteases. Molecular modeling and simulation studies revealed that the CT-extension blocks some of the substrate-binding unprimed subsites including the specificity-determining subsite (S2) of the enzyme and thereby partially occludes accessibility of the substrates to the active site, which also corroborates the experimental observations. The CT-extension in the model structure shows tight packing with the catalytic domain of the enzyme, mediated by strong hydrophobic and H-bond interactions, thus restricting accessibility of its cleavage sites to the protease itself or to the external proteases. Kinetic stability analyses (T(50) and t(1/2) ) and refolding experiments show similar thermal stability and refolding efficiency for both forms. These data suggest that the CT-extension has an inhibitory role in the proteolytic activity of ervatamin-C but does not have a major role either in stabilizing the enzyme or in its folding mechanism. PMID:21707922

  20. Cleavage Specificity Analysis of Six Type II Transmembrane Serine Proteases (TTSPs) Using PICS with Proteome-Derived Peptide Libraries

    PubMed Central

    Béliveau, François; Leduc, Richard; Overall, Christopher M.

    2014-01-01

    Background Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. Methodology/Principal Finding To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. Conclusions Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity. PMID:25211023

  1. Notch1 Autoactivation via Transcriptional Regulation of Furin, Which Sustains Notch1 Signaling by Processing Notch1-Activating Proteases ADAM10 and Membrane Type 1 Matrix Metalloproteinase

    PubMed Central

    Qiu, Hong; Tang, Xiaoying; Ma, Jun; Shaverdashvili, Khvaramze; Zhang, Keman

    2015-01-01

    Notch1 is an evolutionarily conserved transmembrane receptor involved in melanoma growth. Notch1 is first cleaved by furin in the Golgi apparatus to produce the biologically active heterodimer. Following ligand binding, Notch1 is cleaved at the cell membrane by proteases such as ADAM10 and -17 and membrane type 1 matrix metalloproteinase (MT1-MMP), the latter of which we recently identified as a novel protease involved in Notch1 processing. The final cleavage is γ-secretase dependent and releases the active Notch intracellular domain (NIC). We now demonstrate that Notch1 directly regulates furin expression. Aside from activating Notch1, furin cleaves and activates several proteases, including MT1-MMP, ADAM10, and ADAM17. By chromatin immunoprecipitation and a reporter assay, we demonstrate that Notch1 binds at position −1236 of the furin promoter and drives furin expression. The Notch1-dependent enhancement of furin expression increases the activities of MT1-MMP and ADAM10 but not that of ADAM17, as demonstrated by short hairpin RNA (shRNA) knockdown of furin, and promotes the cleavage of Notch1 itself. These data highlight a novel positive-feedback loop whereby Notch1-dependent furin expression can induce Notch1 signaling by increasing Notch1 processing and by potentiating the activity of the proteases responsible for Notch1 activation. This leads to Notch1 signal amplification, which can promote melanoma tumor growth and progression, as demonstrated by the inhibition of cell migration and invasion upon furin inhibition downstream of Notch1. Disruption of such feedback signaling might represent an avenue for the treatment of melanoma. PMID:26283728

  2. Protease-degradable electrospun fibrous hydrogels

    NASA Astrophysics Data System (ADS)

    Wade, Ryan J.; Bassin, Ethan J.; Rodell, Christopher B.; Burdick, Jason A.

    2015-03-01

    Electrospun nanofibres are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases. Here we synthesize reactive macromers that contain protease-cleavable and fluorescent peptides and are able to form both isotropic hydrogels and electrospun fibrous hydrogels through a photoinitiated polymerization. These biomimetic scaffolds are susceptible to protease-mediated cleavage in vitro in a protease dose-dependent manner and in vivo in a subcutaneous mouse model using transdermal fluorescent imaging to monitor degradation. Importantly, materials containing an alternate and non-protease-cleavable peptide sequence are stable in both in vitro and in vivo settings. To illustrate the specificity in degradation, scaffolds with mixed fibre populations support selective fibre degradation based on individual fibre degradability. Overall, this represents a novel biomimetic approach to generate protease-sensitive fibrous scaffolds for biomedical applications.

  3. Progress and prospects on DENV protease inhibitors.

    PubMed

    Timiri, Ajay Kumar; Sinha, Barij Nayan; Jayaprakash, Venkatesan

    2016-07-19

    New treatments are desperately required to combat increasing rate of dengue fever cases reported in tropical and sub-tropical parts of the world. Among the ten proteins (structural and non-structural) encoded by dengue viral genome, NS2B-NS3 protease is an ideal target for drug discovery. It is responsible for the processing of poly protein that is required for genome replication of the virus. Moreover, inhibitors designed against proteases were found successful in Human Immuno-deficiency Virus (HIV) and Hepatitis C Virus (HCV). Complete molecular mechanism and a survey of inhibitors reported against dengue protease will be helpful in designing effective and potent inhibitors. This review provides an insight on molecular mechanism of dengue virus protease and covers up-to-date information on different inhibitors reported against dengue proteases with medicinal chemistry perspective. PMID:27092412

  4. The Zinc-Dependent Protease Activity of the Botulinum Neurotoxins

    PubMed Central

    Lebeda, Frank J.; Cer, Regina Z.; Mudunuri, Uma; Stephens, Robert; Singh, Bal Ram; Adler, Michael

    2010-01-01

    The botulinum neurotoxins (BoNT, serotypes A-G) are some of the most toxic proteins known and are the causative agents of botulism. Following exposure, the neurotoxin binds and enters peripheral cholinergic nerve endings and specifically and selectively cleaves one or more SNARE proteins to produce flaccid paralysis. This review centers on the kinetics of the Zn-dependent proteolytic activities of these neurotoxins, and briefly describes inhibitors, activators and factors underlying persistence of toxin action. Some of the structural, enzymatic and inhibitor data that are discussed here are available at the botulinum neurotoxin resource, BotDB (http://botdb.abcc.ncifcrf.gov). PMID:22069621

  5. Activation mechanism of thiol protease precursor from broiler chicken specific Staphylococcus aureus strain CH-91.

    PubMed

    Wladyka, Benedykt; Dubin, Grzegorz; Dubin, Adam

    2011-01-10

    Staphylococcus aureus strain CH-91 isolated from chicken dermatitis lesions produces large quantities of thiol protease implicated in disease formation. Observed overproduction requires efficient activation of the protease precursor which mechanism is studied here in detail. Wild type and mutant precursor forms are expressed in E. coli to test different hypotheses on the activation process. It is demonstrated that wild type precursor undergoes rapid autocatalytic processing whereas proteolytically inactive catalytic triad cysteine mutant (C(249)A) of the precursor is stable, but can be processed by minute quantities of active protease. It is concluded that limited intramolecular proteolysis is mainly responsible for efficient activation but, a positive feedback loop also contributes to the process. Both activation pathways allow efficient production of mature extracellular thiol protease, a putative virulence factor specific for avian strains of S. aureus. PMID:20598816

  6. Proteases of an early colonizer can hinder Streptococcus mutans colonization in vitro.

    PubMed

    Wang, B-Y; Deutch, A; Hong, J; Kuramitsu, H K

    2011-04-01

    Streptococcus mutans is the primary cariogen that produces several virulence factors that are modulated by a competence-stimulating peptide (CSP) signaling system. In this study, we sought to determine if proteases produced by early dental plaque colonizers such as Streptococcus gordonii interfere with the subsequent colonization of S. mutans BM71 on the existing streptococcal biofilms. We demonstrated that S. mutans BM71 colonized much less efficiently in vitro on streptococcal biofilms than on Actinomyces naeslundii biofilms. Several oral streptococci, relative to A. naeslundii, produced proteases that inactivated the S. mutans CSP. We further demonstrated that cell protein extracts from S. gordonii, but not from A. naeslundii, interfered with S. mutans BM71 colonization. In addition, S. mutans BM71 colonized more efficiently on the sgc protease knockout mutant of S. gordonii than on the parent biofilms. In conclusion, proteases of early colonizers can interfere with subsequent colonization by S. mutans in vitro. PMID:21088146

  7. A Bacteriophage Lambda-Based Genetic Screen for Characterization of the Activity and Phenotype of the Human Immunodeficiency Virus Type 1 Protease

    PubMed Central

    Martínez, Miguel-Angel; Cabana, Marta; Parera, Mariona; Gutierrez, Arantxa; Esté, José A.; Clotet, Bonaventura

    2000-01-01

    Human immunodeficiency virus type 1 (HIV-1) resistance to antiretroviral drugs is the main cause of patient treatment failure. Despite the problems associated with interpretation of HIV-1 resistance testing, resistance monitoring should help in the rational design of initial or rescue antiretroviral therapies. It has previously been shown that the activity of the HIV-1 protease can be monitored by using a bacteriophage lambda-based genetic assay. This genetic screening system is based on the bacteriophage lambda regulatory circuit in which the viral repressor cI is specifically cleaved to initiate the lysogenic to lytic switch. We have adapted this simple lambda-based genetic assay for the analysis of the activities and phenotypes of different HIV-1 proteases. Lambda phages that encode HIV-1 proteases either from laboratory strains (strain HXB2) or from clinical samples are inhibited in a dose-dependent manner by the HIV-1 protease inhibitors indinavir, ritonavir, saquinavir, and nelfinavir. Distinct susceptibilities to different drugs were also detected among phages that encode HIV-1 proteases carrying different resistance mutations, further demonstrating the specificity of this assay. Differences in proteolytic processing activity can also be directly monitored with this genetic screen system since two phage populations compete in culture with each other until one phage outgrows the other. In summary, we present here a simple, safe, and rapid genetic screening system that may be used to predict the activities and phenotypes of HIV-1 proteases in the course of viral infection and antiretroviral therapy. This assay responds appropriately to well-known HIV-1 protease inhibitors and can be used to search for new protease inhibitors. PMID:10770741

  8. The influences of hinge length and composition on the susceptibility of human IgA to cleavage by diverse bacterial IgA1 proteases.

    PubMed

    Senior, Bernard W; Woof, Jenny M

    2005-06-15

    The influences of IgA hinge length and composition on its susceptibility to cleavage by bacterial IgA1 proteases were examined using a panel of IgA hinge mutants. The IgA1 proteases of Streptococcus pneumoniae, Streptococcus sanguis strains SK4 and SK49, Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae cleaved IgA2-IgA1 half hinge, an Ab featuring half of the IgA1 hinge incorporated into the equivalent site in IgA1 protease-resistant IgA2, whereas those of Streptococcus mitis, Streptococcus oralis, and S. sanguis strain SK1 did not. Hinge length reduction by removal of two of the four C-terminal proline residues rendered IgA2-IgA1 half hinge resistant to all streptococcal IgA1 metalloproteinases but it remained sensitive to cleavage by the serine-type IgA1 proteases of Neisseria and Haemophilus spp. The four C-terminal proline residues could be substituted by alanine residues or transferred to the N-terminal extremity of the hinge without affect on the susceptibility of the Ab to cleavage by serine-type IgA1 proteases. However, their removal rendered the Ab resistant to cleavage by all the IgA1 proteases. We conclude that the serine-type IgA1 proteases of Neisseria and Haemophilus require the Fab and Fc regions to be separated by at least ten (or in the case of N. gonorrhoeae type I protease, nine) amino acids between Val(222) and Cys(241) (IgA1 numbering) for efficient access and cleavage. By contrast, the streptococcal IgA1 metalloproteinases require 12 or more appropriate amino acids between the Fab and Fc to maintain a minimum critical distance between the scissile bond and the start of the Fc. PMID:15944283

  9. HIV-1 protease mutations and protease inhibitor cross-resistance.

    PubMed

    Rhee, Soo-Yon; Taylor, Jonathan; Fessel, W Jeffrey; Kaufman, David; Towner, William; Troia, Paolo; Ruane, Peter; Hellinger, James; Shirvani, Vivian; Zolopa, Andrew; Shafer, Robert W

    2010-10-01

    The effects of many protease inhibitor (PI)-selected mutations on the susceptibility to individual PIs are unknown. We analyzed in vitro susceptibility test results on 2,725 HIV-1 protease isolates. More than 2,400 isolates had been tested for susceptibility to fosamprenavir, indinavir, nelfinavir, and saquinavir; 2,130 isolates had been tested for susceptibility to lopinavir; 1,644 isolates had been tested for susceptibility to atazanavir; 1,265 isolates had been tested for susceptibility to tipranavir; and 642 isolates had been tested for susceptibility to darunavir. We applied least-angle regression (LARS) to the 200 most common mutations in the data set and identified a set of 46 mutations associated with decreased PI susceptibility of which 40 were not polymorphic in the eight most common HIV-1 group M subtypes. We then used least-squares regression to ascertain the relative contribution of each of these 46 mutations. The median number of mutations associated with decreased susceptibility to each PI was 28 (range, 19 to 32), and the median number of mutations associated with increased susceptibility to each PI was 2.5 (range, 1 to 8). Of the mutations with the greatest effect on PI susceptibility, I84AV was associated with decreased susceptibility to eight PIs; V32I, G48V, I54ALMSTV, V82F, and L90M were associated with decreased susceptibility to six to seven PIs; I47A, G48M, I50V, L76V, V82ST, and N88S were associated with decreased susceptibility to four to five PIs; and D30N, I50L, and V82AL were associated with decreased susceptibility to fewer than four PIs. This study underscores the greater impact of nonpolymorphic mutations compared with polymorphic mutations on decreased PI susceptibility and provides a comprehensive quantitative assessment of the effects of individual mutations on susceptibility to the eight clinically available PIs. PMID:20660676

  10. Density functional study of hydrazine adsorption and its Nsbnd N bond cleaving on Fe(110) surface

    NASA Astrophysics Data System (ADS)

    Fathurrahman, Fadjar; Kasai, Hideaki

    2015-09-01

    We report density-functional-theory-based calculations of hydrazine adsorption and its Nsbnd N bond cleaving on clean Fe(110) surface. It is found that hydrazine may adopt several adsorption configurations among which the most energetically stable is the bridging configuration. Adsorption on short bridge site generally has larger adsorption energies than those on long bridge site. Nsbnd N bond cleaving is an exothermic process with reaction energies of 1.90 and 1.67 eV on long and short bridge site, respectively. Nudged elastic band method is used to estimate the activation energies of Nsbnd N bond cleaving. Our results indicate that Nsbnd N bond cleaving on long bridge site has lower activation energy (0.27 eV) compared to that of short bridge site (0.36 eV). By examining the molecular orbitals of the initial state it is found that this difference stems from stronger bond between the two NH2 fragments adsorbed on short bridge site as compared to long bridge.

  11. Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization

    NASA Astrophysics Data System (ADS)

    Stefani, A.; Nielsen, K.; Rasmussen, H. K.; Bang, O.

    2012-04-01

    We fabricated an electronically controlled polymer optical fiber cleaver, which uses a razor-blade guillotine and provides independent control of fiber temperature, blade temperature, and cleaving speed. To determine the optimum cleaving conditions of microstructured polymer optical fibers (mPOFs) with hexagonal hole structures we developed a program for cleaving quality optimization, which reads in a microscope image of the fiber end-facet and determines the core-shift and the statistics of the hole diameter, hole-to-hole pitch, hole ellipticity, and direction of major ellipse axis. For 125 μm in diameter mPOFs of the standard polymer PMMA we found the optimum temperatures to be 77