Science.gov

Sample records for factor confers stromal

  1. What Are the Risk Factors for Gastrointestinal Stromal Tumors?

    MedlinePlus

    ... what causes gastrointestinal stromal tumors? What are the risk factors for gastrointestinal stromal tumors? A risk factor is ... disease like cancer. Different cancers have different risk factors. Some risk factors, like smoking, can be changed. Others, like ...

  2. [Effects of growth factors on multipotent bone marrow mesenchymal stromal cells].

    PubMed

    Molchanova, E A; Paiushina, O V; Starostin, V I

    2008-01-01

    Multipotent bone marrow mesenchymal stromal cells are progenitors of various cell types capable of long-term self-maintenance. These cells are an adequate model for studying the most important problems in cell biology, such as self-maintenance of stem cells and regulation of their differentiation. Moreover, these cells are a promising resource for regenerative medicine. In this context, isolation of the earliest multipotent mesenchymal stromal cells, their in vitro maintenance in an undifferentiated state, and stimulation of their differentiation in a desired direction appear to be most important. To successfully use the multipotent mesenchymal stromal cells both in fundamental studies and in therapy, it is necessary to modify and standardize the composition of culture medium, replacing blood serum with certain growth factors. These factors have influence on the proliferation and differentiation of most cell types, including multipotent mesenchymal stromal cells. This paper is a review of available data concerning the effects of some growth factors on the multipotent mesenchymal stromal cells of the bone marrow. PMID:19198070

  3. Identification of Factors Produced and Secreted by Mesenchymal Stromal Cells with the SILAC Method.

    PubMed

    Rocha, Beatriz; Calamia, Valentina; Blanco, Francisco J; Ruiz-Romero, Cristina

    2016-01-01

    Mesenchymal stromal cells (MSCs) secrete a large variety of proteins and factors, which shape the secretome. These proteins participate in multiple cellular functions, including the promotion of regenerative processes in the damaged tissue. Secretomes derived from either undifferentiated MSCs or these cells undergoing osteogenic, chondrogenic, or adipogenic differentiation have been characterized using different liquid chromatography tandem mass spectrometry (LC-MS/MS)-based quantitative proteomic approaches. In this chapter, we describe the use of the Stable Isotope Labeling by Amino Acids in Cell culture (SILAC) strategy for the identification and relative quantification of the mesenchymal stromal cell secretome, specifically during chondrogenesis. PMID:27236695

  4. Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors.

    PubMed

    Rusakiewicz, Sylvie; Semeraro, Michaela; Sarabi, Matthieu; Desbois, Mélanie; Locher, Clara; Mendez, Rosa; Vimond, Nadège; Concha, Angel; Garrido, Federico; Isambert, Nicolas; Chaigneau, Loic; Le Brun-Ly, Valérie; Dubreuil, Patrice; Cremer, Isabelle; Caignard, Anne; Poirier-Colame, Vichnou; Chaba, Kariman; Flament, Caroline; Halama, Niels; Jäger, Dirk; Eggermont, Alexander; Bonvalot, Sylvie; Commo, Frédéric; Terrier, Philippe; Opolon, Paule; Emile, Jean-François; Coindre, Jean-Michel; Kroemer, Guido; Chaput, Nathalie; Le Cesne, Axel; Blay, Jean-Yves; Zitvogel, Laurence

    2013-06-15

    Cancer immunosurveillance relies on effector/memory tumor-infiltrating CD8(+) T cells with a T-helper cell 1 (TH1) profile. Evidence for a natural killer (NK) cell-based control of human malignancies is still largely missing. The KIT tyrosine kinase inhibitor imatinib mesylate markedly prolongs the survival of patients with gastrointestinal stromal tumors (GIST) by direct effects on tumor cells as well as by indirect immunostimulatory effects on T and NK cells. Here, we investigated the prognostic value of tumor-infiltrating lymphocytes (TIL) expressing CD3, Foxp3, or NKp46 (NCR1) in a cohort of patients with localized GIST. We found that CD3(+) TIL were highly activated in GIST and were especially enriched in areas of the tumor that conserve class I MHC expression despite imatinib mesylate treatment. High densities of CD3(+) TIL predicted progression-free survival (PFS) in multivariate analyses. Moreover, GIST were infiltrated by a homogeneous subset of cytokine-secreting CD56(bright) (NCAM1) NK cells that accumulated in tumor foci after imatinib mesylate treatment. The density of the NK infiltrate independently predicted PFS and added prognostic information to the Miettinen score, as well as to the KIT mutational status. NK and T lymphocytes preferentially distributed to distinct areas of tumor sections and probably contributed independently to GIST immunosurveillance. These findings encourage the prospective validation of immune biomarkers for optimal risk stratification of patients with GIST. PMID:23592754

  5. Stromal inhibition of prostatic epithelial cell proliferation not mediated by transforming growth factor beta.

    PubMed Central

    Kooistra, A.; van den Eijnden-van Raaij, A. J.; Klaij, I. A.; Romijn, J. C.; Schröder, F. H.

    1995-01-01

    The paracrine influence of prostatic stroma on the proliferation of prostatic epithelial cells was investigated. Stromal cells from the human prostate have previously been shown to inhibit anchorage-dependent as well as anchorage-independent growth of the prostatic tumour epithelial cell lines PC-3 and LNCaP. Antiproliferative activity, mediated by a diffusible factor in the stromal cell conditioned medium, was found to be produced specifically by prostatic stromal cells. In the present study the characteristics of this factor were examined. It is demonstrated that prostate stroma-derived inhibiting factor is an acid- and heat-labile, dithiothreitol-sensitive protein. Although some similarities with type beta transforming growth factor (TGF-beta)-like inhibitors are apparent, evidence is presented that the factor is not identical to TGF-beta or to the TGF-beta-like factors activin and inhibin. Absence of TGF-beta activity was shown by the lack of inhibitory response of the TGF-beta-sensitive mink lung cell line CCL-64 to prostate stromal cell conditioned medium and to concentrated, partially purified preparations of the inhibitor. Furthermore, neutralising antibodies against TGF-beta 1 or TGF-beta 2 did not cause a decline in the level of PC-3 growth inhibition caused by partially purified inhibitor. Using Northern blot analyses, we excluded the involvement of inhibin or activin. It is concluded that the prostate stroma-derived factor may be a novel growth inhibitor different from any of the currently described inhibiting factors. Images Figure 5 PMID:7543773

  6. Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models.

    PubMed

    Bersani, Francesca; Lee, Jungwoo; Yu, Min; Morris, Robert; Desai, Rushil; Ramaswamy, Sridhar; Toner, Mehmet; Haber, Daniel A; Parekkadan, Biju

    2014-12-15

    Modeling the hematogenous spread of cancer cells to distant organs poses one of the greatest challenges in the study of human metastasis. Both tumor cell-intrinsic properties as well as interactions with reactive stromal cells contribute to this process, but identification of relevant stromal signals has been hampered by the lack of models allowing characterization of the metastatic niche. Here, we describe an implantable bioengineered scaffold, amenable to in vivo imaging, ex vivo manipulation, and serial transplantation for the continuous study of human metastasis in mice. Orthotopic or systemic inoculation of tagged human cancer cells into the mouse leads to the release of circulating tumor cells into the vasculature, which seed the scaffold, initiating a metastatic tumor focus. Mouse stromal cells can be readily recovered and profiled, revealing differential expression of cytokines, such as IL1β, from tumor-bearing versus unseeded scaffolds. Finally, this platform can be used to test the effect of drugs on suppressing initiation of metastatic lesions. This generalizable model to study cancer metastasis may thus identify key stromal-derived factors with important implications for basic and translational cancer research. PMID:25339351

  7. Luman recruiting factor is involved in stromal cell proliferation during decidualization in mice.

    PubMed

    Li, Xiao; Lin, Pengfei; Chen, Fenglei; Wang, Nan; Zhao, Fan; Wang, Aihua; Jin, Yaping

    2016-08-01

    Decidualization is crucial for successful pregnancy in mice and humans. Although many essential molecular modulators have been identified during decidualization, the precise molecular mechanism of uterine decidualization remains largely unknown. Our previous research indicates that luman recruiting factor (LRF) is strongly expressed in decidual uteri of mice on days 6-8 of pregnancy. In this study, our aim is to determine the biological functions of LRF during decidualization in mice. We used the shLRF lentivirus to attenuate the expression of LRF, which significantly reduced the weight and size of implantation sites on days 7-8 of pregnancy. In a stromal cell culture model, LRF mRNA and protein levels increased significantly during stromal cell decidualization induced by estrogen and progesterone. LRF silencing resulted in the decidual markers decidual prolactin-related protein, insulin-like growth factor-binding protein 1 and progesterone receptor being dramatically reduced, and the decidual process was significantly inhibited. Cell-cycle analysis and cell apoptosis analysis revealed that, although no obvious apoptosis occurred in shLRF-lentivirus-infected stromal cells during decidualization, proliferation was inhibited via S-phase cell-cycle arrest, and the mitotic activity of uterine stromal cells was inhibited. An examination of cell-cycle regulatory factors indicated that the mRNA expression levels of cyclin A and cyclin B1 were significantly down-regulated after treatment with shLRF lentivirus. Thus, LRF seems to be involved in the regulation of decidualization during pregnancy by modulating the expression of the key cell-cycle regulatory factors cyclin A and cyclin B1. PMID:27053244

  8. Bioengineering Organized, Multilamellar Human Corneal Stromal Tissue by Growth Factor Supplementation on Highly Aligned Synthetic Substrates

    PubMed Central

    Wu, Jian; Du, Yiqin; Mann, Mary M.; Yang, Enzhi; Funderburgh, James L.

    2013-01-01

    Recapitulating the microstructure of the native human corneal stromal tissue is believed to be a key feature in successfully engineering the corneal tissue. The stratified multilayered collagen fibril lamellae with orthogonal orientation determine the robust biomechanical properties of this tissue, and the uniform collagen fibril size and interfibrillar spacing are critical to its optical transparency. The objective of this investigation was to develop a highly organized collagen-fibril construct secreted by human corneal stromal stem cells (hCSSCs) to mimic the human corneal stromal tissue. In culture on a highly aligned fibrous substrate made from poly(ester urethane) urea, the fibroblast growth factor-2 (FGF-2, 10 ng/mL) and transforming growth factor-beta 3 (TGF-β3, 0.1 ng/mL) impacted the organization and abundance of the secreted collagen fibril matrix. hCSSCs differentiated into keratocytes with significant upregulation of the typical gene markers, including KERA, B3GnT7, and CHST6. FGF-2 treatment stimulated hCSSCs to secrete collagen fibrils strongly aligned in a single direction, whereas TGF-β3 induced collagenous layers with orthogonal fibril orientation. The combination of FGF-2 and TGF-β3 induced multilayered lamellae with orthogonally oriented collagen fibrils, in a pattern mimicking the human corneal stromal tissue. The constructs were 60–70 μm thick and had an increased content of cornea-specific extracellular matrix components, including keratan sulfate, lumican, and keratocan. The approach of combining substrate cues with growth factor augmentation offers a new means to engineer well-organized, collagen-based constructs with an appropriate nanoscale structure for corneal repair and regeneration. PMID:23557404

  9. The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization

    PubMed Central

    Kommagani, Ramakrishna; Szwarc, Maria M.; Vasquez, Yasmin M.; Peavey, Mary C.; Mazur, Erik C.; Gibbons, William E.; Lanz, Rainer B.; DeMayo, Francesco J.; Lydon, John P.

    2016-01-01

    Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights

  10. The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization.

    PubMed

    Kommagani, Ramakrishna; Szwarc, Maria M; Vasquez, Yasmin M; Peavey, Mary C; Mazur, Erik C; Gibbons, William E; Lanz, Rainer B; DeMayo, Francesco J; Lydon, John P

    2016-04-01

    Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights

  11. Paracrine Factors Produced by Bone Marrow Stromal Cells Induce Apoptosis and Neuroendocrine Differentiation in Prostate Cancer Cells

    PubMed Central

    Zhang, Chu; Soori, Mehrnoosh; Miles, Fayth; Sikes, Robert A.; Carson, Daniel D.; Chung, Leland L.W.; Farach-Carson, Mary C.

    2010-01-01

    Background Preferential bony metastasis of human prostate cancer (PCa) cells contributes to disease mortality and morbidity. Local factors in bone stromal extracellular matrix microenvironment affect tumor growth through paracrine interactions between tumor and stromal cells. Methods Using co-culture and medium transfer, we used several methods to assess interactions between PCa and bone stromal cells using three PCa cell lines: PC3, LNCaP, and the LNCaP derivative, C4-2B. Results Co-culture of LNCaP and C4-2B cells with bone marrow stromal cell lines, HS27a and HS5, decreased cell number, as did culture with conditioned medium (CM) harvested from these two cell lines suggesting a soluble paracrine factor was responsible. PC3 cell growth was unaffected. CM harvested from bone stromal cell lines triggered apoptosis in LNCaP and C4-2B cell lines, but not in PC3 cells. Surviving C4-2B cells grown in bone stromal cell CM over several days were growth arrested, suggesting presence of a growth inhibitor. Apoptosis induced by CM was dose-dependent. Flow cytometry demonstrated that over a five day culture period in stromal cell CM, LNCaP and C4-2B cell lines, but not PC3 cells, underwent greater apoptosis than parallel cultures in SF medium. The LNCaP and C4-2B cells showed morphology and biomarker expression consistent with transdifferentiation towards a neuroendocrine phenotype after exposure to stromal cell CM. Conclusions The reactive bone stromal microenvironment initially is hostile to PCa cells producing widespread apoptosis. Activation of transdifferentiation in a subset of apoptotic resistant cells may support phenotypic adaptation during disease progression in bone, eventually favoring lethal disease. PMID:20665531

  12. Outcome and Prognostic Factors in Endometrial Stromal Tumors: A Rare Cancer Network Study

    SciTech Connect

    Schick, Ulrike; Bolukbasi, Yasmin; Thariat, Juliette; Abdah-Bortnyak, Roxolyana; Kuten, Abraham; Igdem, Sefik; Caglar, Hale; Ozsaran, Zeynep; Loessl, Kristina; Schleicher, Ursula; Zwahlen, Daniel; Villette, Sylviane; Vees, Hansjoerg

    2012-04-01

    Purpose: To provide further understanding regarding outcome and prognostic factors of endometrial stromal tumors (EST). Methods and Materials: A retrospective analysis was performed on the records of 59 women diagnosed with EST and treated with curative intent between 1983 and 2007 in the framework of the Rare Cancer Network. Results: Endometrial stromal sarcomas (ESS) were found in 44% and undifferentiated ESS (UES) in 49% of the cases. In 7% the grading was unclear. Of the total number of patients, 33 had Stage I, 4 Stage II, 20 Stage III, and 1 presented with Stage IVB disease. Adjuvant chemotherapy was administered to 12 patients, all with UES. External-beam radiotherapy (RT) was administered postoperatively to 48 women. The median follow-up was 41.4 months. The 5-year overall survival (OS) rate was 96.2% and 64.8% for ESS and UES, respectively, with a corresponding 5-year disease-free survival (DFS) rate of 49.4% and 43.4%, respectively. On multivariate analysis, adjuvant RT was an independent prognostic factor for OS (p = 0.007) and DFS (p = 0.013). Locoregional control, DFS, and OS were significantly associated with age ({<=}60 vs. >60 years), grade (ESS vs. UES), and International Federation of Gynecology and Obstetrics stage (I-II vs. III-IV). Positive lymph node staging had an impact on OS (p < 0.001). Conclusion: The prognosis of ESS differed from that of UES. Endometrial stromal sarcomas had an excellent 5-year OS, whereas the OS in UES was rather low. However, half of ESS patients had a relapse. For this reason, adjuvant treatment such as RT should be considered even in low-grade tumors. Multicenter randomized studies are still warranted to establish clear guidelines.

  13. [The influence of extreme factors on homing multipotent mesenchymal stromal cells].

    PubMed

    Maklakova, I Yu; Grebnev, Y D; Yastrebov, A P

    2015-01-01

    In this study, we studied homing multipotent mesenchymal stromal cells under influence of extreme factors: after radiation exposure, acute blood loss. Absorbed dose ionizing radiation amounted to 4.0 C (causes acute radiation sickness in mice), acute blood loss was caused by bleeding from the tail vein of the mouse in the amount of 2% of the body weight of the animal. Label MMSC used fluorochrome DAPI, ready to use. The experiments were performed on 60 Mature mice (males) age 6-8 months, weighing 20-25 g. Experiments on the culture of multipotent mesenchymal stromal cells from the placenta (chorion) performed on laboratory mice female at the age of 3-4 months in the gestation period of 14 days. Introduction suspensions of MMSC was carried out at a dose of 6 million cells/mouse, suspended in 0.2 ml 0.9% NaCl solution. The control group of laboratory animals MMSC transplantation was carried out also in the amount of 6 million cells/mouse. The assessment was made of tissue chimerism in the peripheral blood, bone marrow, spleen, small intestine, liver, lung, kidney, heart after 1 and 24 hours after transplantation of labeled cells. It was found a significant decrease in the content of labeled MMSC in the peripheral blood at extreme impact, indicating a migration of the transplanted cells in the damaged tissue. Homing transplanted MMSC is realized mainly in those tissues that underwent the most damage. PMID:27116883

  14. Leukemia Inhibitory Factor Enhances Endometrial Stromal Cell Decidualization in Humans and Mice

    PubMed Central

    Yap, Joanne; Li, Priscilla; Lane, Natalie; Dimitriadis, Evdokia

    2011-01-01

    Adequate differentiation or decidualization of endometrial stromal cells (ESC) is critical for successful pregnancy in humans and rodents. Here, we investigated the role of leukemia inhibitory factor (LIF) in human and murine decidualization. Ex vivo human (H) ESC decidualization was induced by estrogen (E, 10−8 M) plus medroxyprogesterone acetate (MPA, 10−7 M). Exogenous LIF (≥50 ng/ml) induced STAT3 phosphorylation in non-decidualized and decidualized HESC and enhanced E+MPA-induced decidualization (measured by PRL secretion, P<0.05). LIF mRNA in HESC was down-regulated by decidualization treatment (E+MPA) whereas LIF receptor (R) mRNA was up-regulated, suggesting that the decidualization stimulus ‘primed’ HESC for LIF action, but that factors not present in our in vitro model were required to induce LIF expression. Ex vivo first trimester decidual biopsies secreted >100 pg/mg G-CSF, IL6, IL8, and MCP1. Decidualized HESC secreted IL6, IL8, IL15 and MCP1. LIF (50 ng/ml) up-regulated IL6 and IL15 (P<0.05) secretion in decidualized HESC compared to 0.5 ng/ml LIF. In murine endometrium, LIF and LIFR immunolocalized to decidualized stromal cells on day 5 of gestation (day 0 = day of plug detection). Western blotting confirmed that LIF and the LIFR were up-regulated in intra-implantation sites compared to inter-implantation sites on Day 5 of gestation. To determine the role of LIF during in vivo murine decidualization, intra-peritoneal injections of a long-acting LIF antagonist (PEGLA; 900 or 1200 µg) were given just post-attachment, during the initiation of decidualization on day 4. PEGLA treatment reduced implantation site decidual area (P<0.05) and desmin staining immuno-intensity (P<0.05) compared to control on day 6 of gestation. This study demonstrated that LIF was an important regulator of decidualization in humans and mice and data provides insight into the processes underlying decidualization, which are important for understanding implantation

  15. Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice

    PubMed Central

    Day, Ryan B.; Bhattacharya, Deepta; Nagasawa, Takashi

    2015-01-01

    The mechanisms that mediate the shift from lymphopoiesis to myelopoiesis in response to infectious stress are largely unknown. We show that treatment with granulocyte colony-stimulating factor (G-CSF), which is often induced during infection, results in marked suppression of B lymphopoiesis at multiple stages of B-cell development. Mesenchymal-lineage stromal cells in the bone marrow, including CXCL12-abundant reticular (CAR) cells and osteoblasts, constitutively support B lymphopoiesis through the production of multiple B trophic factors. G-CSF acting through a monocytic cell intermediate reprograms these stromal cells, altering their capacity to support B lymphopoiesis. G-CSF treatment is associated with an expansion of CAR cells and a shift toward osteogenic lineage commitment. It markedly suppresses the production of multiple B-cell trophic factors by CAR cells and osteoblasts, including CXCL12, kit ligand, interleukin-6, interleukin-7, and insulin-like growth factor-1. Targeting bone marrow stromal cells is one mechanism by which inflammatory cytokines such as G-CSF actively suppress lymphopoiesis. PMID:25814527

  16. Amplification of Coronary Arteriogenic Capacity of Multipotent Stromal Cells by Epidermal Growth factor

    PubMed Central

    Belmadani, Souad; Matrougui, Khalid; Kolz, Chris; Pung, Yuh Fen; Palen, Desiree; Prockop, Darwin J; Chilian, William M

    2009-01-01

    Objective We determined if increasing adherence of multipotent stromal cells (MSCs) would amplify their effects on coronary collateral growth (CCG). Methods and Results Adhesion was established in cultured coronary endothelials cells (CECS) or MSCs treated with epidermal growth factor (EGF). EGF increased MSCs adhesion to CECs, and increased intercellular adhesion molecule (ICAM-1) or vascular cell adhesion molecule (VCAM-1) expression. Increased adherence was blocked by EGF receptor antagonism or antibodies to the adhesion molecules. To determine if adherent MSCs, treated with EGF, would augment CCG, repetitive episodes of myocardial ischemia (RI) were introduced and CCG was measured from the ratio of collateral-dependent (CZ) and normal zone (NZ) flows. CZ/NZ was increased by MSCs without treatment vs RI-control and was further increased by EGF-treated MSCs. EGF-treated MSCs significantly improved myocardial function vs RI or RI+ MSCs demonstrating that the increase in collateral flow was functionally significant. Engraftment of MSCs into myocardium was also increased by EGF treatment. Conclusions These results reveal the importance of EGF in MSCs adhesion to endothelium and suggest that MSCs may be effective therapies for the stimulation of coronary collateral growth when interventions are employed to increase their adhesion and homing (in vitro EGF treatment) to the jeopardized myocardium. PMID:19342596

  17. Mesenchymal Stem Cells with Increased Stromal Cell-Derived Factor 1 Expression Enhanced Fracture Healing

    PubMed Central

    Ho, Chih-Yuan; Hua, Jia; Coathup, Melanie; Kalia, Priya; Blunn, Gordon

    2015-01-01

    Treatment of critical size bone defects pose a challenge in orthopedics. Stem cell therapy together with cytokines has the potential to improve bone repair as they cause the migration and homing of stem cells to the defect site. However, the engraftment, participation, and recruitment of other cells within the regenerating tissue are important. To enhance stem cell involvement, this study investigated overexpression of stem cells with stromal cell-derived factor 1 (SDF-1) using an adenovirus. We hypothesized that these engineered cells would effectively increase the migration of native cells to the site of fracture, enhancing bone repair. Before implantation, we showed that SDF-1 secreted by transfected cells increased the migration of nontransfected cells. In a rat defect bone model, bone marrow mesenchymal stem cells overexpressing SDF-1 showed significantly (p=0.003) more new bone formation within the gap and less bone mineral loss at the area adjacent to the defect site during the early bone healing stage. In conclusion, SDF-1 was shown to play an important role in accelerating fracture repair and contributing to bone repair in rat models, by recruiting more host stem cells to the defect site and encouraging osteogenic differentiation and production of bone. PMID:25251779

  18. Induction of manganese superoxide dismutase by tumour necrosis factor-alpha in human endometrial stromal cells.

    PubMed

    Karube-Harada, A; Sugino, N; Kashida, S; Takiguchi, S; Takayama, H; Yamagata, Y; Nakamura, Y; Kato, H

    2001-11-01

    The present study was undertaken to investigate the effect of tumour necrosis factor-alpha (TNFalpha) on superoxide dismutase (SOD) expression in human endometrial stromal cells (ESC) and to determine whether there is a difference in responsiveness to TNFalpha between ESC and decidualized ESC. TNFalpha increased manganese-SOD (Mn-SOD) mRNA level and Mn-SOD activity in a dose-dependent manner in ESC. The concentration of TNFalpha required for an effect was lower for decidualized ESC than for non-decidualized ESC. TNFalpha had no effect on copper-zinc-SOD (Cu,Zn-SOD) expression in either type of cell. Incubation of ESC with actinomycin D, an RNA synthesis inhibitor, blocked TNFalpha-induced Mn-SOD mRNA expression, but cycloheximide, a protein synthesis inhibitor, had no effect. H7, an inhibitor of protein kinase C (PKC), also inhibited TNFalpha-stimulated Mn-SOD mRNA expression in both types of cells. These findings suggest that TNFalpha-induced Mn-SOD expression is regulated at the transcription level and mediated by PKC-dependent phosphorylation and that de-novo protein synthesis is not required for the TNFalpha effect. In summary, TNFalpha induces Mn-SOD expression in human ESC. This phenomenon may be important for protection of ESC from cytokine-mediated oxidative stress. PMID:11675473

  19. Knockdown of stromal interaction molecule 1 attenuates hepatocyte growth factor-induced endothelial progenitor cell proliferation.

    PubMed

    Shi, Yankun; Song, Mingbao; Guo, Ruiwei; Wang, Hong; Gao, Pan; Shi, Weibin; Huang, Lan

    2010-03-01

    Increased Ca(2+) entry through store-operated Ca(2+) channels (SOCCs) plays an essential role in the regulation of hepatocyte growth factor (HGF)-induced cell proliferation. Stromal interaction molecule 1 (STIM1) is thought to transmit endoplasmic reticulum (ER) Ca(2+) store depletion signals to the plasma membrane (PM), causing the opening of SOCCs in the PM. However, the relationship between HGF and STIM1 in endothelial progenitor cell (EPC) proliferation remains uncharacterized. The objective of this study was to evaluate the potential involvement of STIM1 in HGF-induced EPC proliferation. For this purpose, we used cultured rat bone marrow-derived EPCs and found that HGF-induced EPC proliferation at low concentrations. Store-operated Ca(2+) entry (SOCE) was elevated in HGF-treated EPCs, and the SOCC inhibitors 2-aminoethoxydiphenyl borate (2-APB) and BTP-2 inhibited the HGF-induced proliferation response. Moreover, STIM1 mRNA and protein expression levels were increased in response to HGF stimulation and knockdown of STMI1 decreased SOCE and prevented HGF-induced EPC proliferation. In conclusion, our data suggest that HGF-induced EPC proliferation is mediated partly via activation of STIM1. PMID:20404049

  20. Positive cyclin T expression as a favorable prognostic factor in treating gastric gastrointestinal stromal tumors

    PubMed Central

    LIN, LIEN-FU; JIN, JONG-SHIAW; CHEN, JUI-CHANG; HUANG, CHIA-CHI; SHEU, JENG-HORNG; CHEN, WENLUNG; TSAO, TANG-YI; HSU, CHIH-WEI

    2016-01-01

    Positive transcriptional elongation factor b (P-TEFb) contains the catalytic subunit cyclin-dependent kinase 9 (Cdk9) and the regulatory subunit cyclin T. Cyclin T1 and Cdk9 are the key factors of the PTEFb pathways and are overexpressed in the human head and neck carcinoma cell line. However, there have been limited studies regarding the role of cyclin T1 and Cdk9 in gastric gastrointestinal stromal tumors (GISTs). The aim of the present study was to assess the association between cyclin T1 and Cdk9 and their clinical significance in gastric GISTs. A total of 30 gastric GIST patients who underwent either laparoscopic or laparotomic partial gastrectomy were enrolled in the study. The surgical tissue slides were stained with Cdk9 and cyclin T1 antibodies, and the immunohistochemistry scores and disease-free survival (DFS) were analyzed. Ten patients were cyclin T1-positive, and 20 were negative. All 11 patients with recurrent tumors or distant metastases were cyclin T1-negative patients. Old age, large tumor size, a high Ki67 IHC staining score, high mitotic count and negative cyclin T1 staining revealed a worse clinical outcome in univariate analysis. By contrast, the Cdk9 score was not associated with clinical parameters. The Kaplan-Meier survival curve illustrated that the DFS rate of the patients with negative cyclin T1 staining was significantly lower than that of the patients with positive cyclin T1 staining. Positive expression of cyclin T1 was a good prognostic factor in patients with gastric GISTs. PMID:27284431

  1. Expression of Stromal Cell-Derived Factor-1 and of Its Receptor CXCR4 in Liver Regeneration from Oval Cells in Rat

    PubMed Central

    Mavier, Philippe; Martin, Nadine; Couchie, Dominique; Préaux, Anne-Marie; Laperche, Yannick; Zafrani, Elie Serge

    2004-01-01

    Stromal cell-derived factor-1 is a chemokine that plays a major role during embryogenesis. Since stromal cell-derived factor-1 and its unique receptor CXCR4 are involved in the differentiation of progenitor cells, we studied the expression of this chemokine and of its receptor in hepatic regeneration from precursor oval cells. Hepatic regeneration was induced by treating rats with 2-acetylaminofluorene, and followed by partial hepatectomy. Oval cell accumulation, which predominated in periportal regions, reached a maximum at days 9 to 14 after hepatectomy and declined thereafter. Oval cells strongly expressed stromal cell-derived factor-1 protein and mRNA. CXCR4 mRNA hepatic level paralleled the number of oval cells and in situ hybridization showed CXCR4 mRNA expression by these cells. Treatment of rats with fucoidan, a sulfated polysaccharide which binds to stromal cell-derived factor-1 and blocks its biological effects, markedly decreased oval cell accumulation in five of the seven treated rats. In conclusion, our data demonstrate an expression of stromal cell-derived factor-1 and of its receptor CXCR4 in oval cells during hepatic regeneration and strongly suggest that stromal cell-derived factor-1 stimulates the proliferation of these precursor cells through an autocrine/paracrine pathway. PMID:15579440

  2. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    SciTech Connect

    Matsukura, Hiroshi; Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun; Muramatsu, Masaaki; Sudo, Katsuko; Sato, Noriko

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  3. Stromal cell–derived factor 2 is critical for Hsp90-dependent eNOS activation

    PubMed Central

    Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C.; Sessa, William C.

    2016-01-01

    Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell–derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser1177, a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser1177 in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. PMID:26286023

  4. Stromal cell-derived factor 1 polymorphism in patients infected with HIV and implications for AIDS progression in Tunisia

    PubMed Central

    Amara, Sameh; Domenech, Jorge; Jenhani, Faouzi

    2010-01-01

    Background An interesting finding in the epidemiology of human immunodeficiency virus (HIV) infection is that certain mutations in genes coding for chemokines, and their receptors and ligands, may confer resistance or susceptibility to HIV-1 infection and acquired immunodeficiency syndrome (AIDS) progression. The mutation most frequently studied is stromal cell-derived factor (SDF)1-3′A, a single nucleotide polymorphism in the 3′ untranslated region at the 801 position of the SDF1 gene, which seems to be associated with susceptibility or resistance to diseases, including AIDS. We examined the frequency of the above polymorphisms in the Tunisian population, and evaluated their contribution to a protective genetic background against HIV infection and progression. Methods and materials One hundred forty blood samples from HIV-infected patients from the Cellular Immunology Research Laboratory at the National Blood Transfusion Center were compared with those of 164 random blood donors from the same center. Genotyping was initially performed by polymerase chain reaction (PCR) analysis. SDF1 PCR product genomic regions were further subjected to restriction fragment length polymorphism analysis for genotype determination. Screening for the SDF1 polymorphism in the HIV-infected population yielded 56 heterozygous (40%), 52 mutation homozygous (37.1%), and 32 wild-type homozygous (22.8%) subjects. In contrast, in our healthy population, we found 70/164 heterozygous (42.6%), nine mutation homozygous (5.4%), and 85 wild-type homozygous (51.8%) subjects. The allele frequencies in the HIV-infected and healthy populations were f(SD1 3′A) = 57.1%, f(SDF1) = 42.8%, f(SDF1 3′A) = 26.8%, and f(SDF1) = 73.1%, respectively. The allelic and genotypic frequencies of the SDF1 3′A in our population show significantly higher distribution profiles compared with those observed in other Caucasian, European, and African American populations. Our results were examined by χ2 test and

  5. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases.

    PubMed

    Liepelt, Anke; Tacke, Frank

    2016-08-01

    The chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is constitutively expressed in healthy liver. However, its expression increases following acute or chronic liver injury. Liver sinusoidal endothelial cells (LSEC), hepatic stellate cells (HSC), and malignant hepatocytes are important sources of SDF-1/CXCL12 in liver diseases. CXCL12 is able to activate two chemokine receptors with different downstream signaling pathways, CXCR4 and CXCR7. CXCR7 expression is relevant on LSEC, while HSC, mesenchymal stem cells, and tumor cells mainly respond via CXCR4. Here, we summarize recent developments in the field of liver diseases involving this chemokine and its receptors. SDF-1-dependent signaling contributes to modulating acute liver injury and subsequent tissue regeneration. By activating HSC and recruiting mesenchymal cells from bone marrow, CXCL12 can promote liver fibrosis progression, while CXCL12-CXCR7 interactions endorse proregenerative responses in chronic injury. Moreover, the SDF-1 pathway is linked to development of hepatocellular carcinoma (HCC) by promoting tumor growth, angiogenesis, and HCC metastasis. High hepatic CXCR4 expression has been suggested as a biomarker indicating poor prognosis of HCC patients. Tumor-infiltrating myeloid-derived suppressor cells (MDSC) also express CXCR4 and migrate toward CXCL12. Thus CXCL12 inhibition might not only directly block HCC growth but also modulate the tumor microenvironment (angiogenesis, MDSC), thereby sensitizing HCC patients to conventional or emerging novel cancer therapies (e.g., sorafenib, regorafenib, nivolumab, pembrolizumab). We herein summarize the current knowledge on the complex interplay between CXCL12 and CXCR4/CXCR7 in liver diseases and discuss approaches on the therapeutic targeting of these axes in hepatitis, fibrosis, and liver cancer. PMID:27313175

  6. Stromal Palladin Expression Is an Independent Prognostic Factor in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Sato, Daisuke; Tsuchikawa, Takahiro; Mitsuhashi, Tomoko; Hatanaka, Yutaka; Marukawa, Katsuji; Morooka, Asami; Nakamura, Toru; Shichinohe, Toshiaki; Matsuno, Yoshihiro; Hirano, Satoshi

    2016-01-01

    It has been clear that cancer-associated fibroblasts (CAFs) in the tumor microenvironment play an important role in pancreatic ductal adenocarcinoma (PDAC) progression. However, how CAFs relate to the patients’ prognosis and the effects of chemoradiation therapy (CRT) has not been fully investigated. Tissue microarrays (TMAs) representing 167 resected PDACs without preoperative treatment were used for immunohistochemical studies (IHC) of palladin, α-smooth muscle actin (SMA), and podoplanin. Correlations between the expression levels of these markers and clinicopathological findings were analyzed statistically. Whole sections of surgical specimens from PDACs with and without preoperative CRT, designated as the chemotherapy-first group (CF, n = 19) and the surgery-first group (SF, n = 21), respectively, were also analyzed by IHC. In TMAs, the disease-specific survival rate (DSS) at 5 years for all 167 cases was 23.1%. Seventy cases (41.9%) were positive for palladin and had significantly lower DSS (p = 0.0430). α-SMA and podoplanin were positive in 167 cases (100%) and 131 cases (78.4%), respectively, and they were not significantly associated with DSS. On multivariable analysis, palladin expression was an independent poor prognostic factor (p = 0.0243, risk ratio 1.60). In the whole section study, palladin positivity was significantly lower (p = 0.0037) in the CF group (5/19) with a significantly better DSS (p = 0.0144) than in the SF group (16/22), suggesting that stromal palladin expression is a surrogate indicator of the treatment effect after chemoradiation therapy. PMID:27023252

  7. Release of platelet activating factor (PAF) and eicosanoids in UVC-irradiated corneal stromal cells.

    PubMed

    Sheng, Y; Birkle, D L

    1995-05-01

    Ultraviolet (UV) irradiation provokes acute inflammation of the eye, and can be used to model processes that occur in response to damage to the anterior segment. This study characterized ultraviolet-C (UVC, 254 nm) irradiation-induced PAF synthesis, and arachidonic acid (20:4) and eicosanoid release in rabbit corneal stromal cells maintained in vitro. PAF was measured by radioimmunoassay (RIA) after exposing cultured corneal stromal cells to UVC irradiation (20 min, 2, 5, 10 mW/cm2). 14C-20:4-labeled stromal cells were also stimulated with UVC and radiolabeled phospholipids, neutral lipids and eicosanoids were measured. Synthesis of cell-associated and secreted PAF from corneal stromal cells was increased by UV irradiation. UV irradiation (254 nm, 5mW/cm2) enhanced 20:4 release from triacylglycerols, phosphatidylinositol, phosphatidylserine and phosphatidylethanolamine, and increased levels of 20:4-diacylglycerol and unesterified 20:4. The released 20:4 entered both the cyclooxygenase and lipoxygenase pathways after UVC irradiation. The PAF antagonist, BN52021 (10 microM) reduced UVC irradiation-induced stimulation of prostaglandin production, but failed to inhibit UVC-induced 20:4 release and synthesis of lipoxygenase products. Furthermore, exogenous PAF (1 microM) stimulated prostaglandin production, but did not increase the synthesis of lipoxygenase products from radiolabeled 20:4. The effects of PAF on prostaglandin synthesis were inhibited by BN52021. These findings indicate that responses to injury in cultured corneal stromal cells include PAF synthesis, release of 20:4 from glycerolipids, accumulation of diacylglycerol and synthesis of eicosanoids. The data further suggest that during UVC irradiation in vitro, PAF is not a primary or initial mediator of 20:4 release and synthesis of lipoxygenase products, but may mediate UVC-induced prostaglandin synthesis. PMID:7648859

  8. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    SciTech Connect

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.; Fromigue, O.; Modrowski, D.; Zerath, E.; Marie, P.J. . E-mail: pierre.marie@larib.inserm.fr

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2 administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.

  9. Using polarization-sensitive optical coherence tomography to identify tumor stromal fibrosis and increase tumor biopsy yield (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hariri, Lida P.; Adams, David C.; Miller, Alyssa J.; Mino-Kenudson, Mari; Suter, Melissa J.

    2016-03-01

    Tissue biopsy is the principal method used to diagnose tumors in a variety of organ systems. It is essential to maximize tumor yield in biopsy specimens for both clinical diagnostic and research purposes. This is particularly important in tumors where additional tissue is needed for molecular analysis to identify patients who would benefit from mutation-specific targeted therapy, such as in lung carcinomas. Inadvertent sampling of fibrotic stroma within tumor nodules contaminates biopsies, decreases tumor yield, and can impede diagnosis. The ability to assess tumor composition and guide biopsy site selection in real time is likely to improve diagnostic yield. Polarization sensitive OCT (PS-OCT) measures birefringence in organized tissues, such as collagen, and could be used to distinguish tumor from fibrosis. In this study, PS-OCT was obtained in 65 lung nodule samples from surgical resection specimens containing varying ratios of tumor and fibrosis. PS-OCT was obtained with either a custom-built helical scanning catheter (0.8 or 1.6mm in diameter) or a dual-axis bench top scanner. Strong birefringence was observed in nodules containing dense fibrosis, with no birefringence in adjacent regions of tumor. Tumors admixed with early, loosely-organized collagen demonstrated mild-to-moderate birefringence, and tumors with little collagen content showed little to no birefringent signal. PS-OCT provides significant insights into tumor nodule composition, and has potential to differentiate tumor from stromal fibrosis during biopsy site selection to increase diagnostic tumor yield.

  10. Heparin-Binding Epidermal Growth Factor and Its Receptors Mediate Decidualization and Potentiate Survival of Human Endometrial Stromal Cells

    PubMed Central

    Chobotova, Katya; Karpovich, Natalia; Carver, Janet; Manek, Sanjiv; Gullick, William J.; Barlow, David H.; Mardon, Helen J.

    2006-01-01

    Heparin-binding epidermal growth factor (HB-EGF) has pleiotropic biological functions in many tissues, including those of the female reproductive tract. It facilitates embryo development and mediates implantation and is thought to have a function in endometrial receptivity and maturation. The mature HB-EGF molecule manifests its activity as either a soluble factor (sol-HB-EGF) or a transmembrane precursor (tm-HB-EGF) and can bind two receptors, EGFR and ErbB4/HER4. In this study, we identify factors that modulate expression of HB-EGF, EGFR, and ErbB4 in endometrial stromal cells in vitro. We demonstrate that levels of sol- and tm-HB-EGF, EGFR, and ErbB4 are increased by cAMP, a potent inducer of decidualization of the endometrial stroma. We also show that production of sol- and tm-HB-EGF is differentially modulated by TNFα and TGFβ. Our data suggest that HB-EGF has a function in endometrial maturation in mediating decidualization and attenuating TNFα- and TGFβ-induced apoptosis of endometrial stromal cells. PMID:15562026

  11. Modeling extracellular matrix (ECM) alterations in ovarian cancer by multiphoton excited fabrication of stromal models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Campagnola, Paul J.; Ajeti, Visar; Lara, Jorge; Eliceiri, Kevin W.; Patankar, Mansh

    2016-04-01

    A profound remodeling of the extracellular matrix (ECM) occurs in human ovarian cancer but it unknown how this affects tumor growth, where this understanding could lead to better diagnostics and therapeutic approaches. We investigate the role of these ECM alterations by using multiphoton excited (MPE) polymerization to fabricate biomimetic models to investigate operative cell-matrix interactions in invasion/metastasis. First, we create nano/microstructured gradients mimicking the basal lamina to study adhesion/migration dynamics of ovarian cancer cells of differing metastatic potential. We find a strong haptotactic response that depends on both contact guidance and ECM binding cues. While we found enhanced migration for more invasive cells, the specifics of alignment and directed migration also depend on cell polarity. We further use MPE fabrication to create collagen scaffolds with complex, 3D submicron morphology. The stromal scaffold designs are derived directly from "blueprints" based on SHG images of normal, high risk, and malignant ovarian tissues. The models are seeded with different cancer cell lines and this allows decoupling of the roles of cell characteristics (metastatic potential) and ECM structure and composition (normal vs cancer) on adhesion/migration dynamics. We found the malignant stroma structure promotes enhanced migration and proliferation and also cytoskeletal alignment. Creating synthetic models based on fibers patterns further allows decoupling the topographic roles of the fibers themselves vs their alignment within the tissue. These models cannot be synthesized by other conventional fabrication methods and we suggest the MPE image-based fabrication method will enable a variety of studies in cancer biology.

  12. Stromal cell-derived factor-1 G801A polymorphism and the risk factors for cervical cancer.

    PubMed

    Roszak, Andrzej; Misztal, Matthew; Sowińska, Anna; Jagodziński, Paweł P

    2015-06-01

    Although certain studies have demonstrated no association between the stromal cell‑derived factor‑1 (SDF1‑3') G801A single nucleotide polymorphism (SNP) and cervical carcinoma, the interactions between the SDF1‑3' G801A SNP and contraceptive use, menopausal status, parity and tobacco smoking remain to be fully elucidated. Using polymerase chain reaction‑restriction fragment length polymorphism, the distribution of SDF1‑3' G801A genotypes in patients with cervical cancer (n=462) against control groups (n=497) was investigated. Logistic regression analysis, adjusting for age, pregnancy, oral contraceptive use, tobacco smoking and menopausal status, did not identify the SDF1‑3' G801A polymorphism as a genetic risk factor for cervical cancer. The adjusted odds ratio (OR) for patients with the A/G, vs. G/G genotype was 1.203, with a 95% confidence interval (CI) of 0.909‑1.591 (P=0.196). The adjusted OR for the A/A, vs. G/G genotype was 1.296 (95% CI=0.930‑1.807; P=0.125) and for the A/A or A/G, vs. G/G genotype was 1.262 (95% CI=0.964‑1.653; P=0.090)]. The P‑value of the χ2 test of the trend observed for the SDF1‑3' G801A polymorphism was at the borderline of being statistically significant (ptrend=0.0484). Stratified analyses between the distribution of the SDF1‑3' G801A genotypes and cervical cancer risks demonstrated that this polymorphism may be a risk factor for patients with a positive history of tobacco smoking (1.778; 95% CI=1.078‑2.934; P=0.0235). These findings suggested that the SDF1‑3' G801A polymorphism may be a genetic risk factor for cervical cancer in patients with a positive history of tobacco smoking. PMID:25672413

  13. Stromal cell-derived factor-1 enhances pro-angiogenic effect of granulocyte-colony stimulating factor

    PubMed Central

    Tan, Yaohong; Shao, Hongwei; Eton, Darwin; Yang, Zhe; Alonso-Diaz, Luis; Zhang, Hongkun; Schulick, Andrew; Livingstone, Alan S.; Yu, Hong

    2008-01-01

    Objective Granulocyte colony-stimulating factor (G-CSF) mobilizes bone marrow mononuclear cells into the peripheral circulation. Stromal cell-derived factor-1 (SDF-1) enhances the homing of progenitor cells mobilized from the bone marrow and augments neovascularization in ischemic tissue. We hypothesize that SDF-1 will boost the pro-angiogenic effect of G-CSF. Methods and results NIH 3T3 cells retrovirally transduced with SDF-1α gene (NIH 3T3/SDF-1) were used to deliver SDF-1 in vitro and in vivo. Endothelial progenitor cells (EPCs) co-cultured with NIH 3T3/SDF-1 cells using cell culture inserts migrated faster and were less apoptotic compared to those not exposed to SDF-1. NIH 3T3/SDF-1 (106 cells) were injected into the ischemic muscles immediately after resection of the left femoral artery and vein of C57BL/6J mice. G-CSF (25 μg/kg/day) was injected intraperitioneally daily for 3 days after surgery. Blood perfusion was examined using a laser Doppler perfusion imaging system. The perfusion ratio of ischemic/non-ischemic limb increased to 0.57±0.03 and 0.50±0.06 with the treatment of either SDF-1 or G-CSF only, respectively, 3 weeks after surgery, which was significantly higher than the saline-injected control group (0.41±0.01, P<0.05). Combined treatment with both SDF-1 and G-CSF resulted in an even better perfusion ratio of 0.69±0.08 (P<0.05 versus the single treatment groups). Mice were sacrificed 21 days after surgery. Immunostaining and Western blot assay of the tissue lysates showed that the injected NIH 3T3/SDF-1 survived and expressed SDF-1. CD34+ cells were detected with immunostaining, capillary density was assessed with alkaline phosphatase staining, and the apoptosis of muscle cells was viewed using an in situ cell death detection kit. More CD34+ cells, increased capillary density, and less apoptotic muscle cells were found in both G-CSF and SDF-1 treated group (P<0.05 versus other groups). Conclusion Combination of G-CSF-mediated progenitor cell

  14. Stromal Derived Factor-1/CXCR4 Axis Involved in Bone Marrow Mesenchymal Stem Cells Recruitment to Injured Liver

    PubMed Central

    Xiao Ling, Kuai; Peng, Li; Jian Feng, Zhang; Wei, Cao; Wei Yan, Yuan; Nan, Shao; Cheng Qi, Guan; Zhi Wei, Wang

    2016-01-01

    The molecular mechanism of bone marrow mesenchymal stromal stem cells (BMSCs) mobilization and migration to the liver was poorly understood. Stromal cell-derived factor-1 (SDF-1) participates in BMSCs homing and migration into injury organs. We try to investigate the role of SDF-1 signaling in BMSCs migration towards injured liver. The expression of CXCR4 in BMSCs at mRNA level and protein level was confirmed by RT-PCR, flow cytometry, and immunocytochemistry. The SDF-1 or liver lysates induced BMSCs migration was detected by transwell inserts. CXCR4 antagonist, AMD3100, and anti-CXCR4 antibody were used to inhibit the migration. The Sprague-Dawley rat liver injury model was established by intraperitoneal injection of thioacetamide. The concentration of SDF-1 increased as modeling time extended, which was determined by ELISA method. The Dir-labeled BMSCs were injected into the liver of the rats through portal vein. The cell migration in the liver was tracked by in vivo imaging system and the fluorescent intensity was measured. In vivo, BMSCs migrated into injured liver which was partially blocked by AMD3100 or anti-CXCR4 antibody. Taken together, the results demonstrated that the migration of BMSCs was regulated by SDF-1/CXCR4 signaling which involved in BMSCs recruitment to injured liver. PMID:26880995

  15. Platelet-Derived Growth Factor in the Ovarian Follicle Attracts the Stromal Cells of the Fallopian Tube Fimbriae

    PubMed Central

    Chen, Chiu-Hua; Hsu, Che-Fang; Huang, Rui-Len; Ding, Dah-Ching; Chu, Tang-Yuan

    2016-01-01

    During human ovulation, the fallopian tube fimbriae must move to the ovulation site to catch the oocyte. As the tissue-of-origin of the majority of ovarian high-grade serous carcinoma (HGSC), the fallopian tube fimbriae carrying a precursor cancer lesion may also approach the ovulatory site for metastasis. We hypothesize that platelet-derived growth factor (PDGF) in mature follicle fluid (FF) attracts the migration of PDGFR-expressing fimbriae toward the ovulating follicle. We observed that more PDGFR-β was expressed in the distal part than in the proximal parts of the fallopian tube, particularly in stromal cells in the lamina propria. The stromal cells, but not the epithelial cells, from normal fimbriae and fallopian tube HGSC were highly chemotactic to mature FF. The chemotactic activities were positively correlated with PDGF-BB and estradiol levels in FF and were abolished by a blocking antibody of PDGFR-β and by tyrosine kinase inhibitor imatinib. When PDGF-BB/AB was depleted from the FF, more than 80% of chemotaxis activities were diminished. This study suggests an ovarian follicle-directed and PDGF-dependent attraction of fallopian tube fimbriae before ovulation. The same mechanism may also be crucial for the ovarian homing of HGSC, which largely originates in the fimbriae. PMID:27379403

  16. Growth differentiation factor 6 derived from mesenchymal stem/stromal cells reduces age-related functional deterioration in multiple tissues

    PubMed Central

    Hisamatsu, Daisuke; Ohno-Oishi, Michiko; Nakamura, Shiho; Mabuchi, Yo; Naka-Kaneda, Hayato

    2016-01-01

    The senescence-associated secretory phenotype (SASP) has attracted attention as a mechanism that connects cellular senescence to tissue dysfunction, and specific SASP factors have been identified as systemic pro-aging factors. However, little is known about the age-dependent changes in the secretory properties of stem cells. Young, but not old, mesenchymal stem/stromal cells (MSCs) are a well-known source of critical regenerative factors, but the identity of these factors remains elusive. In this study, we identified growth differentiation factor 6 (Gdf6; also known as Bmp13 and CDMP-2) as a regenerative factor secreted from young MSCs. The expression of specific secretory factors, including Gdf6, was regulated by the microRNA (miRNA) miR-17, whose expression declined with age. Upregulation of Gdf6 restored the osteogenic capacity of old MSCs in vitro and exerted positive effects in vivo on aging-associated pathologies such as reduced lymphopoiesis, insufficient muscle repair, reduced numbers of neural progenitors in the brain, and chronic inflammation. Our results suggest that manipulation of miRNA could enable control of the SASP, and that regenerative factors derived from certain types of young cells could be used to treat geriatric diseases. PMID:27311402

  17. Transit of normal rat uterine stromal cells through G1 phase of the cell cycle requires progesterone-growth factor interactions.

    PubMed

    Jones, S R; Kimler, B F; Justice, W M; Rider, V

    2000-02-01

    Understanding of cell cycle regulation in hormonally responsive cells lags behind studies in other systems because few models have been available to identify the role of steroid hormones and their receptors in this process. This study investigates progesterone-dependent effects on the progression of normal uterine stromal cells through early G1 phase of the cell cycle. Quiescent rat uterine stromal cells were stimulated to reenter the cell cycle by adding serum-free medium containing medroxyprogesterone acetate (MPA) and basic fibroblast growth factor (FGF). [3H]thymidine incorporation increased significantly (P = 0.025) in cells stimulated with both FGF alone and MPA plus FGF compared with the control cells. Moreover, cells stimulated with MPA plus FGF incorporated significantly more (P = 0.01) [3H]thymidine than cells treated with FGF alone, suggesting requisite interactions between progesterone and FGF for stromal cell entry into S phase. Flow cytometric analysis of stimulated stromal cells showed FGF alone and MPA plus FGF increased significantly (P = 0.002) the percentage of cells in S phase at 12 h. Incorporation of bromodeoxyuridine into stromal cell nuclei indicated that FGF alone and MPA plus FGF increased the percentage of cells entering S phase at 18 and 24 h compared with the control cells. In addition, MPA plus FGF increased significantly (P = 0.001) the number of cells entering S phase at 24 h compared with FGF alone and sustained S phase entry compared with FGF alone, MPA alone, or the control cells. Stromal cells inhibited from G1 reentry by inhibition of mitosis showed accelerated entry into S phase in response to MPA plus FGF compared with FGF alone. Cyclin D1 messenger RNA increased in stromal cells treated with MPA plus FGF at 9, 12, and 15 h. Addition of RU 486 to cells stimulated with MPA plus FGF for 9 h reduced cyclin D1 messenger RNA accumulation by 40%. Western blot analysis of cyclin D1 immunoprecipitates indicated complex formation with

  18. Am80 inhibits stromal cell-derived factor-1-induced chemotaxis in T-cell acute lymphoblastic leukemia cells.

    PubMed

    Matsumoto, Taichi; Jimi, Shiro; Hara, Shuuji; Takamatsu, Yasushi; Suzumiya, Junji; Tamura, Kazuo

    2010-03-01

    C-X-C motif chemokine receptor 4 (CXCR4) and stromal cell-derived factor-1 (SDF-1) play a potent role in metastasis and infiltration of many types of tumors, including T-cell acute lymphoblastic leukemia (T-ALL), into the central nervous system or lymph nodes. Although higher levels of CXCR4 expression have been shown to correlate with shorter survival of patients, effective drugs affecting cell surface CXCR4 expression are still unknown. In the present study, we examined the effects of a synthetic retinoid Am80 on CXCR4 expression of cultured T-ALL cells, such as Jurkat. Am80 inhibited surface CXCR4 expression and SDF-1-induced chemotaxis by the acceleration of CXCR4 internalization via activation of conventional PKC. Am80 may be an effective drug to inhibit the extramedullary infiltration of T-ALL cells. PMID:20141446

  19. The emerging role of insulin-like growth factor 1 receptor (IGF1r) in gastrointestinal stromal tumors (GISTs)

    PubMed Central

    2010-01-01

    Recent years have seen a growing interest in insulin-like growth factor 1 receptor (IGF1R) in medical oncology. Interesting data have been reported also on IGF1r in gastrointestinal stromal tumors (GISTs) especially in children and in young adult patients whose disease does not harbour mutations on KIT and PDGFRA and are poorly responsive to conventional therapies. However, it is too early to reach conclusions on IGF1R as a novel therapeutic target in GIST because the receptor's biological role is still to be defined and the clinical significance in patients needs to be studied in larger studies. We update and comment the current literature on IGF1R in GISTs and discuss the future perspectives in this promising field. PMID:21078151

  20. Effects of the hypoxia-inducible factor-1 inhibitor echinomycin on vascular endothelial growth factor production and apoptosis in human ectopic endometriotic stromal cells.

    PubMed

    Tsuzuki, Tomoko; Okada, Hidetaka; Shindoh, Hisayuu; Shimoi, Kayo; Nishigaki, Akemi; Kanzaki, Hideharu

    2016-04-01

    Recent evidence points to a possible role for hypoxia-inducible factor (HIF)-1 in the pathogenesis and development of endometriosis. The objectives of this study were to investigate the critical role of HIF-1 in endometriosis and the effect of the HIF-1 inhibitor echinomycin on human ectopic endometriotic stromal cells (eESCs). Ectopic endometriotic tissues were obtained from 20 patients, who received an operation for ovarian endometriomas. We examined vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1) production, HIF-1 expression, cell proliferation and apoptosis of eESCs. Cobalt chloride (CoCl2) significantly induced expression of HIF-1α protein and VEGF production in a time-dependent manner in eESCs, but reduced SDF-1 production. VEGF production was significantly suppressed by treatment of 100 nM echinomycin without causing cell toxicity, but 0.1-10 nM echinomycin or 100 nM progestin had no significant effect. SDF-1 production was not affected by echinomycin treatment at any dose. Echinomycin inhibited cell proliferation and induced apoptotic cell death of the eESCs, and significantly inhibited expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL. Echinomycin inhibits VEGF production and induces apoptosis of eESCs by suppression of Bcl-2 and Bcl-xL. These findings suggest the unique therapeutic potential for echinomycin as an inhibitor of HIF-1 activation for endometriosis treatment. PMID:26654708

  1. Interferon-γ and Tumor Necrosis Factor-α Polarize Bone Marrow Stromal Cells Uniformly to a Th1 Phenotype

    PubMed Central

    Jin, Ping; Zhao, Yuanlong; Liu, Hui; Chen, Jinguo; Ren, Jiaqiang; Jin, Jianjian; Bedognetti, Davide; Liu, Shutong; Wang, Ena; Marincola, Francesco; Stroncek, David

    2016-01-01

    Activated T cells polarize mesenchymal stromal cells (MSCs) to a proinflammatory Th1 phenotype which likely has an important role in amplifying the immune response in the tumor microenvironment. We investigated the role of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), two factors produced by activated T cells, in MSC polarization. Gene expression and culture supernatant analysis showed that TNF-α and IFN-γ stimulated MSCs expressed distinct sets of proinflammatory factors. The combination of IFN-γ and TNF-α was synergistic and induced a transcriptome most similar to that found in MSCs stimulated with activated T cells and similar to that found in the inflamed tumor microenvironment; a Th1 phenotype with the expression of the immunosuppressive factors IL-4, IL-10, CD274/PD-L1 and indoleamine 2,3 dioxygenase (IDO). Single cell qRT-PCR analysis showed that the combination of IFN-γ and TNF-α polarized uniformly to this phenotype. The combination of IFN-γ and TNF-α results in the synergist uniform polarization of MSCs toward a primarily Th1 phenotype. The stimulation of MSCs by IFN-γ and TNF-α released from activated tumor infiltrating T cells is likely responsible for the production of many factors that characterize the tumor microenvironment. PMID:27211104

  2. Interferon-γ and Tumor Necrosis Factor-α Polarize Bone Marrow Stromal Cells Uniformly to a Th1 Phenotype.

    PubMed

    Jin, Ping; Zhao, Yuanlong; Liu, Hui; Chen, Jinguo; Ren, Jiaqiang; Jin, Jianjian; Bedognetti, Davide; Liu, Shutong; Wang, Ena; Marincola, Francesco; Stroncek, David

    2016-01-01

    Activated T cells polarize mesenchymal stromal cells (MSCs) to a proinflammatory Th1 phenotype which likely has an important role in amplifying the immune response in the tumor microenvironment. We investigated the role of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), two factors produced by activated T cells, in MSC polarization. Gene expression and culture supernatant analysis showed that TNF-α and IFN-γ stimulated MSCs expressed distinct sets of proinflammatory factors. The combination of IFN-γ and TNF-α was synergistic and induced a transcriptome most similar to that found in MSCs stimulated with activated T cells and similar to that found in the inflamed tumor microenvironment; a Th1 phenotype with the expression of the immunosuppressive factors IL-4, IL-10, CD274/PD-L1 and indoleamine 2,3 dioxygenase (IDO). Single cell qRT-PCR analysis showed that the combination of IFN-γ and TNF-α polarized uniformly to this phenotype. The combination of IFN-γ and TNF-α results in the synergist uniform polarization of MSCs toward a primarily Th1 phenotype. The stimulation of MSCs by IFN-γ and TNF-α released from activated tumor infiltrating T cells is likely responsible for the production of many factors that characterize the tumor microenvironment. PMID:27211104

  3. A subset of bone marrow stromal cells regulate ATP-binding cassette gene expression via insulin-like growth factor-I in a leukemia cell line.

    PubMed

    Benabbou, Nadia; Mirshahi, Pezhman; Bordu, Camille; Faussat, Anne-Marie; Tang, Ruoping; Therwath, Amu; Soria, Jeannette; Marie, Jean-Pierre; Mirshahi, Massoud

    2014-10-01

    The importance of the insulin-like growth factor, IGF, as a signaling axis in cancer development, progression and metastasis is highlighted by its effects on cancer cells, notably proliferation and acquired resistance. The role of the microenvironment within which cancer cells evolve and which mediates this effect is far from clear. Here, the involvement of IGF-I in inducing multidrug resistance in a myeloid leukemia cell line, grown in the presence of bone marrow-derived stromal cells called 'Hospicells' (BMH), is demonstrated. We found that i) drug sensitive as well as resistant leukemia cells express IGF-I and its receptor IGF-IR. However, the resistant cells were found to secrete high levels of IGF-I. ii) Presence of exogenous IGF-I promoted cell proliferation, which decreased when an inhibitor of IGF-IR (picropodophyllin, PPP) was added. iii) BMH and IGF-I are both involved in the regulation of genes of the ATP binding cassette (ABC) related to resistance development (MDR1, MRP1, MRP2, MRP3 and BCRP). iv) The levels of ABC gene expression by leukemia cells were found to increase in the presence of increasing numbers of BMH. However, these levels decreased when IGF-IR was inhibited by addition of PPP. v) Co-culture of the drug-sensitive leukemia cells with BMH induced protection against the action of daunorubicin. This chemoresistance was amplified by the presence of IGF-I whereas it decreased when IGF-IR was inhibited. Our results underline the role of microenvironment in concert with the IGF-1 pathway in conferring drug resistance to leukemia cells. PMID:25095896

  4. Distinct Stromal Cell Factor Combinations Can Separately Control Hematopoietic Stem Cell Survival, Proliferation, and Self-Renewal

    PubMed Central

    Wohrer, Stefan; Knapp, David J.H.F.; Copley, Michael R.; Benz, Claudia; Kent, David G.; Rowe, Keegan; Babovic, Sonja; Mader, Heidi; Oostendorp, Robert A.J.; Eaves, Connie J.

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) are identified by their ability to sustain prolonged blood cell production in vivo, although recent evidence suggests that durable self-renewal (DSR) is shared by HSC subtypes with distinct self-perpetuating differentiation programs. Net expansions of DSR-HSCs occur in vivo, but molecularly defined conditions that support similar responses in vitro are lacking. We hypothesized that this might require a combination of factors that differentially promote HSC viability, proliferation, and self-renewal. We now demonstrate that HSC survival and maintenance of DSR potential are variably supported by different Steel factor (SF)-containing cocktails with similar HSC-mitogenic activities. In addition, stromal cells produce other factors, including nerve growth factor and collagen 1, that can antagonize the apoptosis of initially quiescent adult HSCs and, in combination with SF and interleukin-11, produce >15-fold net expansions of DSR-HSCs ex vivo within 7 days. These findings point to the molecular basis of HSC control and expansion. PMID:24910437

  5. Effects of valproic acid on the expression of trophic factors in human bone marrow mesenchymal stromal cells.

    PubMed

    Cho, Goang-Won; Kang, Byung Yong; Kim, Kyung-Suk; Kim, Seung Hyun

    2012-09-27

    The potential of human bone marrow-mesenchymal stromal cells (hBM-MSCs) to differentiate into diverse cell types and secrete a variety of trophic factors makes them an excellent cell therapy tool for intractable diseases. However, their therapeutic efficacy has not yet been satisfied in preclinical and/or clinical trials with autologous or allogenic stem cells. To improve the efficacy of stem cell therapy, optimized conditions for stem cells need to be defined. In this study, we evaluated the effects of valproic acid (VPA), an HDAC inhibitor, in human BM-MSCs and assessed the expression of trophic factors (ANG, BDNF, ECGF1, bFGF-2, GDNF, HGF, IGF-1, PIGF, TGF-β1, and β-Pix) in MSCs treated with 200μg/ml VPA for 12h. Under these conditions the features of MSCs were not changed. The VPA-treated MSCs also showed an increased cell protective effect against oxidative injuries in MTT assays and improved migratory ability when examined by the Boyden chamber assay. This suggests that MSCs may be improved by treatment with an optimal VPA dose and incubation time, which may increase the efficacy of stem cell therapy. PMID:22917608

  6. Regulation of adipogenesis by paracrine factors from adipose stromal-vascular fraction - a link to fat depot-specific differences.

    PubMed

    Meissburger, Bettina; Perdikari, Aliki; Moest, Hansjörg; Müller, Sebastian; Geiger, Matthias; Wolfrum, Christian

    2016-09-01

    Visceral and subcutaneous adipose tissue depots have distinct features and contribute differentially to the development of metabolic dysfunction. We show here that adipocyte differentiation in subcutaneous stromal-vascular fraction (SVF) is increased compared to visceral SVF, however this increased differentiation capacity seems not to be due to changes in the number of adipocyte precursor cells. Rather, we demonstrate that secreted heat-sensitive factors from the SVF can inhibit adipocyte differentiation and that this effect is higher in visceral than in subcutaneous SVF, suggesting that visceral SVF is a source of secreted factors that can inhibit adipocyte formation. In order to explore secreted proteins that potentially inhibit differentiation in visceral preadipocytes we analyzed the secretome of both SVFs which led to the identification of 113 secreted proteins with an overlap of 42%. Further expression analysis in both depots revealed 16 candidates that were subsequently analyzed in a differentiation screen using an adenoviral knockdown system. From this analysis we were able to identify two potential inhibitory candidates, namely decorin (Dcn) and Sparc-like 1 (Sparcl1). We could show that ablation of either candidate enhanced adipogenesis in visceral preadipocytes, while treatment of primary cultures with recombinant Sparcl1 and Dcn blocked adipogenesis in a dose dependent manner. In conclusion, our data suggests that the differences in adipogenesis between depots might be due to paracrine and autocrine feedback mechanisms which could in turn contribute to metabolic homeostasis. PMID:27317982

  7. Cell Injury-Induced Release of Fibroblast Growth Factor 2: Relevance to Intracerebral Mesenchymal Stromal Cell Transplantations.

    PubMed

    Aizman, Irina; Vinodkumar, Deepti; McGrogan, Michael; Bates, Damien

    2015-07-15

    Beneficial effects of intracerebral transplantation of mesenchymal stromal cells (MSC) and their derivatives are believed to be mediated mostly by factors produced by engrafted cells. However, the mesenchymal cell engraftment rate is low, and the majority of grafted cells disappear within a short post-transplantation period. Here, we hypothesize that dying transplanted cells can affect surrounding tissues by releasing their active intracellular components. To elucidate the type, amounts, and potency of these putative intracellular factors, freeze/thaw extracts of MSC or their derivatives were tested in enzyme-linked immunosorbent assays and bioassays. We found that fibroblast growth factor (FGF)2 and FGF1, but not vascular endothelial growth factor and monocyte chemoattractant protein 1 levels were high in extracts despite being low in conditioned media. Extracts induced concentration-dependent proliferation of rat cortical neural progenitor cells and human umbilical vein endothelial cells; these proliferative responses were specifically blocked by FGF2-neutralizing antibody. In the neuropoiesis assay with rat cortical cells, both MSC extracts and killed cells induced expression of nestin, but not astrocyte differentiation. However, suspensions of killed cells strongly potentiated the astrogenic effects of live MSC. In transplantation-relevant MSC injury models (peripheral blood cell-mediated cytotoxicity and high cell density plating), MSC death coincided with the release of intracellular FGF2. The data showed that MSC contain a major depot of active FGF2 that is released upon cell injury and is capable of acutely stimulating neuropoiesis and angiogenesis. We therefore propose that both dying and surviving grafted MSC contribute to tissue regeneration. PMID:25873141

  8. Enhanced trophic factor secretion by mesenchymal stem/stromal cells with Glycine-Histidine-Lysine (GHK)-modified alginate hydrogels

    PubMed Central

    Jose, Soumia; Hughbanks, Marissa L.; Binder, Bernard Y.K.; Ingavle, Ganesh C.; Leach, J. Kent

    2014-01-01

    Recombinant proteins and cytokines are under broad preclinical and clinical investigation to promote angiogenesis, but their success is limited by ineffective delivery, lack of long-term stability, and excessive cost. Mesenchymal stem/stromal cells (MSC) secrete bioactive trophic factors, and thus, may provide an effective alternative to address these challenges. Glycine-Histidine-Lysine (GHK) is a peptide fragment of osteonectin (SPARC), a matricellular protein with reported proangiogenic potential. We examined the capacity of GHK to upregulate secretion of proangiogenic factors from human MSC in culture and when covalently coupled to alginate hydrogels. GHK had no apparent cytotoxic effects on MSC in culture over a wide range of concentrations. We detected a dose-dependent increase in vascular endothelial growth factor (VEGF) concentration in media conditioned by GHK-treated MSC, which increased endothelial cell proliferation, migration, and tubule formation. We covalently coupled GHK to alginate using carbodiimide chemistry, and human MSC were entrapped in alginate hydrogels to assess VEGF secretion. Similar to monolayer culture, MSC responded to GHK-modified gels by secreting increased concentrations of VEGF and basic fibroblast growth factor (bFGF) compared to unmodified gels. The pre-treatment of MSC with antibodies to α6 and β1 integrins prior to entrapment in GHK-modified gels abrogated VEGF secretion, suggesting that the proangiogenic response of MSC was integrin-mediated. These data demonstrate that the proangiogenic potential of MSC can be significantly increased by the presentation of GHK with a biodegradable carrier, therefore increasing their clinical potential when used for tissue repair. PMID:24468583

  9. Stromal-Cell-Derived Factor-1 (SDF-1)/CXCL12 as Potential Target of Therapeutic Angiogenesis in Critical Leg Ischaemia

    PubMed Central

    Ho, Teik K.; Shiwen, X.; Abraham, D.; Tsui, J.; Baker, D.

    2012-01-01

    In the Western world, peripheral vascular disease (PVD) has a high prevalence with high morbidity and mortality. In a large percentage of these patients, lower limb amputation is still required. Studies of ischaemic skeletal muscle disclosed evidence of endogenous angiogenesis and adaptive skeletal muscle metabolic changes in response to hypoxia. Chemokines are potent chemoattractant cytokines that regulate leukocyte trafficking in homeostatic and inflammatory processes. More than 50 different chemokines and 20 different chemokine receptors have been cloned. The chemokine stromal-cell-derived factor-1 (SDF-1 aka CXCL12) is a constitutively expressed and inducible chemokine that regulates multiple physiological processes, including embryonic development and organ homeostasis. The biologic effects of SDF-1 are mediated by chemokine receptor CXCR4, a 352 amino acid rhodopsin-like transmembrane-specific G protein-coupled receptor (GPCR). There is evidence that the administration of SDF-1 increases blood flow and perfusion via recruitment of endothelial progenitor cells (EPCs). This review will focus on the role of the SDF-1/CXCR4 system in the pathophysiology of PVD and discuss their potential as therapeutic targets for PVD. PMID:22462026

  10. Elevated Plasma Stromal-Cell-Derived Factor-1 Protein Levels Correlate with Severity in Patients with Community-Acquired Pneumonia

    PubMed Central

    Tsai, Ping-Kun; Hsieh, Ming-Ju; Wang, Hsiang-Ling; Chou, Ming-Chih; Yang, Shun-Fa

    2014-01-01

    Background. The aim of this study was to investigate differential changes in plasma levels of stromal-cell-derived factor-1 (SDF-1) before and after antibiotic treatment in patients with community-acquired pneumonia (CAP) and observe the association between the severity of CAP and the plasma SDF-1 level. Methods. We gathered blood specimens from 61 adult CAP patients before and after antibiotic treatment and from 60 healthy controls to measure the plasma concentrations of SDF-1 by using an enzyme-linked immunosorbent assay. Results. The plasma SDF-1 concentration was elevated significantly in patients with CAP before receiving treatment compared with the controls and decreased significantly after the patients received treatment. Leukocyte (WBC) and neutrophil counts and C-reactive protein (CRP) levels decreased significantly after antibiotic treatment. Moreover, differences in the plasma concentration of SDF-1 were significantly correlated with PSI, CURB-65, and APACHE II scores (r = 0.389, P = 0.002, and n = 61; r = 0.449, P < 0.001, and n = 61; and r = 0.363, P = 0.004, and n = 61, resp.). Conclusions. An elevated plasma SDF-1 concentration can be used as a biological marker for the early diagnosis of CAP and for the early detection of its severity. PMID:25371597

  11. Compound K attenuates stromal cell-derived growth factor 1 (SDF-1)-induced migration of C6 glioma cells

    PubMed Central

    Kim, Hyuck; Roh, Hyo Sun; Kim, Jai Eun; Park, Sun Dong; Park, Won Hwan

    2016-01-01

    BACKGROUND/OBJECTIVES Stromal cell-derived growth factor 1 (SDF-1), also known as chemokine ligand 12, and chemokine receptor type 4 are involved in cancer cell migration. Compound K (CK), a metabolite of protopanaxadiol-type ginsenoside by gut microbiota, is reported to have therapeutic potential in cancer therapy. However, the inhibitory effect of CK on SDF-1 pathway-induced migration of glioma has not yet been established. MATERIALS/METHODS Cytotoxicity of CK in C6 glioma cells was determined using an EZ-Cytox cell viability assay kit. Cell migration was tested using the wound healing and Boyden chamber assay. Phosphorylation levels of protein kinase C (PKC)α and extracellular signal-regulated kinase (ERK) were measured by western blot assay, and matrix metallopeptidases (MMP) were measured by gelatin-zymography analysis. RESULTS CK significantly reduced the phosphorylation of PKCα and ERK1/2, expression of MMP9 and MMP2, and inhibited the migration of C6 glioma cells under SDF-1-stimulated conditions. CONCLUSIONS CK is a cell migration inhibitor that inhibits C6 glioma cell migration by regulating its downstream signaling molecules including PKCα, ERK1/2, and MMPs. PMID:27247721

  12. Stromal derived factor-1α in hippocampus radial glial cells in vitro regulates the migration of neural progenitor cells.

    PubMed

    Ding, Hui; Jin, Guo-Hua; Zou, Lin-Qing; Zhang, Xiao-Qing; Li, Hao-Ming; Tao, Xue-Lei; Zhang, Xin-Hua; Qin, Jian-Bing; Tian, Mei-Ling

    2015-06-01

    Stromal derived factor-1α (SDF-1α), a critical chemokine that promotes cell homing to target tissues, was presumed to be involved in the traumatic brain injury cortex. In this study, we determined the expression of SDF-1α in the hippocampus after transection of the fimbria fornix (FF). Realtime PCR and ELISA showed that mRNA transcription and SDF-1α proteins increased significantly after FF transection. In vitro, the expression of SDF-1α in radial glial cells (RGCs) incubated with deafferented hippocampus extracts was observed to be greater than in those incubated with normal hippocampus extracts. The co-culture of neural progenitor cells (NPCs) and RGCs indicated that the extracts of deafferented hippocampus induced more NPCs migrating toward RGCs than the normal extracts. Suppression or overexpression of SDF-1α in RGCs markedly either decreased or increased, respectively, the migration of NPCs. These results suggest that after FF transection, SDF-1α in the deafferented hippocampus was upregulated and might play an important role in RGC induction of NPC migration; therefore, SDF-1α is a target for additional research for determining new therapy for brain injuries. PMID:25604551

  13. Targeting stromal cells for the treatment of platelet-derived growth factor C-induced hepatocellular carcinogenesis.

    PubMed

    Campbell, Jean S; Johnson, Melissa M; Bauer, Renay L; Hudkins, Kelly L; Gilbertson, Debra G; Riehle, Kimberly J; Yeh, Matthew M; Alpers, Charles E; Fausto, Nelson

    2007-11-01

    Non-invasive therapies for the treatment of hepatocellular carcinoma (HCC) would be of great benefit to public health. To this end, we have developed a platelet-derived growth factor-C (PDGF-C) transgenic (Tg) mouse model, which mimics many aspects of human liver carcinogenesis. Specifically, overexpression of PDGF-C results in liver fibrosis, which is preceded by activation and proliferation of hepatic stellate cells, and is followed by the development of dysplastic lesions and angiogenesis, and progression to HCCs by 8 months of age. Here, we show that PDGF-C overexpression induces the proliferation of endothelial-like cells that are present in tumors and adjacent non-neoplastic parenchyma. The protein tyrosine kinase inhibitor, imatinib (Gleevec), decreases the proliferation of non-parenchymal cells (NPC) in vitro and in vivo, with concomitant inhibition of Akt. In vivo treatment with imatinib also blocks the expression of CD34 in PDGF-C Tg mice. Decreased NPC proliferation and CD34 expression correlated with lower levels of active ERK1/2 and total levels of PDGF receptor alpha (PDGFRalpha). In summary, the small molecule inhibitor imatinib attenuates stromal cell proliferation in PDGF-C-induced HCC, which coincides with decreased expression of both CD34 and PDGFRalpha, and activated Akt. Our findings suggest that imatinib may be efficacious in the treatment of hepatocarcinogenesis, particularly when neovascularization is present. PMID:17999742

  14. Fibronectin-Alginate microcapsules improve cell viability and protein secretion of encapsulated Factor IX-engineered human mesenchymal stromal cells.

    PubMed

    Sayyar, Bahareh; Dodd, Megan; Marquez-Curtis, Leah; Janowska-Wieczorek, Anna; Hortelano, Gonzalo

    2015-01-01

    Continuous delivery of proteins by engineered cells encapsu-lated in biocompatible polymeric microcapsules is of considerable therapeutic potential. However, this technology has not lived up to expectations due to inadequate cell--matrix interactions and subsequent cell death. In this study we hypoth-esize that the presence of fibronectin in an alginate matrix may enhance the viability and functionality of encapsulated human cord blood-derived mesenchymal stromal cells (MSCs) expressing the human Factor IX (FIX) gene. MSCs were encapsulated in alginate-PLL microcapsules containing 10, 100, or 500 μg/ml fibronectin to ameliorate cell survival. MSCs in microcapsules with 100 and 500 μg/ml fibronectin demonstrated improved cell viability and proliferation and higher FIX secretion compared to MSCs in non-supplemented microcapsules. In contrast, 10 μg/ml fibronectin did not significantly affect the viability and protein secretion from the encapsulated cells. Differentiation studies demonstrated osteogenic (but not chondrogenic or adipogenic) differentiation capability and efficient FIX secretion of the enclosed MSCs in the fibronectin-alginate suspension culture. Thus, the use of recombinant MSCs encapsulated in fibronectin-alginate microcapsules in basal or osteogenic cultures may be of practical use in the treatment of hemophilia B. PMID:24564349

  15. Tumor Necrosis Factor Improves Vascularization in Osteogenic Grafts Engineered with Human Adipose-Derived Stem/Stromal Cells

    PubMed Central

    Hutton, Daphne L.; Kondragunta, Renu; Moore, Erika M.; Hung, Ben P.; Jia, Xiaofeng; Grayson, Warren L.

    2014-01-01

    The innate immune response following bone injury plays an important role in promoting cellular recruitment, revascularization, and other repair mechanisms. Tumor necrosis factor-α (TNF) is a prominent pro-inflammatory cytokine in this cascade, and has been previously shown to improve bone formation and angiogenesis in a dose- and timing-dependent manner. This ability to positively impact both osteogenesis and vascular growth may benefit bone tissue engineering, as vasculature is essential to maintaining cell viability in large grafts after implantation. Here, we investigated the effects of exogenous TNF on the induction of adipose-derived stem/stromal cells (ASCs) to engineer pre-vascularized osteogenic tissue in vitro with respect to dose, timing, and co-stimulation with other inflammatory mediators. We found that acute (2-day), low-dose exposure to TNF promoted vascularization, whereas higher doses and continuous exposure inhibited vascular growth. Co-stimulation with platelet-derived growth factor (PDGF), another key factor released following bone injury, increased vascular network formation synergistically with TNF. ASC-seeded grafts were then cultured within polycaprolactone-fibrin composite scaffolds and implanted in nude rats for 2 weeks, resulting in further tissue maturation and increased angiogenic ingrowth in TNF-treated grafts. VEGF-A expression levels were significantly higher in TNF-treated grafts immediately prior to implantation, indicating a long-term pro-angiogenic effect. These findings demonstrate that TNF has the potential to promote vasculogenesis in engineered osteogenic grafts both in vitro and in vivo. Thus, modulation and/or recapitulation of the immune response following bone injury may be a beneficial strategy for bone tissue engineering. PMID:25248109

  16. Surface tethered epidermal growth factor protects proliferating and differentiating multipotential stromal cells from FasL induced apoptosis

    PubMed Central

    Rodrigues, Melanie; Blair, Harry; Stockdale, Linda; Griffith, Linda; Wells, Alan

    2012-01-01

    Multipotential stromal cells, or mesenchymal stem cells, (MSC) have ben proposed as aids in regenerating bone and adipose tissues, as these cells form osteoblasts and adipocytes. A major obstacle to this use of MSC is the initial loss of cells post-implantation. This cell death in part, is due to ubiquitous non-specific inflammatory cytokines such as FasL generated in the implant site. Our group previously found that soluble epidermal growth factor (sEGF) promotes MSC expansion. Further, tethering EGF onto a two-dimensional surface (tEGF) altered MSC responses, by restricting epidermal growth factor receptor (EGFR) to the cell surface, causing sustained activation of EGFR, and promoting survival from FasL-induced death. sEGF by causing internalization of EGFR does not support MSC survival. However, for tEGF to be useful in bone regeneration, it needs to allow for MSC differentiation into osteoblasts while also protecting emerging osteoblasts from apoptosis. tEGF did not block induced differentiation of MSCs into osteoblasts, or adipocytes, a common default MSC-differentiation pathway. MSC-derived pre-osteoblasts showed increased Fas levels and became more susceptible to FasL induced death, which tEGF prevented. Differentiating adipocytes underwent a reduction in Fas expression and became resistant to FasL-induced death, with tEGF having no further survival effect. tEGF protected undifferentiated MSC from combined insults of FasL, serum deprivation and physiologic hypoxia. Additionally, tEGF was dominant in the face of sEGF to protect MSC from FasL-induced death. Our results suggest that MSCs and differentiating osteoblasts need protective signals to survive in the inflammatory wound milieu and that tEGF can serve this function. PMID:22948863

  17. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity

    PubMed Central

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan; Splittgerber, Ryan; Fan, Guo-Huang; Richmond, Ann

    2011-01-01

    Alzheimer’s disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-β (Aβ). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aβ-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1α significantly protected neurons from Aβ-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1α. Intra-cerebroventricular (ICV) injection of Aβ led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The Aβ-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F2-isoprostanes, was significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1α. Additionally, MIP-2 or SDF-1α was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against Aβ neurotoxicity in CXCR2−/− mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. PMID:21704645

  18. Identification of Pathways Mediating Growth Differentiation Factor5-Induced Tenogenic Differentiation in Human Bone Marrow Stromal Cells

    PubMed Central

    Tan, Sik-Loo; Ahmad, Tunku Sara; Ng, Wuey-Min; Azlina, Amir Abbas; Azhar, Mahmood Merican; Selvaratnam, Lakshmi; Kamarul, Tunku

    2015-01-01

    To date, the molecular signalling mechanisms which regulate growth factors-induced MSCs tenogenic differentiation remain largely unknown. Therefore, a study to determine the global gene expression profile of tenogenic differentiation in human bone marrow stromal cells (hMSCs) using growth differentiation factor 5 (GDF5) was conducted. Microarray analyses were conducted on hMSCs cultures supplemented with 100 ng/ml of GDF5 and compared to undifferentiated hMSCs and adult tenocytes. Results of QuantiGene® Plex assay support the use and interpretation of the inferred gene expression profiles and pathways information. From the 27,216 genes assessed, 873 genes (3.21% of the overall human transcriptome) were significantly altered during the tenogenic differentiation process (corrected p<0.05). The genes identified as potentially associated with tenogenic differentiation were ARHGAP29, CCL2, integrin alpha 8 and neurofilament medium polypeptides. These genes, were mainly associated with cytoskeleton reorganization (stress fibers formation) signaling. Pathway analysis demonstrated the potential molecular pathways involved in tenogenic differentiation were: cytoskeleton reorganization related i.e. keratin filament signaling and activin A signaling; cell adhesion related i.e. chemokine and adhesion signaling; and extracellular matrix related i.e. arachidonic acid production signaling. Further investigation using atomic force microscopy and confocal laser scanning microscopy demonstrated apparent cytoskeleton reorganization in GDF5-induced hMSCs suggesting that cytoskeleton reorganization signaling is an important event involved in tenogenic differentiation. Besides, a reduced nucleostemin expression observed suggested a lower cell proliferation rate in hMSCs undergoing tenogenic differentiation. Understanding and elucidating the tenogenic differentiation signalling pathways are important for future optimization of tenogenic hMSCs for functional tendon cell-based therapy and

  19. Stromal platelet-derived growth factor receptor α (PDGFRα) provides a therapeutic target independent of tumor cell PDGFRα expression in lung cancer xenografts

    PubMed Central

    Gerber, David E.; Gupta, Puja; Dellinger, Michael T.; Toombs, Jason E.; Peyton, Michael; Duignan, Inga; Malaby, Jennifer; Bailey, Timothy; Burns, Colleen; Brekken, Rolf A.; Loizos, Nick

    2012-01-01

    In lung cancer, platelet-derived growth factor receptor α (PDGFRα) is expressed frequently by tumor-associated stromal cells and by cancer cells in a subset of tumors. We sought to determine the effect of targeting stromal PDGFRα in preclinical lung tumor xenograft models (human tumor, mouse stroma). Effects of anti-human (IMC-3G3) and anti-mouse (1E10) PDGFRα mAbs on proliferation and PDGFRα signaling were evaluated in lung cancer cell lines and mouse fibroblasts. Therapy studies were performed using established PDGFRα-positive H1703 cells and PDGFRα-negative Calu-6, H1993, and A549 subcutaneous tumors in immunocompromised mice treated with vehicle, anti-PDGFRα mAbs, chemotherapy, or combination therapy. Tumors were analyzed for growth and levels of growth factors. IMC-3G3 inhibited PDGFRα activation and the growth of H1703 cells in vitro and tumor growth in vivo, but had no effect on PDGFRα-negative cell lines or mouse fibroblasts. 1E10 inhibited growth and PDGFRα activation of mouse fibroblasts, but had no effect on human cancer cell lines in vitro. In vivo, 1E10-targeted inhibition of murine PDGFRα reduced tumor growth as single-agent therapy in Calu-6 cells and enhanced the effect of chemotherapy in xenografts derived from A549 cells. We also identified that low expression cancer cell expression of VEGF-A and elevated expression of PDGF-AA were associated with response to stromal PDGFRα targeting. We conclude that stromal PDGFRα inhibition represents a means for enhancing control of lung cancer growth in some cases, independent of tumor cell PDGFRα expression. PMID:22933705

  20. Stromal derived factor 1α: A chemokine that delivers a two-pronged defence of the myocardium☆

    PubMed Central

    Bromage, Daniel I.; Davidson, Sean M.; Yellon, Derek M.

    2014-01-01

    Alleviating myocardial injury associated with ST elevation myocardial infarction is central to improving the global burden of coronary heart disease. The chemokine stromal cell-derived factor 1α (SDF-1α) has dual potential benefit in this regard. Firstly, SDF-1α is up-regulated in experimental and clinical studies of acute myocardial infarction (AMI) and regulates stem cell migration to sites of injury. SDF-1α delivery to the myocardium after AMI is associated with improved stem cell homing, angiogenesis, and left ventricular function in animal models, and improvements in heart failure and quality of life in humans. Secondly, SDF-1α may have a role in remote ischaemic conditioning (RIC), the phenomenon whereby non-lethal ischaemia–reperfusion applied to an organ or tissue remote from the heart protects the myocardium from lethal ischaemia–reperfusion injury (IRI). SDF-1α is increased in the serum of rats subjected to RIC and protects against myocardial IRI in ex vivo studies. Despite these potential pleiotropic effects, a limitation of SDF-1α is its short plasma half-life due to cleavage by dipeptidyl peptidase-4 (DPP-4). However, DPP-4 inhibitors increase the half-life of SDF-1α by preventing its degradation and are also protective against lethal IRI. In summary, SDF-1 potentially delivers a ‘two-pronged’ defence of the myocardium: acutely protecting it from IRI while simultaneously stimulating repair by recruiting stem cells to the site of injury. In this article we examine the evidence for acute and chronic cardioprotective roles of SDF-1α and discuss potential therapeutic manipulations of this mechanism with DPP-4 inhibitors to protect against lethal tissue injury in the clinical setting. PMID:24704323

  1. Circulating Stromal Cell-Derived Factor 1α Levels in Heart Failure: A Matter of Proper Sampling

    PubMed Central

    Baerts, Lesley; Waumans, Yannick; Brandt, Inger; Jungraithmayr, Wolfgang; Van der Veken, Pieter; Vanderheyden, Marc; De Meester, Ingrid

    2015-01-01

    Background The chemokine Stromal cell-derived factor 1α (SDF1α, CXCL12) is currently under investigation as a biomarker for various cardiac diseases. The correct interpretation of SDF1α levels is complicated by the occurrence of truncated forms that possess an altered biological activity. Methodology We studied the immunoreactivities of SDF1α forms and evaluated the effect of adding a DPP4 inhibitor in sampling tubes on measured SDF1α levels. Using optimized sampling, we measured DPP4 activity and SDF1α levels in patients with varying degrees of heart failure. Results The immunoreactivities of SDF1α and its degradation products were determined with three immunoassays. A one hour incubation of SDF1α with DPP4 at 37°C resulted in 2/3 loss of immunoreactivity in each of the assays. Incubation with serum gave a similar result. Using appropriate sampling, SDF1α levels were found to be significantly higher in those heart failure patients with a severe loss of left ventricular function. DPP4 activity in serum was not altered in the heart failure population. However, the DPP4 activity was found to be significantly decreased in patients with high SDF1α levels Conclusions We propose that all samples for SDF1α analysis should be collected in the presence of at least a DPP4 inhibitor. In doing so, we found higher SDF1α levels in subgroups of patients with heart failure. Our work supports the need for further research on the clinical relevance of SDF1α levels in cardiac disease. PMID:26544044

  2. Hypoxia Promotes Osteogenesis but Suppresses Adipogenesis of Human Mesenchymal Stromal Cells in a Hypoxia-Inducible Factor-1 Dependent Manner

    PubMed Central

    Lohanatha, Ferenz L.; Hahne, Martin; Strehl, Cindy; Fangradt, Monique; Tran, Cam Loan; Schönbeck, Kerstin; Hoff, Paula; Ode, Andrea; Perka, Carsten; Duda, Georg N.; Buttgereit, Frank

    2012-01-01

    Background Bone fracture initiates a series of cellular and molecular events including the expression of hypoxia-inducible factor (HIF)-1. HIF-1 is known to facilitate recruitment and differentiation of multipotent human mesenchymal stromal cells (hMSC). Therefore, we analyzed the impact of hypoxia and HIF-1 on the competitive differentiation potential of hMSCs towards adipogenic and osteogenic lineages. Methodology/Principal Findings Bone marrow derived primary hMSCs cultured for 2 weeks either under normoxic (app. 18% O2) or hypoxic (less than 2% O2) conditions were analyzed for the expression of MSC surface markers and for expression of the genes HIF1A, VEGFA, LDHA, PGK1, and GLUT1. Using conditioned medium, adipogenic or osteogenic differentiation as verified by Oil-Red-O or von-Kossa staining was induced in hMSCs under either normoxic or hypoxic conditions. The expression of HIF1A and VEGFA was measured by qPCR. A knockdown of HIF-1α by lentiviral transduction was performed, and the ability of the transduced hMSCs to differentiate into adipogenic and osteogenic lineages was analyzed. Hypoxia induced HIF-1α and HIF-1 target gene expression, but did not alter MSC phenotype or surface marker expression. Hypoxia (i) suppressed adipogenesis and associated HIF1A and PPARG gene expression in hMSCs and (ii) enhanced osteogenesis and associated HIF1A and RUNX2 gene expression. shRNA-mediated knockdown of HIF-1α enhanced adipogenesis under both normoxia and hypoxia, and suppressed hypoxia-induced osteogenesis. Conclusions/Significance Hypoxia promotes osteogenesis but suppresses adipogenesis of human MSCs in a competitive and HIF-1-dependent manner. We therefore conclude that the effects of hypoxia are crucial for effective bone healing, which may potentially lead to the development of novel therapeutic approaches. PMID:23029528

  3. Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure

    PubMed Central

    Sundararaman, S; Miller, T J; Pastore, J M; Kiedrowski, M; Aras, R; Penn, M S

    2011-01-01

    We previously demonstrated that transient stromal cell-derived factor-1 alpha (SDF-1) improved cardiac function when delivered via cell therapy in ischemic cardiomyopathy at a time remote from acute myocardial infarction (MI) rats. We hypothesized that non-viral gene transfer of naked plasmid DNA-expressing hSDF-1 could similarly improve cardiac function. To optimize plasmid delivery, we tested SDF-1 and luciferase plasmids driven by the cytomegalovirus (CMV) promoter with (pCMVe) or without (pCMV) translational enhancers or α myosin heavy chain (pMHC) promoter in a rodent model of heart failure. In vivo expression of pCMVe was 10-fold greater than pCMV and pMHC expression and continued over 30 days. We directly injected rat hearts with SDF-1 plasmid 1 month after MI and assessed heart function. At 4 weeks after plasmid injection, we observed a 35.97 and 32.65% decline in fractional shortening (FS) in control (saline) animals and pMHC-hSDF1 animals, respectively, which was sustained to 8 weeks. In contrast, we observed a significant 24.97% increase in animals injected with the pCMVe-hSDF1 vector. Immunohistochemistry of cardiac tissue revealed a significant increase in vessel density in the hSDF-1-treated animals compared with control animals. Increasing SDF-1 expression promoted angiogenesis and improved cardiac function in rats with ischemic heart failure along with evidence of scar remodeling with a trend toward decreased myocardial fibrosis. These data demonstrate that stand-alone non-viral hSDF-1 gene transfer is a strategy for improving cardiac function in ischemic cardiomyopathy. PMID:21472007

  4. Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing

    PubMed Central

    LI, QIANG; GUO, YANPING; CHEN, FEIFEI; LIU, JING; JIN, PEISHENG

    2016-01-01

    Adipose tissue-derived stem cells (ADSCs) hold great potential for the stem cell-based therapy of cutaneous wound healing. Stromal cell-derived factor-1 (SDF-1) activates CXC chemokine receptor (CXCR)4+ and CXCR7+ cells and plays an important role in wound healing. Increasing evidence suggests a critical role for SDF-1 in cell apoptosis and the survival of mesenchymal stem cells. However, the function of SDF-1 in the apoptosis and wound healing ability of ADSCs is not well understood. The aim of this study was to analyze the effect of SDF-1 on the apoptosis and therapeutic effect of ADSCs in cutaneous chronic wounds in vitro and in vivos. By flow cytometric analysis, it was found that hypoxia and serum free promoted the apoptosis of ADSCs. When pretreated with SDF-1, the apoptosis of ADSCs induced by hypoxia and serum depletion was partly recovered. Furthermore, in vivo experiments established that the post-implantation cell survival and chronic wound healing ability of ADSCs were increased following pretreatment with SDF-1 in a diabetic mouse model of chronic wound healing. To explore the potential mechanism underlying the effect of SDF-1 on ADSC apoptosis, western blot analysis was employed and the results indicate that SDF-1 may protect against cell apoptosis in hypoxic and serum-free conditions through activation of the caspase signaling pathway in ADSCs. This study provides evidence that SDF-1 pretreatment can increase the therapeutic effect of ADSCs in cutaneous chronic wounds in vitro and in vivo. PMID:27347016

  5. Insulin-like growth factor binding protein-1 expression in baboon endometrial stromal cells: regulation by filamentous actin and requirement for de novo protein synthesis.

    PubMed

    Kim, J J; Jaffe, R C; Fazleabas, A T

    1999-02-01

    Stromal fibroblasts in the primate endometrium undergo dramatic morphological and biochemical changes in response to pregnancy. This transformation is characterized by the expression of insulin-like growth factor binding protein-1 (IGFBP-1). Stromal cells from the baboon endometrium of nonpregnant animals were cultured and subsequently treated with cytochalasin D to disrupt actin filaments. In response to cytochalasin D treatment, cells contracted and became rounded as early as 10 min after the initiation of treatment. When cytochalasin D was removed, cells reverted back to their original fibroblastic shape within 1 h. After cells were treated with cytochalasin D for 5 h, addition of (Bu)2cAMP and/or hormones (estradiol, medroxyprogesterone acetate, and relaxin) resulted in the expression of IGFBP-1 messenger RNA and protein within 24 h. Cells with an intact cytoskeleton did not express detectable levels of IGFBP-1 in response to hormones and/or (Bu)2cAMP. Furthermore, the addition of cycloheximide inhibited expression of IGFBP-1 in cytochalasin D-treated cells. Stromal cells were also isolated from early pregnant and simulated pregnant animals. Within 48 h, cells from both the pregnant and simulated pregnant animals produced IGFBP-1 in response to hormones and/or (Bu)2cAMP. In these studies, IGFBP-1 expression was also inhibited by cycloheximide. These studies suggest that induction of IGFBP-1 requires an intermediary protein and that alterations in the cytoskeleton may be involved. PMID:9927334

  6. Stromal CD4/CD25 positive T-cells are a strong and independent prognostic factor in non-small cell lung cancer patients, especially with adenocarcinomas.

    PubMed

    Kayser, Gian; Schulte-Uentrop, Luzie; Sienel, Wulf; Werner, Martin; Fisch, Paul; Passlick, Bernward; Zur Hausen, Axel; Stremmel, Christian

    2012-06-01

    Within the concert of immune reactions against tumour cells cytotoxic and regulatory T-cells are of utmost importance. Several studies revealed contradictory results on this issue. We therefore focused on functional expression patterns and localization of tumour-infiltrating T-lymphocytes in non-small cell lung cancer (NSCLC) and their impact on patient's survival. 232 curatively operated NSCLC patients were included. After histological reevaluation and construction of tissue-multi-arrays immunohistochemical doublestains for CD3/CD8 and CD4/CD25 were performed to evaluate the total number of T-cells and their subsets of cytotoxic and activated T-cells. Additionally, the localization of the lymphocytes was included in the analysis. Hereby, T-cells within the tumour stroma were regarded as stromal, those among cancer cells as intraepithelial. The number of lymphocytes differed significantly between the histological subtypes being most prominent in large cell carcinomas. Survival analysis showed that high numbers of stromal T-lymphocytes are of beneficial prognostic influence in NSCLC patients. This also proved to be an independent prognostic factor in adenocarcinomas. Thus, in a large and well characterized cohort of NSCLC this is the first study to determine the prognostic value of stromal T-lymphocytes, as these are an independent prognosticator in NSCLC especially in adenocarcinomas whereas intraepithelial T-cells are not. PMID:22300751

  7. Negative feedback confers mutational robustness in yeast transcription factor regulation

    PubMed Central

    Denby, Charles M.; Im, Joo Hyun; Yu, Richard C.; Pesce, C. Gustavo; Brem, Rachel B.

    2012-01-01

    Organismal fitness depends on the ability of gene networks to function robustly in the face of environmental and genetic perturbations. Understanding the mechanisms of this stability is one of the key aims of modern systems biology. Dissecting the basis of robustness to mutation has proven a particular challenge, with most experimental models relying on artificial DNA sequence variants engineered in the laboratory. In this work, we hypothesized that negative regulatory feedback could stabilize gene expression against the disruptions that arise from natural genetic variation. We screened yeast transcription factors for feedback and used the results to establish ROX1 (Repressor of hypOXia) as a model system for the study of feedback in circuit behaviors and its impact across genetically heterogeneous populations. Mutagenesis experiments revealed the mechanism of Rox1 as a direct transcriptional repressor at its own gene, enabling a regulatory program of rapid induction during environmental change that reached a plateau of moderate steady-state expression. Additionally, in a given environmental condition, Rox1 levels varied widely across genetically distinct strains; the ROX1 feedback loop regulated this variation, in that the range of expression levels across genetic backgrounds showed greater spread in ROX1 feedback mutants than among strains with the ROX1 feedback loop intact. Our findings indicate that the ROX1 feedback circuit is tuned to respond to perturbations arising from natural genetic variation in addition to its role in induction behavior. We suggest that regulatory feedback may be an important element of the network architectures that confer mutational robustness across biology. PMID:22355134

  8. Peripheral Blood-Derived Mesenchymal Stromal Cells Promote Angiogenesis via Paracrine Stimulation of Vascular Endothelial Growth Factor Secretion in the Equine Model.

    PubMed

    Bussche, Leen; Van de Walle, Gerlinde R

    2014-12-01

    Mesenchymal stromal cells (MSCs) have received much attention as a potential treatment of ischemic diseases, including ischemic tissue injury and cardiac failure. The beneficial effects of MSCs are thought to be mediated by their ability to provide proangiogenic factors, creating a favorable microenvironment that results in neovascularization and tissue regeneration. To study this in more detail and to explore the potential of the horse as a valuable translational model, the objectives of the present study were to examine the presence of angiogenic stimulating factors in the conditioned medium (CM) of peripheral blood-derived equine mesenchymal stromal cells (PB-MSCs) and to study their in vitro effect on angiogenesis-related endothelial cell (EC) behavior, including proliferation and vessel formation. Our salient findings were that CM from PB-MSCs contained significant levels of several proangiogenic factors. Furthermore, we found that CM could induce angiogenesis in equine vascular ECs and confirmed that endothelin-1, insulin growth factor binding protein 2, interleukin-8, and platelet-derived growth factor-AA, but not urokinase-type plasminogen activator, were responsible for this enhanced EC network formation by increasing the expression level of vascular endothelial growth factor-A, an important angiogenesis stimulator. PMID:25313202

  9. Granulocyte colony-stimulating factor inhibits CXCR4/SDF-1α signaling and overcomes stromal-mediated drug resistance in the HL-60 cell line

    PubMed Central

    SHENG, XIANFU; ZHONG, HUA; WAN, HAIXIA; ZHONG, JIHUA; CHEN, FANGYUAN

    2016-01-01

    Combining cytarabine, aclarubicin and granulocyte colony-stimulating factor (G-CSF) has demonstrated marked efficacy in the treatment of elderly and relapsed/refractory patients with acute myeloid leukemia (AML); however, the role of G-CSF remains poorly understood. The present study aimed to investigate the ability of G-CSF to overcome stromal-mediated drug resistance and the underlying molecular mechanism. Two types of co-culture models were established in the HS-5 human bone marrow/stromal and HL-60 human promyelocytic leukemia cell lines, in order to imitate the interactions between stromal and leukemia cells in vitro, which is mediated by the stromal cell-derived factor (SDF)-1α signaling axis. In the present study, HL-60 cells were attracted and adhered to HS-5 cells using migration assay and flow cytometry, respectively; however, these interactions were inhibited by treatment with G-CSF and/or the C-X-C chemokine receptor type 4 (CXCR4) antagonist, AMD3100. Co-culture with HS-5 cells, including direct and indirect contact, protected HL-60 cells against spontaneous apoptosis or drug-induced apoptosis; however, these protective effects were disrupted by treatment with G-CSF and/or AMD3100. Notably, G-CSF and/or AMD3100 did not alter cell viability or apoptosis when HL-60 cells were cultured with medium alone. In addition, G-CSF significantly reduced the expression levels of surface CXCR4 protein, total CXCR4 protein and CXCR4 mRNA, and significantly upregulated the expression of microRNA (miR)-146a. Conversely, AMD3100 significantly reduced surface CXCR4 expression levels, but not the total CXCR4, CXCR4 mRNA or miR-146a expression levels. The results of the present study suggested that interfering with the CXCR4/SDF-1α signaling axis via G-CSF inhibited the migration and adhesion of HL-60 cells to HS-5 cells and eliminated HS5 cell-mediated protective effects. Furthermore, G-CSF administration reduced CXCR4 expression levels by upregulating the expression of

  10. Effect of Vascular Endothelial Growth Factor and Erythropoietin on Functional Activity of Fibroblasts and Multipotent Mesenchymal Stromal Cells.

    PubMed

    Bondarenko, N A; Nikonorova, Yu V; Surovtseva, M A; Lykov, A P; Poveshchenko, O V; Poveshchenko, A F; Pokushalov, E A; Romanov, A B; Konenkov, V I

    2016-02-01

    The study examined the effect of VEGF and erythropoietin on proliferative and migratory activities of skin fibroblasts and multipotent mesenchymal stromal cells of human adipose tissue. VEGF stimulated proliferation and migration of fi broblasts, but produced no significant effect on functional activity of multipotent mesenchymal stem cells. Erythropoietin stimulated proliferation of both cell types, but did not affect their migration. PMID:26899850

  11. Hypoxia- and Vascular Endothelial Growth Factor-Induced Stromal Cell-Derived Factor-1α/CXCR4 Expression in Glioblastomas

    PubMed Central

    Zagzag, David; Esencay, Mine; Mendez, Olga; Yee, Herman; Smirnova, Iva; Huang, Yuanyuan; Chiriboga, Luis; Lukyanov, Eugene; Liu, Mengling; Newcomb, Elizabeth W.

    2008-01-01

    The morphological patterns of glioma cell invasion are known as the secondary structures of Scherer. In this report, we propose a biologically based mechanism for the nonrandom formation of Scherer’s secondary structures based on the differential expression of stromal cell-derived factor (SDF)-1α and CXCR4 at the invading edge of glioblastomas. The chemokine SDF-1α was highly expressed in neurons, blood vessels, subpial regions, and white matter tracts that form the basis of Scherer’s secondary structures. In contrast, the SDF-1α receptor, CXCR4, was highly expressed in invading glioma cells organized around neurons and blood vessels, in subpial regions, and along white matter tracts. Neuronal and endothelial cells exposed to vascular endothelial growth factor up-regulated the expression of SDF-1α. CXCR4-positive tumor cells migrated toward a SDF-1α gradient in vitro, whereas inhibition of CXCR4 expression decreased their migration. Similarly, inhibition of CXCR4 decreased levels of SDF-1α-induced phosphorylation of FAK, AKT, and ERK1/2, suggesting CXCR4 involvement in glioma invasion signaling. These studies offer one plausible molecular basis and explanation of the formation of Scherer’s structures in glioma patients. PMID:18599607

  12. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; Topol, Eric J.; Penn, Marc S.

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, p<0.02) resulting in greater left-ventricular mass (1.24 [0.29] vs 1.57 [0.27] g) and better cardiac function (shortening fraction 9.2 [4.9] vs 17.2 [4.2]%, n=8 per group, p<0.05). INTERPRETATION: These findings show that SDF-1 is sufficient to induce therapeutic stem-cell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  13. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    SciTech Connect

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan; Fan, Guo-Huang; Richmond, Ann

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP-2 or

  14. A Murine Uterine Transcriptome, Responsive to Steroid Receptor Coactivator-2, Reveals Transcription Factor 23 as Essential for Decidualization of Human Endometrial Stromal Cells1

    PubMed Central

    Kommagani, Ramakrishna; Szwarc, Maria M.; Kovanci, Ertug; Creighton, Chad J.; O'Malley, Bert W.; DeMayo, Francesco J.; Lydon, John P.

    2014-01-01

    ABSTRACT Recent data from human and mouse studies strongly support an indispensable role for steroid receptor coactivator-2 (SRC-2)—a member of the p160/SRC family of coregulators—in progesterone-dependent endometrial stromal cell decidualization, an essential cellular transformation process that regulates invasion of the developing embryo into the maternal compartment. To identify the key progesterone-induced transcriptional changes that are dependent on SRC-2 and required for endometrial decidualization, we performed comparative genome-wide transcriptional profiling of endometrial tissue RNA from ovariectomized SRC-2flox/flox (SRC-2f/f [control]) and PRcre/+/SRC-2flox/flox (SRC-2d/d [SRC-2-depleted]) mice, acutely treated with vehicle or progesterone. Although data mining revealed that only a small subset of the total progesterone-dependent transcriptional changes is dependent on SRC-2 (∼13%), key genes previously reported to mediate progesterone-driven endometrial stromal cell decidualization are present within this subset. Along with providing a more detailed molecular portrait of the decidual transcriptional program governed by SRC-2, the degree of functional diversity of these progesterone mediators underscores the pleiotropic regulatory role of SRC-2 in this tissue. To showcase the utility of this powerful informational resource to uncover novel signaling paradigms, we stratified the total SRC-2-dependent subset of progesterone-induced transcriptional changes in terms of novel gene expression and identified transcription factor 23 (Tcf23), a basic-helix-loop-helix transcription factor, as a new progesterone-induced target gene that requires SRC-2 for full induction. Importantly, using primary human endometrial stromal cells in culture, we demonstrate that TCF23 function is essential for progesterone-dependent decidualization, providing crucial translational support for this transcription factor as a new decidual mediator of progesterone action. PMID

  15. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    SciTech Connect

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  16. Hypoglycemia Associated with a Gastrointestinal Stromal Tumor Producing High-molecular-weight Insulin Growth Factor II: A Case Report and Literature Review.

    PubMed

    Hirai, Hiroyuki; Ogata, Emi; Ohki, Shinji; Fukuda, Izumi; Tanaka, Mizuko; Watanabe, Tsuyoshi; Satoh, Hiroaki

    2016-01-01

    A 61-year-old woman with multiple metastatic and unresectable gastrointestinal stromal tumors (GISTs) was referred for investigation of refractory hypoglycemia that developed four months before this hospitalization. On admission, her fasting plasma glucose was 38 mg/dL despite 10% glucose infusion. Investigations revealed that her serum C-peptide, insulin and growth hormone levels were suppressed, and big insulin-like growth factor II was observed. She was diagnosed with non-islet cell tumor hypoglycemia, which resolved after glucocorticoid treatment. Clinicians should thus be vigilant to identify hypoglycemia in patients with large metastatic GISTs because glucocorticoid therapy is useful even if the GIST is inoperable. PMID:27181538

  17. The Role of Genetic Variants of Stromal Cell-Derived Factor 1 in Pediatric HIV-1 Infection and Disease Progression

    PubMed Central

    Gianesin, Ketty; Freguja, Riccardo; Carmona, Francesco; Zanchetta, Marisa; Del Bianco, Paola; Malacrida, Sandro; Montagna, Marco; Rampon, Osvalda; Giaquinto, Carlo; De Rossi, Anita

    2012-01-01

    Stromal cell-Derived Factor 1 (SDF1) is the natural ligand of CXCR4, the coreceptor of HIV-1 X4 viruses. This study investigated the role of the single nucleotide polymorphism (SNP) rs1801157 (NM_000609.5:c.*519G>A) of the SDF1 gene in the natural history of mother-to-child transmission of HIV-1 and disease progression of HIV-1-infected children. The study was conducted in 428 children born to HIV-1-seropositive mothers, who had not undergone antiretroviral therapy (ART) during pregnancy, and in 120 HIV-1-infected children for whom the end-point was the onset of AIDS or the initiation of ART; 16 children developed early AIDS (<24 months of life), 13 from 24 to 84 months of age, and 14 had late AIDS (>84 months). The rs1801157 SNP was not associated with risk of perinatal infection in any genetic models tested. By contrast, this SNP influenced disease progression in a time-dependent manner. rs1801157 GA heterozygous children had a higher risk of late AIDS (HR = 6.3, 95%CI 1.9–20.7, p = 0.002) than children with the rs1801157 GG genotype. Children were studied for viral coreceptor usage at birth, after 84 months of age and/or at AIDS onset. While R5 viruses using CCR5 coreceptor were predominant at birth (94%) and at early AIDS (85%), viruses using CXCR4 coreceptor emerged during the course of infection and were detected in 49% of children older than 84 months and in 62% of late AIDS. The rs1801157 SNP did not influence the emergence of R5X4 viruses, but children with the rs1801157 GA genotype and R5X4 viruses were at significantly higher risk of late AIDS than children with rs1801157 GG genotype (OR = 8.0, 95% CI 1.2–52.2, p = 0.029). Our results indicate that the rs1801157 SNP does not influence perinatal infection, but impacts disease progression. This effect is time-dependent and linked to the coreceptor-usage of viral variants that undergo evolution during the course of HIV-1 infection. PMID:22962615

  18. Primordial germ cell migration in the yellowtail kingfish (Seriola lalandi) and identification of stromal cell-derived factor 1.

    PubMed

    Fernández, J A; Bubner, E J; Takeuchi, Y; Yoshizaki, G; Wang, T; Cummins, S F; Elizur, A

    2015-03-01

    Primordial germ cells (PGCs) are progenitors of the germ cell lineage, giving rise to either spermatogonia or oogonia after the completion of gonadal differentiation. Currently, there is little information on the mechanism of PGCs migration leading to the formation of the primordial gonad in perciform fish. Yellowtail kingfish (Seriola lalandi) (YTK) (order Perciforms) inhabit tropical and temperate waters in the southern hemisphere. Fundamental details into the molecular basis of larval development in this species can be easily studied in Australia, as they are commercially cultured and readily available. In this study, histological analysis of YTK larvae revealed critical time points for the migration of PGCs to the genital ridge, resulting in the subsequent development of the primordial gonad. In YTK larvae at 3, 5, 7 and 10 days post hatch (DPH), PGCs were not yet enclosed by somatic cells, indicating the primordial gonad had not yet started to form. While at 15, 18 and 20 DPH PGCs had already settled at the genital ridge and started to become enclosed by somatic cells indicating the primordial gonad had started to develop. A higher number of PGCs were observed in the larvae at 15 and 18 DPH indicating PGCs proliferation, which corresponds with them becoming enclosed by the somatic cells. Directional migration of PGCs toward the genital ridge is a critical event in the subsequent development of a gonad. In zebrafish, mouse and chicken, stromal-cell derived factor (SDF1) signalling is one of the key molecules for PGC migration. We subsequently isolated from YTK the SDF1 (Slal-SDF1) gene, which encodes for a 98-residue precursor protein with a signal peptide at the N-terminus. There is spatial conservation between fish species of four cysteine residues at positions C9, C11, C34 and C49, expected to form disulphide bonds and stabilize the SDF structure. In YTK, Slal-SDF1 gene expression analyses shows that this gene is expressed in larvae from 1 to 22 DPH and

  19. Stromal derived factor‐1 and granulocyte‐colony stimulating factor treatment improves regeneration of Pax7−/− mice skeletal muscles

    PubMed Central

    Kowalski, Kamil; Archacki, Rafał; Archacka, Karolina; Stremińska, Władysława; Paciorek, Anna; Gołąbek, Magdalena; Ciemerych, Maria A.

    2015-01-01

    Abstract Background The skeletal muscle has the ability to regenerate after injury. This process is mediated mainly by the muscle specific stem cells, that is, satellite cells. In case of extensive damage or under pathological conditions, such as muscular dystrophy, the process of muscle reconstruction does not occur properly. The aim of our study was to test whether mobilized stem cells, other than satellite cells, could participate in skeletal muscle reconstruction. Methods Experiments were performed on wild‐type mice and mice lacking the functional Pax7 gene, that is, characterized by the very limited satellite cell population. Gastrocnemius mice muscles were injured by cardiotoxin injection, and then the animals were treated by stromal derived factor‐1 (Sdf‐1) with or without granulocyte‐colony stimulating factor (G‐CSF) for 4 days. The muscles were subjected to thorough assessment of the tissue regeneration process using histological and in vitro methods, as well as evaluation of myogenic factors' expression at the transcript and protein levels. Results Stromal derived factor‐1 alone and Sdf‐1 in combination with G‐CSF significantly improved the regeneration of Pax7−/− skeletal muscles. The Sdf‐1 and G‐CSF treatment caused an increase in the number of mononucleated cells associated with muscle fibres. Further analysis showed that Sdf‐1 and G‐CSF treatment led to the rise in the number of CD34+ and Cxcr4+ cells and expression of Cxcr7. Conclusions Stromal derived factor‐1 and G‐CSF stimulated regeneration of the skeletal muscles deficient in satellite cells. We suggest that mobilized CD34+, Cxcr4+, and Cxcr7+ cells can efficiently participate in the skeletal muscle reconstruction and compensate for the lack of satellite cells. PMID:27239402

  20. Hypoxia Promotes Invasion of Endometrial Stromal Cells via Hypoxia-Inducible Factor 1α Upregulation-Mediated β-Catenin Activation in Endometriosis.

    PubMed

    Xiong, Wenqian; Zhang, Ling; Xiong, Yao; Liu, Hengwei; Liu, Yi

    2016-04-01

    Endometriosis is a common benign gynecological disease defined as the presence of endometrial tissue outside the uterine cavity. The aim of this study was to identify the molecular mechanism underlying hypoxia-induced increases in invasive ability of human endometrial stromal cells (HESCs). Herein, we show that the expression levels of hypoxia-inducible factor lα (HIF-1α) and β-catenin were greater in ectopic endometriotic tissue compared with eutopic tissue from controls. Exposure of eutopic endometrial stromal cells under hypoxic conditions or treated with desferrioxamine (DFO, chemical hypoxia) resulted in a time-dependent increase in β-catenin expression and its dephosphorylation. Hypoxia/HIF-1α also activated the β-catenin/T-cell factor (TCF) signaling pathway and the expression of target genes, vascular endothelial growth factor and matrix metalloproteinase 9, and knockdown of HIF-1α or β-catenin abrogated hypoxia-induced increases in HESC invasiveness. These results suggest that HIF-1α interacting with β-catenin/TCF signaling pathway, which is activated by hypoxia, may provide new insights into the etiology of endometriosis. PMID:26482209

  1. Stromal cell-derived factor-1α and macrophage migration-inhibitory factor induce metastatic behavior in CXCR4-expressing colon cancer cells.

    PubMed

    Shin, Han-Na; Moon, Hyun-Hye; Ku, Ja-Lok

    2012-12-01

    Metastasis of cancer cells is a major cause of death in cancer patients. The process of cancer metastasis includes the proliferation of primary cancer cells, local invasion, intravasation and cancer cell survival in blood flow, extravasation and attachment to secondary organs and metastatic growth in a new environment. In these mechanisms of cancer metastasis, CXC chemokine receptor 4 (CXCR4) and its ligand play an important role. Stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is well known as a ligand of CXCR4, and macrophage migration-inhibitory factor (MIF) has recently become known as a ligand of CXCR4. In many types of cancers including breast, pancreatic and colorectal cancer (CRC), CXCR4/SDF-1α has been investigated in metastasis-related cancer behavior, which include cell proliferation, adhesion, migration and invasion. However, CXCR4/MIF has rarely been investigated in the metastatic behavior of colon cancer cells. In this report, the effect of SDF-1α or MIF was studied on cell cycle, cell proliferation, adhesion and migration of the CXCR4-expressing colon cancer cell line SW480. SDF-1α or MIF caused a decrease in the number of cells in G0/G1 phase and an increase in the numbers of cells in S and G2/M phases. In addition, SDF-1α or MIF caused an increase in cell proliferation, cell adhesion to fibronectin and migration. AMD3100, a CXCR4 antagonist, attenuated these effects, which included increased cell proliferation, adhesion and migration due to treatment of CXCR4-expressing colon cancer cells with SDF-1α or MIF. In conclusion, SDF-1α or MIF affects the metastasis-related behaviors of CXCR4-expressing colon cancer cells. PMID:23023114

  2. Mesenchymal Stem Cell Expression of Stromal Cell-Derived Factor-1β Augments Bone Formation in a Model of Local Regenerative Therapy

    PubMed Central

    Herberg, Samuel; Kondrikova, Galina; Hussein, Khaled A.; Johnson, Maribeth H.; Elsalanty, Mohammed E.; Shi, Xingming; Hamrick, Mark W.; Isales, Carlos M.; Hill, William D.

    2015-01-01

    Bone has the potential for spontaneous healing. However, this process often fails in patients with co-morbidities requiring clinical intervention. Numerous studies have revealed that bone marrow-derived mesenchymal stem/stromal cells (BMSCs) hold great potential for regenerative therapies. Common problems include poor cell engraftment, which can be addressed by irradiation prior to transplantation. Increasing evidence suggests that stromal cell-derived factor-1 (SDF-1) is involved in bone formation. However, osteogenic contributions of the beta splice variant of SDF-1 (SDF-1β), which is highly expressed in bone, remain unclear. Using the tetracycline (Tet)-regulatory system we have shown that SDF-1β enhances BMSC osteogenic differentiation in vitro. Here we test the hypothesis that SDF-1β augments bone formation in vivo in a model of local BMSC transplantation following irradiation. We found that SDF-1β, expressed at high levels in Tet-Off-SDF-1β BMSCs, augments the cell-mediated therapeutic effects resulting in enhanced bone formation, as evidenced by ex vivo μCT and bone histomorphometry. The data demonstrate the specific contribution of SDF-1β to BMSC-mediated bone formation, and validate the feasibility of the Tet-Off technology to regulate SDF-1β expression in vivo. In conclusion, SDF-1β provides potent synergistic effects supporting BMSC-mediated bone formation and appears a suitable candidate for optimization of bone augmentation in translational protocols. PMID:25351363

  3. Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors

    NASA Technical Reports Server (NTRS)

    Blanken, Christopher L. (Editor); Whalley, Matthew S. (Editor)

    1993-01-01

    This document contains papers from a specialists' meeting entitled 'Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors.' Vertical flight aircraft, including helicopters and a variety of Vertical Takeoff and Landing (VTOL) concepts, place unique requirements on human perception, control, and performance for the conduct of their design missions. The intent of this conference was to examine, for these vehicles, advances in: (1) design of flight control systems for ADS-33C standards; (2) assessment of human factors influences of cockpit displays and operational procedures; (3) development of VTOL design and operational criteria; and (4) development of theoretical methods or models for predicting pilot/vehicle performance and mission suitability. A secondary goal of the conference was to provide an initial venue for enhanced interaction between human factors and handling qualities specialists.

  4. 50 Years in the sun of Bürgenstock--on the success factors of a famous conference.

    PubMed

    Müller, Klaus

    2015-04-20

    The secret of success: This year the famous "Bürgenstock Conference" will take place for the 50th time. This conference has become internationally one of the, if not the, most highly regarded conference in chemistry, chemical biology, and physical chemistry. What are the success factors of this conference? These as well as a number of perhaps more hidden figures and facts are discussed. PMID:25801235

  5. Expression of Transcription Factors and Nuclear Receptors in Mixed Germ Cell-Sex Cord Stromal Tumor and Related Tumors of the Gonads.

    PubMed

    Roth, Lawrence M; Cheng, Liang

    2015-11-01

    In this study, we compare the expression of OCT4, SALL4, and TSPYL1 in mixed germ cell-sex cord stromal tumor (MGC-SCST) of either gonad to that of normal adult testis, classic and spermatocytic seminoma, intratubular germ cell neoplasia, unclassified, gonadoblastoma, and dysgerminoma to determine the entity or entities that most closely resemble MGC-SCST by immunohistochemistry of germ cells. The most useful transcription factor was OCT4. In addition, to its already described value in distinguishing germinoma and embryonal carcinoma from yolk sac tumor and in differentiating classic from spermatocytic seminoma, we found that OCT4 is useful in confirming or ruling out potential malignancy in MGC-SCST of either gonad. Expression of OCT4 in most ovarian MGC-SCSTs resembles that of dysgerminoma, whereas most testicular examples resemble that of spermatocytic seminoma and normal adult testis. Thus, most MGC-SCSTs of the ovary are potentially malignant, and corresponding tumors of the testis are mostly benign; however, exceptions likely can be detected by the use of OCT4, potentially leading to more appropriate clinical management in some cases. SALL4 is an underutilized transcription factor that is useful in distinguishing testicular MGC-SCST from sex cord stromal tumor, unclassified in those neoplasms where the germ cells are sparse or unevenly distributed. Compared with other transcription factors studied, TSPY and its congener TSPYL1 have little value in the assessment of germ cell tumors because of their relatively wide range of expression in normal adult testis and in germ cell tumors. PMID:26107563

  6. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma

    SciTech Connect

    Nakamura, Ryosuke; Kayamori, Kou; Oue, Erika; Sakamoto, Kei; Harada, Kiyoshi; Yamaguchi, Akira

    2015-03-20

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and the bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. - Highlights: • Cancer cell, fibroblastic cells, and osteoclasts at bone resorbing area by oral cancer exhibited TGF-β and p-Smad2. • TGF-β1 stimulated osteoclastogenesis induced by RAKL in RAW264 cell. • Xenograft model of oral cancer-induced bone resorption was substantially inhibited by SB431542. • TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC

  7. An In Vivo Characterization of Trophic Factor Production Following Neural Precursor Cell or Bone Marrow Stromal Cell Transplantation for Spinal Cord Injury

    PubMed Central

    Hawryluk, Gregory W.J.; Mothe, Andrea; Wang, Jian; Wang, Shelly; Tator, Charles

    2012-01-01

    Cellular transplantation strategies for repairing the injured spinal cord have shown consistent benefit in preclinical models, and human clinical trials have begun. Interactions between transplanted cells and host tissue remain poorly understood. Trophic factor secretion is postulated a primary or supplementary mechanism of action for many transplanted cells, however, there is little direct evidence to support trophin production by transplanted cells in situ. In the present study, trophic factor expression was characterized in uninjured, injured-untreated, injured-treated with transplanted cells, and corresponding control tissue from the adult rat spinal cord. Candidate trophic factors were identified in a literature search, and primers were designed for these genes. We examined in vivo trophin expression in 3 paradigms involving transplantation of either brain or spinal cord-derived neural precursor cells (NPCs) or bone marrow stromal cells (BMSCs). Injury without further treatment led to a significant elevation of nerve growth factor (NGF), leukemia inhibitory factor (LIF), insulin-like growth factor-1 (IGF-1), and transforming growth factor-β1 (TGF-β1), and lower expression of vascular endothelial growth factor isoform A (VEGF-A) and platelet-derived growth factor-A (PDGF-A). Transplantation of NPCs led to modest changes in trophin expression, and the co-administration of intrathecal trophins resulted in significant elevation of the neurotrophins, glial-derived neurotrophic factor (GDNF), LIF, and basic fibroblast growth factor (bFGF). BMSCs transplantation upregulated NGF, LIF, and IGF-1. NPCs isolated after transplantation into the injured spinal cord expressed the neurotrophins, ciliary neurotrophic factor (CNTF), epidermal growth factor (EGF), and bFGF at higher levels than host cord. These data show that trophin expression in the spinal cord is influenced by injury and cell transplantation, particularly when combined with intrathecal trophin infusion

  8. Sustained Release of Engineered Stromal Cell–Derived Factor 1-α From Injectable Hydrogels Effectively Recruits Endothelial Progenitor Cells and Preserves Ventricular Function After Myocardial Infarction

    PubMed Central

    MacArthur, John W.; Purcell, Brendan P.; Shudo, Yasuhiro; Cohen, Jeffrey E.; Fairman, Alex; Trubelja, Alen; Patel, Jay; Hsiao, Philip; Yang, Elaine; Lloyd, Kelsey; Hiesinger, William; Atluri, Pavan; Burdick, Jason A.; Woo, Y. Joseph

    2014-01-01

    Background Exogenously delivered chemokines have enabled neovasculogenic myocardial repair in models of ischemic cardiomyopathy; however, these molecules have short half-lives in vivo. In this study, we hypothesized that the sustained delivery of a synthetic analog of stromal cell–derived factor 1-α (engineered stromal cell–derived factor analog [ESA]) induces continuous homing of endothelial progenitor cells and improves left ventricular function in a rat model of myocardial infarction. Methods and Results Our previously designed ESA peptide was synthesized by the addition of a fluorophore tag for tracking. Hyaluronic acid was chemically modified with hydroxyethyl methacrylate to form hydrolytically degradable hydrogels through free-radical–initiated crosslinking. ESA was encapsulated in hyaluronic acid hydrogels during gel formation, and then ESA release, along with gel degradation, was monitored for more than 4 weeks in vitro. Chemotactic properties of the eluted ESA were assessed at multiple time points using rat endothelial progenitor cells in a transwell migration assay. Finally, adult male Wistar rats (n=33) underwent permanent ligation of the left anterior descending (LAD) coronary artery, and 100 μL of saline, hydrogel alone, or hydrogel+25 μg ESA was injected into the borderzone. ESA fluorescence was monitored in animals for more than 4 weeks, after which vasculogenic, geometric, and functional parameters were assessed to determine the therapeutic benefit of each treatment group. ESA release was sustained for 4 weeks in vitro, remained active, and enhanced endothelial progenitor cell chemotaxis. In addition, ESA was detected in the rat heart >3 weeks when delivered within the hydrogels and significantly improved vascularity, ventricular geometry, ejection fraction, cardiac output, and contractility compared with controls. Conclusions We have developed a hydrogel delivery system that sustains the release of a bioactive endothelial progenitor cell

  9. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma.

    PubMed

    Nakamura, Ryosuke; Kayamori, Kou; Oue, Erika; Sakamoto, Kei; Harada, Kiyoshi; Yamaguchi, Akira

    2015-03-20

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and the bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. PMID:25681764

  10. Gastrointestinal Stromal Tumors: A Case Report

    PubMed Central

    Sashidharan, Palankezhe; Matele, Apoorva; Matele, Usha; Al Felahi, Nowfel; Kassem, Khalid F.

    2014-01-01

    Advances in the identification of gastrointestinal stromal tumors, its molecular and immunohiostochemical basis, and its management have been a watershed in the treatment of gastrointestinal tumors. This paradigm shift occurred over the last two decades and gastrointestinal stromal tumors have now come to be understood as rare gastrointestinal tract tumors with predictable behavior and outcome, replacing the older terminologies like leiomyoma, schwannoma or leiomyosarcoma. This report presents a case of gastric gastrointestinal stromal tumor operated recently in a 47-year-old female patient and the outcome, as well as literature review of the pathological identification, sites of origin, and factors predicting its behavior, prognosis and treatment. PMID:24715944

  11. Influence of Factors of Cryopreservation and Hypothermic Storage on Survival and Functional Parameters of Multipotent Stromal Cells of Placental Origin

    PubMed Central

    Pogozhykh, Olena; Mueller, Thomas; Prokopyuk, Olga

    2015-01-01

    Human placenta is a highly perspective source of multipotent stromal cells (MSCs) both for the purposes of patient specific auto-banking and allogeneic application in regenerative medicine. Implementation of new GMP standards into clinical practice enforces the search for relevant methods of cryopreservation and short-term hypothermic storage of placental MSCs. In this paper we analyze the effect of different temperature regimes and individual components of cryoprotective media on viability, metabolic and culture properties of placental MSCs. We demonstrate (I) the possibility of short-term hypothermic storage of these cells; (II) determine DMSO and propanediol as the most appropriate cryoprotective agents; (III) show the possibility of application of volume expanders (plasma substituting solutions based on dextran or polyvinylpyrrolidone); (IV) reveal the priority of ionic composition over the serum content in cryopreservation media; (V) determine a cooling rate of 1°C/min down to -40°C followed by immersion into liquid nitrogen as the optimal cryopreservation regime for this type of cells. This study demonstrates perspectives for creation of new defined cryopreservation methods towards GMP standards. PMID:26431528

  12. Dexamethasone Regulates EphA5, a Potential Inhibitory Factor with Osteogenic Capability of Human Bone Marrow Stromal Cells.

    PubMed

    Yamada, Tsuyoshi; Yoshii, Toshitaka; Yasuda, Hiroaki; Okawa, Atsushi; Sotome, Shinichi

    2016-01-01

    We previously demonstrated the importance of quality management procedures for the handling of human bone marrow stromal cells (hBMSCs) and provided evidence for the existence of osteogenic inhibitor molecules in BMSCs. One candidate inhibitor is the ephrin type-A receptor 5 (EphA5), which is expressed in hBMSCs and upregulated during long-term culture. In this study, forced expression of EphA5 diminished the expression of osteoblast phenotypic markers. Downregulation of endogenous EphA5 by dexamethasone treatment promoted osteoblast marker expression. EphA5 could be involved in the normal growth regulation of BMSCs and could be a potential marker for replicative senescence. Although Eph forward signaling stimulated by ephrin-B-Fc promoted the expression of ALP mRNA in BMSCs, exogenous addition of EphA5-Fc did not affect the ALP level. The mechanism underlying the silencing of EphA5 in early cultures remains unclear. EphA5 promoter was barely methylated in hBMSCs while histone deacetylation could partially suppress EphA5 expression in early-passage cultures. In repeatedly passaged cultures, the upregulation of EphA5 independent of methylation could competitively inhibit osteogenic signal transduction pathways such as EphB forward signaling. Elucidation of the potential inhibitory function of EphA5 in hBMSCs may provide an alternative approach for lineage differentiation in cell therapy strategies and regenerative medicine. PMID:27057165

  13. Influence of Factors of Cryopreservation and Hypothermic Storage on Survival and Functional Parameters of Multipotent Stromal Cells of Placental Origin.

    PubMed

    Pogozhykh, Denys; Prokopyuk, Volodymyr; Pogozhykh, Olena; Mueller, Thomas; Prokopyuk, Olga

    2015-01-01

    Human placenta is a highly perspective source of multipotent stromal cells (MSCs) both for the purposes of patient specific auto-banking and allogeneic application in regenerative medicine. Implementation of new GMP standards into clinical practice enforces the search for relevant methods of cryopreservation and short-term hypothermic storage of placental MSCs. In this paper we analyze the effect of different temperature regimes and individual components of cryoprotective media on viability, metabolic and culture properties of placental MSCs. We demonstrate (I) the possibility of short-term hypothermic storage of these cells; (II) determine DMSO and propanediol as the most appropriate cryoprotective agents; (III) show the possibility of application of volume expanders (plasma substituting solutions based on dextran or polyvinylpyrrolidone); (IV) reveal the priority of ionic composition over the serum content in cryopreservation media; (V) determine a cooling rate of 1°C/min down to -40°C followed by immersion into liquid nitrogen as the optimal cryopreservation regime for this type of cells. This study demonstrates perspectives for creation of new defined cryopreservation methods towards GMP standards. PMID:26431528

  14. Dexamethasone Regulates EphA5, a Potential Inhibitory Factor with Osteogenic Capability of Human Bone Marrow Stromal Cells

    PubMed Central

    Yamada, Tsuyoshi; Yoshii, Toshitaka; Yasuda, Hiroaki; Okawa, Atsushi; Sotome, Shinichi

    2016-01-01

    We previously demonstrated the importance of quality management procedures for the handling of human bone marrow stromal cells (hBMSCs) and provided evidence for the existence of osteogenic inhibitor molecules in BMSCs. One candidate inhibitor is the ephrin type-A receptor 5 (EphA5), which is expressed in hBMSCs and upregulated during long-term culture. In this study, forced expression of EphA5 diminished the expression of osteoblast phenotypic markers. Downregulation of endogenous EphA5 by dexamethasone treatment promoted osteoblast marker expression. EphA5 could be involved in the normal growth regulation of BMSCs and could be a potential marker for replicative senescence. Although Eph forward signaling stimulated by ephrin-B-Fc promoted the expression of ALP mRNA in BMSCs, exogenous addition of EphA5-Fc did not affect the ALP level. The mechanism underlying the silencing of EphA5 in early cultures remains unclear. EphA5 promoter was barely methylated in hBMSCs while histone deacetylation could partially suppress EphA5 expression in early-passage cultures. In repeatedly passaged cultures, the upregulation of EphA5 independent of methylation could competitively inhibit osteogenic signal transduction pathways such as EphB forward signaling. Elucidation of the potential inhibitory function of EphA5 in hBMSCs may provide an alternative approach for lineage differentiation in cell therapy strategies and regenerative medicine. PMID:27057165

  15. Gastrointestinal stromal tumour.

    PubMed

    Joensuu, Heikki; Hohenberger, Peter; Corless, Christopher L

    2013-09-14

    Gastrointestinal stromal tumours (GISTs) are mesenchymal neoplasms that arise in the gastrointestinal tract, usually in the stomach or the small intestine and rarely elsewhere in the abdomen. They can occur at any age, the median age being 60-65 years, and typically cause bleeding, anaemia, and pain. GISTs have variable malignant potential, ranging from small lesions with a benign behaviour to fatal sarcomas. Most tumours stain positively for the mast/stem cell growth factor receptor KIT and anoctamin 1 and harbour a kinase-activating mutation in either KIT or PDGFRA. Tumours without such mutations could have alterations in genes of the succinate dehydrogenase complex or in BRAF, or rarely RAS family genes. About 60% of patients are cured by surgery. Adjuvant treatment with imatinib is recommended for patients with a substantial risk of recurrence, if the tumour has an imatinib-sensitive mutation. Tyrosine kinase inhibitors substantially improve survival in advanced disease, but secondary drug resistance is common. PMID:23623056

  16. Stromal Effects on Mammary Gland Development and Breast Cancer

    NASA Astrophysics Data System (ADS)

    Wiseman, Bryony S.; Werb, Zena

    2002-05-01

    Breast cancer manifests itself in the mammary epithelium, yet there is a growing recognition that mammary stromal cells also play an important role in tumorigenesis. During its developmental cycle, the mammary gland displays many of the properties associated with breast cancer, and many of the stromal factors necessary for mammary development also promote or protect against breast cancer. Here we review our present knowledge of the specific factors and cell types that contribute to epithelial-stromal crosstalk during mammary development. To find cures for diseases like breast cancer that rely on epithelial-stromal crosstalk, we must understand how these different cell types communicate with each other.

  17. [The sensitivity of mesenchymal stromal cell subpopulations with different times of adhesion property manifestation and derived from hemopoietic organs to growth factors EGF, bFGF, and PDGF].

    PubMed

    Molchanova, E A; Bueverova, E I; Starostin, V I; Domaratskaia, E I

    2011-01-01

    The action of three growth factors (EGF, bFGF, and PDGF) on mesenchymal stromal cell (MSC) subpopulations from mature bone marrow (BM) and rat embryo liver (EL) was investigated. These cells are plastic-adhesive and have different rates of adhesion (AC1-AC4 subpopulations). The efficiency of colony-formation, the size of colonies, and the number of early osteogenic progenitors with alkaline phosphatase activity in colonies and induced osteogenesis were analyzed. It was shown that EGF increased the number of bone marrow (BM) MSC colonies, but it had no influence on osteogenic differentiation. bFGF suppressed colony formation, but it stimulated both early and late stages of steogenesis. PDGF increased the size and the number of colonies in AC2 and AC3 subpopulations, but it stimulated only the ostegenesis terminal stage. The distinction between MSC subpopulations from two organs were found: MSC from EL had small osteogenic capacities and low sensitivity to grow factors; MSC from BM had no such characteristics. MSC subpopulations with different adhesion properties and from different tissues had compatible sensitivity to growth factors. Thus, these cells have no parent-progeny relationship. PMID:21506387

  18. Intra-Articular Injection of Human Meniscus Stem/Progenitor Cells Promotes Meniscus Regeneration and Ameliorates Osteoarthritis Through Stromal Cell-Derived Factor-1/CXCR4-Mediated Homing

    PubMed Central

    Shen, Weiliang; Chen, Jialin; Zhu, Ting; Chen, Longkun; Zhang, Wei; Fang, Zhi; Heng, Boon Chin; Yin, Zi; Chen, Xiao; Ji, Junfeng

    2014-01-01

    Meniscus injury is frequently encountered in clinical practice. Current surgical therapy involving partial or complete meniscectomy relieves pain in the short-term but often leads to osteoarthritis (OA) in the long-term. In this study, we report a new strategy of articular cartilage protection by intra-articular injection of novel human meniscus stem/progenitor cells (hMeSPCs). We found that hMeSPCs displayed both mesenchymal stem cell characteristics and high expression levels of collagen II. In the rat meniscus injury model, hMeSPC transplantation not only led to more neo-tissue formation and better-defined shape but also resulted in more rounded cells and matured extracellular matrix. Stromal cell-derived factor-1 (SDF-1) enhanced the migration of hMeSPCs, whereas AMD3100 abolished the chemotactic effects of SDF-1 on hMeSPCs, both in vitro and in vivo. In an experimental OA model, transplantation of hMeSPCs effectively protected articular cartilage, as evidenced by reduced expression of OA markers such as collagen I, collagen X, and hypoxia-inducible factor 2α but increased expression of collagen II. Our study demonstrated for the first time that intra-articular injection of hMeSPCs enhanced meniscus regeneration through the SDF-1/CXCR4 axis. Our study highlights a new strategy of intra-articular injection of hMeSPCs for meniscus regeneration. PMID:24448516

  19. Bone Marrow Stromal Cell Transdifferentiation into Oligodendrocyte-Like Cells Using Triiodothyronine as a Inducer with Expression of Platelet-Derived Growth Factor α as a Maturity Marker

    PubMed Central

    Abbaszadeh, Hojjat-Allah; Tiraihi, Taki; Delshad, Ali Reza; Saghedi Zadeh, Majid; Taheri, Taher

    2013-01-01

    Background: The present study investigated the functional maturity of oligodendrocyte derived from rat bone marrow stromal cells (BMSC). Methods: The BMSC were isolated from female Sprague-Dawley rats and evaluated for different markers, such as fibronectin, CD106, CD90, Oct-4 and CD45. Transdifferentiation of OLC from BMSC was obtained by exposing the BMSC to DMSO and 1 µM all-trans-retinoic acid during the pre-induction stage and then induced by heregulin (HRG), platelet-derived growth factor AA (PDGFR-α), fibroblast growth factor and T3. The neuroprogenitor cells (NPC) were evaluated for nestin, neurofilament 68, neurofilament 160 and glial fibrillary acidic protein gene expression using immunocytochemistry. The OLC were assessed by immunocytochemistry for O4, oligo2, O1 and MBP marker and gene expression of PDGFR-α was examined by RT-PCR. Results: Our results showed that the fibronectin, CD106, CD90, CD45 and Oct-4 were expressed after the fourth passage. Also, the yield of OLC differentiation was about 71% when using the O1, O4 and oligo2 markers. Likewise, the expression of PDGFR-α in pre-oligodendrocytes was noticed, while MBP expression was detected in oligodendrocyte after 6 days of the induction. Conclusion: The conclusion of the study showed that BMSC can be induced to transdifferentiate into mature OLC. PMID:23567847

  20. Cyclooxygenase-2 or tumor necrosis factor-α inhibitors attenuate the mechanotransductive effects of pulsed focused ultrasound to suppress mesenchymal stromal cell homing to healthy and dystrophic muscle

    PubMed Central

    Tebebi, Pamela A.; Burks, Scott R.; Kim, Saejeong J.; Williams, Rashida A.; Nguyen, Ben A.; Venkatesh, Priyanka; Frenkel, Victor; Frank, Joseph A.

    2014-01-01

    Maximal homing of infused stem cells to diseased tissue is critical for regenerative medicine. Pulsed focused ultrasound (pFUS) is a clinically relevant platform to direct stem cell migration. Through mechanotransduction, pFUS establishes local gradients of cytokines, chemokines, trophic factors (CCTF) and cell adhesion molecules (CAM) in treated skeletal muscle that subsequently infused mesenchymal stromal cells (MSC) can capitalize to migrate into the parenchyma. Characterizing molecular responses to mechanical pFUS effects revealed tumor necrosis factor-alpha (TNFα) drives cyclooxygenase-2 (COX2) signaling to locally increase CCTF/CAM that are necessary for MSC homing. pFUS failed to increase chemoattractants and induce MSC homing to treated muscle in mice pretreated with ibuprofen (non-specific COX inhibitor) or etanercept (TNFα inhibitor). pFUS-induced MSC homing was also suppressed in COX2-knockout mice, demonstrating ibuprofen blocked the mechanically-induced CCTF/CAM by acting on COX2. Anti-inflammatory drugs, including ibuprofen, are administered to muscular dystrophy (MD) patients and ibuprofen also suppressed pFUS-induced homing to muscle in a mouse model of MD. Drug interactions with cell therapies remain unexplored and are not controlled for during clinical cell therapy trials. This study highlights potentially negative drug-host interactions that suppress stem cell homing and could undermine cell-based approaches for regenerative medicine. PMID:25534849

  1. Human Umbilical Cord Perivascular Cells Exhibited Enhanced Migration Capacity towards Hepatocellular Carcinoma in Comparison with Bone Marrow Mesenchymal Stromal Cells: A Role for Autocrine Motility Factor Receptor

    PubMed Central

    Aquino, Jorge B.; Malvicini, Mariana; Bolontrade, Marcela; Podhajcer, Osvaldo; Garcia, Mariana G.; Mazzolini, Guillermo

    2014-01-01

    Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC. PMID:25147818

  2. Human umbilical cord perivascular cells exhibited enhanced migration capacity towards hepatocellular carcinoma in comparison with bone marrow mesenchymal stromal cells: a role for autocrine motility factor receptor.

    PubMed

    Bayo, Juan; Fiore, Esteban; Aquino, Jorge B; Malvicini, Mariana; Rizzo, Manglio; Peixoto, Estanislao; Alaniz, Laura; Piccioni, Flavia; Bolontrade, Marcela; Podhajcer, Osvaldo; Garcia, Mariana G; Mazzolini, Guillermo

    2014-01-01

    Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs) as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs) and human umbilical cord perivascular cells (HUCPVCs) towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF) receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2) and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC. PMID:25147818

  3. Constitutive stabilization of hypoxia-inducible factor alpha selectively promotes the self-renewal of mesenchymal progenitors and maintains mesenchymal stromal cells in an undifferentiated state.

    PubMed

    Park, In-Ho; Kim, Kwang-Ho; Choi, Hyun-Kyung; Shim, Jae-Seung; Whang, Soo-Young; Hahn, Sang June; Kwon, Oh-Joo; Oh, Il-Hoan

    2013-01-01

    With the increasing use of culture-expanded mesenchymal stromal cells (MSCs) for cell therapies, factors that regulate the cellular characteristics of MSCs have been of major interest. Oxygen concentration has been shown to influence the functions of MSCs, as well as other normal and malignant stem cells. However, the underlying mechanisms of hypoxic responses and the precise role of hypoxia-inducible factor-1α (Hif-1α), the master regulatory protein of hypoxia, in MSCs remain unclear, due to the limited span of Hif-1α stabilization and the complex network of hypoxic responses. In this study, to further define the significance of Hif-1α in MSC function during their self-renewal and terminal differentiation, we established adult bone marrow (BM)-derived MSCs that are able to sustain high level expression of ubiquitin-resistant Hif-1α during such long-term biological processes. Using this model, we show that the stabilization of Hif-1α proteins exerts a selective influence on colony-forming mesenchymal progenitors promoting their self-renewal and proliferation, without affecting the proliferation of the MSC mass population. Moreover, Hif-1α stabilization in MSCs led to the induction of pluripotent genes (oct-4 and klf-4) and the inhibition of their terminal differentiation into osteogenic and adipogenic lineages. These results provide insights into the previously unrecognized roles of Hif-1α proteins in maintaining the primitive state of primary MSCs and on the cellular heterogeneities in hypoxic responses among MSC populations. PMID:24071737

  4. Low osteogenic differentiation potential of placenta-derived mesenchymal stromal cells correlates with low expression of the transcription factors Runx2 and Twist2.

    PubMed

    Ulrich, Christine; Rolauffs, Bernd; Abele, Harald; Bonin, Michael; Nieselt, Kay; Hart, Melanie L; Aicher, Wilhelm K

    2013-11-01

    Recent studies indicated that mesenchymal stromal cells from bone marrow (bmMSC) differ in their osteogenic differentiation capacity compared to MSC from term placenta (pMSC). We extended these studies and investigated the expression of factors involved in regulation of bone metabolism in both cell types. To this end, MSC were expanded in vitro and characterized. The total transcriptome was investigated by microarrays, and for selected genes, the differences in gene expression were explored by quantitative reverse transcriptase-polymerase chain reaction, immunocytochemistry, and flow cytometry. We report that bmMSC and pMSC share expression of typical lineage surface markers, including CD73, CD90, CD105, and lack of CD14, CD34, and CD45. However, according to transcriptome analyses, they differ significantly in their expression of more than 590 genes. Factors involved in bone metabolism, including alkaline phosphatase (P<0.05), osteoglycin (P<0.05), osteomodulin (P<0.05), runt-related transcription factor 2 (Runx2) (P<0.04), and WISP2 (P<0.05), were expressed at significantly lower levels in pMSC, but twist-related protein 2 (Twist2) (P<0.0002) was expressed at significantly higher levels. The osteogenic differentiation capacity of pMSC was very low. The adipogenic differentiation was somewhat more prominent in bmMSC, while the chondrogenic differentiation seemed not to differ between bmMSC and pMSC, as determined by histochemical staining. However, expression and induction of peroxisome proliferator-activated receptor gamma-2 (PPARγ2) and Sox9, factors involved in early adipogenesis and chondrogenesis, respectively, were higher in bmMSC. We conclude that despite many similarities between bmMSC and pMSC, when expanded under identical conditions, they vary considerably with respect to their in vitro differentiation potential. For regenerative purposes, the choice of MSC may therefore influence the outcome of a treatment considerably. PMID:23763516

  5. Low Osteogenic Differentiation Potential of Placenta-Derived Mesenchymal Stromal Cells Correlates with Low Expression of the Transcription Factors Runx2 and Twist2

    PubMed Central

    Ulrich, Christine; Rolauffs, Bernd; Abele, Harald; Bonin, Michael; Nieselt, Kay; Hart, Melanie L.

    2013-01-01

    Recent studies indicated that mesenchymal stromal cells from bone marrow (bmMSC) differ in their osteogenic differentiation capacity compared to MSC from term placenta (pMSC). We extended these studies and investigated the expression of factors involved in regulation of bone metabolism in both cell types. To this end, MSC were expanded in vitro and characterized. The total transcriptome was investigated by microarrays, and for selected genes, the differences in gene expression were explored by quantitative reverse transcriptase-polymerase chain reaction, immunocytochemistry, and flow cytometry. We report that bmMSC and pMSC share expression of typical lineage surface markers, including CD73, CD90, CD105, and lack of CD14, CD34, and CD45. However, according to transcriptome analyses, they differ significantly in their expression of more than 590 genes. Factors involved in bone metabolism, including alkaline phosphatase (P<0.05), osteoglycin (P<0.05), osteomodulin (P<0.05), runt-related transcription factor 2 (Runx2) (P<0.04), and WISP2 (P<0.05), were expressed at significantly lower levels in pMSC, but twist-related protein 2 (Twist2) (P<0.0002) was expressed at significantly higher levels. The osteogenic differentiation capacity of pMSC was very low. The adipogenic differentiation was somewhat more prominent in bmMSC, while the chondrogenic differentiation seemed not to differ between bmMSC and pMSC, as determined by histochemical staining. However, expression and induction of peroxisome proliferator-activated receptor gamma-2 (PPARγ2) and Sox9, factors involved in early adipogenesis and chondrogenesis, respectively, were higher in bmMSC. We conclude that despite many similarities between bmMSC and pMSC, when expanded under identical conditions, they vary considerably with respect to their in vitro differentiation potential. For regenerative purposes, the choice of MSC may therefore influence the outcome of a treatment considerably. PMID:23763516

  6. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2).

    PubMed

    Maegawa, Naoki; Kawamura, Kenji; Hirose, Motohiro; Yajima, Hiroshi; Takakura, Yoshinori; Ohgushi, Hajime

    2007-01-01

    It is well known that bone marrow contains mesenchymal stromal cells (MSCs), which can show osteoblastic differentiation when cultured in osteogenic medium containing ascorbic acid, beta-glycerophosphate and dexamethasone. The differentiation results in the appearance of osteoblasts, together with the formation of bone matrix; thus, in vitro cultured bone (osteoblasts/bone matrix) could be fabricated by MSC culture. This type of cultured bone has already been used in clinical cases involving orthopaedic problems. To improve the therapeutic effect of the cultured bone, we investigated the culture conditions that contributed to extensive osteoblastic differentiation. Rat bone marrow was primarily cultured to expand the number of MSCs and further cultured in osteogenic medium for 12 days. The culture was also conducted in a medium supplemented with either bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor (FGF-2), or with sequential combinations of both supplements. Among them, the sequential supplementation of FGF-2 followed by BMP-2 showed high alkaline phosphatase activity, sufficient bone-specific osteocalcein expression and abundant bone matrix formation of the MSC culture. These data implied that the number of responding cells or immature osteoblasts was increased by the supplementation of FGF-2 in the early phase of the culture and that these cells can show osteoblastic differentiation, of which capability was augmented by BMP-2 in the late phase. The sequential supplementation of these cytokines into MSC culture might be suitable for the fabrication of ideal cultured bone for use in bone tissue engineering. PMID:18038421

  7. Controlled delivery of stromal derived factor-1α from poly lactic-co-glycolic acid core-shell particles to recruit mesenchymal stem cells for cardiac regeneration.

    PubMed

    Zamani, Maedeh; Prabhakaran, Molamma P; Thian, Eng San; Ramakrishna, Seeram

    2015-08-01

    Stromal derived factor-1α (SDF-1α) has shown promising results in treatment of myocardial infarction (MI), via recruitment of endogenous stem cells into the injured myocardium. However, the bioactivity of this susceptible signalling chemokine is reduced significantly during the common fabrication processes of drug delivery systems, due to the exposure to organic-aqueous interfaces or elevated temperature. In this study, we developed a novel SDF-1α delivery system using coaxial electrospraying, the technique which enables fabrication of core-shell particles with minimized contact of organic-aqueous phases. The SDF-1α incorporated PLGA particles exhibited distinct core-shell structure, confirmed by transmission electron microscopy (TEM). Controlled release of SDF-1α was obtained for at least 40days, and the release rate was tailored by co-encapsulation of bovine serum albumin (BSA) into the core of the particles. The SDF-1α released from PLGA/SDF-1α and PLGA/BSA-SDF-1α particles retained its chemotactic activity, and enhanced the number of migrated mesenchymal stem cells (MSCs) by 38% and 54%, respectively, compared to basal medium used as the control. Moreover, both SDF-1α and BSA supported the proliferation of MSCs within 3days of cell culture. The SDF-1α incorporated core-shell particles developed by electrospraying technique, can be effectively employed as injectable drug delivery system for in situ cardiac regeneration. PMID:25897850

  8. Stromal Cell-Derived Factor-1α Plays a Crucial Role Based on Neuroprotective Role in Neonatal Brain Injury in Rats

    PubMed Central

    Mori, Miki; Matsubara, Keiichi; Matsubara, Yuko; Uchikura, Yuka; Hashimoto, Hisashi; Fujioka, Toru; Matsumoto, Takashi

    2015-01-01

    Owing to progress in perinatal medicine, the survival of preterm newborns has markedly increased. However, the incidence of cerebral palsy has risen in association with increased preterm birth. Cerebral palsy is largely caused by cerebral hypoxic ischemia (HI), for which there are no effective medical treatments. We evaluated the effects of stromal cell-derived factor-1α (SDF-1α) on neonatal brain damage in rats. Left common carotid (LCC) arteries of seven-day-old Wistar rat pups were ligated, and animals were exposed to hypoxic gas to cause cerebral HI. Behavioral tests revealed that the memory and spatial perception abilities were disturbed in HI animals, and that SDF-1α treatment improved these cognitive functions. Motor coordination was also impaired after HI but was unimproved by SDF-1α treatment. SDF-1α reduced intracranial inflammation and induced cerebral remyelination, as indicated by the immunohistochemistry results. These data suggest that SDF-1α specifically influences spatial perception abilities in neonatal HI encephalopathy. PMID:26251894

  9. Molecular Imaging for Comparison of Different Growth Factors on Bone Marrow-Derived Mesenchymal Stromal Cells' Survival and Proliferation In Vivo.

    PubMed

    Qiao, Hongyu; Zhang, Ran; Gao, Lina; Guo, Yanjie; Wang, Jinda; Zhang, Rongqing; Li, Xiujuan; Li, Congye; Chen, Yundai; Cao, Feng

    2016-01-01

    Introduction. Bone marrow-derived mesenchymal stromal cells (BMSCs) have emerged as promising cell candidates but with poor survival after transplantation. This study was designed to investigate the efficacy of VEGF, bFGF, and IGF-1 on BMSCs' viability and proliferation both in vivo and in vitro using bioluminescence imaging (BLI). Methods. BMSCs were isolated from β-actin-Fluc(+) transgenic FVB mice, which constitutively express firefly luciferase. Apoptosis was induced by hypoxia preconditioning for up to 24 h followed by flow cytometry and TUNEL assay. 10(6) BMSCs with/without growth factors were injected subcutaneously into wild type FVB mice's backs. Survival of BMSCs was longitudinally monitored using bioluminescence imaging (BLI) for 5 weeks. Protein expression of Akt, p-Akt, PARP, and caspase-3 was detected by Western blot. Results. Hypoxia-induced apoptosis was significantly attenuated by bFGF and IGF-1 compared with VEGF and control group in vitro (P < 0.05). When combined with matrigel, IGF-1 showed the most beneficial effects in protecting BMSCs from apoptosis in vivo. The phosphorylation of Akt had a higher ratio in the cells from IGF-1 group. Conclusion. IGF-1 could protect BMSCs from hypoxia-induced apoptosis through activation of p-Akt/Akt pathway. PMID:27419126

  10. Molecular Imaging for Comparison of Different Growth Factors on Bone Marrow-Derived Mesenchymal Stromal Cells' Survival and Proliferation In Vivo

    PubMed Central

    Qiao, Hongyu; Zhang, Ran; Gao, Lina; Guo, Yanjie; Wang, Jinda; Zhang, Rongqing; Li, Xiujuan; Li, Congye; Chen, Yundai; Cao, Feng

    2016-01-01

    Introduction. Bone marrow-derived mesenchymal stromal cells (BMSCs) have emerged as promising cell candidates but with poor survival after transplantation. This study was designed to investigate the efficacy of VEGF, bFGF, and IGF-1 on BMSCs' viability and proliferation both in vivo and in vitro using bioluminescence imaging (BLI). Methods. BMSCs were isolated from β-actin-Fluc+ transgenic FVB mice, which constitutively express firefly luciferase. Apoptosis was induced by hypoxia preconditioning for up to 24 h followed by flow cytometry and TUNEL assay. 106 BMSCs with/without growth factors were injected subcutaneously into wild type FVB mice's backs. Survival of BMSCs was longitudinally monitored using bioluminescence imaging (BLI) for 5 weeks. Protein expression of Akt, p-Akt, PARP, and caspase-3 was detected by Western blot. Results. Hypoxia-induced apoptosis was significantly attenuated by bFGF and IGF-1 compared with VEGF and control group in vitro (P < 0.05). When combined with matrigel, IGF-1 showed the most beneficial effects in protecting BMSCs from apoptosis in vivo. The phosphorylation of Akt had a higher ratio in the cells from IGF-1 group. Conclusion. IGF-1 could protect BMSCs from hypoxia-induced apoptosis through activation of p-Akt/Akt pathway. PMID:27419126

  11. Stromal cell-derived factor-1{alpha} (SDF-1{alpha}/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    SciTech Connect

    Porcile, Carola; Bajetto, Adriana . E-mail: bajetto@cba.unige.it; Barbieri, Federica; Barbero, Simone; Bonavia, Rudy; Biglieri, Marianna; Pirani, Paolo; Florio, Tullio . E-mail: florio@cba.unige.it; Schettini, Gennaro

    2005-08-15

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1{alpha} treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1{alpha} induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer.

  12. Cilostazol Improves Proangiogenesis Functions in Human Early Endothelial Progenitor Cells through the Stromal Cell-Derived Factor System and Hybrid Therapy Provides a Synergistic Effect In Vivo.

    PubMed

    Tseng, Shih-Ya; Chao, Ting-Hsing; Li, Yi-Heng; Cho, Chung-Lung

    2016-01-01

    This study investigated the effect of cilostazol on proangiogenesis functions in human early endothelial progenitor cells (EPCs) in vitro and the therapeutic implication of hybrid therapy with cilostazol and human early EPCs in vivo. Cilostazol significantly increased colony-forming units and enhanced differentiation of EPCs toward endothelial lineage. Treatments resulted in antiapoptotic effects and stimulated proliferation and migration and in vitro vascular tube formation through activation of stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)/phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway. Blood flow recovery and capillary density in murine ischemic hindlimbs were significantly improved in cilostazol-treated, human early EPCs-treated, and cotreatment groups. The effects were attenuated with SDF-1α inhibition. Plasma SDF-1α levels were significantly higher in 3 active treatment groups after surgery, with greatest effects observed in hybrid therapy. The angiogenic effects of transplanted EPCs pretreated with cilostazol ex vivo were superior to untreated EPCs using in vivo Matrigel assay. Implanted EPCs were incorporated into the capillary, with pretreatment or cotreatment with cilostazol resulting in enhanced effects. Taken together, cilostazol promotes a large number of proangiogenic functions in human early EPCs through activation of SDF-1/CXCR4/PI3K/Akt signaling, and hybrid therapy provides a synergistic effect in vivo. Cotreatment may be beneficial in ischemic disease. PMID:27595100

  13. Cilostazol Improves Proangiogenesis Functions in Human Early Endothelial Progenitor Cells through the Stromal Cell-Derived Factor System and Hybrid Therapy Provides a Synergistic Effect In Vivo

    PubMed Central

    Tseng, Shih-Ya; Li, Yi-Heng; Cho, Chung-Lung

    2016-01-01

    This study investigated the effect of cilostazol on proangiogenesis functions in human early endothelial progenitor cells (EPCs) in vitro and the therapeutic implication of hybrid therapy with cilostazol and human early EPCs in vivo. Cilostazol significantly increased colony-forming units and enhanced differentiation of EPCs toward endothelial lineage. Treatments resulted in antiapoptotic effects and stimulated proliferation and migration and in vitro vascular tube formation through activation of stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)/phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway. Blood flow recovery and capillary density in murine ischemic hindlimbs were significantly improved in cilostazol-treated, human early EPCs-treated, and cotreatment groups. The effects were attenuated with SDF-1α inhibition. Plasma SDF-1α levels were significantly higher in 3 active treatment groups after surgery, with greatest effects observed in hybrid therapy. The angiogenic effects of transplanted EPCs pretreated with cilostazol ex vivo were superior to untreated EPCs using in vivo Matrigel assay. Implanted EPCs were incorporated into the capillary, with pretreatment or cotreatment with cilostazol resulting in enhanced effects. Taken together, cilostazol promotes a large number of proangiogenic functions in human early EPCs through activation of SDF-1/CXCR4/PI3K/Akt signaling, and hybrid therapy provides a synergistic effect in vivo. Cotreatment may be beneficial in ischemic disease. PMID:27595100

  14. Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell–derived factor-1– and CD106 (VCAM-1)–dependent mechanism

    PubMed Central

    Burger, Jan A.; Zvaifler, Nathan J.; Tsukada, Nobuhiro; Firestein, Gary S.; Kipps, Thomas J.

    2001-01-01

    B-cell accumulation and formation of ectopic germinal centers are characteristic changes in the diseased joints of patients with rheumatoid arthritis (RA). Earlier studies suggested that interactions between B lymphocytes and specialized synovial “nurse-like” cells peculiar to the RA synovium may be responsible for the homing and sustained survival of B cells in the synovium. However, in this study, we found that B cells spontaneously migrate beneath ordinary fibroblast-like synoviocytes (FLSs) and then experience prolonged survival. FLSs isolated from joints of patients with osteoarthritis also supported this activity, termed B-cell pseudoemperipolesis. We found that FLSs constitutively expressed the chemokine stromal cell–derived factor-1 (SDF-1), and that pertussis toxin or antibodies to the SDF-1 receptor (CXCR4) could inhibit B-cell pseudoemperipolesis. However, expression of SDF-1 is not sufficient, as dermal fibroblasts also expressed this chemokine but were unable to support B-cell pseudoemperipolesis unless previously stimulated with IL-4 to express CD106 (VCAM-1), a ligand for the α4β1 integrin, very-late-antigen-4 (VLA-4 or CD49d). Furthermore, mAb’s specific for CD49d and CD106, or the synthetic CS1 fibronectin peptide, could inhibit B-cell pseudoemperipolesis. We conclude that ordinary FLSs can support B-cell pseudoemperipolesis via a mechanism dependent upon fibroblast expression of SDF-1 and CD106. PMID:11160154

  15. Protection of stromal cell-derived factor 2 by heat shock protein 72 prevents oxaliplatin-induced cell death in oxaliplatin-resistant human gastric cancer cells.

    PubMed

    Takahashi, Katsuyuki; Tanaka, Masako; Yashiro, Masakazu; Matsumoto, Masaki; Ohtsuka, Asuka; Nakayama, Keiichi I; Izumi, Yasukatsu; Nagayama, Katsuya; Miura, Katsuyuki; Iwao, Hiroshi; Shiota, Masayuki

    2016-08-01

    Heat shock protein 72 (Hsp72) is a molecular chaperone that assists in the folding of nascent polypeptides and in the refolding of denatured proteins. In many cancers, Hsp72 is constitutively expressed at elevated levels, which can result in enhanced stress tolerance. Similarly, following treatment with anticancer drugs, Hsp72 binds to denatured proteins that may be essential for survival. We therefore hypothesized that Hsp72 client proteins may play a crucial role in drug resistance. Here, we aimed to identify proteins that are critical for oxaliplatin (OXA) resistance by analyzing human gastric cancer cell lines, as well as OXA-resistant cells via a mass spectrometry-based proteomic approach combined with affinity purification using anti-Hsp72 antibodies. Stromal cell-derived factor 2 (SDF-2) was identified as an Hsp72 client protein unique to OCUM-2M/OXA cells. SDF-2 was overexpressed in OXA-resistant cells and SDF-2 silencing promoted the apoptotic effects of OXA. Furthermore, Hsp72 prevented SDF-2 degradation in a chaperone activity-dependent manner. Together, our data demonstrate that Hsp72 protected SDF-2 to avoid OXA-induced cell death. We propose that inhibition of SDF-2 may comprise a novel therapeutic strategy to counteract OXA-resistant cancers. PMID:27157913

  16. Hypoxia/Reoxygenation-Preconditioned Human Bone Marrow-Derived Mesenchymal Stromal Cells Rescue Ischemic Rat Cortical Neurons by Enhancing Trophic Factor Release.

    PubMed

    Kim, Young Seo; Noh, Min Young; Cho, Kyung Ah; Kim, Hyemi; Kwon, Min-Soo; Kim, Kyung Suk; Kim, Juhan; Koh, Seong-Ho; Kim, Seung Hyun

    2015-08-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) represent a promising tool for stem cell-based therapies. However, the majority of MSCs fail to reach the injury site and have only minimal therapeutic effect. In this study, we assessed whether hypoxia/reoxygenation (H/R) preconditioning of human BM-MSCs could increase their functional capacity and beneficial effect on ischemic rat cortical neurons. Human BM-MSCs were cultured under hypoxia (1% O2) and with long-term reoxygenation for various times to identify the optimal conditions for increasing their viability and proliferation. The effects of H/R preconditioning on the BM-MSCs were assessed by analyzing the expression of prosurvival genes, trophic factors, and cell migration assays. The functionally improved BM-MSCs were cocultured with ischemic rat cortical neurons to compare with normoxic cultured BM-MSCs. Although the cell viability and proliferation of BM-MSCs were reduced after 1 day of hypoxic culture (1% O2), when this was followed by 5-day reoxygenation, the BM-MSCs recovered and multiplied extensively. The immunophenotype and trilineage differentiation of BM-MSCs were also maintained under this H/R preconditioning. In addition, the preconditioning enhanced the expression of prosurvival genes, the messenger RNA (mRNA) levels of various trophic factors and migration capacity. Finally, coculture with the H/R-preconditioned BM-MSCs promoted the survival of ischemic rat cortical neurons. H/R preconditioning of BM-MSCs increases prosurvival signals, trophic factor release, and cell migration and appears to increase their ability to rescue ischemic cortical neurons. This optimized H/R preconditioning procedure could provide the basis for a new strategy for stem cell therapy in ischemic stroke patients. PMID:25288154

  17. Plasma rich in growth factors (PRGF) eye drops stimulates scarless regeneration compared to autologous serum in the ocular surface stromal fibroblasts.

    PubMed

    Anitua, E; de la Fuente, M; Muruzabal, F; Riestra, A; Merayo-Lloves, J; Orive, G

    2015-06-01

    Autologous serum (AS) eye drops was the first blood-derived product used for the treatment of corneal pathologies but nowadays PRGF arises as a novel interesting alternative to this type of diseases. The purpose of this study was to evaluate and compare the biological outcomes of autologous serum eye drops or Plasma rich in growth factors (PRGF) eye drops on corneal stromal keratocytes (HK) and conjunctival fibroblasts (HConF). To address this, blood from healthy donors was collected and processed to obtain autologous serum (AS) eye drops and plasma rich in growth factors (PRGF) eye drops. Blood-derivates were aliquoted and stored at -80°C until use. PDGF-AB, VEGF, EGF, FGFb and TGF-β1 were quantified. The potential of PRGF and AS in promoting wound healing was evaluated by means of proliferation and migration assays in HK and HConF. Fibroblast cells were induced to myofibroblast differentiation after treatment with 2.5ng/mL of TGF-β1. The capability of PRGF and AS to prevent and inhibit TGF-β1-induced differentiation was evaluated. Results showed significant higher levels of all growth factors analyzed in PRGF eye drops compared to AS. Moreover, PRGF eye drops enhanced significantly the biological outcomes of both HK and HConF, and reduced TGF-β1-induced myofibroblast differentiation in contrast to autologous serum eye drops (AS). In summary, these results suggest that PRGF exerts enhanced biological outcomes than AS. PRGF may improve the treatment of ocular surface wound healing minimizing the scar formation compared to AS. Results obtained herein suggest that PRGF protects and reverses the myofibroblast phenotype while promotes cell proliferation and migration. PMID:25708868

  18. Stromal cell-derived factor 1 gene polymorphism is associated with susceptibility to adverse long-term allograft outcomes in non-diabetic kidney transplant recipients.

    PubMed

    Wang, Chung-Jieh; Tsai, Jen-Pi; Yang, Shun-Fa; Lian, Jong-Da; Chang, Horng-Rong

    2014-01-01

    Although the genetic polymorphism of Stromal Cell-Derived Factor 1 (SDF-1) is associated with higher mortality of liver allograft recipients, the role of SDF-1 in the modulation of renal allograft outcomes is unclear. Between March 2000 and January 2008, we recruited 252 non-diabetic renal transplant recipients (RTRs). Baseline characteristics and blood chemistry were recorded. Genomic DNA extraction with polymerase chain reaction-restriction fragment length polymorphism was utilized to analyze the genetic polymorphisms of SDF-1 (rs1801157). The influence of SDF-1 on an adverse renal allograft outcome, defined as either a doubling of serum creatinine, graft failure, or patient death was evaluated. Sixteen patients with the SDF-1 AA/AG genotype and nine with the SDF-1 GG genotype reached an adverse outcome. According to Kaplan-Meier analysis, patients carrying the SDF-1 AA/AG genotype or A allele showed a significantly higher risk of reaching an adverse outcome than those carrying the SDF-1 GG genotype or G allele (p=0.041; p=0.0051, respectively; log rank test). Stepwise multivariate Cox proportional regression analysis revealed that patients carrying the SDF-1 AA/AG genotype and A allele had a 2.742-fold (95% CI. 1.106-6.799, p=0.03) and 2.306-fold (95% CI. 1.254-4.24, p=0.008) risk of experiencing an adverse outcome. The SDF-1 AA/AG genotype and A allele have a detrimental impact on the long-term outcome of RTRs. PMID:25029540

  19. Stromal Cell-Derived Factor 1 Gene Polymorphism Is Associated with Susceptibility to Adverse Long-Term Allograft Outcomes in Non-Diabetic Kidney Transplant Recipients

    PubMed Central

    Wang, Chung-Jieh; Tsai, Jen-Pi; Yang, Shun-Fa; Lian, Jong-Da; Chang, Horng-Rong

    2014-01-01

    Although the genetic polymorphism of Stromal Cell-Derived Factor 1 (SDF-1) is associated with higher mortality of liver allograft recipients, the role of SDF-1 in the modulation of renal allograft outcomes is unclear. Between March 2000 and January 2008, we recruited 252 non-diabetic renal transplant recipients (RTRs). Baseline characteristics and blood chemistry were recorded. Genomic DNA extraction with polymerase chain reaction-restriction fragment length polymorphism was utilized to analyze the genetic polymorphisms of SDF-1 (rs1801157). The influence of SDF-1 on an adverse renal allograft outcome, defined as either a doubling of serum creatinine, graft failure, or patient death was evaluated. Sixteen patients with the SDF-1 AA/AG genotype and nine with the SDF-1 GG genotype reached an adverse outcome. According to Kaplan-Meier analysis, patients carrying the SDF-1 AA/AG genotype or A allele showed a significantly higher risk of reaching an adverse outcome than those carrying the SDF-1 GG genotype or G allele (p = 0.041; p = 0.0051, respectively; log rank test). Stepwise multivariate Cox proportional regression analysis revealed that patients carrying the SDF-1 AA/AG genotype and A allele had a 2.742-fold (95% CI. 1.106–6.799, p = 0.03) and 2.306-fold (95% CI. 1.254–4.24, p = 0.008) risk of experiencing an adverse outcome. The SDF-1 AA/AG genotype and A allele have a detrimental impact on the long-term outcome of RTRs. PMID:25029540

  20. Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell-derived factor-1 and a macrophage recruitment agent enhances wound closure.

    PubMed

    Kim, Yang-Hee; Tabata, Yasuhiko

    2016-04-01

    In this study, the wound closure of mouse skin defects was examined in terms of recruitment of mesenchymal stem cells (MSC) and macrophages. For the cells recruitment, stromal derived factor-1 (SDF-1) of a MSC recruitment agent and sphingosine-1 phosphate agonist (SEW2871) of a macrophages recruitment agent were incorporated into gelatin hydrogels, and then released in a controlled fashion. When applied to a skin wound defect of mice, gelatin hydrogels incorporating mixed 500 ng SDF-1 and 0.4, 0.8, or 1.6 mg SEW2871-micelles recruited a higher number of both MSC and macrophages than those incorporating SDF-1 or phosphate buffered saline. However, the number of M1 phenotype macrophages for the hydrogel incorporating mixed SDF-1 and SEW2871-micelles recruited was remarkably low to a significant extent compared with that for those hydrogel incorporating 0.4, 0.8, or 1.6 mg SEW2871-micelles. On the other hand, the number of M2 macrophages 3 days after the implantation of the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles significantly increased compared with that for other hydrogels. In vivo experiments revealed the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles promoted the wound closure of skin defect to a significant stronger extent than those incorporating SEW2871-micelles, SDF-1, and a mixture of SDF-1 and higher doses of SEW2871-micelles. It is concluded that the in vivo recruitment of MSC and macrophages to the defects may contribute to the tissue regeneration of skin wound. PMID:26704185

  1. A Stromal Cell–Derived Factor 1α Analogue Improves Endothelial Cell Function in Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome

    PubMed Central

    Guo, Changrun; Goodwin, Andrew; Buie, Joy N Jones; Cook, James; Halushka, Perry; Argraves, Kelley; Zingarelli, Basilia; Zhang, Xian; Wang, Liping; Fan, Hongkuan

    2016-01-01

    Endothelial cell (EC) dysfunction is a critical mediator of the acute respiratory distress syndrome (ARDS). Recent studies have demonstrated that stromal cell–derived factor 1α (SDF-1α) promotes EC barrier integrity. Our previous studies used a SDF-1α analogue CTCE-0214 (CTCE) in experimental sepsis and demonstrated that it attenuated vascular leak and modulated microRNA (miR) levels. We examined the hypothesis that CTCE improves EC function in lipopolysaccharide (LPS)-induced ARDS through increasing miR-126 expression. Human microvascular endothelial cells (HMVECs) were treated with thrombin to disrupt the EC integrity followed by incubation with CTCE or SDF-1α. Barrier function was determined by trans-endothelial electrical resistance assay. CTCE-induced alterations in miRNA expression and signaling pathways involved in barrier function were determined. Thrombin-induced vascular leak was abrogated by both CTCE and SDF-1α. CTCE also prevented thrombin-induced decreases of vascular endothelial (VE)-cadherin cell surface expression and expansion of the intercellular space. CTCE increased miR-126 levels and induced activation of AKT/Rac 1 signaling. Cotreatment with a miR-126 inhibitor blocked the protective effects of CTCE on AKT activation and endothelial permeability. In subsequent in vivo studies, ARDS was induced by intratracheal instillation of LPS. Intravenous injection of CTCE diminished the injury severity as evidenced by significant reductions in protein, immune cells, inflammatory cytokines and chemokines in the bronchoalveolar lavage fluid, increased miR-126 expression and decreased pulmonary vascular leak and alveolar edema. Taken together, our data show that CTCE improves endothelial barrier integrity through increased expression of miR-126 and activation of Rac 1 signaling and represents an important potential therapeutic strategy in ARDS. PMID:27031787

  2. Systemic BMSC homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on BMSC homing

    PubMed Central

    Zhang, Li-Xia; Shen, Li-Li; Ge, Shao-Hua; Wang, Li-Mei; Yu, Xi-Jiao; Xu, Quan-Chen; Yang, Pi-Shan; Yang, Cheng-Zhe

    2015-01-01

    Pulp regeneration caused by endogenous cells homing has become the new research spot in endodontics. However, the source of functional cells that are involved in and contributed to the reconstituting process has not been identified. In this study, the possible role of systemical BMSC in pulp regeneration and the effect of stromal cell-derived factor-1 (SDF-1) on stem cell recruitment and angiogenesis were evaluated. 54 mice were divided into three groups: SDF-1 group (subcutaneous pockets containing roots with SDF-1 absorbed neutralized collagen gel and the green fluorescent protein (GFP) positive BMSCs transplantation via the tail vein), SDF-1-free group (pockets containing roots with gel alone and GFP + BMSCs transplantation) and Control group (pockets containing roots with gel alone). The animals were sacrificed after the roots were implanted into subcutaneous pockets for 3 weeks. Histomorphometric analysis was performed to evaluate the regenerated tissue in the canal by hematoxylin and eosin (HE) staining. The homing of the transplanted BMSCs was monitored with a fluorescence microscope and immunohistochemical analysis. The expression of ALP in new formed tissue was detected immunohistochemically. Dental-pulp-like tissue and new vessels were regenerated and GFP-positive BMSCs and expression of ALP could be observed in both SDF-1 group and SDF-1-free group. Furthermore, more GFP+ cells, stronger expression of ALP and stronger angiogenesis were found in the SDF-1 group than in the SDF-1-free group. To conclude, systemic BMSC can home to the root canal and participate in dental-pulp-like tissue regeneration. Intracanal application of SDF-1 may enhance BMSC homing efficiency and angiogenesis. PMID:26617734

  3. Spliced stromal cell-derived factor-1α analog stimulates endothelial progenitor cell migration and improves cardiac function in a dose-dependent manner after myocardial infarction

    PubMed Central

    Hiesinger, William; Frederick, John R.; Atluri, Pavan; McCormick, Ryan C.; Marotta, Nicole; Muenzer, Jeffrey R.; Woo, Y. Joseph

    2011-01-01

    Objectives Stromal cell-derived factor (SDF)-1α is a potent endogenous endothelial progenitor cell (EPC) chemokine and key angiogenic precursor. Recombinant SDF-1α has been demonstrated to improve neovasculogenesis and cardiac function after myocardial infarction (MI) but SDF-1α is a bulky protein with a short half-life. Small peptide analogs might provide translational advantages, including ease of synthesis, low manufacturing costs, and the potential to control delivery within tissues using engineered biomaterials. We hypothesized that a minimized peptide analog of SDF-1α, designed by splicing the N-terminus (activation and binding) and C-terminus (extracellular stabilization) with a truncated amino acid linker, would induce EPC migration and preserve ventricular function after MI. Methods EPC migration was first determined in vitro using a Boyden chamber assay. For in vivo analysis, male rats (n=48) underwent left anterior descending coronary artery ligation. At infarction, the rats were randomized into 4 groups and received peri-infarct intramyocardial injections of saline, 3 μg/kg of SDF-1α, 3 μg/kg of spliced SDF analog, or 6 μg/kg spliced SDF analog. After 4 weeks, the rats underwent closed chest pressure volume conductance catheter analysis. Results EPCs showed significantly increased migration when placed in both a recombinant SDF-1α and spliced SDF analog gradient. The rats treated with spliced SDF analog at MI demonstrated a significant dose-dependent improvement in end-diastolic pressure, stroke volume, ejection fraction, cardiac output, and stroke work compared with the control rats. Conclusions A spliced peptide analog of SDF-1α containing both the N- and C- termini of the native protein induced EPC migration, improved ventricular function after acute MI, and provided translational advantages compared with recombinant human SDF-1α. PMID:20951261

  4. Stromal Cell-Derived Factor-1α Activation of Tissue Engineered Endothelial Progenitor Cell Matrix Enhances Ventricular Function after Myocardial Infarction by Inducing Neovasculogenesis

    PubMed Central

    Frederick, John R.; Fitzpatrick, J. Raymond; McCormick, Ryan C.; Harris, David A.; Kim, Ah-Young; Muenzer, Jeffrey R.; Marotta, Nicole; Smith, Maximilian J.; Cohen, Jeffrey E.; Hiesinger, William; Atluri, Pavan; Woo, Y. Joseph

    2014-01-01

    Background Myocardial ischemia causes cardiomyocyte death, adverse ventricular remodeling, and ventricular dysfunction. Endothelial progenitor cells (EPC) have been shown to ameliorate this process, particularly when activated with stromal cell-derived factor-1α (SDF). We hypothesized that implantation of a tissue engineered extracellular matrix scaffold seeded with EPCs primed with SDF could induce neovasculogenesis, prevent adverse remodeling, and preserve ventricular function after myocardial infarction (MI). Methods and Results Lewis rats (n=82) underwent left anterior descending artery ligation to induce MI. EPCs were cultured on a vitronectin/collagen scaffold, and primed with SDF to generate the activated EPC matrix (EPCM). EPCM was sutured to the anterolateral left ventricular (LV) wall including the region of ischemia.. At four weeks, when compared to controls, borderzone myocardial tissue demonstrated increased levels of VEGF in the EPCM group. Vessel density as assessed by immunohistochemical microscopy was significantly increased in the EPCM group (4.1 vs 6.2 vessels/high-powered field, p<0.001), and microvascular perfusion measured by lectin microangiography was enhanced four-fold (0.7 vs. 2.7% vessel volume/section volume, p=0.04). Ventricular geometry and scar fraction assessed by analysis of sectioned hearts exhibited significantly preserved LV internal diameter (9.7mm vs. 8.6mm, p=0.005) and decreased infarct scar expressed as percent of total section area (16% vs. 7%, p=0.002) when compared to all other groups. In addition, EPCM animals showed a significant preservation of function as measured by echocardiography, pressure volume-conductance, and Doppler flow. Conclusions Extracellular matrix seeded with EPCs primed with SDF induces borderzone neovasculogenesis, attenuates adverse ventricular remodeling, and preserves ventricular function after MI. PMID:20837901

  5. Quantification of Intact and Truncated Stromal Cell-Derived Factor-1α in Circulation by Immunoaffinity Enrichment and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Weixun; Choi, Bernard K.; Li, Wenyu; Lao, Zhege; Lee, Anita Y. H.; Souza, Sandra C.; Yates, Nathan A.; Kowalski, Timothy; Pocai, Alessandro; Cohen, Lucinda H.

    2014-04-01

    Stromal cell-derived factor 1α (SDF-1α) or CXCL12 is a small pro-inflammatory chemoattractant cytokine and a substrate of dipeptidyl peptidase IV (DPP-IV). Proteolytic cleavage by DPP-IV inactivates SDF-1α and attenuates its interaction with CXCR4, its cell surface receptor. To enable investigation of suppression of such inactivation with pharmacologic inhibition of DPP-IV, we developed quantitative mass spectrometric methods that differentiate intact SDF-1α from its inactive form. Using top-down strategy in quantification, we demonstrated the unique advantage of keeping SDF-1α's two disulfide bridges intact in the analysis. To achieve the optimal sensitivity required for quantification of intact and truncated SDF-1α at endogenous levels in blood, we coupled nano-flow tandem mass spectrometry with antibody-based affinity enrichment. The assay has a quantitative range of 20 pmol/L to 20 nmol/L in human plasma as well as in rhesus monkey plasma. With only slight modification, the same assay can be used to quantify SDF-1α in mice. Using two in vivo animal studies as examples, we demonstrated that it was critical to differentiate intact SDF-1α from its truncated form in the analysis of biomarkers for pharmacologic inhibition of DPP-IV activity. These novel methods enable translational research on suppression of SDF-1 inactivation with DPP-IV inhibition and can be applied to relevant clinical samples in the future to yield new insights on change of SDF-1α levels in disease settings and in response to therapeutic interventions.

  6. Stromal cell-derived factor-1 rs2297630 polymorphism associated with platelet production and treatment response in Chinese patients with chronic immune thrombocytopenia.

    PubMed

    Lyu, Mingen; Li, Yang; Hao, Yating; Sun, Tiantian; Liu, Wenjie; Lyu, Cuicui; Fu, Rongfeng; Li, Huiyuan; Xue, Feng; Liu, Xiaofan; Zhang, Lei; Yang, Renchi

    2016-06-01

    Stromal cell-derived factor-1 (SDF-1), signaling through CXCR4, is implicated in megakaryopoiesis and platelet production. SDF-1 rs2297630 is a functional polymorphism in linkage disequilibrium with other functional variants in SDF-1. This study aimed to investigate the role of SDF-1 rs2297630 in chronic ITP. The genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism and confirmed by direct sequencing. Immature platelet fraction (IPF) was performed using Sysmex XE-2100. Anti-platelet autoantibodies were assayed by enzyme-linked immunosorbent assay. The main characteristics at diagnosis and the outcome of chronic ITP in 201 Chinese patients were retrospectively reviewed. There was no significant difference in either genotype or allelic distribution between ITP patients and the controls (p = 0.114; p = 0.787). However, both heterozygote (GA) and homozygote minor allele (AA) patients had significantly increased megakaryocyte quantity compared to homozygote genotype (GG) patients at diagnosis (p = 0.011). The mean IPF values of GA and AA genotype patients were higher than those observed in the GG genotype patients when platelet counts ≤50 × 10(9)/L at diagnosis (p = 0.007). Patients with GA and AA genotype showed a higher response rate to standard treatments than patients with GG genotype (p < 0.001). In particular, GA and AA genotype patients had a significantly increased chance of responding to steroids, intravenous immunoglobulin (IVIG), and thrombopoietin analogs (p = 0.007; p = 0.029; p = 0.034, respectively). No significant difference was found between anti-platelet antibodies and genotypes (p = 0.296). In summary, the SDF-1 rs2297630 was associated with platelet production and treatment response in Chinese patients with chronic ITP. PMID:26587874

  7. Quantification of intact and truncated stromal cell-derived factor-1α in circulation by immunoaffinity enrichment and tandem mass spectrometry.

    PubMed

    Wang, Weixun; Choi, Bernard K; Li, Wenyu; Lao, Zhege; Lee, Anita Y H; Souza, Sandra C; Yates, Nathan A; Kowalski, Timothy; Pocai, Alessandro; Cohen, Lucinda H

    2014-04-01

    Stromal cell-derived factor 1α (SDF-1α) or CXCL12 is a small pro-inflammatory chemoattractant cytokine and a substrate of dipeptidyl peptidase IV (DPP-IV). Proteolytic cleavage by DPP-IV inactivates SDF-1α and attenuates its interaction with CXCR4, its cell surface receptor. To enable investigation of suppression of such inactivation with pharmacologic inhibition of DPP-IV, we developed quantitative mass spectrometric methods that differentiate intact SDF-1α from its inactive form. Using top-down strategy in quantification, we demonstrated the unique advantage of keeping SDF-1α's two disulfide bridges intact in the analysis. To achieve the optimal sensitivity required for quantification of intact and truncated SDF-1α at endogenous levels in blood, we coupled nano-flow tandem mass spectrometry with antibody-based affinity enrichment. The assay has a quantitative range of 20 pmol/L to 20 nmol/L in human plasma as well as in rhesus monkey plasma. With only slight modification, the same assay can be used to quantify SDF-1α in mice. Using two in vivo animal studies as examples, we demonstrated that it was critical to differentiate intact SDF-1α from its truncated form in the analysis of biomarkers for pharmacologic inhibition of DPP-IV activity. These novel methods enable translational research on suppression of SDF-1 inactivation with DPP-IV inhibition and can be applied to relevant clinical samples in the future to yield new insights on change of SDF-1α levels in disease settings and in response to therapeutic interventions. PMID:24500701

  8. Transforming growth factor-beta 3 stimulates cartilage matrix elaboration by human marrow-derived stromal cells encapsulated in photocrosslinked carboxymethylcellulose hydrogels: potential for nucleus pulposus replacement.

    PubMed

    Gupta, Michelle S; Cooper, Elana S; Nicoll, Steven B

    2011-12-01

    Degeneration of the nucleus pulposus (NP) has been implicated as a major cause of low back pain. Tissue engineering strategies using marrow-derived stromal cells (MSCs) have been used to develop cartilaginous tissue constructs, which may serve as viable NP replacements. Supplementation with growth factors, such as transforming growth factor-beta 3 (TGF-β3), has been shown to enhance the differentiation of MSCs and promote functional tissue development of such constructs. A potential candidate material that may be useful as a scaffold for NP tissue engineering is carboxymethylcellulose (CMC), a biocompatible, cost-effective derivative of cellulose. Photocrosslinked CMC hydrogels have been shown to support NP cell viability and promote phenotypic matrix deposition capable of maintaining mechanical properties when cultured in serum-free, chemically defined medium (CDM) supplemented with TGF-β3. However, MSCs have not been characterized using this hydrogel system. In this study, human MSCs (hMSCs) were encapsulated in photocrosslinked CMC hydrogels and cultured in CDM with and without TGF-β3 to determine the effect of the growth factor on the differentiation of hMSCs toward an NP-like phenotype. Constructs were evaluated for matrix elaboration and functional properties consistent with native NP tissue. CDM supplemented with TGF-β3 resulted in significantly higher glycosaminoglycan content (762.69±220.79 ng/mg wet weight) and type II collagen (COL II) content (6.25±1.64 ng/mg wet weight) at day 21 compared with untreated samples. Immunohistochemical analyses revealed uniform, pericellular, and interterritorial staining for chondroitin sulfate proteoglycan and COL II in growth factor-supplemented constructs compared with faint, strictly pericellular staining in untreated constructs at 21 days. Consistent with matrix deposition, mechanical properties of hydrogels treated with TGF-β3 increased over time and exhibited the highest peak stress in stress-relaxation (

  9. Transforming growth factor β1 increase of hydroxysteroid dehydrogenase proteins is partly suppressed by red clover isoflavones in human primary prostate cancer-derived stromal cells.

    PubMed

    Liu, Xunxian; Piao, Yun-Shang; Arnold, Julia T

    2011-11-01

    Transforming growth factor β1 (TGF-β1) increases dehydro-epiandrosterone (DHEA) metabolism to androgens and prostate-specific antigen (PSA) in a prostate tissue model where stromal (6S) cells and epithelial (LAPC-4) cells are cocultured. Red clover (RC) isoflavones inhibits transforming growth factor (TGF)-β-induced androgenicity. Mechanisms controlling those activities were explored. Three hydroxysteroid dehydrogenases (HSDs), 3β-HSD, HSD-17β1 and HSD-17β5 involved in metabolizing DHEA to testosterone (TESTO) were investigated. Individual depletion of HSDs in 6S cells significantly reduced TGF-β1/DHEA-induced PSA in LAPC-4 cells in cocultures. Monomer amounts of 3β-HSD were similar without or with TGF-β1 in both cell types but aggregates of 3β-HSD in 6S cells were much higher than those in LAPC-4 cells and were upregulated by TGFβ in 6S cells. Basal and TGF-β1-treated levels of HSD-17β1 and HSD-17β5 in LAPC-4 cells were significantly lower than in 6S cells, whereas levels of HSD-17β1 but not HSD-17β5 were TGFβ inducible. 6S cell HSD genes expression induced by TGFβ or androgen signaling was insignificant to contribute TGF-β1/DHEA-upregulated protein levels of HSDs. RC decreased TGF-β1- upregulation of aggregates of 3β-HSD but not HSD-17β1. Depletion of TGFβ receptors (TGFβ Rs) reduced TGF-β1/DHEA-upregulated HSDs and TESTO. Immunoprecipitation studies demonstrated that TGF-β1 disrupted associations of TGFβ Rs/HSDs aggregates, whereas RC suppressed the dissociations of aggregates of 3β-HSD but not HSD-17β1 from the receptors. Given that TGFβ Rs are recycled with or without ligand, TGF-β1-induced disassociation of the HSDs from TGFβ Rs may increase stability and activity of the HSDs. These data suggest a pathway connecting overproduction of TGFβ with increased PSA in prostate cancer. PMID:21914638

  10. A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1{alpha}-mediated signaling

    SciTech Connect

    Hsieh, Ming-Chu; Hu, Wan-Ping; Yu, Hsin-Su; Wu, Wen-Chuan; Chang, Long-Sen; Kao, Ying-Hsien; Wang, Jeh-Jeng

    2011-09-01

    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) chemicals are antitumor antibiotics inhibiting nucleic acid synthesis. An indole carboxylate-PBD hybrid with six-carbon spacer structure (IN6CPBD) has been previously demonstrated to induce melanoma cell apoptosis and reduce metastasis in mouse lungs. This study aimed at investigating the efficacy of the other hybrid compound with four-carbon spacer (IN4CPBD) and elucidating its anti-metastatic mechanism. Human melanoma A375 cells with IN4CPBD treatment underwent cytotoxicity and apoptosis-associated assays. Transwell migration assay, Western blotting, and ELISA were used for mechanistic study. IN4CPBD exhibited potent melanoma cytotoxicity through interrupting G1/S cell cycle progression, increasing DNA fragmentation and hypodipoidic DNA contents, and reducing mitochondrial membrane potential. Caspase activity elevation suggested that both intrinsic and extrinsic pathways were involved in IN4CPBD-induced melanoma apoptosis. IN4CPBD up-regulated p53 and p21, thereby concomitantly derailing the equilibrium between Bcl-2 and Bax levels. Transwell migration assay demonstrated that stromal cell-derived factor-1{alpha} (SDF-1{alpha}) stimulated A375 cell motility, while kinase inhibitors treatment confirmed that Rho/ROCK, Akt, ERK1/2, and p38 MAPK pathways were involved in SDF-1{alpha}-enhanced melanoma migration. IN4CPBD not only abolished the SDF-1{alpha}-enhanced chemotactic motility but also suppressed constitutive MMP-9 and VEGF expression. Mechanistically, IN4CPBD down-regulated Akt, ERK1/2, and p38 MAPK total proteins and MYPT1 phosphorylation. In conclusion, beyond the fact that IN4CPBD induces melanoma cell apoptosis at cytotoxic dose, the interruption in the VEGF expression and the SDF-1{alpha}-related signaling at cytostatic dose may partially constitute the rationale for its in vivo anti-metastatic potency. - Research Highlights: > A novel carboxylate-PBD hybrid as anti-melanoma drug. > IN4CPBD interrupts melanoma cell

  11. Co-delivery and controlled release of stromal cell-derived factor-1α chemically conjugated on collagen scaffolds enhances bone morphogenetic protein-2-driven osteogenesis in rats

    PubMed Central

    SUN, HAIPENG; WANG, JINMING; DENG, FEILONG; LIU, YUN; ZHUANG, XIUMEI; XU, JIAYUN; LI, LONG

    2016-01-01

    There has been considerable focus in investigations on the delivery systems and clinical applications of bone morphogenetic protein-2 (BMP-2) for novel bone formation. However, current delivery systems require high levels of BMP-2 to exert a biological function. There are several concerns in using of high levels of BMP-2, including safety and the high cost of treatment. Therefore, the development of strategies to decrease the levels of BMP-2 required in these delivery systems is required. In our previous studies, a controlled-release system was developed, which used Traut's reagent and the cross-linker, 4-(N-maleimi-domethyl) cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt (Sulfo-SMCC), to chemically conjugate BMP-2 directly on collagen discs. In the current study, retention efficiency and release kinetics of stromal cell-derived factor-1α (SDF-1α) cross-linked on collagen scaffolds were detected. In addition, the osteogenic activity of SDF-1α and suboptimal doses of BMP-2 cross-linked on collagen discs following subcutaneous implantation in rats were evaluated. Independent two-tailed t-tests and one-way analysis of variance were used for analysis. In the present study, the controlled release of SDF-1α chemically conjugated on collagen scaffolds was demonstrated. By optimizing the concentrations of Traut's reagent and the Sulfo-SMCC cross-linker, a significantly higher level of SDF-1α was covalently retained on the collagen scaffold, compared with that retained using a physical adsorption method. Mesenchymal stem cell homing indicated that the biological function of the SDF-1α cross-linked on the collagen scaffolds remained intact. In rats, co-treatment with SDF-1α and a suboptimal dose of BMP-2 cross-linked on collagen scaffolds using this chemically conjugated method induced higher levels of ectopic bone formation, compared with the physical adsorption method. No ectopic bone formation was observed following treatment with a

  12. β-Arrestin1 and distinct CXCR4 structures are required for stromal derived factor-1 to downregulate CXCR4 cell-surface levels in neuroblastoma.

    PubMed

    Clift, Ian C; Bamidele, Adebowale O; Rodriguez-Ramirez, Christie; Kremer, Kimberly N; Hedin, Karen E

    2014-04-01

    CXC chemokine receptor 4 (CXCR4) is a G protein-coupled receptor (GPCR) located on the cell surface that signals upon binding the chemokine stromal derived factor-1 (SDF-1; also called CXCL 12). CXCR4 promotes neuroblastoma proliferation and chemotaxis. CXCR4 expression negatively correlates with prognosis and drives neuroblastoma growth and metastasis in mouse models. All functions of CXCR4 require its expression on the cell surface, yet the molecular mechanisms that regulate CXCR4 cell-surface levels in neuroblastoma are poorly understood. We characterized CXCR4 cell-surface regulation in the related SH-SY5Y and SK-N-SH human neuroblastoma cell lines. SDF-1 treatment caused rapid down-modulation of CXCR4 in SH-SY5Y cells. Pharmacologic activation of protein kinase C similarly reduced CXCR4, but via a distinct mechanism. Analysis of CXCR4 mutants delineated two CXCR4 regions required for SDF-1 treatment to decrease cell-surface CXCR4 in neuroblastoma cells: the isoleucine-leucine motif at residues 328 and 329 and residues 343-352. In contrast, and unlike CXCR4 regulation in other cell types, serines 324, 325, 338, and 339 were not required. Arrestin proteins can bind and regulate GPCR cell-surface expression, often functioning together with kinases such as G protein-coupled receptor kinase 2 (GRK2). Using SK-N-SH cells which are naturally deficient in β-arrestin1, we showed that β-arrestin1 is required for the CXCR4 343-352 region to modulate CXCR4 cell-surface expression following treatment with SDF-1. Moreover, GRK2 overexpression enhanced CXCR4 internalization, via a mechanism requiring both β-arrestin1 expression and the 343-352 region. Together, these results characterize CXCR4 structural domains and β-arrestin1 as critical regulators of CXCR4 cell-surface expression in neuroblastoma. β-Arrestin1 levels may therefore influence the CXCR4-driven metastasis of neuroblastoma as well as prognosis. PMID:24452472

  13. Stimulation of Nitric Oxide Production Contributes to the Antithrombotic Effect of Stromal Cell-Derived Factor-1α in Preventing Microsurgical Anastomotic Thrombosis.

    PubMed

    Jia, Ya-Chao; Chen, Hong-Hao; Kang, Qing-Lin; Chai, Yi-Min

    2016-07-01

    Background Intimal injury plays a critical role in initiating the pathogenesis of thrombosis formation after microsurgical anastomosis. Application of stromal cell-derived factor-1α (SDF-1α) is reported to promote early regeneration of injured intima through migration of endothelial cells and mobilization of endothelial progenitor cells. We therefore hypothesized that local transfer of SDF-1α gene would inhibit microsurgical anastomotic thrombosis. Methods Sixty Sprague-Dawley rats were used and divided randomly into three groups (SDF-1α group, plasmid group, and saline group) in this study. Plasmid DNA encoding SDF-1α, empty plasmid, and saline were injected into the left femoral muscles of rats from each group, respectively. Seven days after injection, peripheral blood samples were obtained to measure the plasma levels of SDF-1α and nitric oxide (NO). The left femoral artery of each rat was crushed, transected, and repaired by end-to-end microsurgical anastomosis. Vascular patency was assessed at 15, 30, and 120 minutes after reperfusion using milk test. Thrombosis formation was assessed with hematoxylin and eosin staining and scanning electron microscopy at 120 minutes postoperatively. Results The plasma levels of SDF-1α and NO in SDF-1α group were significantly higher than those in plasmid group and saline group (p < 0.01). The patency rate in SDF-1α group was significantly higher than that in control groups at 120 minutes after reperfusion (p < 0.05). Treatment of SDF-1α significantly reduced the size of thrombotic occlusion when compared with controls (p < 0.05). All SDF-1α recipients exhibited decreased thrombosis under scanning electron microscopy. Conclusions The current study demonstrated that local transfer of SDF-1α gene increases arterial patency and inhibits microsurgical anastomotic thrombosis in a crush model of femoral artery in rat. The antithrombotic effect of SDF-1α may be mediated through increased production of

  14. Fibroblast Growth Factor Receptor-2 Contributes to the Basic Fibroblast Growth Factor-Induced Neuronal Differentiation in Canine Bone Marrow Stromal Cells via Phosphoinositide 3-Kinase/Akt Signaling Pathway

    PubMed Central

    Nakano, Rei; Edamura, Kazuya; Nakayama, Tomohiro; Narita, Takanori; Okabayashi, Ken; Sugiya, Hiroshi

    2015-01-01

    Bone marrow stromal cells (BMSCs) are considered as candidates for regenerative therapy and a useful model for studying neuronal differentiation. The role of basic fibroblast growth factor (bFGF) in neuronal differentiation has been previously studied; however, the signaling pathway involved in this process remains poorly understood. In this study, we investigated the signaling pathway in the bFGF-induced neuronal differentiation of canine BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associated protein-2 (MAP2) and the neuron-like morphological change in canine BMSCs. In the presence of inhibitors of fibroblast growth factor receptors (FGFR), phosphatidylinositol 3-kinase (PI3K) and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was confirmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentiation of canine BMSCs. PMID:26523832

  15. Neurogenic differentiation factor NeuroD confers protection against radiation-induced intestinal injury in mice.

    PubMed

    Li, Ming; Du, Aonan; Xu, Jing; Ma, Yanchao; Cao, Han; Yang, Chao; Yang, Xiao-Dong; Xing, Chun-Gen; Chen, Ming; Zhu, Wei; Zhang, Shuyu; Cao, Jianping

    2016-01-01

    The gastrointestinal tract, especially the small intestine, is particularly sensitive to radiation, and is prone to radiation-induced injury as a result. Neurogenic differentiation factor (NeuroD) is an evolutionarily-conserved basic helix-loop-helix (bHLH) transcription factor. NeuroD contains a protein transduction domain (PTD), which allows it to be exogenously delivered across the membrane of mammalian cells, whereupon its transcription activity can be unleashed. Whether NeuroD has therapeutic effects for radiation-induced injury remains unclear. In the present study, we prepared a NeuroD-EGFP recombinant protein, and explored its protective effects on the survival and intestinal damage induced by ionizing radiation. Our results showed that NeuroD-EGFP could be transduced into small intestine epithelial cells and tissues. NeuroD-EGFP administration significantly increased overall survival of mice exposed to lethal total body irradiation (TBI). This recombinant NeuroD also reduced radiation-induced intestinal mucosal injury and apoptosis, and improved crypt survival. Expression profiling of NeuroD-EGFP-treated mice revealed upregulation of tissue inhibitor of metalloproteinase 1 (TIMP-1), a known inhibitor of apoptosis in mammalian cells. In conclusion, NeuroD confers protection against radiation-induced intestinal injury, and provides a novel therapeutic clinical option for the prevention of intestinal side effects of radiotherapy and the treatment of victims of incidental exposure. PMID:27436572

  16. Neurogenic differentiation factor NeuroD confers protection against radiation-induced intestinal injury in mice

    PubMed Central

    Li, Ming; Du, Aonan; Xu, Jing; Ma, Yanchao; Cao, Han; Yang, Chao; Yang, Xiao-Dong; Xing, Chun-Gen; Chen, Ming; Zhu, Wei; Zhang, Shuyu; Cao, Jianping

    2016-01-01

    The gastrointestinal tract, especially the small intestine, is particularly sensitive to radiation, and is prone to radiation-induced injury as a result. Neurogenic differentiation factor (NeuroD) is an evolutionarily-conserved basic helix-loop-helix (bHLH) transcription factor. NeuroD contains a protein transduction domain (PTD), which allows it to be exogenously delivered across the membrane of mammalian cells, whereupon its transcription activity can be unleashed. Whether NeuroD has therapeutic effects for radiation-induced injury remains unclear. In the present study, we prepared a NeuroD-EGFP recombinant protein, and explored its protective effects on the survival and intestinal damage induced by ionizing radiation. Our results showed that NeuroD-EGFP could be transduced into small intestine epithelial cells and tissues. NeuroD-EGFP administration significantly increased overall survival of mice exposed to lethal total body irradiation (TBI). This recombinant NeuroD also reduced radiation-induced intestinal mucosal injury and apoptosis, and improved crypt survival. Expression profiling of NeuroD-EGFP-treated mice revealed upregulation of tissue inhibitor of metalloproteinase 1 (TIMP-1), a known inhibitor of apoptosis in mammalian cells. In conclusion, NeuroD confers protection against radiation-induced intestinal injury, and provides a novel therapeutic clinical option for the prevention of intestinal side effects of radiotherapy and the treatment of victims of incidental exposure. PMID:27436572

  17. Culture perfusion schedules influence the metabolic activity and granulocyte-macrophage colony-stimulating factor production rates of human bone marrow stromal cells.

    PubMed

    Caldwell, J; Palsson, B O; Locey, B; Emerson, S G

    1991-05-01

    The metabolic function and GM-CSF production rates of adherent human bone marrow stromal cells were investigated as functions of medium and serum feeding rates. A range of medium exchange schedules was studied, ranging from a typical Dexter culture protocol of one weekly medium exchange to a full media exchange daily, which more closely approximates what bone marrow cells experience in situ. Glucose consumption was found to be significantly higher at full daily exchange rate than at any other exchange schedule examined. However, the lactate yield on glucose was a constant, at 1.8 mol/mol, under all conditions considered. Differential serum vs. medium exchange experiment showed that both serum supply and medium nutrients were responsible for the altered behavior at high exchange rates. Glutamine consumption was found to be insignificant under all culture conditions examined. A change in exchange schedule from 50% daily medium exchange to full daily medium exchange after 14 days of culture was found to result in a transient production of GM-CSF and a change in metabolic behavior to resemble that of cultures which had full daily exchange from day one. These results suggest that both stromal cell metabolism and GM-CSF production are sensitive to medium exchange schedules. Taken together, the data presented indicate that attempts to model the function of human bone marrow in vitro may be well served by beginning with medium exchange schedules that more closely mimic the in vivo physiologic state of bone marrow. PMID:2040665

  18. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor

    PubMed Central

    Yao, Jia-Long; Dong, Yi-Hu; Morris, Bret A. M.

    2001-01-01

    Fruit development in higher plants normally requires pollination and fertilization to stimulate cell division of specific floral tissues. In some cases, parthenocarpic fruit development proceeds without either pollination or fertilization. Parthenocarpic fruit without seed has higher commercial value than seeded fruit. Several apple (Malus domestica) mutants (Rae Ime, Spencer Seedless and Wellington Bloomless) are known to produce only apetalous flowers that readily go on to develop into parthenocarpic fruit. Through genetics, a single recessive gene has been identified to control this trait in apple. Flower phenotypes of these apple mutants are strikingly similar to those of the Arabidopsis mutant pistillata (pi), which produces flowers where petals are transformed to sepals and stamens to carpels. In this study, we have cloned the apple PI homolog (MdPI) that shows 64% amino acid sequence identity and closely conserved intron positions and mRNA expression patterns to the Arabidopsis PI. We have identified that in the apetalous mutants MdPI has been mutated by a retrotransposon insertion in intron 4 in the case of Rae Ime and in intron 6 in the case of Spencer Seedless and Wellington Bloomless. The insertion apparently abolishes the normal expression of the MdPI gene. We conclude that the loss of function mutation in the MdPI MADS-box transcription factor confers parthenocarpic fruit development in these apple varieties and demonstrates another function for the MADS- box gene family. The knowledge generated here could be used to produce parthenocarpic fruit cultivars through genetic engineering. PMID:11158635

  19. Submergence Confers Immunity Mediated by the WRKY22 Transcription Factor in Arabidopsis[W

    PubMed Central

    Hsu, Fu-Chiun; Chou, Mei-Yi; Chou, Shu-Jen; Li, Ya-Ru; Peng, Hsiao-Ping; Shih, Ming-Che

    2013-01-01

    Transcriptional control plays an important role in regulating submergence responses in plants. Although numerous genes are highly induced during hypoxia, their individual roles in hypoxic responses are still poorly understood. Here, we found that expression of genes that encode members of the WRKY transcription factor family was rapidly and strongly induced upon submergence in Arabidopsis thaliana, and this induction correlated with induction of a large portion of innate immunity marker genes. Furthermore, prior submergence treatment conferred higher resistance to the bacterial pathogen Pseudomonas syringae in Arabidopsis. Among the WRKY genes tested, WRKY22 had the highest level of induction during the early stages of submergence. Compared with the wild type, WRKY22 T-DNA insertion mutants wrky22-1 and wrky22-2 had lower disease resistance and lower induction of innate immunity markers, such as FLG22-INDUCED RECEPTOR-LIKE KINASE1 (FRK1) and WRKY53, after submergence. Furthermore, transcriptomic analyses of wrky22-2 and chromatin immunoprecipitation identified several potential targets of WRKY22, which included genes encoding a TIR domain–containing protein, a plant peptide hormone, and many OLIGO PEPTIDE TRANSPORTER genes, all of which may lead to induction of innate immunity. In conclusion, we propose that submergence triggers innate immunity in Arabidopsis via WRKY22, a response that may protect against a higher probability of pathogen infection either during or after flooding. PMID:23897923

  20. "Population is key factor in environmental degradation," Parliamentarian conference on ocean life declares.

    PubMed

    1995-01-01

    The Asian Forum of Parliamentarians on Population and Development (AFPPD)--Malaysia organized an international conference entitled "Ocean. Our Lifeline," which was held November 2-5, 1995, in Kuala Lumpur. The conference adopted a declaration that calls upon countries to address population growth, recognizing the central role of population pressure in environmental degradation, particularly with regard to the ocean. Parliamentarians were urged to develop and implement strategies to control pollution. The conference was attended by parliamentarians from Australia, China, India, Korea, Malaysia, Mongolia, New Zealand, Papua New Guinea, the Philippines, Singapore, Thailand, and the United States. AFPPD was represented by executive director Shiv Khare. PMID:12320069

  1. Cellular and extracellular matrix modulation of corneal stromal opacity.

    PubMed

    Torricelli, Andre A M; Wilson, Steven E

    2014-12-01

    Stromal transparency is a critical factor contributing to normal function of the visual system. Corneal injury, surgery, disease and infection elicit complex wound healing responses that serve to protect against insults and maintain the integrity of the cornea, and subsequently to restore corneal structure and transparency. However, in some cases these processes result in prolonged loss of corneal transparency and resulting diminished vision. Corneal opacity is mediated by the complex actions of many cytokines, growth factors, and chemokines produced by the epithelial cells, stromal cells, bone marrow-derived cells, lacrimal tissues, and nerves. Myofibroblasts, and the disorganized extracellular matrix produced by these cells, are critical determinants of the level and persistence of stromal opacity after corneal injury. Decreases in corneal crystallins in myofibroblasts and corneal fibroblasts contribute to cellular opacity in the stroma. Regeneration of a fully functional epithelial basement membrane (BM) appears to have a critical role in the maintenance of corneal stromal transparency after mild injuries and recovery of transparency when opacity is generated after severe injuries. The epithelial BM likely has a regulatory function whereby it modulates epithelium-derived growth factors such as transforming growth factor (TGF) β and platelet-derived growth factor (PDGF) that drive the development and persistence of myofibroblasts from precursor cells. The purpose of this article is to review the factors involved in the maintenance of corneal transparency and to highlight the mechanisms involved in the appearance, persistency and regression of corneal opacity after stromal injury. PMID:25281830

  2. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment

    SciTech Connect

    Iso, Yoshitaka; Spees, Jeffrey L.; E-mail: Jeffrey.Spees@uvm.edu; Serrano, Claudia; Bakondi, Benjamin; Pochampally, Radhika; Song, Yao-Hua; Sobel, Burton E.; Delafontaine, Patrick; Prockop, Darwin J. . E-mail: dprocko@tulane.edu

    2007-03-16

    The aim of this study was to determine whether intravenously administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group were significantly improved compared with controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion.

  3. Traumatic ulcerative granuloma with stromal eosinophilia - Mystery of pathogenesis revisited.

    PubMed

    Sarangarajan, R; Vaishnavi Vedam, V K; Sivadas, G; Sarangarajan, Anuradha; Meera, S

    2015-08-01

    Oral ulcers are a common symptom in clinical practice. Among various causative factors, different types of ulcers in oral cavity exist. Among this, traumatic ulcerative granuloma with stromal eosinophilia (TUGSE) appears to be quite neglected by the clinicians due to the limited knowledge and awareness. On reviewing with a detailed approach to titles and abstracts of articles eliminating duplicates, 40 relevant articles were considered. Randomized studies, review articles, case reports and abstracts were included while conference papers and posters were excluded. Of importance, TUGSE cases been reported only to a minimal extent in the literature. Lack of its awareness tends to lead clinicians to a misconception of cancer. Thus, this particular lesion needs to be differentiated from other malignant lesions to provide a proper mode of treatment. The present article reviews various aspects of the TUGSE with emphasis on the clinical manifestation, pathogenesis, histological, and immunohistochemical study. This study provides the clinician contemporaries, a humble expansion to their knowledge of the disease, based on the searched literature, enabling a more comprehensive management of this rare occurrence. PMID:26538890

  4. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering.

    PubMed

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A M; Poot, André A; Harmsen, Martin C

    2016-07-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF-β1 for 7d. Phenotype and function were assessed by qRT-PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non-differentiated and pre-differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT-PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF-β1-driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre-differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well-aligned ASC-derived SMC which deposited ECM. Under the same conditions, pre-differentiated ASC-derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF-β1 pre-stimulation to generate SMC from ASC and that pre-differentiated ASC keep their SMC phenotype with increased expression of SMC markers. PMID:26989865

  5. CTHRC1 Acts as a Prognostic Factor and Promotes Invasiveness of Gastrointestinal Stromal Tumors by Activating Wnt/PCP-Rho Signaling1

    PubMed Central

    Ma, Ming-Ze; Zhuang, Chun; Yang, Xiao-Mei; Zhang, Zi-Zhen; Ma, Hong; Zhang, Wen-Ming; You, Haiyan; Qin, Wenxin; Gu, Jianren; Yang, Shengli; Cao, Hui; Zhang, Zhi-Gang

    2014-01-01

    Gastrointestinal stromal tumors (GISTs) are the major gastrointestinal mesenchymal tumors with a variable malignancy ranging from a curable disorder to highly malignant sarcomas. Metastasis and recurrence are the main causes of death in GIST patients. To further explore the mechanism of metastasis and to more accurately estimate the recurrence risk of GISTs after surgery, the clinical significance and functional role of collagen triple helix repeat containing-1 (CTHRC1) in GIST were investigated. We found that CTHRC1 expression was gradually elevated as the risk grade of NIH classification increased, and was closely correlated with disease-free survival and overall survival in 412 GIST patients. In vitro experiments showed that recombinant CTHRC1 protein promoted the migration and invasion capacities of primary GIST cells. A luciferase reporter assay and pull down assay demonstrated that recombinant CTHRC1 protein activated noncanonical Wnt/PCP-Rho signaling but inhibited canonical Wnt signaling. The pro-motility effect of CTHRC1 on GIST cells was reversed by using a Wnt5a neutralizing antibody and inhibitors of Rac1 or ROCK. Taken together, these data indicate that CTHRC1 may serve as a new predictor of recurrence risk and prognosis in post-operative GIST patients and may play an important role in facilitating GIST progression. Furthermore, CTHRC1 promotes GIST cell migration and invasion by activating Wnt/PCP-Rho signaling, suggesting that the CTHRC1-Wnt/PCP-Rho axis may be a new therapeutic target for interventions against GIST invasion and metastasis. PMID:24726140

  6. Stromal reengineering to treat pancreas cancer

    PubMed Central

    Stromnes, Ingunn M.; DelGiorno, Kathleen E.; Greenberg, Philip D.; Hingorani, Sunil R.

    2014-01-01

    Pancreatic ductal adenocarcinoma co-opts multiple cellular and extracellular mechanisms to create a complex cancer organ with an unusual proclivity for metastasis and resistance to therapy. Cell-autonomous events are essential for the initiation and maintenance of pancreatic ductal adenocarcinoma, but recent studies have implicated critical non-cell autonomous processes within the robust desmoplastic stroma that promote disease pathogenesis and resistance. Thus, non-malignant cells and associated factors are culprits in tumor growth, immunosuppression and invasion. However, even this increasing awareness of non-cell autonomous contributions to disease progression is tempered by the conflicting roles stromal elements can play. A greater understanding of stromal complexity and complicity has been aided in part by studies in highly faithful genetically engineered mouse models of pancreatic ductal adenocarcinoma. Insights gleaned from such studies are spurring the development of therapies designed to reengineer the pancreas cancer stroma and render it permissive to agents targeting cell-autonomous events or to reinstate immunosurveillance. Integrating conventional and immunological treatments in the context of stromal targeting may provide the key to a durable clinical impact on this formidable disease. PMID:24908682

  7. Tumor suppression by stromal TIMPs.

    PubMed

    Shimoda, Masayuki; Jackson, Hartland W; Khokha, Rama

    2016-05-01

    The tumor stroma has the capacity to drive cancer progression, although the mechanisms governing these effects are incompletely understood. Recently, we reported that deletion of tissue inhibitor of metalloproteinases (Timps) in fibroblasts unleashes the function of cancer-associated fibroblasts and identifies a novel mode of stromal-tumor communication that activates key oncogenic pathways invoving Notch and ras homolog gene family, member A (RhoA) via stromal exosomes. PMID:27314104

  8. Potential Effect of CD271 on Human Mesenchymal Stromal Cell Proliferation and Differentiation.

    PubMed

    Calabrese, Giovanna; Giuffrida, Raffaella; Lo Furno, Debora; Parrinello, Nunziatina Laura; Forte, Stefano; Gulino, Rosario; Colarossi, Cristina; Schinocca, Luciana Rita; Giuffrida, Rosario; Cardile, Venera; Memeo, Lorenzo

    2015-01-01

    The Low-Affinity Nerve Growth Factor Receptor (LNGFR), also known as CD271, is a member of the tumor necrosis factor receptor superfamily. The CD271 cell surface marker defines a subset of multipotential mesenchymal stromal cells and may be used to isolate and enrich cells derived from bone marrow aspirate. In this study, we compare the proliferative and differentiation potentials of CD271+ and CD271- mesenchymal stromal cells. Mesenchymal stromal cells were isolated from bone marrow aspirate and adipose tissue by plastic adherence and positive selection. The proliferation and differentiation potentials of CD271+ and CD271- mesenchymal stromal cells were assessed by inducing osteogenic, adipogenic and chondrogenic in vitro differentiation. Compared to CD271+, CD271- mesenchymal stromal cells showed a lower proliferation rate and a decreased ability to give rise to osteocytes, adipocytes and chondrocytes. Furthermore, we observed that CD271+ mesenchymal stromal cells isolated from adipose tissue displayed a higher efficiency of proliferation and trilineage differentiation compared to CD271+ mesenchymal stromal cells isolated from bone marrow samples, although the CD271 expression levels were comparable. In conclusion, these data show that both the presence of CD271 antigen and the source of mesenchymal stromal cells represent important factors in determining the ability of the cells to proliferate and differentiate. PMID:26184166

  9. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis

    PubMed Central

    Ruhland, Megan K.; Loza, Andrew J.; Capietto, Aude-Helene; Luo, Xianmin; Knolhoff, Brett L.; Flanagan, Kevin C.; Belt, Brian A.; Alspach, Elise; Leahy, Kathleen; Luo, Jingqin; Schaffer, Andras; Edwards, John R.; Longmore, Gregory; Faccio, Roberta; DeNardo, David G.; Stewart, Sheila A.

    2016-01-01

    Age is a significant risk factor for the development of cancer. However, the mechanisms that drive age-related increases in cancer remain poorly understood. To determine if senescent stromal cells influence tumorigenesis, we develop a mouse model that mimics the aged skin microenvironment. Using this model, here we find that senescent stromal cells are sufficient to drive localized increases in suppressive myeloid cells that contributed to tumour promotion. Further, we find that the stromal-derived senescence-associated secretory phenotype factor interleukin-6 orchestrates both increases in suppressive myeloid cells and their ability to inhibit anti-tumour T-cell responses. Significantly, in aged, cancer-free individuals, we find similar increases in immune cells that also localize near senescent stromal cells. This work provides evidence that the accumulation of senescent stromal cells is sufficient to establish a tumour-permissive, chronic inflammatory microenvironment that can shelter incipient tumour cells, thus allowing them to proliferate and progress unabated by the immune system. PMID:27272654

  10. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis.

    PubMed

    Ruhland, Megan K; Loza, Andrew J; Capietto, Aude-Helene; Luo, Xianmin; Knolhoff, Brett L; Flanagan, Kevin C; Belt, Brian A; Alspach, Elise; Leahy, Kathleen; Luo, Jingqin; Schaffer, Andras; Edwards, John R; Longmore, Gregory; Faccio, Roberta; DeNardo, David G; Stewart, Sheila A

    2016-01-01

    Age is a significant risk factor for the development of cancer. However, the mechanisms that drive age-related increases in cancer remain poorly understood. To determine if senescent stromal cells influence tumorigenesis, we develop a mouse model that mimics the aged skin microenvironment. Using this model, here we find that senescent stromal cells are sufficient to drive localized increases in suppressive myeloid cells that contributed to tumour promotion. Further, we find that the stromal-derived senescence-associated secretory phenotype factor interleukin-6 orchestrates both increases in suppressive myeloid cells and their ability to inhibit anti-tumour T-cell responses. Significantly, in aged, cancer-free individuals, we find similar increases in immune cells that also localize near senescent stromal cells. This work provides evidence that the accumulation of senescent stromal cells is sufficient to establish a tumour-permissive, chronic inflammatory microenvironment that can shelter incipient tumour cells, thus allowing them to proliferate and progress unabated by the immune system. PMID:27272654

  11. Inactivation of Rb in stromal fibroblasts promotes epithelial cell invasion.

    PubMed

    Pickard, Adam; Cichon, Ann-Christin; Barry, Anna; Kieran, Declan; Patel, Daksha; Hamilton, Peter; Salto-Tellez, Manuel; James, Jacqueline; McCance, Dennis J

    2012-07-18

    Stromal-derived growth factors are required for normal epithelial growth but are also implicated in tumour progression. We have observed inactivation of the retinoblastoma protein (Rb), through phosphorylation, in cancer-associated fibroblasts in oro-pharyngeal cancer specimens. Rb is well known for its cell-autonomous effects on cancer initiation and progression; however, cell non-autonomous functions of Rb are not well described. We have identified a cell non-autonomous role of Rb, using three-dimensional cultures, where depletion of Rb in stromal fibroblasts enhances invasive potential of transformed epithelia. In part, this is mediated by upregulation of keratinocyte growth factor (KGF), which is produced by the depleted fibroblasts. KGF drives invasion of epithelial cells through induction of MMP1 expression in an AKT- and Ets2-dependent manner. Our data identify that stromal fibroblasts can alter the invasive behaviour of the epithelium, and we show that altered expression of KGF can mediate these functions. PMID:22643222

  12. Immune-related antigens, surface molecules and regulatory factors in human-derived mesenchymal stromal cells: the expression and impact of inflammatory priming.

    PubMed

    Najar, Mehdi; Raicevic, Gordana; Fayyad-Kazan, Hussein; Kazan, Hussein Fayyad; De Bruyn, Cécile; Bron, Dominique; Toungouz, Michel; Lagneaux, Laurence

    2012-12-01

    Based on their ability to regulate immune responses, MSCs are considered to be potential candidates for managing immune-mediated diseases in the context of immune therapy. AT and WJ are considered valuable alternatives for BM as a source of MSCs. A detailed and comparative characterization of the immunological profile of MSCs derived from different sources, as well as an understanding of their responsiveness under certain circumstances, such as inflammation, is required to facilitate efficient and well-designed clinical studies. Flow cytometric analyses revealed clear differences among MSC types concerning the expression of the endothelial (e.g., CD31, CD34, CD144 and CD309) and stromal (e.g., CD90 and CD105) associated markers. Regardless of their source, MSCs did not express any of the known hematopoietic markers. All MSCs were uniformly positive for HLA-ABC and lacked the expression of HLA-DR and the co-stimulatory molecules (e.g., CD40, CD80, CD86, CD134 and CD252) required for full T-cell activation. Tissue-specific MSCs presented a modulated expression of cell adhesion molecules that is important for their cellular interactions. MSCs exhibited several surface (e.g., CD73, HLA-G, HO-1 and CD274) and soluble (e.g., HGF, PGE2 and IGFBP-3) immunoregulatory molecules. According to these immunological profiles, the present work provides evidence that the source from which MSCs are derived is important for the design of MSC-based immunointervention approaches. In light of these observations, we may suggest that WJ-MSCs appear to be the most attractive cell population to use in immune cellular therapy when immunosuppressive action is required. PMID:22983809

  13. Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma.

    PubMed

    Okamoto, Koichi; Tajima, Hidehiro; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Nakamura, Keishi; Oyama, Katsunobu; Nakagawara, Hisatoshi; Fujita, Hideto; Takamura, Hiroyuki; Ninomiya, Itasu; Kitagawa, Hirohisa; Fushida, Sachio; Fujimura, Takashi; Harada, Shinichi; Wakayama, Tomohiko; Iseki, Shoichi; Ohta, Tetsuo

    2012-08-01

    We previously reported that hepatic stellate cells (HSCs) activated by angiotensin II (AngII) facilitate stromal fibrosis and tumor progression in intrahepatic cholangiocarcinoma (ICC). AngII has been known as a growth factor which can promote epithelial-to-mesenchymal transition (EMT) in renal epithelial cells, alveolar epithelial cells and peritoneal mesothelial cells. However, in the past, the relationship between AngII and stromal cell-derived factor-1 (SDF-1) in the microenvironment around cancer and the role of AngII on EMT of cancer cells has not been reported in detail. SDF-1 and its specific receptor, CXCR4, are now receiving attention as a mechanism of cell progression and metastasis. In this study, we examined whether activated HSCs promote tumor fibrogenesis, tumor progression and distant metastasis by mediating EMT via the AngII/AngII type 1 receptor (AT-1) and the SDF-1/CXCR4 axis. Two human ICC cell lines and a human HSC line, LI-90, express CXCR4. Significantly higher concentration of SDF-1α was released into the supernatant of LI-90 cells to which AngII had been added. SDF-1α increased the proliferative activity of HSCs and enhanced the activation of HSCs as a growth factor. Furthermore, addition of SDF-1α and AngII enhanced the increase of the migratory capability and vimentin expression, reduced E-cadherin expression, and translocated the expression of β-catenin into the nucleus and cytoplasm in ICC cells. Co-culture with HSCs also enhanced the migratory capability of ICC cells. These findings suggest that SDF-1α, released from activated HSCs and AngII, play important roles in cancer progression, tumor fibrogenesis, and migration in autocrine and paracrine fashion by mediating EMT. Our mechanistic findings may provide pivotal insights into the molecular mechanism of the AngII and SDF-1α-initiated signaling pathway that regulates fibrogenesis in cancerous stroma, tumor progression and meta-stasis of tumor cells expressing AT-1 and CXCR4

  14. Ex Vivo Stromal Cell-Derived Factor 1-Mediated Differentiation of Mouse Bone Marrow Mesenchymal Stem Cells into Hepatocytes Is Enhanced by Chinese Medicine Yiguanjian Drug-Containing Serum

    PubMed Central

    Fu, Linlin; Pang, Bingyao; Zhu, Ying; Wang, Ling; Leng, Aijing; Chen, Hailong

    2016-01-01

    Yiguanjian is administered in traditional Chinese medicine for liver diseases and has been demonstrated to reduce liver fibrosis. This study investigated the effect of Yiguanjian drug-containing serum (YGJ) with Stromal Cell-Derived Factor 1 (SDF-1) and Hepatocyte Growth Factor (HGF) on the differentiation of murine bone-marrow-derived mesenchymal cells (BM-MSCs) into hepatocytes in vitro. Adherent MSCs were isolated from murine bone marrow. Differentiation was induced by 20 ng/mL HGF, 50 ng/mL SDF-1, and 20% Yiguanjian drug-containing serum for 7 to 28 days, and mature hepatocytes' marker albumin (ALB) and cholangiocytes' marker cytokeratin-18 (CK-18) were assessed by immunocytochemistry and western blot. BM-MSCs exhibited homogeneous spindle shape growth after subculture and stained positive for CD90 and negative for CD34. After induction with HGF + normal serum or YGJ for 14 days, HGF + SDF-1 + normal serum for 7 days, or HGF + SDF-1 + YGJ for 5 days, MSCs' morphology changed gradually and begun to resemble hepatocyte-like cells. Cultures supplemented with HGF + SDF-1 + YGJ contained significantly higher proportions of ALB and CK-18 positive cells than cultures supplemented with HGF + SDF-1 + normal serum at day 7. These observations corroborated the results of western blot. In conclusion, Yiguanjian drug-containing serum could facilitate the differentiation of murine BM-MSCs into hepatocytes in vitro and has a synergistic effect with SDF-1 and HGF. PMID:27190538

  15. PD-L1 expression on neoplastic or stromal cells is respectively a poor or good prognostic factor for adult T-cell leukemia/lymphoma.

    PubMed

    Miyoshi, Hiroaki; Kiyasu, Junichi; Kato, Takeharu; Yoshida, Noriaki; Shimono, Joji; Yokoyama, Shintaro; Taniguchi, Hiroaki; Sasaki, Yuya; Kurita, Daisuke; Kawamoto, Keisuke; Kato, Koji; Imaizumi, Yoshitaka; Seto, Masao; Ohshima, Koichi

    2016-09-01

    Programmed cell death ligand 1 (PD-L1) is expressed on both tumor and tumor-infiltrating nonmalignant cells in lymphoid malignancies. The programmed cell death 1 (PD-1)/PD-L1 pathway suppresses host antitumor responses, although little is known about the significance of PD-1/PD-L1 expression in the tumor microenvironment. To investigate the clinicopathological impact of PD-L1 expression in adult T-cell leukemia/lymphoma (ATLL), we performed PD-L1 immunostaining in 135 ATLL biopsy samples. We observed 2 main groups: 1 had clear PD-L1 expression in lymphoma cells (nPD-L1(+), 7.4% of patients), and the other showed minimal expression in lymphoma cells (nPD-L1(-), 92.6%). Within the nPD-L1(-) group, 2 subsets emerged: the first displayed abundant PD-L1 expression in nonmalignant stromal cells of the tumor microenvironment (miPD-L1(+), 58.5%) and the second group did not express PD-L1 in any cell (PD-L1(-), 34.1%). nPD-L1(+) ATLL (median survival time [MST] 7.5 months, 95% CI [0.4-22.3]) had inferior overall survival (OS) compared with nPD-L1(-) ATLL (MST 14.5 months, 95% CI [10.1-20.0]) (P = .0085). Among nPD-L1(-) ATLL, miPD-L1(+) ATLL (MST 18.6 months, 95% CI [11.0-38.5]) showed superior OS compared with PD-L1(-) ATLL (MST 10.2 months, 95% CI [8.0-14.7]) (P = .0029). The expression of nPD-L1 and miPD-L1 maintained prognostic value for OS in multivariate analysis (P = .0322 and P = .0014, respectively). This is the first report describing the clinicopathological features and outcomes of PD-L1 expression in ATLL. More detailed studies will disclose clinical and biological significance of PD-L1 expression in ATLL. PMID:27418641

  16. 27. Annual Offshore Technology Conference: 1995 Proceedings. Volume 1: Geology, earth sciences and environmental factors

    SciTech Connect

    1995-12-01

    This is a compilation of papers representing volume 1 of 4 of the Offshore Technology Conference proceedings. It deals with papers which address geologic and geotechnical issues relating to offshore oil and gas developments. It includes papers on foundations and soil interactions associated with offshore platforms; high resolution survey techniques; international standards for oil and gas operations and equipment; techniques for subsalt exploration; and geologic problems associated with pipeline installation and site selection. Numerous papers deal with specific oil and gas exploration techniques in various countries such as Venezuela and Brazil.

  17. Genetics Home Reference: gastrointestinal stromal tumor

    MedlinePlus

    ... cells in the gastrointestinal tract and patches of dark skin on various areas of the body. Some ... Cancer Society: Treating Gastrointestinal Stromal Tumor (GIST) Cancer.Net: Gastrointestinal Stromal Tumor--Diagnosis Genetic Testing Registry: Gastrointestinal ...

  18. Resolving Cancer-Stroma Interfacial Signaling and Interventions with Micropatterned Tumor-Stromal Assays

    PubMed Central

    Shen, Keyue; Luk, Samantha; Hicks, Daniel F; Elman, Jessica S; Bohr, Stefan; Iwamoto, Yoshiko; Murray, Ryan; Pena, Kristen; Wang, Fangjing; Seker, Erkin; Weissleder, Ralph; Yarmush, Martin L; Toner, Mehmet; Sgroi, Dennis; Parekkadan, Biju

    2014-01-01

    Tumor-stromal interactions are a determining factor in cancer progression. In vivo, the interaction interface is associated with spatially-resolved distributions of cancer and stromal phenotypes. Here, we establish a micropatterned tumor-stromal assay (μTSA) with laser capture microdissection to control the location of co-cultured cells and analyze bulk and interfacial tumor-stromal signaling in driving cancer progression. μTSA reveals a spatial distribution of phenotypes in concordance with human estrogen receptor-positive (ER+) breast cancer samples, and heterogeneous drug activity relative to the tumor-stroma interface. Specifically, an unknown mechanism of reversine is shown in targeting tumor-stromal interfacial interactions using ER+ MCF-7 breast cancer and bone marrow-derived stromal cells. Reversine suppresses MCF-7 tumor growth and bone metastasis in vivo by reducing tumor stromalization including collagen deposition and recruitment of activated stromal cells. This study advocates μTSA as a platform for studying tumor microenvironmental interactions and cancer field effects with applications in drug discovery and development. PMID:25489927

  19. The corneal fibrosis response to epithelial-stromal injury.

    PubMed

    Torricelli, Andre A M; Santhanam, Abirami; Wu, Jiahui; Singh, Vivek; Wilson, Steven E

    2016-01-01

    The corneal wound healing response, including the development of stromal opacity in some eyes, is a process that often leads to scarring that occurs after injury, surgery or infection to the cornea. Immediately after epithelial and stromal injury, a complex sequence of processes contributes to wound repair and regeneration of normal corneal structure and function. In some corneas, however, often depending on the type and extent of injury, the response may also lead to the development of mature vimentin+ α-smooth muscle actin+ desmin+ myofibroblasts. Myofibroblasts are specialized fibroblastic cells generated in the cornea from keratocyte-derived or bone marrow-derived precursor cells. The disorganized extracellular matrix components secreted by myofibroblasts, in addition to decreased expression of corneal crystallins in these cells, are central biological processes that result in corneal stromal fibrosis associated with opacity or "haze". Several factors are associated with myofibroblast generation and haze development after PRK surgery in rabbits, a reproducible model of scarring, including the amount of tissue ablated, which may relate to the extent of keratocyte apoptosis in the early response to injury, irregularity of stromal surface after surgery, and changes in corneal stromal proteoglycans, but normal regeneration of the epithelial basement membrane (EBM) appears to be a critical factor determining whether a cornea heals with relative transparency or vision-limiting stromal opacity. Structural and functional abnormalities of the regenerated EBM facilitate prolonged entry of epithelium-derived growth factors such as transforming growth factor β (TGF-β) and platelet-derived growth factor (PDGF) into the stroma that both drive development of mature myofibroblasts from precursor cells and lead to persistence of the cells in the anterior stroma. A major discovery that has contributed to our understanding of haze development is that keratocytes and corneal

  20. Tumor-associated stromal cells as key contributors to the tumor microenvironment.

    PubMed

    Bussard, Karen M; Mutkus, Lysette; Stumpf, Kristina; Gomez-Manzano, Candelaria; Marini, Frank C

    2016-01-01

    The tumor microenvironment is a heterogeneous population of cells consisting of the tumor bulk plus supporting cells. It is becoming increasingly evident that these supporting cells are recruited by cancer cells from nearby endogenous host stroma and promote events such as tumor angiogenesis, proliferation, invasion, and metastasis, as well as mediate mechanisms of therapeutic resistance. In addition, recruited stromal cells range in type and include vascular endothelial cells, pericytes, adipocytes, fibroblasts, and bone-marrow mesenchymal stromal cells. During normal wound healing and inflammatory processes, local stromal cells change their phenotype to become that of reactive stroma. Under certain conditions, however, tumor cells can co-opt these reactive stromal cells and further transition them into tumor-associated stromal cells (TASCs). These TASCs express higher levels of proteins, including alpha-smooth muscle actin, fibroblast activating protein, and matrix metalloproteinases, compared with their normal, non-reactive counterparts. TASCs are also known to secrete many pro-tumorigenic factors, including IL-6, IL-8, stromal-derived factor-1 alpha, vascular endothelial growth factor, tenascin-C, and matrix metalloproteinases, among others, which recruit additional tumor and pro-tumorigenic cells to the developing microenvironment. Here, we review the current literature pertaining to the origins of recruited host stroma, contributions toward tumor progression, tumor-associated stromal cells, and mechanisms of crosstalk between endogenous host stroma and tumor cells. PMID:27515302

  1. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor

    PubMed Central

    Zeuthen, Louise Hjerrild; Fink, Lisbeth Nielsen; Frokiaer, Hanne

    2008-01-01

    Humans and other mammals coexist with a diverse array of microbes colonizing the intestine, termed the microflora. The relationship is symbiotic, with the microbes benefiting from a stable environment and nutrient supply, and the host gaining competitive exclusion of pathogens and continuously maintenance of the gut immune homeostasis. Here we report novel crosstalk mechanisms between the human enterocyte cell line, Caco2, and underlying human monocyte-derived DC in a transwell model where Gram-positive (G+) commensals prevent Toll-like receptor-4 (TLR4)-dependent Escherichia coli-induced semimaturation in a TLR2-dependent fashion. These findings add to our understanding of the hypo-responsiveness of the gut epithelium towards the microflora. Gut DC posses a more tolerogenic phenotype than conventional DC. Here we show that Caco2 spent medium (SM) induces tolerogenic DC with lower expression of maturation markers, interleukin (IL)-12p70, and tumour necrosis factor-α when matured with G+ and Gram-negative (G–) commensals, while IL-10 production is enhanced in DC upon encountering G+ commensals and reduced upon encountering G– bacteria. The Caco2 SM-induced tolerogenic phenotype is also seen in DC priming of naive T cells with elevated levels of transforming growth factor-β (TGF-β) and markedly reduced levels of bacteria-induced interferon-γ production. Caco2 cell production of IL-8, thymic stromal lymphopoietin (TSLP) and TGF-β increases upon microbial stimulation in a strain dependent manner. TSLP and TGF-β co-operate in inducing the tolerogenic DC phenotype but other mediators might be involved. PMID:17655740

  2. Upregulation of long non-coding RNA HIF 1α-anti-sense 1 induced by transforming growth factor-β-mediated targeting of sirtuin 1 promotes osteoblastic differentiation of human bone marrow stromal cells.

    PubMed

    Xu, Yao; Wang, Shilong; Tang, Chaoliang; Chen, Wenjun

    2015-11-01

    The present study aimed to investigate the regulatory mechanism of long non-coding RNA hypoxia-inducible factor 1α-anti‑sense 1 (lncRNA HIF1α-AS1) in osteoblast differentiation as well as its targeting by sirtuin 1 (SIRT1), which may be inhibited by transforming growth factor (TGF)‑β in bone marrow stromal cells (BMSCs). Real‑time polymerase chain reaction (PCR), western blot analysis, lncRNA PCR arrays and chromatin immunoprecipitation were performed in order to examine the interference of SIRT1 expression by TGF‑β, the effects of SIRT1 overexpression on lncRNA HIF1α‑AS1 and the regulation of the expression of homeobox (HOX)D10, which promotes BMSC differentiation, by lncRNA HIF1α‑AS1. The results showed that TGF‑β interfered with SIRT1 expression. Furthermore, lncRNA HIF1α‑AS1 was significantly downregulated following overexpression of SIRT1. In addition, low expression of HIF1α‑AS1 was sufficient to block the expression of HOXD10. The present study further demonstrated that downregulation of HOXD10 by HIF1α‑AS1 interfered with acetylation, and subsequently resulted in the inhibition of osteoblast differentiation. These results suggested that HIF1α‑AS1 is an essential mediator of osteoblast differentiation, and may thus represent a gene‑therapeutic agent for the treatment of human bone diseases. PMID:26460121

  3. Resistin-induced stromal cell-derived factor-1 expression through Toll-like receptor 4 and activation of p38 MAPK/ NFκB signaling pathway in gastric cancer cells

    PubMed Central

    2014-01-01

    Background Stromal cell-derived factor-1 (SDF-1) (CXC chemokine ligand-12)/CXC chemokine receptor 4 (CXCR4) is involved in the carcinogenesis of human gastric cancer, where it stimulates angiogenesis and favors metastasis of tumor cells to distant organs. In addition, resistin is suggested to be an important link between obesity and the development of gastric cancer. Resistin has identified as an important player in inflammatory responses, and emerged as a mediator in inflammation-associated cancer. A limited number of studies have investigated the association of resistin and SDF-1 with gastric cancer. Herein, we investigated the molecular mechanisms by which resistin influences the expression of SDF-1 in gastric carcinoma cells. Results Human gastric cancer cell lines were exposed to doses of resistin; SDF-1 expression and secretion levels were then determined. Real-time polymerase chain reaction and western blotting analyses were performed to clarify molecular changes. Inhibition of Toll-like receptor 4 (TLR4) by a competitive antagonist inhibited resistin-induced SDF-1 expression. Pharmacological inhibitors and small interfering RNA (siRNA) demonstrated that activation of the p38 mitogen-activated protein kinase (MAPK) pathway is critical for resistin-induced SDF-1 expression mediated by TLR4. The promoter activity and transcription factor enzyme-linked immunosorbent assay revealed that resistin induced expression of SDF-1 mediated by NF-κB in gastric cancer cells. Inhibition of p38 MARK activation blocked the SDF-1-induced expression and the SDF-1 promoter activity in the cancer gastric cells. Chromatin immunoprecipitation assay revealed that inhibition of p38 MARK activation also blocked the resistin-increased NF-κB-DNA-binding activity. Conclusions Resistin-induced SDF-1 upregulation by activation of TLR4, p38 MARK and NF-κB may explain a new role of resistin in the link of obesity and gastric cancer. PMID:24929539

  4. Conference on Bio-Social Factors in the Development and Learning of Disadvantaged Children. Conference Proceedings (Syracuse, New York, April 19-21, 1967).

    ERIC Educational Resources Information Center

    Yeshiva Univ., New York, NY. Ferkauf Graduate School of Humanities and Social Sciences.

    These conference proceedings contain two major papers. The paper by Susan S. Stodolsky and Gerald S. Lesser, "Learning Patterns in the Disadvantaged," reports a study of effects of social class and ethnic group influences on levels and patterns of mental ability. Scores for verbal ability, reasoning, number facility, and space conceptualization of…

  5. Stromal Fibroblasts in Digestive Cancer

    PubMed Central

    Worthley, Daniel L.; Giraud, Andrew S.

    2010-01-01

    The normal gastrointestinal stroma consists of extra-cellular matrix and a community of stromal cells including fibroblasts, myofibroblasts, smooth muscle cells, pericytes, endothelium and inflammatory cells. α-smooth muscle actin (α-SMA) positive stromal fibroblasts, often referred to as myofibroblasts or activated fibroblasts, are critical in the development of digestive cancer and help to create an environment that is permissive of tumor growth, angiogenesis and invasion. This review focusses on the contribution of activated fibroblasts in carcinogenesis and where possible directly applies this to, and draws on examples from, gastrointestinal cancer. In particular, the review expands on the definition, types and origins of activated fibroblasts. It examines the molecular biology of stromal fibroblasts and their contribution to the peritumoral microenvironment and concludes by exploring some of the potential clinical applications of this exciting branch of cancer research. Understanding the origin and biology of activated fibroblasts will help in the development of an integrated epithelial-stromal sequence to cancer that will ultimately inform cancer pathogenesis, natural history and future therapeutics. PMID:21209778

  6. Functional Differentiation of Uterine Stromal Cells Involves Cross-regulation between Bone Morphogenetic Protein 2 and Kruppel-like Factor (KLF) Family Members KLF9 and KLF13

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inability of the uterine epithelium to enter a state of receptivity for the embryo to implant is a significant underlying cause of early pregnancy loss. We previously showed that mice null for the Progesterone Receptor (PGR)-interacting protein Kruppel-like Factor (KLF) 9 are subfertile and exhi...

  7. Stromal expression of SPARC in pancreatic adenocarcinoma.

    PubMed

    Neuzillet, Cindy; Tijeras-Raballand, Annemilaï; Cros, Jérôme; Faivre, Sandrine; Hammel, Pascal; Raymond, Eric

    2013-12-01

    Pancreatic ductal adenocarcinoma (PDAC) stands as the poorest prognostic tumor of the digestive tract, with a 5-year survival rate of less than 5%. Therapeutic options for unresectable PDAC are extremely limited and there is a pressing need for expanded therapeutic approaches to improve current options available with gemcitabine-based regimens. With PDAC displaying one of the most prominent desmoplastic stromal reactions of all carcinomas, recent research has focused on the microenvironment surrounding PDAC cells. Secreted protein acid and rich in cysteine (SPARC), which is overexpressed in PDAC, may display tumor suppressor functions in several cancers (e.g., in colorectal, ovarian, prostate cancers, and acute myelogenous leukemia) but also appears to be overexpressed in other tumor types (e.g., breast cancer, melanoma, and glioblastoma). The apparent contradictory functions of SPARC may yield inhibition of angiogenesis via inhibition of vascular endothelial growth factor, while promoting epithelial-to-mesenchymal transition and invasion through matrix metalloprotease expression. This feature is of particular interest in PDAC where SPARC overexpression in the stroma stands along with inhibition of angiogenesis and promotion of cancer cell invasion and metastasis. Several therapeutic strategies to deplete stromal tissue have been developed. In this review, we focused on key preclinical and clinical data describing the role of SPARC in PDAC biology, the properties, and mechanisms of delivery of drugs that interact with SPARC and discuss the proof-of-concept clinical trials using nab-paclitaxel. PMID:23690170

  8. Characteristics of a human prostate stromal cell line related to its use in a stromal-epithelial coculture model for the study of cancer chemoprevention.

    PubMed

    Diaw, Lena; Roth, Mark; Schwinn, Debra A; d'Alelio, Mary E; Green, Lisa J; Tangrea, Joseph A

    2005-01-01

    An immortalized human prostate stromal cell line (PS30) was previously established using recombinant retrovirus encoding human papillomavirus 16 gene products. In this study, we further characterize this stromal cell line for its potential use in a stromal-epithelial coculture model for prostate cancer prevention. Using reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and immunocytochemistry, we examined expression of androgen receptor (AR), vitamin D receptor (VDR), prostate-specific antigen (PSA), transforming growth factor-beta (TGF-beta), and insulin-like growth factors (IGF) families and their receptors, metalloproteinases (MMP) MMP-2 and MMP-9, as well as the cells' ability to respond to the synthetic androgen R1881. The PS30 stromal cells do not express PSA, confirming their stromal origin. They are positive for both AR messenger ribonucleic acid (mRNA) and protein; however, they do not respond to growth stimulation by the synthetic androgen R1881. The PS30 cells express mRNA for VDR, TGF-betas, IGFs and their receptors, as well as the MMPs. Moreover, they produce significant amounts of TGF-beta1, TGF-beta2, IGFBP-3, and MMP-2 proteins. Our observations confirm the use of PS30 for the study of stromal-epithelial interactions in the modulation of prostate carcinogenesis. PMID:16153146

  9. Stromal Cell-Derived Factor 1 Increases Tetrodotoxin-Resistant Sodium Currents Nav1.8 and Nav1.9 in Rat Dorsal Root Ganglion Neurons via Different Mechanisms.

    PubMed

    Qiu, Fang; Li, Yang; Fu, Qiang; Fan, Yong-Yan; Zhu, Chao; Liu, Yan-Hong; Mi, Wei-Dong

    2016-07-01

    Stromal cell-derived factor 1 (SDF-1)/chemokine CXC motif ligand 12 (CXCL12), a chemokine that is upregulated in dorsal root ganglion (DRG) during chronic pain models, has recently been found to play a central role in pain hypersensitivity. The purpose of present study is to investigate the functional impact of SDF-1 and its receptor, chemokine CXC motif receptor 4 (CXCR4), on two TTXR sodium channels in rat DRG using electrophysiological techniques. Preincubation with SDF-1 caused a concentration-dependent increase of Nav1.8 and Nav1.9 currents amplitudes in acutely isolated small diameter DRG neurons in short-term culture. As to Nav1.9, changes in current density and kinetic properties of Nav1.9 current evoked by SDF-1(50 ng/ml) was eliminated by CXCR4 antagonist AMD3100 and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. The increase in Nav1.9 current was also blocked by pertussis toxin (PTX) but not cholera toxin (CTX), showing involvement of Gi/o but not Gs subunits. As to Nav1.8, inhibitors (AMD3100, PTX, CTX, LY294002) used in present study didn't inhibit the increased amplitude of Nav1.8 current and shifted activation curve of Nav1.8 in a hyperpolarizing direction in the presence of SDF-1 (50 ng/ml). In conclusion, our data demonstrated that SDF-1 may excite primary nociceptive sensory neurons by acting on the biophysical properties of Nav1.8 and Nav1.9 currents but via different mechanisms. PMID:27038931

  10. Controlled release of stromal cell-derived factor-1α from silk fibroin-coated coils accelerates intra-aneurysmal organization and occlusion of neck remnant by recruiting endothelial progenitor cells.

    PubMed

    Gao, Yuyuan; Wang, Qiujing; Cui, Xubo; Liu, Yaqi; Zheng, Tao; Chen, Chengwei; Sun, Chengmei; Huang, Shuyun; Wang, Xin; Liu, Yanchao; Jiang, Xiaodan; Zeng, Chi; Quan, Daping

    2014-01-01

    This study is to test the efficacy of stromal cell-derived factor-1α (SDF-1α)-coated coils together with endothelial progenitor cells (EPCs) transplantation in occluding aneurysms. Bone marrow-derived EPC surface markers were analyzed using flow cytometry. The migratory function of EPCs in response to SDF-1α was evaluated using a modified Boyden chamber assay. Capillary-like tube formation was assessed using Matrigel gel. Coil morphologies before and after coating with SDF-1α were observed under a scanning electron microscope. The level of SDF-1α in supernatants was measured by ELISA. Sprague-Dawley rats were randomly allocated into five groups. Histological analysis was performed on days 14 and 28 after coil implantation. The bone marrow-EPCs could express CD133, CD34, and VEGFR-2 and form tubule-like structures in vitro. Migratory ability of EPCs in the presence of SDF-1α-coated coils was similar to that in the presence of 5 ng/ml SDF-1α gradient. Sustained release of SDF-1α was achieved using silk fibroin as a carrier. In SDF-1α-coated coils + EPCs transplantation group, a well-organized fibrous tissue bridging the orifice of aneurysms was shown on days 14 and 28. On day 28, tissue organization was greater in the SDF-1α-coated coils group than in the unmodified coils group. Immunofluorescence showed α-smooth muscle actin-positive cells in organized tissue in sacs. Combined treatment with SDF-1α-coated coils and EPCs transplantation is a safe and effective treatment for rat aneurysms. This may provide a new strategy for endovascular therapy following aneurysmal subarachnoid hemorrhage. PMID:25674201

  11. Insulin-like growth factor binding protein-3 has dual effects on gastrointestinal stromal tumor cell viability and sensitivity to the anti-tumor effects of imatinib mesylate in vitro

    PubMed Central

    2009-01-01

    Background Imatinib mesylate has significantly improved survival and quality of life of patients with gastrointestinal stromal tumors (GISTs). However, the molecular mechanism through which imatinib exerts its anti-tumor effects is not clear. Previously, we found up-regulation of insulin-like growth factor binding protein-3 (IGFBP3) expression in imatinib-responsive GIST cells and tumor samples. Because IGFBP3 regulates cell proliferation and survival and mediates the anti-tumor effects of a number of anti-cancer agents through both IGF-dependent and IGF-independent mechanisms, we hypothesized that IGFBP3 mediates GIST cell response to imatinib. To test this hypothesis, we manipulated IGFBP3 levels in two imatinib-responsive GIST cell lines and observed cell viability after drug treatment. Results In the GIST882 cell line, imatinib treatment induced endogenous IGFBP3 expression, and IGFBP3 down-modulation by neutralization or RNA interference resulted in partial resistance to imatinib. In contrast, IGFBP3 overexpression in GIST-T1, which had no detectable endogenous IGFBP3 expression after imatinib, had no effect on imatinib-induced loss of viability. Furthermore, both the loss of IGFBP3 in GIST882 cells and the overexpression of IGFBP3 in GIST-T1 cells was cytotoxic, demonstrating that IGFBP3 has opposing effects on GIST cell viability. Conclusion This data demonstrates that IGFBP3 has dual, opposing roles in modulating GIST cell viability and response to imatinib in vitro. These preliminary findings suggest that there may be some clinical benefits to IGFBP3 therapy in GIST patients, but further studies are needed to better characterize the functions of IGFBP3 in GIST. PMID:19903356

  12. Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan

    PubMed Central

    2012-01-01

    Background Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR) MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype. Methods CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression) or MCF7 cells (± transfection with the CD44 gene) were treated with the CD44 ligand, hyaluronon (HA), or heregulin and their in vitro growth (MTT), migration (Boyden chamber and wound healing) and invasion (Matrigel transwell migration) determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA. Results TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2 and EGFR and induction

  13. The WIF domain of the human and Drosophila Wif-1 secreted factors confers specificity for Wnt or Hedgehog.

    PubMed

    Sánchez-Hernández, David; Sierra, Javier; Ortigão-Farias, João Ramalho; Guerrero, Isabel

    2012-10-01

    The Hedgehog (Hh) and Wnt signaling pathways are crucial for development as well as for adult stem cell maintenance in all organisms from Drosophila to humans. Aberrant activation of these pathways has been implicated in many types of human cancer. During evolution, organisms have developed numerous ways to fine-tune Wnt and Hh signaling. One way is through extracellular modulators that directly interact with Wnt or Hh, such as the Wnt inhibitory factor (Wif-1) family of secreted factors. Interestingly, Wif-1 family members have divergent functions in the Wnt and Hh pathways in different organisms. Whereas vertebrate Wif-1 blocks Wnt signaling, Drosophila Wif-1 [Shifted (Shf)] regulates only Hh distribution and spreading through the extracellular matrix. Here, we investigate which parts of the Shf and human Wif-1 (WIF1) proteins are responsible for functional divergence. We analyze the behavior of domain-swap (the Drosophila and human WIF domain and EGF repeats) chimeric constructs during wing development. We demonstrate that the WIF domain confers the specificity for Hh or Wg morphogen. The EGF repeats are important for the interaction of Wif-1 proteins with the extracellular matrix; Drosophila EGF repeats preferentially interact with the glypican Dally-like (Dlp) when the WIF domain belongs to human WIF1 and with Dally when the WIF domain comes from Shf. These results are important both from the evolutionary perspective and for understanding the mechanisms of morphogen distribution in a morphogenetic field. PMID:22951645

  14. Infant Mortality, Morbidity, and Childhood Handicapping Conditions: Psychosocial Factors. Based on Proceedings of a Bi-Regional Conference (Atlanta, Georgia, June 2-5, 1985).

    ERIC Educational Resources Information Center

    Watkins, Elizabeth L., Ed.; Melnick, Leslie R., Ed.

    In Part I, "Extent of Knowledge and Implications for Social Work Intervention," the following conference papers are presented: (1) "Unintended Pregnancy and Infant Mortality, Strategies and Interventions" (Alfred W. Brann, Jr.); (2) "Implications for Social Work Intervention in Biopsychosocial Factors Associated with Infant Mortality and…

  15. Social Factors in the Health of Families: A Public Health Social Work Responsibility. Proceedings of a Conference (Pittsburgh, Pennsylvania, March 23-26, 1986).

    ERIC Educational Resources Information Center

    St. Denis, Gerald C., Ed.

    This document contains a list of planning committee members, institute participants, an introduction by Gerald C. St. Denis a program agenda, and institute presentations from this conference. The following presentations are included: (1) "Social Factors in the Health of Families: A Public Health Social Work Responsibility" (Stanley F. Battle); (2)…

  16. The Casitas B lineage lymphoma (Cbl) mutant G306E enhances osteogenic differentiation in human mesenchymal stromal cells in part by decreased Cbl-mediated platelet-derived growth factor receptor alpha and fibroblast growth factor receptor 2 ubiquitination.

    PubMed

    Sévère, Nicolas; Miraoui, Hichem; Marie, Pierre J

    2011-07-01

    Human bone marrow-derived mesenchymal stromal cells (hMSCs) have the capacity to differentiate into several cell types including osteoblasts and are therefore an important cell source for bone tissue regeneration. A crucial issue is to identify mechanisms that trigger hMSC osteoblast differentiation to promote osteogenic potential. Casitas B lineage lymphoma (Cbl) is an E3 ubiquitin ligase that ubiquitinates and targets several molecules for degradation. We hypothesized that attenuation of Cbl-mediated degradation of receptor tyrosine kinases (RTKs) may promote osteogenic differentiation in hMSCs. We show here that specific inhibition of Cbl interaction with RTKs using a Cbl mutant (G306E) promotes expression of osteoblast markers (Runx2, alkaline phosphatase, type 1 collagen, osteocalcin) and increases osteogenic differentiation in clonal bone marrow-derived hMSCs and primary hMSCs. Analysis of molecular mechanisms revealed that the Cbl mutant increased PDGF receptor α and FGF receptor 2 but not EGF receptor expression in hMSCs, resulting in increased ERK1/2 and PI3K signaling. Pharmacological inhibition of FGFR or PDGFR abrogated in vitro osteogenesis induced by the Cbl mutant. The data reveal that specific inhibition of Cbl interaction with RTKs promotes the osteogenic differentiation program in hMSCs in part by decreased Cbl-mediated PDGFRα and FGFR2 ubiquitination, providing a novel mechanistic approach targeting Cbl to promote the osteogenic capacity of hMSCs. PMID:21596750

  17. Activation of Notch1 signaling in stromal fibroblasts inhibits melanoma growth by upregulating WISP-1.

    PubMed

    Shao, H; Cai, L; Grichnik, J M; Livingstone, A S; Velazquez, O C; Liu, Z-J

    2011-10-20

    The tumor microenvironment is emerging as an important target for cancer therapy. Fibroblasts (Fbs) within the tumor stroma are critically involved in promoting tumor growth and angiogenesis through secretion of soluble factors, synthesis of extracellular matrix and direct cell-cell interaction. In this work, we aim to alter the biological activity of stromal Fbs by modulating the Notch1 signaling pathway. We show that Fbs engineered to constitutively activate the Notch1 pathway significantly inhibit melanoma growth and tumor angiogenesis. We determine that the inhibitory effect of 'Notch-engineered' Fbs is mediated by increased secretion of Wnt-induced secreted protein-1 (WISP-1) as the effects of Notch1 activation in Fbs are reversed by shRNA-mediated blockade of WISP-1. When 'Notch-engineered' Fbs are co-grafted with melanoma cells in SCID mice, shRNA-mediated blockade of WISP-1 reverses the tumor-suppressive phenotype of the 'Notch-engineered' Fbs, significantly increases melanoma growth and tumor angiogenesis. Consistent with these findings, supplement of recombinant WISP-1 protein inhibits melanoma cell growth in vitro. In addition, WISP-1 is modestly expressed in melanoma-activated Fbs but highly expressed in inactivated Fbs. Evaluation of human melanoma skin biopsies indicates that expression of WISP-1 is significantly lower in melanoma nests and surrounding areas filled with infiltrated immune cells than in the adjacent dermis unaffected by the melanoma. Overall, our study shows that constitutive activation of the Notch1 pathway confers Fbs with a suppressive phenotype to melanoma growth, partially through WISP-1. Thus, targeting tumor stromal Fbs by activating Notch signaling and/or increasing WISP-1 may represent a novel therapeutic approach to combat melanoma. PMID:21516124

  18. Effect of 5-azacytidine on gene expression in marrow stromal cells.

    PubMed Central

    Andrews, D F; Nemunaitis, J; Tompkins, C; Singer, J W

    1989-01-01

    When exposed to 5-azacytidine, marrow stromal cells from active long-term marrow cultures and cell lines derived from simian virus 40-transformed stromal cells rapidly upregulated c-abl and interleukin-6 transcripts while downregulating the expression of collagen I, a major matrix protein. Similar effects occurred with interleukin-1 alpha and tumor necrosis factor alpha, although the time course was considerably prolonged. Images PMID:2474760

  19. Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco.

    PubMed

    Yao, Wenjing; Wang, Lei; Zhou, Boru; Wang, Shengji; Li, Renhua; Jiang, Tingbo

    2016-07-01

    Ethylene response factors (ERFs) belong to a large plant-specific transcription factor family, which play a significant role in plant development and stress responses. Poplar ERF76 gene, a member of ERF TF family, can be up-regulated in response to salt stress, osmotic stress, and ABA treatment. The ERF76 protein was confirmed to be targeted preferentially in the nucleus of onion cell by particle bombardment. In order to understand the functions of ERF76 gene in salt stress response, we conducted temporal and spatial expression analysis of ERF76 gene in poplar. Then the ERF76 cDNA fragment containing an ORF was cloned from di-haploid Populus simonii×P. nigra and transferred into tobacco (Nicotiana tobacum) genome by Agrobacterium-mediated leaf disc method. Under salt stress, transgenic tobacco over-expressing ERF76 gene showed a significant increase in seed germination rate, plant height, root length, and fresh weight, as well as in relative water content (RWC), superoxide dismutase (SOD) activity, peroxidase (POD) activity, and proline content, compared to control tobacco lines. In contrast, transgenic tobacco lines displayed a decrease in malondialdehyde (MDA) accumulation, relative electrical conductivity (REC) and reactive oxygen species (ROS) accumulation in response to salt stress, compared to control tobacco lines. Over all, the results indicated that ERF76 gene plays a critical role in salt tolerance in transgenic tobacco. PMID:27123829

  20. What Are the Key Statistics about Gastrointestinal Stromal Tumors?

    MedlinePlus

    ... for gastrointestinal stromal tumors? What are the key statistics about gastrointestinal stromal tumors? Gastrointestinal stromal tumors (GISTs) ... They are slightly more common in men. Survival statistics for GIST are discussed in “ Survival rates for ...

  1. What's New in Gastrointestinal Stromal Tumor Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for gastrointestinal stromal tumor What’s new in gastrointestinal stromal tumor research and treatment? There ... GIST) Talking With Your Doctor After Treatment What`s New in Gastrointestinal Stromal Tumor (GIST) Research? Other Resources ...

  2. Pseudoangiomatous stromal hyperplasia: an overview.

    PubMed

    Virk, Renu K; Khan, Ashraf

    2010-07-01

    Pseudoangiomatous stromal hyperplasia (PASH) of the breast is a benign, proliferative mesenchymal lesion with possible hormonal etiology. It typically affects women in the reproductive age group. Pseudoangiomatous stromal hyperplasia is frequently an incidental histologic finding in breast biopsies performed for other benign or malignant lesions. Rarely, it can present as a firm, painless breast mass, which has been referred to as nodular or tumorous PASH. Grossly, tumorous PASH is a well-circumscribed, firm, rubbery mass with solid, homogenous, gray-white cut surface. On histologic examination, it is characterized by the presence of open slitlike spaces in dense collagenous stroma. The spaces are lined by a discontinuous layer of flat, spindle-shaped myofibroblasts with bland nuclei. The spindle cells express progesterone receptors and are positive for vimentin, actin, and CD34. The most important differential diagnosis on histopathology is angiosarcoma. Pseudoangiomatous stromal hyperplasia discovered incidentally does not require any additional specific treatment. Tumorous PASH is treated by local surgical excision with clear margins and the prognosis is excellent, with minimal risk of recurrence after adequate surgical excision. PMID:20586640

  3. Computational Protein Design to Re-Engineer Stromal Cell-Derived Factor-1α (SDF) Generates an Effective and Translatable Angiogenic Polypeptide Analog

    PubMed Central

    Hiesinger, William; Perez-Aguilar, Jose Manuel; Atluri, Pavan; Marotta, Nicole A.; Frederick, John R.; Fitzpatrick, J. Raymond; McCormick, Ryan C.; Muenzer, Jeffrey R.; Yang, Elaine C.; Levit, Rebecca D.; Yuan, Li-Jun; MacArthur, John W.; Saven, Jeffery G.; Woo, Y. Joseph

    2014-01-01

    BACKGROUND After ischemic injury, cardiac secretion of the potent endothelial progenitor stem cell (EPC) chemokine SDF stimulates endogenous neovascularization and myocardial repair, a process insufficiently robust to repair major infarcts. Experimentally, exogenous administration of recombinant SDF enhances neovasculogenesis and cardiac function after MI. However, SDF has a short half-life, is bulky, and very expensive. Smaller analogs of SDF may provide translational advantages including enhanced stability and function, ease of synthesis, lower cost, and potential modulated delivery via engineered biomaterials. In this study, computational protein design was used to create a more efficient evolution of the native SDF protein. METHODS and RESULTS Protein structure model was used to engineer an SDF polypeptide analog (ESA) that splices the N-terminus (activation and binding) and C-terminus (extracellular stabilization) with a diproline segment designed to limit the conformational flexibility of the peptide backbone and retain the relative orientation of these segments observed in the native structure of SDF. EPCs in ESA gradient, assayed by Boyden chamber, showed significantly increased migration compared to both SDF and control gradients (ESA 567±74 cells/HPF vs SDF 438±46 p=0.037; vs Control 156±45 p=0.001). EPC receptor activation was evaluated by quantifying phosphorylated AKT. ESA had significantly greater pAKT levels than SDF and control (1.64±0.24 vs 1.26±0.187, p=0.01; vs. 0.95±0.08, p<0.001). Angiogenic growth factor assays revealed a distinct increase in Angiopoietin-1 expression in the ESA and SDF treated hearts. Also, CD-1 mice (n=30) underwent LAD ligation and peri-infarct intramyocardial injection of ESA, SDF-1α, or saline. At 2 weeks, echocardiography demonstrated a significant gain in EF, CO, SV, and Fractional Area Change (FAC) in mice treated with ESA when compared to controls and significant improvement in FAC when compared to SDF treated

  4. Gastrointestinal Stromal Tumor – An Evolving Concept

    PubMed Central

    Tornillo, Luigi

    2014-01-01

    Gastrointestinal stromal tumors (GISTs) are the most frequent mesenchymal tumors of the gastrointestinal tract. The discovery that these tumors, formerly thought of smooth muscle origin, are indeed better characterized by specific activating mutation in genes coding for the receptor tyrosine kinases (RTKs) CKIT and PDGFRA and that these mutations are strongly predictive for the response to targeted therapy with RTK inhibitors has made GISTs the typical example of the integration of basic molecular knowledge in the daily clinical activity. The information on the mutational status of these tumors is essential to predict (and subsequently to plan) the therapy. As resistant cases are frequently wild type, other possible oncogenic events, defining other “entities,” have been discovered (e.g., succinil dehydrogenase mutation/dysregulation, insuline growth factor expression, and mutations in the RAS-RAF-MAPK pathway). The classification of disease must nowadays rely on the integration of the clinico-morphological characteristics with the molecular data. PMID:25593916

  5. An S-Locus Independent Pollen Factor Confers Self-Compatibility in ‘Katy’ Apricot

    PubMed Central

    Molina, Laura; Gisbert, Ana D.; Badenes, María L.; Romero, Carlos

    2013-01-01

    Loss of pollen-S function in Prunus self-compatible cultivars has been mostly associated with deletions or insertions in the S-haplotype-specific F-box (SFB) genes. However, self-compatible pollen-part mutants defective for non-S-locus factors have also been found, for instance, in the apricot (Prunus armeniaca) cv. ‘Canino’. In the present study, we report the genetic and molecular analysis of another self-compatible apricot cv. termed ‘Katy’. S-genotype of ‘Katy’ was determined as S1S2 and S-RNase PCR-typing of selfing and outcrossing populations from ‘Katy’ showed that pollen gametes bearing either the S1- or the S2-haplotype were able to overcome self-incompatibility (SI) barriers. Sequence analyses showed no SNP or indel affecting the SFB1 and SFB2 alleles from ‘Katy’ and, moreover, no evidence of pollen-S duplication was found. As a whole, the obtained results are compatible with the hypothesis that the loss-of-function of a S-locus unlinked factor gametophytically expressed in pollen (M’-locus) leads to SI breakdown in ‘Katy’. A mapping strategy based on segregation distortion loci mapped the M’-locus within an interval of 9.4 cM at the distal end of chr.3 corresponding to ∼1.29 Mb in the peach (Prunus persica) genome. Interestingly, pollen-part mutations (PPMs) causing self-compatibility (SC) in the apricot cvs. ‘Canino’ and ‘Katy’ are located within an overlapping region of ∼273 Kb in chr.3. No evidence is yet available to discern if they affect the same gene or not, but molecular markers seem to indicate that both cultivars are genetically unrelated suggesting that every PPM may have arisen independently. Further research will be necessary to reveal the precise nature of ‘Katy’ PPM, but fine-mapping already enables SC marker-assisted selection and paves the way for future positional cloning of the underlying gene. PMID:23342044

  6. Loss of APD1 in Yeast Confers Hydroxyurea Sensitivity Suppressed by Yap1p Transcription Factor

    PubMed Central

    Tang, Hei-Man Vincent; Pan, Kewu; Kong, Ka-Yiu Edwin; Hu, Ligang; Chan, Ling-Chim; Siu, Kam-Leung; Sun, Hongzhe; Wong, Chi-Ming; Jin, Dong-Yan

    2015-01-01

    Ferredoxins are iron-sulfur proteins that play important roles in electron transport and redox homeostasis. Yeast Apd1p is a novel member of the family of thioredoxin-like ferredoxins. In this study, we characterized the hydroxyurea (HU)-hypersensitive phenotype of apd1Δ cells. HU is an inhibitor of DNA synthesis, a cellular stressor and an anticancer agent. Although the loss of APD1 did not influence cell proliferation or cell cycle progression, it resulted in HU sensitivity. This sensitivity was reverted in the presence of antioxidant N-acetyl-cysteine, implicating a role for intracellular redox. Mutation of the iron-binding motifs in Apd1p abrogated its ability to rescue HU sensitivity in apd1Δ cells. The iron-binding activity of Apd1p was verified by a color assay. By mass spectrometry two irons were found to be incorporated into one Apd1p protein molecule. Surprisingly, ribonucleotide reductase genes were not induced in apd1Δ cells and the HU sensitivity was unaffected when dNTP production was boosted. A suppressor screen was performed and the expression of stress-regulated transcription factor Yap1p was found to effectively rescue the HU sensitivity in apd1Δ cells. Taken together, our work identified Apd1p as a new ferredoxin which serves critical roles in cellular defense against HU. PMID:25600293

  7. Oncologic Trogocytosis of an Original Stromal Cells Induces Chemoresistance of Ovarian Tumours

    PubMed Central

    Rafii, Arash; Mirshahi, Pejman; Poupot, Mary; Faussat, Anne-Marie; Simon, Anne; Ducros, Elodie; Mery, Eliane; Couderc, Bettina; Lis, Raphael; Capdet, Jerome; Bergalet, Julie; Querleu, Denis; Dagonnet, Francoise; Fournié, Jean-Jacques; Marie, Jean-Pierre; Pujade-Lauraine, Eric; Favre, Gilles; Soria, Jeanine; Mirshahi, Massoud

    2008-01-01

    Background The microenvironment plays a major role in the onset and progression of metastasis. Epithelial ovarian cancer (EOC) tends to metastasize to the peritoneal cavity where interactions within the microenvironment might lead to chemoresistance. Mesothelial cells are important actors of the peritoneal homeostasis; we determined their role in the acquisition of chemoresistance of ovarian tumours. Methodology/Principal Findings We isolated an original type of stromal cells, referred to as “Hospicells” from ascitis of patients with ovarian carcinosis using limiting dilution. We studied their ability to confer chemoresistance through heterocellular interactions. These stromal cells displayed a new phenotype with positive immunostaining for CD9, CD10, CD29, CD146, CD166 and Multi drug resistance protein. They preferentially interacted with epithelial ovarian cancer cells. This interaction induced chemoresistance to platin and taxans with the implication of multi-drug resistance proteins. This contact enabled EOC cells to capture patches of the Hospicells membrane through oncologic trogocytosis, therefore acquiring their functional P-gp proteins and thus developing chemoresistance. Presence of Hospicells on ovarian cancer tissue micro-array from patients with neo-adjuvant chemotherapy was also significantly associated to chemoresistance. Conclusions/Significance This is the first report of trogocytosis occurring between a cancer cell and an original type of stromal cell. This interaction induced autonomous acquisition of chemoresistance. The presence of stromal cells within patient's tumour might be predictive of chemoresistance. The specific interaction between cancer cells and stromal cells might be targeted during chemotherapy. PMID:19079610

  8. Co-Factor Binding Confers Substrate Specificity to Xylose Reductase from Debaryomyces hansenii

    PubMed Central

    Singh, Appu Kumar; Mondal, Alok K.; Kumaran, S.

    2012-01-01

    Binding of substrates into the active site, often through complementarity of shapes and charges, is central to the specificity of an enzyme. In many cases, substrate binding induces conformational changes in the active site, promoting specific interactions between them. In contrast, non-substrates either fail to bind or do not induce the requisite conformational changes upon binding and thus no catalysis occurs. In principle, both lock and key and induced-fit binding can provide specific interactions between the substrate and the enzyme. In this study, we present an interesting case where cofactor binding pre-tunes the active site geometry to recognize only the cognate substrates. We illustrate this principle by studying the substrate binding and kinetic properties of Xylose Reductase from Debaryomyces hansenii (DhXR), an AKR family enzyme which catalyzes the reduction of carbonyl substrates using NADPH as co-factor. DhXR reduces D-xylose with increased specificity and shows no activity towards “non-substrate” sugars like L-rhamnose. Interestingly, apo-DhXR binds to D-xylose and L-rhamnose with similar affinity (Kd∼5.0–10.0 mM). Crystal structure of apo-DhXR-rhamnose complex shows that L-rhamnose is bound to the active site cavity. L-rhamnose does not bind to holo-DhXR complex and thus, it cannot competitively inhibit D-xylose binding and catalysis even at 4–5 fold molar excess. Comparison of Kd values with Km values reveals that increased specificity for D-xylose is achieved at the cost of moderately reduced affinity. The present work reveals a latent regulatory role for cofactor binding which was previously unknown and suggests that cofactor induced conformational changes may increase the complimentarity between D-xylose and active site similar to specificity achieved through induced-fit mechanism. PMID:23049810

  9. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato

    PubMed Central

    Yogendra, Kalenahalli N.; Kumar, Arun; Sarkar, Kobir; Li, Yunliang; Pushpa, Doddaraju; Mosa, Kareem A.; Duggavathi, Raj; Kushalappa, Ajjamada C.

    2015-01-01

    Quantitative resistance is polygenically controlled and durable, but the underlying molecular and biochemical mechanisms are poorly understood. Secondary cell wall thickening is a critical process in quantitative resistance, regulated by transcriptional networks. This paper provides compelling evidence on the functionality of StWRKY1 transcription factor, in a compatible interaction of potato–Phytophthora infestans, to extend our knowledge on the regulation of the metabolic pathway genes leading to strengthening the secondary cell wall. A metabolomics approach was used to identify resistance-related metabolites belonging to the phenylpropanoid pathway and their biosynthetic genes regulated by StWRKY1. The StWRKY1 gene in resistant potato was silenced to decipher its role in the regulation of phenylpropanoid pathway genes to strengthen the secondary cell wall. Sequencing of the promoter region of StWRKY1 in susceptible genotypes revealed the absence of heat shock elements (HSEs). Simultaneous induction of both the heat shock protein (sHSP17.8) and StWRKY1 following pathogen invasion enables functioning of the latter to interact with the HSE present in the resistant StWRKY1 promoter region. EMSA and luciferase transient expression assays further revealed direct binding of StWRKY1 to promoters of hydroxycinnamic acid amide (HCAA) biosynthetic genes encoding 4-coumarate:CoA ligase and tyramine hydroxycinnamoyl transferase. Silencing of the StWRKY1 gene was associated with signs of reduced late blight resistance by significantly increasing the pathogen biomass and decreasing the abundance of HCAAs. This study provides convincing evidence on the role of StWRKY1 in the regulation of downstream genes to biosynthesize HCAAs, which are deposited to reinforce secondary cell walls. PMID:26417019

  10. Guanine Nucleotide Exchange Factor OSG-1 Confers Functional Aging via Dysregulated Rho Signaling in Caenorhabditis elegans Neurons

    PubMed Central

    Duan, Zhibing; Sesti, Federico

    2015-01-01

    Rho signaling regulates a variety of biological processes, but whether it is implicated in aging remains an open question. Here we show that a guanine nucleotide exchange factor of the Dbl family, OSG-1, confers functional aging by dysregulating Rho GTPases activities in C. elegans. Thus, gene reporter analysis revealed widespread OSG-1 expression in muscle and neurons. Loss of OSG-1 gene function was not associated with developmental defects. In contrast, suppression of OSG-1 lessened loss of function (chemotaxis) in ASE sensory neurons subjected to conditions of oxidative stress generated during natural aging, by oxidative challenges, or by genetic mutations. RNAi analysis showed that OSG-1 was specific toward activation of RHO-1 GTPase signaling. RNAi further implicated actin-binding proteins ARX-3 and ARX-5, thus the actin cytoskeleton, as one of the targets of OSG-1/RHO-1 signaling. Taken together these data suggest that OSG-1 is recruited under conditions of oxidative stress, a hallmark of aging, and contributes to promote loss of neuronal function by affecting the actin cytoskeleton via altered RHO-1 activity. PMID:25527286

  11. TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco.

    PubMed

    Hu, Wei; Huang, Chao; Deng, Xiaomin; Zhou, Shiyi; Chen, Lihong; Li, Yin; Wang, Cheng; Ma, Zhanbing; Yuan, Qianqian; Wang, Yan; Cai, Rui; Liang, Xiaoyu; Yang, Guangxiao; He, Guangyuan

    2013-08-01

    Abscisic acid (ABA)-, stress-, and ripening-induced (ASR) proteins are reported to be involved in abiotic stresses. However, it is not known whether ASR genes confer drought stress tolerance by utilizing the antioxidant system. In this study, a wheat ASR gene, TaASR1, was cloned and characterized. TaASR1 transcripts increased after treatments with PEG6000, ABA and H(2)O(2). Overexpression of TaASR1 in tobacco resulted in increased drought/osmotic tolerance, which was demonstrated that transgenic lines had lesser malondialdehyde (MDA), ion leakage (IL) and reactive oxygen species (ROS), but higher relative water content (RWC) and superoxide dismutase (SOD) and catalase (CAT) activities than wild type (WT) under drought stress. Overexpression of TaASR1 in tobacco also enhanced the expression of ROS-related and stress-responsive genes under osmotic stress. In addition, transgenic lines exhibited improved tolerance to oxidative stress by retaining more effective antioxidant system. Finally, TaASR1 was localized in the cell nucleus and functioned as a transcriptional activator. Taken together, our results showed that TaASR1 functions as a positive factor under drought/osmotic stress, involved in the regulation of ROS homeostasis by activating antioxidant system and transcription of stress-associated genes. PMID:23356734

  12. CspA-Mediated Binding of Human Factor H Inhibits Complement Deposition and Confers Serum Resistance in Borrelia burgdorferi▿

    PubMed Central

    Kenedy, Melisha R.; Vuppala, Santosh R.; Siegel, Corinna; Kraiczy, Peter; Akins, Darrin R.

    2009-01-01

    Borrelia burgdorferi has developed efficient mechanisms for evading the innate immune response during mammalian infection and has been shown to be resistant to the complement-mediated bactericidal activity of human serum. It is well recognized that B. burgdorferi expresses multiple lipoproteins on its surface that bind the human complement inhibitors factor H and factor H-like protein 1 (FH/FHL-1). The binding of FH/FHL-1 on the surface of B. burgdorferi is thought to enhance its ability to evade serum-mediated killing during the acute phase of infection. One of the key B. burgdorferi FH/FHL-1 binding proteins identified thus far was designated CspA. While it is known that CspA binds FH/FHL-1, it is unclear how the interaction between CspA and FH/FHL-1 specifically enhances serum resistance. To better understand how CspA mediates serum resistance in B. burgdorferi, we inactivated cspA in a virulent strain of B. burgdorferi. An affinity ligand blot immunoassay and indirect immunofluorescence revealed that the CspA mutant does not efficiently bind human FH to its surface. Consistent with the lack of FH binding, the CspA mutant was also highly sensitive to killing by human serum. Additionally, the deposition of complement components C3, C6, and C5b-9 was enhanced on the surface of the CspA mutant compared to that of the wild-type strain. The combined data lead us to conclude that the CspA-mediated binding of human FH confers serum resistance by directly inhibiting complement deposition on the surface of B. burgdorferi. PMID:19451251

  13. Exendin-4 enhances the migration of adipose-derived stem cells to neonatal rat ventricular cardiomyocyte-derived conditioned medium via the phosphoinositide 3-kinase/Akt-stromal cell-derived factor-1α/CXC chemokine receptor 4 pathway

    PubMed Central

    ZHOU, HAO; YANG, JUNJIE; XIN, TING; ZHANG, TAO; HU, SHUNYIN; ZHOU, SHANSHAN; CHEN, GUANGHUI; CHEN, YUNDAI

    2015-01-01

    Adipose-derived stem cells (ADSCs) are considered a suitable source of cells for the repair of tissue following acute myocardial infarction (AMI); however, the transplantation efficiency of ADSCs remains low. Therefore, identification of an efficient method to enhance the migration of engrafted cells to the target site is required. The present study used exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, to optimize the migratory capacity of ADSCs. The aim was to determine the effect and mechanisms of Ex-4 on the migration of ADSCs to neonatal rat ventricular cardiomyocyte-derived conditioned medium (NRVC-CM). The ADSCs and cardiomyocytes were cultured in vitro. Following incubation of the ADSCs with Ex-4, cell proliferation was measured using an MTT assay and the expression levels of CXC chemokine receptor 4 (CXCR4) were investigated by reverse transctiption quantitative polymerase chain reaction (RT-qPCR), western blot analysis and flow cytometry. In addition, the expression levels of stromal cell-derived factor-1α (SDF-1α) were evaluated in the NRVC-CM treated with Ex-4 by ELISA, RT-qPCR and western blot analysis. The migration of the ADSCs to the NRVC-CM was examined using a Transwell assay. Changes in the protein expression levels of phosphorylated (p−)Akt were examined in the two types of cell by western blot analysis. The results suggested that Ex-4 promoted the proliferation and expression of CXCR4 in the ADSCs, increased the secretion of SDF-1α in the cardiomyocytes and increased the expression levels of p-Akt in both cells. However, the alterations to the SDF-1α/C XC R4 cascade in the cells were abrogated following pretreatment with LY-294002, a phosphoinositide 3-kinase(PI3K) inhibitor. Furthermore, a Transwell migration assay revealed marked translocation of the ADSCs through the membranes, towards the NRVC-CM, following treatment with Ex-4. However, these effects were reduced significantly by pretreatment of the cells with the SDF-1

  14. Heterogeneous functions of perinatal mesenchymal stromal cells require a preselection before their banking for clinical use.

    PubMed

    Peltzer, Juliette; Montespan, Florent; Thepenier, Cédric; Boutin, Laetitia; Uzan, Georges; Rouas-Freiss, Nathalie; Lataillade, Jean-Jacques

    2015-02-01

    Perinatal sources of mesenchymal stromal cells (MSCs) have raised growing interest because they are readily and widely available with minimal ethical/legal issues and can easily be stored for allogeneic settings. In addition, perinatal tissues are known to be important in mediating the fetomaternal tolerance of pregnancy, which confer upon perinatal-MSCs (P-MSCs) a particular interest in immunomodulation. It has been recently shown that it is possible to deeply modify the secreted factor profiles of MSCs with different cytokine stimuli such as interferon gamma or tumor necrosis factor alpha to license MSCs for a better immunosuppresive potential. Therefore, we aimed to compare adult bone marrow-MSCs with MSCs from perinatal tissues (cord blood, umbilical cord, amnion, and chorion) on their in vitro immunological and stromacytic efficiencies under different priming conditions. Our results showed that P-MSCs had a potential to modulate the in vitro immune response and be useful for hematopoietic progenitor cell ex vivo expansion. However, we showed contrasted effects of cytokine priming embedded in an important between-donor variability. In conclusion, our study highlights the importance to elaborate predicitive in vitro tests to screen between-donor variability of perinatal tissues for banking allogeneic standardized MSCs. PMID:25203666

  15. Role of uterine stromal-epithelial crosstalk in embryo implantation.

    PubMed

    Hantak, Alison M; Bagchi, Indrani C; Bagchi, Milan K

    2014-01-01

    Embryo implantation is a crucial step for successful pregnancy. Prior to implantation, the luminal epithelium undergoes steroid hormone-induced structural and functional changes that render it competent for embryo attachment. Subsequent invasion of the embryo into the maternal tissue triggers differentiation of the underlying stromal cells to form the decidua, a transient tissue which supports the developing embryo. Many molecular cues of both stromal and epithelial origin have been identified that are critical mediators of this process. An important aspect of uterine biology is the elaborate crosstalk that occurs between these tissue compartments during early pregnancy through expression of paracrine factors regulated by the steroid hormones estrogen and progesterone. Aberrant expression of these factors often leads to implantation failure and infertility. Genetically-engineered mouse models have been instrumental in elucidating what these paracrine factors are, what drives their expression, and what their effects are on neighboring cells. This review provides an overview of several well-characterized signaling pathways that span both epithelial and stromal compartments and their function during implantation in the mouse. PMID:25023679

  16. The influence of hypoxia on the differentiation capacities and immunosuppressive properties of clonal mouse mesenchymal stromal cell lines.

    PubMed

    Prado-Lòpez, Sonia; Duffy, Michelle M; Baustian, Claas; Alagesan, Senthilkumar; Hanley, Shirley A; Stocca, Alessia; Griffin, Matthew D; Ceredig, Rhodri

    2014-08-01

    Multipotent mesenchymal stromal cells are multipotent cells capable of differentiating into different mesodermal cell types. Enigmatically, mesenchymal stromal cells present in the bone marrow support early lymphopoiesis yet can inhibit mature lymphocyte growth. Critical features of the bone marrow microenvironment, such as the level of oxygen, play an important role in mesenchymal stromal cell biology. Herein, we show that a panel of continuously growing mouse mesenchymal stromal cell lines, namely OP9, MS5, PA6, ST2 and B16-14, exhibit mesenchymal stromal cell characteristic phenotypes and respond physiologically to oxygen deprivation. Culturing freshly isolated bone marrow-derived mesenchymal stromal cells or cell lines at 5% O2 resulted in a dramatic increase in expression of hypoxia-inducible factor family members and of key genes involved in their differentiation. Phenotypically, their osteogenic and adipogenic differentiation capacity was generally improved in hypoxia, whereas their inhibitory effects on in vitro T-cell proliferation were preserved. Taken together, we conclude that these continuously growing mouse cell lines behave as canonical mesenchymal stromal cells and respond physiologically to hypoxia, thereby providing a potent tool for the study of different aspects of mesenchymal stromal cell biology. PMID:24777310

  17. Bizarre Stromal Cells in an Endometrial Polyp.

    PubMed

    Heller, Debra; Barrett, Theodore

    2016-06-01

    Bizarre stromal cells have been reported in vulvovaginal polyps, as well as in nongynecologic sites, with caution not to mistake them for malignancy. Similar atypical stromal cells have only rarely been reported in the endometrium. We present a case found incidentally in a postmenopausal woman, and review the literature. PMID:26888957

  18. High Stromal Carbonic Anhydrase IX Expression Is Associated With Decreased Survival in p16-Negative Head-and-Neck Tumors

    SciTech Connect

    Brockton, Nigel; Dort, Joseph; Lau, Harold; Hao, Desiree; Brar, Sony; Klimowicz, Alexander; Petrillo, Stephanie; Diaz, Roman; Doll, Corinne; Magliocco, Anthony

    2011-05-01

    Purpose: Head-and-neck squamous cell carcinoma (HNSCC) is the fifth most common malignancy worldwide. Alcohol use and tobacco use are the most established risk factors; however, human papilloma virus (HPV) infection is a major risk factor for a subset of HNSCCs. Although HPV-positive tumors typically present at a more advanced stage at diagnosis, they are associated with a better prognosis. Tumor hypoxia confers poor prognosis and treatment failure, but direct tumor oxygen measurement is challenging. Endogenous markers of hypoxia (EMHs) have been proposed but have not replicated the prognostic utility of direct oxygen measurement. The expression of endogenous markers of hypoxia may be influenced by oxygen-independent factors, such as the HPV status of the tumor. Methods and Materials: Consecutive cases of locally advanced HNSCC, treated with a uniform regimen of combined radiotherapy and chemotherapy, were identified. Tissue microarrays were assembled from triplicate 0.6-mm cores of archived tumor tissue. HPV status was inferred from semiquantitative p16 immunostaining and directly measured by use of HPV-specific chromogenic in situ hybridization and polymerase chain reaction. Automated quantitative fluorescent immunohistochemistry was conducted to measure epithelial and stromal expression of carbonic anhydrase IX (CAIX) and glucose transporter 1 (GLUT1). Results: High stromal CAIX expression was associated with significantly reduced overall survival (p = 0.03) in patients with p16-negative tumors. Conclusions: This is the first study to use quantitative immunohistochemistry to examine endogenous markers of hypoxia stratified by tumor p16/HPV status. Assessment of CAIX expression in p16-negative HNSCC could identify patients with the least favorable prognosis and inform therapeutic strategies.

  19. Endometrial Stromal Nodule: Report of a Case

    PubMed Central

    Fdili Alaoui, F. Z.; Chaara, H.; Bouguern, H.; Melhouf, M. A.; Fatemi, H.; Belmlih, A.; Amarti, A.

    2011-01-01

    Endometrial stromal nodule (ESN) is the least common of the endometrial stromal tumors. They are rare neoplasms which are diagnosed in most instances by light microscopy. Although such nodules are benign, hysterectomy has been considered the treatment of choice to determine the margins of the tumor required for diagnosis and to differentiate it from invasive stromal sarcoma Whose prognosis is totally different. We report a case of a 45 years old woman, with presurgical diagnosis of adnexal mass or uterine tumor. She underwent a total abdominal hysterectomy. Pathologic examination revealed an endometrial stromal nodule. Through this observation, we insist on the fact that the ESNs are rare and benign entities which must be differentiated from the other invasive malignant stromal tumors; this can change the final prognosis. PMID:21423543

  20. Endometrial stromal nodule: report of a case.

    PubMed

    Fdili Alaoui, F Z; Chaara, H; Bouguern, H; Melhouf, M A; Fatemi, H; Belmlih, A; Amarti, A

    2011-01-01

    Endometrial stromal nodule (ESN) is the least common of the endometrial stromal tumors. They are rare neoplasms which are diagnosed in most instances by light microscopy. Although such nodules are benign, hysterectomy has been considered the treatment of choice to determine the margins of the tumor required for diagnosis and to differentiate it from invasive stromal sarcoma Whose prognosis is totally different. We report a case of a 45 years old woman, with presurgical diagnosis of adnexal mass or uterine tumor. She underwent a total abdominal hysterectomy. Pathologic examination revealed an endometrial stromal nodule. Through this observation, we insist on the fact that the ESNs are rare and benign entities which must be differentiated from the other invasive malignant stromal tumors; this can change the final prognosis. PMID:21423543

  1. Succinate dehydrogenase-deficient gastrointestinal stromal tumors

    PubMed Central

    Wang, Ya-Mei; Gu, Meng-Li; Ji, Feng

    2015-01-01

    Most gastrointestinal stromal tumors (GISTs) are characterized by KIT or platelet-derived growth factor alpha (PDGFRA) activating mutations. However, there are still 10%-15% of GISTs lacking KIT and PDGFRA mutations, called wild-type GISTs (WT GISTs). Among these so-called WT GISTs, a small subset is associated with succinate dehydrogenase (SDH) deficiency, known as SDH-deficient GISTs. In addition, GISTs that occur in Carney triad and Carney-Stratakis syndrome represent specific examples of SDH-deficient GISTs. SDH-deficient GISTs locate exclusively in the stomach, showing predilection for children and young adults with female preponderance. The tumor generally pursues an indolent course and exhibits primary resistance to imatinib therapy in most cases. Loss of succinate dehydrogenase subunit B expression and overexpression of insulin-like growth factor 1 receptor (IGF1R) are common features of SDH-deficient GISTs. In WT GISTs without succinate dehydrogenase activity, upregulation of hypoxia-inducible factor 1α may lead to increased growth signaling through IGF1R and vascular endothelial growth factor receptor (VEGFR). As a result, IGF1R and VEGFR are promising to be the novel therapeutic targets of GISTs. This review will update the current knowledge on characteristics of SDH-deficient GISTs and further discuss the possible mechanisms of tumorigenesis and clinical management of SDH-deficient GISTs. PMID:25741136

  2. GmPTF1, a novel transcription factor gene, is involved in conferring soybean tolerance to phosphate starvation.

    PubMed

    Li, X H; Wu, B; Kong, Y B; Zhang, C Y

    2014-01-01

    Phosphorus plays a pivotal role in plant growth and development. In this study, we isolated and characterized GmPTF1, a basic helix-loop-helix (bHLH) transcription factor (TF) gene from soybean (Glycine max) with tolerance to inorganic phosphate (Pi) starvation. Alignment analysis indicated that GmPTF1 and other reported bHLH TFs share significant similarity in the region of the bHLH domain. As with OsPTF1 and other homologous Pi starvation-related bHLH TFs (His-5, Glu-9, Arg-12, and Arg-13), all recognition motifs for the G-box (CACGTG) were present in the GmPTF1 domain. Prokaryotic expression in Escherichia coli strain BL21 (DE3) plysS showed that a novel 40-kDa polypeptide was expressed when cells containing GmPTF1 were induced. The subcellular localization in cells from onion epidermis and Arabidopsis roots demonstrated that the GmPTF1 protein was found in the nucleus. Furthermore, analysis of transcription activity in yeast revealed that full-length GmPTF1 and its N-terminal and C-terminal domains could activate the histidine, adenine, and uracil reporter genes. This suggested that the N-terminal and C-terminal peptides of GmPTF1 act as transcriptional activators. When real-time quantitative polymerase chain reaction was performed, the expression of GmPTF1 under conditions of phosphate starvation was significantly induced in soybean roots of the low-Pi-tolerant variety ZH15. Moreover, the relative level of expression was much higher there than in roots of the sensitive variety NMH from days 7 to 56 of low-Pi stress. These results imply that GmPTF1 is involved in conferring tolerance to phosphate starvation in soybean. PMID:24634113

  3. Expression of bone morphogenetic proteins in stromal cells from human bone marrow long-term culture.

    PubMed

    Martinovic, Snjezana; Mazic, Sanja; Kisic, Veronika; Basic, Nikolina; Jakic-Razumovic, Jasminka; Borovecki, Fran; Batinic, Drago; Simic, Petra; Grgurevic, Lovorka; Labar, Boris; Vukicevic, Slobodan

    2004-09-01

    Highly purified primitive hemopoietic stem cells express BMP receptors but do not synthesize bone morphogenetic proteins (BMPs). However, exogenously added BMPs regulate their proliferation, differentiation, and survival. To further explore the mechanism by which BMPs might be involved in hemopoietic differentiation, we tested whether stromal cells from long-term culture (LTC) of normal human bone marrow produce BMPs, BMP receptors, and SMAD signaling molecules. Stromal cells were immunohistochemically characterized by the presence of lyzozyme, CD 31, factor VIII, CD 68, S100, alkaline phosphatase, and vimentin. Gene expression was analyzed by RT-PCR and the presence of BMP protein was confirmed by immunohistochemistry (IHC). The supportive role of the stromal cell layer in hemopoiesis in vitro was confirmed by a colony assay of clonogenic progenitors. Bone marrow stromal cells express mRNA and protein for BMP-3, -4, and -7 but not for BMP-2, -5, and -6 from the first to the eighth week of culture. Furthermore, stromal cells express the BMP type I receptors, activin-like kinase-3 (ALK-3), ALK-6, and the downstream transducers SMAD-1, -4, and -5. Thus, human bone marrow stromal cells synthesize BMPs, which might exert their effects on hemopoietic stem cells in a paracrine manner through specific BMP receptors. PMID:15314083

  4. Stromal TGF-β signaling induces AR activation in prostate cancer

    PubMed Central

    Yang, Feng; Chen, Yizhen; Shen, Tao; Guo, Dan; Dakhova, Olga; Ittmann, Michael M.; Creighton, Chad J.; Zhang, Yiqun; Dang, Truong D.; Rowley, David R.

    2014-01-01

    AR signaling is essential for the growth and survival of prostate cancer (PCa), including most of the lethal castration-resistant PCa (CRPC). We previously reported that TGF-β signaling in prostate stroma promotes prostate tumor angiogenesis and growth. By using a PCa/stroma co-culture model, here we show that stromal TGF-β signaling induces comprehensive morphology changes of PCa LNCaP cells. Furthermore, it induces AR activation in LNCaP cells in the absence of significant levels of androgen, as evidenced by induction of several AR target genes including PSA, TMPRSS2, and KLK4. SD-208, a TGF-β receptor 1 specific inhibitor, blocks this TGF-β induced biology. Importantly, stromal TGF-β signaling together with DHT induce robust activation of AR. MDV3100 effectively blocks DHT-induced, but not stromal TGF-β signaling induced AR activation in LNCaP cells, indicating that stromal TGF-β signaling induces both ligand-dependent and ligand-independent AR activation in PCa. TGF-β induces the expression of several growth factors and cytokines in prostate stromal cells, including IL-6, and BMP-6. Interestingly, BMP-6 and IL-6 together induces robust AR activation in these co-cultures, and neutralizing antibodies against BMP-6 and IL-6 attenuate this action. Altogether, our study strongly suggests tumor stromal microenvironment induced AR activation as a direct mechanism of CRPC. PMID:25333263

  5. Mesenchymal stromal cells support the viability and differentiation of thymocytes through direct contact in autologous co-cultures.

    PubMed

    Azghadi, Seyed Mohammad Reza; Suciu, Maria; Gruia, Alexandra Teodora; Barbu-Tudoran, Lucian; Cristea, Mirabela Iustina; Mic, Ani Aurora; Muntean, Danina; Nica, Dragos Vasile; Mic, Felix Aurel

    2016-08-01

    The development of thymocytes and generation of mature T cells is a complex process that requires spatio-temporal interactions of thymocytes with the other cells of the thymus microenvironment. Recently, mesenchymal stromal cells were isolated from the neonatal human thymus and differentiated into chondrogenic, osteogenic, and adipogenic lineages, just like their bone marrow counterparts. However, their function in thymocyte homeostasis is unknown. In our autologous co-cultures of rat mesenchymal stromal cells and thymocytes, the stromal cells preserve the viability of cultured thymocytes and stimulate the development of CD4-CD8- double-negative and the maturation of mainly CD4+ single-positive thymocytes. Thymocytes also influence the stemness of bone marrow mesenchymal stromal cells, as their expression of CD44, a marker associated with cellular proliferation and migration, is reduced in co-cultures. Mesenchymal stromal cells' influence on thymocyte development requires direct physical contact between the two cells and is not mediated by a soluble factor. When the two types of cells were physically separated, the stimulative effects of mesenchymal stromal cells on thymocytes did not occur. Electron microscopy confirmed the close contact between the membranes of thymocytes and mesenchymal stromal cells. Our experiments suggest that membrane exchanges could occur between mesenchymal stromal cells and thymocytes, such as the transfer of CD44 from mesenchymal stromal cells to the thymocytes, but its functional significance for thymocytes development remains to be established. These results suggest that mesenchymal stromal cells could normally be a part of the in vivo thymic microenvironment and form a niche that could sustain and guide the development of thymocytes. PMID:27085705

  6. Traumatic ulcerative granuloma with stromal eosinophilia – Mystery of pathogenesis revisited

    PubMed Central

    Sarangarajan, R.; Vaishnavi Vedam, V. K.; Sivadas, G.; Sarangarajan, Anuradha; Meera, S.

    2015-01-01

    Oral ulcers are a common symptom in clinical practice. Among various causative factors, different types of ulcers in oral cavity exist. Among this, traumatic ulcerative granuloma with stromal eosinophilia (TUGSE) appears to be quite neglected by the clinicians due to the limited knowledge and awareness. On reviewing with a detailed approach to titles and abstracts of articles eliminating duplicates, 40 relevant articles were considered. Randomized studies, review articles, case reports and abstracts were included while conference papers and posters were excluded. Of importance, TUGSE cases been reported only to a minimal extent in the literature. Lack of its awareness tends to lead clinicians to a misconception of cancer. Thus, this particular lesion needs to be differentiated from other malignant lesions to provide a proper mode of treatment. The present article reviews various aspects of the TUGSE with emphasis on the clinical manifestation, pathogenesis, histological, and immunohistochemical study. This study provides the clinician contemporaries, a humble expansion to their knowledge of the disease, based on the searched literature, enabling a more comprehensive management of this rare occurrence. PMID:26538890

  7. Novel DREB A-5 subgroup transcription factors from desert moss (Syntrichia caninervis) confers multiple abiotic stress tolerance to yeast.

    PubMed

    Li, Haiyan; Zhang, Daoyuan; Li, Xiaoshuang; Guan, Kaiyun; Yang, Honglan

    2016-05-01

    Syntrichia caninervis Mitt. is a typical desiccation tolerant moss from a temperate desert which has been a good resource for stress tolerant gene isolation. Dehydration responsive element binding proteins (DREBs) was proven to play an important role in responding to abiotic stress, which has been identified in many plants, and were rarely reported in moss. In this study, we cloned ten DREB genes from S. caninervis, and investigated their abiotic stress response and stress tolerance. The results showed that ten ScDREB proteins belonged to the A-5 sub-group of the DREB sub-family. Six genes, ScDREB1, ScDREB2, ScDREB4, ScDREB6, ScDREB7, and ScDREB8 were involved in the ABA-dependent signal pathway and the desiccation, salt, and cold stress response. ScDREB3 also responded to desiccation, salt, and cold stresses, but was insensitive to ABA treatment. Another gene, ScDREB5, was involved in an ABA-independent cold stress-responsive signal pathway. Two genes, ScDREB9 and ScDREB10, responded slightly or had no response to neither stress factor or ABA treatment. We transformed four typical genes into yeast cells and the stress tolerance ability of transgenic yeast was evaluated. The results showed that ScDREB3 and ScDREB5 enhanced the yeast's cold and salt tolerance. ScDREB8 and ScDREB10 conferred the osmotic, salt, cold, and high temperature stresses tolerance, especially for osmotic and salt stresses. Our results indicated that A-5 sub-group DREB genes in S. caninervis played important roles in abiotic stresses response and enhanced stress tolerance to transgenic yeast. To our knowledge, this is the first report on DREB genes characterization from desiccation tolerant moss, and this study will not only provide insight into the molecular mechanisms of S. caninervis adaptation to environmental stresses, but also provides valuable gene candidates for plant molecular breeding. PMID:27016184

  8. A Factor-Analytic Validity Study of the Blumberg-Amidon "Teacher Perceptions of Supervisor-Teacher Conferences" Instrument.

    ERIC Educational Resources Information Center

    Sirois, Herman A.; Gable, Robert K.

    An instrument, developed in 1965 by Arthur Blumberg and Edmund Amidon to measure teacher perceptions of supervisory conferences, has presented problems of reliability to researchers. The problem has stemmed from the lack of a valid and reliable scoring method for the instrument. The instrument was administered to 31 in-service teachers, Grades…

  9. Gastrointestinal stromal tumor (gist) of the duodenum.

    PubMed

    Ghazanfar, Shahriyar; Sial, Khadim S; Quraishy, M S

    2007-06-01

    This is a report of a rare gastrointestinal stromal tumor of the duodenum in a 75 years old man who presented with recurrent episodes of intestinal obstruction and melena. The patient underwent successful Whipple's procedure. PMID:17623589

  10. Pseudoangiomatous stromal hyperplasia: a case report.

    PubMed

    Masannat, Yazan A; Whitehead, Stephen; Hawley, Ian; Apthorp, Lesley; Shah, Elizabeth F

    2010-01-01

    Pseudoangiomatous stromal hyperplasia (PASH) is a rare benign proliferating breast condition. It was first reported in 1986 when Vuitch, Rosen, and Erlandson described nine cases of benign well-circumscribed, breast masses that simulated vascular lesions consisting of mammary stromal proliferations (Vuitch et al. (1986)). Since then there have been few reported cases of PASH in the literature (Taira et al. (2005)). We describe a large PASH, mimicking inflammatory carcinoma in a young lady that was excised with excellent cosmetic results. PMID:21318179

  11. Dicer1 activity in the stromal compartment regulates nephron differentiation and vascular patterning during mammalian kidney organogenesis.

    PubMed

    Nakagawa, Naoki; Xin, Cuiyan; Roach, Allie M; Naiman, Natalie; Shankland, Stuart J; Ligresti, Giovanni; Ren, Shuyu; Szak, Suzanne; Gomez, Ivan G; Duffield, Jeremy S

    2015-06-01

    MicroRNAs, activated by the enzyme Dicer1, control post-transcriptional gene expression. Dicer1 has important roles in the epithelium during nephrogenesis, but its function in stromal cells during kidney development is unknown. To study this, we inactivated Dicer1 in renal stromal cells. This resulted in hypoplastic kidneys, abnormal differentiation of the nephron tubule and vasculature, and perinatal mortality. In mutant kidneys, genes involved in stromal cell migration and activation were suppressed as were those involved in epithelial and endothelial differentiation and maturation. Consistently, polarity of the proximal tubule was incorrect, distal tubule differentiation was diminished, and elongation of Henle's loop attenuated resulting in lack of inner medulla and papilla in stroma-specific Dicer1 mutants. Glomerular maturation and capillary loop formation were abnormal, whereas peritubular capillaries, with enhanced branching and increased diameter, formed later. In Dicer1-null renal stromal cells, expression of factors associated with migration, proliferation, and morphogenic functions including α-smooth muscle actin, integrin-α8, -β1, and the WNT pathway transcriptional regulator LEF1 were reduced. Dicer1 mutation in stroma led to loss of expression of distinct microRNAs. Of these, miR-214, -199a-5p, and -199a-3p regulate stromal cell functions ex vivo, including WNT pathway activation, migration, and proliferation. Thus, Dicer1 activity in the renal stromal compartment regulates critical stromal cell functions that, in turn, regulate differentiation of the nephron and vasculature during nephrogenesis. PMID:25651362

  12. Dicer1 activity in the stromal compartment regulates nephron differentiation and vascular patterning during mammalian kidney organogenesis

    PubMed Central

    Nakagawa, Naoki; Xin, Cuiyan; Roach, Allie M.; Naiman, Natalie; Shankland, Stuart J.; Ligresti, Giovanni; Ren, Shuyu; Szak, Suzanne; Gomez, Ivan G.; Duffield, Jeremy S.

    2015-01-01

    MicroRNAs, activated by the enzyme Dicer1, control post-transcriptional gene expression. Dicer1 has important roles in the epithelium during nephrogenesis, but its function in stromal cells during kidney development is unknown. To study this we inactivated Dicer1 in renal stromal cells. This resulted in hypoplastic kidneys, abnormal differentiation of the nephron tubule and vasculature, and perinatal mortality. In mutant kidneys, genes involved in stromal cell migration and activation were suppressed as were those involved in epithelial and endothelial differentiation and maturation. Consistently, polarity of the proximal tubule was incorrect, distal tubule differentiation was diminished, and elongation of Henle’s loop attenuated resulting in lack of inner medulla and papilla in stroma-specific Dicer1 mutants. Glomerular maturation and capillary loop formation were abnormal while peritubular capillaries, with enhanced branching and increased diameter, formed later. In Dicer1-null renal stromal cells, expression of factors associated with migration, proliferation and morphogenic functions including α-smooth muscle actin, integrin-α8, -β1, and the WNT pathway transcriptional regulator LEF1 were reduced. Dicer1 mutation in stroma led to loss of expression of distinct microRNAs. Of these, miR-214, -199a-5p and -199a-3p regulate stromal cell functions ex vivo, including WNT pathway activation, migration and proliferation. Thus, Dicer1 activity in the renal stromal compartment regulates critical stromal cell functions that, in turn, regulate differentiation of the nephron and vasculature during nephrogenesis. PMID:25651362

  13. MCM2 mediates progesterone-induced endometrial stromal cell proliferation and differentiation in mice.

    PubMed

    Kong, Shuangbo; Han, Xue; Cui, Tongtong; Zhou, Chan; Jiang, Yufei; Zhang, Hangxiao; Wang, Bingyan; Wang, Haibin; Zhang, Shuang

    2016-08-01

    Uterine decidualization characterized by stromal cell proliferation and differentiation is critical to the establishment of pregnancy in many species. Progesterone is a key factor in regulating endometrial cell decidualization, however, the molecular basis involved in mediating the effects of progesterone during decidualization remains largely unknown. We report here that the DNA replication licensing factor MCM2, one of the conserved set of six-related proteins (MCM complex: MCM2-7) essential for eukaryotic DNA replication, is dynamically expressed in both proliferative and differentiated stromal cells during mouse periimplantation uterus. Applying PR-knockout mouse model and pharmacological strategy, we further found that the expression of Mcm2 is induced by progesterone action in the mouse uterine stroma. Employing a primary cell culture system, we further demonstrated that siRNA-mediated silencing of MCM2 arrests the cell cycle at G1-S transition during stromal cell proliferation. Moreover, the downregulation of Mcm2 could also compromise stromal cell differentiation. Collectively, our studies uncovered the role of a unique DNA replication licensing molecule MCM2 in mediating Progesterone-induced stromal cell decidualization in mouse uterus. PMID:26910396

  14. Isolation of Murine Lymph Node Stromal Cells

    PubMed Central

    Lagarde, Nadège; Rossi, Simona W.

    2014-01-01

    Secondary lymphoid organs including lymph nodes are composed of stromal cells that provide a structural environment for homeostasis, activation and differentiation of lymphocytes. Various stromal cell subsets have been identified by the expression of the adhesion molecule CD31 and glycoprotein podoplanin (gp38), T zone reticular cells or fibroblastic reticular cells, lymphatic endothelial cells, blood endothelial cells and FRC-like pericytes within the double negative cell population. For all populations different functions are described including, separation and lining of different compartments, attraction of and interaction with different cell types, filtration of the draining fluidics and contraction of the lymphatic vessels. In the last years, different groups have described an additional role of stromal cells in orchestrating and regulating cytotoxic T cell responses potentially dangerous for the host. Lymph nodes are complex structures with many different cell types and therefore require a appropriate procedure for isolation of the desired cell populations. Currently, protocols for the isolation of lymph node stromal cells rely on enzymatic digestion with varying incubation times; however, stromal cells and their surface molecules are sensitive to these enzymes, which results in loss of surface marker expression and cell death. Here a short enzymatic digestion protocol combined with automated mechanical disruption to obtain viable single cells suspension of lymph node stromal cells maintaining their surface molecule expression is proposed. PMID:25178108

  15. Melanoma educates mesenchymal stromal cells towards vasculogenic mimicry

    PubMed Central

    VARTANIAN, AMALIA; KARSHIEVA, SAIDA; DOMBROVSKY, VLADISLAV; BELYAVSKY, ALEXANDER

    2016-01-01

    Accumulating evidence suggests that mesenchymal stromal cells (MSCs) are recruited to the tumor, and promote tumor development and growth. The present study was performed to investigate the communication between aggressive melanoma and MSCs in vasculogenic mimicry (VM). Normal human MSCs plated on Matrigel were unable to form capillary-like structures (CLSs). By contrast, MSCs co-cultured with aggressive melanoma cell lines, namely, Mel Cher, Mel Kor and Mel P, generated CLSs. Significantly, MSCs co-cultured with poorly aggressive melanoma cells, namely, Mel Me, failed to form CLSs. To identify factors responsible for VM, the effects of vascular endothelial growth factor A (VEGFA), pro-epidermal growth factor, basic fibroblast growth factor and stromal cell-derived factor 1α on the formation of CLSs by MSCs were tested. VM was induced by the addition of VEGFA, whereas other cytokines were inefficient. To confirm the hypothesis that aggressive tumor cells can increase the vasculogenic ability of MSCs, a standard B16/F10 mouse melanoma test system was used. MSCs isolated from the adipose tissues of C57BL/6 mice with melanoma formed a vascular-like network on Matrigel, whereas MSCs from healthy mice failed to form such structures. This study provides the first direct evidence that melanoma tumors educate MSCs to engage in VM. The education may occur distantly. These findings offer promise for novel therapeutic directions in the treatment of metastatic melanoma. PMID:27313776

  16. Targeting Disease Persistence in Gastrointestinal Stromal Tumors

    PubMed Central

    Zörnig, Martin; Hayashi, Yujiro

    2015-01-01

    Summary Gastrointestinal stromal tumors (GISTs) represent 20%–40% of human sarcomas. Although approximately half of GISTs are cured by surgery, prognosis of advanced disease used to be poor due to the high resistance of these tumors to conventional chemo- and radiotherapy. The introduction of molecularly targeted therapy (e.g., with imatinib mesylate) following the discovery of the role of oncogenic mutations in the receptor tyrosine kinases KIT and platelet-derived growth factor α (PDGFRA) significantly increased patient survival. However, GIST cells persist in 95%–97% of imatinib-treated patients who eventually progress and die of the disease because of the emergence of clones with drug-resistant mutations. Because these secondary mutations are highly heterogeneous, even second- and third-line drugs that are effective against certain genotypes have only moderately increased progression-free survival. Consequently, alternative strategies such as targeting molecular mechanisms underlying disease persistence should be considered. We reviewed recently discovered cell-autonomous and microenvironmental mechanisms that could promote the survival of GIST cells in the presence of tyrosine kinase inhibitor therapy. We particularly focused on the potential role of adult precursors for interstitial cells of Cajal (ICCs), the normal counterpart of GISTs. ICC precursors share phenotypic characteristics with cells that emerge in a subset of patients treated with imatinib and in young patients with GIST characterized by loss of succinate dehydrogenase complex proteins and lack of KIT or PDGFRA mutations. Eradication of residual GIST cells and cure of GIST will likely require individualized combinations of several approaches tailored to tumor genotype and phenotype. Significance Gastrointestinal stromal tumors (GISTs) are one of the most common connective tissue cancers. Most GISTs that cannot be cured by surgery respond to molecularly targeted therapy (e.g., with imatinib

  17. De novo synthesis of estrogen in pregnant uterus is critical for stromal decidualization and angiogenesis.

    PubMed

    Das, Amrita; Mantena, Srinivasa Raju; Kannan, Athilakshmi; Evans, Dean B; Bagchi, Milan K; Bagchi, Indrani C

    2009-07-28

    Implantation is initiated when the embryo attaches to the uterine luminal epithelium during early pregnancy. Following this event, uterine stromal cells undergo steroid hormone-dependent transformation into morphologically and functionally distinct decidual cells in a unique process known as decidualization. An angiogenic network is also formed in the uterine stromal bed, critically supporting the early development of the embryo. The steroid-induced mechanisms that promote stromal differentiation and endothelial proliferation during decidualization are not fully understood. Although the role of ovarian progesterone as a key regulator of decidualization is well established, the requirement of ovarian estrogen (E) during this process remains unresolved. Here we show that the expression of P450 aromatase, a key enzyme that converts androgens to E, is markedly induced in mouse uterine stromal cells undergoing decidualization. The aromatase then acts in conjunction with other steroid biosynthetic enzymes present in the decidual tissue to support de novo synthesis of E. This locally produced E is able to support the advancement of the stromal differentiation program even in the absence ovarian E in an ovariectomized, progesterone-supplemented pregnant mouse model. Administration of letrozole, a specific aromatase inhibitor, to these mice blocked the stromal differentiation process. Gene expression profiling further revealed that the intrauterine E induces the expression of several stromal factors that promote neovascularization in the decidual tissue. Collectively, these studies identified the decidual uterus as a novel site of E biosynthesis and uncovered E-regulated maternal signaling pathways that critically control uterine differentiation and angiogenesis during early pregnancy. PMID:19620711

  18. Imatinib treatment for gastrointestinal stromal tumour (GIST)

    PubMed Central

    Lopes, Lisandro F; Bacchi, Carlos E

    2010-01-01

    Abstract Gastrointestinal stromal tumour (GIST) is the most common mesenchymal neoplasm of the gastrointestinal tract. GISTs are believed to originate from intersticial cells of Cajal (the pacemaker cells of the gastrointestinal tract) or related stem cells, and are characterized by KIT or platelet-derived growth factor receptor alpha (PDGFRA) activating mutations. The use of imatinib has revolutionized the management of GIST and altered its natural history, substantially improving survival time and delaying disease progression in many patients. The success of imatinib in controlling advanced GIST led to interest in the neoadjuvant and adjuvant use of the drug. The neoadjuvant (preoperative) use of imatinib is recommended to facilitate resection and avoid mutilating surgery by decreasing tumour size, and adjuvant therapy is indicated for patients at high risk of recurrence. The molecular characterization (genotyping) of GISTs has become an essential part of the routine management of the disease as KIT and PDGFRA mutation status predicts the likelihood of achieving response to imatinib. However, the vast majority of patients who initially responded to imatinib will develop tumour progression (secondary resistance). Secondary resistance is often related to secondary KIT or PDGFRA mutations that interfere with drug binding. Multiple novel tyrosine kinase inhibitors may be potentially useful for the treatment of imatinib-resistant GISTs as they interfere with KIT and PDGFRA receptors or with the downstream-signalling proteins. PMID:19968734

  19. Stromal influences on breast cancer cell growth.

    PubMed Central

    van Roozendaal, C. E.; van Ooijen, B.; Klijn, J. G.; Claassen, C.; Eggermont, A. M.; Henzen-Logmans, S. C.; Foekens, J. A.

    1992-01-01

    Paracrine influences from fibroblasts derived from different sources of breast tissue on epithelial breast cancer cell growth in vitro were investigated. Medium conditioned (CM) by fibroblasts derived from tumours, adjacent normal breast tissue, and normal breast tissue obtained from reduction mammoplasty or from skin tissue significantly stimulated the growth of the steroid-receptor positive cell lines MCF-7 and ZR 75.1. The proliferation index (PI) on MCF-7 cells with CM from fibroblasts derived from breast tumour tissue was significantly higher than that obtained with fibroblasts derived from adjacent normal breast tissue (2p less than 0.05, n = 8). The PI obtained with CM from normal fibroblast cultures from reduction mammoplasty tissue, like normal tissue adjacent to the tumour, fell in the lower range of values. Skin fibroblast, like tumour tissue derived fibroblast, CM caused a high range PI. MDA-MB-231 and Evsa-T, two steroid-receptor negative cell lines, showed only a minor growth stimulatory responses with some of the fibroblast CM's. Evsa-T was occasionally inhibited by CM's. In conclusion, stromal factors play a role in the growth regulation of human breast cancer cells. The effects on cancer cell growth are, however, varying depending on the source of the stroma and the characteristics of the epithelial tumour cells. PMID:1733444

  20. Targeted therapy of gastrointestinal stromal tumours

    PubMed Central

    Jakhetiya, Ashish; Garg, Pankaj Kumar; Prakash, Gaurav; Sharma, Jyoti; Pandey, Rambha; Pandey, Durgatosh

    2016-01-01

    Gastrointestinal stromal tumours (GISTs) are mesenchymal neoplasms originating in the gastrointestinal tract, usually in the stomach or the small intestine, and rarely elsewhere in the abdomen. The malignant potential of GISTs is variable ranging from small lesions with a benign behaviour to fatal sarcomas. The majority of the tumours stain positively for the CD-117 (KIT) and discovered on GIST-1 (DOG-1 or anoctamin 1) expression, and they are characterized by the presence of a driver kinase-activating mutation in either KIT or platelet-derived growth factor receptor α. Although surgery is the primary modality of treatment, almost half of the patients have disease recurrence following surgery, which highlights the need for an effective adjuvant therapy. Traditionally, GISTs are considered chemotherapy and radiotherapy resistant. With the advent of targeted therapy (tyrosine kinase inhibitors), there has been a paradigm shift in the management of GISTs in the last decade. We present a comprehensive review of targeted therapy in the management of GISTs. PMID:27231512

  1. Targeted therapy of gastrointestinal stromal tumours.

    PubMed

    Jakhetiya, Ashish; Garg, Pankaj Kumar; Prakash, Gaurav; Sharma, Jyoti; Pandey, Rambha; Pandey, Durgatosh

    2016-05-27

    Gastrointestinal stromal tumours (GISTs) are mesenchymal neoplasms originating in the gastrointestinal tract, usually in the stomach or the small intestine, and rarely elsewhere in the abdomen. The malignant potential of GISTs is variable ranging from small lesions with a benign behaviour to fatal sarcomas. The majority of the tumours stain positively for the CD-117 (KIT) and discovered on GIST-1 (DOG-1 or anoctamin 1) expression, and they are characterized by the presence of a driver kinase-activating mutation in either KIT or platelet-derived growth factor receptor α. Although surgery is the primary modality of treatment, almost half of the patients have disease recurrence following surgery, which highlights the need for an effective adjuvant therapy. Traditionally, GISTs are considered chemotherapy and radiotherapy resistant. With the advent of targeted therapy (tyrosine kinase inhibitors), there has been a paradigm shift in the management of GISTs in the last decade. We present a comprehensive review of targeted therapy in the management of GISTs. PMID:27231512

  2. Adipose-Derived Stromal Vascular Fraction Differentially Expands Breast Progenitors in Tissue Adjacent to Tumors Compared to Healthy Breast Tissue

    PubMed Central

    Chatterjee, Sumanta; Laliberte, Mike; Blelloch, Sarah; Ratanshi, Imran; Safneck, Janice; Buchel, Ed

    2015-01-01

    Background: Autologous fat grafts supplemented with adipose-derived stromal vascular fraction are used in reconstructive and cosmetic breast procedures. Stromal vascular fraction contains adipose-derived stem cells that are thought to encourage wound healing, tissue regeneration, and graft retention. Although use of stromal vascular fraction has provided exciting perspectives for aesthetic procedures, no studies have yet been conducted to determine whether its cells contribute to breast tissue regeneration. The authors examined the effect of these cells on the expansion of human breast epithelial progenitors. Methods: From patients undergoing reconstructive breast surgery following mastectomies, abdominal fat, matching tissue adjacent to breast tumors, and the contralateral non–tumor-containing breast tissue were obtained. Ex vivo co-cultures using breast epithelial cells and the stromal vascular fraction cells were used to study the expansion potential of breast progenitors. Breast reduction samples were collected as a source of healthy breast cells. Results: The authors observed that progenitors present in healthy breast tissue or contralateral non–tumor-containing breast tissue showed significant and robust expansion in the presence of stromal vascular fraction (5.2- and 4.8-fold, respectively). Whereas the healthy progenitors expanded up to 3-fold without the stromal vascular fraction cells, the expansion of tissue adjacent to breast tumor progenitors required the presence of stromal vascular fraction cells, leading to a 7-fold expansion, which was significantly higher than the expansion of healthy progenitors with stromal vascular fraction. Conclusions: The use of stromal vascular fraction might be more beneficial to reconstructive operations following mastectomies compared with cosmetic corrections of the healthy breast. Future studies are required to examine the potential risk factors associated with its use. CLINICAL QUESTION/LEVEL OF EVIDENCE

  3. Androgen receptors expressed by prostatic stromal cells obtained from younger versus older males exhibit opposite roles in prostate cancer progression

    PubMed Central

    Lu, You-Yi; Jiang, Bo; Zhao, Fu-Jun; Cui, Di; Jiang, Qi; Yu, Jun-Jie; Li, En-Hui; Wang, Xiao-Hai; Han, Bang-Min; Xia, Shu-Jie

    2013-01-01

    Aging is a major risk factor for prostate cancer (PCa), and prostatic stromal cells may also promote PCa progression. Accordingly, stromal cells do not equally promote PCa in older males and younger males. Therefore, it is also possible that the expression of androgen receptors (ARs) by prostatic stromal cells in older versus younger males plays different roles in PCa progression. Using a gene knockdown technique and coculture system, we found that the knockdown of the AR in prostatic stromal cells obtained from younger males could promote the invasiveness and metastasis of cocultured PC3/LNCaP cells in vitro. By contrast, the invasiveness and metastasis of LNCaP cells was inhibited when cocultured with prostatic stromal cells from older males that when AR expression was knocked down. Moreover, after targeting AR expression with small hairpin RNA (shRNA), matrix metalloproteinase (MMP) expression in stromal cells was observed to increase in the younger group, but decreased or remained unchanged in the older group. One exception, however, was observed with MMP9. In vivo, after knocking down AR expression in prostatic stromal cells, the incidence of metastatic lymph nodes was observed to increase in the younger age group, but decreased in the older age group. Together, these data suggest that the AR in prostatic stromal cells played opposite roles in PCa metastasis for older versus younger males. Therefore, collectively, the function of the AR in prostatic stromal cells appears to change with age, and this may account for the increased incidence of PCa in older males. PMID:23792338

  4. Influence of stromal-epithelial interactions on breast cancer in vitro and in vivo.

    PubMed

    Potter, Shirley M; Dwyer, Roisin M; Hartmann, Marion C; Khan, Sonja; Boyle, Marie P; Curran, Catherine E; Kerin, Michael J

    2012-01-01

    Stromal cell-secreted chemokines including CCL2 have been implicated in the primary tumor microenvironment, as mediators of tumor cell migration, proliferation, and angiogenesis. Expression of CCL2 and its principal receptor CCR2 was analyzed by RQ-PCR in primary tumor cells and breast cancer cell lines. Breast cancer cell lines (MDA-MB-231, T47D) were co-cultured directly on a monolayer of primary breast tumor and normal stromal cells, retrieved using EpCAM+ magnetic beads, and changes in expression of CCL2, CCR2, MMP11, ELK1, VIL2, and Ki67 detected by RQ-PCR. Epithelial cell migration and proliferation in response to stromal cell-secreted factors was also analyzed. In vivo, tumor xenografts were formed by co-injecting T47D cells with primary tumor stromal cells. Following establishment, tumors were harvested and digested, epithelial cells retrieved and analyzed by RQ-PCR. Whole tumor tissue was also analyzed by immunohistochemistry for CD31 and the VIL2 encoded protein Ezrin. Tumor stromal cells expressed significantly higher levels of CCL2 than normal cells, with no CCR2 expression detected. Primary epithelial cells and breast cancer cell lines expressed elevated CCL2, with relative expression of CCR2 found to be higher than the ligand. Interaction of breast cancer epithelial cells with primary tumor, but not normal stromal cells, stimulated increased expression of CCL2 (8-fold), ELK1 (6-fold), VIL2 (6-fold), and MMP11 (17-fold). Factors secreted by stromal cells, including CCL2, stimulated a significant increase in epithelial cell migration, with no effect on cell proliferation in vitro observed. In vivo, the presence of stromal cells resulted in tumors of increased volume, mediated at least in part through neoangiogenesis demonstrated by immunohistochemistry (CD31). Admixed tumor xenografts exhibited increased expression of Ki67, MMP11, VIL2, and ELK1. Elevated Ezrin protein was also detected, with increased cytoplasmic localization. The results presented

  5. Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal.

    PubMed

    Yu, Jie; Berga, Sarah L; Johnston-MacAnanny, Erika B; Sidell, Neil; Bagchi, Indrani C; Bagchi, Milan K; Taylor, Robert N

    2016-06-01

    Human endometrial stromal decidualization is required for embryo receptivity, angiogenesis, and placentation. Previous studies from our laboratories established that connexin (Cx)-43 critically regulates endometrial stromal cell (ESC) differentiation, whereas gap junction blockade prevents it. The current study evaluated the plasticity of ESC morphology and Cx43 expression, as well as other biochemical markers of cell differentiation, in response to decidualizing hormones. Primary human ESC cultures were exposed to 10 nM estradiol, 100 nM progesterone, and 0.5 mM cAMP for up to 14 days, followed by hormone withdrawal for 14 days, mimicking a biphasic ovulatory cycle. Reversible differentiation was documented by characteristic changes in cell shape. Cx43 was reversibly up- and down-regulated after the estradiol, progesterone, and cAMP treatment and withdrawal, respectively, paralleled by fluctuations in prolactin, vascular endothelial growth factor, IL-11, and glycodelin secretion. Markers of mesenchymal-epithelial transition (MET), and its counterpart epithelial-mesenchymal transition, followed reciprocal patterns corresponding to the morphological changes. Incubation in the presence of 18α-glycyrrhetinic acid, an inhibitor of gap junctions, partially reversed the expression of decidualization and MET markers. In the absence of hormones, Cx43 overexpression promoted increases in vascular endothelial growth factor and IL-11 secretion, up-regulated MET markers, and reduced N-cadherin, an epithelial-mesenchymal transition marker. The combined results support the hypothesis that Cx43-containing gap junctions and endocrine factors cooperate to regulate selected biomarkers of stromal decidualization and MET and suggest roles for both phenomena in endometrial preparation for embryonic receptivity. PMID:27035651

  6. Effects of combined treatment with complex S. typhimurium antigens and factors stimulating osteogenesis (curettage, BMP-2) on multipotent bone marrow stromal cells and serum concentration of cytokines in CBA mice.

    PubMed

    Gorskaya, Yu F; Danilova, T A; Karyagina, A S; Lunin, V G; Grabko, V I; Bartov, M S; Gromov, A V; Grunina, T M; Soboleva, L A; Shapoval, I M; Nesterenko, V G

    2015-02-01

    The content of multipotent stromal cells (MSC) in the bone marrow and efficiency of their cloning (ECF-MSC) increased by 3 times 1 day after administration of complex S. typhimurium antigens to CBA mice, while the relative content of alkaline phosphatase-positive MSC colonies (marker of osteogenesis; P(+) colonies) decreased from 14% (control) to 3%. After administration of the complex S. typhimurium antigens to CBA mice 3 h after (or 3 h before) curettage or treatment with morphogenetic protein (BMP-2), the content of MSC and ECF-MSC decreased on the next day by ~3 times in comparison with animals receiving antigens alone and approached the control level. The relative content of P(+) colonies increased to 20 and 35%, respectively, in comparison with animals receiving antigens (3%), but was significantly lower than after curettage (34%) or BMP-2 (42%) administration. Expression of IL-1β, IL-6, IL-12, TNF-α, and IFN-γ genes in the primary cultures of stromal bone marrow cells induced by antigen administration was suppressed, while the concentrations of IL-12 and TNF-α in the culture medium sharply decreased after antigen treatment in combination with curettage or BMP-2 administration. Administration of complex S. typhimurium antigens after pretreatment with BMP-2 (3 h before) was associated with a decrease in serum levels of IL-2, IFN-γ, IL-12, and TNF-α in mice receiving BMP-2+S. typhimurium group 4 h after treatment in comparison with the animals receiving only S. typhimurium antigens alone by 1.9, 4.4, 1.5, and 6 times, respectively, i.e. to normal level or below it, while the concentration of IL-10 increased by almost 2 times, which probably reflected anti-inflammatory properties of BMP-2. These data probably attest to competitive relations between osteogenesis and immune response at the level of MSC. PMID:25708327

  7. Inhibition of tumor-stromal interaction through HGF/Met signaling by valproic acid

    SciTech Connect

    Matsumoto, Yohsuke; Motoki, Takahiro; Kubota, Satoshi; Takigawa, Masaharu; Tsubouchi, Hirohito; Gohda, Eiichi

    2008-02-01

    Hepatocyte growth factor (HGF), which is produced by surrounding stromal cells, including fibroblasts and endothelial cells, has been shown to be a significant factor responsible for cancer cell invasion mediated by tumor-stromal interactions. We found in this study that the anti-tumor agent valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, strongly inhibited tumor-stromal interaction. VPA inhibited HGF production in fibroblasts induced by epidermal growth factor (EGF), platelet-derived growth factor, basic fibroblast growth factor, phorbol 12-myristate 13-acetate (PMA) and prostaglandin E{sub 2} without any appreciable cytotoxic effect. Other HDAC inhibitors, including butyric acid and trichostatin A (TSA), showed similar inhibitory effects on HGF production stimulated by various inducers. Up-regulations of HGF gene expression induced by PMA and EGF were also suppressed by VPA and TSA. Furthermore, VPA significantly inhibited HGF-induced invasion of HepG2 hepatocellular carcinoma cells. VPA, however, did not affect the increases in phosphorylation of MAPK and Akt in HGF-treated HepG2 cells. These results demonstrated that VPA inhibited two critical processes of tumor-stromal interaction, induction of fibroblastic HGF production and HGF-induced invasion of HepG2 cells, and suggest that those activities serve for other anti-tumor mechanisms of VPA besides causing proliferation arrest, differentiation, and/or apoptosis of tumor cells.

  8. Epithelial and stromal-specific immune pathway activation in the murine endometrium post-coitum.

    PubMed

    Field, S L; Cummings, M; Orsi, N M

    2015-08-01

    The endometrium is a dynamic tissue, demonstrating cyclical growth/remodelling in preparation for implantation. In mice, seminal constituents trigger mechanisms to prepare the endometrium, a process dubbed 'seminal priming' that modifies immune system components and mediates endometrial remodelling in preparation for pregnancy. An array of cytokines has been reported to mediate this interaction, although much of the literature relates to in vitro studies on isolated endometrial epithelial cells. This study measured changes in immune-related gene expression in endometrial epithelial and stromal cells in vivo following natural mating. CD1 mice were naturally mated and sacrificed over the first 4 days post-coitum (n=3 each day). Endometrial epithelial and stromal compartments were isolated by laser capture microdissection. Labelled cRNA was generated and hybridised to genome-wide expression microarrays. Pathway analysis identified several immune-related pathways active within epithelial and stromal compartments, in particular relating to cytokine networks, matrix metalloproteinases and prostaglandin synthesis. Cluster analysis demonstrated that the expression of factors involved in immunomodulation/endometrial remodelling differed between the epithelial and stromal compartments in a temporal fashion. This study is the first to examine the disparate responses of the endometrial epithelial and stromal compartments to seminal plasma in vivo in mice, and demonstrates the complexity of the interactions between these two compartments needed to create a permissive environment for implantation. PMID:26015594

  9. Multicentric malignant gastrointestinal stromal tumor.

    PubMed

    Shukla, Shailaja; Singh, Sanjeet K; Pujani, Mukta

    2009-01-01

    Malignant gastrointestinal stromal tumor (GIST) is a rare type of sarcoma that is found in the digestive system, most often in the wall of the stomach. Multiple GISTs are extremely rare and usually associated with type 1 neurofibromatosis and familial GIST.We report here a case of a 70-year-old woman who reported pain in the abdomen, loss of appetite, and weight loss for six months. Ultrasound examination showed a small bowel mass along with multiple peritoneal deposits and a mass within the liver. Barium studies were suggestive of a neoplastic pathology of the distal ileum. A differential diagnosis of adenocarcinoma/lymphoma with metastases was entertained. Perioperative findings showed two large growths arising from the jejunum and the distal ileum, along with multiple smaller nodules on the serosal surface and adjoining mesentery of the involved bowel segments. Segmental resection of the involved portions of the intestine was performed. Histopathological features were consistent with those of multicentric malignant GIST-not otherwise specified (GIST-NOS). Follow-up examination three months after surgery showed no evidence of recurrence. PMID:19568556

  10. VDR Activity is Differentially Affected by Hic-5 in Prostate Cancer and Stromal Cells

    PubMed Central

    Solomon, Joshua D; Heitzer, Marjet D; Liu, Teresa T; Beumer, Jan H; Parise, Robert A; Normolle, Daniel P; Leach, Damien A; Buchanan, Grant; DeFranco, Donald B

    2014-01-01

    Prostate cancer patients treated with androgen deprivation therapy (ADT) eventually develop castrate-resistant prostate cancer (CRPC). 1,25-dihydroxyvitamin D3 (1,25D3/calcitriol) is a potential adjuvant therapy that confers anti-proliferative and pro-differentiation effects in vitro, but has had mixed results in clinical trials. The impact of the tumor microenvironment on 1,25D3 therapy in CRPC patients has not been assessed. Transforming growth factor-β (TGF-β), which is associated with the development of tumorigenic “reactive stroma” in prostate cancer, induced VDR expression in the human WPMY-1 prostate stromal cell line. Similarly, TGF-β enhanced 1,25D3-induced up-regulation of CYP24A1, which metabolizes 1,25D3 and thereby limits VDR activity. Ablation of Hic-5, a TGF-β-inducible nuclear receptor co-regulator, inhibited basal VDR expression, 1,25D3-induced CYP24A1 expression and metabolism of 1,25D3 and TGF-β-enhanced CYP24A1 expression. A Hic-5-responsive sequence was identified upstream (392-451 bp) of the CYP24A1 transcription start site that is occupied by VDR only in the presence of Hic-5. Ectopic expression of Hic-5 sensitized LNCaP prostate tumor cells to growth-inhibitory effects of 1,25D3 independent of CYP24A1. The sensitivity of Hic-5-expressing LNCaP cells to 1,25D3-induced growth inhibition was accentuated in co-culture with Hic-5-ablated WPMY-1 cells. Therefore, these findings indicate that the search for mechanisms to sensitize prostate cancer cells to the anti-proliferative effects of VDR ligands needs to account for the impact of VDR activity in the tumor microenvironment. Implications Hic-5 acts as a co-regulator with distinct effects on VDR transactivation, in prostate cancer and stromal cells, and may exert diverse effects on adjuvant therapy designed to exploit VDR activity in prostate cancer. PMID:24825850

  11. What Should You Ask Your Doctor about Gastrointestinal Stromal Tumors?

    MedlinePlus

    ... gastrointestinal stromal tumors? What should you ask your doctor about gastrointestinal stromal tumors? As you cope with ... we encourage you to talk openly with your doctor, nurse, and cancer care team. You should feel ...

  12. Stromal cell-based immunotherapy in transplantation

    PubMed Central

    Charles, Ronald; Lu, Lina; Qian, Shiguang; Fung, John J

    2012-01-01

    Organs are composed of parenchymal cells that characterize organ function and nonparenchymal cells that are composed of cells in transit, as well as tissue connective tissue, also referred to as tissue stromal cells. It was originally thought that these tissue stromal cells provided only structural and functional support for parenchymal cells and were relatively inert. However, we have come to realize that tissue stromal cells, not restricted to in the thymus and lymphoid organs, also play an active role in modulating the immune system and its response to antigens. The recognition of these elements and the elucidation of their mechanisms of action have provided valuable insight into peripheral immune regulation. Extrapolation of these principles may allow us to utilize their potential for clinical application. In this article, we will summarize a number of tissue stromal elements/cell types that have been shown to induce hyporesponsiveness to transplants. We will also discuss the mechanisms by which these stromal cells create a tolerogenic environment, which in turn results in long-term allograft survival. PMID:22091683

  13. Dissecting Tumor-Stromal Interactions in Breast Cancer Bone Metastasis.

    PubMed

    Kang, Yibin

    2016-06-01

    Bone metastasis is a frequent occurrence in breast cancer, affecting more than 70% of late stage cancer patients with severe complications such as fracture, bone pain, and hypercalcemia. The pathogenesis of osteolytic bone metastasis depends on cross-communications between tumor cells and various stromal cells residing in the bone microenvironment. Several growth factor signaling pathways, secreted micro RNAs (miRNAs) and exosomes are functional mediators of tumor-stromal interactions in bone metastasis. We developed a functional genomic approach to systemically identified molecular pathways utilized by breast cancer cells to engage the bone stroma in order to generate osteolytic bone metastasis. We showed that elevated expression of vascular cell adhesion molecule 1 (VCAM1) in disseminated breast tumor cells mediates the recruitment of pre-osteoclasts and promotes their differentiation to mature osteoclasts during the bone metastasis formation. Transforming growth factor β (TGF-β) is released from bone matrix upon bone destruction, and signals to breast cancer to further enhance their malignancy in developing bone metastasis. We furthered identified Jagged1 as a TGF-β target genes in tumor cells that engaged bone stromal cells through the activation of Notch signaling to provide a positive feedback to promote tumor growth and to activate osteoclast differentiation. Substantially change in miRNA expression was observed in osteoclasts during their differentiation and maturation, which can be exploited as circulating biomarkers of emerging bone metastasis and therapeutic targets for the treatment of bone metastasis. Further research in this direction may lead to improved diagnosis and treatment strategies for bone metastasis. PMID:27184014

  14. Dissecting Tumor-Stromal Interactions in Breast Cancer Bone Metastasis

    PubMed Central

    2016-01-01

    Bone metastasis is a frequent occurrence in breast cancer, affecting more than 70% of late stage cancer patients with severe complications such as fracture, bone pain, and hypercalcemia. The pathogenesis of osteolytic bone metastasis depends on cross-communications between tumor cells and various stromal cells residing in the bone microenvironment. Several growth factor signaling pathways, secreted micro RNAs (miRNAs) and exosomes are functional mediators of tumor-stromal interactions in bone metastasis. We developed a functional genomic approach to systemically identified molecular pathways utilized by breast cancer cells to engage the bone stroma in order to generate osteolytic bone metastasis. We showed that elevated expression of vascular cell adhesion molecule 1 (VCAM1) in disseminated breast tumor cells mediates the recruitment of pre-osteoclasts and promotes their differentiation to mature osteoclasts during the bone metastasis formation. Transforming growth factor β (TGF-β) is released from bone matrix upon bone destruction, and signals to breast cancer to further enhance their malignancy in developing bone metastasis. We furthered identified Jagged1 as a TGF-β target genes in tumor cells that engaged bone stromal cells through the activation of Notch signaling to provide a positive feedback to promote tumor growth and to activate osteoclast differentiation. Substantially change in miRNA expression was observed in osteoclasts during their differentiation and maturation, which can be exploited as circulating biomarkers of emerging bone metastasis and therapeutic targets for the treatment of bone metastasis. Further research in this direction may lead to improved diagnosis and treatment strategies for bone metastasis. PMID:27184014

  15. Insidious Changes in Stromal Matrix Fuel Cancer Progression

    PubMed Central

    Miles, Fayth L.

    2014-01-01

    Reciprocal interactions between tumor and stromal cells propel cancer progression and metastasis. An understanding of the complex contributions of the tumor stroma to cancer progression necessitates a careful examination of the extracellular matrix (ECM), which is largely synthesized and modulated by Cancer Associated Fibroblasts (CAFs). This structurally supportive meshwork serves as a signaling scaffold for a myriad of biological processes and responses favoring tumor progression. The ECM is a repository for growth factors and cytokines that promote tumor growth, proliferation, and metastasis through diverse interactions with soluble and insoluble ECM components. Growth factors activated by proteases are involved in the initiation of cell signaling pathways essential to invasion and survival. Various transmembrane proteins produced by the cancer stroma bind the collagen and fibronectin-rich matrix to induce proliferation, adhesion and migration of cancer cells, as well as protease activation. Integrins are critical liaisons between tumor cells and the surrounding stroma, and with their mechano-sensing ability induce cell signaling pathways associated with contractility and migration. Proteoglycans also bind and interact with various matrix proteins in the tumor microenvironment to promote cancer progression. Together, these components function to mediate crosstalk between tumor cells and fibroblasts ultimately to promote tumor survival and metastasis. These stromal factors, which may be expressed differentially according to cancer stage, have prognostic utility and potential. In this review, we examine changes in the ECM of cancer associated fibroblasts induced through carcinogenesis, and the implications of these changes on cancer progression. PMID:24452359

  16. Stromal TGFβR2 signaling: a gateway to progression for pancreatic cancer

    PubMed Central

    Hagopian, Moriah M; Brekken, Rolf A

    2015-01-01

    The function of transforming growth factor β (TGFβ) in the progression of pancreatic ductal adenocarcinoma (PDA) is complex and therapeutic targeting of this pathway is challenging. We showed that antibody-mediated inhibition of stromal Tgfβr2 prevented or reversed epithelial plasticity resulting in a potent reduction of metastasis in xenograft models of PDA. PMID:27308449

  17. Stromal TGFβR2 signaling: a gateway to progression for pancreatic cancer.

    PubMed

    Hagopian, Moriah M; Brekken, Rolf A

    2015-01-01

    The function of transforming growth factor β (TGFβ) in the progression of pancreatic ductal adenocarcinoma (PDA) is complex and therapeutic targeting of this pathway is challenging. We showed that antibody-mediated inhibition of stromal Tgfβr2 prevented or reversed epithelial plasticity resulting in a potent reduction of metastasis in xenograft models of PDA. PMID:27308449

  18. Ex Vivo Propagation of Human Corneal Stromal "Activated Keratocytes" for Tissue Engineering.

    PubMed

    Yam, Gary Hin-Fai; Yusoff, Nur Zahirah Binte M; Kadaba, Aishwarya; Tian, Dechao; Myint, Htoon Hla; Beuerman, Roger W; Zhou, Lei; Mehta, Jodhbir S

    2015-01-01

    Keratoconus is a corneal disorder characterized by a thinning of stromal tissue, and the affected patients have induced astigmatism and visual impairment. It is associated with a loss of corneal stromal keratocytes (CSKs). Hence, reconstructing stromal tissue with autologous CSK replacement can be a viable alternative to corneal transplantation, which is restricted by the global donor material shortage and graft rejection. Human CSKs are normally quiescent and express unique markers, like aldehyde dehydrogenases and keratocan. In serum culture, they proliferate, but lose their characteristic phenotype and become stromal fibroblasts. Here we report a novel culture cocktail to ex vivo propagate and maintain CSKs. Primary human CSKs were obtained from adult donors and cultured with soluble human amnion stromal extract (ASE), rho-associated coiled-coil-forming protein serine/threonine kinase inhibitor Y-27632, and insulin-like growth factor-1 (collectively named as ERI). Protein profiling using mass spectrometry followed by MetaCore™ pathway analysis predicted that ASE proteins might participate in transforming growth factor-β (TGF-β) signaling and fibroblast development, cell adhesion, extracellular matrix remodeling, and immune response. In culture with 0.5% fetal bovine serum and ERI, the population of "activated keratocytes" was expanded. They had much lowered expression of both keratocyte and fibroblast markers, suppressed TGF-β-mediated Smad2/3 activation, and lacked fibroblast-mediated collagen contractibility. These "activated keratoctyes" could be propagated for six to eight passages ex vivo, and they regained CSK-specific dendritic morphology and gene marker expression, including aldehyde dehydrogenases, lumican, and keratocan biosynthesis, expression, and secretion when returned to serum-depleted ERI condition. This novel cocktail maintained human CSKs in both adherent and suspension cultures with proper keratocyte features and without the

  19. Surgical Treatment of Gastric Gastrointestinal Stromal Tumor

    PubMed Central

    Kong, Seong-Ho

    2013-01-01

    Gastrointestinal stromal tumor is the most common mesenchymal tumor in the gastrointestinal tract and is most frequently developed in the stomach in the form of submucosal tumor. The incidence of gastric gastrointestinal stromal tumor is estimated to be as high as 25% of the population when all small and asymptomatic tumors are included. Because gastric gastrointestinal stromal tumor is not completely distinguished from other submucosal tumors, a surgical excisional biopsy is recommended for tumors >2 cm. The surgical principles of gastrointestinal stromal tumor are composed of an R0 resection with a normal mucosa margin, no systemic lymph node dissection, and avoidance of perforation, which results in peritoneal seeding even in cases with otherwise low risk profiles. Laparoscopic surgery has been indicated for gastrointestinal stromal tumors <5 cm, and the indication for laparoscopic surgery is expanded to larger tumors if the above mentioned surgical principles can be maintained. A simple exogastric resection and various transgastric resection techniques are used for gastrointestinal stromal tumors in favorable locations (the fundus, body, greater curvature side). For a lesion at the gastroesophageal junction in the posterior wall of the stomach, enucleation techniques have been tried preserve the organ's function. Those methods have a theoretical risk of seeding a ruptured tumor, but this risk has not been evaluated by well-designed clinical trials. While some clinical trials are still on-going, neoadjuvant imatinib is suggested when marginally unresectable or multiorgan resection is anticipated to reduce the extent of surgery and the chance of incomplete resection, rupture or bleeding. PMID:23610714

  20. Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-κB activity in myeloma cells

    PubMed Central

    2010-01-01

    Background Components of the microenvironment such as bone marrow stromal cells (BMSCs) are well known to support multiple myeloma (MM) disease progression and resistance to chemotherapy including the proteasome inhibitor bortezomib. However, functional distinctions between BMSCs in MM patients and those in disease-free marrow are not completely understood. We and other investigators have recently reported that NF-κB activity in primary MM cells is largely resistant to the proteasome inhibitor bortezomib, and that further enhancement of NF-κB by BMSCs is similarly resistant to bortezomib and may mediate resistance to this therapy. The mediating factor(s) of this bortezomib-resistant NF-κB activity is induced by BMSCs is not currently understood. Results Here we report that BMSCs specifically derived from MM patients are capable of further activating bortezomib-resistant NF-κB activity in MM cells. This induced activity is mediated by soluble proteinaceous factors secreted by MM BMSCs. Among the multiple factors evaluated, interleukin-8 was secreted by BMSCs from MM patients at significantly higher levels compared to those from non-MM sources, and we found that IL-8 contributes to BMSC-induced NF-κB activity. Conclusions BMSCs from MM patients uniquely enhance constitutive NF-κB activity in MM cells via a proteinaceous secreted factor in part in conjunction with IL-8. Since NF-κB is known to potentiate MM cell survival and confer resistance to drugs including bortezomib, further identification of the NF-κB activating factors produced specifically by MM-derived BMSCs may provide a novel biomarker and/or drug target for the treatment of this commonly fatal disease. PMID:20604947

  1. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    SciTech Connect

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  2. Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies.

    PubMed

    Sangaletti, Sabina; Tripodo, Claudio; Portararo, Paola; Dugo, Matteo; Vitali, Caterina; Botti, Laura; Guarnotta, Carla; Cappetti, Barbara; Gulino, Alessandro; Torselli, Ilaria; Casalini, Patrizia; Chiodoni, Claudia; Colombo, Mario P

    2014-01-01

    Neoplastic B-cell clones commonly arise within secondary lymphoid organs (SLO). However, during disease progression, lymphomatous cells may also colonize the bone marrow (BM), where they localize within specialized stromal niches, namely the osteoblastic and the vascular niche, according to their germinal center- or extra-follicular-derivation, respectively. We hypothesized the existence of common stromal motifs in BM and SLO B-cell lymphoid niches involved in licensing normal B-cell development as well as in fostering transformed B lymphoid cells. Thus, we tested the expression of prototypical mesenchymal stromal cell (MSC) markers and regulatory matricellular proteins in human BM and SLO under physiologically unperturbed conditions and during B-cell lymphoma occurrence. We identified common stromal features in the BM osteoblastic niche and SLO germinal center (GC) microenvironments, traits that were also enriched within BM infiltrates of GC-associated B-cell lymphomas, suggesting that stromal programs involved in central and peripheral B-cell lymphopoiesis are also involved in malignant B-cell nurturing. Among factors co-expressed by stromal elements within these different specialized niches, we identified the pleiotropic matricellular protein secreted protein acidic and rich in cysteine (SPARC). The actual role of stromal SPARC in normal B-cell lymphopoiesis, investigated in Sparc(-/-) mice and BM chimeras retaining the Sparc(-/-) genotype in host stroma, demonstrated defective BM and splenic B-cell lymphopoiesis. Moreover, in the Trp53 knockout (KO) lymphoma model, p53(-/-)/Sparc(-/-) double-KO mice displayed impaired spontaneous splenic B-cell lymphomagenesis and reduced neoplastic clone BM infiltration in comparison with their p53(-/-)/Sparc(+/+) counterparts. Our results are among the first to demonstrate the existence of common stromal programs regulating both the BM osteoblastic niche and the SLO GC lymphopoietic functions potentially fostering the genesis

  3. Stromal β-catenin overexpression contributes to the pathogenesis of renal dysplasia.

    PubMed

    Boivin, Felix J; Sarin, Sanjay; Dabas, Pari; Karolak, Michele; Oxburgh, Leif; Bridgewater, Darren

    2016-06-01

    Renal dysplasia, the leading cause of renal failure in children, is characterized by disrupted branching of the collecting ducts and primitive tubules, with an expansion of the stroma, yet a role for the renal stroma in the genesis of renal dysplasia is not known. Here, we demonstrate that expression of β-catenin, a key transcriptional co-activator in renal development, is markedly increased in the expanded stroma in human dysplastic tissue. To understand its contribution to the genesis of renal dysplasia, we generated a mouse model that overexpresses β-catenin specifically in stromal progenitors, termed β-cat(GOF-S) . Histopathological analysis of β-cat(GOF) (-S) mice revealed a marked expansion of fibroblast cells surrounding primitive ducts and tubules, similar to defects observed in human dysplastic kidneys. Characterization of the renal stroma in β-cat(GOF) (-S) mice revealed altered stromal cell differentiation in the expanded renal stroma demonstrating that this is not renal stroma but instead a population of stroma-like cells. These cells overexpress ectopic Wnt4 and Bmp4, factors necessary for endothelial cell migration and blood vessel formation. Characterization of the renal vasculature demonstrated disrupted endothelial cell migration, organization, and vascular morphogenesis in β-cat(GOF) (-S) mice. Analysis of human dysplastic tissue demonstrated a remarkably similar phenotype to that observed in our mouse model, including altered stromal cell differentiation, ectopic Wnt4 expression in the stroma-like cells, and disrupted endothelial cell migration and vessel formation. Our findings demonstrate that the overexpression of β-catenin in stromal cells is sufficient to cause renal dysplasia. Further, the pathogenesis of renal dysplasia is one of disrupted stromal differentiation and vascular morphogenesis. Taken together, this study demonstrates for the first time the contribution of stromal β-catenin overexpression to the genesis of renal

  4. The Alfin-like homeodomain finger protein AL5 suppresses multiple negative factors to confer abiotic stress tolerance in Arabidopsis.

    PubMed

    Wei, Wei; Zhang, Yu-Qin; Tao, Jian-Jun; Chen, Hao-Wei; Li, Qing-Tian; Zhang, Wan-Ke; Ma, Biao; Lin, Qing; Zhang, Jin-Song; Chen, Shou-Yi

    2015-03-01

    Plant homeodomain (PHD) finger proteins affect processes of growth and development by changing transcription and reading epigenetic histone modifications, but their functions in abiotic stress responses remain largely unclear. Here we characterized seven Arabidopsis thaliana Alfin1-like PHD finger proteins (ALs) in terms of the responses to abiotic stresses. ALs localized to the nucleus and repressed transcription. Except AL6, all the ALs bound to G-rich elements. Mutations of the amino acids at positions 34 and 35 in AL6 caused loss of ability to bind to G-rich elements. Expression of the AL genes responded differentially to osmotic stress, salt, cold and abscisic acid treatments. AL5-over-expressing plants showed higher tolerance to salt, drought and freezing stress than Col-0. Consistently, al5 mutants showed reduced stress tolerance. We used ChIP-Seq assays to identify eight direct targets of AL5, and found that AL5 binds to the promoter regions of these genes. Knockout mutants of five of these target genes exhibited varying tolerances to stresses. These results indicate that AL5 inhibits multiple signaling pathways to confer stress tolerance. Our study sheds light on mechanisms of AL5-mediated signaling in abiotic stress responses, and provides tools for improvement of stress tolerance in crop plants. PMID:25619813

  5. Treatment for Stromal Tumors of the Ovary

    MedlinePlus

    ... Get Involved Find Local ACS Learn About Cancer » Ovarian Cancer » Detailed Guide » Treatment for stromal tumors of the ... saved articles window. My Saved Articles » My ACS » Ovarian Cancer + - Text Size Download Printable Version [PDF] » Treating Ovarian ...

  6. Pseudoangiomatous stromal hyperplasia (PASH): a brief review.

    PubMed

    Jaunoo, S S; Thrush, S; Dunn, P

    2011-01-01

    Pseudoangiomatous stromal hyperplasia (PASH) is a benign entity of the breast and typically found incidentally. It warrants thorough investigation in order to exclude more sinister pathology masquerading as this form of benign breast disease and can often be managed expectantly without the need for surgical intervention. We provide a brief review of the literature on PASH, discussing its clinicopathological features and management. PMID:20887819

  7. Biomedical Conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    As a result of Biomedical Conferences, Vivo Metric Systems Co. has produced cardiac electrodes based on NASA technology. Frequently in science, one highly specialized discipline is unaware of relevant advances made in other areas. In an attempt to familiarize researchers in a variety of disciplines with medical problems and needs, NASA has sponsored conferences that bring together university scientists, practicing physicians and manufacturers of medical instruments.

  8. Regenerative Potential of Mesenchymal Stromal Cells: Age-Related Changes

    PubMed Central

    Bruna, Flavia; Contador, David; Conget, Paulette; Erranz, Benjamín; Sossa, Claudia L.; Arango-Rodríguez, Martha L.

    2016-01-01

    Preclinical and clinical studies have shown that a therapeutic effect results from mesenchymal stromal cells (MSCs) transplant. No systematic information is currently available regarding whether donor age modifies MSC regenerative potential on cutaneous wound healing. Here, we evaluate whether donor age influences this potential. Two different doses of bone marrow MSCs (BM-MSCs) from young, adult, or old mouse donors or two doses of their acellular derivatives mesenchymal stromal cells (acd-MSCs) were intradermally injected around wounds in the midline of C57BL/6 mice. Every two days, wound healing was macroscopically assessed (wound closure) and microscopically assessed (reepithelialization, dermal-epidermal junction, skin appendage regeneration, granulation tissue, leukocyte infiltration, and density dermal collagen fibers) after 12 days from MSC transplant. Significant differences in the wound closure kinetic, quality, and healing of skin regenerated were observed in lesions which received BM-MSCs from different ages or their acd-MSCs compared to lesions which received vehicle. Nevertheless, our data shows that adult's BM-MSCs or their acd-MSCs were the most efficient for recovery of most parameters analyzed. Our data suggest that MSC efficacy was negatively affected by donor age, where the treatment with adult's BM-MSCs or their acd-MSCs in cutaneous wound promotes a better tissue repair/regeneration. This is due to their paracrine factors secretion. PMID:27247575

  9. Anchored and soluble gangliosides contribute to myelosupportivity of stromal cells

    SciTech Connect

    Ziulkoski, Ana L.; Santos, Aline X.S. dos; Andrade, Claudia M.B.; Trindade, Vera M.T.; Daniotti, Jose Luis; Borojevic, Radovan; Guma, Fatima C.R.

    2009-10-09

    Stroma-mediated myelopoiesis depends upon growth factors and an appropriate intercellular microenvironment. Previous studies have demonstrated that gangliosides, produced by hepatic stromal cell types, are required for optimal myelosupportive function. Here, we compared the mielossuportive functions of a bone marrow stroma (S17) and skin fibroblasts (SF) regarding their ganglioside pattern of synthesis and shedding. The survival and proliferation of a myeloid precursor cell (FDC-P1) were used as reporter. Although the ganglioside synthesis of the two stromal cells was similar, their relative content and shedding were distinct. The ganglioside requirement for mielossuportive function was confirmed by the decreased proliferation of FDC-P1 cells in ganglioside synthesis-inhibited cultures and in presence of an antibody to GM3 ganglioside. The distinct mielossuportive activities of the S17 and SF stromata may be related to differences on plasma membrane ganglioside concentrations or to differences on the gangliosides shed and their subsequent uptake by myeloid cells, specially, GM3 ganglioside.

  10. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes.

    PubMed

    Webber, J P; Spary, L K; Sanders, A J; Chowdhury, R; Jiang, W G; Steadman, R; Wymant, J; Jones, A T; Kynaston, H; Mason, M D; Tabi, Z; Clayton, A

    2015-01-15

    Activation of myofibroblast rich stroma is a rate-limiting step essential for cancer progression. The responsible factors are not fully understood, but TGFβ1 is probably critical. A proportion of TGFβ1 is associated with extracellular nano-vesicles termed exosomes, secreted by carcinoma cells, and the relative importance of soluble and vesicular TGFβ in stromal activation is presented. Prostate cancer exosomes triggered TGFβ1-dependent fibroblast differentiation, to a distinctive myofibroblast phenotype resembling stromal cells isolated from cancerous prostate tissue; supporting angiogenesis in vitro and accelerating tumour growth in vivo. Myofibroblasts generated using soluble TGFβ1 were not pro-angiogenic or tumour-promoting. Cleaving heparan sulphate side chains from the exosome surface had no impact on TGFβ levels yet attenuated SMAD-dependent signalling and myofibroblastic differentiation. Eliminating exosomes from the cancer cell secretome, targeting Rab27a, abolished differentiation and lead to failure in stroma-assisted tumour growth in vivo. Exosomal TGFβ1 is therefore required for the formation of tumour-promoting stroma. PMID:24441045

  11. Overexpression of a NF-YB3 transcription factor from Picea wilsonii confers tolerance to salinity and drought stress in transformed Arabidopsis thaliana.

    PubMed

    Zhang, Tong; Zhang, Dun; Liu, Yajing; Luo, Chaobing; Zhou, Yanni; Zhang, Lingyun

    2015-09-01

    Nuclear factor Y (NF-Y) is a highly conserved transcription factor comprising NF-YA, NF-YB and NF-YC subunits. To date, the roles of NF-Y subunit in plant still remain elusive. In this study, a subunit NF-YB (PwNF-YB3), was isolated from Picea wilsonii Mast. and its role was studied. PwNF-YB3 transcript was detected in all vegetative and reproductive tissues with higher levels in stem and root and was greatly induced by salinity, heat and PEG but not by cold and ABA treatment. Over-expression of PwNF-YB3 in Arabidopsis showed a significant acceleration in the onset of flowering and resulted in more vigorous seed germination and significant tolerance for seedlings under salinity, drought and osmotic stress compared with wild type plants. Transcription levels of salinity-responsive gene (SOS3) and drought-induced gene (CDPK1) were substantially higher in transgenic Arabidopsis than in wild-type plants. Importantly, CBF pathway markers (COR15B, KIN1, LEA76), but not ABA pathway markers CBF4, were greatly induced under condition of drought. The nuclear localization showed that NF-YB3 acted as a transcription factor. Taken together, the data provide evidence that PwNF-YB3 positively confers significant tolerance to salt, osmotic and drought stress in transformed Arabidopsis plants probably through modulating gene regulation in CBF-dependent pathway. PMID:26093308

  12. A Factor-Analytic Validity Study of the Blumberg-Amidon "Teacher Perceptions of Supervisor-Teacher Conferences" Instrument.

    ERIC Educational Resources Information Center

    Sirois, Herman A.; Gable, Robert K.

    1979-01-01

    It was found that the Blumberg-Amidon instrument, which was administered to 31 randomly selected in-service teachers, grades K-12, is a two-factor or two-scale measure (Relationships, Productivity) which may also be interpreted as a one-scale measure (Productive Relationships), each with a high degree of reliability. (Author/NQ)

  13. EPRI electric vehicle conference

    SciTech Connect

    Pfleeger, D.

    1999-10-01

    Lower operating and maintenance costs, quiet and clean operation appear the main factors in choosing electric over the typical internal combustion powered equipment. The Conference was sponsored by the Electric Power Research Institute (EPRI). EPRI is a cooperative effort by major electric companies across the USA, founded in 1973 and headquartered in Palo Alto, CA. Featured at the Conference were presentations on regulatory issues, lift truck technologies, automotive advances and other industrial applications to include automated guided vehicles, personnel carriers and electric bicycles. Approximately 25 exhibitors displayed components, subassemblies and complete vehicles.

  14. Human splicing factor SPF45 (RBM17) confers broad multidrug resistance to anticancer drugs when overexpressed--a phenotype partially reversed by selective estrogen receptor modulators.

    PubMed

    Perry, William L; Shepard, Robert L; Sampath, Janardhan; Yaden, Benjamin; Chin, William W; Iversen, Philip W; Jin, Shengfang; Lesoon, Andrea; O'Brien, Kathryn A; Peek, Victoria L; Rolfe, Mark; Shyjan, Andrew; Tighe, Michelle; Williamson, Mark; Krishnan, Venkatesh; Moore, Robert E; Dantzig, Anne H

    2005-08-01

    The splicing factor SPF45 (RBM17) is frequently overexpressed in many solid tumors, and stable expression in HeLa cells confers resistance to doxorubicin and vincristine. In this study, we characterized stable transfectants of A2780 ovarian carcinoma cells. In a 3-day cytotoxicity assay, human SPF45 overexpression conferred 3- to 21-fold resistance to carboplatin, vinorelbine, doxorubicin, etoposide, mitoxantrone, and vincristine. In addition, resistance to gemcitabine and pemetrexed was observed at the highest drug concentrations tested. Knockdown of SPF45 in parental A2780 cells using a hammerhead ribozyme sensitized A2780 cells to etoposide by approximately 5-fold relative to a catalytically inactive ribozyme control and untransfected cells, suggesting a role for SPF45 in intrinsic resistance to some drugs. A2780-SPF45 cells accumulated similar levels of doxorubicin as vector-transfected and parental A2780 cells, indicating that drug resistance is not due to differences in drug accumulation. Efforts to identify small molecules that could block SPF45-mediated drug resistance revealed that the selective estrogen receptor (ER) modulators tamoxifen and LY117018 (a raloxifene analogue) partially reversed SPF45-mediated drug resistance to mitoxantrone in A2780-SPF45 cells from 21-fold to 8- and 5-fold, respectively, but did not significantly affect the mitoxantrone sensitivity of vector control cells. Quantitative PCR showed that ERbeta but not ERalpha was expressed in A2780 transfectants. Coimmunoprecipitation experiments suggest that SPF45 and ERbeta physically interact in vivo. Thus, SPF45-mediated drug resistance in A2780 cells may result in part from effects of SPF45 on the transcription or alternate splicing of ERbeta-regulated genes. PMID:16061639

  15. Failure of Intravenous or Intracardiac Delivery of Mesenchymal Stromal Cells to Improve Outcomes after Focal Traumatic Brain Injury in the Female Rat

    PubMed Central

    Turtzo, L. Christine; Budde, Matthew D.; Dean, Dana D.; Gold, Eric M.; Lewis, Bobbi K.; Janes, Lindsay; Lescher, Jacob; Coppola, Tiziana; Yarnell, Angela; Grunberg, Neil E.; Frank, Joseph A.

    2015-01-01

    Mesenchymal stromal cells secrete a variety of anti-inflammatory factors and may provide a regenerative medicine option for the treatment of traumatic brain injury. The present study investigates the efficacy of multiple intravenous or intracardiac administrations of rat mesenchymal stromal cells or human mesenchymal stromal cells in female rats after controlled cortical impact by in vivo MRI, neurobehavior, and histopathology evaluation. Neither intravenous nor intracardiac administration of mesenchymal stromal cells derived from either rats or humans improved MRI measures of lesion volume or neurobehavioral outcome compared to saline treatment. Few mesenchymal stromal cells (<0.0005% of injected dose) were found within 3 days of last dosage at the site of injury after either delivery route, with no mesenchymal stromal cells being detectable in brain at 30 or 56 days post-injury. These findings suggest that non-autologous mesenchymal stromal cells therapy via intravenous or intracardiac administration is not a promising treatment after focal contusion traumatic brain injury in this female rodent model. PMID:25946089

  16. Gap-junctional communication of bone marrow stromal cells is resistant to irradiation in vitro

    SciTech Connect

    Umezawa, A.; Harigaya, K.; Abe, H.; Watanabe, Y. )

    1990-10-01

    Bone marrow is one of the most radiosensitive organs. Irradiation causes a marked decrease in the total number of hematopoietic cells in the bone marrow. The reticular meshwork structure of marrow stromal cells, however, is relatively resistant to irradiation. Unimpaired stromal cell structure has been thought to be a prerequisite for the repopulation of hematopoietic cells during recovery from the effects of irradiation. The reticular framework is maintained by cell adhesion apparatuses such as gap junctions. The in vitro radiobiologic survival values of a cloned stromal cell line, H-1/A, were studied (n = 1.8, D0 = 138 cGy). Radiation doses of up to 4000 cGy had no detectable effects on the production of colony-stimulating factor 1. H-1/A cells communicate with each other via gap junctions as determined by the sensitive dye-transfer method. Gap-junctional communication between H-1/A cells was resistant to different levels of irradiation (500 to 10,000 cGy), but it was lost during adipocyte differentiation of H-1/A cells. Marrow stromal cells, which are important in the recovery of hematopoiesis, seemed capable of coordination with each other through gap junctions even when exposed to radiation.

  17. Lysyl oxidase-like 2 (LOXL2) from stromal fibroblasts stimulates the progression of gastric cancer.

    PubMed

    Kasashima, Hiroaki; Yashiro, Masakazu; Kinoshita, Haruhito; Fukuoka, Tatsunari; Morisaki, Tamami; Masuda, Go; Sakurai, Katsunobu; Kubo, Naoshi; Ohira, Masaichi; Hirakawa, Kosei

    2014-11-28

    The aim of this study was to clarify the role of fibroblast-derived Lysyl oxidase-like 2 (LOXL2) in the development of gastric cancer. The correlation between the clinicopathological features of 548 primary gastric carcinomas and LOXL2 expression in stromal cells was examined by immunohistochemistry. Two gastric cancer cell lines, OCUM-12 and NUGC-3, and cancer-associated fibroblasts (CAFs) were used in this in vitro study. The effect of fibroblast-derived LOXL2 on the motility of gastric cancer cells was analyzed by using a wound-healing assay, a double-chamber invasion assay, and western blot. LOXL2 expression in stromal cells was significantly associated with tumor invasion depth, lymph node metastasis, lymphatic invasion, venous invasion, and peritoneal dissemination. Multivariable logistic regression analysis revealed that LOXL2 expression in stromal cells could be an independent predictive parameter for the overall survival of patients. CAFs significantly stimulated the migration and invasion of OCUM-12 and NUGC-3 cells. This motility-stimulating ability of CAFs was inhibited by LOXL2 siRNA. Western blot analysis indicated that phosphorylation of focal adhesion kinase (FAK) in cancer cells was increased by the conditioned medium from CAFs, and was decreased by the conditioned medium from LOXL2 siRNA-treated CAFs. LOXL2 expression in stromal cells may be a useful prognostic factor for patients with gastric cancer. Fibroblast-derived LOXL2 may stimulate the motility of gastric cancer cells. PMID:25128648

  18. Uterine sarcoma Part II-Uterine endometrial stromal sarcoma: The TAG systematic review.

    PubMed

    Horng, Huann-Cheng; Wen, Kuo-Chang; Wang, Peng-Hui; Chen, Yi-Jen; Yen, Ming-Shyen; Ng, Heung-Tat

    2016-08-01

    Endometrial stromal tumors are rare uterine tumors (<1%). Four main categories include endometrial stromal nodule, low-grade endometrial stromal sarcoma (LG-ESS), high-grade endometrial stromal sarcoma (HG-ESS), and uterine undifferentiated sarcoma (UUS). This review is a series of articles discussing the uterine sarcomas. LG-ESS, a hormone-dependent tumor harboring chromosomal rearrangement, is an indolent tumor with a favorable prognosis, but characterized by late recurrences even in patients with Stage I disease, suggesting the requirement of a long-term follow-up. Patients with HG-ESS, based on the identification of YWHAE-NUTM2A/B (YWHAE-FAM22A/B) gene fusion, typically present with advanced stage diseases and frequently have recurrences, usually within a few years after initial surgery. UUS is, a high-grade sarcoma, extremely rare, lacking a specific line of differentiation, which is a diagnosis of exclusion (the wastebasket category, which fails to fulfill the morphological and immunohistochemical criteria of translocation-positive ESS). Surgery is the main strategy in the management of uterine sarcoma. Due to rarity, complex biological characteristics, and unknown etiology and risk factors of uterine sarcomas, the role of adjuvant therapy is not clear. Only LG-ESS might respond to progestins or aromatase inhibitors. PMID:27590366

  19. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells

    PubMed Central

    Maeda, Keiko; Enomoto, Atsushi; Hara, Akitoshi; Asai, Naoya; Kobayashi, Takeshi; Horinouchi, Asuka; Maruyama, Shoichi; Ishikawa, Yuichi; Nishiyama, Takahiro; Kiyoi, Hitoshi; Kato, Takuya; Ando, Kenju; Weng, Liang; Mii, Shinji; Asai, Masato; Mizutani, Yasuyuki; Watanabe, Osamu; Hirooka, Yoshiki; Goto, Hidemi; Takahashi, Masahide

    2016-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo. PMID:26924503

  20. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells.

    PubMed

    Maeda, Keiko; Enomoto, Atsushi; Hara, Akitoshi; Asai, Naoya; Kobayashi, Takeshi; Horinouchi, Asuka; Maruyama, Shoichi; Ishikawa, Yuichi; Nishiyama, Takahiro; Kiyoi, Hitoshi; Kato, Takuya; Ando, Kenju; Weng, Liang; Mii, Shinji; Asai, Masato; Mizutani, Yasuyuki; Watanabe, Osamu; Hirooka, Yoshiki; Goto, Hidemi; Takahashi, Masahide

    2016-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo. PMID:26924503

  1. On the pathogenesis of sclerosing stromal tumor of the ovary: a neoplasm in transition.

    PubMed

    Roth, Lawrence M; Gaba, Arthur R; Cheng, Liang

    2014-09-01

    Sclerosing stromal tumor (SST) is a distinctive benign ovarian stromal neoplasm first reported in 1973. Although its initial description supports its characterization as an ovarian stromal tumor, its exact pathogenesis remains uncertain. It is usually hormonally inactive, but occasional tumors are estrogenic or androgenic, and virilization can occur during pregnancy. We report 11 cases of SST, 6 of which were associated with another type or other types of ovarian stromal tumor. In 4 of these, a transition from thecoma of either typical or luteinized type to SST was observed. Our index case was that of a 16-yr-old girl who had a typical thecoma that underwent involutional changes in an extensive subserosal portion of the tumor with conversion to SST. In our series, 3 cases of SST underwent transformation to ovarian myxoma, one of which also contained a component of thecoma. The active SST components stained for inhibin, steroidogenic factor 1, and α-smooth muscle actin, but were negative or occasionally weakly positive for desmin. PMID:25083960

  2. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli.

    PubMed

    Santillán, Orlando; Ramírez-Romero, Miguel A; Lozano, Luis; Checa, Alberto; Encarnación, Sergio M; Dávila, Guillermo

    2016-01-01

    Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria. PMID

  3. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli

    PubMed Central

    Santillán, Orlando; Ramírez-Romero, Miguel A.; Lozano, Luis; Checa, Alberto; Encarnación, Sergio M.; Dávila, Guillermo

    2016-01-01

    Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria. PMID

  4. T cells stimulate catabolic gene expression by the stromal cells from giant cell tumor of bone

    SciTech Connect

    Cowan, Robert W.; Ghert, Michelle; Singh, Gurmit

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Two T cell lines stimulate PTHrP, RANKL, MMP13 gene expression in GCT cell cultures. Black-Right-Pointing-Pointer CD40 expressed by stromal cells; CD40L detected in whole tumor but not cultures. Black-Right-Pointing-Pointer Effect of CD40L treatment on GCT cells increased PTHrP and MMP13 gene expression. Black-Right-Pointing-Pointer PTHrP treatment increased MMP13 expression, while inhibition decreased expression. Black-Right-Pointing-Pointer T cells may stimulate GCT stromal cells and promote the osteolysis of the tumor. -- Abstract: The factors that promote the localized bone resorption by giant cell tumor of bone (GCT) are not fully understood. We investigated whether T cells could contribute to bone resorption by stimulating expression of genes for parathyroid hormone-related protein (PTHrP), matrix metalloproteinase (MMP)-13, and the receptor activator of nuclear-factor {kappa}B ligand (RANKL). Two cell lines, Jurkat clone E6-1 and D1.1, were co-cultured with isolated GCT stromal cells. Real-time PCR analyses demonstrated a significant increase of all three genes following 48 h incubation, and PTHrP and MMP-13 gene expression was also increased at 24 h. Further, we examined the expression of CD40 ligand (CD40L), a protein expressed by activated T cells, and its receptor, CD40, in GCT. Immunohistochemistry results revealed expression of the CD40 receptor in both the stromal cells and giant cells of the tumor. RNA collected from whole GCT tissues showed expression of CD40LG, which was absent in cultured stromal cells, and suggests that CD40L is expressed within GCT. Stimulation of GCT stromal cells with CD40L significantly increased expression of the PTHrP and MMP-13 genes. Moreover, we show that inhibition of PTHrP with neutralizing antibodies significantly decreased MMP13 expression by the stromal cells compared to IgG-matched controls, whereas stimulation with PTHrP (1-34) increased MMP-13 gene expression. These

  5. Novel NAC Transcription Factor TaNAC67 Confers Enhanced Multi-Abiotic Stress Tolerances in Arabidopsis

    PubMed Central

    Mao, Xinguo; Chen, Shuangshuang; Li, Ang; Zhai, Chaochao; Jing, Ruilian

    2014-01-01

    Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. NAC transcription factors play pivotal roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by abiotic stresses whereas only a few NAC transcription factors have been characterized functionally. To promote the application of NAC genes in wheat improvement by biotechnology, a novel NAC gene designated TaNAC67 was characterized in common wheat. To determine its role, transgenic Arabidopsis overexpressing TaNAC67-GFP controlled by the CaMV-35S promoter was generated and subjected to various abiotic stresses for morphological and physiological assays. Gene expression showed that TaNAC67 was involved in response to drought, salt, cold and ABA treatments. Localization assays revealed that TaNAC67 localized in the nucleus. Morphological analysis indicated the transgenics had enhanced tolerances to drought, salt and freezing stresses, simultaneously supported by enhanced expression of multiple abiotic stress responsive genes and improved physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents and Na+ efflux rates, improved photosynthetic potential, and enhanced water retention capability. Overexpression of TaNAC67 resulted in pronounced enhanced tolerances to drought, salt and freezing stresses, therefore it has potential for utilization in transgenic breeding to improve abiotic stress tolerance in crops. PMID:24427285

  6. Kamebakaurin inhibits the expression of hypoxia-inducible factor-1α and its target genes to confer antitumor activity.

    PubMed

    Wang, Ke Si; Ma, Juan; Mi, Chunliu; Li, Jing; Lee, Jung Joon; Jin, Xuejun

    2016-04-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor that mediates the adaptation of tumor cells and tissues to the hypoxic microenvironment, has attracted considerable interest as a potential therapeutic target. Kamebakaurin is a diterpenoid compound isolated from Isodon excia (Maxin.) Hara, which has been used for anti-inflammatory activities. However, its antitumor activity along with molecular mechanism has not been reported. Kamebakaurin showed potent inhibitory activity against HIF-1 activation induced by hypoxia or CoCl2 in various human cancer cell lines. This compound significantly decreased the hypoxia-induced accumulation of HIF-1α protein, whereas it did not affect the expression of topoisomerase-I (Topo-I). Further analysis revealed that kamebakaurin inhibited HIF-1α protein synthesis, without affecting the expression level of HIF-1α mRNA or degradation of HIF-1α protein. Furthermore, kamebakaurin prevented hypoxia-induced expression of HIF-1 target genes for vascular endothelial growth factor (VEGF) and erythropoietin (EPO). However, kamebakaurin caused cell growth inhibition via cell cycle arrest at G1 phase in tumor cells. In vivo studies, we further confirmed the inhibitory effect of kamebakaurin on the expression of HIF-1α proteins, leading to growth inhibition of HCT116 cells in a xenograft tumor model. These results show that kamebakaurin is an effective inhibitor of HIF-1 and provide new perspectives into its anticancer activity. PMID:26781327

  7. Nuclear translocation of type I transforming growth factor β receptor confers a novel function in RNA processing.

    PubMed

    Chandra, Manasa; Zang, Shengbing; Li, Haiqing; Zimmerman, Lisa J; Champer, Jackson; Tsuyada, Akihiro; Chow, Amy; Zhou, Weiying; Yu, Yang; Gao, Harry; Ren, Xiubao; Lin, Ren-Jang; Wang, Shizhen Emily

    2012-06-01

    Signaling of transforming growth factor β (TGF-β) is redirected in cancer to promote malignancy, but how TGF-β function is altered in a transformed cell is not fully understood. We investigated TGF-β signaling by profiling proteins that differentially bound to type I TGF-β receptor (TβRI) in nontransformed, HER2-transformed, and HER2-negative breast cancer cells using immunoprecipitation followed by protein identification. Interestingly, several nuclear proteins implicated in posttranscriptional RNA processing were uniquely identified in the TβRI coprecipitates from HER2-transformed cells. Ligand-inducible nuclear translocation of TβRI was observed only in transformed cells, and the translocation required importin β1, nucleolin, and Smad2/3. This trafficking was dependent on the high Ran GTPase activity resulting from oncogenic transformation. In the nucleus, TβRI associated with purine-rich RNA sequences in a synergistic manner with the RNA-binding factor hnRNP A1. We further found that nuclear translocation of TβRI specifically induced epidermal growth factor receptor (EGFR) transcript isoform c, which encodes a soluble EGFR protein, through alternative splicing or 3'-end processing. Our study confirms a cancer-specific nuclear translocation of TβRI and demonstrates its potential function in regulating nuclear RNA processing, as well as a novel gain-of-function mechanism of TGF-β signaling in cancer. PMID:22473997

  8. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco.

    PubMed

    Wang, Chen; Deng, Pengyi; Chen, Liulin; Wang, Xiatian; Ma, Hui; Hu, Wei; Yao, Ningcong; Feng, Ying; Chai, Ruihong; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    WRKY transcription factors are reported to be involved in defense regulation, stress response and plant growth and development. However, the precise role of WRKY transcription factors in abiotic stress tolerance is not completely understood, especially in crops. In this study, we identified and cloned 10 WRKY genes from genome of wheat (Triticum aestivum L.). TaWRKY10, a gene induced by multiple stresses, was selected for further investigation. TaWRKY10 was upregulated by treatment with polyethylene glycol, NaCl, cold and H2O2. Result of Southern blot indicates that the wheat genome contains three copies of TaWRKY10. The TaWRKY10 protein is localized in the nucleus and functions as a transcriptional activator. Overexpression of TaWRKY10 in tobacco (Nicotiana tabacum L.) resulted in enhanced drought and salt stress tolerance, mainly demonstrated by the transgenic plants exhibiting of increased germination rate, root length, survival rate, and relative water content under these stress conditions. Further investigation showed that transgenic plants also retained higher proline and soluble sugar contents, and lower reactive oxygen species and malonaldehyde contents. Moreover, overexpression of the TaWRKY10 regulated the expression of a series of stress related genes. Taken together, our results indicate that TaWRKY10 functions as a positive factor under drought and salt stresses by regulating the osmotic balance, ROS scavenging and transcription of stress related genes. PMID:23762295

  9. Mesenchymal Stem/Stromal Cells in Stromal Evolution and Cancer Progression

    PubMed Central

    Cammarota, Francesca; Laukkanen, Mikko O.

    2016-01-01

    The study of cancer biology has mainly focused on malignant epithelial cancer cells, although tumors also contain a stromal compartment, which is composed of stem cells, tumor-associated fibroblasts (TAFs), endothelial cells, immune cells, adipocytes, cytokines, and various types of macromolecules comprising the extracellular matrix (ECM). The tumor stroma develops gradually in response to the needs of epithelial cancer cells during malignant progression initiating from increased local vascular permeability and ending to remodeling of desmoplastic loosely vascularized stromal ECM. The constant bidirectional interaction of epithelial cancer cells with the surrounding microenvironment allows damaged stromal cell usage as a source of nutrients for cancer cells, maintains the stroma renewal thus resembling a wound that does not heal, and affects the characteristics of tumor mesenchymal stem/stromal cells (MSCs). Although MSCs have been shown to coordinate tumor cell growth, dormancy, migration, invasion, metastasis, and drug resistance, recently they have been successfully used in treatment of hematopoietic malignancies to enhance the effect of total body irradiation-hematopoietic stem cell transplantation therapy. Hence, targeting the stromal elements in combination with conventional chemotherapeutics and usage of MSCs to attenuate graft-versus-host disease may offer new strategies to overcome cancer treatment failure and relapse of the disease. PMID:26798356

  10. Ectopic Overexpression of SsCBF1, a CRT/DRE-Binding Factor from the Nightshade Plant Solanum lycopersicoides, Confers Freezing and Salt Tolerance in Transgenic Arabidopsis

    PubMed Central

    Zhang, Lili; Li, Zhenjun; Li, Jingfu; Wang, Aoxue

    2013-01-01

    The C-repeat (CRT)/dehydration-responsive element (DRE) binding factor (CBF/DREB1) transcription factors play a key role in cold response. However, the detailed roles of many plant CBFs are far from fully understood. A CBF gene (SsCBF1) was isolated from the cold-hardy plant Solanum lycopersicoides. A subcellular localization study using GFP fusion protein indicated that SsCBF1 is localized in the nucleus. We delimited the SsCBF1 transcriptional activation domain to the C-terminal segment comprising amino acid residues 193–228 (SsCBF1193–228). The expression of SsCBF1 could be dramatically induced by cold, drought and high salinity. Transactivation assays in tobacco leaves revealed that SsCBF1 could specifically bind to the CRT cis-elements in vivo to activate the expression of downstream reporter genes. The ectopic overexpression of SsCBF1 conferred increased freezing and high-salinity tolerance and late flowering phenotype to transgenic Arabidopsis. RNA-sequencing data exhibited that a set of cold and salt stress responsive genes were up-regulated in transgenic Arabidopsis. Our results suggest that SsCBF1 behaves as a typical CBF to contribute to plant freezing tolerance. Increased resistance to high-salinity and late flowering phenotype derived from SsCBF1 OE lines lend more credence to the hypothesis that plant CBFs participate in diverse physiological and biochemical processes related to adverse conditions. PMID:23755095

  11. Eep confers lysozyme resistance to enterococcus faecalis via the activation of the extracytoplasmic function sigma factor SigV.

    PubMed

    Varahan, Sriram; Iyer, Vijayalakshmi S; Moore, William T; Hancock, Lynn E

    2013-07-01

    Enterococcus faecalis is a commensal bacterium found in the gastrointestinal tract of most mammals, including humans, and is one of the leading causes of nosocomial infections. One of the hallmarks of E. faecalis pathogenesis is its unusual ability to tolerate high concentrations of lysozyme, which is an important innate immune component of the host. Previous studies have shown that the presence of lysozyme leads to the activation of SigV, an extracytoplasmic function (ECF) sigma factor in E. faecalis, and that the deletion of sigV increases the susceptibility of the bacterium toward lysozyme. Here, we describe the contribution of Eep, a membrane-bound zinc metalloprotease, to the activation of SigV under lysozyme stress by its effects on the stability of the anti-sigma factor RsiV. We demonstrate that the Δeep mutant phenocopies the ΔsigV mutant in lysozyme, heat, ethanol, and acid stress susceptibility. We also show, using an immunoblot analysis, that in an eep deletion mutant, the anti-sigma factor RsiV is only partially degraded after lysozyme exposure, suggesting that RsiV is processed by unknown protease(s) prior to the action of Eep. An additional observation is that the deletion of rsiV, which results in constitutive SigV expression, leads to chaining of cells, suggesting that SigV might be involved in regulating cell wall-modifying enzymes important in cell wall turnover. We also demonstrate that, in the absence of eep or sigV, enterococci bind significantly more lysozyme, providing a plausible explanation for the increased sensitivity of these mutants toward lysozyme. PMID:23645601

  12. Corneal Lymphangiogenesis in Herpetic Stromal Keratitis

    PubMed Central

    Park, Paul J; Chang, Michael; Garg, Nitin; Zhu, Jimmy; Chang, Jin-Hong; Shukla, Deepak

    2014-01-01

    Corneal lymphangiogenesis is the extension of lymphatic vessels into the normally alymphatic cornea, a process that compromises the cornea’s immune privileged state and facilitates herpetic stromal keratitis (HSK). HSK results most commonly from infection by herpes simplex virus-1 (HSV-1) and is characterized by immune- and inflammation-mediated damage to the deep layers of the cornea. Current research demonstrates the potential of anti-lymphangiogenic therapy to decrease and prevent herpes-induced lymphangiogenesis. PMID:25444520

  13. Gastrointestinal stromal tumor of the rectum.

    PubMed

    Hama, Y; Okizuka, H; Odajima, K; Hayakawa, M; Kusano, S

    2001-01-01

    Gastrointestinal stromal tumors (GISTs) are characterized by remarkable variability in their differentiation potential, but most of these lesions do not display convincing smooth muscle or neuronal differentiation. The GISTs arising from the rectum or anal canal are extremely uncommon. We present a case of immunohistochemically proven GIST of the rectum, which was characterized by homogenous isointensity mass without necrosis or hemorrhage on T2-weighted image and by enhancement on gadolinium-enhanced study. PMID:11218017

  14. Skull metastasis from rectal gastrointestinal stromal tumours.

    PubMed

    Gil-Arnaiz, Irene; Martínez-Trufero, Javier; Pazo-Cid, Roberto Antonio; Felipo, Francesc; Lecumberri, María José; Calderero, Verónica

    2009-09-01

    Gastrointestinal stromal tumours (GIST) are the most common mesenchymal neoplasm of the gastrointestinal tract. Rectum localisation is infrequent for these neoplasms, accounting for about 5% of all cases. Distant metastases of GIST are also rare. We present a patient with special features: the tumour is localised in rectum and it has an uncommon metastatic site, the skull, implying a complex differential diagnosis approach. PMID:19776004

  15. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis.

    PubMed

    Mao, Hude; Yu, Lijuan; Han, Ran; Li, Zhanjie; Liu, Hui

    2016-08-01

    Abiotic stress has been shown to significantly limit the growth and productivity of crops. NAC transcription factors play essential roles in response to various abiotic stresses. However, only little information regarding stress-related NAC genes is available in maize. Here, we cloned a maize NAC transcription factor ZmNAC55 and identified its function in drought stress. Transient expression and transactivation assay demonstrated that ZmNAC55 was localized in the nucleus and had transactivation activity. Expression analysis of ZmNAC55 in maize showed that this gene was induced by drought, high salinity and cold stresses and by abscisic acid (ABA). Promoter analysis demonstrated that multiple stress-related cis-acting elements exist in promoter region of ZmNAC55. Overexpression of ZmNAC55 in Arabidopsis led to hypersensitivity to ABA at the germination stage, but enhanced drought resistence compared to wild-type seedlings. Transcriptome analysis identified a number of differentially expressed genes between 35S::ZmNAC55 transgenic and wild-type plants, and many of which are involved in stress response, including twelve qRT-PCR confirmed well-known drought-responsive genes. These results highlight the important role of ZmNAC55 in positive regulates of drought resistence, and may have potential applications in transgenic breeding of drought-tolerant crops. PMID:27085597

  16. TNF receptor-associated factor 5 gene confers genetic predisposition to acute anterior uveitis and pediatric uveitis

    PubMed Central

    2013-01-01

    Introduction TNF Receptor-Associated Factor 5 (TRAF5) has been shown to be associated with autoimmune disease. The current study sought to investigate the potential association of TRAF5 with acute anterior uveitis (AAU) and pediatric uveitis in Han Chinese. Methods Three TRAF5 SNPs were analyzed in 450 AAU patients with or without ankylosing spondylitis (AS), 458 pediatric uveitis patients, and 1,601 healthy controls by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) or TaqMan SNP Genotyping Assay. Numerous variables were evaluated, including age, sex distribution, and clinical and laboratory observations. Results Two SNPs (rs6540679, rs12569232) of TRAF5 were associated with pediatric uveitis, and rs12569232 also showed a relation with the presence of microvascular leakage. No significant associations were found when patients were subdivided according to their rheumatoid factor (RF) or anti-nuclear antibody (ANA) status or whether they had juvenile idiopathic arthritis (JIA). Rs12569232 predisposed to AAU and its subgroups (with ankylosing spondylitis (AS) or HLA-B27 positive). No association was found between rs10863888 and either pediatric uveitis or AAU. Conclusion This study revealed that TRAF5 is involved in the development of AAU and pediatric uveitis. Further stratified analysis according to the clinical and laboratory observations suggested that rs12569232/TRAF5 may play a role in the development of retinal vasculitis. PMID:24020968

  17. Therapeutic effect of photodynamic therapy combined with targeted delivery of silencing vascular endothelial growth factor (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hsu, Yih-Chih

    2016-03-01

    Photodynamic therapy is a novel therapeutic modality to treat cancer by using a photosensitizer which is activated by a light source to produce reactive oxygen species and mediates tumours oxygen-independent hypoxic conditions. Vascular endothelial growth factor (VEGF) is one of the primary factors that affect tumor angiogenesis. Another emerging treatment to cure cancer is the use of interference RNA to silence a specific mRNA sequence. Such treatment requires a delivery system such as liposomes. The nanoparticle size measured was about 30 nm. Cellular uptake study was performed to verify that the nanoparticles have a sigma receptor mediated pathway. Non-targeted LCP NPs did not show significant difference with or without haloperidol but has a lower intensity as than targeted LCP NPs. These results confirm that LCP NPs have a receptor mediated pathway. Cell viability was found to decrease at 25 nM of transfected VEGF siRNA. Combined therapy of PDT and VEGF siRNA showed significant response as compared with PDT and gene therapy alone. In vivo toxicity assay with mice treated with targeted LCP NPs containing control siRNA or VEGF siRNA and non-targeted LCP NPs containing VEGF siRNA did not show any significant difference with the PBS injected group which suggests that there is no toxicity with the dose. It suggests that PDT combined with targeted gene therapy has a potential mean to achieve better therapeutic outcome.

  18. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis

    PubMed Central

    Mao, Xinguo; Zhang, Hongying; Qian, Xueya; Li, Ang; Zhao, Guangyao; Jing, Ruilian

    2012-01-01

    Environmental stresses such as drought, salinity, and cold are major factors that significantly limit agricultural productivity. NAC transcription factors play essential roles in response to various abiotic stresses. However, the paucity of wheat NAC members functionally characterized to date does not match the importance of this plant as a world staple crop. Here, the function of TaNAC2 was characterized in Arabidopsis thaliana. A fragment of TaNAC2 was obtained from suppression subtractive cDNA libraries of wheat treated with polyethylene glycol, and its full-length cDNA was obtained by searching a full-length wheat cDNA library. Gene expression profiles indicated that TaNAC2 was involved in response to drought, salt, cold, and abscisic acid treatment. To test its function, transgenic Arabidopsis lines overexpressing TaNAC2–GFP controlled by the cauliflower mosaic virus 35S promoter were generated. Overexpression of TaNAC2 resulted in enhanced tolerances to drought, salt, and freezing stresses in Arabidopsis, which were simultaneously demonstrated by enhanced expression of abiotic stress-response genes and several physiological indices. Therefore, TaNAC2 has potential for utilization in transgenic breeding to improve abiotic stress tolerances in crops. PMID:22330896

  19. Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against wild-type challenge.

    PubMed

    Yang, Xinghong; Becker, Todd; Walters, Nancy; Pascual, David W

    2006-07-01

    znuA is known to be an important factor for survival and normal growth under low Zn(2+) concentrations for Escherichia coli, Haemophilus spp., Neisseria gonorrhoeae, and Pasteurella multocida. We hypothesized that the znuA gene present in Brucella melitensis 16 M would be similar to znuA in B. abortus and questioned whether it may also be an important factor for growth and virulence of Brucella abortus. Using the B. melitensis 16 M genome sequence, primers were designed to construct a B. abortus deletion mutant. A znuA knockout mutation in B. abortus 2308 (DeltaznuA) was constructed and found to be lethal in low-Zn(2+) medium. When used to infect macrophages, DeltaznuA B. abortus showed minimal growth. Further study with DeltaznuA B. abortus showed that its virulence in BALB/c mice was attenuated, and most of the bacteria were cleared from the spleen within 8 weeks. Protection studies confirmed the DeltaznuA mutant as a potential live vaccine, since protection against wild-type B. abortus 2308 challenge was as effective as that obtained with the RB51 or S19 vaccine strain. PMID:16790759

  20. Zfp423 Promotes Adipogenic Differentiation of Bovine Stromal Vascular Cells

    PubMed Central

    Huang, Yan; Das, Arun Kr; Yang, Qi-Yuan; Zhu, Mei-Jun; Du, Min

    2012-01-01

    Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423) as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates) were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR) α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05) in high adipogenic cells, while transforming growth factor (TGF)-β was higher (156.1±48.7%, P<0.05) in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05) in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular adipogenesis

  1. Conference Summary

    ERIC Educational Resources Information Center

    Doherty, Cait

    2009-01-01

    This article summarizes an original conference, organised by the Child Care Research Forum (http://www.qub.ac.uk/sites/ccrf/), which brought together experts from all over Northern Ireland to showcase some of the wealth of research with children and young people that is going on in the country today. Developed around the six high-level outcomes of…

  2. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling

    PubMed Central

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  3. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling.

    PubMed

    Genovese, Luca; Brendolan, Andrea

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  4. A Virulence Factor Encoded by a Polydnavirus Confers Tolerance to Transgenic Tobacco Plants against Lepidopteran Larvae, by Impairing Nutrient Absorption

    PubMed Central

    Coppola, Mariangela; Buonanno, Martina; Di Prisco, Gennaro; Varricchio, Paola; Franzetti, Eleonora; Corrado, Giandomenico; Monti, Simona M.; Rao, Rosa; Casartelli, Morena; Pennacchio, Francesco

    2014-01-01

    The biological control of insect pests is based on the use of natural enemies. However, the growing information on the molecular mechanisms underpinning the interactions between insects and their natural antagonists can be exploited to develop “bio-inspired” pest control strategies, mimicking suppression mechanisms shaped by long co-evolutionary processes. Here we focus on a virulence factor encoded by the polydnavirus associated with the braconid wasp Toxoneuron nigriceps (TnBV), an endophagous parasitoid of noctuid moth larvae. This virulence factor (TnBVANK1) is a member of the viral ankyrin (ANK) protein family, and appears to be involved both in immunosuppression and endocrine alterations of the host. Transgenic tobacco plants expressing TnBVANK1 showed insecticide activity and caused developmental delay in Spodoptera littoralis larvae feeding on them. This effect was more evident in a transgenic line showing a higher number of transcripts of the viral gene. However, this effect was not associated with evidence of translocation into the haemocoel of the entire protein, where the receptors of TnBVANK1 are putatively located. Indeed, immunolocalization experiments evidenced the accumulation of this viral protein in the midgut, where it formed a thick layer coating the brush border of epithelial cells. In vitro transport experiments demonstrated that the presence of recombinant TnBVANK1 exerted a dose-dependent negative impact on amino acid transport. These results open new perspectives for insect control and stimulate additional research efforts to pursue the development of novel bioinsecticides, encoded by parasitoid-derived genes. However, future work will have to carefully evaluate any effect that these molecules may have on beneficial insects and on non-target organisms. PMID:25438149

  5. Inhibition of Transforming Growth Factor-{beta} Signaling in Normal Lung Epithelial Cells Confers Resistance to Ionizing Radiation

    SciTech Connect

    Reeves, Anna; Zagurovskaya, Marianna; Gupta, Seema; Shareef, Mohammed M.; Mohiuddin, Mohammed; Ahmed, Mansoor M. . E-mail: mmahmed@geisinger.edu

    2007-05-01

    Purpose: To address the functional role of radiation-induced transforming growth factor-{beta} (TGF-{beta}) signaling in a normal epithelial background, we selected a spontaneously immortalized lung epithelial cell line derived from the normal lung tissue of a dominant-negative mutant of the TGF-{beta} RII ({delta}RII) transgenic mouse that conditionally expressed {delta}RII under the control of the metallothionein promoter (MT-1), and assessed this cell line's response to radiation. Methods and Materials: A spontaneously immortalized lung epithelial cell culture (SILECC) was established and all analyses were performed within 50 passages. Colony-forming and terminal transferase dUPT nick end labeling (TUNEL) assays were used to assess clonogenic inhibition and apoptosis, respectively. Western-blot analysis was performed to assess the kinetics of p21, bax, and RII proteins. Transforming growth factor-{beta}-responsive promoter activity was measured using dual-luciferase reporter assay. Results: Exposure to ZnSO{sub 4} inhibited TGF-{beta} signaling induced either by recombinant TGF-{beta}1 or ionizing radiation. The SILECC, treated with either ZnSO{sub 4} or neutralizing antibody against TGF-{beta}, showed a significant increase in radio-resistance compared to untreated cells. Furthermore, the expression of {delta}RII inhibited the radiation-induced up-regulation of the TGF-{beta} effector gene p21{sup waf1/cip1}. Conclusions: Our findings imply that inhibition of radiation-induced TGF-{beta} signaling via abrogation of the RII function enhances the radio-resistance of normal lung epithelial cells, and this can be directly attributed to the loss of TGF-{beta} signaling function.

  6. A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Qin, Yuxiang; Tian, Yanchen; Liu, Xiuzhi

    2015-08-21

    Wheat is an important crop in the world. But most of the cultivars are salt sensitive, and often adversely affected by salt stress. WRKY transcription factors play a major role in plant responses to salt stress, but the effective salinity regulatory WRKYs identified in bread wheat are limited and the mechanism of salt stress tolerance is also not well explored. Here, we identified a salt (NaCl) induced class II WRKY transcription factor TaWRKY93. Its transcript level was strongly induced by salt (NaCl) and exogenous abscisic acid (ABA). Over-expression of TaWRKY93 in Arabidopsis thaliana enhanced salt (NaCl), drought, low temperature and osmotic (mannitol) stress tolerance, mainly demonstrated by transgenic plants forming longer primary roots or more lateral roots on MS plates supplemented with NaCl and mannitol individually, higher survival rate under drought and low temperature stress. Further, transgenic plants maintained a more proline content, higher relative water content and less electrolyte leakage than the wild type plants. The transcript abundance of a series of abiotic stress-related genes was up-regulated in the TaWRKY93 transgenic plants. In summary, TaWRKY93 is a new positive regulator of abiotic stress, it may increase salinity, drought and low temperature stress tolerance through enhancing osmotic adjustment, maintaining membrane stability and increasing transcription of stress related genes, and contribute to the superior agricultural traits of SR3 through promoting root development. It can be used as a candidate gene for wheat transgenic engineering breeding against abiotic stress. PMID:26106823

  7. Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice.

    PubMed

    Chen, Miao; Zhao, Yujuan; Zhuo, Chunliu; Lu, Shaoyun; Guo, Zhenfei

    2015-05-01

    Nuclear factor Y (NF-Y) is a ubiquitous transcription factor formed by three distinct subunits, namely NF-YA, NF-YB and NF-YC. A stress-responsive cDNA of NF-YC (Cdt-NF-YC1) was isolated from triploid bermudagrass (Cynodon dactylon × Cynodon transvaalensis), and its role in abiotic stress tolerance was investigated in this study. Cdt-NF-YC1 transcript was detected in all vegetative tissues with higher levels being observed in roots. Transcription of Cdt-NF-YC1 in leaves was induced by dehydration, salinity, and treatments with abscisic acid (ABA), hydrogen peroxide (H2 O2 ) or nitric oxide (NO), but not altered by cold. The dehydration- or salt-induced transcription of Cdt-NF-YC1 was blocked by inhibitor of ABA synthesis and scavenger of H2 O2 or NO, indicating that ABA, H2 O2 and NO were involved in the dehydration- and salt-induced transcription of Cdt-NF-YC1. Overexpression of Cdt-NF-YC1 resulted in elevated tolerance to drought and salt stress and increased sensitivity to ABA in transgenic rice. Transcript levels of stress/ABA responsive genes (OsLEA3, OsRAB16A, OsLIP9 and OsP5CS1), ABA synthesis and signalling genes (OsNCED3 and OsABI2), and ABA-independent genes (OsDREB1A, OsDREB1B and OsDREB2A) were substantially higher in transgenic rice than in wild-type plants. The results suggested that that Cdt-NF-YC1 is a good candidate gene to increase drought and salinity tolerance in transgenic rice through modulating gene regulation in both ABA-dependent and ABA-independent pathways. PMID:25283804

  8. Mesenchymal stromal cells and chronic inflammatory bowel disease.

    PubMed

    Algeri, M; Conforti, A; Pitisci, A; Starc, N; Tomao, L; Bernardo, M E; Locatelli, F

    2015-12-01

    Recent experimental findings have shown the ability of mesenchymal stromal cells (MSCs) to home to damaged tissues and to produce paracrine factors with anti-inflammatory properties, potentially resulting in reduction of inflammation and functional recovery of the damaged tissues. Prompted by these intriguing properties and on the basis of encouraging preclinical data, MSCs are currently being studied in several immune-mediated disorders. Inflammatory bowel diseases (IBD) represent a setting in which MSCs-based therapy has been extensively investigated. Phase I and II studies have documented the safety and feasibility of MSCs. However, efficacy results have so far been conflicting. In this review, we will discuss the biologic rationale that makes MSCs a promising therapeutic tool for IBD, and analyze recent experimental and clinical findings, highlighting current limitations and future perspectives of MSCs-related immunotherapy for IBD. PMID:26170204

  9. [Multipotent mesenchymal stromal and immune cells interaction: reciprocal effects].

    PubMed

    Andreeva, E R; Buravkova, L B

    2012-12-01

    Adult multipotent mesenchymal stromal cells (MMSCs) are considered now as one of the key players in physiological and pathological tissue remodeling. Clarification of the mechanisms that mediate MMSC functions, is one of the most intriguing issues in modern cell physiology. Present Review summarizes current understanding of the MMSC effects on different types of immune cells. The realization of MMSC immunomodulatory capacity is considered as a contribution of direct cell-to-cell contacts, soluble mediators and of local microenvironmental factors, the most important of which is the partial pressure of oxygen. MMSCs and immune cells interaction is discussed in the terms of reciprocal effects, modifying properties of all "partner cells". Special attention is paid to the influence of immune cells on the MMSCs. "Immunosuppressive" phenomenon of MMSCs is considered as the integral part of the "response to injury" mechanism. PMID:23461191

  10. Shaping of the tumor microenvironment: Stromal cells and vessels.

    PubMed

    Blonska, Marzenna; Agarwal, Nitin K; Vega, Francisco

    2015-10-01

    Lymphomas develop and progress in a specialized tissue microenvironment such as bone marrow as well as secondary lymphoid organs such as lymph node and spleen. The lymphoma microenvironment is characterized by a heterogeneous population of stromal cells, including fibroblastic reticular cells, nurse-like cells, mesenchymal stem cells, follicular dendritic cells, and inflammatory cells such as macrophages, T- and B-cells. These cell populations interact with the lymphoma cells to promote lymphoma growth, survival and drug resistance through multiple mechanisms. Angiogenesis is also recognized as an important factor associated with lymphoma progression. In recent years, we have learned that the interaction between the malignant and non-malignant cells is bidirectional and resembles, at least in part, the pattern seen between non-neoplastic lymphoid cells and the normal microenvironment of lymphoid organs. A summary of the current knowledge of lymphoma microenvironment focusing on the cellular components will be reviewed here. PMID:25794825

  11. Ex vivo expanded SSEA-4+ human limbal stromal cells are multipotent and do not express other embryonic stem cell markers

    PubMed Central

    Hussin, Noor Hamidah; Othman, Ainoon; Umapathy, Thiageswari; Baharuddin, Puteri; Jamal, Rahman; Zakaria, Zubaidah

    2012-01-01

    Purpose The presence of multipotent human limbal stromal cells resembling mesenchymal stromal cells (MSC) provides new insights to the characteristic of these cells and its therapeutic potential. However, little is known about the expression of stage-specific embryonic antigen 4 (SSEA-4) and the embryonic stem cell (ESC)-like properties of these cells. We studied the expression of SSEA-4 surface protein and the various ESC and MSC markers in the ex vivo cultured limbal stromal cells. The phenotypes and multipotent differentiation potential of these cells were also evaluated. Methods Limbal stromal cells were derived from corneoscleral rims. The SSEA-4+ and SSEA-4- limbal stromal cells were sorted by fluorescence-activated cells sorting (FACS). Isolated cells were expanded and reanalyzed for their expression of SSEA-4. Expression of MSC and ESC markers on these cells were also analyzed by FACS. In addition, expression of limbal epithelial and corneal stromal proteins such as ATP-binding cassette sub-family G member 2 (ABCG2), tumour protein p63 (p63), paired box 6 (Pax6), cytokeratin 3 (AE5), cytokeratin 10, and keratocan sulfate were evaluated either by immunofluorecence staining or reverse transcription polymerase chain reaction. Appropriate induction medium was used to differentiate these cells into adipocytes, osteocytes, and chondrocytes. Results Expanded limbal stromal cells expressed the majority of mesenchymal markers. These cells were negative for ABCG2, p63, Pax6, AE-5, and keratocan sulfate. After passaged, a subpopulation of these cells showed low expression of SSEA-4 but were negative for other important ESC surface markers such as Tra-1–60, Tra-1–81, and transcription factors like octamer-binding transcription factor 4 (Oct4), SRY(sex determining region Y)-box 2 (Sox2), and Nanog. Early passaged cells when induced were able to differentiate into adipocytes, osteocytes and chondrocytes. Conclusions The expanded limbal stromal cells showed features

  12. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis.

    PubMed

    Han, Xiao; Tang, Sha; An, Yi; Zheng, Dong-Chao; Xia, Xin-Li; Yin, Wei-Lun

    2013-11-01

    Water deficit is a serious environmental factor limiting the growth and productivity of plants worldwide. Improvement of drought tolerance and efficient water use are significant strategies to overcome this dilemma. In this study, a drought-responsive transcription factor, nuclear factor Y subunit B 7 (PdNF-YB7), induced by osmotic stress (PEG6000) and abscisic acid, was isolated from fast-growing poplar clone NE-19 [Populus nigra × (Populus deltoides × Populus nigra)]. Ectopic overexpression of PdNF-YB7 (oxPdB7) in Arabidopsis enhanced drought tolerance and whole-plant and instantaneous leaf water-use efficiency (WUE, the ratio of biomass produced to water consumed). Overexpressing lines had an increase in germination rate and root length and decrease in water loss and displayed higher photosynthetic rate, instantaneous leaf WUE, and leaf water potential to exhibit enhanced drought tolerance under water scarcity. Additionally, overexpression of PdNF-YB7 in Arabidopsis improved whole-plant WUE by increasing carbon assimilation and reducing transpiration with water abundance. These drought-tolerant, higher WUE transgenic Arabidopsis had earlier seedling establishment and higher biomass than controls under normal and drought conditions. In contrast, Arabidopsis mutant nf-yb3 was more sensitive to drought stress with lower WUE. However, complementation analysis indicated that complementary lines (nf-yb3/PdB7) had almost the same drought response and WUE as wild-type Col-0. Taken together, these results suggest that PdNF-YB7 positively confers drought tolerance and improves WUE in Arabidopsis; thus it could potentially be used in breeding drought-tolerant plants with increased production even under water deficiency. PMID:24006421

  13. A New AP2/ERF Transcription Factor from the Oil Plant Jatropha curcas Confers Salt and Drought Tolerance to Transgenic Tobacco.

    PubMed

    Wang, Xuehua; Han, Haiyang; Yan, Jun; Chen, Fang; Wei, Wei

    2015-05-01

    Jatropha curcas L. is a drought and salt-tolerant oil plant widely used for various purposes and has considerable potential as a diesel/kerosene substitute or extender. Understanding the molecular mechanisms underlie that the response to various biotic and abiotic stresses of this plant could be important to crop improvement efforts. Here, a new AP2/ERF-type transcription factor gene, named JcERF2, was isolated from the leaves of J. curcas. Sequence analysis showed that the JcERF2 gene contains a 759-bp open reading frame encoding a polypeptide of 252 amino acids. The predicted JcERF2 protein contained a conserved DNA-binding domain (the AP2/ERF domain) with 58 amino acids. The JcERF2 protein is highly homologous with other ERFs. JcERF2 was localized in the nucleus by analysis with a JcERF2-green fluorescent protein (GFP) fusion protein. Quantitative polymerase chain reaction (qPCR) analysis showed that JcERF2 was induced by drought, salt, abscisic acid, and ethylene. Overexpression of JcERF2 in transgenic tobacco plants enhanced the expression of biotic and abiotic stress-related genes, increased the accumulation of free proline and soluble carbohydrates, and conferred tolerance to drought and salt stresses compared to the wild type (WT). Taken together, the JcERF2 gene is a novel AP2/ERF transcription factor involved in plant response to environmental factors, which can be used as a potential candidate gene for genetic engineering of crops. PMID:25935218

  14. Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kalabis, Jiri; Rustgi, Anil K.; Cucinotta, Francis A.; Huff, Janice L.

    2010-01-01

    Esophageal cancer is the 6th leading cause of cancer death worldwide. Its development is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. An association with ionizing radiation exposure is revealed by the high excess relative risk for squamous cell carcinoma of the esophagus observed in the survivors of the atomic bomb detonations in Japan. It is also seen as a secondary malignancy in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely curable. The stromal microenvironment plays an essential role in the maintenance and modulation of normal epithelial cell growth and differentiation and cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibroblasts (Okawa et al., Genes & Dev. 2007. 21: 2788-2803). We examined how radiation treatment of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. Chemotactic and haptotactic migration of epithelial cells stimulated by conditioned media from irradiated fibroblasts was measured using assays conducted in Transwell cell culture chambers. Our results using

  15. Regulation of CXCL12 expression by canonical Wnt signaling in bone marrow stromal cells.

    PubMed

    Tamura, Masato; Sato, Mari M; Nashimoto, Masayuki

    2011-05-01

    CXCL12 (stromal cell-derived factor-1, SDF-1), produced by stromal and endothelial cells including cells of the bone marrow, binds to its receptor CXCR4 and this axis regulates hematopoietic cell trafficking. Recently, osteoclast precursor cells were found to express CXCR4 and a potential role for the CXCL12-CXCR4 axis during osteoclast precursor cell recruitment/retention and development was proposed as a regulator of bone resorption. We examined the role of canonical Wnt signaling in regulating the expression of CXCL12 in bone marrow stromal cells. In mouse stromal ST2 cells, CXCL12 mRNA was expressed, while its expression was reduced in Wnt3a over-expressing ST2 (Wnt3a-ST2) cells or by treatment with lithium chloride (LiCl). Wnt3a decreased CXCL12 levels in culture supernatants from mouse bone marrow stromal cells. The culture supernatant from Wnt3a-ST2 cells also reduced migratory activity of bone marrow-derived cells in a Transwell migration assay. Silencing of glycogen synthase kinase-3β decreased CXCL12 expression, suggesting that the canonical Wnt signaling pathway regulates CXCL12 expression. In a transfection assay, LiCl down-regulated the activity of a reporter gene, a 1.8kb fragment of the 5'-flanking region of the CXCL12 gene. These results show that canonical Wnt signaling regulates CXCL12 gene expression at the transcriptional level, and this is the first study linking chemokine expression to canonical Wnt signaling. PMID:21296678

  16. The orphan nuclear receptor Nur77 regulates decidual prolactin expression in human endometrial stromal cells

    SciTech Connect

    Jiang, Yue; Hu, Yali; Zhao, Jing; Zhen, Xin; Yan, Guijun; Sun, Haixiang

    2011-01-14

    Research highlights: {yields} Decidually produced PRL plays a key role during pregnancy. {yields} Overexpression of Nur77 increased PRL mRNA expression and enhanced decidual PRL promoter activity. {yields} Knockdown of Nur77 decreased decidual PRL secretion induced by 8-Br-cAMP and MPA. {yields} Nur77 is a novel transcription factor that plays an active role in decidual prolactin expression. -- Abstract: Prolactin (PRL) is synthesized and released by several extrapituitary tissues, including decidualized stromal cells. Despite the important role of decidual PRL during pregnancy, little is understood about the factors involved in the proper regulation of decidual PRL expression. Here we present evidence that the transcription factor Nur77 plays an active role in decidual prolactin expression in human endometrial stromal cells (hESCs). Nur77 mRNA expression in hESCs was significantly increased after decidualization stimulated by 8-Br-cAMP and medroxyprogesterone acetate (MPA). Adenovirus-mediated overexpression of Nur77 in hESCs markedly increased PRL mRNA expression and enhanced decidual PRL promoter (dPRL/-332Luc) activity in a concentration-dependent manner. Furthermore, knockdown of Nur77 in hESCs significantly decreased decidual PRL promoter activation and substantially attenuated PRL mRNA expression and PRL secretion (P < 0.01) induced by 8-Br-cAMP and MPA. These results demonstrate that Nur77 is a novel transcription factor that contributes significantly to the regulation of prolactin gene expression in human endometrial stromal cells.

  17. Dependency of colorectal cancer on a TGF-beta-driven programme in stromal cells for metastasis initiation

    PubMed Central

    Calon, Alexandre; Espinet, Elisa; Palomo-Ponce, Sergio; Tauriello, Daniele V. F.; Iglesias, Mar; Céspedes, María Virtudes; Sevillano, Marta; Nadal, Cristina; Jung, Peter; Zhang, Xiang H.-F.; Byrom, Daniel; Riera, Antoni; Rossell, David; Mangues, Ramón; Massague, Joan; Sancho, Elena; Batlle, Eduard

    2012-01-01

    SUMMARY A large proportion of colorectal cancers (CRCs) display mutational inactivation of the TGF-beta pathway yet paradoxically, they are characterized by elevated TGF-beta production. Here, we unveil a prometastatic programme induced by TGF-beta in the microenvironment that associates with a high-risk of CRC relapse upon treatment. The activity of TGF-beta on stromal cells increases the efficiency of organ colonization by CRC cells whereas mice treated with a pharmacological inhibitor of TGFBR1 are resilient to metastasis formation. Secretion of IL11 by TGF-beta-stimulated cancer-associated fibroblasts (CAFs) triggers GP130/STAT3 signalling in tumour cells. This crosstalk confers a survival advantage to metastatic cells. The dependency on the TGF-beta stromal programme for metastasis initiation could be exploited to improve the diagnosis and treatment of CRC. PMID:23153532

  18. Induction of a stable sigma factor SigR by translation-inhibiting antibiotics confers resistance to antibiotics

    PubMed Central

    Yoo, Ji-Sun; Oh, Gyeong-Seok; Ryoo, Sungweon; Roe, Jung-Hye

    2016-01-01

    Antibiotic-producing streptomycetes are rich sources of resistance mechanisms against endogenous and exogenous antibiotics. An ECF sigma factor σR (SigR) is known to govern the thiol-oxidative stress response in Streptomyces coelicolor. Amplification of this response is achieved by producing an unstable isoform of σR called σR′. In this work, we present evidence that antibiotics induce the SigR regulon via a redox-independent pathway, leading to antibiotic resistance. The translation-inhibiting antibiotics enhanced the synthesis of stable σR, eliciting a prolonged response. WblC/WhiB7, a WhiB-like DNA-binding protein, is responsible for inducing sigRp1 transcripts encoding the stable σR. The amount of WblC protein and its binding to the sigRp1 promoter in vivo increased upon antibiotic treatment. A similar phenomenon appears to exist in Mycobacterium tuberculosis as well. These findings reveal a novel antibiotic-induced resistance mechanism conserved among actinomycetes, and also give an explicit example of overlap in cellular damage and defense mechanisms between thiol-oxidative and anti- translational stresses. PMID:27346454

  19. Genome-Wide Identification and Characterization of Novel Factors Conferring Resistance to Topoisomerase II Poisons in Cancer.

    PubMed

    Wijdeven, Ruud H; Pang, Baoxu; van der Zanden, Sabina Y; Qiao, Xiaohang; Blomen, Vincent; Hoogstraat, Marlous; Lips, Esther H; Janssen, Lennert; Wessels, Lodewyk; Brummelkamp, Thijn R; Neefjes, Jacques

    2015-10-01

    The topoisomerase II poisons doxorubicin and etoposide constitute longstanding cornerstones of chemotherapy. Despite their extensive clinical use, many patients do not respond to these drugs. Using a genome-wide gene knockout approach, we identified Keap1, the SWI/SNF complex, and C9orf82 (CAAP1) as independent factors capable of driving drug resistance through diverse molecular mechanisms, all converging on the DNA double-strand break (DSB) and repair pathway. Loss of Keap1 or the SWI/SNF complex inhibits generation of DSB by attenuating expression and activity of topoisomerase IIα, respectively, whereas deletion of C9orf82 augments subsequent DSB repair. Their corresponding genes, frequently mutated or deleted in human tumors, may impact drug sensitivity, as exemplified by triple-negative breast cancer patients with diminished SWI/SNF core member expression who exhibit reduced responsiveness to chemotherapy regimens containing doxorubicin. Collectively, our work identifies genes that may predict the response of cancer patients to the broadly used topoisomerase II poisons and defines alternative pathways that could be therapeutically exploited in treatment-resistant patients. PMID:26260527

  20. Ectopic Expression of DREB Transcription Factor, AtDREB1A, Confers Tolerance to Drought in Transgenic Salvia miltiorrhiza.

    PubMed

    Wei, Tao; Deng, Kejun; Liu, Dongqing; Gao, Yonghong; Liu, Yu; Yang, Meiling; Zhang, Lipeng; Zheng, Xuelian; Wang, Chunguo; Song, Wenqin; Chen, Chengbin; Zhang, Yong

    2016-08-01

    Drought decreases crop productivity more than any other type of environmental stress. Transcription factors (TFs) play crucial roles in regulating plant abiotic stress responses. The Arabidopsis thaliana gene DREB1A/CBF3, encoding a stress-inducible TF, was introduced into Salvia miltiorrhiza Ectopic expression of AtDREB1A resulted in increased drought tolerance, and transgenic lines had higher relative water content and Chl content, and exhibited an increased photosynthetic rate when subjected to drought stress. AtDREB1A transgenic plants generally displayed lower malondialdehyde (MDA), but higher superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities under drought stress. In particular, plants with ectopic AtDREB1A expression under the control of the stress-induced RD29A promoter exhibited more tolerance to drought compared with p35S::AtDREB1A transgenic plants, without growth inhibition or phenotypic aberrations. Differential gene expression profiling of wild-type and pRD29A::AtDREB1A transgenic plants following drought stress revealed that the expression levels of various genes associated with the stress response, photosynthesis, signaling, carbohydrate metabolism and protein protection were substantially higher in transgenic plants. In addition, the amount of salvianolic acids and tanshinones was significantly elevated in AtDREB1A transgenic S. miltiorrhiza roots, and most of the genes in the related biosynthetic pathways were up-regulated. Together, these results demonstrated that inducing the expression of a TF can effectively regulate multiple genes in the stress response pathways and significantly improve the resistance of plants to abiotic stresses. Our results also suggest that genetic manipulation of a TF can improve production of valuable secondary metabolites by regulating genes in associated pathways. PMID:27485523

  1. Mulberry Transcription Factor MnDREB4A Confers Tolerance to Multiple Abiotic Stresses in Transgenic Tobacco

    PubMed Central

    Guo, Qing; Zhang, Meng; Cao, Bo-Ning; Xiang, Zhong-Huai; Zhao, Ai-Chun

    2015-01-01

    The dehydration responsive element binding (DREB) transcription factors have been reported to be involved in stress responses. Most studies have focused on DREB genes in subgroups A-1 and A-2 in herbaceous plants, but there have been few reports on the functions of DREBs from the A-3–A-6 subgroups and in woody plants. Moreover, mulberry trees are ecologically and economically important perennial woody plants, but there has been little research on its stress physiology, biochemistry and molecular biology. In this study, a DREB gene from the mulberry tree, designated as MnDREB4A, classified into the A-4 subgroup by our previous study, was selected for further characterization. Our results showed that the MnDREB4A protein was localized to the nucleus where it activated transcription. The promoter of MnDREB4A can direct prominent expression downstream of the β-glucuronidase (GUS) gene under heat, cold, drought and salt stress, and GUS staining was deepest after 12 h of stress treatment. The MnDREB4A-overexpression transgenic tobacco showed the improved growth phenotype under untreated conditions, such as greener leaves, longer roots, and lower water loss and senescence rates. Overexpression of MnDREB4A in tobacco can significantly enhance tolerance to heat, cold, drought, and salt stresses in transgenic plants. The leaf discs and seedlings of transgenic plants reduced leaf wilting and senescence rates compared to the wild type plants under the different stress conditions. Further investigation showed that transgenic plants also had higher water contents and proline contents, and lower malondialdehyde contents under untreated condition and stress conditions. Our results indicate that the MnDREB4A protein plays an important role in plant stress tolerance. PMID:26695076

  2. Mulberry Transcription Factor MnDREB4A Confers Tolerance to Multiple Abiotic Stresses in Transgenic Tobacco.

    PubMed

    Liu, Xue-Qin; Liu, Chang-Ying; Guo, Qing; Zhang, Meng; Cao, Bo-Ning; Xiang, Zhong-Huai; Zhao, Ai-Chun

    2015-01-01

    The dehydration responsive element binding (DREB) transcription factors have been reported to be involved in stress responses. Most studies have focused on DREB genes in subgroups A-1 and A-2 in herbaceous plants, but there have been few reports on the functions of DREBs from the A-3-A-6 subgroups and in woody plants. Moreover, mulberry trees are ecologically and economically important perennial woody plants, but there has been little research on its stress physiology, biochemistry and molecular biology. In this study, a DREB gene from the mulberry tree, designated as MnDREB4A, classified into the A-4 subgroup by our previous study, was selected for further characterization. Our results showed that the MnDREB4A protein was localized to the nucleus where it activated transcription. The promoter of MnDREB4A can direct prominent expression downstream of the β-glucuronidase (GUS) gene under heat, cold, drought and salt stress, and GUS staining was deepest after 12 h of stress treatment. The MnDREB4A-overexpression transgenic tobacco showed the improved growth phenotype under untreated conditions, such as greener leaves, longer roots, and lower water loss and senescence rates. Overexpression of MnDREB4A in tobacco can significantly enhance tolerance to heat, cold, drought, and salt stresses in transgenic plants. The leaf discs and seedlings of transgenic plants reduced leaf wilting and senescence rates compared to the wild type plants under the different stress conditions. Further investigation showed that transgenic plants also had higher water contents and proline contents, and lower malondialdehyde contents under untreated condition and stress conditions. Our results indicate that the MnDREB4A protein plays an important role in plant stress tolerance. PMID:26695076

  3. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling.

    PubMed

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-04-01

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. PMID:25727013

  4. Loss of VHL Confers Hypoxia-Inducible Factor (HIF)-Dependent Resistance to Vesicular Stomatitis Virus: Role of HIF in Antiviral Response▿

    PubMed Central

    Hwang, Irene I. L.; Watson, Ian R.; Der, Sandy D.; Ohh, Michael

    2006-01-01

    Hypoxia-inducible factor (HIF) is a central regulator of cellular responses to hypoxia, and under normal oxygen tension the catalytic α subunit of HIF is targeted for ubiquitin-mediated destruction via the VHL-containing E3 ubiquitin ligase complex. Principally known for its association with oncogenesis, HIF has been documented to have a role in the antibacterial response. Interferons, cytokines with antiviral functions, have been shown to upregulate the expression of HIF-1α, but the significance of HIF in the antiviral response has not been established. Here, using renal carcinoma cells devoid of VHL or reconstituted with functional wild-type VHL or VHL mutants with various abilities to negatively regulate HIF as an ideal model system of HIF activity, we show that elevated HIF activity confers dramatically enhanced resistance to vesicular stomatitis virus (VSV)-mediated cytotoxicity. Inhibition of HIF activity using a small-molecule inhibitor, chetomin, enhanced cellular sensitivity to VSV, while treatment with hypoxia mimetic CoCl2 promoted resistance. Similarly, targeting HIF-2α by RNA interference also enhanced susceptibility to VSV. Expression profiling studies show that upon VSV infection, the induction of genes with known antiviral activity, such as that encoding beta interferon (IFN-β), is significantly enhanced by HIF. These results reveal a previously unrecognized role of HIF in the antiviral response by promoting the expression of the IFN-β gene and other genes with antiviral activity upon viral infection. PMID:16928739

  5. Overexpression of a bHLH1 Transcription Factor of Pyrus ussuriensis Confers Enhanced Cold Tolerance and Increases Expression of Stress-Responsive Genes

    PubMed Central

    Jin, Cong; Huang, Xiao-San; Li, Kong-Qing; Yin, Hao; Li, Lei-Ting; Yao, Zheng-Hong; Zhang, Shao-Ling

    2016-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in arrays of physiological and biochemical processes. However, knowledge concerning the functions of bHLHs in cold tolerance remains poorly understood. In this study, a PubHLH1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. PubHLH1 was upregulated by cold, salt, and dehydration, with the greatest induction under cold conditions. PubHLH1 had the transactivational activity and localized in the nucleus. Ectopic expression of PubHLH1 in transgenic tobacco conferred enhanced tolerance to cold stress. The transgenic lines had higher survival rates, higher chlorophyll, higher proline contents, lower electrolyte leakages and MDA when compared with wild type (WT). In addition, transcript levels of eight genes associated with ROS scavenging, regulation, and stress defense were higher in the transgenic plants relative to the WT under the chilling stress. Taken together, these results demonstrated that PubHLH1 played a key role in cold tolerance and, at least in part, contributed to activation of stress-responsive genes. PMID:27092159

  6. Overexpression of a bHLH1 Transcription Factor of Pyrus ussuriensis Confers Enhanced Cold Tolerance and Increases Expression of Stress-Responsive Genes.

    PubMed

    Jin, Cong; Huang, Xiao-San; Li, Kong-Qing; Yin, Hao; Li, Lei-Ting; Yao, Zheng-Hong; Zhang, Shao-Ling

    2016-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in arrays of physiological and biochemical processes. However, knowledge concerning the functions of bHLHs in cold tolerance remains poorly understood. In this study, a PubHLH1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. PubHLH1 was upregulated by cold, salt, and dehydration, with the greatest induction under cold conditions. PubHLH1 had the transactivational activity and localized in the nucleus. Ectopic expression of PubHLH1 in transgenic tobacco conferred enhanced tolerance to cold stress. The transgenic lines had higher survival rates, higher chlorophyll, higher proline contents, lower electrolyte leakages and MDA when compared with wild type (WT). In addition, transcript levels of eight genes associated with ROS scavenging, regulation, and stress defense were higher in the transgenic plants relative to the WT under the chilling stress. Taken together, these results demonstrated that PubHLH1 played a key role in cold tolerance and, at least in part, contributed to activation of stress-responsive genes. PMID:27092159

  7. The neurogenic basic helix–loop–helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant response and sustaining the mitochondrial biomass

    PubMed Central

    Uittenbogaard, Martine; Baxter, Kristin Kathleen; Chiaramello, Anne

    2010-01-01

    Preserving mitochondrial mass, bioenergetic functions and ROS (reactive oxygen species) homoeostasis is key to neuronal differentiation and survival, as mitochondria produce most of the energy in the form of ATP to execute and maintain these cellular processes. In view of our previous studies showing that NeuroD6 promotes neuronal differentiation and survival on trophic factor withdrawal, combined with its ability to stimulate the mitochondrial biomass and to trigger comprehensive antiapoptotic and molecular chaperone responses, we investigated whether NeuroD6 could concomitantly modulate the mitochondrial biomass and ROS homoeostasis on oxidative stress mediated by serum deprivation. In the present study, we report a novel role of NeuroD6 as a regulator of ROS homoeostasis, resulting in enhanced tolerance to oxidative stress. Using a combination of flow cytometry, confocal fluorescence microscopy and mitochondrial fractionation, we found that NeuroD6 sustains mitochondrial mass, intracellular ATP levels and expression of specific subunits of respiratory complexes upon oxidative stress triggered by withdrawal of trophic factors. NeuroD6 also maintains the expression of nuclear-encoded transcription factors, known to regulate mitochondrial biogenesis, such as PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α), Tfam (transcription factor A, mitochondrial) and NRF-1 (nuclear respiratory factor-1). Finally, NeuroD6 triggers a comprehensive antioxidant response to endow PC12-ND6 cells with intracellular ROS scavenging capacity. The NeuroD6 effect is not limited to the classic induction of the ROS-scavenging enzymes, such as SOD2 (superoxide dismutase 2), GPx1 (glutathione peroxidase 1) and PRDX5 (peroxiredoxin 5), but also to the recently identified powerful ROS suppressors PGC-1α, PINK1 (phosphatase and tensin homologue-induced kinase 1) and SIRT1. Thus our collective results support the concept that the NeuroD6–PGC-1α–SIRT1 neuroprotective

  8. Small Intestinal and Mesenteric Multiple Gastrointestinal Stromal Tumors Causing Occult Bleeding

    PubMed Central

    Dinc, Tolga; Kayilioglu, Selami Ilgaz; Erdogan, Ahmet; Cetinkaya, Erdinc; Akgul, Ozgur; Coskun, Faruk

    2016-01-01

    Gastrointestinal stromal tumors are the meseancymal neoplasms which may involve any part of gastrointestinal tract. C-Kit and platelet derived factor receptor alpha polypeptide are believed to be responsible for the genetic basis. This case presentation aimed to discuss the diagnostic and therapeutic modality of multiple small intestinal, omental, and mesenteric GISTs with different sizes which caused occult bleeding in a 43-year-old male patient. PMID:26989528

  9. Decidualization and syndecan-1 knock down sensitize endometrial stromal cells to apoptosis induced by embryonic stimuli.

    PubMed

    Boeddeker, Sarah Jean; Baston-Buest, Dunja Maria; Fehm, Tanja; Kruessel, Jan; Hess, Alexandra

    2015-01-01

    Human embryo invasion and implantation into the inner wall of the maternal uterus, the endometrium, is the pivotal process for a successful pregnancy. Whereas disruption of the endometrial epithelial layer was already correlated with the programmed cell death, the role of apoptosis of the subjacent endometrial stromal cells during implantation is indistinct. The aim was to clarify whether apoptosis plays a role in the stromal invasion and to characterize if the apoptotic susceptibility of endometrial stromal cells to embryonic stimuli is influenced by decidualization and Syndecan-1. Therefore, the immortalized human endometrial stromal cell line St-T1 was used to first generate a new cell line with a stable Syndecan-1 knock down (KdS1), and second to further decidualize the cells with progesterone. As a replacement for the ethically inapplicable embryo all cells were treated with the embryonic factors and secretion products interleukin-1β, interferon-γ, tumor necrosis factor-α, transforming growth factor-β1 and anti-Fas antibody to mimic the embryo contact. Detection of apoptosis was verified via Caspase ELISAs, PARP cleavage and Annexin V staining. Apoptosis-related proteins were investigated via antibody arrays and underlying signaling pathways were analyzed by Western blot. Non-decidualized endometrial stromal cells showed a resistance towards apoptosis which was rescinded by decidualization and Syndecan-1 knock down independent of decidualization. This was correlated with an altered expression of several pro- and anti-apoptotic proteins and connected to a higher activation of pro-survival Akt in non-differentiated St-T1 as an upstream mediator of apoptotis-related proteins. This study provides insight into the largely elusive process of implantation, proposing an important role for stromal cell apoptosis to successfully establish a pregnancy. The impact of Syndecan-1 in attenuating the apoptotic signal is particularly interesting in the light of an already

  10. The critical roles of tumor-initiating cells and the lymph node stromal microenvironment in human colorectal cancer extranodal metastasis using a unique humanized orthotopic mouse model.

    PubMed

    Margolin, David A; Myers, Tamara; Zhang, Xin; Bertoni, Danielle M; Reuter, Brian A; Obokhare, Izi; Borgovan, Theodor; Grimes, Chelsea; Green, Heather; Driscoll, Tiffany; Lee, Chung-Gi; Davis, Nancy K; Li, Li

    2015-08-01

    Colorectal cancer (CRC) is the second-most common cause of cancer-related mortality. The most important prognostic factors are lymph node (LN) involvement and extranodal metastasis. Our objective is to investigate the interactions between CD133(+)CXCR4(+) (CXC receptor 4) colorectal cancer tumor-initiating cells (Co-TICs) and the LN stromal microenvironment in human CRC extranodal metastasis. We established a unique humanized orthotopic xenograft model. Luciferase-tagged CRC cell lines and human cancer cells were injected intrarectally into nonobese diabetic/SCID mice. Mesenteric LN stromal cells, stromal cell line HK, or CXCL12 knockdown HK (HK-KD-A3) cells were coinoculated with CRC cells. Tumor growth and metastasis were monitored by bioluminescent imaging and immunohistochemistry. We found that this model mimics the human CRC metastatic pattern with CRC cell lines or patient specimens. Adding LN stromal cells promotes CRC tumor growth and extranodal metastasis (P < 0.001). Knocking down CXCL12 impaired HK cell support of CRC tumor formation and extranodal metastasis. When HK cells were added, sorted CD133(+)CXCR4(+) Co-TICs showed increased tumor formation and extranodal metastasis capacities compared to unseparated and non-Co-TIC populations. In conclusion, both Co-TIC and LN stromal factors play crucial roles in CRC metastasis through the CXCL12/CXCR4 axis. Blocking Co-TIC/LN-stromal interactions may lead to effective therapy to prevent extranodal metastasis. PMID:25962655

  11. Cell mates: paracrine and stromal targets for prostate cancer therapy.

    PubMed

    Sluka, Pavel; Davis, Ian D

    2013-08-01

    After many years of limited treatment options for patients with metastatic castration-resistant prostate cancer (mCRPC), multiple systemic therapies are now available, providing patients with significant improvements in survival, symptom control and bone health. Most of the recent advances in this area have been based on better understanding of mCRPC biology, particularly with respect to the key role of androgen receptor signalling. However, most therapies are targeted towards the malignant epithelial cell component of the cancer and it should not be forgotten that cancer cells exist in close and symbiotic relationships with other components of the tumour. Paracrine and stromal signals are often critical to the growth of the cancer and represent new potential therapeutic targets that are separate from the malignant epithelial cells. The stroma produces numerous growth factors, including vascular endothelial growth factor family members, platelet-derived growth factors and fibroblast growth factors, which are all critical for tumour growth. Targeting prostate-cancer-associated fibroblasts in order to destroy the physical and functional scaffold of a cancer is also a logical approach. The interaction between prostate cancer and the immune system remains an active topic of basic and clinical research, with cytokines, chemokines and growth factors being potential targets for therapy. The biology of epithelial-mesenchymal transition and of circulating tumour cells might also provide insight into new therapeutic targets. PMID:23857181

  12. Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice

    PubMed Central

    Jisha, V.; Ramanan, Rajeshwari

    2015-01-01

    AP2/ERF–type transcription factors regulate important functions of plant growth and development as well as responses to environmental stimuli. A rice AP2/ERF transcription factor, OsEREBP1 is a downstream component of a signal transduction pathway in a specific interaction between rice (Oryza sativa) and its bacterial pathogen, Xoo (Xanthomonas oryzae pv. oryzae). Constitutive expression of OsEREBP1 in rice driven by maize ubiquitin promoter did not affect normal plant growth. Microarray analysis revealed that over expression of OsEREBP1 caused increased expression of lipid metabolism related genes such as lipase and chloroplastic lipoxygenase as well as several genes related to jasmonate and abscisic acid biosynthesis. PR genes, transcription regulators and Aldhs (alcohol dehydrogenases) implicated in abiotic stress and submergence tolerance were also upregulated in transgenic plants. Transgenic plants showed increase in endogenous levels of α-linolenate, several jasmonate derivatives and abscisic acid but not salicylic acid. Soluble modified GFP (SmGFP)-tagged OsEREBP1 was localized to plastid nucleoids. Comparative analysis of non-transgenic and OsEREBP1 overexpressing genotypes revealed that OsEREBP1 attenuates disease caused by Xoo and confers drought and submergence tolerance in transgenic rice. Our results suggest that constitutive expression of OsEREBP1 activates the jasmonate and abscisic acid signalling pathways thereby priming the rice plants for enhanced survival under abiotic or biotic stress conditions. OsEREBP1 is thus, a good candidate gene for engineering plants for multiple stress tolerance. PMID:26035591

  13. Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein

    SciTech Connect

    Higgins, Larry G. Cavin, Christophe; Itoh, Ken; Yamamoto, Masayuki; Hayes, John D.

    2008-02-01

    Mice fed diets containing 3% or 6% coffee for 5 days had increased levels of mRNA for NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-transferase class Alpha 1 (GSTA1) of between 4- and 20-fold in the liver and small intestine. Mice fed 6% coffee also had increased amounts of mRNA for UDP-glucuronosyl transferase 1A6 (UGT1A6) and the glutamate cysteine ligase catalytic (GCLC) subunit of between 3- and 10-fold in the small intestine. Up-regulation of these mRNAs was significantly greater in mice possessing Nrf2 (NF-E2 p45 subunit-related factor 2) than those lacking the transcription factor. Basal levels of mRNAs for NQO1, GSTA1, UGT1A6 and GCLC were lower in tissues from nrf2{sup -/-} mice than from nrf2{sup +/+} mice, but modest induction occurred in the mutant animals. Treatment of mouse embryonic fibroblasts (MEFs) from nrf2{sup +/+} mice with either coffee or the coffee-specific diterpenes cafestol and kahweol (C + K) increased NQO1 mRNA up to 9-fold. MEFs from nrf2{sup -/-} mice expressed less NQO1 mRNA than did wild-type MEFs, but NQO1 was induced modestly by coffee or C + K in the mutant fibroblasts. Transfection of MEFs with nqo1-luciferase reporter constructs showed that induction by C + K was mediated primarily by Nrf2 and required the presence of an antioxidant response element in the 5'-upstream region of the gene. Luciferase reporter activity did not increase following treatment of MEFs with 100 {mu}mol/l furan, suggesting that this ring structure within C + K is insufficient for gene induction. Priming of nrf2{sup +/+} MEFs, but not nrf2{sup -/-} MEFs, with C + K conferred 2-fold resistance towards acrolein.

  14. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response.

    PubMed Central

    Wakao, H; Gouilleux, F; Groner, B

    1994-01-01

    Milk protein gene expression in mammary epithelial cells is regulated by the action of the lactogenic hormones insulin, glucocorticoids and prolactin. The mammary gland factor, MGF, has been shown to be a central mediator in the lactogenic hormone response. The DNA binding activity of MGF is hormonally regulated and essential for beta-casein promoter activity. We have used Red A Sepharose- and sequence-specific DNA affinity chromatography to purify MGF from mammary gland tissue of lactating sheep. Proteins of 84 and 92 kDa were obtained, proteolytically digested and the resulting peptides separated by reverse phase high pressure liquid chromatography. The 84 and 92 kDa proteins yielded very similar peptide patterns. The amino acid sequence of two peptides was determined. The sequence information was used to derive oligonucleotide probes. A cDNA library from the mRNA of mammary gland tissue of lactating sheep was screened and a molecular clone encoding MGF was isolated. MGF consists of 734 amino acids and has sequence homology with the 113 (Stat113) and 91 kDa (Stat91) components of ISGF3, transcription factors which are signal transducers of IFN-alpha/beta and IFN-gamma. Two species of MGF mRNA of 6.5 and 4.5 kb were detected in mammary gland tissue of lactating sheep. Lower mRNA expression was found in ovary, thymus, spleen, kidney, lung, muscle and the adrenal gland. MGF cDNA was incorporated into a eukaryotic expression vector and cotransfected with a vector encoding the long form of the prolactin receptor into COS cells. A strong MGF-specific bandshift was obtained with nuclear extracts of COS cells induced with prolactin. Treatment of activated MGF with a tyrosine-specific protein phosphatase resulted in the loss of DNA binding activity. Prolactin-dependent transactivation of a beta-casein promoter-luciferase reporter gene construct was observed in transfected cells. Images PMID:7514531

  15. FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro

    SciTech Connect

    Ishino, Ruri; Minami, Kaori; Tanaka, Satowa; Nagai, Mami; Matsui, Keiji; Hasegawa, Natsumi; Roeder, Robert G.; Asano, Shigetaka; Ito, Mitsuhiro

    2013-10-11

    Highlights: •FGF7 is downregulated in MED1-deficient mesenchymal cells. •FGF7 produced by mesenchymal stromal cells is a novel hematopoietic niche molecule. •FGF7 supports hematopoietic progenitor cells and niche-dependent leukemia cells. •FGF7 activates FGFR2IIIb of bone marrow stromal cells in an autocrine manner. •FGF7 indirectly acts on hematopoietic cells lacking FGFR2IIIb via stromal cells. -- Abstract: FGF1 and FGF2 support hematopoietic stem and progenitor cells (HSPCs) under stress conditions. In this study, we show that fibroblast growth factor (FGF7) may be a novel niche factor for HSPC support and leukemic growth. FGF7 expression was attenuated in mouse embryonic fibroblasts (MEFs) deficient for the MED1 subunit of the Mediator transcriptional coregulator complex. When normal mouse bone marrow (BM) cells were cocultured with Med1{sup +/+} MEFs or BM stromal cells in the presence of anti-FGF7 antibody, the growth of BM cells and the number of long-time culture-initiating cells (LTC-ICs) decreased significantly. Anti-FGF7 antibody also attenuated the proliferation and cobblestone formation of MB1 stromal cell-dependent myeloblastoma cells. The addition of recombinant FGF7 to the coculture of BM cells and Med1{sup −/−} MEFs increased BM cells and LTC-ICs. FGF7 and its cognate receptor, FGFR2IIIb, were undetectable in BM cells, but MEFs and BM stromal cells expressed both. FGF7 activated downstream targets of FGFR2IIIb in Med1{sup +/+} and Med1{sup −/−} MEFs and BM stromal cells. Taken together, we propose that FGF7 supports HSPCs and leukemia-initiating cells indirectly via FGFR2IIIb expressed on stromal cells.

  16. Tissue microarrays characterise the clinical significance of a VEGF-A protein expression signature in gastrointestinal stromal tumours

    PubMed Central

    Salto-Tellez, M; Nga, M E; Han, H C; Wong, A S-C; Lee, C K; Anuar, D; Ng, S S; Ho, M; Wee, A; Chan, Y H; Soong, R

    2007-01-01

    A tissue microarray analysis of 22 proteins in gastrointestinal stromal tumours (GIST), followed by an unsupervised, hierarchical monothetic cluster statistical analysis of the results, allowed us to detect a vascular endothelial growth factor (VEGF) protein overexpression signature discriminator of prognosis in GIST, and discover novel VEGF-A DNA variants that may have functional significance. PMID:17299397

  17. Estrogen mediated epithelial proliferation in the uterus is directed by stromal Fgf10 and Bmp8a

    PubMed Central

    Chung, Daesuk; Gao, Fei; Jegga, Anil G.; Das, Sanjoy K.

    2014-01-01

    To define endometrial stromal-derived paracrine mediators that participate in estradiol-17β (E2)-induced epithelial proliferation, microarray analysis of gene expression was carried out in mouse uterine epithelial–stromal co-culture systems under the condition of E2 or vehicle (control). Our results demonstrated gene alteration by E2: in epithelial cells, we found up-regulation of 119 genes and down-regulation of 28 genes, while in stroma cells we found up-regulation of 144 genes and down-regulation of 184 genes. A functional enrichment analysis of the upregulated epithelial genes implicated them for proliferation, while upregulated stromal genes were associated with extracellular functions. Quantitative RT-PCR and in situ hybridization results confirmed differential gene expression in both cell cultures and ovariectomized uteri after the above treatments. Based on our identification of stromal secretory factors, we found evidence that suppression by siRNA specifically for Bmp8a and/or Fgf10 in the stromal layer caused significant inhibition of proliferation by E2 in the co-culture system, suggesting Bmp8a and Fgf10 act as paracrine mediators during E2-dependent control of uterine proliferation. The localization of receptors and receptor activation signaling in epithelial cells in both the co-culture system and uteri was consistent with their involvement in ligand–receptor signaling. Interestingly, loss of Bmp8a or Fgf10 also caused abrogation of E2-regulated epithelial receptor signaling in co-culture systems, suggesting that stroma-derived Fgf10 and Bmp8a are responsible for epithelial communication. Overall, stromal Fgf10 and Bmp8a serve as potential paracrine factors for E2-dependent regulation of epithelial proliferation in the uterus. PMID:25451979

  18. Pseudoangiomatous Stromal Hyperplasia: A Rare Cause of Idiopathic Gigantomastia

    PubMed Central

    Roy, Mélissa; Lee, James; Aldekhayel, Salah

    2015-01-01

    Summary: Gigantomastia remains a rare clinical diagnosis with significant physical and psychological impacts on patients. We present the case of a 40-year-old woman with idiopathic breast enlargement. Further histological analysis of the breast tissue revealed pseudoangiomatous stromal hyperplasia. This is the first reported case of diffuse breast enlargement resulting from pseudoangiomatous stromal hyperplasia. PMID:26495214

  19. Pseudoangiomatous Stromal Hyperplasia: A Rare Cause of Idiopathic Gigantomastia.

    PubMed

    Roy, Mélissa; Lee, James; Aldekhayel, Salah; Dionisopoulos, Tassos

    2015-09-01

    Gigantomastia remains a rare clinical diagnosis with significant physical and psychological impacts on patients. We present the case of a 40-year-old woman with idiopathic breast enlargement. Further histological analysis of the breast tissue revealed pseudoangiomatous stromal hyperplasia. This is the first reported case of diffuse breast enlargement resulting from pseudoangiomatous stromal hyperplasia. PMID:26495214

  20. Microbicides 2006 conference

    PubMed Central

    Ramjee, Gita; Shattock, Robin; Delany, Sinead; McGowan, Ian; Morar, Neetha; Gottemoeller, Megan

    2006-01-01

    Current HIV/AIDS statistics show that women account for almost 60% of HIV infections in Sub-Saharan Africa. HIV prevention tools such as male and female condoms, abstinence and monogamy are not always feasible options for women due to various socio-economic and cultural factors. Microbicides are products designed to be inserted in the vagina or rectum prior to sex to prevent HIV acquisition. The biannual Microbicides conference took place in Cape Town, South Africa from 23–26 April 2006. The conference was held for the first time on the African continent, the region worst affected by the HIV/AIDS pandemic. The conference brought together a record number of 1,300 scientists, researchers, policy makers, healthcare workers, communities and advocates. The conference provided an opportunity for an update on microbicide research and development as well as discussions around key issues such as ethics, acceptability, access and community involvement. This report discusses the current status of microbicide research and development, encompassing basic and clinical science, social and behavioural science, and community mobilisation and advocacy activities. PMID:17038196

  1. Modeling Stromal-Epithelial Interactions in Disease Progression

    PubMed Central

    Strand, Douglas W.; Hayward, Simon W.

    2014-01-01

    The role of tumor stroma in progression to malignancy has become the subject of intense experimental and clinical interest. The stromal compartment of organs is composed of all the non-epithelial cell types and maintains the proper architecture and nutrient levels required for epithelial and, ultimately, organ function. The composition of the reactive stroma surrounding tumors is vastly different from normal stromal tissue. Stromal phenotype can be correlated with, and predictive of, disease recurrence. In addition, the stroma is now seen as a legitimate target for therapeutic intervention. Although much has been learned about the role of the stromal compartment in development and disease in recent years, a number of key questions remain. Here we review how some of these questions are beginning to be addressed using new models of stromal-epithelial interaction. PMID:20587339

  2. Stromal cell contribution to human follicular lymphoma pathogenesis.

    PubMed

    Mourcin, Frédéric; Pangault, Céline; Amin-Ali, Rada; Amé-Thomas, Patricia; Tarte, Karin

    2012-01-01

    Follicular lymphoma (FL) is the prototypical model of indolent B cell lymphoma displaying a strong dependence on a specialized cell microenvironment mimicking normal germinal center. Within malignant cell niches in invaded lymph nodes and bone marrow, external stimuli provided by infiltrating stromal cells make a pivotal contribution to disease development, progression, and drug resistance. The crosstalk between FL B cells and stromal cells is bidirectional, causing activation of both partners. In agreement, FL stromal cells exhibit specific phenotypic, transcriptomic, and functional properties. This review highlights the critical pathways involved in the direct tumor-promoting activity of stromal cells but also their role in the organization of FL cell niche through the recruitment of accessory immune cells and their polarization to a B cell supportive phenotype. Finally, deciphering the interplay between stromal cells and FL cells provides potential new therapeutic targets with the aim to mobilize malignant cells outside their protective microenvironment and increase their sensitivity to conventional treatment. PMID:22973275

  3. Combined Therapy of Gastrointestinal Stromal Tumors.

    PubMed

    Rutkowski, Piotr; Hompes, Daphne

    2016-10-01

    Radical surgery is the mainstay of therapy for primary resectable, localized gastrointestinal stromal tumors (GIST). Nevertheless, approximately 40% to 50% of patients with potentially curative resections develop recurrent or metastatic disease. The introduction of imatinib mesylate has revolutionized the therapy of advanced (inoperable and/or metastatic) GIST and has become the standard of care in treatment of patients with advanced GIST. This article discusses the proper selection of candidates for adjuvant and neoadjuvant treatment in locally advanced GIST, exploring the available evidence behind the combination of preoperative imatinib and surgery. PMID:27591496

  4. Stromal cells can contribute oncogenic signals

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.

    2001-01-01

    The majority of studies of neoplastic transformation have focused attention on events that occur within transformed cells. These cell autonomous events result in the disruption of molecular pathways that regulate basic activities of the cells such as proliferation, death, movement and genomic integrity. Other studies have addressed the microenvironment of tumor cells and documented its importance in supporting tumor progression. Recent work has begun to expand on these initial studies of tumor microenvironment and now provide novel insights into the possible initiation and progression of malignant cells. This review will address the transforming effect of stromal cells on epithelial components. Copyright 2001 Academic Press.

  5. Bone morphogenetic protein 2 (bmp2) and krüppel-like factor 9 (klf9) cross-regulation in uterine stromal cells promotes timing of uterine endometrial receptivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our laboratory has identified a novel progesterone receptor (PGR) co-activator protein, designated Krüppel-like Factor 9 (KLF9), whose absence in mice is associated with subfertility with decreased number of implanting embryos due to altered patterns of proliferation, apoptosis and aberrant P-respon...

  6. Next conference

    NASA Astrophysics Data System (ADS)

    Hexemer, Alexander; Toney, Michael F.

    2010-11-01

    After the successful conference on Synchrotron Radiation in Polymer Science (SRPS) in Rolduc Abbey (the Netherlands), we are now looking forward to the next meeting in this topical series started in 1995 by H G Zachmann, one of the pioneers of the use of synchrotron radiation techniques in polymer science. Earlier meetings were held in Hamburg (1995), Sheffield (2002), Kyoto (2006), and Rolduc (2009). In September of 2012 the Synchrotron Radiation and Polymer Science V conferences will be organized in a joint effort by the SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory. Stanford Linear Accelerator Laboratory Stanford Linear Accelerator Laboratory Advanced Light Source at LBL Advanced Light Source at LBL The conference will be organised in the heart of beautiful San Francisco. The program will consist of invited and contributed lectures divided in sessions on the use of synchrotron SAXS/WAXD, imaging and tomography, soft x-rays, x-ray spectroscopy, GISAXS and reflectivity, micro-beams and hyphenated techniques in polymer science. Poster contributions are more than welcome and will be highlighted during the poster sessions. Visits to both SLAC as well as LBL will be organised. San Francisco can easily be reached. It is served by two major international airports San Francisco International Airport and Oakland International Airport. Both are being served by most major airlines with easy connections to Europe and Asia as well as national destinations. Both also boast excellent connections to San Francisco city centre. We are looking forward to seeing you in the vibrant city by the Bay in September 2012. Golden gate bridge Alexander Hexemer Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, CA 94720, USA Michael F Toney Stanford Synchrotron Radiation Lightsource, Menlo Pk, CA 94025, USA E-mail: ahexemer@lbl.gov, mftoney@slac.stanford.edu

  7. Could cancer and infection be adverse effects of mesenchymal stromal cell therapy?

    PubMed Central

    Arango-Rodriguez, Martha L; Ezquer, Fernando; Ezquer, Marcelo; Conget, Paulette

    2015-01-01

    Multipotent mesenchymal stromal cells [also referred to as mesenchymal stem cells (MSCs)] are a heterogeneous subset of stromal cells. They can be isolated from bone marrow and many other types of tissue. MSCs are currently being tested for therapeutic purposes (i.e., improving hematopoietic stem cell engraftment, managing inflammatory diseases and regenerating damaged organs). Their tropism for tumors and inflamed sites and their context-dependent potential for producing trophic and immunomodulatory factors raises the question as to whether MSCs promote cancer and/or infection. This article reviews the effect of MSCs on tumor establishment, growth and metastasis and also susceptibility to infection and its progression. Data published to date shows a paradoxical effect regarding MSCs, which seems to depend on isolation and expansion, cells source and dose and the route and timing of administration. Cancer and infection may thus be adverse or therapeutic effects arising form MSC administration. PMID:25815124

  8. Conferences revisited

    NASA Astrophysics Data System (ADS)

    Radcliffe, Jonathan

    2008-08-01

    Way back in the mid-1990s, as a young PhD student, I wrote a Lateral Thoughts article about my first experience of an academic conference (Physics World 1994 October p80). It was a peach of a trip - most of the lab decamped to Grenoble for a week of great weather, beautiful scenery and, of course, the physics. A whole new community was there for me to see in action, and the internationality of it all helped us to forget about England's non-appearance in the 1994 World Cup finals.

  9. Conference Summary

    NASA Technical Reports Server (NTRS)

    Harrington, James, Jr.; Thomas, Valerie

    2000-01-01

    The MU-SPIN conference focused on showcasing successful experiences with information technology to enhance faculty and student development in areas of scientific and technical research and education. And it provided a forum for discussing increased participation of MU-SPIN schools in NASA Flight Missions and NASA Educational and Public Outreach activities. Opportunities for Involvement sessions focused on Space Science, Earth Science, Education, and Aeronautics. These sessions provided insight into the missions of NASA's enterprises and NASA's Education program. Presentations by NASA scientists, university Principal Investigators, and other affiliates addressed key issues for increased minority involvement.

  10. The Role of the Transcriptional Regulation of Stromal Cells in Chronic Inflammation

    PubMed Central

    Valin, Alvaro; Pablos, José L.

    2015-01-01

    Chronic inflammation is a common process connecting pathologies that vary in their etiology and pathogenesis such as cancer, autoimmune diseases, and infections. The response of the immune system to tissue damage involves a carefully choreographed series of cellular interactions between immune and non-immune cells. In recent years, it has become clear that stromal resident cells have an essential role perpetuating the inflammatory environment and dictating in many cases the outcome of inflammatory based pathologies. Signal transduction pathways remain the main focus of study to understand how stimuli contribute to perpetuating the inflammatory response, mainly due to their potential role as therapeutic targets. However, molecular events orchestrated in the nucleus by transcription factors add additional levels of complexity and may be equally important for understanding the phenotypic differences of activated stromal components during the chronic inflammatory process. In this review, we focus on the contribution of transcription factors to the selective regulation of inducible proinflammatory genes, with special attention given to the regulation of the stromal fibroblastic cell function and response. PMID:26501341

  11. Ezrin expression in stromal cells of capillary hemangioblastoma. An immunohistochemical survey of brain tumors.

    PubMed Central

    Böhling, T.; Turunen, O.; Jääskeläinen, J.; Carpen, O.; Sainio, M.; Wahlström, T.; Vaheri, A.; Haltia, M.

    1996-01-01

    Ezrin is a cytoskeleton-associated protein that appears to link actin filaments to the plasma membrane. Immunocytochemical studies suggest that ezrin is expressed in epithelial cells but not in mesenchymal cells. In addition, ezrin is expressed by certain epithelial tumors, such as renal cell adenocarcinomas. Ezrin serves as a tyrosine kinase substrate, and is phosphorylated in epidermal growth factor-stimulated cells. Ezrin may thus mediate regulatory signals in different cell functions. We studied the distribution of ezrin in 104 cases of primary tumors of the central nervous system (CNS) by immunocytochemistry. Special interest was focused on capillary hemangioblastoma, owing to its resemblance to renal cell adenocarcinoma, and on malignant gliomas, owing to their frequent epidermal growth factor receptor amplification. The stromal cells of hemangioblastomas were found to be strongly positive for ezrin. No expression was detected in gliomas and, except for hemangioblastomas, ezrin expression was restricted to those few CNS tumors that show epithelial differentiation, ie, choroid plexus papillomas, craniopharyngiomas, ependymomas, and cysts. The diffuse cytoplasmic expression of ezrin in the stromal cells of capillary hemangioblastoma may indicate that stromal cells overexpress ezrin or express ezrin with deficient binding properties. Images Figure 1 Figure 2 PMID:8579099

  12. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis.

    PubMed

    Aharoni, Asaph; Dixit, Shital; Jetter, Reinhard; Thoenes, Eveline; van Arkel, Gert; Pereira, Andy

    2004-09-01

    The interface between plants and the environment plays a dual role as a protective barrier as well as a medium for the exchange of gases, water, and nutrients. The primary aerial plant surfaces are covered by a cuticle, acting as the essential permeability barrier toward the atmosphere. It is a heterogeneous layer composed mainly of lipids, namely cutin and intracuticular wax with epicuticular waxes deposited on the surface. We identified an Arabidopsis thaliana activation tag gain-of-function mutant shine (shn) that displayed a brilliant, shiny green leaf surface with increased cuticular wax compared with the leaves of wild-type plants. The gene responsible for the phenotype encodes one member of a clade of three proteins of undisclosed function, belonging to the plant-specific family of AP2/EREBP transcription factors. Overexpression of all three SHN clade genes conferred a phenotype similar to that of the original shn mutant. Biochemically, such plants were altered in wax composition (very long fatty acid derivatives). Total cuticular wax levels were increased sixfold in shn compared with the wild type, mainly because of a ninefold increase in alkanes that comprised approximately half of the total waxes in the mutant. Chlorophyll leaching assays and fresh weight loss experiments indicated that overexpression of the SHN genes increased cuticle permeability, probably because of changes in its ultrastructure. Likewise, SHN gene overexpression altered leaf and petal epidermal cell structure, trichome number, and branching as well as the stomatal index. Interestingly, SHN overexpressors displayed significant drought tolerance and recovery, probably related to the reduced stomatal density. Expression analysis using promoter-beta-glucuronidase fusions of the SHN genes provides evidence for the role of the SHN clade in plant protective layers, such as those formed during abscission, dehiscence, wounding, tissue strengthening, and the cuticle. We propose that these

  13. The Tumor-Associated Glycosyltransferase ST6Gal-I Regulates Stem Cell Transcription Factors and Confers a Cancer Stem Cell Phenotype.

    PubMed

    Schultz, Matthew J; Holdbrooks, Andrew T; Chakraborty, Asmi; Grizzle, William E; Landen, Charles N; Buchsbaum, Donald J; Conner, Michael G; Arend, Rebecca C; Yoon, Karina J; Klug, Christopher A; Bullard, Daniel C; Kesterson, Robert A; Oliver, Patsy G; O'Connor, Amber K; Yoder, Bradley K; Bellis, Susan L

    2016-07-01

    The glycosyltransferase ST6Gal-I, which adds α2-6-linked sialic acids to substrate glycoproteins, has been implicated in carcinogenesis; however, the nature of its pathogenic role remains poorly understood. Here we show that ST6Gal-I is upregulated in ovarian and pancreatic carcinomas, enriched in metastatic tumors, and associated with reduced patient survival. Notably, ST6Gal-I upregulation in cancer cells conferred hallmark cancer stem-like cell (CSC) characteristics. Modulating ST6Gal-I expression in pancreatic and ovarian cancer cells directly altered CSC spheroid growth, and clonal variants with high ST6Gal-I activity preferentially survived in CSC culture. Primary ovarian cancer cells from patient ascites or solid tumors sorted for α2-6 sialylation grew as spheroids, while cells lacking α2-6 sialylation remained as single cells and lost viability. ST6Gal-I also promoted resistance to gemcitabine and enabled the formation of stably resistant colonies. Gemcitabine treatment of patient-derived xenograft tumors enriched for ST6Gal-I-expressing cells relative to pair-matched untreated tumors. ST6Gal-I also augmented tumor-initiating potential. In limiting dilution assays, subcutaneous tumor formation was inhibited by ST6Gal-I knockdown, whereas in a chemically induced tumor initiation model, mice with conditional ST6Gal-I overexpression exhibited enhanced tumorigenesis. Finally, we found that ST6Gal-I induced expression of the key tumor-promoting transcription factors, Sox9 and Slug. Collectively, this work highlighted a previously unrecognized role for a specific glycosyltransferase in driving a CSC state. Cancer Res; 76(13); 3978-88. ©2016 AACR. PMID:27216178

  14. Benign Mesenchymal Stromal Cells in Human Sarcomas

    PubMed Central

    Morozov, Alexei; Downey, Robert J.; Healey, John; Moreira, Andre L.; Lou, Emil; Leung, Roland; Edgar, Mark; Singer, Samuel; LaQuaglia, Michael; Maki, Robert G.; Moore, Malcolm A.S.

    2010-01-01

    Purpose Recent evidence suggests that at least some sarcomas arise through aberrant differentiation of mesenchymal stromal cells (MSCs), but MSCs have never been isolated directly from human sarcoma specimens. Experimental Design We examined human sarcoma cell lines and primary adherent cultures derived from human sarcoma surgical samples for features of MSCs. We further characterized primary cultures as either benign or malignant by the presence of tumor-defining genetic lesions and tumor formation in immunocompromised mice. Results We show that a dedifferentiated liposarcoma cell line DDLS8817 demonstrates fat, bone and cartilage trilineage differentiation potential characteristic of MSCs. Primary sarcoma cultures have the morphology, surface immunophenotype and differentiation potential characteristic of MSCs. Surprisingly, many of these cultures are benign as they do not form tumors in mice and lack sarcoma-defining genetic lesions. Consistent with the recently proposed pericyte origin of MSCs in normal human tissues, sarcoma-derived benign MSCs express markers of pericytes and cooperate with endothelial cells in tube formation assays. In human sarcoma specimens, a subset of CD146-positive microvascular pericytes express CD105, an MSC marker, while malignant cells largely do not. In an in vitro co-culture model, sarcoma-derived benign MSCs as well as normal human pericytes markedly stimulate the growth of sarcoma cell lines. Conclusions Sarcoma-derived benign MSCs/pericytes represent a previously undescribed stromal cell type in sarcoma which may contribute to tumor formation. PMID:21138865

  15. Fibroblast Activation Protein Expression by Stromal Cells and Tumor-Associated Macrophages in Human Breast Cancer

    PubMed Central

    Julia, Tchou; Zhang Paul, J; Yingtao, Bi; Celine, Satija; Rajrupa, Marjumdar; Stephen, TL; Lo, A; Haiying, Chen; Carolyn, Mies; June, Carl H; Jose, Conejo-Garcia; Ellen, Puré

    2013-01-01

    Summary Fibroblast activation protein (FAP) has long been known to be expressed in the stroma of breast cancer. However, very little is known if the magnitude of FAP expression within the stroma may have prognostic value and reflect the heterogeneous biology of the tumor cell. An earlier study had suggested that stromal FAP expression in breast cancer was inversely proportional to prognosis. We, therefore, hypothesized that stromal FAP expression may correlate with clinicopathologic variables and may serve as an adjunct prognostic factor in breast cancer. We evaluated the expression of FAP in a panel of breast cancer tissues (n=52) using a combination of immunostain analyses at the tissue and single cell level using freshly frozen or freshly digested human breast tumor samples respectively. Our results showed that FAP expression was abundantly expressed in the stroma across all breast cancer subtypes without significant correlation with clinicopathologic factors. We further identified a subset of FAP positive or FAP+ stromal cells that also expressed CD45, a pan-leukocyte marker. Using freshly dissociated human breast tumor specimens (n=5), we demonstrated that some of these FAP+ CD45+ cells were CD11b+CD14+MHC-II+ indicating that they were likely tumor associated macrophages (TAMs). Although FAP+CD45+ cells have been demonstrated in the mouse tumor stroma, our results demonstrating that human breast TAMs expressed FAP was novel and suggested that existing and future FAP directed therapy may have dual therapeutic benefits targeting both stromal mesenchymal cells and immune cells such as TAMs. More work is needed to explore the role of FAP as a potential targetable molecule in breast cancer treatment. PMID:24074532

  16. Mesenchymal Stromal Cells Expressing Heme Oxygenase-1 Reverse Pulmonary Hypertension

    PubMed Central

    Liang, Olin D.; Mitsialis, S. Alex; Chang, Mun Seog; Vergadi, Eleni; Lee, Changjin; Aslam, Muhammad; Fernandez-Gonzalez, Angeles; Liu, Xianlan; Baveja, Rajiv; Kourembanas, Stella

    2012-01-01

    Pulmonary arterial hypertension (PAH) remains a serious disease, and, while current treatments may prolong and improve quality of life, search for novel and effective therapies is warranted. Using genetically-modified mouse lines, we tested the ability of bone marrow-derived stromal cells (MSCs), to treat chronic hypoxia-induced PAH. Recipient mice were exposed for five weeks to normobaric hypoxia (8%–10% O2), MSC preparations were delivered through jugular vein injection and their effect on PAH was assessed after two additional weeks in hypoxia. Donor MSCs derived from wild-type (WT) mice or Heme Oxygenase-1 (HO-1) null mice (Hmox1KO) conferred partial protection from PAH when transplanted into WT or Hmox1KO recipients, whereas treatment with MSCs isolated from transgenic mice harboring a human HO-1 transgene under the control of surfactant protein C promoter (SHO1 line) reversed established disease in WT recipients. SH01-MSC treatment of Hmox1KO animals, which develop right ventricular (RV) infarction under prolonged hypoxia, resulted in normal RV systolic pressure, significant reduction of RV hypertrophy and prevention of RV infarction. Donor MSCs isolated from a bitransgenic mouse line with doxycycline-inducible, lung-specific expression of HO-1 exhibited similar therapeutic efficacy only upon doxycycline treatment of the recipients. In vitro experiments indicate that potential mechanisms of MSC action include modulation of hypoxia-induced lung inflammation and inhibition of smooth muscle cell proliferation. Cumulative, our results demonstrate that MSCs ameliorate chronic hypoxia – induced PAH and their efficacy is highly augmented by lung-specific HO-1 expression in the transplanted cells, suggesting an interplay between HO-1 dependent and HO-1 independent protective pathways. PMID:20957739

  17. The Conference Experience.

    ERIC Educational Resources Information Center

    Woolls, Blanche; Hartman, Linda; Corey, Linda; Marcoux, Betty; Jay, M. Ellen; England, Jennifer

    2003-01-01

    Includes five articles on conference experiences: preplanning for a library conference; top ten reasons to attend an AASL (American Association of School Librarians) national conference; why should you bother to fill out a conference evaluation form; a case for conferences; and AASL tours. (LRW)

  18. Influence of Ionizing Radiation on Stromal-Epithelial Communication in Esophageal Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Huff, Janice; Patel, Zarana; Grugan, Katharine; Rustgi, Anil; Cucinotta, Francis A.

    Esophageal cancer is the 6th leading cause of cancer death worldwide and is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. A connection with ionizing radiation exposure is revealed by the high excess relative risk for esophageal squamous cell carcinoma observed in the survivors of the atomic bomb detonations in Japan. Esophageal carcinomas are also seen as secondary malignancies in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely responsive to treatment. In normal epithelium, the stromal microenvironment is essential for the maintenance and modulation of cell growth and differentiation. Cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibrob-lasts (Okawa et al., Genes Dev. 2007. 21: 2788-2803). We examined how irradiation of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. These assays were conducted in modified Boyden chambers using conditioned media from irradiated fibroblasts. Our results using low LET gamma radiation showed a dose-dependent increase in migration of epithelial

  19. Decellularization of human stromal refractive lenticules for corneal tissue engineering.

    PubMed

    Yam, Gary Hin-Fai; Yusoff, Nur Zahirah Binte M; Goh, Tze-Wei; Setiawan, Melina; Lee, Xiao-Wen; Liu, Yu-Chi; Mehta, Jodhbir S

    2016-01-01

    Small incision lenticule extraction (SMILE) becomes a procedure to correct myopia. The extracted lenticule can be used for other clinical scenarios. To prepare for allogeneic implantation, lenticule decellularization with preserved optical property, stromal architecture and chemistry would be necessary. We evaluated different methods to decellularize thin human corneal stromal lenticules created by femtosecond laser. Treatment with 0.1% sodium dodecylsulfate (SDS) followed by extensive washes was the most efficient protocol to remove cellular and nuclear materials. Empty cell space was found inside the stroma, which displayed aligned collagen fibril architecture similar to native stroma. The SDS-based method was superior to other treatments with hyperosmotic 1.5 M sodium chloride, 0.1% Triton X-100 and nucleases (from 2 to 10 U/ml DNase and RNase) in preserving extracellular matrix content (collagens, glycoproteins and glycosaminoglycans). The stromal transparency and light transmittance was indifferent to untreated lenticules. In vitro recellularization showed that the SDS-treated lenticules supported corneal stromal fibroblast growth. In vivo re-implantation into a rabbit stromal pocket further revealed the safety and biocompatibility of SDS-decellularized lenticules without short- and long-term rejection risk. Our results concluded that femtosecond laser-derived human stromal lenticules decellularized by 0.1% SDS could generate a transplantable bioscaffold with native-like stromal architecture and chemistry. PMID:27210519

  20. Decellularization of human stromal refractive lenticules for corneal tissue engineering

    PubMed Central

    Yam, Gary Hin-Fai; Yusoff, Nur Zahirah Binte M.; Goh, Tze-Wei; Setiawan, Melina; Lee, Xiao-Wen; Liu, Yu-Chi; Mehta, Jodhbir S.

    2016-01-01

    Small incision lenticule extraction (SMILE) becomes a procedure to correct myopia. The extracted lenticule can be used for other clinical scenarios. To prepare for allogeneic implantation, lenticule decellularization with preserved optical property, stromal architecture and chemistry would be necessary. We evaluated different methods to decellularize thin human corneal stromal lenticules created by femtosecond laser. Treatment with 0.1% sodium dodecylsulfate (SDS) followed by extensive washes was the most efficient protocol to remove cellular and nuclear materials. Empty cell space was found inside the stroma, which displayed aligned collagen fibril architecture similar to native stroma. The SDS-based method was superior to other treatments with hyperosmotic 1.5 M sodium chloride, 0.1% Triton X-100 and nucleases (from 2 to 10 U/ml DNase and RNase) in preserving extracellular matrix content (collagens, glycoproteins and glycosaminoglycans). The stromal transparency and light transmittance was indifferent to untreated lenticules. In vitro recellularization showed that the SDS-treated lenticules supported corneal stromal fibroblast growth. In vivo re-implantation into a rabbit stromal pocket further revealed the safety and biocompatibility of SDS-decellularized lenticules without short- and long-term rejection risk. Our results concluded that femtosecond laser-derived human stromal lenticules decellularized by 0.1% SDS could generate a transplantable bioscaffold with native-like stromal architecture and chemistry. PMID:27210519

  1. State of the Art in the Treatment of Gastrointestinal Stromal Tumors

    PubMed Central

    Garlipp, Benjamin; Bruns, Christiane J.

    2014-01-01

    Background Gastrointestinal stromal tumors (GISTs) are the most frequently diagnosed mesenchymal neoplasms of the gastrointestinal tract. Despite their biological and clinical heterogeneity, the majority of these tumors are positive for the receptor tyrosine kinase KIT and are driven by KIT- or platelet-derived growth factor receptor alpha (PDGFRA)-activating mutations. There are still uncertainties regarding their clinical and molecular characterization and the optimal treatment regimens, making it difficult to establish a universal treatment algorithm for these tumors. Summary From a clinical perspective, the main difference between GISTs and other gastrointestinal neoplasms is that the benign or malignant behavior of GISTs cannot be predicted from histopathology, but instead relies on empirically established scoring systems. Clinical data suggest that malignant potential may be an inherent quality of some GISTs rather than a feature acquired by the tumor during disease progression. Thus, some patients may require prolonged anti-tumor treatment even after complete surgical removal of the tumor. Key Message Although GISTs are the most frequently occurring mesenchymal neoplasms in the gastrointestinal tract, no universal treatment algorithms exist. This paper reviews the current evidence that guides the management of GISTs. Practical Implications The management of localized GISTs involves the use of surgical resection, with the inclusion of preoperative tyrosine kinase inhibitor treatment for locally advanced, primarily unresectable tumors and for resectable cases requiring extensive surgery. Imatinib is also indicated as adjuvant therapy after complete surgical removal of GISTs with a high estimated risk of recurrence unless specific mutations conferring imatinib resistance are present. The optimal duration of adjuvant treatment is still controversial. For patients with metastatic imatinib-sensitive GISTs, imatinib constitutes the first-line standard treatment

  2. Immunological hallmarks of stromal cells in the tumour microenvironment.

    PubMed

    Turley, Shannon J; Cremasco, Viviana; Astarita, Jillian L

    2015-11-01

    A dynamic and mutualistic interaction between tumour cells and the surrounding stroma promotes the initiation, progression, metastasis and chemoresistance of solid tumours. Far less understood is the relationship between the stroma and tumour-infiltrating leukocytes; however, emerging evidence suggests that the stromal compartment can shape antitumour immunity and responsiveness to immunotherapy. Thus, there is growing interest in elucidating the immunomodulatory roles of the stroma that evolve within the tumour microenvironment. In this Review, we discuss the evidence that stromal determinants interact with leukocytes and influence antitumour immunity, with emphasis on the immunological attributes of stromal cells that may foster their protumorigenic function. PMID:26471778

  3. Prostate stromal cell proteomics analysis discriminates normal from tumour reactive stromal phenotypes

    PubMed Central

    Webber, Jason P.; Spary, Lisa K.; Mason, Malcolm D.; Tabi, Zsuzsanna; Brewis, Ian A.; Clayton, Aled

    2016-01-01

    Changes within interstitial stromal compartments often accompany carcinogenesis, and this is true of prostate cancer. Typically, the tissue becomes populated by myofibroblasts that can promote progression. Not all myofibroblasts exhibit the same negative influence, however, and identifying the aggressive form of myofibroblast may provide useful information at diagnosis. A means of molecularly defining such myofibroblasts is unknown. We compared protein profiles of normal and diseased stroma isolated from prostate cancer patients to identify discriminating hallmarks of disease-associated stroma. We included the stimulation of normal stromal cells with known myofibroblast inducers namely soluble TGFβ and exosome-associated-TGFβ and compared the function and protein profiles arising. In all 6-patients examined, diseased stroma exhibited a pro-angiogenic influence on endothelial cells, generating large multicellular vessel-like structures. Identical structures were apparent following stimulation of normal stroma with exosomes (5/6 patients), but TGFβ-stimulation generated a non-angiogenic stroma. Proteomics highlighted disease-related cytoskeleton alterations such as elevated Transgelin (TAGLN). Many of these were also changed following TGFβ or exosome stimulation and did not well discriminate the nature of the stimulus. Soluble TGFβ, however triggered differential expression of proteins related to mitochondrial function including voltage dependent ion channels VDAC1 and 2, and this was not found in the other stromal types studied. Surprisingly, Aldehyde Dehydrogenase (ALDH1A1), a stem-cell associated protein was detected in normal stromal cells and found to decrease in disease. In summary, we have discovered a set of proteins that contribute to defining disease-associated myofibroblasts, and emphasise the similarity between exosome-generated myofibroblasts and those naturally arising in situ. PMID:26934553

  4. Staphylococcus aureus Blepharitis Associated with Multiple Corneal Stromal Microabscess, Stromal Edema, and Uveitis.

    PubMed

    Boto-de-los-Bueis, Ana; del Hierro Zarzuelo, Almudena; García Perea, Adela; de Pablos, Manuela; Pastora, Natalia; Noval, Susana

    2015-04-01

    We report a case of an immunocompetent woman with atypical marginal keratitis. She presented with recurrent episodes of multiples microabscess distributed in a triangular pattern associated with stromal oedema and anterior chamber uveitis, affecting both eyes, but not simultaneously. The episodes responded to steroid drops, corneal inflammation was coincidental with a worsening of her blepharitis in the affected eye and S. aureus was isolated from the lids. PMID:24410378

  5. Equine Metabolic Syndrome Affects Viability, Senescence, and Stress Factors of Equine Adipose-Derived Mesenchymal Stromal Stem Cells: New Insight into EqASCs Isolated from EMS Horses in the Context of Their Aging

    PubMed Central

    Marycz, Krzysztof; Kornicka, Katarzyna; Basinska, Katarzyna; Czyrek, Aleksandra

    2016-01-01

    Currently, equine metabolic syndrome (EMS), an endocrine disease linked to insulin resistance, affects an increasing number of horses. However, little is known about the effect of EMS on mesenchymal stem cells that reside in adipose tissue (ASC). Thus it is crucial to evaluate the viability and growth kinetics of these cells, particularly in terms of their application in regenerative medicine. In this study, we investigated the proliferative capacity, morphological features, and accumulation of oxidative stress factors in mesenchymal stem cells isolated from healthy animals (ASCN) and horses suffering from EMS (ASCEMS). ASCEMS displayed senescent phenotype associated with β-galactosidase accumulation, enlarged cell bodies and nuclei, increased apoptosis, and reduced heterochromatin architecture. Moreover, we observed increased amounts of nitric oxide (NO) and reactive oxygen species (ROS) in these cells, accompanied by reduced superoxide dismutase (SOD) activity. We also found in ASCEMS an elevated number of impaired mitochondria, characterized by membrane raptures, disarrayed cristae, and vacuole formation. Our results suggest that the toxic compounds, accumulating in the mitochondria under oxidative stress, lead to alternations in their morphology and may be partially responsible for the senescent phenotype and decreased proliferation potential of ASCEMS. PMID:26682006

  6. [Gastrointestinal stromal tumors. A case of small intestine stromal tumor (SIST) with an uncertain biological aspect].

    PubMed

    Quaglino, F; Borello, M; Cumbo, P; Pietribiasi, F; Poma, A; Seglie, E; Do, D

    2000-05-01

    Tumors of the small intestine are relatively rare. The diagnosis is difficult to establish because the symptoms are vague and non-specific. Although the small intestine constitutes 75% of the length and over 90% of the mucosal surface area of the gastrointestinal tract, only 1 to 2% of gastrointestinal malignancies occur in this segment. Metastases are usually present at the time of diagnosis. The outcome of these patients can be improved if the possibility of a malignant small bowel tumor is considered in all cases of unexplained abdominal pain or gastrointestinal bleeding, especially in younger age. Malignant tumors occur with increasing frequency in distal small bowel with a preponderance of malignant lesions in the ileum compared with the jejunum and the duodenum. Adenocarcinoma is the most common tumor of the primary malignant small bowel tumors, followed by carcinoid, lymphoma and leiomyosarcoma. Mesenchymal tumors of the gastrointestinal tract, traditionally regarded as smooth muscle tumors, have demonstrated different cellular differentiations based on immunohistochemical and ultrastructural features. Therefore the terms leiomyoma and leiomyosarcoma have been replaced by a more encompassing term, gastrointestinal stromal tumor (GIST). The majority of GISTs occurs in the stomach; stromal tumors involving the small intestine (SISTs) are far less common but seem to have greater malignant potential. The clinical a case of a small intestinal stromal tumor (SIST), localised in the jejunum and characterised by an uncertain histological aspect, is presented and a review of the literature is made. PMID:10953571

  7. Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis

    SciTech Connect

    Balduino, Alex; Mello-Coelho, Valeria; Wang, Zhou; Taichman, Russell S.; Krebsbach, Paul H.; Weeraratna, Ashani T.; Becker, Kevin G.; Mello, Wallace de; Taub, Dennis D.; Borojevic, Radovan

    2012-11-15

    In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromal populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the 'quiescent' and 'proliferative' niches in which hematopoietic stem cells and progenitors reside.

  8. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes.

    PubMed

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment. PMID:27272504

  9. Histological Study of Bone Marrow and Umbilical Cord Stromal Cell Transplantation in Regenerating Rat Peripheral Nerve

    PubMed Central

    Zarbakhsh, Sam; Goudarzi, Nasim; Shirmohammadi, Maryam; Safari, Manouchehr

    2016-01-01

    Objective Bone marrow and umbilical cord stromal cells are multipotential stem cells that have the ability to produce growth factors that play an important role in survival and generation of axons. The goal of this study was to evaluate the effects of the two different mesenchymal stem cells on peripheral nerve regeneration. Materials and Methods In this experimental study, a 10 mm segment of the left sciatic nerve of male Wistar rats (250-300 g) was removed with a silicone tube interposed into this nerve gap. Bone marrow stromal cells (BMSCs) and human umbilical cord stromal cells (HUCSCs) were respectively obtained from rat and human. The cells were sepa- rately cultured and transplanted into the nerve gap. The sciatic nerve regeneration was evaluated by immunohistochemistry, and light and electron microscopy. Moreover, histo- morphology of the gastrocnemius muscle was observed. Results The nerve regeneration in the BMSCs and HUCSCs groups that had received the stem cells was significantly more favorable than the control group. In addition, the BM- SCs group was significantly more favorable than the HUCSCs group (P<0.05). Conclusion The results of this study suggest that both homograft BMSCs and het- erograft HUCSCs may have the potential to regenerate peripheral nerve injury and transplantation of BMSCs may be more effective than HUCSCs in rat. PMID:26862526

  10. Loss of stromal JUNB does not affect tumor growth and angiogenesis.

    PubMed

    Braun, Jennifer; Strittmatter, Karin; Nübel, Tobias; Komljenovic, Dorde; Sator-Schmitt, Melanie; Bäuerle, Tobias; Angel, Peter; Schorpp-Kistner, Marina

    2014-03-15

    The transcription factor AP-1 subunit JUNB has been shown to play a pivotal role in angiogenesis. It positively controls angiogenesis by regulating Vegfa as well as the transcriptional regulator Cbfb and its target Mmp13. In line with these findings, it has been demonstrated that tumor cell-derived JUNB promotes tumor growth and angiogenesis. In contrast to JUNB's function in tumor cells, the role of host-derived stromal JUNB has not been elucidated so far. Here, we show that ablation of Junb in stromal cells including endothelial cells (ECs), vascular smooth muscle cells (SMCs) and fibroblasts does not affect tumor growth in two different syngeneic mouse models, the B16-F1 melanoma and the Lewis lung carcinoma model. In-depth analyses of the tumors revealed that tumor angiogenesis remains unaffected as assessed by measurements of the microvascular density and relative blood volume in the tumor. Furthermore, we could show that the maturation status of the tumor vasculature, analyzed by the SMC marker expression, α-smooth muscle actin and Desmin, as well as the attachment of pericytes to the endothelium, is not changed upon ablation of Junb. Taken together, these results indicate that the pro-angiogenic functions of stromal JUNB are well compensated with regard to tumor angiogenesis and tumor growth. PMID:24027048

  11. Targeting Stromal-Cancer Cell Crosstalk Networks in Ovarian Cancer Treatment

    PubMed Central

    Yeung, Tsz-Lun; Leung, Cecilia S.; Li, Fuhai; Wong, Stephen T. C.; Mok, Samuel C.

    2016-01-01

    Ovarian cancer is a histologically, clinically, and molecularly diverse disease with a five-year survival rate of less than 30%. It has been estimated that approximately 21,980 new cases of epithelial ovarian cancer will be diagnosed and 14,270 deaths will occur in the United States in 2015, making it the most lethal gynecologic malignancy. Ovarian tumor tissue is composed of cancer cells and a collection of different stromal cells. There is increasing evidence that demonstrates that stromal involvement is important in ovarian cancer pathogenesis. Therefore, stroma-specific signaling pathways, stroma-derived factors, and genetic changes in the tumor stroma present unique opportunities for improving the diagnosis and treatment of ovarian cancer. Cancer-associated fibroblasts (CAFs) are one of the major components of the tumor stroma that have demonstrated supportive roles in tumor progression. In this review, we highlight various types of signaling crosstalk between ovarian cancer cells and stromal cells, particularly with CAFs. In addition to evaluating the importance of signaling crosstalk in ovarian cancer progression, we discuss approaches that can be used to target tumor-promoting signaling crosstalk and how these approaches can be translated into potential ovarian cancer treatment. PMID:26751490

  12. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes

    PubMed Central

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment. PMID:27272504

  13. RelB-Dependent Stromal Cells Promote T-Cell Leukemogenesis

    PubMed Central

    dos Santos, Nuno R.; Williame, Maryvonne; Gachet, Stéphanie; Cormier, Françoise; Janin, Anne; Weih, Debra; Weih, Falk; Ghysdael, Jacques

    2008-01-01

    Background The Rel/NF-κB transcription factors are often activated in solid or hematological malignancies. In most cases, NF-κB activation is found in malignant cells and results from activation of the canonical NF-κB pathway, leading to RelA and/or c-Rel activation. Recently, NF-κB activity in inflammatory cells infiltrating solid tumors has been shown to contribute to solid tumor initiation and progression. Noncanonical NF-κB activation, which leads to RelB activation, has also been reported in breast carcinoma, prostate cancer, and lymphoid leukemia. Methodology/Principal Findings Here we report a novel role for RelB in stromal cells that promote T-cell leukemogenesis. RelB deficiency delayed leukemia onset in the TEL-JAK2 transgenic mouse model of human T acute lymphoblastic leukemia. Bone marrow chimeric mouse experiments showed that RelB is not required in the hematopoietic compartment. In contrast, RelB plays a role in radio-resistant stromal cells to accelerate leukemia onset and increase disease severity. Conclusions/Significance The present results are the first to uncover a role for RelB in the crosstalk between non-hematopoietic stromal cells and leukemic cells. Thus, besides its previously reported role intrinsic to specific cancer cells, the noncanonical NF-κB pathway may also play a pro-oncogenic role in cancer microenvironmental cells. PMID:18596915

  14. Stromal Cells Positively and Negatively Modulate the Growth of Cancer Cells: Stimulation via the PGE2-TNFα-IL-6 Pathway and Inhibition via Secreted GAPDH-E-Cadherin Interaction

    PubMed Central

    Kawada, Manabu; Inoue, Hiroyuki; Ohba, Shun-ichi; Yoshida, Junjiro; Masuda, Tohru; Yamasaki, Manabu; Usami, Ihomi; Sakamoto, Shuichi; Abe, Hikaru; Watanabe, Takumi; Yamori, Takao; Shibasaki, Masakatsu; Nomoto, Akio

    2015-01-01

    Fibroblast-like stromal cells modulate cancer cells through secreted factors and adhesion, but those factors are not fully understood. Here, we have identified critical stromal factors that modulate cancer growth positively and negatively. Using a cell co-culture system, we found that gastric stromal cells secreted IL-6 as a growth and survival factor for gastric cancer cells. Moreover, gastric cancer cells secreted PGE2 and TNFα that stimulated IL-6 secretion by the stromal cells. Furthermore, we found that stromal cells secreted glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Extracellular GAPDH, or its N-terminal domain, inhibited gastric cancer cell growth, a finding confirmed in other cell systems. GAPDH bound to E-cadherin and downregulated the mTOR-p70S6 kinase pathway. These results demonstrate that stromal cells could regulate cancer cell growth through the balance of these secreted factors. We propose that negative regulation of cancer growth using GAPDH could be a new anti-cancer strategy. PMID:25785838

  15. Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization

    PubMed Central

    Zheng, Guoping; Ge, Menghua; Qiu, Guanguan; Shu, Qiang; Xu, Jianguo

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-α stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models. PMID:26257791

  16. Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization.

    PubMed

    Zheng, Guoping; Ge, Menghua; Qiu, Guanguan; Shu, Qiang; Xu, Jianguo

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-α stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models. PMID:26257791

  17. Management of Fibrosis: The Mesenchymal Stromal Cells Breakthrough

    PubMed Central

    Usunier, Benoît; Benderitter, Marc; Tamarat, Radia; Chapel, Alain

    2014-01-01

    Fibrosis is the endpoint of many chronic inflammatory diseases and is defined by an abnormal accumulation of extracellular matrix components. Despite its slow progression, it leads to organ malfunction. Fibrosis can affect almost any tissue. Due to its high frequency, in particular in the heart, lungs, liver, and kidneys, many studies have been conducted to find satisfactory treatments. Despite these efforts, current fibrosis management therapies either are insufficiently effective or induce severe adverse effects. In the light of these facts, innovative experimental therapies are being investigated. Among these, cell therapy is regarded as one of the best candidates. In particular, mesenchymal stromal cells (MSCs) have great potential in the treatment of inflammatory diseases. The value of their immunomodulatory effects and their ability to act on profibrotic factors such as oxidative stress, hypoxia, and the transforming growth factor-β1 pathway has already been highlighted in preclinical and clinical studies. Furthermore, their propensity to act depending on the microenvironment surrounding them enhances their curative properties. In this paper, we review a large range of studies addressing the use of MSCs in the treatment of fibrotic diseases. The results reported here suggest that MSCs have antifibrotic potential for several organs. PMID:25132856

  18. Stromal heparan sulfate differentiates neuroblasts to suppress neuroblastoma growth

    PubMed Central

    Knelson, Erik H.; Gaviglio, Angela L.; Nee, Jasmine C.; Starr, Mark D.; Nixon, Andrew B.; Marcus, Stephen G.; Blobe, Gerard C.

    2014-01-01

    Neuroblastoma prognosis is dependent on both the differentiation state and stromal content of the tumor. Neuroblastoma tumor stroma is thought to suppress neuroblast growth via release of soluble differentiating factors. Here, we identified critical growth-limiting components of the differentiating stroma secretome and designed a potential therapeutic strategy based on their central mechanism of action. We demonstrated that expression of heparan sulfate proteoglycans (HSPGs), including TβRIII, GPC1, GPC3, SDC3, and SDC4, is low in neuroblasts and high in the Schwannian stroma. Evaluation of neuroblastoma patient microarray data revealed an association between TGFBR3, GPC1, and SDC3 expression and improved prognosis. Treatment of neuroblastoma cell lines with soluble HSPGs promoted neuroblast differentiation via FGFR1 and ERK phosphorylation, leading to upregulation of the transcription factor inhibitor of DNA binding 1 (ID1). HSPGs also enhanced FGF2-dependent differentiation, and the anticoagulant heparin had a similar effect, leading to decreased neuroblast proliferation. Dissection of individual sulfation sites identified 2-O, 3-O-desulfated heparin (ODSH) as a differentiating agent, and treatment of orthotopic xenograft models with ODSH suppressed tumor growth and metastasis without anticoagulation. These studies support heparan sulfate signaling intermediates as prognostic and therapeutic neuroblastoma biomarkers and demonstrate that tumor stroma biology can inform the design of targeted molecular therapeutics. PMID:24937430

  19. Radiologic Differences between Bone Marrow Stromal and Hematopoietic Progenitor Cell Lines from Fanconi Anemia (Fancd2−/−) Mice

    PubMed Central

    Berhane, Hebist; Epperly, Michael W.; Goff, Julie; Kalash, Ronny; Cao, Shaonan; Franicola, Darcy; Zhang, Xichen; Shields, Donna; Houghton, Frank; Wang, Hong; Wipf, Peter; Parmar, Kalindi; Greenberger, Joel S.

    2014-01-01

    cell cycle arrest. The absence of the mouse Fancd2 gene product confers radiosensitivity to bone marrow stromal but not hematopoietic progenitor cells. PMID:24397476

  20. Radiologic differences between bone marrow stromal and hematopoietic progenitor cell lines from Fanconi Anemia (Fancd2(-/-)) mice.

    PubMed

    Berhane, Hebist; Epperly, Michael W; Goff, Julie; Kalash, Ronny; Cao, Shaonan; Franicola, Darcy; Zhang, Xichen; Shields, Donna; Houghton, Frank; Wang, Hong; Wipf, Peter; Parmar, Kalindi; Greenberger, Joel S

    2014-01-01

    arrest. The absence of the mouse Fancd2 gene product confers radiosensitivity to bone marrow stromal but not hematopoietic progenitor cells. PMID:24397476

  1. Oncogenic Ki-ras confers a more aggressive colon cancer phenotype through modification of transforming growth factor-beta receptor III.

    PubMed

    Yan, Z; Deng, X; Friedman, E

    2001-01-12

    Transforming growth factor-beta1 (TGF-beta1) can act as a tumor suppressor or a tumor promoter depending on the characteristics of the malignant cell. Each of three Ki-ras(G12V) transfectants of HD6-4 colon cancer cells had been shown to be more aggressive in vivo than controls in earlier studies (Yan, Z., Chen, M., Perucho, M., and Friedman, E. (1997) J. Biol. Chem. 272, 30928-30936). We now show that stable expression of oncogenic Ki-ras(G12V) converts the HD6-4 colon cancer cell line from insensitive to TGF-beta1 to growth-promoted by TGF-beta1. Each of three Ki-ras(G12V) transfectants responded to TGF-beta1 by an increase in proliferation and by decreasing the abundance of the Cdk inhibitor p21 and the tumor suppressor PTEN, whereas each of three wild-type Ki-ras transfectants remained unresponsive to TGF-beta1. The wild-type Ki-ras transfectants lack functional TGF-beta receptors, whereas all three Ki-ras(G12V) transfectants expressed functional TGF-beta receptors that bound (125)I-TGF-beta1. The previous studies showed that in cells with wild-type Ki-ras, TGF-beta receptors were not mutated, and receptor proteins were transported to the cell surface, but post-translational modification of TGF-beta receptor III (TbetaRIII) was incomplete. We now show that the betaglycan form of TbetaRIII is highly modified following translation when transiently expressed in Ki-ras(G12V) cells, whereas no such post-translational modification of TbetaRIII occurs in control cells. Antisense oligonucleotides directed to Ki-Ras decreased both TbetaRIII post-translational modification in Ki-ras(G12V) cells and TGF-beta1 down-regulation of p21, demonstrating the direct effect of mutant Ras. Therefore, one mechanism by which mutant Ki-Ras confers a more aggressive tumor phenotype is by enhancing TbetaRIII post-translational modification. PMID:11029459

  2. [Soft tissue sarcomas and gastrointestinal stromal tumors].

    PubMed

    Reichardt, P

    2016-03-01

    Soft tissue sarcomas are rare tumors that represent a major challenge due to varying clinical presentations and often interdisciplinary treatment concepts. Gold standard for the treatment of localized resectable soft tissue sarcomas is complete surgical removal. In metastatic soft tissue sarcoma, systemic therapy is the treatment of choice. The most active drugs are anthracyclines and ifosfamide. Combination chemotherapy has improved both response rate and progression-free survival at the cost of increased toxicity. Imatinib at a dose of 400 mg/day is the gold standard for patients with advanced or metastatic gastrointestinal stromal tumors (GIST). In patients with a mutation in KIT exon 9, 800 mg/day is the recommended dose. In imatinib refractory or intolerant patients, sunitinib is recommended. Regorafenib has been approved for third-line therapy. PMID:26907871

  3. Gastrointestinal Stromal Tumor: May Mimic Adnexal Mass

    PubMed Central

    Karaca, Nilay; Akpak, Yaşam Kemal; Tatar, Zeynep; Batmaz, Gonca; Erken, Aslihan

    2016-01-01

    Gastrointestinal stromal tumors (GISTs) are rare tumor of the gastrointestinal tract. GISTs occur in the entire gastrointestinal tract and may also arise from the retroperitoneum, omentum and mesenteries. They are originated from gastrointestinal pacemaker cells (Cajal’s interstitial cells) and range from benign tumors to sarcomas at all sites of occurrence. Diagnosis of GIST could be deceptive because of their similarity in appearance to gynecological neoplasms. We would like to present a case of a woman with GIST in the small intestine giving a imprint of an adnexal mass was diagnosed correctly during surgery. The diagnosis and treatment of GIST has been reformed over the past years. It is crucial to separate GISTs from possible misdiagnosis because their prognosis and treatment could be unlike clearly. The purpose of this case is to evaluate this rarely seen clinical entity, and thus, make some contribution to the literature. PMID:26383211

  4. Pseudoangiomatous stromal hyperplasia causing massive breast enlargement.

    PubMed

    Bourke, Anita Geraldine; Tiang, Stephen; Harvey, Nathan; McClure, Robert

    2015-01-01

    Pseudoangiomatous stromal hyperplasia (PASH) of the breast is a benign mesenchymal proliferative process, initially described by Vuitch et al. We report an unusual case of a 46-year-old woman who presented with a 6-week history of bilateral massive, asymmetrical, painful enlargement of her breasts, without a history of trauma. On clinical examination, both breasts were markedly enlarged and oedematous, but there were no discrete palpable masses. Preoperative image-guided core biopsies and surgery showed PASH. PASH is increasingly recognised as an incidental finding on image-guided core biopsy performed for screen detected lesions. There are a few reported cases of PASH presenting as rapid breast enlargement. In our case, the patient presented with painful, asymmetrical, massive breast enlargement. Awareness needs to be raised of this entity as a differential diagnosis in massive, painful breast enlargement. PMID:26475873

  5. Gastrointestinal Stromal Tumor: May Mimic Adnexal Mass.

    PubMed

    Karaca, Nilay; Akpak, Yasam Kemal; Tatar, Zeynep; Batmaz, Gonca; Erken, Aslihan

    2016-02-01

    Gastrointestinal stromal tumors (GISTs) are rare tumor of the gastrointestinal tract. GISTs occur in the entire gastrointestinal tract and may also arise from the retroperitoneum, omentum and mesenteries. They are originated from gastrointestinal pacemaker cells (Cajal's interstitial cells) and range from benign tumors to sarcomas at all sites of occurrence. Diagnosis of GIST could be deceptive because of their similarity in appearance to gynecological neoplasms. We would like to present a case of a woman with GIST in the small intestine giving a imprint of an adnexal mass was diagnosed correctly during surgery. The diagnosis and treatment of GIST has been reformed over the past years. It is crucial to separate GISTs from possible misdiagnosis because their prognosis and treatment could be unlike clearly. The purpose of this case is to evaluate this rarely seen clinical entity, and thus, make some contribution to the literature. PMID:26383211

  6. Ex vivo expansion of mesenchymal stromal cells.

    PubMed

    Bernardo, Maria Ester; Cometa, Angela Maria; Pagliara, Daria; Vinti, Luciana; Rossi, Francesca; Cristantielli, Rosaria; Palumbo, Giuseppe; Locatelli, Franco

    2011-03-01

    Mesenchymal stromal cells (MSCs) are adult multipotent cells that can be isolated from several human tissues. MSCs represent a novel and attractive tool in strategies of cellular therapy. For in vivo use, MSCs have to be ex vivo expanded in order to reach the numbers suitable for their clinical application. Despite being efficacious, the use of fetal calf serum for MSC ex vivo expansion for clinical purposes raises concerns related to immunization and transmission of zoonoses; the standardization of expansion methods, possibly devoid of animal components, such as those based on platelet lysate, are discussed in this paper. Moreover, this review focuses on the search of novel markers for the prospective identification/isolation of MSCs and on the potential risks connected with ex vivo expansion of MSCs, in particular that of their malignant transformation. Available tests to study the genetic stability of ex vivo expanded MSCs are also analyzed. PMID:21396595

  7. Are mesenchymal stromal cells immune cells?

    PubMed

    Hoogduijn, Martin J

    2015-01-01

    Mesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities. Pre-clinical models have shown beneficial effects of MSCs in multiple immunological diseases and a number of phase 1/2 clinical trials carried out so far have reported signs of immune modulation after MSC infusion. These data indicate that MSCs play a central role in the immune response. This raises the academic question whether MSCs are immune cells or whether they are tissue precursor cells with immunoregulatory capacity. Correct understanding of the immunological properties and origin of MSCs will aid in the appropriate and safe use of the cells for clinical therapy. In this review the whole spectrum of immunological properties of MSCs is discussed with the aim of determining the position of MSCs in the immune system. PMID:25880839

  8. Radioresistance of Bone Marrow Stromal and Hematopoietic Progenitor Cell Lines Derived from Nrf2−/− Homozygous Deletion Recombinant-Negative Mice

    PubMed Central

    BERHANE, HEBIST; EPPERLY, MICHAEL W.; CAO, SHAONAN; GOFF, JULIE P.; FRANICOLA, DARCY; WANG, HONG; GREENBERGER, JOEL S.

    2014-01-01

    Aim: We determined whether bone marrow from Nrf2−/− compared with Nrf2+/+ mice differed in response to the oxidative stress of continuous marrow culture, and in radiosensitivity of derived stromal and interleukin-3 (IL-3)-dependent hematopoietic progenitor cells. Materials and Methods: Hematopoiesis longevity in Nrf2−/− was compared with Nrf2+/+ mice in long-term bone marrow cultures. Clonogenic irradiation survival curves were performed on derived cell lines. Total antioxidant capacity at baseline in nonirradiated cells and at 24 hours after 5 Gy and 10 Gy irradiation was quantitated using an antioxidant reductive capacity assay. Results: Long-term cultures of bone marrow from Nrf2−/− compared to Nrf2+/+ mice demonstrated equivalent longevity of production of total cells and hematopoietic progenitor cells forming multi-lineage hematopoietic colonies over 26 weeks in culture. Both bone marrow stromal cell lines and Il-3-dependent hematopoietic progenitor cell lines derived from Nrf2−/− mouse marrow cultures were radioresistant compared to Nrf2+/+-derived cell lines. Both DNA repair assay and total antioxidant capacity assay showed no defect in Nrf2−/− compared to Nrf2+/+ stromal cells and IL-3-dependent cells. Conclusion: The absence of a functional Nrf2 gene product does not alter cellular interactions in continuous marrow culture, nor response to dsDNA damage repair and antioxidant response. However, lack of the Nrf2 gene does confer radioresistance on marrow stromal and hematopoietic cells. PMID:23988890

  9. Extra gonadal sclerosing stromal tumour in the transverse mesocolon.

    PubMed

    Mensah, Samuel; Kyei, Ishmael; Ohene-Yeboah, Michael; Adjei, Ernest

    2016-03-01

    Sclerosing stromal tumour (SST) is a rare benign sex cord stromal tumour of the ovary. We report a case of sclerosing stromal tumour of the mesentery in a 32-year-old Para one who presented with intra abdominal mass, menstrual irregularity and secondary infertility. Histopathology and immunohistochemistry of the completely excised tumour was consistent with sclerosing stromal tumour, immunoreactive only to vimentin. No ovarian tissue was found in the sectioned tumour. Her menses became regular and she conceived 3 months after complete excision and delivered after 9 months. Hormonal assay was not done because SST was least suspected. From literature this is the first case of SST in the transverse mesocolon reported in the West African subregion, and may probably be one of the rare cases of hormonally active SST. PMID:27605726

  10. Know thy neighbor: stromal cells can contribute oncogenic signals

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.; Hein, P. W.

    2001-01-01

    Although the stroma within carcinogenic lesions is known to be supportive and responsive to tumors, new data increasingly show that the stroma also has a more active, oncogenic role in tumorigenesis. Stromal cells and their products can transform adjacent tissues in the absence of pre-existing tumor cells by inciting phenotypic and genomic changes in the epithelial cells. The oncogenic action of distinctive stromal components has been demonstrated through a variety of approaches, which provide clues about the cellular pathways involved.

  11. Conference Summary

    NASA Astrophysics Data System (ADS)

    Sanders, David B.

    2014-07-01

    This conference on ``Multi-wavelength AGN Surveys and Studies'' has provided a detailed look at the explosive growth over the past decade, of available astronomical data from a growing list of large scale sky surveys, from radio-to-gamma rays. We are entering an era were multi-epoch (months to weeks) surveys of the entire sky, and near-instantaneous follow-up observations of variable sources, are elevating time-domain astronomy to where it is becoming a major contributor to our understanding of Active Galactic Nuclei (AGN). While we can marvel at the range of extragalactic phenomena dispayed by sources discovered in the original ``Markarian Survey'' - the first large-scale objective prism survey of the Northern Sky carried out at the Byurakan Astronomical Observtory almost a half-century ago - it is clear from the talks and posters presented at this meeting that the data to be be obtained over the next decade will be needed if we are to finally understand which phase of galaxy evolution each Markarian Galaxy represents.

  12. Interleukin-1β Suppresses the Transporter Genes Ank and Ent1 Expression in Stromal Progenitor Cells Retaining Mineralization.

    PubMed

    Ezura, Yoichi; Lin, Xin; Hatta, Arina; Izu, Yayoi; Noda, Masaki

    2016-08-01

    Heterotopic ossification (HO) in various tissues evokes clinical problems. Inflammatory responses of the stromal progenitor cells may be involved in its etiology. Previous report indicated that pro-inflammatory cytokines including IL-1β enhanced the in vitro calcification of human mesenchymal stem cells (MSCs), by suppressing the expression of ectonucleotide pyrophosphatase/phosphodiesterase-1 gene (ENPP1). However, possible contribution of other related factors had not been investigated. Here, we investigated the expression of regulators of extracellular pyrophosphate and nucleosides including Enpp1, Nt5e, Ank, Enptds, and Ent1, examining various connective tissue stromal progenitor cells, including bone marrow stromal cells and synovium derived cells from mouse, or bone marrow MSCs from human. Consistent with previous studies, we observed characteristic suppression of the osteoblastic marker genes by IL-1β during the osteogenic culture for 20 days. In addition, we observed a reduced expression of the important transporter genes, Ank and Ent1, whereas the alteration in Enpp1 and Nt5e levels was not always consistent among the cell types. Our results suggest that IL-1β suppresses not only the osteoblastic but also the negative regulators of soft-tissue calcification, including Ank and Ent1 in stromal progenitor cells, which may contribute to the mechanisms of HO in various disorders. PMID:27086348

  13. Stromal-Based Signatures for the Classification of Gastric Cancer.

    PubMed

    Uhlik, Mark T; Liu, Jiangang; Falcon, Beverly L; Iyer, Seema; Stewart, Julie; Celikkaya, Hilal; O'Mahony, Marguerita; Sevinsky, Christopher; Lowes, Christina; Douglass, Larry; Jeffries, Cynthia; Bodenmiller, Diane; Chintharlapalli, Sudhakar; Fischl, Anthony; Gerald, Damien; Xue, Qi; Lee, Jee-Yun; Santamaria-Pang, Alberto; Al-Kofahi, Yousef; Sui, Yunxia; Desai, Keyur; Doman, Thompson; Aggarwal, Amit; Carter, Julia H; Pytowski, Bronislaw; Jaminet, Shou-Ching; Ginty, Fiona; Nasir, Aejaz; Nagy, Janice A; Dvorak, Harold F; Benjamin, Laura E

    2016-05-01

    Treatment of metastatic gastric cancer typically involves chemotherapy and monoclonal antibodies targeting HER2 (ERBB2) and VEGFR2 (KDR). However, reliable methods to identify patients who would benefit most from a combination of treatment modalities targeting the tumor stroma, including new immunotherapy approaches, are still lacking. Therefore, we integrated a mouse model of stromal activation and gastric cancer genomic information to identify gene expression signatures that may inform treatment strategies. We generated a mouse model in which VEGF-A is expressed via adenovirus, enabling a stromal response marked by immune infiltration and angiogenesis at the injection site, and identified distinct stromal gene expression signatures. With these data, we designed multiplexed IHC assays that were applied to human primary gastric tumors and classified each tumor to a dominant stromal phenotype representative of the vascular and immune diversity found in gastric cancer. We also refined the stromal gene signatures and explored their relation to the dominant patient phenotypes identified by recent large-scale studies of gastric cancer genomics (The Cancer Genome Atlas and Asian Cancer Research Group), revealing four distinct stromal phenotypes. Collectively, these findings suggest that a genomics-based systems approach focused on the tumor stroma can be used to discover putative predictive biomarkers of treatment response, especially to antiangiogenesis agents and immunotherapy, thus offering an opportunity to improve patient stratification. Cancer Res; 76(9); 2573-86. ©2016 AACR. PMID:27197264

  14. Serotonin augments smooth muscle differentiation of bone marrow stromal cells.

    PubMed

    Hirota, Nobuaki; McCuaig, Sarah; O'Sullivan, Michael J; Martin, James G

    2014-05-01

    Bone marrow stromal cells (BMSCs) contain a subset of multipotent stem cells. Here, we demonstrate that serotonin, a biogenic amine released by platelets and mast cells, can induce the smooth muscle differentiation of BMSCs. Brown Norway rat BMSCs stimulated with serotonin had increased expression of the smooth muscle markers smooth muscle myosin heavy chain (MHC) and α actin (α-SMA) by qPCR and Western blot, indicating smooth muscle differentiation. This was accompanied by a concomitant down-regulation of the microRNA miR-25-5p, which was found to negatively regulate smooth muscle differentiation. Serotonin upregulated serum response factor (SRF) and myocardin, transcription factors known to induce contractile protein expression in smooth muscle cells, while it down-regulated Elk1 and Kruppel-like factor 4 (KLF4), known to induce proliferation. Serotonin increased SRF binding to promoter regions of the MHC and α-SMA genes, assessed by chromatin immunoprecipitation assay. Induction of smooth muscle differentiation by serotonin was blocked by the knock-down of SRF and myocardin. Transforming growth factor (TGF)-β1 was constitutively expressed by BMSCs and serotonin triggered its release. Inhibition of miR-25-5p augmented TGF-β1 expression, however the differentiation of BMSCs was not mediated by TGF-β1. These findings demonstrate that serotonin promotes a smooth muscle-like phenotype in BMSCs by altering the balance of SRF, myocardin, Elk1 and KLF4 and miR-25-5p is involved in modulating this balance. Therefore, serotonin potentially contributes to the pathogenesis of diseases characterized by tissue remodeling with increased smooth muscle mass. PMID:24595007

  15. Inter Association Child Care Conference. Conference Proceedings 1979.

    ERIC Educational Resources Information Center

    Austin, David, Ed.

    This publication of the proceedings of the Inter Association Child Care Conference includes a debate for and against professionalization in the field of child care. A section on meeting the treatment needs of children through educational preparation of child care practitioners discusses background factors, levels of education for practitioners,…

  16. Conference Scene

    PubMed Central

    Leeder, J Steven; Lantos, John; Spielberg, Stephen P

    2015-01-01

    A major challenge for clinicians, pharmaceutical companies and regulatory agencies is to better understand the relative contributions of ontogeny and genetic variation to observed variability in drug disposition and response across the pediatric age spectrum from preterm and term newborns, to infants, children and adolescents. Extrapolation of adult experience with pharmacogenomics and personalized medicine to pediatric patients of different ages and developmental stages, is fraught with many challenges. Compared with adults, pediatric pharmacogenetics and pharmacogenomics involves an added measure of complexity as variability owing to developmental processes, or ontogeny, is superimposed upon genetic variation. Furthermore, some pediatric diseases have no adult correlate or are more prevalent in children compared with adults, and several adverse drug reactions are unique to children, or occur at a higher frequency in children. The primary objective of this conference was to initiate an ongoing series of annual meetings on ‘Pediatric Pharmacogenomics and Personalized Medicine’ organized by the Center for Personalized Medicine and Therapeutic Innovation and Division of Clinical Pharmacology and Medical Therapeutics at Children’s Mercy Hospitals and Clinics in Kansas City, MO, USA. The primary goals of the inaugural meeting were: to bring together clinicians, basic and translational scientists and allied healthcare practitioners, and engage in a multi- and cross-disciplinary dialog aimed at implementing personalized medicine in pediatric settings; to provide a forum for the presentation and the dissemination of research related to the application of pharmacogenomic strategies to investigations of variability of drug disposition and response in children; to explore the ethical, legal and societal implications of pharmacogenomics and personalized medicine that are unique to children; and finally, to create networking opportunities for stimulating discussion

  17. Mesenchymal stromal cell characteristics vary depending on their origin.

    PubMed

    Wegmeyer, Heike; Bröske, Ann-Marie; Leddin, Mathias; Kuentzer, Karin; Nisslbeck, Anna Katharina; Hupfeld, Julia; Wiechmann, Kornelius; Kuhlen, Jennifer; von Schwerin, Christoffer; Stein, Carsten; Knothe, Saskia; Funk, Jürgen; Huss, Ralf; Neubauer, Markus

    2013-10-01

    Mesenchymal stromal cells (MSCs) are rare progenitor cells that can be isolated from various tissues. They exhibit multilineage differentiation potential, support regenerative processes, and interact with various immune cells. Therefore, MSCs represent a promising tool for regenerative medicine. However, source-dependent and donor-dependent differences of MSC properties, including implications on their clinical application are still largely unknown. We evaluated MSCs derived from perinatal tissues umbilical cord (UC) and amniotic membrane (AM) in comparison to adult MSCs from bone marrow (BM), which were used as gold standard. We found genetic background-independent differences between MSCs from UC and AM. While AM- and UC-MSCs were closer to each other than to BM-MSCs, they also exhibited differences between each other. AM-MSCs from different donors but not UC-MSCs displayed high interdonor variability. In addition, we show that although all MSCs expressed similar surface markers, MSC populations from UC and AM showed differential profiles of gene expression and paracrine factor secretion to BM-derived MSCs. Notably, pathway analysis of gene expression data revealed intriguing differences between MSCs suggesting that MSCs from UC and AM possess in general a higher potential of immunomodulatory capacity, whereas BM-MSCs showed a higher potential of supporting regenerative processes as exemplified by neuronal differentiation and development. These differences between perinatal and BM-derived MSCs may be relevant for clinical applications. PMID:23676112

  18. An update on molecular genetics of gastrointestinal stromal tumours

    PubMed Central

    Tornillo, L; Terracciano, L M

    2006-01-01

    Gastrointestinal stromal tumours (GISTs) are the most common primary mesenchymal tumours of the gastrointestinal tract. Most of them show activating mutations of the genes coding for KIT or platelet‐derived growth factor receptor α (PDGFRα), two receptor tyrosine kinases (RTKs). The RTK inhibitor Imatinib (Gleevec®, Novartis, Switzerland), induces regression of the tumour. The level of response to treatment, together with other clinicopathological parameters is related to the type and site of the activating mutation, thus suggesting that these tumours should be classified according to the molecular context. This is confirmed also by the phenomenon of the resistance to treatment, which arises because of different mechanisms (second mutation, amplification, activation of other RTKs) and can be fought only by specific RTK inhibitors, that are at present under development. RTK activation involves an homogeneous transduction pathway whose components (MAPK, AKT, PI3K, mTOR and RAS) are possible targets of new molecular treatment. A new paradigm of classification integrating the classic pathological criteria with the molecular changes will permit personalised prognosis and treatment. PMID:16731599

  19. CONCISE REVIEW Micro RNA Expression in Multipotent Mesenchymal Stromal Cells

    PubMed Central

    Lakshmipathy, Uma; Hart, Ronald P.

    2009-01-01

    Multipotent mesenchymal stromal cells (MSC) isolated from various adult tissue sources have the capacity to self-renew and to differentiate into multiple lineages. Both of these processes are tightly regulated by genetic and epigenetic mechanisms. Emerging evidence indicates that the class of single-stranded non-coding RNAs known as “microRNAs” also plays a critical role in this process. First described in nematodes and plants, microRNAs have been shown to modulate major regulatory mechanisms in eukaryotic cells involved in a broad array of cellular functions. Studies with various types of embryonic as well as adult stem cells indicate an intricate network of microRNAs regulating key transcription factors and other genes which in turn determine cell fate. In addition, expression of unique microRNAs in specific cell types serves as a useful diagnostic marker to define a particular cell type. MicroRNAs are also found to be regulated by extracellular signaling pathways that are important for differentiation into specific tissues, suggesting that they play a role in specifying tissue identity. In this review we describe the importance of microRNAs in stem cells focusing on our current understanding of microRNAs in MSC and their derivatives. PMID:17991914

  20. Molecular targets in Gastrointestinal Stromal Tumors (GIST) therapy.

    PubMed

    Braconi, C; Bracci, R; Cellerino, R

    2008-08-01

    Gastrointestinal Stromal Tumors (GISTs) are the most common mesenchimal tumors of the gastrointestinal tract. Such tumors usually have activating mutations in either KIT (75-80%) or Platelet Derived Growth Factor Receptor alpha (PDGFRa) (5-10%) which lead to ligand-independent signal transduction. Targeting these activated proteins with Imatinib mesylate, a small-molecule kinase inhibitor, has proven useful in the treatment of recurrent or metastatic GISTs. However, more than half of patients develop resistance to Imatinib after about 2 years. Therefore, other targets have been studying in order to implement the therapeutical armamentarium for this disease. Sunitinib malate is an oral multikinase inhibitor that targets several receptor tyrosine kinases and has proved to prolong survival in Imatinib-resistant patients. Other molecules, such as Nilotinib, Sorafenib and Dasatinib were shown to be useful in Imatinib resistant mutant cell lines and the results of their activity in humans are being awaited. Recent evidence suggests that GIST cells acquire the capability to escape from the control of KIT and PDGFRa through the activation of alternative pathways. Therefore, further effort should be invested in the discovery of new signaling pathways, such as AXL, MET, IGF-R, which might be involved in the evolution of the disease. After a description of KIT and PDGFRa as known targets of anti-GIST treatments, we review other mechanisms and mediators that might be potential targets of new therapies, providing a comprehensive revision of the new molecular strategies under investigation. PMID:18690842

  1. Optimizing Adherence to Adjuvant Imatinib in Gastrointestinal Stromal Tumor

    PubMed Central

    Tetzlaff, Eric D.; Davey, Monica P.

    2013-01-01

    The increasing use of patient-administered oral anticancer drugs is paralleled by new challenges in maintaining treatment adherence. These challenges are particularly significant with adjuvant therapies for prevention of disease recurrence, where the benefits of ongoing treatment are not readily apparent to patients. Nurse practitioners and physician assistants (collectively referred to as advanced practitioners) play integral roles in providing education on disease and treatment to patients that can increase adherence to oral therapies and ideally improve outcomes. For patients with gastrointestinal stromal tumor (GIST), the oral targeted therapy imatinib has become the mainstay of treatment for advanced and recurrent disease and as adjuvant therapy following surgical resection. Recent data indicate significantly improved overall survival with 3 years vs. 1 year of adjuvant imatinib therapy. Continuous dosing with imatinib is needed for optimal efficacy and to limit additional health-care costs associated with management of disease progression in GIST. However, longer duration of therapy increases the risk of nonadherence. Imatinib adherence rates, as well as factors contributing to nonadherence to adjuvant therapy in routine clinical practice, are discussed in this review. Also explored are practical approaches for improving adherence to adjuvant imatinib therapy through greater patient education, in light of the increased duration of therapy in select patients. PMID:25032004

  2. Succinate Dehydrogenase Deficiency in Pediatric and Adult Gastrointestinal Stromal Tumors

    PubMed Central

    Belinsky, Martin G.; Rink, Lori; von Mehren, Margaret

    2013-01-01

    Gastrointestinal stromal tumors (GISTs) in adults are generally driven by somatic gain-of-function mutations in KIT or PDGFRA, and biological therapies targeted to these receptor tyrosine kinases comprise part of the treatment regimen for metastatic and inoperable GISTs. A minority (10–15%) of GISTs in adults, along with ∼85% of pediatric GISTs, lacks oncogenic mutations in KIT and PDGFRA. Not surprisingly these wild type (WT) GISTs respond poorly to kinase inhibitor therapy. A subset of WT GISTs shares a set of distinguishing clinical and pathological features, and a flurry of recent reports has convincingly demonstrated shared molecular characteristics. These GISTs have a distinct transcriptional profile including over-expression of the insulin-like growth factor-1 receptor, and exhibit deficiency in the succinate dehydrogenase (SDH) enzyme complex. The latter is often but not always linked to bi-allelic inactivation of SDH subunit genes, particularly SDHA. This review will summarize the molecular, pathological, and clinical connections that link this group of SDH-deficient neoplasms, and offer a view toward understanding the underlying biology of the disease and the therapeutic challenges implicit to this biology. PMID:23730622

  3. Isolation of hormone responsive uterine stromal cells: an in vitro model for stromal cell proliferation and differentiation.

    PubMed

    Rider, Virginia

    2006-01-01

    The female sex hormones estrogen and progesterone stimulate proliferation and differentiation of human and rodent uterine cells. The purpose of this chapter is to provide a method for isolating hormone-responsive rat uterine stromal cell lines that can be used to study steroid control of the cell cycle. Uteri from ovariectomized rats are differentially digested with trypsin to separate epithelial and stromal cells. The stromal cells are cultured in a standard growth medium containing 10% fetal bovine serum. After several passages, the purity of the stromal cell lines is determined using immunocytochemistry. Cell proliferation is studied by culturing the stromal cells in serum-free medium containing sex steroids and other mitogens. Cell cycle progression is assessed by flow cytometry, 3H-thymidine and BrdU incorporation, whereas proliferation is monitored using the MTT assay. Cell cycle regulators are visualized by Northern and Western blotting whereas cyclin-cyclin-dependent kinase activity is monitored using immune complex kinase assays. Uterine stromal cell lines isolated using the methods reported in this chapter provide a suitable model system to investigate the signal transduction events that stimulate hormone-dependent control of the cell cycle. PMID:16251733

  4. Clinicopathologic Features and Clinical Outcomes of Esophageal Gastrointestinal Stromal Tumor

    PubMed Central

    Feng, Fan; Tian, Yangzi; Liu, Zhen; Xu, Guanghui; Liu, Shushang; Guo, Man; Lian, Xiao; Fan, Daiming; Zhang, Hongwei

    2016-01-01

    Abstract Clinicopathologic features and clinical outcomes of gastrointestinal stromal tumors (GISTs) in esophagus are limited, because of the relatively rare incidence of esophageal GISTs. Therefore, the aim of the current study was to investigate the clinicopathologic features and clinical outcomes of esophageal GISTs, and to investigate the potential factors that may predict prognosis. Esophageal GIST cases were obtained from our center and from case reports and clinical studies extracted from MEDLINE. Clinicopathologic features and survivals were analyzed and compared with gastric GISTs from our center. The most common location was lower esophagus (86.84%), followed by middle and upper esophagus (11.40% and 1.76%). The majority of esophageal GISTs were classified as high-risk category (70.83%). Mitotic index was correlated with histologic type, mutational status, and tumor size. The 5-year disease-free survival and disease-specific survival were 65.1% and 65.9%, respectively. Tumor size, mitotic index, and National Institutes of Health risk classification were associated with prognosis of esophageal GISTs. Only tumor size, however, was the independent risk factor for the prognosis of esophageal GISTs. In comparison to gastric GISTs, the distribution of tumor size, histologic type, and National Institutes of Health risk classification were significantly different between esophageal GISTs and gastric GISTs. The disease-free survival and disease-specific survival of esophageal GISTs were significantly lower than that of gastric GISTs. The most common location for esophageal GISTs was lower esophagus, and most of the esophageal GISTs are high-risk category. Tumor size was the independent risk factor for the prognosis of esophageal GISTs. Esophageal GISTs differ significantly from gastric GISTs in respect to clinicopathologic features. The prognosis of esophageal GISTs was worse than that of gastric GISTs. PMID:26765432

  5. Essential components for ex vivo proliferation of mesenchymal stromal cells.

    PubMed

    Fekete, Natalie; Rojewski, Markus Thomas; Lotfi, Ramin; Schrezenmeier, Hubert

    2014-02-01

    Mesenchymal stromal cells (MSCs) are highly interesting candidates for clinical applications in regenerative medicine. Due to their low occurrence in human tissues, extensive in vitro expansion is necessary to obtain sufficient cell numbers applicable as a clinical dose in the context of cellular therapy. Current cell culture media formulations for the isolation and expansion of MSCs include fetal calf serum (FCS), human AB serum (ABS), or human platelet lysate (PL) as a supplement. However, these established supplements are inherently ill-defined formulations that contain a variety of bioactive molecules in varying batch-to-batch compositions and the risk of transmitting pathogens that escape routine screening procedures. In this study, we have comparatively characterized the capacity of commonly used basal media, such as the Minimum Essential Medium alpha (αMEM), Dulbecco's modified Eagle's medium (DMEM), Iscove's Modified Dulbecco's Medium (IMDM), and RPMI 1640 as well as human- and animal-derived supplements, that is, PL, ABS, and FCS to stimulate cell proliferation. MSC proliferation was observed to be optimal in the PL-supplemented αMEM. Using a combinatorial approach, we then assessed a library of soluble factors, including mitogens (TGF-β1, Activin A, bFGF, EGF, IGF-I, PDGF-BB, and VEGF), chemokines (CCL21, CCL25, CXCL12, and RANTES), proteins (human serum albumin), lipids (e.g., oleic acid, linoleic acid, and arachidonic acid), and hormones (dexamethasone, insulin, and TSH), to create a defined medium as well as coating of cell culture surfaces to promote robust MSC proliferation in vitro. A combination of recombinant human factors partially met the nutritional requirements of bone marrow-derived MSCs, and was able to promote cell proliferation comparable to about 5% PL if supplemented with auxiliary 0.6%-1.2% PL. Maximal MSC proliferation was achieved by combining 5% PL with a cocktail of recombinant factors and did not depend on coating of cell

  6. Immunomodulatory effects of mesenchymal stromal cells-derived exosome.

    PubMed

    Chen, Wancheng; Huang, Yukai; Han, Jiaochan; Yu, Lili; Li, Yanli; Lu, Ziyuan; Li, Hongbo; Liu, Zenghui; Shi, Chenyan; Duan, Fengqi; Xiao, Yang

    2016-08-01

    The mechanisms underlying immunomodulatory ability of mesenchymal stromal cells (MSCs) remain unknown. Recently, studies suggested that the immunomodulatory activity of MSCs is largely mediated by paracrine factors. Among which, exosome is considered to play a major role in the communication between MSCs and target tissue. The aim of our study is to investigate the effect of MSCs-derived exosome on peripheral blood mononuclear cells (PBMCs), especially T cells. We find that the MSCs-derived exosome extracted from healthy donors' bone marrow suppressed the secretion of pro-inflammatory factor TNF-α and IL-1β, but increased the concentration of anti-inflammatory factor TGF-β during in vitro culture. In addition, exosome may induce conversion of T helper type 1 (Th1) into T helper type 2 (Th2) cells and reduced potential of T cells to differentiate into interleukin 17-producing effector T cells (Th17). Moreover, the level of regulatory T cells (Treg) and cytotoxic T lymphocyte-associated protein 4 were also increased. These results suggested that MSC-derived exosome possesses the immunomodulatory properties. However, it showed no effects on the proliferation of PBMCs or CD3+ T cells, but increases the apoptosis of them. In addition, indoleamine 2, 3-dioxygenase (IDO) was previously shown to mediate the immunoregulation of MSCs, which was increased in PBMCs co-cultured with MSCs. In our study, IDO showed no significant changes in PBMCs exposed to MSCs-derived exosome. We conclude that exosome and MSCs might differ in their immune-modulating activities and mechanisms. PMID:27115513

  7. Characterization of the interactions between stromal and haematopoietic progenitor cells in expansion cell culture models.

    PubMed

    Bilko, N M; Votyakova, I A; Vasylovska, S V; Bilko, D I

    2005-01-01

    Development of the long-term culture models of haematopoietic stem cells (HSCs) is one of the important tasks in modern biotechnology. It has been suggested that stromal presence is important for haematopoiesis in vitro and in vivo, but the question remains: whether diffusible factors produced by stromal cells are sufficient for the regeneration of primitive and definitive haematopoietic cells, or direct cell-to-cell contacts of the cultured material with underlying stromal base would be required. During present studies, influence of various feeder layers and feeder layer conditioned media on proliferative, differentiative and clonogenic activity of human AC133+ derived from human umbilical cord blood was investigated. Cell extracts for feeder layers were prepared from 4-6 weeks old human embryos and co-cultured feeder cells. Effects of the conditioned media were also determined. Culture and feeder layer media were additionally supplemented with commonly implemented factors such as GM-CSF, IL-3 and LIF. Estimation of morpho-functional properties of AC133+ cultivated suspension cultures was performed in subculture experiments using semisolid agar culture conditions. Multipotential CFU-MIX (CFU-GEMM) and unipotential progenitor cells CFU-GM, BFU-E and CFU-E were observed and analyzed. Our data suggest that haematopoiesis can be sustained for prolonged cultivation periods in the presence of feeder layer cells or conditioned media supported culture models. Prolonged support of primitive haematopoietic cells and their clonogenic capacity and functional characteristics in feeder layer positive cultures, indicates that diffusible factors are sufficient for haematopoiesis and suggests that direct cell-to-cell contacts may not be exclusively required for successful long-term in vitro haematopoiesis. PMID:15763504

  8. Stromal-cell and cytokine-dependent lymphocyte clones which span the pre-B- to B-cell transition.

    PubMed

    Ishihara, K; Medina, K; Hayashi, S; Pietrangeli, C; Namen, A E; Miyake, K; Kincade, P W

    1991-01-01

    Five stromal-cell-dependent lymphocyte clones are described that correspond to late pre-B or early B-cell stages of differentiation. They are useful for determining the molecular requirements for pre-B replication, for studying the stromal cells that supply those factors, and for delineating the final sequence of differentiation events as newly formed lymphocytes prepare to exit the bone marrow. The efficiency of lymphocyte growth at limiting dilution varied substantially on different stromal-cell clones and may reflect functional heterogeneity of stromal cells. Most lymphocyte clones were similar to uncloned lymphocytes from Whitlock-Witte cultures in that they responded only transiently to interleukin-7 (IL-7) and then died, unless maintained on a stromal-cell clone. One unusual lymphocyte clone (2E8) was propagated for more than 1 year in IL-7 alone and was selectively responsive to that cytokine. Most of the lymphocyte clones were not tumorigenic in immunodeficient mice. However, one pre-B clone (1A9) grew autonomously in culture when held at high density, responded to conditioned medium from a number of cell lines, and was tumorigenic. Tumors derived from this clone were infiltrated by stromal cells and lymphocytes taken from the tumors' retained characteristics of the original clone. Ly-6 antigens were inducible on 2E8 and 1A9 cells, but the lymphocytes were otherwise arrested in differentiation. The 2E8 cells had rearranged and expressed kappa light-chain genes but displayed them on the surface along with surrogate light chains and mu heavy chains. Thus, expression of authentic light chain need not coincide with termination of surrogate light-chain utilization in newly formed B cells. Several glycoproteins have recently been demonstrated to be associated with surface immunoglobulin (Ig) on mature B-lineage cells and plasma-cell tumors. We now show that one member of this family (approximately 33 kD) was associated with the mu+surrogate light-chain complex on

  9. Long-term maintenance of hematopoietic stem cells does not require contact with embryo-derived stromal cells in cocultures.

    PubMed

    Oostendorp, Robert A J; Robin, Catherine; Steinhoff, Christine; Marz, Stefanie; Bräuer, Rosalinde; Nuber, Ulrike A; Dzierzak, Elaine A; Peschel, Christian

    2005-01-01

    We recently established that two midgestation-derived stromal clones--UG26-1B6, urogenital ridge-derived, and EL08-1D2, embryonic liver-derived--support the maintenance of murine adult bone marrow and human cord blood hematopoietic repopulating stem cells (HSCs). In this study, we investigate whether direct HSC-stroma contact is required for this stem cell maintenance. Adult bone marrow ckit+ Ly-6C- side population (K6-SP) cells and stromal cells were cocultured under contact or noncontact conditions. These experiments showed that HSCs were maintained for at least 4 weeks in culture and that direct contact between HSCs and stromal cells was not required. To find out which factors might be involved in HSC maintenance, we compared the gene expression profile of EL08-1D2 and UG26-1B6 with four HSC-nonsupportive clones. We found that EL08-1D2 and UG26-1B6 both expressed 21 genes at a higher level, including the putative secreted factors fibroblast growth factor-7, insulin-like growth factor-binding proteins 3 and 4, pleiotrophin, pentaxin-related, and thrombospondin 2, whereas 11 genes, including GPX-3 and HSP27, were expressed at a lower level. In summary, we show for the first time long-term maintenance of adult bone marrow HSCs in stroma noncontact cultures and identify some secreted molecules that may be involved in this support. PMID:15917480

  10. GI Stromal Tumors: 15 Years of Lessons From a Rare Cancer.

    PubMed

    Cioffi, Angela; Maki, Robert G

    2015-06-01

    A confluence of factors, most prominently the recognition of GI stromal tumor (GIST) as a specific sarcoma subtype and the availability of imatinib, led to the "Big Bang" of GIST therapy (ie, the successful treatment of the first patient with GIST with imatinib in 2000). The trail blazed by imatinib for chronic myelogenous leukemia and GIST has become a desired route to regulatory approval of an increasing number of oral kinase inhibitors and other novel therapeutics. In this review, the status of GIST management before and after GIST's "Big Bang" and new steps being taken to further improve on therapy are reviewed. PMID:25918303

  11. Concise Review: Different Mesenchymal Stromal/Stem Cell Populations Reside in the Adult Kidney

    PubMed Central

    Bruno, Stefania; Chiabotto, Giulia

    2014-01-01

    During fetal life, mesenchymal stromal/stem cells (MSCs) surround glomeruli and tubules and contribute to the development of the renal interstitium by secretion of growth factors that drive nephron differentiation. In the adult, an MSC-like population has been demonstrated in different compartments of human and murine nephrons. After injury, these cells might provide support for kidney regeneration by recapitulating the role they have in embryonic life. In this short review, we discuss the evidence of an MSC presence within the adult kidney and their potential contribution to the turnover of renal cells and injury repair. PMID:25355731

  12. LAPAROSCOPIC RESECTION OF GASTROINTESTINAL STROMAL TUMORS (GIST)

    PubMed Central

    LOUREIRO, Marcelo de Paula; de ALMEIDA, Rômulo Augusto Andrade; CLAUS, Christiano Marlo Paggi; BONIN, Eduardo Aimoré; CURY-FILHO,, Antônio Moris; DIMBARRE, Daniellson; da COSTA, Marco Aurélio Raeder; VITAL, Marcílio Lisboa

    2016-01-01

    Background Gastrointestinal mesenchymal or stromal tumors (GIST) are lesions originated on digestive tract walls, which are treated by surgical resection. Several laparoscopic techniques, from gastrectomies to segmental resections, have been used successfully. Aim Describe a single center experience on laparoscopic GIST resection. Method Charts of 15 operated patients were retrospectively reviewed. Thirteen had gastric lesions, of which ten were sub epithelial, ranging from 2-8 cm; and three were pure exofitic growing lesions. The remaining two patients had small bowel lesions. Surgical laparoscopic treatment consisted of two distal gastrectomies, 11 wedge gastric resections and two segmental enterectomies. Mechanical suture was used in the majority of patients except on six, which underwent resection and closure using manual absorbable sutures. There were no conversions to open technique. Results Mean operative time was 1h 29 min±92 (40-420 min). Average lenght of hospital stay was three days (2-6 days). There were no leaks, postoperative bleeding or need for reintervention. Mean postoperative follow-up was 38±17 months (6-60 months). Three patients underwent adjuvant Imatinib treatment, one for recurrence five months postoperatively and two for tumors with moderate risk for recurrence . Conclusion Laparoscopic GIST resection, not only for small lesions but also for tumors above 5 cm, is safe and acceptable technique. PMID:27120729

  13. Epigenetic Classification of Human Mesenchymal Stromal Cells.

    PubMed

    de Almeida, Danilo Candido; Ferreira, Marcelo R P; Franzen, Julia; Weidner, Carola I; Frobel, Joana; Zenke, Martin; Costa, Ivan G; Wagner, Wolfgang

    2016-02-01

    Standardization of mesenchymal stromal cells (MSCs) is hampered by the lack of a precise definition for these cell preparations; for example, there are no molecular markers to discern MSCs and fibroblasts. In this study, we followed the hypothesis that specific DNA methylation (DNAm) patterns can assist classification of MSCs. We utilized 190 DNAm profiles to address the impact of tissue of origin, donor age, replicative senescence, and serum supplements on the epigenetic makeup. Based on this, we elaborated a simple epigenetic signature based on two CpG sites to classify MSCs and fibroblasts, referred to as the Epi-MSC-Score. Another two-CpG signature can distinguish between MSCs from bone marrow and adipose tissue, referred to as the Epi-Tissue-Score. These assays were validated by site-specific pyrosequencing analysis in 34 primary cell preparations. Furthermore, even individual subclones of MSCs were correctly classified by our epigenetic signatures. In summary, we propose an alternative concept to use DNAm patterns for molecular definition of cell preparations, and our epigenetic scores facilitate robust and cost-effective quality control of MSC cultures. PMID:26862701

  14. Mesenchymal stromal cells for sphincter regeneration.

    PubMed

    Klein, Gerd; Hart, Melanie L; Brinchmann, Jan E; Rolauffs, Bernd; Stenzl, Arnulf; Sievert, Karl-Dietrich; Aicher, Wilhelm K

    2015-03-01

    Stress urinary incontinence (SUI), defined as the involuntary loss of considerable amounts of urine during increased abdominal pressure (exertion, effort, sneezing, coughing, etc.), is a severe problem to the individuals affected and a significant medical, social and economic challenge. SUI is associated with pelvic floor debility, absence of detrusor contraction, or a loss of control over the sphincter muscle apparatus. The pathology includes an increasing loss of muscle cells, replacement of muscular tissue with fibrous tissue, and general aging associated processes of the sphincter complex. When current therapies fail to cure or improve SUI, application of regeneration-competent cells may be an alternative therapeutic option. Here we discuss different aspects of the biology of mesenchymal stromal cells, which are relevant to their clinical applications and for regenerating the sphincter complex. However, there are reports in favor of and against cell-based therapies. We therefore summarize the potential and the risks of cell-based therapies for the treatment of SUI. PMID:25451135

  15. Tumoral pseudoangiomatous stromal hyperplasia of the breast.

    PubMed

    Wieman, Stephanie M; Landercasper, Jeffrey; Johnson, Jeanne M; Ellis, Richard L; Wester, Susan M; Lambert, Pamela J; Ross, Lauren A

    2008-12-01

    Tumoral pseudoangiomatous stromal hyperplasia (PASH) is a rare benign proliferative disease of the breast. The majority of the literature reports of PASH have not contained detailed descriptions of the imaging characteristics of PASH. A 10-year retrospective study of patients with tumoral PASH and a 20-year Ovid MEDLINE search were performed to determine whether specific imaging and needle biopsy results could characterize PASH preoperatively. We identified 22 patients with tumoral PASH. Seventeen (77%) of 22 women had a palpable lump and 14 (72%) of 21 had a density on mammography. Ultrasound (US) findings included mixed or hypoechoic echogenicity in 83 per cent and ill-defined borders in 62 per cent. Eight (36%) patients had lesions with a Breast Imaging Reporting and Data System (BI-RADS) classification of 4 or 5. The sensitivity of preoperative core needle biopsy (CNB) to identify PASH was 83 per cent. A review of the literature revealed that 90 per cent of patients with PASH had some malignant imaging characteristics and 95 per cent had a mass on mammography. The imaging characteristics of PASH exhibited marked variability. Excision of PASH after CNB may be considered for patients with symptoms, enlarging lesions, or lesions classified as BI-RADS 4 or 5. PASH diagnosed by CNB allows selected patients to avoid excision. PMID:19097540

  16. Arousal of cancer-associated stromal fibroblasts

    PubMed Central

    2012-01-01

    Cancer-associated fibroblasts (CAF), comprised of activated fibroblasts or myofibroblasts, are found in stroma surrounding solid tumors; these myofibroblasts promote invasion and metastasis of cancer cells. Activation of stromal fibroblasts into myofibroblasts is induced by expression of cystoskeleton protein, palladin, at early stages in tumorigenesis and increases with neoplastic progression. Expression of palladin in fibroblasts is triggered by paracrine signaling from adjacent k-ras-expressing epithelial cells. Three-dimensional co-cultures of palladin-expressing fibroblasts and pancreatic cancer cells reveals that the activated fibroblasts lead the invasion by creating tunnels through the extracellular matrix through which the cancer cells follow. Invasive tunneling occurs as a result of the development of invadopodia-like cellular protrusions in the palladin-activated fibroblasts and the addition of a wounding/inflammatory trigger. Abrogation of palladin reduces the invasive capacity of these cells. CAF also play a role in cancer resistance and immuno-privilege, making the targeting of activators of these cells of interest for oncologists. PMID:23076142

  17. Pancreatic cancer stromal biology and therapy

    PubMed Central

    Xie, Dacheng; Xie, Keping

    2015-01-01

    Pancreatic cancer is one of the most lethal malignancies. Significant progresses have been made in understanding of pancreatic cancer pathogenesis, including appreciation of precursor lesions or premalignant pancreatic intraepithelial neoplasia (PanINs), description of sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and identification of major genetic and epigenetic events and the biological impact of those events on malignant behavior. However, the currently used therapeutic strategies targeting tumor epithelial cells, which are potent in cell culture and animal models, have not been successful in the clinic. Presumably, therapeutic resistance of pancreatic cancer is at least in part due to its drastic desmoplasis, which is a defining hallmark for and circumstantially contributes to pancreatic cancer development and progression. Improved understanding of the dynamic interaction between cancer cells and the stroma is important to better understanding pancreatic cancer biology and to designing effective intervention strategies. This review focuses on the origination, evolution and disruption of stromal molecular and cellular components in pancreatic cancer, and their biological effects on pancreatic cancer pathogenesis. PMID:26114155

  18. Drug repurposing for gastrointestinal stromal tumor.

    PubMed

    Pessetto, Ziyan Y; Weir, Scott J; Sethi, Geetika; Broward, Melinda A; Godwin, Andrew K

    2013-07-01

    Despite significant treatment advances over the past decade, metastatic gastrointestinal stromal tumor (GIST) remains largely incurable. Rare diseases, such as GIST, individually affect small groups of patients but collectively are estimated to affect 25 to 30 million people in the United States alone. Given the costs associated with the discovery, development, and registration of new drugs, orphan diseases such as GIST are often not pursued by mainstream pharmaceutical companies. As a result, "drug repurposing" or "repositioning," has emerged as an alternative to the traditional drug development process. In this study, we screened 796 U.S. Food and Drug Administration (FDA)-approved drugs and found that two of these compounds, auranofin (Ridaura) and fludarabine phosphate, effectively and selectively inhibited the proliferation of GISTs, including imatinib-resistant cells. One of the most notable drug hits, auranofin, an oral, gold-containing agent approved by the FDA in 1985 for the treatment of rheumatoid arthritis, was found to inhibit thioredoxin reductase activity and induce reactive oxygen species (ROS) production, leading to dramatic inhibition of GIST cell growth and viability. Importantly, the anticancer activity associated with auranofin was independent of imatinib-resistant status, but was closely related to the endogenous and inducible levels of ROS. Coupled with the fact that auranofin has an established safety profile in patients, these findings suggest for the first time that auranofin may have clinical benefit for patients with GIST, particularly in those suffering from imatinib-resistant and recurrent forms of this disease. PMID:23657945

  19. Epigenetic Classification of Human Mesenchymal Stromal Cells

    PubMed Central

    de Almeida, Danilo Candido; Ferreira, Marcelo R.P.; Franzen, Julia; Weidner, Carola I.; Frobel, Joana; Zenke, Martin; Costa, Ivan G.; Wagner, Wolfgang

    2016-01-01

    Summary Standardization of mesenchymal stromal cells (MSCs) is hampered by the lack of a precise definition for these cell preparations; for example, there are no molecular markers to discern MSCs and fibroblasts. In this study, we followed the hypothesis that specific DNA methylation (DNAm) patterns can assist classification of MSCs. We utilized 190 DNAm profiles to address the impact of tissue of origin, donor age, replicative senescence, and serum supplements on the epigenetic makeup. Based on this, we elaborated a simple epigenetic signature based on two CpG sites to classify MSCs and fibroblasts, referred to as the Epi-MSC-Score. Another two-CpG signature can distinguish between MSCs from bone marrow and adipose tissue, referred to as the Epi-Tissue-Score. These assays were validated by site-specific pyrosequencing analysis in 34 primary cell preparations. Furthermore, even individual subclones of MSCs were correctly classified by our epigenetic signatures. In summary, we propose an alternative concept to use DNAm patterns for molecular definition of cell preparations, and our epigenetic scores facilitate robust and cost-effective quality control of MSC cultures. PMID:26862701

  20. [Disorders of the extracellular matrix in epithelial-stromal and stromal corneal dystrophies].

    PubMed

    Varkoly, Gréta; Bencze, János; Módis, László; Hortobágyi, Tibor

    2016-08-01

    The human cornea is rich in extracellular matrix. The stroma constitutes the main thickness of the cornea, which consists of collagens and proteoglycans mainly. The epithelial-stromal and stromal dystrophies of the cornea are either autosomal dominant or recessive inherited disorders, which are unrelated to inflammation or trauma. The diseases can manifest in each layer of the cornea, but in most cases the corneal stroma is affected. Generally, they develop in childhood or young adulthood but the diagnosis is only possible when clinical signs (epithelial erosions, decreased visual acuity, photophobia) develop. The different protein aggregates (hyaline, amyloid, crystalline) deposited in the corneal layers result in mild or advanced corneal opacity and loss of the corneal transparency due to disorganisation of the extracellular matrix. In some of the corneal dystrophies the keratane sulphate proteoglycan looses its function which results in a loss of the regular interfibrillar spacing. Due to the severe corneal opacity patients may need corneal transplantation. Orv. Hetil., 2016, 157(33), 1299-1303. PMID:27523312

  1. Local binary patterns for stromal area removal in histology images

    NASA Astrophysics Data System (ADS)

    Alomari, Raja S.; Ghosh, Subarna; Chaudhary, Vipin; Al-Kadi, Omar

    2012-03-01

    Nuclei counting in epithelial cells is an indication for tumor proliferation rate which is useful to rank tumors and select an appropriate treatment schedule for the patient. However, due to the high interand intra- observer variability in nuclei counting, pathologists seek a deterministic proliferation rate estimate. Histology tissue contains epithelial and stromal cells. However, nuclei counting is clinically restricted to epithelial cells because stromal cells do not become cancerous themselves since they remain genetically normal. Counting nuclei existing within the stromal tissue is one of the major causes of the proliferation rate non-deterministic estimation. Digitally removing stromal tissue will eliminate a major cause in pathologist counting variability and bring the clinical pathologist a major step closer toward a deterministic proliferation rate estimation. To that end, we propose a computer aided diagnosis (CAD) system for eliminating stromal cells from digital histology images based on the local binary patterns, entropy measurement, and statistical analysis. We validate our CAD system on a set of fifty Ki-67-stained histology images. Ki-67-stained histology images are among the clinically approved methods for proliferation rate estimation. To test our CAD system, we prove that the manual proliferation rate estimation performed by the expert pathologist does not change before and after stromal removal. Thus, stromal removal does not affect the expert pathologist estimation clinical decision. Hence, the successful elimination of the stromal area highly reduces the false positive nuclei which are the major confusing cause for the less experienced pathologists and thus accounts for the non-determinism in the proliferation rate estimation. Our experimental setting shows statistical insignificance (paired student t-test shows ρ = 0.74) in the manual nuclei counting before and after our automated stromal removal. This means that the clinical decision of

  2. Rbbp7 Is Required for Uterine Stromal Decidualization in Mice.

    PubMed

    He, Hui; Kong, Shuangbo; Liu, Fei; Zhang, Shuang; Jiang, Yaling; Liao, Yixin; Jiang, Yufei; Li, Qian; Wang, Bingyan; Zhou, Zuomin; Wang, Haibin; Huo, Ran

    2015-07-01

    Uterine stromal cells undergo extensive proliferation and differentiation during postimplantation development, a process known as decidualization. While a range of signaling molecules have been demonstrated to play essential roles in this event, its potential epigenetic regulatory mechanisms remain largely unknown. Retinoblastoma binding protein 7 (Rbbp7) is a protein reported as a core component of many histone modification and chromatin remodeling complexes. In the present study, our in situ hybridization and immunochemistry analysis first reveals a spatiotemporal expression of Rbbp7 in the uterus during the peri-implantation period. Observations of remarkable induction of Rbbp7 expression in uterine stromal cells in response to progesterone-nuclear receptor PR signaling point to its potential physiological significance during postimplantation uterine development. Employing a stealth RNA knockdown approach, combined with primary murine uterine stromal cell culture and an in vitro-induced decidualization model, we further demonstrate that Rbbp7 silencing compromises stromal cell decidualization via attenuating histone H4 acetylation and cyclin D3 expression. The results collectively suggest that Rbbp7 is a potentially functional player regulating normal histone acetylation modification and cyclin D3 expression in stromal cells during postimplantation decidual development. PMID:26040671

  3. Stromal cells and stem cells in clinical bone regeneration

    PubMed Central

    Grayson, Warren L.; Bunnell, Bruce A.; Martin, Elizabeth; Frazier, Trivia; Hung, Ben P.; Gimble, Jeffrey M.

    2015-01-01

    Stem-cell-mediated bone repair has been used in clinical trials for the regeneration of large craniomaxillofacial defects, to slow the process of bone degeneration in patients with osteonecrosis of the femoral head and for prophylactic treatment of distal tibial fractures. Successful regenerative outcomes in these investigations have provided a solid foundation for wider use of stromal cells in skeletal repair therapy. However, employing stromal cells to facilitate or enhance bone repair is far from being adopted into clinical practice. Scientific, technical, practical and regulatory obstacles prevent the widespread therapeutic use of stromal cells. Ironically, one of the major challenges lies in the limited understanding of the mechanisms via which transplanted cells mediate regeneration. Animal models have been used to provide insight, but these models largely fail to reproduce the nuances of human diseases and bone defects. Consequently, the development of targeted approaches to optimize cell-mediated outcomes is difficult. In this Review, we highlight the successes and challenges reported in several clinical trials that involved the use of bone-marrow-derived mesenchymal or adipose-tissue-derived stromal cells. We identify several obstacles blocking the mainstream use of stromal cells to enhance skeletal repair and highlight technological innovations or areas in which novel techniques might be particularly fruitful in continuing to advance the field of skeletal regenerative medicine. PMID:25560703

  4. Different Procoagulant Activity of Therapeutic Mesenchymal Stromal Cells Derived from Bone Marrow and Placental Decidua.

    PubMed

    Moll, Guido; Ignatowicz, Lech; Catar, Rusan; Luecht, Christian; Sadeghi, Behnam; Hamad, Osama; Jungebluth, Philipp; Dragun, Duska; Schmidtchen, Artur; Ringdén, Olle

    2015-10-01

    While therapeutic mesenchymal stromal/stem cells (MSCs) have usually been obtained from bone marrow, perinatal tissues have emerged as promising new sources of cells for stromal cell therapy. In this study, we present a first safety follow-up on our clinical experience with placenta-derived decidual stromal cells (DSCs), used as supportive immunomodulatory and regenerative therapy for patients with severe complications after allogeneic hematopoietic stem cell transplantation (HSCT). We found that DSCs are smaller, almost half the volume of MSCs, which may favor microvascular passage. DSCs also show different hemocompatibility, with increased triggering of the clotting cascade after exposure to human blood and plasma in vitro. After infusion of DSCs in HSCT patients, we observed a weak activation of the fibrinolytic system, but the other blood activation markers remained stable, excluding major adverse events. Expression profiling identified differential levels of key factors implicated in regulation of hemostasis, such as a lack of prostacyclin synthase and increased tissue factor expression in DSCs, suggesting that these cells have intrinsic blood-activating properties. The stronger triggering of the clotting cascade by DSCs could be antagonized by optimizing the cell graft reconstitution before infusion, for example, by use of low-dose heparin anticoagulant in the cell infusion buffer. We conclude that DSCs are smaller and have stronger hemostatic properties than MSCs, thus triggering stronger activation of the clotting system, which can be antagonized by optimizing the cell graft preparation before infusion. Our results highlight the importance of hemocompatibility safety testing for every novel cell therapy product before clinical use, when applied using systemic delivery. PMID:26192403

  5. Differential expression of epithelial basement membrane components nidogens and perlecan in corneal stromal cells in vitro

    PubMed Central

    Santhanam, Abirami; Torricelli, Andre A. M.; Wu, Jiahui; Marino, Gustavo K.

    2015-01-01

    Purpose The purpose of this study was to examine the expression of corneal epithelial basement membrane (EBM) components in different corneal stromal cell types. In vitro model systems were used to explore the expression of EBM components nidogen-1, nidogen-2, and perlecan that are the primary components in the lamina lucida and the lamina densa that defectively regenerate in corneas with stromal opacity after in −9.0 D photorefractive keratectomy (PRK). Methods Primary rabbit corneal stromal cells were cultured using varying serum concentrations and exogenous growth factors, including fibroblast growth factor (FGF)-2 and transforming growth factor (TGF)-β1, to optimize the growth of each cell type of interest. The expression of the keratocyte-specific marker keratocan and the myofibroblast-specific marker α-smooth muscle actin (α-SMA) were analyzed with real-time PCR, western blot, and immunocytochemical staining to evaluate the specificity of the cell types and select optimal conditions (high keratocan and low α-SMA for keratocytes; low keratocan and high α-SMA for myofibroblasts; low keratocan and low α-SMA for corneal fibroblasts). The expression of the EBM components nidogen-1, nidogen-2, and perlecan was evaluated in each corneal cell type using real-time PCR, immunostaining, and western blotting. In agreement with previous studies, serum-free DMEM was found to be optimal for keratocytes, DMEM with 10% serum and 40 ng/ml FGF-2 yielded the best marker profile for corneal fibroblasts, and DMEM with 1% serum and 2 ng/ml TGF-β1 was found to be optimal for myofibroblasts. Results Nidogen-1 and nidogen-2 mRNAs were highly expressed in keratocytes, whereas perlecan was highly expressed in myofibroblasts. In keratocytes, nidogen-2 and perlecan proteins were expressed predominantly in intracellular compartments, whereas in myofibroblasts expression of both EBM components was observed diffusely throughout the cell. Although the perlecan mRNA levels were high

  6. Prognostic and Predictive Significance of Stromal Fibroblasts and Macrophages in Colon Cancer

    PubMed Central

    Owusu, Benjamin Y.; Vaid, Mudit; Kaler, Pawan; Klampfer, Lidija

    2015-01-01

    Colon cancer development and malignant progression are driven by genetic and epigenetic alterations in tumor cells and by factors from the tumor microenvironment. Cancer cells become reliant on the activity of specific oncogenes and on prosurvival and proliferative signals they receive from the abnormal environment they create and reside in. Accordingly, the response to anticancer therapy is determined by genetic and epigenetic changes that are intrinsic to tumor cells and by the factors present in the tumor microenvironment. Recent advances in the understanding of the involvement of the tumor microenvironment in tumor progression and therapeutic response are optimizing the application of prognostic and predictive factors in colon cancer. Moreover, new targets in the tumor microenvironment that are amenable to therapeutic intervention have been identified. Because stromal cells are with rare exceptions genetically stable, the tumor microenvironment has emerged as a preferred target for therapeutic drugs. In this review, we discuss the role of stromal fibroblasts and macrophages in colon cancer progression and in the response of colon cancer patients to therapy. PMID:26568685

  7. Mesenchymal stromal cells, colony-forming unit fibroblasts, from bone marrow of untreated advanced breast and lung cancer patients suppress fibroblast colony formation from healthy marrow.

    PubMed

    Hofer, Erica Leonor; Labovsky, Vivian; La Russa, Vincent; Vallone, Valeria Fernández; Honegger, Alba Elizabeth; Belloc, Carlos Gabriel; Wen, Huei Chi; Bordenave, Raúl Horacio; Bullorsky, Eduardo Oscar; Feldman, Leonardo; Chasseing, Norma Alejandra

    2010-03-01

    We have shown that bone marrow (BM) from untreated advanced lung and breast cancer patients (LCP and BCP) have a reduced number of colony-forming unit fibroblasts (CFU-Fs) or mesenchymal stem cells (MSCs). Factors that regulate the proliferation and differentiation of CFU-F are produced by the patients' BM microenvironment. We have now examined whether conditioned media (CM) from patients' CFU-F-derived stromal cells also inhibits the colony-forming efficiency (CFE) of CFU-F in primary cultures from healthy volunteers (HV)-BM. Thus the number and proliferation potential of HV-CFU-F were also found to be decreased and similar to colony numbers and colony size of patients' CFU-F. Stromal cells from both of these types of colonies appeared relatively larger and lacked the characteristic spindle morphology typically seen in healthy stromal cells. We developed an arbitrary mesenchymal stromal cell maturational index by taking three measures consisting of stromal cell surface area, longitudinal and horizontal axis. All stromal indices derived from HV-CFU-F grown in patients' CM were similar to those from stromal elements derived from patients' CFU-F. These indices were markedly higher than stromal indices typical of HV-CFU-F cultured in healthy CM or standard medium [alpha-medium plus 20% heat-inactivated fetal bovine serum (FBS)]. Patients' CM had increased concentrations of the CFU-F inhibitor, GM-CSF, and low levels of bFGF and Dkk-1, strong promoters of self-renewal of MSCs, compared to the levels quantified in CM from HV-CFU-F. Moreover, the majority of patients' MSCs were unresponsive in standard medium and healthy CM to give CFU-F, indicating that the majority of mesenchymal stromal cells from patients' CFU-F are locked in maturational arrest. These results show that alterations of GM-CSF, bFGF, and Dkk-1 are associated with deficient cloning and maturation arrest of CFU-F. Defective autocrine and paracrine mechanisms may be involved in the BM microenvironments of

  8. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function

    NASA Technical Reports Server (NTRS)

    Lu, L.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    BACKGROUND: Controlled release of transforming growth factor-beta1 (TGF-beta1) to a bone defect may be beneficial for the induction of a bone regeneration cascade. The objectives of this work were to assess the feasibility of using biodegradable polymer microparticles as carriers for controlled TGF-beta1 delivery and the effects of released TGF-beta1 on the proliferation and differentiation of marrow stromal cells in vitro. METHODS: Recombinant human TGF-beta1 was incorporated into microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG). Fluorescein isothiocynate-labeled bovine serum albumin (FITC-BSA) was co-encapsulated as a porogen. The effects of PEG content (0, 1, or 5% by weight [wt%]) and buffer pH (3, 5, or 7.4) on the protein release kinetics and the degradation of PLGA were determined in vitro for as long as 28 days. Rat marrow stromal cells were seeded on a biodegradable poly(propylene fumarate) (PPF) substrate. The dose response and biological activity of released TGF-beta1 was determined after 3 days in culture. The effects of TGF-beta1 released from PLGA/PEG microparticles on marrow stromal cell proliferation and osteoblastic differentiation were assessed during a 21-day period. RESULTS: TGF-beta1 was encapsulated along with FITC-BSA into PLGA/PEG blend microparticles and released in a multiphasic fashion including an initial burst for as long as 28 days in vitro. Increasing the initial PEG content resulted in a decreased cumulative mass of released proteins. Aggregation of FITC-BSA occurred at lower buffer pH, which led to decreased release rates of both proteins. The degradation of PLGA was increased at higher PEG content and significantly accelerated at acidic pH conditions. Rat marrow stromal cells cultured on PPF substrates showed a dose response to TGF-beta1 released from the microparticles similar to that of added TGF-beta1, indicating that the activity of TGF-beta1 was retained during microparticle

  9. Generation and characterization of novel stromal specific antibodies

    PubMed Central

    HALDER, Sapna; HARDIE, Debbie L.; SCHEEL-TOELLNER, Dagmar; SALMON, Mike; BUCKLEY, Christopher D.

    2011-01-01

    Rheumatoid synovial fibroblasts were used as an immunogen to produce monoclonal antibodies selected for their reactivity with stromal cell antigens. Mice were immunised with low passage whole cell preparations and the subsequent hybridomas were screened by immunohistochemistry on rheumatoid synovium and tonsil sections. The aim was to identify those antibodies that recognised antigens that were restricted to stromal cells and were not expressed on CD45 positive leucocytes. A significant number of antibodies detected antigen that identified endothelial cells. These antibodies were further characterised to determine whether the vessels identified by these antibodies were vascular or lymphatic. From five fusions clones were identified with predominant reactivity with: 1) fibroblasts and endothelial cells; or 2) broad stromal elements (fibroblast, endothelium, epithelium, follicular dendritic cells). A fibroblast-specific antibody that did not also identify vessels was not generated. Examples of each reactivity pattern are discussed. PMID:16212881

  10. Ovarian hemangioma associated with concomitant stromal luteinization and ascites.

    PubMed

    Yamawaki, T; Hirai, Y; Takeshima, N; Hasumi, K

    1996-06-01

    A 62-year-old female presented with a pelvic mass and ascites. The Papanicolaou vaginal smear showed an unusual maturation, maturation index being 0/80/20. The serum level of estradiol was 48.7 pg/ml. The preoperative checkup suggested a pelvic malignancy with a differential diagnosis of hormone-secreting ovarian tumor. On surgical exploration, she had a hemangioma of the ovary without malignant cytology in the ascitic fluid. Histologically, this tumor was associated with stromal luteinization. This is the first case, reported in the literature, possessing ovarian hemangioma with stromal luteinization accompanying massive ascites. It should be noted that an ovarian hemangioma can be associated with stromal luteinization and ascites, and that MR imaging is sometimes of value for making a preoperative diagnosis of ovarian hemangioma. PMID:8641629

  11. Sex cord-gonadal stromal tumor of the rete testis.

    PubMed

    Sajadi, Kamran P; Dalton, Rory R; Brown, James A

    2009-01-01

    A 34-year-old tetraplegic patient with suppurative epididymitis was found on follow-up examination and ultrasonography to have a testicular mass. The radical orchiectomy specimen contained an undifferentiated spindled sex cord-stromal tumor arising in the rete testis. Testicular sex cord-stromal tumors are far less common than germ cell neoplasms and are usually benign. The close relationship between sex cords and ductules of the rete testis during development provides the opportunity for these uncommon tumors to arise anatomically within the rete tesis. This undifferentiated sex cord-stromal tumor, occurring in a previously unreported location, is an example of an unusual lesion mimicking an intratesticular malignant neoplasm. PMID:19125206

  12. Sex Cord-Gonadal Stromal Tumor of the Rete Testis

    PubMed Central

    Sajadi, Kamran P.; Dalton, Rory R.; Brown, James A.

    2009-01-01

    A 34-year-old tetraplegic patient with suppurative epididymitis was found on follow-up examination and ultrasonography to have a testicular mass. The radical orchiectomy specimen contained an undifferentiated spindled sex cord-stromal tumor arising in the rete testis. Testicular sex cord-stromal tumors are far less common than germ cell neoplasms and are usually benign. The close relationship between sex cords and ductules of the rete testis during development provides the opportunity for these uncommon tumors to arise anatomically within the rete tesis. This undifferentiated sex cord-stromal tumor, occurring in a previously unreported location, is an example of an unusual lesion mimicking an intratesticular malignant neoplasm. PMID:19125206

  13. Drug Repurposing for Gastrointestinal Stromal Tumor

    PubMed Central

    Pessetto, Ziyan Y.; Weir, Scott J.; Sethi, Geetika; Broward, Melinda A.; Godwin, Andrew K.

    2013-01-01

    Despite significant treatment advances over the past decade, metastatic gastrointestinal stromal tumor (GIST) remains largely incurable. Rare diseases, such as GIST, individually affect small groups of patients but collectively are estimated to affect 25–30 million people in the U.S. alone. Given the costs associated with the discovery, development and registration of new drugs, orphan diseases such as GIST are often not pursued by mainstream pharmaceutical companies. As a result, “drug repurposing” or “repositioning”, has emerged as an alternative to the traditional drug development process. In this study we screened 796 FDA-approved drugs and found that two of these compounds, auranofin and fludarabine phosphate, effectively and selectively inhibited the proliferation of GISTs including imatinib-resistant cells. One of the most notable drug hits, auranofin (Ridaura®), an oral, gold-containing agent approved by the FDA in 1985 for the treatment of rheumatoid arthritis (RA), was found to inhibit thioredoxin reductase (TrxR) activity and induce reactive oxygen species (ROS) production, leading to dramatic inhibition of GIST cell growth and viability. Importantly, the anti-cancer activity associated with auranofin was independent of IM resistant status, but was closely related to the endogenous and inducible levels of ROS, therefore is prior to IM response. Coupled with the fact auranofin has an established safety profile in patients, these findings suggest for the first time that auranofin may have clinical benefit for GIST patients, particularly in those suffering from imatinib-resistant and recurrent forms of this disease. PMID:23657945

  14. The General Conference Mennonites.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    General Conference Mennonites and Old Order Amish are compared and contrasted in the areas of physical appearance, religious beliefs, formal education, methods of farming, and home settings. General Conference Mennonites and Amish differ in physical appearance and especially in dress. The General Conference Mennonite men and women dress the same…

  15. Parent Conferences. Beginnings Workshop.

    ERIC Educational Resources Information Center

    Duffy, Roslyn; And Others

    1997-01-01

    Presents six workshop sessions on parent conferences: (1) "Parents' Perspectives on Conferencing" (R. Duffy); (2) "Three Way Conferences" (G. Zeller); (3) "Conferencing with Parents of Infants" (K. Albrecht); (4) "Conferencing with Parents of School-Agers" (L. G. Miller); (5) "Cross Cultural Conferences" (J. Gonzalez-Mena); and (6) "Working with…

  16. Tumeur stromale rectale: à propos d'une observation

    PubMed Central

    Rejab, Haitham; Kridis, Wala Ben; Ben Ameur, Hazem; Feki, Jihene; Frikha, Mounir; Beyrouti, Mohamed Issam

    2014-01-01

    Les tumeurs stromales gastro-intestinales sont des tumeurs mésenchymateuses peu fréquentes. Elles sont localisées préférentiellement eu niveau de l'estomac. La localisation rectale reste rare. A un nouveau cas de tumeur stromale du rectum ainsi qu'une bref revue de la littérature, on se propose d’étudier les particularités cliniques, radiologiques et thérapeutiques de cette entité rare. PMID:25120863

  17. Ovarian signet-ring stromal tumor: a potential diagnostic pitfall.

    PubMed

    Shaco-Levy, Ruthy; Kachko, Leonid; Mazor, Moshe; Piura, Benjamin

    2008-04-01

    Signet-ring stromal tumor is a rare ovarian neoplasm with only 10 reported cases in the literature. We report an unusual case of ovarian signet-ring stromal tumor in a 69-year-old woman who presented with right adnexal mass and underwent total abdominal hysterectomy and bilateral salpingo-oophorectomy. The diagnosis was based on histological, histochemical, immunohistochemical, and electron microscopy characteristics. The main significance is to differentiate this benign tumor from the highly malignant Krukenberg tumor, and this differential diagnosis is discussed. PMID:18417676

  18. Stromal vascular progenitors in adult human adipose tissue

    PubMed Central

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Pfeifer, Melanie E.; Meyer, E. Michael; Péault, Bruno; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    Background The in vivo progenitor of culture-expanded mesenchymal-like adipose-derived stem cells (ADSC) remains elusive, owing in part to the complex organization of stromal cells surrounding the small vessels, and the rapidity with which adipose stromal vascular cells adopt a mesenchymal phenotype in vitro. Methods Immunohistostaining of intact adipose tissue was used to identify 3 markers (CD31, CD34, CD146) which together unambiguously discriminate histologically distinct inner and outer rings of vessel-associated stromal cells, as well as capillary and small vessel endothelial cells. These markers were used in multiparameter flow cytometry in conjunction with stem/progenitor markers (CD90, CD117) to further characterize stromal vascular fraction (SVF) subpopulations. Two mesenchymal and two endothelial populations were isolated by high speed flow cytometric sorting, expanded in short term culture and tested for adipogenesis. Results The inner layer of stromal cells in contact with small vessel endothelium (pericytes) was CD146+/α-SMA+/CD90±/CD34−/CD31−; the outer adventitial stromal ring (designated supra adventitial-adipose stromal cells, SA-ASC) was CD146−/α-SMA−/CD90+/CD34+/CD31−. Capillary endothelial cells were CD31+/CD34+/CD90+ (endothelial progenitor), while small vessel endothelium was CD31+/CD34−/CD90− (endothelial mature). Flow cytometry confirmed these expression patterns and revealed a CD146+/CD90+/CD34+/CD31− pericyte subset that may be transitional between pericytes and SA-ASC. Pericytes had the most potent adipogenic potential, followed by the more numerous SA-ASC. Endothelial populations had significantly reduced adipogenic potential compared to unsorted expanded SVF cells. Conclusions In adipose tissue perivascular stromal cells are organized in two discrete layers, the innermost consisting of CD146+/CD34− pericytes, and the outermost of CD146−/CD34+ SA-ASC, both of which have adipogenic potential in culture. A CD146+/CD

  19. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice

    PubMed Central

    Fang, Yujie; Liao, Kaifeng; Du, Hao; Xu, Yan; Song, Huazhi; Li, Xianghua; Xiong, Lizhong

    2015-01-01

    Adverse environmental conditions such as high temperature and drought stress greatly limit the growth and production of crops worldwide. Several NAC (NAM, ATAF1/2, and CUC2) proteins have been documented as important regulators in stress responses, but the molecular mechanisms are largely unknown. Here, a stress-responsive NAC gene, SNAC3 (ONAC003, LOC_Os01g09550), conferring drought and heat tolerance in rice is reported. SNAC3 was ubiquitously expressed and its transcript level was induced by drought, high temperature, salinity stress, and abscisic acid (ABA) treatment. Overexpression (OE) of SNAC3 in rice resulted in enhanced tolerance to high temperature, drought, and oxidative stress caused by methyl viologen (MV), whereas suppression of SNAC3 by RNAi resulted in increased sensitivity to these stresses. The SNAC3-OE transgenic plants exhibited significantly lower levels of H2O2, malondiadehyde (MDA), and relative electrolyte leakage than the wild-type control under heat stress conditions, implying that SNAC3 may confer stress tolerance by modulating reactive oxygen species (ROS) homeostasis. Quantitative PCR experiments showed that the expression of a large number of ROS-scavenging genes was dramatically increased in the SNAC3-OE plants, but significantly decreased in the SNAC3-RNAi transgenic plants. Five ROS-associated genes which were up-regulated in SNAC3-OE plants showed co-expression patterns with SNAC3, and three of the co-expressed ROS-associated enzyme genes were verified to be direct target genes of SNAC3. These results suggest that SNAC3 plays important roles in stress responses, and it is likely to be useful for engineering crops with improved tolerance to heat and drought stress. PMID:26261267

  20. Sera of overweight people promote in vitro adipocyte differentiation of bone marrow stromal cells

    PubMed Central

    2014-01-01

    Introduction Overweight status should not be considered merely an aesthetic concern; rather, it can incur health risks since it may trigger a cascade of events that produce further fat tissue through altered levels of circulating signaling molecules. There have been few studies addressing the effect of overweight status on the physiological functions of stem cells, including mesenchymal stem cells (MSCs), which are the progenitors of adipocytes and osteocytes and are a subset of the bone marrow stromal cell population. Methods We decided to investigate the influence of overweight individuals’ sera on in vitro MSC proliferation and differentiation. Results We observed that in vitro incubation of bone marrow stromal cells with the sera of overweight individuals promotes the adipogenic differentiation of MSCs while partially impairing proper osteogenesis. Conclusions These results, which represent a pilot study, might suggest that becoming overweight triggers further weight gains by promoting a bias in the differentiation potential of MSCs toward adipogenesis. The circulating factors involved in this phenomenon remain to be determined, since the great majority of the well known pro-inflammatory cytokines and adipocyte-secreted factors we investigated did not show relevant modifications in overweight serum samples compared with controls. PMID:24405848

  1. Innate lymphoid cells integrate stromal and immune signals to enhance antibody production by splenic marginal zone B cells

    PubMed Central

    Bascones, Sabrina; Mortha, Arthur; Puga, Irene; Cassis, Linda; Barra, Carolina M.; Comerma, Laura; Chudnovskiy, Aleksey; Gentile, Maurizio; Llige, David; Cols, Montserrat; Serrano, Sergi; Aróstegui, Juan Ignacio; Juan, Manel; Yagüe, Jordi; Merad, Miriam; Fagarasan, Sidonia; Cerutti, Andrea

    2014-01-01

    Innate lymphoid cells (ILCs) regulate stromal, epithelial and immune cells, but their impact on B cells remains unclear. We identified RORγt+ ILCs nearby the marginal zone (MZ), a splenic compartment containing innate-like B cells that respond to circulating T cell-independent (TI) antigens. Spenic ILCs established a bidirectional crosstalk with MAdCAM-1+ marginal reticular cells by providing tumor necrosis factor (TNF) and lymphotoxin, and activated MZ B cells via BAFF, CD40 ligand and the Notch ligand, Delta-like 1. Splenic ILCs further helped MZ B cells and their plasma cell progeny by co-opting neutrophils through the release of GM-CSF. Consequently, ILC depletion impaired both pre- and post-immune TI antibody responses. Thus, ILCs integrate stromal and myeloid signals to orchestrate innate-like antibody production at the interface between the immune and circulatory systems. PMID:24562309

  2. Stromal phosphate concentration is low during feedback limited photosynthesis

    SciTech Connect

    Sharkey, T.D.; Vanderveer, P.J. )

    1989-10-01

    It has been hypothesized that photosynthesis can be feedback limited when the phosphate concentration cannot be both low enough to allow starch and sucrose synthesis at the required rate and high enough for ATP synthesis at the required rate. We have measured the concentration of phosphate in the stroma and cytosol of leaves held under feedback conditions. We used nonaqueous fractionation techniques with freeze-clamped leaves of Phaseolus vulgaris plants grown on reduced phosphate nutrition. Feedback was induced by holding leaves in low O{sub 2} or high CO{sub 2} partial pressure. We found 7 millimolar phosphate in the stroma of leaves in normal oxygen but just 2.7 millimolar phosphate in leaves held in low oxygen. Because 1 to 2 millimolar phosphate in the stroma may be metabolically inactive, we estimate that in low oxygen, the metabolically active pool of phosphate is between negligible and 1.7 millimolar. We conclude that halfway between these extremes, 0.85 millimolar is a good estimate of the phosphate concentration in the stroma of feedback-limited leaves and that the true concentration could be even lower. The stromal phosphate concentration was also low when leaves were held in high CO{sub 2}, which also induces feedback-limited photosynthesis, indicating that the effect is related to feedback limitation, not to low oxygen per se. We conclude that the concentration of phosphate in the stroma is usually in excess and that it is sequestered to regulate photosynthesis, especially starch synthesis. The capacity for this regulation is limited by the coupling factor requirement for phosphate.

  3. Identification of Predictive Gene Markers for Multipotent Stromal Cell Proliferation.

    PubMed

    Bellayr, Ian H; Marklein, Ross A; Lo Surdo, Jessica L; Bauer, Steven R; Puri, Raj K

    2016-06-01

    Multipotent stromal cells (MSCs) are known for their distinctive ability to differentiate into different cell lineages, such as adipocytes, chondrocytes, and osteocytes. They can be isolated from numerous tissue sources, including bone marrow, adipose tissue, skeletal muscle, and others. Because of their differentiation potential and secretion of growth factors, MSCs are believed to have an inherent quality of regeneration and immune suppression. Cellular expansion is necessary to obtain sufficient numbers for use; however, MSCs exhibit a reduced capacity for proliferation and differentiation after several rounds of passaging. In this study, gene markers of MSC proliferation were identified and evaluated for their ability to predict proliferative quality. Microarray data of human bone marrow-derived MSCs were correlated with two proliferation assays. A collection of 24 genes were observed to significantly correlate with both proliferation assays (|r| >0.70) for eight MSC lines at multiple passages. These 24 identified genes were then confirmed using an additional set of MSCs from eight new donors using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The proliferative potential of the second set of MSCs was measured for each donor/passage for confluency fraction, fraction of EdU+ cells, and population doubling time. The second set of MSCs exhibited a greater proliferative potential at passage 4 in comparison to passage 8, which was distinguishable by 15 genes; however, only seven of the genes (BIRC5, CCNA2, CDC20, CDK1, PBK, PLK1, and SPC25) demonstrated significant correlation with MSC proliferation regardless of passage. Our analyses revealed that correlation between gene expression and proliferation was consistently reduced with the inclusion of non-MSC cell lines; therefore, this set of seven genes may be more strongly associated with MSC proliferative quality. Our results pave the way to determine the quality of an MSC population for a

  4. Adipose-Derived Stromal Cells Promote Allograft Tolerance Induction

    PubMed Central

    Anam, Khairul; Lazdun, Yelena; Gimble, Jeffrey M.; Elster, Eric A.

    2014-01-01

    Amputations and unsalvageable injuries with devastating tissue loss are common in the combat wounded. Reconstructive transplantation in the civilian setting using vascular composite allotransplants (VCAs) with multiple tissues (skin, muscle, nerve, bone) combined with long-term multidrug immunosuppression has been encouraging. However, skin rejection remains a critical complication. Adipose-derived stromal/stem cells (ASCs) are easily obtained from normal individuals in high numbers, precluding ex vivo expansion. The reparative function and paracrine immunomodulatory capacity of ASCs has gained considerable attention. The present study investigated whether ASCs facilitate long-term skin allograft survival. ASCs were isolated from fresh human subcutaneous adipose lipoaspirate. Full-thickness skin grafts from BALB/c mice were transplanted onto the dorsal flanks of C57BL/6 mice treated with five doses of anti-CD4/CD8 monoclonal antibodies (10 mg/kg) on days 0, +2, +5, +7, and +14 relative to skin grafting. A single nonmyeloablative low dose of busulfan (5 mg/kg) was given on day +5. Seven days after skin transplantation, ASCs (3 × 106) were infused i.v. with or without donor bone marrow cells (BMCs; 5 × 105). ASC+BMC coinfusion with minimal conditioning led to stable lymphoid and myeloid macrochimerism, deletion of alloreactive T cells, expansion of regulatory T cells, and long-term allograft survival (>200 days). ASCs constitutively produced high levels of anti-inflammatory/immunoregulatory factors such as prostaglandin E2, indoleamine 2,3-dioxygenase, APO-1/Fas (CD95), and programmed cell death-1 ligand-2. These findings serve as a foundation for developing a translational advanced VCA protocol, embodying both ASCs and low-dose donor BMCs, in nonhuman primates, with the goal of enhancing functional outcomes and eliminating the complications associated with long-term immunosuppression. PMID:25411475

  5. Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid.

    PubMed

    Hulikova, Alzbeta; Black, Nicholas; Hsia, Lin-Ting; Wilding, Jennifer; Bodmer, Walter F; Swietach, Pawel

    2016-09-01

    Proliferation and invasion of cancer cells require favorable pH, yet potentially toxic quantities of acid are produced metabolically. Membrane-bound transporters extrude acid from cancer cells, but little is known about the mechanisms that handle acid once it is released into the poorly perfused extracellular space. Here, we studied acid handling by myofibroblasts (colon cancer-derived Hs675.T, intestinal InMyoFib, embryonic colon-derived CCD-112-CoN), skin fibroblasts (NHDF-Ad), and colorectal cancer (CRC) cells (HCT116, HT29) grown in monoculture or coculture. Expression of the acid-loading transporter anion exchanger 2 (AE2) (SLC4A2 product) was detected in myofibroblasts and fibroblasts, but not in CRC cells. Compared with CRC cells, Hs675.T and InMyoFib myofibroblasts had very high capacity to absorb extracellular acid. Acid uptake into CCD-112-CoN and NHDF-Ad cells was slower and comparable to levels in CRC cells, but increased alongside SLC4A2 expression under stimulation with transforming growth factor β1 (TGFβ1), a cytokine involved in cancer-stroma interplay. Myofibroblasts and fibroblasts are connected by gap junctions formed by proteins such as connexin-43, which allows the absorbed acid load to be transmitted across the stromal syncytium. To match the stimulatory effect on acid uptake, cell-to-cell coupling in NHDF-Ad and CCD-112-CoN cells was strengthened with TGFβ1. In contrast, acid transmission was absent between CRC cells, even after treatment with TGFβ1. Thus, stromal cells have the necessary molecular apparatus for assembling an acid-venting route that can improve the flow of metabolic acid through tumors. Importantly, the activities of stromal AE2 and connexin-43 do not place an energetic burden on cancer cells, allowing resources to be diverted for other activities. PMID:27543333

  6. Retroviral interleukin 1alpha gene transfer in bone marrow stromal cells in a primate model: induction of myelopoiesis stimulation.

    PubMed

    de Revel, Thierry; Becard, Nicolas; Sorg, Tania; Rousseau, Sandrine; Spano, Jean Philippe; Thiebot, Hugues; Methali, Magid; Gras, Gabriel; Le Grand, Roger; Dormont, Dominique

    2002-09-01

    Effects of interleukin 1-alpha (IL-1alpha), a proinflammatory cytokine with pleiotropic activity, in the myelopoietic setting, is mainly linked to its ability to increase haematopoietic growth factor production by bone marrow stromal cells. In order to minimize systemic effects of IL-1alpha therapy, we proposed a model of retroviral IL-1alpha gene transfer within bone marrow stromal cells in the macaque cynomolgus. Invitro, 10-15% of bone marrow stromal cells was effectively transduced by retroviral vector (murine Moloney leukaemia virus-derived) expressing IL-1alpha/LacZ, or LacZ alone as control marker, as assessed by betaGal staining. IL-1alpha gene expression was upregulated [semiquantitative reverse transcription polymerase chain reaction (RT-PCR)] within the transduced cells and the cell supernatant showed an increased production of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage (GM)-CSF (enzyme-linked immunosorbent assay) and an increased clonogenic activity (colony-forming cell assay). Ex vivo autologous expanded IL-1alpha/LacZ transduced bone marrow stromal cells were reinfused in two macaques (and two control animals for LacZ alone as controls), without clinical systemic toxicity; LacZ expression by RT-PCR was detected in one animal of each group between d 4 and 9. A slight increase of the peripheral blood leucocyte counts (both polymorphonuclear cells and monocytes) of the two animals transduced with IL-1alpha/LacZ was observed within 10 d, indicating stimulation of myelopoiesis. PMID:12181061

  7. Human Adipose Stromal Vascular Cell Delivery in a Fibrin Spray

    PubMed Central

    Zimmerlin, Ludovic; Rubin, J. Peter; Pfeifer, Melanie E.; Moore, L.R.; Donnenberg, Vera S.; Donnenberg, Albert D.

    2014-01-01

    Background Adipose tissue represents a practical source of autologous mesenchymal stromal cells (MSC) and vascular-endothelial progenitor cells, available for regenerative therapy without in vitro expansion. One of the problems confronting the therapeutic application of such cells is how to immobilize them at the wound site. Here, we evaluated in vitro the growth and differentiation of human adipose stromal vascular fraction (SVF) cells after delivery using a fibrin spray system. Methods SVF cells were harvested from four human adult patients undergoing elective abdominoplasty using the LipiVage™ system. After collagenase digestion, mesenchymal and endothelial progenitor cells (pericytes, supra-adventitial stromal cells, endothelial progenitors) were quantified by flow cytometry before culture. SVF cells were applied to culture vessels using the Tisseel™ fibrin spray system. SVF cell growth and differentiation was documented by immunofluorescence staining and photomicrography. Results SVF cells remained viable following application and were expanded up to three weeks, when they reached confluence and adipogenic differentiation. Under angiogenic conditions, SVF cells formed endothelial (vWF+, CD31+ and CD34+) tubules surrounded by CD146+ and α-SMA+ perivascular/stromal cells. Discussion Human adipose tissue is a rich source of autologous stem cells, which are readily available for regenerative applications such as wound healing, without in vitro expansion. Our results indicate that mesenchymal and endothelial progenitor cells, prepared in a closed system from unpassaged lipoaspirate samples, retain their growth and differentiation capacity when applied and immobilized on a substrate using a clinically approved fibrin sealant spray system. PMID:23260090

  8. Pten in Stromal Fibroblasts Suppresses Mammary Epithelial Tumors

    PubMed Central

    Trimboli, Anthony J.; Cantemir-Stone, Carmen Z.; Li, Fu; Wallace, Julie A.; Merchant, Anand; Creasap, Nicholas; Thompson, John C.; Caserta, Enrico; Wang, Hui; Chong, Jean-Leon; Naidu, Shan; Wei, Guo; Sharma, Sudarshana M.; Stephens, Julie A.; Fernandez, Soledad A.; Gurcan, Metin N.; Weinstein, Michael B.; Barsky, Sanford H.; Yee, Lisa; Rosol, Thomas J.; Stromberg, Paul C.; Robinson, Michael L.; Pepin, Francois; Hallett, Michael; Park, Morag; Ostrowski, Michael C.; Leone, Gustavo

    2009-01-01

    SUMMARY The tumor stroma is believed to contribute to some of the most malignant characteristics of epithelial tumors. However, signaling between stromal and tumor cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumors. This was associated with the massive remodeling of the extra-cellular matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-deleted tumors ameliorated disruption of the tumor microenvironment and was sufficient to decrease tumor growth and progression. Global gene expression profiling of mammary stromal cells identified a Pten-specific signature that was highly represented in the tumor stroma of breast cancer patients. These findings identify the Pten-Ets2 axis as a critical stroma-specific signaling pathway that suppresses mammary epithelial tumors. PMID:19847259

  9. Pseudoangiomatous stromal hyperplasia (PASH) of the breast: intraductal appearance.

    PubMed

    Gur, Akif Serhat; Unal, Bulent; Edington, Howard; Kanbour-Shakir, Amal; Soran, Atilla

    2009-08-01

    Pseudoangiomatous stromal hyperplasia (PASH) is a benign proliferative lesion of breast stroma. The diagnosis of PASH can be made using imaging techniques such as ultrasound, magnetic resonance or mammography. Ductoscopy is a relatively new technique which is used for imaging the intraductal surface. We report a patient with PASH in whom ductoscopy was performed successfully. PMID:19751351

  10. Therapy Effects of Bone Marrow Stromal Cells on Ischemic Stroke

    PubMed Central

    Ye, Xinchun; Hu, Jinxia; Cui, Guiyun

    2016-01-01

    Stroke is the second most common cause of death and major cause of disability worldwide. Recently, bone marrow stromal cells (BMSCs) have been shown to improve functional outcome after stroke. In this review, we will focus on the protective effects of BMSCs on ischemic brain and the relative molecular mechanisms underlying the protective effects of BMSCs on stroke. PMID:27069533

  11. Fatty Acid Desaturation during Chilling Acclimation Is One of the Factors Involved in Conferring Low-Temperature Tolerance to Young Tobacco Leaves.

    PubMed Central

    Kodama, H.; Horiguchi, G.; Nishiuchi, T.; Nishimura, M.; Iba, K.

    1995-01-01

    The FAD7 gene, a gene for a chloroplast [omega]-3 fatty acid desaturase, is responsible for the trienoic fatty acid (TA) formation in leaf tissues. The TA content of the leaf tissue of the 25[deg]C-grown transgenic tobacco (Nicotiana tabacum cv SR1) plants, in which the FAD7 gene from Arabidopsis thaliana was overexpressed, increased uniformly by about 10%. Fatty acid unsaturation in all major leaf polar lipid species increased in the 25[deg]C-grown FAD7 transformants but was approximately the same between the control plants and the FAD7 transformants when grown at 15[deg]C. Therefore, the overexpression of the exogenous FAD7 gene leads to the same consequence in the tobacco plants as the low-temperature-induced TA production that may be catalyzed by an endogenous, temperature-regulated chloroplast [omega]-3 fatty acid desaturase. In the 25[deg]C-grown control plants, the chilling treatment caused symptoms of leaf chlorosis and suppression of leaf growth. The 25[deg]C-grown FAD7 transgenic plants conferred alleviation of these chilling-induced symptoms. A reductions of the chilling injury similar to that of the FAD7 transformants was also observed in the 15[deg]C-preincubated control plants. These results indicate that the increased TA production during chilling acclimation is one of the prerequisites for the normal leaf development at low, nonfreezing temperatures. PMID:12228424

  12. Periostin expression in intra-tumoral stromal cells is prognostic and predictive for colorectal carcinoma via creating a cancer-supportive niche

    PubMed Central

    Tan, Xiaojie; Ding, Yibo; Luo, Yanxin; Cai, Hui; Liu, Yan; Gao, Xianhua; Liu, Qizhi; Yu, Yongwei; Du, Yan; Wang, Hao; Ma, Liye; Wang, Jianping; Chen, Kun; Ding, Yanqing; Fu, Chuangang; Cao, Guangwen

    2016-01-01

    Periostin (POSTN) expression in cancer cells and circulation has been related to poor prognosis of colorectal carcinoma (CRC). However, the role of POSTN expressed in intra-tumoral stroma on CRC progression remains largely unknown. This study enrolled 1098 CRC patients who received surgical treatment in Shanghai and Guangzhou, Mainland China. In Shanghai cohort, immunohistochemistry score of stromal POSTN expression increased consecutively from adjacent mucosa, primary CRC tissues, to metastatic CRC tissues (P < 0.001), while medium- and high-stromal POSTN expression, rather than epithelial POSTN expression, independently predicted unfavorable prognoses of CRC, adjusted for covariates including TNM stage and postoperative chemotherapy in multivariate Cox models. The results in Shanghai cohort were faithfully replicated in Guangzhou cohort. Stromal POSTN expression dose-dependently predicted an unfavorable prognosis of stage III CRC patients with postoperative chemotherapy in both cohorts. POSTN derived from colonic fibroblasts or recombinant POSTN significantly promoted proliferation, anchorage independent growth, invasion, and chemo-resistance of CRC cells; whereas these effects were counteracted via targeting to PI3K/Akt or Wnt/β-catenin signaling pathway. CRC cell RKO-derived factor(s) significantly induced POSTN production in colonic fibroblasts and autocrine POSTN promoted proliferation, migration, and anchorage independent growth of fibroblasts. Conclusively, stromal POSTN is prognostic and predictive for CRC via creating a niche to facilitate cancer progression. Targeting POSTN-induced signaling pathways may be therapeutic options for metastatic or chemoresistant CRC. PMID:26556874

  13. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone

    SciTech Connect

    Baxter, Kristin Kathleen; Uittenbogaard, Martine; Chiaramello, Anne

    2012-10-15

    The fundamental question of how and which neuronal specific transcription factors tailor mitochondrial biogenesis and bioenergetics to the need of developing neuronal cells has remained largely unexplored. In this study, we report that the neurogenic basic helix-loop-helix transcription factor NeuroD6 possesses mitochondrial biogenic properties by amplifying the mitochondrial DNA content and TFAM expression levels, a key regulator for mitochondrial biogenesis. NeuroD6-mediated increase in mitochondrial biogenesis in the neuronal progenitor-like PC12-NEUROD6 cells is concomitant with enhanced mitochondrial bioenergetic functions, including increased expression levels of specific subunits of respiratory complexes of the electron transport chain, elevated mitochondrial membrane potential and ATP levels produced by oxidative phosphorylation. Thus, NeuroD6 augments the bioenergetic capacity of PC12-NEUROD6 cells to generate an energetic reserve, which confers tolerance to the mitochondrial stressor, rotenone. We found that NeuroD6 induces an adaptive bioenergetic response throughout rotenone treatment involving maintenance of the mitochondrial membrane potential and ATP levels in conjunction with preservation of the actin network. In conclusion, our results support the concept that NeuroD6 plays an integrative role in regulating and coordinating the onset of neuronal differentiation with acquisition of adequate mitochondrial mass and energetic capacity to ensure energy demanding events, such as cytoskeletal remodeling, plasmalemmal expansion, and growth cone formation. -- Highlights: Black-Right-Pointing-Pointer NeuroD6 induces mitochondrial biogenesis in neuroprogenitor-like cells. Black-Right-Pointing-Pointer NeuroD6 augments the bioenergetic reserve of the neuronal PC12-NeuroD6 cells. Black-Right-Pointing-Pointer NeuroD6 increases the mitochondrial membrane potential and ATP levels. Black-Right-Pointing-Pointer NeuroD6 confers tolerance to rotenone via an adaptive

  14. Transcriptome analysis of bone marrow mesenchymal stromal cells from patients with primary myelofibrosis

    PubMed Central

    Martinaud, Christophe; Desterke, Christophe; Konopacki, Johanna; Vannucchi, Alessandro M.; Pieri, Lisa; Guglielmelli, Paola; Dupriez, Brigitte; Ianotto, Jean-Christophe; Boutin, Laetitia; Lataillade, Jean-Jacques; Le Bousse-Kerdilès, Marie-Caroline

    2015-01-01

    Primary myelofibrosis (PMF) is a clonal myeloproliferative neoplasm whose severity and treatment complexity are attributed to the presence of bone marrow (BM) fibrosis and alterations of stroma impairing the production of normal blood cells. Despite the recently discovered mutations including the JAK2V617F mutation in about half of patients, the primitive event responsible for the clonal proliferation is still unknown. In the highly inflammatory context of PMF, the presence of fibrosis associated with a neoangiogenesis and an osteosclerosis concomitant to the myeloproliferation and to the increase number of circulating hematopoietic progenitors suggests that the crosstalk between hematopoietic and stromal cells is deregulated in the PMF BM microenvironmental niches. Within these niches, mesenchymal stromal cells (BM-MSC) play a hematopoietic supportive role in the production of growth factors and extracellular matrix which regulate the proliferation, differentiation, adhesion and migration of hematopoietic stem/progenitor cells. A transcriptome analysis of BM-MSC in PMF patients will help to characterize their molecular alterations and to understand their involvement in the hematopoietic stem/progenitor cell deregulation that features PMF. PMID:26484208

  15. Ultrastructural study of mouse adipose-derived stromal cells induced towards osteogenic direction.

    PubMed

    Tsupykov, Oleg; Ustymenko, Alina; Kyryk, Vitaliy; Smozhanik, Ekaterina; Yatsenko, Kateryna; Butenko, Gennadii; Skibo, Galina

    2016-06-01

    We investigated the ultrastructural characteristics of mouse adipose-derived stem/stromal cells (ASCs) induced towards osteogenic lineage. ASCs were isolated from adipose tissue of FVB-Cg-Tg(GFPU)5Nagy/J mice and expanded in monolayer culture. Flow cytometry, histochemical staining, and electron microscopy techniques were used to characterize the ASCs with respect to their ability for osteogenic differentiation capacity. Immunophenotypically, ASCs were characterized by high expression of the CD44 and CD90 markers, while the relative content of cells expressing CD45, CD34 and CD117 markers was <2%. In assays of differentiation, the positive response to osteogenic differentiation factors was observed and characterized by deposition of calcium in the extracellular matrix and alkaline phosphatase production. Electron microscopy analysis revealed that undifferentiated ASCs had a rough endoplasmic reticulum with dilated cisterns and elongated mitochondria. At the end of the osteogenic differentiation, the ASCs transformed from their original fibroblast-like appearance to having a polygonal osteoblast-like morphology. Ultrastructurally, these cells were characterized by large euchromatic nucleus and numerous cytoplasm containing elongated mitochondria, a very prominent rough endoplasmic reticulum, Golgi apparatus and intermediate filament bundles. Extracellular matrix vesicles of variable size similar to the calcification nodules were observed among collagen fibrils. Our data provide the ultrastructural basis for further studies on the cellular mechanisms involved in osteogenic differentiation of mouse adipose-derived stem/stromal cells. Microsc. Res. Tech. 79:557-564, 2016. © 2016 Wiley Periodicals, Inc. PMID:27087359

  16. Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy

    PubMed Central

    Egeblad, Mikala; Ewald, Andrew J.; Askautrud, Hanne A.; Truitt, Morgan L.; Welm, Bryan E.; Bainbridge, Emma; Peeters, George; Krummel, Matthew F.; Werb, Zena

    2008-01-01

    SUMMARY The tumor microenvironment consists of stromal cells and extracellular factors that evolve in parallel with carcinoma cells. To gain insights into the activities of stromal cell populations, we developed and applied multicolor imaging techniques to analyze the behavior of these cells within different tumor microenvironments in the same live mouse. We found that regulatory T-lymphocytes (Tregs) migrated in proximity to blood vessels. Dendritic-like cells, myeloid cells and carcinoma-associated fibroblasts all exhibited higher motility in the microenvironment at the tumor periphery than within the tumor mass. Since oxygen levels differ between tumor microenvironments, we tested if acute hypoxia could account for the differences in cell migration. Direct visualization revealed that Tregs ceased migration under acute systemic hypoxia, whereas myeloid cells continued migrating. In the same mouse and microenvironment, we experimentally subdivided the myeloid cell population and revealed that uptake of fluorescent dextran defined a low-motility subpopulation expressing markers of tumor-promoting, alternatively activated macrophages. In contrast, fluorescent anti-Gr1 antibodies marked myeloid cells patrolling inside tumor vessels and in the stroma. Our techniques allow real-time combinatorial analysis of cell populations based on spatial location, gene expression, behavior and cell surface molecules within intact tumors. The techniques are not limited to investigations in cancer, but could give new insights into cell behavior more broadly in development and disease. PMID:19048079

  17. IL-6 originated from breast cancer tissue-derived mesenchymal stromal cells may contribute to carcinogenesis.

    PubMed

    Sağlam, Özlem; Ünal, Zehra Seda; Subaşı, Cansu; Ulukaya, Engin; Karaöz, Erdal

    2015-07-01

    Tumor microenvironment is an important factor, which sustains and promotes the tumors by inflammatory signals. Interleukin-6 (IL-6) is known as a multifunctional cytokine, which is a major activator of the signaling pathway of Janus kinases (JAKs)/signal transducer and activator of transcription 3 (STAT3). In this study, we aimed to investigate the effect of IL-6 in the tumor microenvironment on carcinogenesis. For this purpose, healthy breast tissue-derived stromal cells (HBT-SCs) and malign breast tissue-derived stromal cells (MBT-SCs) were co-cultured with MCF-7 (human breast adenocarcinoma cell line) cells using semipermeable membranes. The cell proliferation was monitored with water-soluble tetrazolium (WST) and carboxyfluorescein succinimidyl ester (CFSE) assays. Protein levels were measured by enzyme-linked immunosorbent assay (ELISA) and Western blot hybridization, while gene expressions were measured by real-time PCR. The results demonstrated that IL-6 protein levels increased significantly in the supernatants of MBT-SCs when they were co-cultured with MCF-7 cells. In accordance with this, the expression of IL-6 was significantly higher in MBT-SCs. Additionally, the expression of STAT3 in MCF-7 cells increased slightly when they were co-cultured with MBT-SCs. Considering together, there is an important interaction between tumor microenvironment and tumor cells mediated by IL-6 signaling. Thereby, the targeting on IL-6 signaling in the treatment of cancer might effectively prevent the tumor progression. PMID:25697898

  18. Regulation of inflammatory and angiogenesis mediators in a functional model of decidualized endometrial stromal cells.

    PubMed

    Bourdiec, Amélie; Ahmad, Syed-Furquan; Lachhab, Asmaa; Akoum, Ali

    2016-01-01

    The mechanisms involving the expression of interleukin (IL) 1 family members in the process of preparing the endometrium to receive an embryo remain unclear. In this study, decidualization differentially skewed the balance of IL1 family receptor expression in a pattern that increases endometrial stromal cell receptivity to IL1, IL18 and IL33. Additionally, endometrial cells showed increased expression of homeobox HOXA10 and HOXA11 and LIFR, which are known to be involved in endometrial embryo receptivity. Further analyses of decidual endometrial cells revealed a significant increase in the release of potent proinflammatory, remodelling and angiogenic factors implicated in the embryo invasion process, such as VEGF (P = 0.0305), MMP9 (P = 0.0003), TIMP3 (P = 0.0001), RANTES (P = 0.0020), MCP1 (P = 0.0001) and MIF (P = 0.0068). No significant changes in endogenous IL1B secretion were observed. Decreased secretion of IL18 and decidualization increased secretion of IL33. These findings reveal a significant modulation of endometrial cell receptivity to IL1 family members during endometrial stromal cell decidualization, and suggest that the involvement of IL1 family members is important in physiological processes of endometrial receptivity, including adaptive immunology. This may be relevant to establishing a favourable uterine microenvironment for embryo implantation. PMID:26602943

  19. Tumor-Promoting Desmoplasia Is Disrupted by Depleting FAP-Expressing Stromal Cells.

    PubMed

    Lo, Albert; Wang, Liang-Chuan S; Scholler, John; Monslow, James; Avery, Diana; Newick, Kheng; O'Brien, Shaun; Evans, Rebecca A; Bajor, David J; Clendenin, Cynthia; Durham, Amy C; Buza, Elizabeth L; Vonderheide, Robert H; June, Carl H; Albelda, Steven M; Puré, Ellen

    2015-07-15

    Malignant cells drive the generation of a desmoplastic and immunosuppressive tumor microenvironment. Cancer-associated stromal cells (CASC) are a heterogeneous population that provides both negative and positive signals for tumor cell growth and metastasis. Fibroblast activation protein (FAP) is a marker of a major subset of CASCs in virtually all carcinomas. Clinically, FAP expression serves as an independent negative prognostic factor for multiple types of human malignancies. Prior studies established that depletion of FAP(+) cells inhibits tumor growth by augmenting antitumor immunity. However, the potential for immune-independent effects on tumor growth have not been defined. Herein, we demonstrate that FAP(+) CASCs are required for maintenance of the provisional tumor stroma because depletion of these cells, by adoptive transfer of FAP-targeted chimeric antigen receptor (CAR) T cells, reduced extracellular matrix proteins and glycosaminoglycans. Adoptive transfer of FAP-CAR T cells also decreased tumor vascular density and restrained growth of desmoplastic human lung cancer xenografts and syngeneic murine pancreatic cancers in an immune-independent fashion. Adoptive transfer of FAP-CAR T cells also restrained autochthonous pancreatic cancer growth. These data distinguish the function of FAP(+) CASCs from other CASC subsets and provide support for further development of FAP(+) stromal cell-targeted therapies for the treatment of solid tumors. PMID:25979873

  20. Monitoring live human mesenchymal stromal cell differentiation and subsequent selection using fluorescent RNA-based probes

    PubMed Central

    Li, Bojun; Menzel, Ursula; Loebel, Claudia; Schmal, Hagen; Alini, Mauro; Stoddart, Martin J.

    2016-01-01

    Investigating mesenchymal stromal cell differentiation requires time and multiple samples due to destructive endpoint assays. Osteogenesis of human bone marrow derived mesenchymal stromal cells (hBMSCs) has been widely studied for bone tissue engineering. Recent studies show that the osteogenic differentiation of hBMSCs can be assessed by quantifying the ratio of two important transcription factors (Runx2/Sox9). We demonstrate a method to observe mRNA expression of two genes in individual live cells using fluorescent probes specific for Runx2 and Sox9 mRNA. The changes of mRNA expression in cells can be observed in a non-destructive manner. In addition, the osteogenic hBMSCs can be prospectively identified and obtained based on the relative intracellular fluorescence of Sox9 in relation to Runx2 using fluorescence activated cell sorting. Relatively homogeneous cell populations with high osteogenic potential can be isolated from the original heterogeneous osteogenically induced hBMSCs within the first week of induction. This offers a more detailed analysis of the effectiveness of new therapeutics both at the individual cell level and the response of the population as a whole. By identifying and isolating differentiating cells at early time points, prospective analysis of differentiation is also possible, which will lead to a greater understanding of MSC differentiation. PMID:27198236

  1. Comparative Ability of Mesenchymal Stromal Cells from Different Tissues to Limit Neutrophil Recruitment to Inflamed Endothelium

    PubMed Central

    Munir, Hafsa; Luu, Nguyet-Thin; Clarke, Lewis S. C.; Nash, Gerard B.; McGettrick, Helen M.

    2016-01-01

    Mesenchymal stromal cells (MSC) are tissue-resident stromal cells capable of modulating immune responses, including leukocyte recruitment by endothelial cells (EC). However, the comparative potency of MSC from different sources in suppressing recruitment, and the necessity for close contact with endothelium remain uncertain, although these factors have implications for use of MSC in therapy. We thus compared the effects of MSC isolated from bone marrow, Wharton’s jelly, and trabecular bone on neutrophil recruitment to cytokine-stimulated EC, using co-culture models with different degrees of proximity between MSC and EC. All types of MSC suppressed neutrophil adhesion to inflamed endothelium but not neutrophil transmigration, whether directly incorporated into endothelial monolayers or separated from them by thin micropore filters. Further increase in the separation of the two cell types tended to reduce efficacy, although this diminution was least for the bone marrow MSC. Immuno-protective effects of MSC were also diminished with repeated passage; with BMMSC, but not WJMSC, completing losing their suppressive effect by passage 7. Conditioned media from all co-cultures suppressed neutrophil recruitment, and IL-6 was identified as a common bioactive mediator. These results suggest endogenous MSC have a homeostatic role in limiting inflammatory leukocyte infiltration in a range of tissues. Since released soluble mediators might have effects locally or remotely, infusion of MSC into blood or direct injection into target organs might be efficacious, but in either case, cross-talk between EC and MSC appears necessary. PMID:27171357

  2. Stromal complement receptor CD21/35 facilitates lymphoid prion colonization and pathogenesis.

    PubMed

    Zabel, Mark D; Heikenwalder, Mathias; Prinz, Marco; Arrighi, Isabelle; Schwarz, Petra; Kranich, Jan; von Teichman, Adriana; Haas, Karen M; Zeller, Nicolas; Tedder, Thomas F; Weis, John H; Aguzzi, Adriano

    2007-11-01

    We have studied the role of CD21/35, which bind derivatives of complement factors C3 and C4, in extraneural prion replication and neuroinvasion. Upon administration of small prion inocula, CD21/35(-/-) mice experienced lower attack rates and delayed disease over both wild-type (WT) mice and mice with combined C3 and C4 deficiencies. Early after inoculation, CD21/35(-/-) spleens were devoid of infectivity. Reciprocal adoptive bone marrow transfers between WT and CD21/35(-/-) mice revealed that protection from prion infection resulted from ablation of stromal, but not hemopoietic, CD21/35. Further adoptive transfer experiments between WT mice and mice devoid of both the cellular prion protein PrP(C) and CD21/35 showed that splenic retention of inoculum depended on stromal CD21/35 expression. Because both PrP(C) and CD21/35 are highly expressed on follicular dendritic cells, CD21/35 appears to be involved in targeting prions to follicular dendritic cells and expediting neuroinvasion following peripheral exposure to prions. PMID:17947689

  3. Engraftment and regenerative effects of bone marrow stromal cell transplantation on damaged rat olfactory mucosa.

    PubMed

    Kwon, Jang-Woo; Jo, Hyo Gyeong; Park, Sang Man; Ku, Cheol Hyo; Park, Dong-Joon

    2016-09-01

    To develop a new therapeutic method to treat olfactory deficits, we investigated the engraftment and regenerative effects of transplanted bone marrow stromal cells (BMSCs) on damaged rat olfactory mucosa. To induce olfactory nerve degeneration, one side of the olfactory mucosa of Sprague-Dawley rats was damaged via Triton X-100 irrigation. Phosphate-buffered saline containing syngeneic BMSCs was injected into the olfactory mucosa for transplantation. PKH fluorescent cell dye labeling of BMSCs was used to monitor the transplanted cells. After transplantation of BMSCs, the thickness and regeneration of olfactory mucosa were analyzed using hematoxylin-eosin (H&E) staining. S100 immunohistochemical staining was used to measure nerve sheath regeneration. The increase in NGF (nerve growth factor) level in the olfactory mucosa was measured by Western blot analysis. Transplanted bone marrow stromal cells were engrafted to the lamia propria of damaged mucosa. The mean time for normalization of thickness and morphological recovery of the olfactory mucosa was 4 weeks in the therapeutic group and 9 weeks in the control group. S100 immunoreactivity was higher on the BMSC-treated side than on the control side. During regeneration, the expression of NGF increased in the olfactory mucosa of the experimental group. Based on these results, BMSC transplantation accelerated regeneration of olfactory mucosa damaged by Triton X-100, and NGF may be essential to this regenerative process. PMID:26940801

  4. Human bone marrow stromal cells display variable anatomic site-dependent response and recovery from irradiation

    PubMed Central

    Damek-Poprawa, Monika; Stefanik, Derek; Levin, Lawrence M.; Akintoye, Sunday O.

    2010-01-01

    Objectives Orofacial bone is commonly affected by osteoradionecrosis (ORN) during head and neck cancer radiotherapy possibly due to interactions of several factors including radiation damage to resident bone marrow stromal cells (BMSCs). Irradiation causes DNA damage, triggers p53-dependent signaling resulting in either cell-cycle arrest or apoptosis. In same individuals, disproportionately higher rapid growth of orofacial BMSCs relative to those of axial/appendicular bones suggests their response to radiation is skeletally site-specific. We hypothesized that survival and osteogenic recovery capacity of irradiated human BMSCs is site-dependent based on anatomic skeletal site of origin. Methods Early passage BMSCs from maxilla, mandible and iliac crest of four normal volunteers were exposed to 2.5 to 10 Gy gamma radiation to evaluate clonogenic survival, effects on cell cycle, DNA damage, p53-related response and in vivo osteogenic regenerative capacity. Results Orofacial bone marrow stromal cells (OF-MSCs) survived higher radiation doses and recovered quicker than iliac crest (IC-MSCs) based on clonogenic survival, proliferation and accumulation in G0G1 phase. Post-irradiation p53 level was relatively unchanged but expression of p21, a downstream effector was moderately increased in OF-MSCs. Re-establishment of in vivo bone regeneration was delayed more in irradiated IC-MSCs relative to OF-MSCs. Conclusions Effect of irradiation on human BMSCs was skeletal site-specific with OF-MSCs displaying higher radio-resistance and quicker recovery than IC-MSCs. PMID:20378097

  5. Monitoring live human mesenchymal stromal cell differentiation and subsequent selection using fluorescent RNA-based probes.

    PubMed

    Li, Bojun; Menzel, Ursula; Loebel, Claudia; Schmal, Hagen; Alini, Mauro; Stoddart, Martin J

    2016-01-01

    Investigating mesenchymal stromal cell differentiation requires time and multiple samples due to destructive endpoint assays. Osteogenesis of human bone marrow derived mesenchymal stromal cells (hBMSCs) has been widely studied for bone tissue engineering. Recent studies show that the osteogenic differentiation of hBMSCs can be assessed by quantifying the ratio of two important transcription factors (Runx2/Sox9). We demonstrate a method to observe mRNA expression of two genes in individual live cells using fluorescent probes specific for Runx2 and Sox9 mRNA. The changes of mRNA expression in cells can be observed in a non-destructive manner. In addition, the osteogenic hBMSCs can be prospectively identified and obtained based on the relative intracellular fluorescence of Sox9 in relation to Runx2 using fluorescence activated cell sorting. Relatively homogeneous cell populations with high osteogenic potential can be isolated from the original heterogeneous osteogenically induced hBMSCs within the first week of induction. This offers a more detailed analysis of the effectiveness of new therapeutics both at the individual cell level and the response of the population as a whole. By identifying and isolating differentiating cells at early time points, prospective analysis of differentiation is also possible, which will lead to a greater understanding of MSC differentiation. PMID:27198236

  6. Stromal SLIT2 impacts on pancreatic cancer-associated neural remodeling.

    PubMed

    Secq, V; Leca, J; Bressy, C; Guillaumond, F; Skrobuk, P; Nigri, J; Lac, S; Lavaut, M-N; Bui, T-T; Thakur, A K; Callizot, N; Steinschneider, R; Berthezene, P; Dusetti, N; Ouaissi, M; Moutardier, V; Calvo, E; Bousquet, C; Garcia, S; Bidaut, G; Vasseur, S; Iovanna, J L; Tomasini, R

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDA) is a critical health issue in the field of cancer, with few therapeutic options. Evidence supports an implication of the intratumoral microenvironment (stroma) on PDA progression. However, its contribution to the role of neuroplastic changes within the pathophysiology and clinical course of PDA, through tumor recurrence and neuropathic pain, remains unknown, neglecting a putative, therapeutic window. Here, we report that the intratumoral microenvironment is a mediator of PDA-associated neural remodeling (PANR), and we highlight factors such as 'SLIT2' (an axon guidance molecule), which is expressed by cancer-associated fibroblasts (CAFs), that impact on neuroplastic changes in human PDA. We showed that 'CAF-secreted SLIT2' increases neurite outgrowth from dorsal root ganglia neurons as well as from Schwann cell migration/proliferation by modulating N-cadherin/β-catenin signaling. Importantly, SLIT2/ROBO signaling inhibition disrupts this stromal/neural connection. Finally, we revealed that SLIT2 expression and CAFs are correlated with neural remodeling within human and mouse PDA. All together, our data demonstrate the implication of CAFs, through the secretion of axon guidance molecule, in PANR. Furthermore, it provides rationale to investigate the disruption of the stromal/neural compartment connection with SLIT2/ROBO inhibitors for the treatment of pancreatic cancer recurrence and pain. PMID:25590802

  7. Stromal SLIT2 impacts on pancreatic cancer-associated neural remodeling

    PubMed Central

    Secq, V; Leca, J; Bressy, C; Guillaumond, F; Skrobuk, P; Nigri, J; Lac, S; Lavaut, M-N; Bui, T-t; Thakur, A K; Callizot, N; Steinschneider, R; Berthezene, P; Dusetti, N; Ouaissi, M; Moutardier, V; Calvo, E; Bousquet, C; Garcia, S; Bidaut, G; Vasseur, S; Iovanna, J L; Tomasini, R

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDA) is a critical health issue in the field of cancer, with few therapeutic options. Evidence supports an implication of the intratumoral microenvironment (stroma) on PDA progression. However, its contribution to the role of neuroplastic changes within the pathophysiology and clinical course of PDA, through tumor recurrence and neuropathic pain, remains unknown, neglecting a putative, therapeutic window. Here, we report that the intratumoral microenvironment is a mediator of PDA-associated neural remodeling (PANR), and we highlight factors such as ‘SLIT2' (an axon guidance molecule), which is expressed by cancer-associated fibroblasts (CAFs), that impact on neuroplastic changes in human PDA. We showed that ‘CAF-secreted SLIT2' increases neurite outgrowth from dorsal root ganglia neurons as well as from Schwann cell migration/proliferation by modulating N-cadherin/β-catenin signaling. Importantly, SLIT2/ROBO signaling inhibition disrupts this stromal/neural connection. Finally, we revealed that SLIT2 expression and CAFs are correlated with neural remodeling within human and mouse PDA. All together, our data demonstrate the implication of CAFs, through the secretion of axon guidance molecule, in PANR. Furthermore, it provides rationale to investigate the disruption of the stromal/neural compartment connection with SLIT2/ROBO inhibitors for the treatment of pancreatic cancer recurrence and pain. PMID:25590802

  8. Identification of key genes in glioblastoma-associated stromal cells using bioinformatics analysis

    PubMed Central

    CHEN, CHENGYONG; SUN, CHONG; TANG, DONG; YANG, GUANGCHENG; ZHOU, XUANJUN; WANG, DONGHAI

    2016-01-01

    The aim of the present study was to identify key genes and pathways in glioblastoma-associated stromal cells (GASCs) using bioinformatics. The expression profile of microarray GSE24100 was obtained from the Gene Expression Omnibus database, which included the expression profile of 4 GASC samples and 3 control stromal cell samples. Differentially expressed genes (DEGs) were identified using limma software in R language, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery software. In addition, a protein-protein interaction (PPI) network was constructed. Subsequently, a sub-network was constructed to obtain additional information on genes identified in the PPI network using CFinder software. In total, 502 DEGs were identified in GASCs, including 331 upregulated genes and 171 downregulated genes. Cyclin-dependent kinase 1 (CDK1), cyclin A2, mitotic checkpoint serine/threonine kinase (BUB1), cell division cycle 20 (CDC20), polo-like kinase 1 (PLK1), and transcription factor breast cancer 1, early onset (BRCA1) were identified from the PPI network, and sub-networks revealed these genes as hub genes that were involved in significant pathways, including mitotic, cell cycle and p53 signaling pathways. In conclusion, CDK1, BUB1, CDC20, PLK1 and BRCA1 may be key genes that are involved in significant pathways associated with glioblastoma. This information may lead to the identification of the mechanism of glioblastoma tumorigenesis. PMID:27313730

  9. SLITRK3 expression correlation to gastrointestinal stromal tumor risk rating and prognosis

    PubMed Central

    Wang, Chao-Jie; Zhang, Zi-Zhen; Xu, Jia; Wang, Ming; Zhao, Wen-Yi; Tu, Lin; Zhuang, Chun; Liu, Qiang; Shen, Yan-Yin; Cao, Hui; Zhang, Zhi-Gang

    2015-01-01

    AIM: To assess the influence of SLIT and NTRK-like family member 3 (SLITRK3) on the prognosis of gastrointestinal stromal tumor (GIST) and determine whether SLITRK3 can help improve current risk stratification systems. METHODS: We hypothesized that SLITRK3 could be used as a prognostic molecular biomarker for GIST. 35 fresh tumor samples and 417 paraffin-embedded specimens from GIST patients were utilized. SLITRK3 mRNA expression in GIST tumor tissue was detected by real-time polymerase chain reaction, and SLITRK3 protein levels were estimated by immunohistochemistry. The correlation of SLITRK3 expression with various tumor clinicopathological characteristics and follow-up data were analyzed. RESULTS: GIST tumors had high expression of SLITRK3 compared with adjacent normal tissues and the expression level gradually increased with risk grade. SLITRK3 protein expression was closely associated with gastrointestinal bleeding, tumor site, tumor size, mitotic index, and National Institutes of Health (NIH) classification. Survival analysis showed that SLITRK3 expression was closely correlated with overall survival and disease-free survival of GIST patients. Multivariate analysis also identified SLITRK3 expression, mitotic index, and NIH stage as significant risk factors of GIST recurrence. CONCLUSION: SLITRK3 expression is a highly significant predictor of GIST recurrence and metastasis. Combinations of SLITRK3 and NIH stage have strong predictive and prognostic value, and are feasible markers for clinical practice in gastrointestinal stromal tumor. PMID:26217092

  10. Stromal cell-derived CSF-1 blockade prolongs xenograft survival of CSF-1-negative neuroblastoma

    PubMed Central

    Abraham, Dietmar; Zins, Karin; Sioud, Mouldy; Lucas, Trevor; Schäfer, Romana; Stanley, E. Richard; Aharinejad, Seyedhossein

    2011-01-01

    The molecular mechanisms of tumor–host interactions that render neuroblastoma (NB) cells highly invasive are unclear. Cancer cells upregulate host stromal cell colony-stimulating factor-1 (CSF-1) production to recruit tumor-associated macrophages (TAMs) and accelerate tumor growth by affecting extracellular matrix remodeling and angiogenesis. By coculturing NB with stromal cells in vitro, we showed the importance of host CSF-1 expression for macrophage recruitment to NB cells. To examine this interaction in NB in vivo, mice bearing human CSF-1-expressing SK-N-AS and CSF-1-negative SK-NDZ NB xenografts were treated with intratumoral injections of small interfering RNAs directed against mouse CSF-1. Significant suppression of both SK-N-AS and SK-N-DZ NB growth by these treatments was associated with decreased TAM infiltration, matrix metalloprotease (MMP)-12 levels and angiogenesis compared to controls, while expression of tissue inhibitors of MMPs increased following mouse CSF-1 blockade. Furthermore, Tie-2-positive and -negative TAMs recruited by host CSF-1 were identified in NB tumor tissue by confocal microscopy and flow cytometry. However, host-CSF-1 blockade prolonged survival only in CSF-1-negative SK-N-DZ NB. These studies demonstrated that increased CSF-1 production by host cells enhances TAM recruitment and NB growth and that the CSF-1 phenotype of NB tumor cells adversely affects survival. PMID:19711348

  11. Stromal-epithelial dynamics in response to fractionated radiotherapy

    NASA Astrophysics Data System (ADS)

    Qayyum, Muqeem Abdul

    Radiotherapy is central to the management of a number of human cancers, either as an adjuvant or primary treatment modality. The principal objective in irradiating tumors is to permanently inhibit their proliferative ability. More than half of all malignancies are primarily treated with radiation, but the heterotypic nature of tumor cells greatly complicates their response to radiotherapy. The need for reliable parameters to predict tumor and normal tissue response to radiation is therefore a prime concern of clinical oncology. Post-operative radiotherapy has commonly been used for early stage breast cancer to treat residual disease. There is continued debate as to what might be the proper dose per fraction as well as the total dose of radiation that needs to be prescribed to prevent disease recurrence. Countries outside the US have adopted increased dose fractionation (i.e., hypofractionation) schemes for early stage breast cancer as a standard of practice; however there is a lack of confidence in these approaches in the United States. The tumor microenvironment plays a significant role in regulating the progression of carcinomas, although the mechanisms are not entirely clear. The primary objective of this work was to characterize, through mechanobiological and radiobiological modeling, a test bed for radiotherapy fractionation techniques assessment. Our goal is to understand how the tumor microenvironment responds to dose fractionation schemes for Breast Conserving Therapy (BCT). Although carcinomas are the major concern for oncology, in this project, the goal is to understand how the stromal microenvironment influences behavior of the cancer cell populations. By classifying 3-D cellular co-cultures as having a reactive or quiescent stroma using the mechanobiology profile (culture stiffness,cellular activation, differentiation, and proliferation) we aim to differentiate the effectiveness of various fractionation schemes. The benefits of understanding heterotypic

  12. Pre-diagnostic obesity and physical inactivity are associated with shorter telomere length in prostate stromal cells

    PubMed Central

    Joshu, Corinne E; Peskoe, Sarah B; Heaphy, Christopher M; Kenfield, Stacey A; Van Blarigan, Erin L; Mucci, Lorelei A; Giovannucci, Edward L; Stampfer, Meir J; Yun, GhilSuk; Lee, Thomas K; Hicks, Jessica L; De Marzo, Angelo M; Meeker, Alan K; Platz, Elizabeth A

    2015-01-01

    Obesity and inactivity have been with associated advanced stage prostate cancer, and poor prostate cancer outcomes, though the underlying mechanism(s) is unknown. To determine if telomere shortening, which has been associated with lethal prostate cancer, may be a potential underlying mechanism, we prospectively evaluated the association between measures of adiposity, physical activity and telomere length in 596 participants in the Health Professionals Follow-up Study, who were surgically treated for prostate cancer. Using tissue microarrays, we measured telomere length in cancer and benign cells using a telomere-specific fluorescence in situ hybridization assay. Adiposity and activity were assessed via questionnaire within 2 years of diagnosis. Adjusting for age, pathologic stage and grade, the median and standard deviation of the per cell telomere signals were determined for each man for stromal cells and cancer cells by adiposity and activity categories. Overweight/obese men (54%) were similar to normal weight men on most factors, but had higher Gleason sum and lower activity levels. Overweight/obese men had 7.4% shorter telomeres in stromal cells than normal weight men (P=0.06). The least active men had shorter telomeres in stromal cells than more active men (P-trend=0.002). Men who were overweight/obese and the least active had the shortest telomeres in stromal cells (20.7% shorter; P=0.0005) compared to normal weight men who were the most active. Cancer cell telomere length and telomere length variability did not differ by measures of adiposity or activity. Telomere shortening in prostate cells may be one mechanism through which lifestyle influences prostate cancer risk and outcomes. PMID:25990087

  13. Property of Human Bone Marrow Stromal Cells Derived From Bone Fragments Removed in Sagittal Split Ramus Osteotomy.

    PubMed

    Yoshida, Chihiro; Yamaguchi, Satoshi; Abe, Shigehiro; Harada, Kiyoshi

    2016-06-01

    Bone tissue engineering is in the process of making the shift from bench to bed. Organ as a cell source is important for tissue engineering. The appropriate cells should be harvested without invasiveness and ethical problems. The authors focused on mandibular cortex bone fragments removed in sagittal split ramus osteotomy as a cell source for bone tissue engineering. These bone fragments were discarded after surgery until now. Bone marrow stromal cells (BMSCs) were harvested from inside of bone fragments, which is an endosteal region. Endosteal region is known to be a hematopoietic stem cell niche and harbors osteoblasts, preosteoblasts, and mesenchymal stem cells (MSCs). Bone marrow stromal cells could be cultured easily, and grew rapidly in vitro under ordinary serum-supplemented culture condition. The expression pattern of surface markers of BMSCs was the same as that of MSCs. Bone marrow stromal cells could differentiated into multiple mesenchymal lineages (osteoblasts, adipocytes, chondrocytes, and smooth muscle cells). These results indicated the existence of MSCs in BMSCs. The osteoblastic characters of BMSCs were examined more closely. Bone marrow stromal cells showed a high alkaline phosphatase activity, and expressed osteoblastic markers (PTHr, bone sialoprotein, Type I collagen, Rnut-related transcription factor 2, and osteocalcin). In transplantation experiments, BMSCs generated ectopic bone tissues on the border of hydroxyapatite scaffold without osteogenic differentiation-inducing agents such as dexamethasone (Dex) or bone morphogenetic protein. The results of this study suggest that mandibular cortex bone fragments removed in sagittal split ramus osteotomy are a good cell source for bone tissue engineering. PMID:27171960

  14. Stromal fibroblasts support dendritic cells to maintain IL-23/Th17 responses after exposure to ionizing radiation.

    PubMed

    Malecka, Anna; Wang, Qunwei; Shah, Sabaria; Sutavani, Ruhcha V; Spendlove, Ian; Ramage, Judith M; Greensmith, Julie; Franks, Hester A; Gough, Michael J; Saalbach, Anja; Patel, Poulam M; Jackson, Andrew M

    2016-08-01

    Dendritic cell function is modulated by stromal cells, including fibroblasts. Although poorly understood, the signals delivered through this crosstalk substantially alter dendritic cell biology. This is well illustrated with release of TNF-α/IL-1β from activated dendritic cells, promoting PGE2 secretion from stromal fibroblasts. This instructs dendritic cells to up-regulate IL-23, a key Th17-polarizing cytokine. We previously showed that ionizing radiation inhibited IL-23 production by human dendritic cells in vitro. In the present study, we investigated the hypothesis that dendritic cell-fibroblast crosstalk overcomes the suppressive effect of ionizing radiation to support appropriately polarized Th17 responses. Radiation (1-6 Gy) markedly suppressed IL-23 secretion by activated dendritic cells (P < 0.0001) without adversely impacting their viability and consequently, inhibited the generation of Th17 responses. Cytokine suppression by ionizing radiation was selective, as there was no effect on IL-1β, -6, -10, and -27 or TNF-α and only a modest (11%) decrease in IL-12p70 secretion. Coculture with fibroblasts augmented IL-23 secretion by irradiated dendritic cells and increased Th17 responses. Importantly, in contrast to dendritic cells, irradiated fibroblasts maintained their capacity to respond to TNF-α/IL-1β and produce PGE2, thus providing the key intermediary signals for successful dendritic cell-fibroblasts crosstalk. In summary, stromal fibroblasts support Th17-polarizing cytokine production by dendritic cells that would otherwise be suppressed in an irradiated microenvironment. This has potential ramifications for understanding the immune response to local radiotherapy. These findings underscore the need to account for the impact of microenvironmental factors, including stromal cells, in understanding the control of immunity. PMID:27049023

  15. Amount of stroma is associated with mammographic density and stromal expression of oestrogen receptor in normal breast tissues.

    PubMed

    Gabrielson, Marike; Chiesa, Flaminia; Paulsson, Janna; Strell, Carina; Behmer, Catharina; Rönnow, Katarina; Czene, Kamila; Östman, Arne; Hall, Per

    2016-07-01

    Following female sex and age, mammographic density is considered one of the strongest risk factors for breast cancer. Despite the association between mammographic density and breast cancer risk, little is known about the underlying histology and biological basis of breast density. To better understand the mechanisms behind mammographic density we assessed morphology, proliferation and hormone receptor status in relation to mammographic density in breast tissues from healthy women. Tissues were obtained from 2012-2013 by ultrasound-guided core needle biopsy from 160 women as part of the Karma (Karolinska mammography project for risk prediction for breast cancer) project. Mammograms were collected through routine mammography screening and mammographic density was calculated using STRATUS. The histological composition, epithelial and stromal proliferation status and hormone receptor status were assessed through immunohistochemical staining. Higher mammographic density was significantly associated with a greater proportion of stromal and epithelial tissue and a lower proportion of adipose tissue. Epithelial expression levels of Ki-67, oestrogen receptor (ER) and progesterone receptor (PR) were not associated with mammographic density. Epithelial Ki-67 was associated with a greater proportion of epithelial tissue, and epithelial PR was associated with a greater proportion of stromal and a lower proportion of adipose tissue. Epithelial ER was not associated with any tissues. In contrast, expression of ER in the stroma was significantly associated with a greater proportion of stroma, and negatively associated with the amount of adipose tissue. High mammographic density is associated with higher amount of stroma and epithelium and less amount of fat, but is not associated with a change in epithelial proliferation or receptor status. Increased expressions of both epithelial PR and stromal ER are associated with a greater proportion of stroma, suggesting hormonal involvement

  16. Recombinant human insulin-like growth factor I exerts a trophic action and confers glutamate sensitivity on glutamate-resistant cerebellar granule cells.

    PubMed Central

    Calissano, P; Ciotti, M T; Battistini, L; Zona, C; Angelini, A; Merlo, D; Mercanti, D

    1993-01-01

    Cerebellar granule cells grown in the presence of a serum complex differentiate but are resistant to the lethal action of excitatory amino acids. When these cells are grown also in the presence of insulin-like growth factor I (IGF-I) they become fully susceptible to the toxic, lethal action of glutamate. The glutamate-sensitizing action of IGF-I is dependent on concentration (half-maximal effect at 2-4 ng/ml) and time (half-maximal effect at 2-4 days in vitro) and is paralleled by the appearance of functionally active, glutamate-activated, Ca2+ channels and of voltage-gated Na+ and late K+ channels. IGF-I-induced glutamate sensitivity is rapidly reversible (t1/2 = 30-60 min) after removal of this somatomedin. The action of IGF-I is not mimicked by IGF-II, nerve growth factor, basic or acidic fibroblast growth factor, platelet-derived growth factor, or tumor necrosis factor alpha. We postulate that the constitutive phenotype of cerebellar granule cells is glutamate-resistant and becomes responsive to excitatory amino acids under the action of epigenetic cues among which IGF-I may be one of those operative in vivo. Images Fig. 1 PMID:8104340

  17. Stromal matrix metalloproteinase-11 is involved in the mammary gland postnatal development.

    PubMed

    Tan, J; Buache, E; Alpy, F; Daguenet, E; Tomasetto, C-L; Ren, G-S; Rio, M-C

    2014-07-31

    MMP-11 is a bad prognosis paracrine factor in invasive breast cancers. However, its mammary physiological function remains largely unknown. In the present study we have investigated MMP-11 function during postnatal mammary gland development and function using MMP-11-deficient (MMP-11-/-) mice. Histological and immunohistochemical analyses as well as whole-mount mammary gland staining show alteration of the mammary gland in the absence of MMP-11, where ductal tree, alveolar structures and milk production are reduced. Moreover, a series of transplantation experiments allowed us to demonstrate that MMP-11 exerts an essential local paracrine function that favors mammary gland branching and epithelial cell outgrowth and invasion through adjacent connective tissues. Indeed, MMP-11-/- cleared fat pads are not permissive for wild-type epithelium development, whereas MMP-11-/- epithelium transplants grow normally when implanted in wild-type cleared fat pads. In addition, using primary mammary epithelial organoids, we show in vitro that this MMP-11 pro-branching effect is not direct, suggesting that MMP-11 acts via production/release of stroma-associated soluble factor(s). Finally, the lack of MMP-11 leads to decreased periductal collagen content, suggesting that MMP-11 has a role in collagen homeostasis. Thus, local stromal MMP-11 might also regulate mammary epithelial cell behavior mechanically by promoting extracellular matrix stiffness. Collectively, the present data indicate that MMP-11 is a paracrine factor involved during postnatal mammary gland morphogenesis, and support the concept that the stroma strongly impact epithelial cell behavior. Interestingly, stromal MMP-11 has previously been reported to favor malignant epithelial cell survival and promote cancer aggressiveness. Thus, MMP-11 has a paracrine function during mammary gland development that might be harnessed to promote tumor progression, exposing a new link between development and malignancy. PMID:24141782

  18. Ninth Conference on Space Simulation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The papers presented in this conference provided an international dialogue and a meaningful exchange in the simulation of space environments as well as the evolution of these technological advances into other fields. The papers represent a significant contribution to the understanding of space simulation problems and the utilization of this knowledge. The topics of the papers include; spacecraft testing; facilities and test equipment; system and subsystem test; life sciences, medicine and space; physical environmental factors; chemical environmental factors; contamination; space physics; and thermal protection.

  19. Influence of Cancer-Associated Endometrial Stromal Cells on Hormone-Driven Endometrial Tumor Growth

    PubMed Central

    Pineda, M. J.; Lu, Z.; Cao, D.

    2016-01-01

    Cancer-associated fibroblasts have been shown to inhibit or stimulate tumor growth depending on stage, grade, and tumor type. It remains unclear, however, the effect of endometrial-cancer-associated fibroblasts on hormone-driven responses in endometrial cancer. In this study, we investigated the effect of normal and cancer-associated stromal cells from patients with and without endometrial cancer on endometrial tumor growth in response to estradiol (E2) and progesterone (P4). Compared to benign endometrial stromal cells, the low-grade and high-grade cancer-associated stromal cells exhibited a blunted hormone response for proliferation as well as IGFBP1 secretion. Additional analysis of the influence of stromal cells on hormone-driven tumor growth was done by mixing stromal cells from benign, low-grade, or high-grade tumors, with Ishikawa cells for subcutaneous tumor formation. The presence of both benign and high-grade cancer-associated stromal cells increased estradiol-driven xenografted tumor growth compared to Ishikawa cells alone. Low-grade cancer-associated stromal cells did not significantly influence hormone-regulated tumor growth. Addition of P4 attenuated tumor growth in Ishikawa + benign or high-grade stromal cells, but not in Ishikawa cells alone or with low-grade stromal cells. Using an angiogenesis focused real-time array TGFA, TGFB2 and TGFBR1 and VEGFC were identified as potential candidates for hormone-influenced growth regulation of tumors in the presence of benign and high-grade stromal cells. In summary, endometrial-cancer-associated cells responded differently to in vitro hormone treatment compared to benign endometrial stromal cells. Additionally, presence of stromal cells differentially influenced hormone-driven xenograft growth in vivo depending on the disease status of the stromal cells. PMID:25976290

  20. Genotypes Do Not Confer Risk For Delinquency ut Rather Alter Susceptibility to Positive and Negative Environmental Factors: Gene-Environment Interactions of BDNF Val66Met, 5-HTTLPR, and MAOA-uVNTR

    PubMed Central

    Comasco, Erika; Hodgins, Sheilagh; Oreland, Lars; Åslund, Cecilia

    2015-01-01

    Background: Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency. Methods: In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17–18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses. Results: Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship. Conclusions: Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency. PMID