Science.gov

Sample records for factor gene pro1

  1. High-resolution mapping of YACs and the single-copy gene Hs1(pro-1) on Beta vulgaris chromosomes by multi-colour fluorescence in situ hybridization.

    PubMed

    Desel, C; Jung, C; Cai, D; Kleine, M; Schmidt, T

    2001-01-01

    Fluorescence in situ hybridization (FISH) is a powerful approach for physical mapping of DNA sequences along plant chromosomes. Nematode-resistant sugar beets (Beta vulgaris) carrying a Beta procumbens translocation were investigated by FISH with two differentially labelled YACs originating from the translocation. At mitotic metaphases, the translocation was identified with both YACs in the terminal region on a pair of chromosomes. Meiotic chromosomes, representing a far more extended hybridization target, were used to determine the orientation of YACs with respect to chromosomal domains in combination with chromosomal landmark probes for telomeres and centromeres. The in situ detection of plant single-copy sequences is technically difficult, and the wild beet translocation was used to explore the potential resolution of the FISH approach and to introduce the chromosomal mapping of single-copy genes into genome analysis of Beta species. An internal fragment of the nematode resistance gene Hs1(pro-1), 684 bp long, was detected on both chromatids of different Beta chromosomes and represents one of the shortest unique DNA sequences localized on mitotic plant chromosomes so far. Comparative chromosomal mapping of the 684 bp Hs1(pro-1) probe in the translocation line, a monosomic addition line and in B. procumbens revealed the origin of the wild beet translocation leading to nematode-resistant sugar beets. PMID:11247602

  2. The distal upstream promoter in Ly49 genes, Pro1, is active in mature NK cells and T cells, does not require TATA boxes, and displays enhancer activity1

    PubMed Central

    Gays, Frances; Taha, Sally; Brooks, Colin G.

    2016-01-01

    Missing self recognition of MHC class I molecules is mediated in murine species through the stochastic expression of CD94/NKG2 and Ly49 receptors on NK cells. Previous studies have suggested that the stochastic expression of Ly49 receptors is achieved through the use of an alternate upstream promoter, designated Pro1, that is active only in immature NK cells, and operates via the mutually exclusive binding of transcription initiation complexes to closely opposed forward and reverse TATA boxes, forward transcription being transiently required to activate the downstream promoters, Pro2/Pro3, that are subsequently responsible for transcription in mature NK cells. Here we report that Pro1 transcripts are not restricted to immature NK cells but are also found in mature NK cells and T cells, and that Pro1-fragments display strong promoter activity in mature NK cell and T cell lines as well as in immature NK cells. However, the strength of promoter activity in vitro does not correlate well with Ly49 expression in vivo and forward promoter activity is generally weak or undetectable, suggesting that components outside of Pro1 are required for efficient forward transcription. Indeed, conserved sequences immediately upstream and downstream of the core Pro1 region were found to inhibit or enhance promoter activity. Most surprisingly, promoter activity does not require either the forward or reverse TATA boxes, but is instead dependent on residues in the largely invariant central region of Pro1. Importantly, Pro1 displays strong enhancer activity suggesting that this may be its principal function in vivo. PMID:25926675

  3. Molecular and cellular characterization of the tomato pollen profilin, LePro1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Profilin is an actin-binding protein involved in the dynamic turnover and restructuring of the actin cytoskeleton in all eukaryotic cells. We previously cloned a profilin gene, designated as LePro1 from tomato pollen. To investigate its biological role, in the present study, We investigated the tem...

  4. [Development genes encoding transcription factors and dysmorphology].

    PubMed

    Lacombe, Didier

    2009-04-01

    Studies of children with developmental abnormalities of genetic origin are necessary for accurate diagnosis, prognostication, patient management, and genetic counseling. Such studies can also help to identify genes involved in normal and abnormal morphogenesis, which often act as patterning genes and are also potential oncogenes. Many encode transcription factors that regulate other genes during embryonic development. PMID:20120282

  5. Growth factors from genes to clinical application

    SciTech Connect

    Sara, V.R. ); Hall, K.; Low, H. )

    1990-01-01

    The last decade has witnessed an explosion in the identification of growth factors and their receptors. This has been greatly facilitated by recombinant DNA technology, which has provided the tools not only to identify these proteins at the gene level but also to produce recombinant proteins for evaluating their biological activities. With the help of such techniques, we are moving toward an understanding of the biosynthesis of growth factors and their receptors, structure-function relationships, as well as mechanisms for intracellular signal transmission. The possibility of modifying these factors has opened new fields of clinical application. In this paper, four major areas of growth factor research are presented: the characterization of growth factor genes and their protein products, growth factor receptors and signal transduction by the receptors to mediate biological action, the biological actions of the various growth factors, and the role of growth factors in health and disease and their possible clinical application. Some of the topics covered include: structure of the IGFs and their variants; isoforms of PDGF receptor types; tyrosine kinase activation; structure of G-proteins in biological membranes; possible therapeutic application of NGF in the treatment of Parkinson's and Alzheimer's diseases; PDGF's possible role in the development of several fibroproliferative diseases and its therapeutic application in wound healing; and the possible use of angiogenic inhibitors in tumor treatment.

  6. [Intrinsic factors, genes, and skin aging].

    PubMed

    Makrantonaki, E; Pfeifer, G P; Zouboulis, C C

    2016-02-01

    Skin aging is determined by a combination of endogenous and environmental influences, including epigenetic, posttranslational, microbial, and lifestyle factors. In particular genetic changes, programmed or not, play a pivotal role and understanding of these complex mechanisms may contribute to the prevention of age-related diseases and extension of healthy lifespan. In this article, new knowledge about genes and biological processes that can significantly affect skin homeostasis in old age and can lead to the typical morphological and physiological characteristics of aging skin are summarized. PMID:26743050

  7. Methods of Combinatorial Optimization to Reveal Factors Affecting Gene Length

    PubMed Central

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species. PMID:23300345

  8. Investigation of factors affecting RNA-seq gene expression calls

    PubMed Central

    Harati, Sahar; Phan, John H.; Wang, May D.

    2016-01-01

    RNA-seq enables quantification of the human transcriptome. Estimation of gene expression is a fundamental issue in the analysis of RNA-seq data. However, there is an inherent ambiguity in distinguishing between genes with very low expression and experimental or transcriptional noise. We conducted an exploratory investigation of some factors that may affect gene expression calls. We observed that the distribution of reads that map to exonic, intronic, and intergenic regions are distinct. These distributions may provide useful insights into the behavior of gene expression noise. Moreover, we observed that these distributions are qualitatively similar between two sequence mapping algorithms. Finally, we examined the relationship between gene length and gene expression calls, and observed that they are correlated. This preliminary investigation is important for RNA-seq gene expression analysis because it may lead to more effective algorithms for distinguishing between true gene expression and experimental or transcriptional noise. PMID:25571173

  9. Comprehensive analysis of plant rapid alkalization factor (RALF) genes.

    PubMed

    Sharma, Arti; Hussain, Adil; Mun, Bong-Gyu; Imran, Qari Muhammad; Falak, Noreen; Lee, Sang-Uk; Kim, Jae Young; Hong, Jeum Kyu; Loake, Gary John; Ali, Asad; Yun, Byung-Wook

    2016-09-01

    Receptor mediated signal carriers play a critical role in the regulation of plant defense and development. Rapid alkalization factor (RALF) proteins potentially comprise important signaling components which may have a key role in plant biology. The RALF gene family contains large number of genes in several plant species, however, only a few RALF genes have been characterized to date. In this study, an extensive database search identified 39, 43, 34 and 18 RALF genes in Arabidopsis, rice, maize and soybean, respectively. These RALF genes were found to be highly conserved across the 4 plant species. A comprehensive analysis including the chromosomal location, gene structure, subcellular location, conserved motifs, protein structure, protein-ligand interaction and promoter analysis was performed. RALF genes from four plant species were divided into 7 groups based on phylogenetic analysis. In silico expression analysis of these genes, using microarray and EST data, revealed that these genes exhibit a variety of expression patterns. Furthermore, RALF genes showed distinct expression patterns of transcript accumulation in vivo following nitrosative and oxidative stresses in Arabidopsis. Predicted interaction between RALF and heme ligand also showed that RALF proteins may contribute towards transporting or scavenging oxygen moieties. This suggests a possible role for RALF genes during changes in cellular redox status. Collectively, our data provides a valuable resource to prime future research in the role of RALF genes in plant growth and development. PMID:27155375

  10. Organization of the gene for human factor XI

    SciTech Connect

    Asakai, R.; Chung, D.W.; Davie, E.W.

    1987-05-01

    Factor XI (plasma thromboplastin antecedent) is a plasma glycoprotein that participates in the contact phase of blood coagulation. The gene for human factor XI has been isolated from two human genomic libraries using a full length cDNA as a hybridization probe. Four overlapping recombinant lambda phage containing the entire human factor XI gene have been isolated and characterized by restriction mapping, Southern blotting and selective DNA sequencing. The gene for human factor XI is 25 kilobases in length and consists of 15 exons. The introns divide the coding sequence into segments that encode recognizable domains in the protein. Thus, exon I codes for the 5' noncoding region; exon II codes for the signal peptide of 18 amino acids. The following 8 exons (exon III to exon X) encode the 4 tandem repeats that constitute the heavy chain of factor XIa. The location of the introns and the junction type are strictly conserved in each of these repeats. Exon XI codes for the connecting peptide and exons XII, XIII, XIV and XV code for the light chain of factor XIa that contains the catalytic triad of the serine protease. The location of the introns and the junction types in this region of the gene are identical to those in the corresponding regions of the genes for human tissues plasminogen activator and porcine urokinase.

  11. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    SciTech Connect

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of specific tfb

  12. ULTRAPETALA trxG genes interact with KANADI transcription factor genes to regulate Aradopsis Gynoecium patterning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin remodeling factors cont...

  13. Regulatory network of microRNAs, target genes, transcription factors and host genes in endometrial cancer.

    PubMed

    Xue, Lu-Chen; Xu, Zhi-Wen; Wang, Kun-Hao; Wang, Ning; Zhang, Xiao-Xu; Wang, Shang

    2015-01-01

    Genes and microRNAs (miRNAs) have important roles in human oncology. However, most of the biological factors are reported in disperse form which makes it hard to discover the pathology. In this study, genes and miRNAs involved in human endometrial cancer(EC) were collected and formed into regulatory networks following their interactive relations, including miRNAs targeting genes, transcription factors (TFs) regulating miRNAs and miRNAs included in their host genes. Networks are constructed hierarchically at three levels: differentially expressed, related and global. Among the three, the differentially expressed network is the most important and fundamental network that contains the key genes and miRNAs in EC. The target genes, TFs and miRNAs are differentially expressed in EC so that any mutation in them may impact on EC development. Some key pathways in networks were highlighted to analyze how they interactively influence other factors and carcinogenesis. Upstream and downstream pathways of the differentially expressed genes and miRNAs were compared and analyzed. The purpose of this study was to partially reveal the deep regulatory mechanisms in EC using a new method that combines comprehensive genes and miRNAs together with their relationships. It may contribute to cancer prevention and gene therapy of EC. PMID:25684474

  14. Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression profiles

    PubMed Central

    Johnson, Kirby D.; Kim, Shin-Il; Bresnick, Emery H.

    2006-01-01

    Changes in transcription factor levels and activities dictate developmental fate. Such a change might affect the full ensemble of target genes for a factor or only uniquely sensitive targets. We investigated the relationship among activity of the hematopoietic transcription factor GATA-1, chromatin occupancy, and target gene sensitivity. Graded activation of GATA-1 in GATA-1-null cells revealed high-, intermediate-, and low-sensitivity targets. GATA-1 activity requirements for occupancy and transcription often correlated. A GATA-1 amino-terminal deletion mutant severely deregulated the low-sensitivity gene Tac-2. Thus, cells expressing different levels of a cell type-specific activator can have qualitatively distinct target gene expression patterns, and factor mutations preferentially deregulate low-sensitivity genes. Unlike other target genes, GATA-1-mediated Tac-2 regulation was bimodal, with activation followed by repression, and the coregulator Friend of GATA-1 (FOG-1) selectively mediated repression. A GATA-1 mutant defective in FOG-1 binding occupied a Tac-2 regulatory region at levels higher than wild-type GATA-1, whereas FOG-1 facilitated chromatin occupancy at a distinct target site. These results indicate that FOG-1 is a determinant of GATA factor target gene sensitivity by either facilitating or opposing chromatin occupancy. PMID:17043224

  15. Transcription factor trapping by RNA in gene regulatory elements

    PubMed Central

    Sigova, Alla A.; Abraham, Brian J.; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M.; Eric Guo, Yang; Jangi, Mohini; Giallourakis, Cosmas C.; Sharp, Phillip A.; Young, Richard A.

    2016-01-01

    Transcription factors (TFs) bind specific sequences in promoter-proximal and distal DNA elements in order to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA-binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF YY1 binds to both gene regulatory elements and also to their associated RNA species genome-wide. Reduced transcription of regulatory elements diminishes YY1 occupancy whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive feedback loop that contributes to the stability of gene expression programs. PMID:26516199

  16. Transcription factor trapping by RNA in gene regulatory elements.

    PubMed

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. PMID:26516199

  17. WRKY transcription factor genes in wild rice Oryza nivara.

    PubMed

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. PMID:27345721

  18. WRKY transcription factor genes in wild rice Oryza nivara

    PubMed Central

    Xu, Hengjian; Watanabe, Kenneth A.; Zhang, Liyuan; Shen, Qingxi J.

    2016-01-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. PMID:27345721

  19. High Producing Tumor Necrosis Factor Alpha Gene Alleles in Protection against Severe Manifestations of Dengue

    PubMed Central

    Sam, Sing-Sin; Teoh, Boon-Teong; Chinna, Karuthan; AbuBakar, Sazaly

    2015-01-01

    Dengue virus (DENV) infection usually presents with mild self-limiting dengue fever (DF). Few however, would present with the more severe form of the disease, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). In the present study, the association between IL-12B, IL-10 and TNF-α gene polymorphisms and dengue severity was investigated. Methods: A case-control study was performed on a total of 120 unrelated controls, 86 DF patients and 196 DHF/DSS patients. The polymorphisms in IL-12B, IL-10 and TNF-α genes were genotyped using PCR-RFLP and PCR-sequencing methods. Results: A protective association of TNF-α -308A allele and -308GA genotype against DHF/DSS was observed, while TNF-α -238A allele and -238GA genotype were associated with DHF/DSS. A combination of TNF-α -308GA+AA genotype and IL-10 non-GCC haplotypes, IL-12B pro homozygotes (pro1/pro1, pro2/pro2) and IL-12B 3'UTR AC were significantly correlated with protective effects against DHF/DSS. An association between the cytokine gene polymorphisms and protection against the clinical features of severe dengue including thrombocytopenia and increased liver enzymes was observed in this study. Conclusion: The overall findings of the study support the correlation of high-producer TNF-α genotypes combined with low-producer IL-10 haplotypes and IL-12B genotypes in reduced risk of DHF/DSS. PMID:25589894

  20. Spectrum of factor X gene mutations in Iranian patients with congenital factor X deficiency.

    PubMed

    Dorgalaleh, Akbar; Zaker, Farhad; Tabibian, Shadi; Alizadeh, Shaban; Dorgalele, Saeed; Hosseini, Soudabeh; Shamsizadeh, Morteza

    2016-04-01

    Congenital factor X deficiency is one of the most severe forms of rare bleeding disorders transmitted in autosomal recessive manner. According to the World Federation of Hemophilia survey, 153 patients with factor X deficiency (FXD) live in Iran, but a few studies have been performed to determine the precise distribution of FXD in different parts of the country and to assess molecular basis of this disorder in Iranian patients. This study was conducted to assess the spectrum of factor X gene mutation in Iranian patients with congenital FXD. All relevant English and Persian-language publications were searched (until 2015). Clinical presentations or molecular basis of nearly 90 Iranian patients were reported in different studies. Most of these studies focused on clinical presentations of patients, whereas molecular analyses were rarely performed. Most molecular studies found a diversity in factor X disease causing mutations in Iranian patients. Like other parts of the world, the majority of mutations in Iranian patients were missense mutations, but splice-site mutations were relatively common. Three extremely rare cases of combined factor X and factor VII deficiencies were observed in two cases of which this disorder resulted from different missense mutations in respective factor genes. A wide spectrum of factor X gene mutations was observed in Iranian patients with congenital FXD that revealed diversity in FXD gene mutations. PMID:26891460

  1. Growth Factors Regulate Expression of Mineral Associated Genes in Cementoblasts

    PubMed Central

    Saygin, N. Esra; Tokiyasu, Yoshihiko; Giannobile, William V.; Somerman, Martha J.

    2008-01-01

    Background Knowledge of the responsiveness of cells within the periodontal region to specific bioactive agents is important for improving regenerative therapies. The aim of this study was to determine the effect of specific growth factors, insulin-like growth factor-I (IGF-I), platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) on cementoblasts in vitro and ex vivo. Methods Osteocalcin (OC) promoter driven SV40 transgenic mice were used to obtain immortalized cementoblasts. Growth factor effects on DNA synthesis were assayed by [3H]-thymidine incorporation. Northern analysis was used to determine the effects of growth factors on gene expression profile. Effects of growth factors on cementoblast induced biomineralization were determined in vitro (von Kossa stain) and ex vivo (re-implantation of cells in immunodeficient (SCID) mice). Results All growth factors stimulated DNA synthesis compared to control. Twenty-four hour exposure of cells to PDGF-BB or TGF-β resulted in a decrease in bone sialoprotein (BSP) and osteocalcin (OCN) mRNAs while PDGF-BB also increased osteopontin (OPN) mRNA. Cells exposed to IGF-I for 24 hours exhibited decreased transcripts for OCN and OPN with an upregulation of BSP mRNA noted at 72 hours. In vitro mineralization was inhibited by continuous application of PDGF-BB or TGF-β, while cells exposed to these factors prior to implantation into SCID mice still promoted biomineralization. Conclusions These data indicate IGF-I, PDGF-BB, and TGF-β influence mitogenesis, phenotypic gene expression profile, and biomineralization potential of cementoblasts suggesting that such factors alone or in combination with other agents may provide trigger factors required for regenerating periodontal tissues. PMID:11063392

  2. Gain and loss of elongation factor genes in green algae

    PubMed Central

    Cocquyt, Ellen; Verbruggen, Heroen; Leliaert, Frederik; Zechman, Frederick W; Sabbe, Koen; De Clerck, Olivier

    2009-01-01

    Background Two key genes of the translational apparatus, elongation factor-1 alpha (EF-1α) and elongation factor-like (EFL) have an almost mutually exclusive distribution in eukaryotes. In the green plant lineage, the Chlorophyta encode EFL except Acetabularia where EF-1α is found, and the Streptophyta possess EF-1α except Mesostigma, which has EFL. These results raise questions about evolutionary patterns of gain and loss of EF-1α and EFL. A previous study launched the hypothesis that EF-1α was the primitive state and that EFL was gained once in the ancestor of the green plants, followed by differential loss of EF-1α or EFL in the principal clades of the Viridiplantae. In order to gain more insight in the distribution of EF-1α and EFL in green plants and test this hypothesis we screened the presence of the genes in a large sample of green algae and analyzed their gain-loss dynamics in a maximum likelihood framework using continuous-time Markov models. Results Within the Chlorophyta, EF-1α is shown to be present in three ulvophycean orders (i.e., Dasycladales, Bryopsidales, Siphonocladales) and the genus Ignatius. Models describing gene gain-loss dynamics revealed that the presence of EF-1α, EFL or both genes along the backbone of the green plant phylogeny is highly uncertain due to sensitivity to branch lengths and lack of prior knowledge about ancestral states or rates of gene gain and loss. Model refinements based on insights gained from the EF-1α phylogeny reduce uncertainty but still imply several equally likely possibilities: a primitive EF-1α state with multiple independent EFL gains or coexistence of both genes in the ancestor of the Viridiplantae or Chlorophyta followed by differential loss of one or the other gene in the various lineages. Conclusion EF-1α is much more common among green algae than previously thought. The mutually exclusive distribution of EF-1α and EFL is confirmed in a large sample of green plants. Hypotheses about the gain

  3. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    PubMed

    Shrestha, Sirjana Devi; Chapman, Patrick; Zhang, Yun; Gijzen, Mark

    2016-01-01

    The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains. PMID:26930612

  4. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae

    PubMed Central

    Shrestha, Sirjana Devi; Chapman, Patrick; Zhang, Yun; Gijzen, Mark

    2016-01-01

    The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains. PMID:26930612

  5. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks.

    PubMed

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S; Celniker, Susan E; Yu, Bin; Frise, Erwin

    2016-04-19

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set ofDrosophilaearly embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation ofDrosophilaexpression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with theDrosophiladata suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data. PMID:27071099

  6. Mouse nerve growth factor gene: structure and expression.

    PubMed Central

    Selby, M J; Edwards, R; Sharp, F; Rutter, W J

    1987-01-01

    The organization and biologically significant sequences of the entire mouse nerve growth factor (NGF) gene have been determined. The gene spans 45 kilobases and contains several small 5' exons. Transcription of the gene results in four different mRNA species, which can be accounted for by alternative splicing and independent initiation from two promoters. These transcripts encode proteins which have divergent N termini and the NGF moiety at their C termini. The levels of the various NGF transcripts have been determined in different tissues and throughout postnatal development. We have also examined the expression of these transcripts in the brain in response to specific early sensory deprivation. The results suggest that the expression of NGF mRNA during postnatal development is regulated independently of the formation of complex neural networks. Images PMID:3670305

  7. Defining human insulin-like growth factor I gene regulation.

    PubMed

    Mukherjee, Aditi; Alzhanov, Damir; Rotwein, Peter

    2016-08-01

    Growth hormone (GH) plays an essential role in controlling somatic growth and in regulating multiple physiological processes in humans and other species. Insulin-like growth factor I (IGF-I), a conserved, secreted 70-amino acid peptide, is a critical mediator of many of the biological effects of GH. Previous studies have demonstrated that GH rapidly and potently promotes IGF-I gene expression in rodents and in some other mammals through the transcription factor STAT5b, leading to accumulation of IGF-I mRNAs and production of IGF-I. Despite this progress, very little is known about how GH or other trophic factors control human IGF1 gene expression, in large part because of the absence of any cellular model systems that robustly express IGF-I. Here, we have addressed mechanisms of regulation of human IGF-I by GH after generating cells in which the IGF1 chromosomal locus has been incorporated into a mouse cell line. Using this model, we found that physiological levels of GH rapidly stimulate human IGF1 gene transcription and identify several potential transcriptional enhancers in chromatin that bind STAT5b in a GH-regulated way. Each of the putative enhancers also activates a human IGF1 gene promoter in reconstitution experiments in the presence of the GH receptor, STAT5b, and GH. Thus we have developed a novel experimental platform that now may be used to determine how human IGF1 gene expression is controlled under different physiological and pathological conditions. PMID:27406741

  8. Is erythropoietin gene a modifier factor in amyotrophic lateral sclerosis?

    PubMed

    Ghezzi, Serena; Del Bo, Roberto; Scarlato, Marina; Nardini, Martina; Carlesi, Cecilia; Prelle, Alessandro; Corti, Stefania; Mancuso, Michelangelo; Briani, Chiara; Siciliano, Gabriele; Murri, Luigi; Bresolin, Nereo; Comi, Giacomo Pietro

    2009-05-01

    To investigate the role of erythropoietin (EPO) as genetic determinant in the susceptibility to sporadic amyotrophic lateral sclerosis (SALS). We sequenced a 259-bp region spanning the 3'hypoxia-responsive element of the EPO gene in 222 Italian SALS patients and 204 healthy subjects, matched for age and ethnic origin. No potentially causative variation was detected in SALS subjects; in addition, two polymorphic variants (namely C3434T and G3544T) showed the same genotype and haplotype frequencies in patients and controls. Conversely, a weak but significant association between G3544T and age of disease onset was observed (p=0.04). Overall, our data argue against the hypothesis of EPO as a genetic risk factor for motor neuron dysfunction, at least in Italian population. However, further studies on larger cohort of patients are needed to confirm the evidence of EPO gene as modifier factor. PMID:17888545

  9. Targeted genes and interacting proteins of hypoxia inducible factor-1

    PubMed Central

    Liu, Wei; Shen, Shao-Ming; Zhao, Xu-Yun; Chen, Guo-Qiang

    2012-01-01

    Heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1) functions as a master regulator of oxygen homeostasis in almost all nucleated mammalian cells. The fundamental process adapted to cellular oxygen alteration largely depends on the refined regulation on its alpha subunit, HIF-1α. Recent studies have unraveled expanding and critical roles of HIF-1α, involving in a multitude of developmental, physiological, and pathophysiological processes. This review will focus on the current knowledge of HIF-1α-targeting genes and its interacting proteins, as well as the concomitant functional relationships between them. PMID:22773957

  10. Characterization of five partial deletions of the factor VIII gene

    SciTech Connect

    Youssoufian, H.; Antonarakis, S.E.; Aronis, S.; Tsiftis, G.; Phillips, D.G.; Kazazian, H.H. Jr.

    1987-06-01

    Hemophilia A is an X-linked disorder of coagulation caused by a deficiency of factor VIII. By using cloned DNA probes, the authors have characterized the following five different partial deletions of the factor VIII gene from a panel of 83 patients with hemophilia A: (i) a 7-kilobase (kb) deletion that eliminates exon 6; (ii) a 2.5-kb deletion that eliminates 5' sequences of exon 14; (iii) a deletion of at least 7 kb that eliminates exons 24 and 25; (iv) a deletion of at least 16 kb that eliminates exons 23-25; and (v) a 5.5-kb deletion that eliminates exon 22. The first four deletions are associated with severe hemophilia A. By contrast, the last deletion is associated with moderate disease, possibly because of in-frame splicing from adjacent exons. None of those patients with partial gene deletions had circulating inhibitors to factor VIII. One deletion occurred de novo in a germ cell of the maternal grandmother, while a second deletion occurred in a germ cell of the maternal grandfather. These observations demonstrate that de novo deletions of X-linked genes can occur in either male or female gametes.

  11. Epidermal growth factor, from gene organization to bedside

    PubMed Central

    Zeng, Fenghua; Harris, Raymond C.

    2014-01-01

    In 1962, epidermal growth factor (EGF) was discovered by Dr. Stanley Cohen while studying nerve growth factor (NGF). It was soon recognized that EGF is the prototypical member of a family of peptide growth factors that activate the EGF receptors, and that the EGF/EGF receptor signaling pathway plays important roles in proliferation, differentiation and migration of a variety of cell types, especially in epithelial cells. After the basic characterization of EGF function in the first decade or so after its discovery, the studies related to EGF and its signaling pathway have extended to a broad range of investigations concerning its biological and pathophysiological roles in development and in human diseases. In this review, we briefly describe the gene organization and tissue distribution of EGF, with emphasis on its biological and pathological roles in human diseases. PMID:24513230

  12. Nucleosome-driven transcription factor binding and gene regulation.

    PubMed

    Ballaré, Cecilia; Castellano, Giancarlo; Gaveglia, Laura; Althammer, Sonja; González-Vallinas, Juan; Eyras, Eduardo; Le Dily, Francois; Zaurin, Roser; Soronellas, Daniel; Vicent, Guillermo P; Beato, Miguel

    2013-01-10

    Elucidating the global function of a transcription factor implies the identification of its target genes and genomic binding sites. The role of chromatin in this context is unclear, but the dominant view is that factors bind preferentially to nucleosome-depleted regions identified as DNaseI-hypersensitive sites (DHS). Here we show by ChIP, MNase, and DNaseI assays followed by deep sequencing that the progesterone receptor (PR) requires nucleosomes for optimal binding and function. In breast cancer cells treated with progestins, we identified 25,000 PR binding sites (PRbs). The majority of these sites encompassed several copies of the hexanucleotide TGTYCY, which is highly abundant in the genome. We found that functional PRbs accumulate around progesterone-induced genes, mainly in enhancers. Most of these sites overlap with DHS but exhibit high nucleosome occupancy. Progestin stimulation results in remodeling of these nucleosomes with displacement of histones H1 and H2A/H2B dimers. Our results strongly suggest that nucleosomes are crucial for PR binding and hormonal gene regulation. PMID:23177737

  13. The Transcription Factor Titration Effect Dictates Level of Gene Expression

    PubMed Central

    Brewster, Robert C.; Weinert, Franz M.; Garcia, Hernan G.; Song, Dan; Rydenfelt, Mattias; Phillips, Rob

    2014-01-01

    Models of transcription are often built around a picture of RNA polymerase and transcription factors (TFs) acting on a single copy of a promoter. However, most TFs are shared between multiple genes with varying binding affinities. Beyond that, genes often exist at high copy number; in multiple, identical copies on the chromosome or on plasmids or viral vectors with copy numbers in the hundreds. Using a thermodynamic model, we characterize the interplay between TF copy number and the demand for that TF. We demonstrate the parameter-free predictive power of this model as a function of the copy number of the TF and the number and affinities of the available specific binding sites; such predictive control is important for the understanding of transcription and the desire to quantitatively design the output of genetic circuits. Finally we use these experiments to dynamically measure plasmid copy number through the cell cycle. PMID:24612990

  14. Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis.

    PubMed

    Abdelmagid, Nada; Bereczky-Veress, Biborka; Atanur, Santosh; Musilová, Alena; Zídek, Václav; Saba, Laura; Warnecke, Andreas; Khademi, Mohsen; Studahl, Marie; Aurelius, Elisabeth; Hjalmarsson, Anders; Garcia-Diaz, Ana; Denis, Cécile V; Bergström, Tomas; Sköldenberg, Birgit; Kockum, Ingrid; Aitman, Timothy; Hübner, Norbert; Olsson, Tomas; Pravenec, Michal; Diez, Margarita

    2016-01-01

    Herpes simplex encephalitis (HSE) is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats) with the asymptomatic infection of BN (Brown Norway). Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines-generated from the prior two strains), displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus) named Hse6 towards the end of chromosome 4 (160.89-174Mb) containing the Vwf (von Willebrand factor) gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism). Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11-2.02; p-value = 0.008) after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE. PMID:27224245

  15. Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis

    PubMed Central

    Atanur, Santosh; Musilová, Alena; Zídek, Václav; Saba, Laura; Warnecke, Andreas; Khademi, Mohsen; Studahl, Marie; Aurelius, Elisabeth; Hjalmarsson, Anders; Garcia-Diaz, Ana; Denis, Cécile V.; Bergström, Tomas; Sköldenberg, Birgit; Kockum, Ingrid; Aitman, Timothy; Hübner, Norbert; Olsson, Tomas; Pravenec, Michal; Diez, Margarita

    2016-01-01

    Herpes simplex encephalitis (HSE) is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats) with the asymptomatic infection of BN (Brown Norway). Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines—generated from the prior two strains), displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus) named Hse6 towards the end of chromosome 4 (160.89–174Mb) containing the Vwf (von Willebrand factor) gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism). Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11–2.02; p-value = 0.008) after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE. PMID:27224245

  16. Gene profiling of growth factor independence 1B gene (Gfi-1B) in leukemic cells.

    PubMed

    Koldehoff, Michael; Zakrzewski, Johannes L; Klein-Hitpass, Ludger; Beelen, Dietrich W; Elmaagacli, Ahmet H

    2008-01-01

    To investigate the molecular effects of growth factor independence 1B (Gfi-1B), a transcription factor essential for the development of hematopoietic cells and differentiation of erythroid and megakaryocytic lineages, the naturally Gfi-1B overexpressing cell line K562 was cultured in the presence of Gfi-1B target-specific small interfering RNA (siRNA). SiRNA treatment significantly knocked down Gfi-1B expression with an efficiency of nearly 90%. Analysis of the siRNA silencing protocol by colony-forming units ensured that it was not cytotoxic. Samples from Gfi-1B overexpressing cells and cells with knocked-down Gfi-1B were analyzed by oligonucleotide microarray technology and based upon rigorous statistical analysis of the data; relevant genes were chosen for confirmation by reserve transcriptase-polymerase chain reaction, including MYC/MYCBP and CDKN1A. Interestingly, transcripts within components of the signalling cascade of immune cells (PLD1, LAMP1, HSP90, IL6ST), of the tyrosine kinase pathway (TPR, RAC3) and of the transcription factors (RAC3, CEP290, JEM-1, ATR, MYC, SMC3, RARA, RBBP6) were found to be differentially expressed in Gfi-1B overexpressing cells compared to controls. Individual genes such as ZDHHC17, DMXL1, ZNF292 were found to be upregulated in Gfi-1B overexpressing cells. In addition, down-regulated transcripts showed cell signaling transcripts for several chemokine gene members including GNAL, CXCL5, GNL3L, GPR65, TMEM30, BCL11B and transcription factors (GTF2H3, ATXN3). In conclusion, several essential cell signalling factors, as well as transcriptional and post-translational regulation genes were differentially expressed in cells that overexpressed Gfi-1B compared to control cells with knocked-down Gfi-1B. Our data indicate that Gfi-1B signalling is important for commitment and maturation of hematopoietic cell populations. PMID:18224412

  17. Association of a transcription factor 21 gene polymorphism with hypertension

    PubMed Central

    FUJIMAKI, TETSUO; OGURI, MITSUTOSHI; HORIBE, HIDEKI; KATO, KIMIHIKO; MATSUOKA, REIKO; ABE, SHINTARO; TOKORO, FUMITAKA; ARAI, MASAZUMI; NODA, TOSHIYUKI; WATANABE, SACHIRO; YAMADA, YOSHIJI

    2015-01-01

    Various loci and genes that confer susceptibility to coronary artery disease (CAD) have been identified mainly in Caucasian populations by genome-wide association studies (GWASs). As hypertension is a major risk factor for CAD, certain polymorphisms may contribute to the genetic susceptibility to CAD through affecting the predisposition to hypertension. The aim of the present study was to examine a possible association of hypertension with 29 single-nucleotide polymorphisms (SNPs) previously identified by meta-analyses of GWASs as susceptibility loci for CAD. Study subjects comprised of 5,460 individuals (3,348 subjects with hypertension and 2,112 controls). The genotypes of SNPs were determined by the multiplex bead-based Luminex assay. The χ2 test revealed that genotype distributions and allele frequencies for rs12190287 of the transcription factor 21 gene (TCF21) and rs1122608 of the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4 gene (SMARCA4) were significantly (P<0.05) associated with hypertension. Allele frequencies for rs9369640 of the phosphatase and actin regulator 1 gene (PHACTR1) and genotype distributions for rs599839 of the proline/serine-rich coiled-coil 1 gene (PSRC1) were also significantly associated with hypertension. Multivariable logistic regression analysis with adjustment for age, gender, body mass index and smoking status revealed that rs12190287 of TCF21 (P=0.0014; recessive model; odds ratio, 1.21) was significantly associated with hypertension, and the C allele represented a risk factor for this condition. Similar analyses revealed that rs1122608 of SMARCA4 (P=0.0305; dominant model; odds ratio, 0.86), rs9369640 of PHACTR1 (P=0.0119; dominant model; odds ratio, 0.82) and rs599839 of PSRC1 (P=0.0248; dominant model; odds ratio, 0.84) were also related to hypertension, with the minor T, C and G alleles, respectively, being protective against this condition. Thus, the present results

  18. Association of a transcription factor 21 gene polymorphism with hypertension.

    PubMed

    Fujimaki, Tetsuo; Oguri, Mitsutoshi; Horibe, Hideki; Kato, Kimihiko; Matsuoka, Reiko; Abe, Shintaro; Tokoro, Fumitaka; Arai, Masazumi; Noda, Toshiyuki; Watanabe, Sachiro; Yamada, Yoshiji

    2015-01-01

    Various loci and genes that confer susceptibility to coronary artery disease (CAD) have been identified mainly in Caucasian populations by genome-wide association studies (GWASs). As hypertension is a major risk factor for CAD, certain polymorphisms may contribute to the genetic susceptibility to CAD through affecting the predisposition to hypertension. The aim of the present study was to examine a possible association of hypertension with 29 single-nucleotide polymorphisms (SNPs) previously identified by meta-analyses of GWASs as susceptibility loci for CAD. Study subjects comprised of 5,460 individuals (3,348 subjects with hypertension and 2,112 controls). The genotypes of SNPs were determined by the multiplex bead-based Luminex assay. The χ(2) test revealed that genotype distributions and allele frequencies for rs12190287 of the transcription factor 21 gene (TCF21) and rs1122608 of the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4 gene (SMARCA4) were significantly (P<0.05) associated with hypertension. Allele frequencies for rs9369640 of the phosphatase and actin regulator 1 gene (PHACTR1) and genotype distributions for rs599839 of the proline/serine-rich coiled-coil 1 gene (PSRC1) were also significantly associated with hypertension. Multivariable logistic regression analysis with adjustment for age, gender, body mass index and smoking status revealed that rs12190287 of TCF21 (P=0.0014; recessive model; odds ratio, 1.21) was significantly associated with hypertension, and the C allele represented a risk factor for this condition. Similar analyses revealed that rs1122608 of SMARCA4 (P=0.0305; dominant model; odds ratio, 0.86), rs9369640 of PHACTR1 (P=0.0119; dominant model; odds ratio, 0.82) and rs599839 of PSRC1 (P=0.0248; dominant model; odds ratio, 0.84) were also related to hypertension, with the minor T, C and G alleles, respectively, being protective against this condition. Thus, the present results

  19. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  20. Epidermal growth factor gene is a newly identified candidate gene for gout.

    PubMed

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67-0.88, Padjusted = 6.42 × 10(-3)). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  1. Epidermal growth factor gene is a newly identified candidate gene for gout

    PubMed Central

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  2. Mapping functional transcription factor networks from gene expression data

    PubMed Central

    Haynes, Brian C.; Maier, Ezekiel J.; Kramer, Michael H.; Wang, Patricia I.; Brown, Holly; Brent, Michael R.

    2013-01-01

    A critical step in understanding how a genome functions is determining which transcription factors (TFs) regulate each gene. Accordingly, extensive effort has been devoted to mapping TF networks. In Saccharomyces cerevisiae, protein–DNA interactions have been identified for most TFs by ChIP-chip, and expression profiling has been done on strains deleted for most TFs. These studies revealed that there is little overlap between the genes whose promoters are bound by a TF and those whose expression changes when the TF is deleted, leaving us without a definitive TF network for any eukaryote and without an efficient method for mapping functional TF networks. This paper describes NetProphet, a novel algorithm that improves the efficiency of network mapping from gene expression data. NetProphet exploits a fundamental observation about the nature of TF networks: The response to disrupting or overexpressing a TF is strongest on its direct targets and dissipates rapidly as it propagates through the network. Using S. cerevisiae data, we show that NetProphet can predict thousands of direct, functional regulatory interactions, using only gene expression data. The targets that NetProphet predicts for a TF are at least as likely to have sites matching the TF's binding specificity as the targets implicated by ChIP. Unlike most ChIP targets, the NetProphet targets also show evidence of functional regulation. This suggests a surprising conclusion: The best way to begin mapping direct, functional TF-promoter interactions may not be by measuring binding. We also show that NetProphet yields new insights into the functions of several yeast TFs, including a well-studied TF, Cbf1, and a completely unstudied TF, Eds1. PMID:23636944

  3. Controlling for Gene Expression Changes in Transcription Factor Protein Networks*

    PubMed Central

    Banks, Charles A. S.; Lee, Zachary T.; Boanca, Gina; Lakshminarasimhan, Mahadevan; Groppe, Brad D.; Wen, Zhihui; Hattem, Gaye L.; Seidel, Chris W.; Florens, Laurence; Washburn, Michael P.

    2014-01-01

    The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein–protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBβ, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions. PMID:24722732

  4. Network analysis of microRNAs, transcription factors, target genes and host genes in nasopharyngeal carcinoma

    PubMed Central

    WANG, HAO; XU, ZHIWEN; MA, MENGYAO; WANG, NING; WANG, KUNHAO

    2016-01-01

    Numerous studies on the morbidity of nasopharyngeal carcinoma (NPC) have identified several genes, microRNAs (miRNAs or miRs) and transcription factors (TFs) that influence the pathogenesis of NPC. However, summarizing all the regulatory networks involved in NPC is challenging. In the present study, the genes, miRNAs and TFs involved in NPC were considered as the nodes of the so-called regulatory network, and the associations between them were investigated. To clearly represent these associations, three regulatory networks were built seperately, namely, the differentially expressed network, the associated network and the global network. The differentially expressed network is the most important one of these three networks, since its nodes are differentially expressed genes whose mutations may lead to the development of NPC. Therefore, by modifying the aberrant expression of those genes that are differentially expressed in this network, their dysregulation may be corrected and the tumorigenesis of NPC may thus be prevented. Analysis of the aforementioned three networks highlighted the importance of certain pathways, such as self-adaptation pathways, in the development of NPC. For example, cyclin D1 (CCND1) was observed to regulate Homo sapiens-miR-20a, which in turn targeted CCND1. The present study conducted a systematic analysis of the pathogenesis of NPC through the three aforementioned regulatory networks, and provided a theoretical model for biologists. Future studies are required to evaluate the influence of the highlighted pathways in NPC. PMID:27313701

  5. Ets transcription factors bind and transactivate the core promoter of the von Willebrand factor gene.

    PubMed

    Schwachtgen, J L; Janel, N; Barek, L; Duterque-Coquillaud, M; Ghysdael, J; Meyer, D; Kerbiriou-Nabias, D

    1997-12-18

    von Willebrand factor (vWF) gene expression is restricted to endothelial cells and megakaryocytes. Previous results demonstrated that basal transcription of the human vWF gene is mediated through a promoter located between base pairs -89 and +19 (cap site: +1) which is functional in endothelial and non endothelial cells. Two DNA repeats TTTCCTTT correlating with inverted consensus binding sites for the Ets family of transcription factors are present in the -56/-36 sequence. In order to analyse whether these DNA elements are involved in transcription, human umbilical vein endothelial cells (HUVEC), bovine calf pulmonary endothelial cell line (CPAE), HeLa and COS cells were transfected with constructs containing deletions of the -89/+19 fragment, linked to the chloramphenicol acetyl transferase (CAT) reporter gene. The -60/+19 region exhibits significant promoter activity in HUVEC and CPAE cells only. The -42/+19 fragment is not active. Mutations of the -60/+19 promoter fragment in the 5' (-56/-49) Ets binding site abolish transcription in endothelial cells whereas mutations in the 3' (-43/-36) site does not. The -60/-33 fragment forms three complexes with proteins from HUVEC nuclear extracts in electrophoretic mobility shift assay which are dependent on the presence of the 5' Ets binding site. Binding of recombinant Ets-1 protein to the -60/-33 fragment gives a complex which also depends on the 5' site. The -60/+19 vWF gene core promoter is transactivated in HeLa cells by cotransfecting with Ets-1 or Erg (Ets-related gene) expression plasmids. In contrast to the wild type construct, transcription of the 5' site mutants is not increased by these expressed proteins. The results indicate that the promoter activity of the -60/+19 region of the vWF gene depends on transcription factors of the Ets family of which several members like Ets-1, Ets-2 and Erg are expressed in endothelium. Cotransfection of Ets-1 and Erg expression plasmids is sufficient to induce the -60/+19 v

  6. Tumour necrosis factor-alpha gene polymorphisms and Alzheimer's disease.

    PubMed

    Culpan, Doris; MacGowan, Sian H; Ford, Julia M; Nicoll, James A R; Griffin, W Sue; Dewar, Deborah; Cairns, Nigel J; Hughes, Anthony; Kehoe, Patrick G; Wilcock, Gordon K

    2003-10-16

    Recent findings suggest that production of pro-inflammatory cytokines, such as tumour necrosis factor-alpha (TNF-alpha), is increased in the brains of people with Alzheimer's disease (AD). We used direct sequencing methods on a section of the enhancer/promoter region and on a smaller fragment located 10.5 kb upstream of the TNF-alpha gene to respectively examine TNF-alpha polymorphisms and TNF-a and -b microsatellite alleles in a cohort of 235 post-mortem confirmed AD and 130 control cases. None of the TNF-alpha point mutations or microsatellite alleles investigated proved to be independent risk factors for AD. However, when -308/A, -238/G and TNF-a2 were examined as a 2-1-2 haplotype, we observed that the absence of that haplotype was significantly associated with AD (P = 0.014, Fisher's exact test) suggesting that the 2-1-2 haplotype may be protective against AD. PMID:12962917

  7. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression

    PubMed Central

    Lu, Yi-Hsueh; Dallner, Olof Stefan; Birsoy, Kivanc; Fayzikhodjaeva, Gulya; Friedman, Jeffrey M.

    2015-01-01

    Objective Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. Methods Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. Results Using Leptin-BAC luciferase mice, we showed that DNA sequences between −22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820–2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the −22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. Conclusions These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy. PMID:25973387

  8. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.

    PubMed Central

    Forsythe, J A; Jiang, B H; Iyer, N V; Agani, F; Leung, S W; Koos, R D; Semenza, G L

    1996-01-01

    Expression of vascular endothelial growth factor (VEGF) is induced in cells exposed to hypoxia or ischemia. Neovascularization stimulated by VEGF occurs in several important clinical contexts, including myocardial ischemia, retinal disease, and tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein that activates transcription of the human erythropoietin gene in hypoxic cells. Here we demonstrate the involvement of HIF-1 in the activation of VEGF transcription. VEGF 5'-flanking sequences mediated transcriptional activation of reporter gene expression in hypoxic Hep3B cells. A 47-bp sequence located 985 to 939 bp 5' to the VEGF transcription initiation site mediated hypoxia-inducible reporter gene expression directed by a simian virus 40 promoter element that was otherwise minimally responsive to hypoxia. When reporters containing VEGF sequences, in the context of the native VEGF or heterologous simian virus 40 promoter, were cotransfected with expression vectors encoding HIF-1alpha and HIF-1beta (ARNT [aryl hydrocarbon receptor nuclear translocator]), reporter gene transcription was much greater in both hypoxic and nonhypoxic cells than in cells transfected with the reporter alone. A HIF-1 binding site was demonstrated in the 47-bp hypoxia response element, and a 3-bp substitution eliminated the ability of the element to bind HIF-1 and to activate transcription in response to hypoxia and/or recombinant HIF-1. Cotransfection of cells with an expression vector encoding a dominant negative form of HIF-1alpha inhibited the activation of reporter transcription in hypoxic cells in a dose-dependent manner. VEGF mRNA was not induced by hypoxia in mutant cells that do not express the HIF-1beta (ARNT) subunit. These findings implicate HIF-1 in the activation of VEGF transcription in hypoxic cells. PMID:8756616

  9. MEF2 transcription factors: developmental regulators and emerging cancer genes

    PubMed Central

    Pon, Julia R.; Marra, Marco A.

    2016-01-01

    The MEF2 transcription factors have roles in muscle, cardiac, skeletal, vascular, neural, blood and immune system cell development through their effects on cell differentiation, proliferation, apoptosis, migration, shape and metabolism. Altered MEF2 activity plays a role in human diseases and has recently been implicated in the development of several cancer types. In particular, MEF2B, the most divergent and least studied protein of the MEF2 family, has a role unique from its paralogs in non-Hodgkin lymphomas. The use of genome-scale technologies has enabled comprehensive MEF2 target gene sets to be identified, contributing to our understanding of MEF2 proteins as nodes in complex regulatory networks. This review surveys the molecular interactions of MEF2 proteins and their effects on cellular and organismal phenotypes. We include a discussion of the emerging roles of MEF2 proteins as oncogenes and tumor suppressors of cancer. Throughout this article we highlight similarities and differences between the MEF2 family proteins, including a focus on functions of MEF2B. PMID:26506234

  10. Scaling of Gene Expression with Transcription-Factor Fugacity

    NASA Astrophysics Data System (ADS)

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2014-12-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  11. Scaling of gene expression with transcription-factor fugacity.

    PubMed

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-12-19

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  12. Scaling of Gene Expression with Transcription-Factor Fugacity

    PubMed Central

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  13. Reconstruct modular phenotype-specific gene networks by knowledge-driven matrix factorization

    PubMed Central

    Yang, Xuerui; Zhou, Yang; Jin, Rong; Chan, Christina

    2009-01-01

    Motivation: Reconstructing gene networks from microarray data has provided mechanistic information on cellular processes. A popular structure learning method, Bayesian network inference, has been used to determine network topology despite its shortcomings, i.e. the high-computational cost when analyzing a large number of genes and the inefficiency in exploiting prior knowledge, such as the co-regulation information of the genes. To address these limitations, we are introducing an alternative method, knowledge-driven matrix factorization (KMF) framework, to reconstruct phenotype-specific modular gene networks. Results: Considering the reconstruction of gene network as a matrix factorization problem, we first use the gene expression data to estimate a correlation matrix, and then factorize the correlation matrix to recover the gene modules and the interactions between them. Prior knowledge from Gene Ontology is integrated into the matrix factorization. We applied this KMF algorithm to hepatocellular carcinoma (HepG2) cells treated with free fatty acids (FFAs). By comparing the module networks for the different conditions, we identified the specific modules that are involved in conferring the cytotoxic phenotype induced by palmitate. Further analysis of the gene modules of the different conditions suggested individual genes that play important roles in palmitate-induced cytotoxicity. In summary, KMF can efficiently integrate gene expression data with prior knowledge, thereby providing a powerful method of reconstructing phenotype-specific gene networks and valuable insights into the mechanisms that govern the phenotype. Contact: krischan@msu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19542155

  14. Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…

  15. Network analysis of microRNAs, transcription factors, target genes and host genes in human anaplastic astrocytoma

    PubMed Central

    XUE, LUCHEN; XU, ZHIWEN; WANG, KUNHAO; WANG, NING; ZHANG, XIAOXU; WANG, SHANG

    2016-01-01

    Numerous studies have investigated the roles played by various genes and microRNAs (miRNAs) in neoplasms, including anaplastic astrocytoma (AA). However, the specific regulatory mechanisms involving these genes and miRNAs remain unclear. In the present study, associated biological factors (miRNAs, transcription factors, target genes and host genes) from existing studies of human AA were combined methodically through the interactions between genes and miRNAs, as opposed to studying one or several. Three regulatory networks, including abnormally expressed, related and global networks were constructed with the aim of identifying significant gene and miRNA pathways. Each network is composed of three associations between miRNAs targeted at genes, transcription factors (TFs) regulating miRNAs and miRNAs located on their host genes. Among these, the abnormally expressed network, which involves the pathways of previously identified abnormally expressed genes and miRNAs, partially indicated the regulatory mechanism underlying AA. The network contains numerous abnormal regulation associations when AA emerges. By modifying the abnormally expressed network factors to a normal expression pattern, the faulty regulation may be corrected and tumorigenesis of AA may be prevented. Certain specific pathways are highlighted in AA, for example PTEN which is targeted by miR-21 and miR-106b, regulates miR-25 which in turn targets TP53. PTEN and miR-21 have been observed to form feedback loops. Furthermore, by comparing and analyzing the pathway predecessors and successors of abnormally expressed genes and miRNAs in three networks, similarities and differences of regulatory pathways may be identified and proposed. In summary, the present study aids in elucidating the occurrence, mechanism, prevention and treatment of AA. These results may aid further investigation into therapeutic approaches for this disease. PMID:27347075

  16. ULTRAPETALA trxG Genes Interact with KANADI Transcription Factor Genes to Regulate Arabidopsis Gynoecium Patterning[C][W][OPEN

    PubMed Central

    Monfared, Mona M.; Shemyakina, Elena A.; Fletcher, Jennifer C.

    2014-01-01

    Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin-remodeling factors contribute to plant organogenesis. We demonstrate that the trithorax group (trxG) gene ULTRAPETALA1 (ULT1) and the GARP transcription factor gene KANADI1 (KAN1) organize the Arabidopsis thaliana gynoecium along two distinct polarity axes. We show that ULT1 activity is required for the kan1 adaxialized polarity defect, indicating that ULT1 and KAN1 act oppositely to regulate the adaxial-abaxial axis. Conversely, ULT1 and KAN1 together establish apical-basal polarity by promoting basal cell fate in the gynoecium, restricting the expression domain of the basic helix-loop-helix transcription factor gene SPATULA. Finally, we show that ult alleles display dose-dependent genetic interactions with kan alleles and that ULT and KAN proteins can associate physically. Our findings identify a dual role for plant trxG factors in organ patterning, with ULT1 and KAN1 acting antagonistically to pattern the adaxial-abaxial polarity axis but jointly to pattern the apical-basal axis. Our data indicate that the ULT proteins function to link chromatin-remodeling factors with DNA binding transcription factors to regulate target gene expression. PMID:25381352

  17. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites

    PubMed Central

    Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong

    2015-01-01

    Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5–20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation. PMID:26425553

  18. Gene Expression of Growth Factors and Growth Factor Receptors for Potential Targeted Therapy of Canine Hepatocellular Carcinoma

    PubMed Central

    IIDA, Gentoku; ASANO, Kazushi; SEKI, Mamiko; SAKAI, Manabu; KUTARA, Kenji; ISHIGAKI, Kumiko; KAGAWA, Yumiko; YOSHIDA, Orie; TESHIMA, Kenji; EDAMURA, Kazuya; WATARI, Toshihiro

    2013-01-01

    ABSTRACT The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC. PMID:24189579

  19. Characterization of the BMR1 gene encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae.

    PubMed

    Kihara, Junichi; Moriwaki, Akihiro; Tanaka, Nozomi; Tanaka, Chihiro; Ueno, Makoto; Arase, Sakae

    2008-04-01

    We isolated and characterized Bipolaris melanin regulation 1 gene (BMR1) encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae. Sequence analysis showed that the BMR1 gene encodes a putative protein of 1012 amino acids that has 99% sequence similarity to transcription factor Cmr1 of Cochliobolus heterostrophus. The predicted B. oryzae Bmr1 protein has two DNA-binding motifs, two Cys2His2 zinc finger domains, and a Zn(II)2Cys6 binuclear cluster domain at the N-terminal region of Bmr1. Targeted disruption of the BMR1 gene showed that BMR1 is essential for melanin biosynthesis in B. oryzae. The overexpression of the BMR1 gene led to more dark colonies than in the wild-type strain under dark conditions. Real-time PCR analysis showed that the BMR1 expression of the overexpression transformant was about 10-fold that of the wild type under dark conditions and of the expression of three melanin biosynthesis genes. These results indicated that BMR1 encodes the transcription factor of melanin biosynthesis genes in B. oryzae. PMID:18312572

  20. Multiple conversion between the genes encoding bacterial class-I release factors

    PubMed Central

    Ishikawa, Sohta A.; Kamikawa, Ryoma; Inagaki, Yuji

    2015-01-01

    Bacteria require two class-I release factors, RF1 and RF2, that recognize stop codons and promote peptide release from the ribosome. RF1 and RF2 were most likely established through gene duplication followed by altering their stop codon specificities in the common ancestor of extant bacteria. This scenario expects that the two RF gene families have taken independent evolutionary trajectories after the ancestral gene duplication event. However, we here report two independent cases of conversion between RF1 and RF2 genes (RF1-RF2 gene conversion), which were severely examined by procedures incorporating the maximum-likelihood phylogenetic method. In both cases, RF1-RF2 gene conversion was predicted to occur in the region encoding nearly entire domain 3, of which functions are common between RF paralogues. Nevertheless, the ‘direction’ of gene conversion appeared to be opposite from one another—from RF2 gene to RF1 gene in one case, while from RF1 gene to RF2 gene in the other. The two cases of RF1-RF2 gene conversion prompt us to propose two novel aspects in the evolution of bacterial class-I release factors: (i) domain 3 is interchangeable between RF paralogues, and (ii) RF1-RF2 gene conversion have occurred frequently in bacterial genome evolution. PMID:26257102

  1. Expression of nuclear factor, erythroid 2-like 2-mediated genes differentiates tuberculosis.

    PubMed

    Qian, Zhongqing; Lv, Jingzhu; Kelly, Gabriel T; Wang, Hongtao; Zhang, Xiaojie; Gu, Wanjun; Yin, Xiaofeng; Wang, Ting; Zhou, Tong

    2016-07-01

    During infection and host defense, nuclear factor, erythroid 2-like 2 (Nrf2) dependent signaling is an efficient antioxidant defensive mechanism used by host cells to control the destructive effects of reactive oxygen species. This allows for effective defense responses against microbes while minimizing oxidative injury to the host cell itself. As a central regulator of antioxidant genes, Nrf2 has gained great attention in its pivotal role in infection, especially in tuberculosis (TB), the top infectious disease killer worldwide. To elucidate the genes potentially regulated by Nrf2 in TB, we conducted a meta-analysis on published gene expression datasets. Firstly, we compared the global gene expression profiles between control and Nrf2-deficient human cells. The differentially expressed genes were deemed as "Nrf2-mediated genes". Next, the whole blood gene expression pattern of TB patients was compared with that of healthy controls, pneumonia patients, and lung cancer patients. We found that the genes deregulated in TB significantly overlap with the Nrf2-mediated genes. Based on the intersection of Nrf2-mediated and TB-regulated genes, we identified an Nrf2-mediated 17-gene signature, which reflects a cluster of gene ontology terms highly related to TB physiology. We demonstrated that the 17-gene signature can be used to distinguish TB patients from healthy controls and patients with latent TB infection, pneumonia, or lung cancer. Also, the Nrf2-mediated gene signature can be used as an indicator of the anti-TB therapeutic response. More importantly, we confirmed that the predictive power of the Nrf2-mediated 17-gene signature is significantly better than the random gene sets selected from the human transcriptome. Also, the 17-gene signature performs even better than the random gene signatures selected from TB-associated genes. Our study confirms the central role of Nrf2 in TB pathogenesis and provides a novel and useful diagnostic method to differentiate TB

  2. Network and pathway analysis of microRNAs, transcription factors, target genes and host genes in human glioma

    PubMed Central

    ZHANG, YING; ZHAO, SHISHUN; XU, ZHIWEN

    2016-01-01

    To date, there has been rapid development with regard to gene and microRNA (miR/miRNA) research in gliomas. However, the regulatory mechanisms of the associated genes and miRNAs remain unclear. In the present study, the genes, miRNAs and transcription factors (TFs) were considered as elements in the regulatory network, and focus was placed on the associations between TFs and miRNAs, miRNAs and target genes, and miRNAs and host genes. In order to show the regulatory correlation clearly, all the elements were investigated and three regulatory networks, namely the differentially-expressed, related and global networks, were constructed. Certain important pathways were highlighted, with analysis of the similarities and differences among the networks. Next, the upstream and downstream elements of differentially-expressed genes, miRNAs and predicted TFs were listed. The most notable aspect of the present study was the three levels of network, particularly the differentially-expressed network, since the differentially-expressed associations that these networks provide appear at the initial stages of cancers such as glioma. If the states of the differentially-expressed associations can be adjusted to the normal state via alterations in regulatory associations, which were also recorded in the study networks and tables, it is likely that cancer can be regulated or even avoided. In the present study, the differentially-expressed network illuminated the pathogenesis of glioma; for example, a TF can regulate one or more miRNAs, and a target gene can be targeted by one or more miRNAs. Therefore, the host genes and target genes, the host genes and TFs, and the target genes and TFs indirectly affect each other through miRNAs. The association also exists between TFs and TFs, target genes and target genes, and host genes and host genes. The present study also demonstrated self-adaption associations and circle-regulations. The related network further described the regulatory mechanism

  3. Single nucleotide variants in transcription factors associate more tightly with phenotype than with gene expression.

    PubMed

    Sudarsanam, Priya; Cohen, Barak A

    2014-05-01

    Mapping the polymorphisms responsible for variation in gene expression, known as Expression Quantitative Trait Loci (eQTL), is a common strategy for investigating the molecular basis of disease. Despite numerous eQTL studies, the relationship between the explanatory power of variants on gene expression versus their power to explain ultimate phenotypes remains to be clarified. We addressed this question using four naturally occurring Quantitative Trait Nucleotides (QTN) in three transcription factors that affect sporulation efficiency in wild strains of the yeast, Saccharomyces cerevisiae. We compared the ability of these QTN to explain the variation in both gene expression and sporulation efficiency. We find that the amount of gene expression variation explained by the sporulation QTN is not predictive of the amount of phenotypic variation explained. The QTN are responsible for 98% of the phenotypic variation in our strains but the median gene expression variation explained is only 49%. The alleles that are responsible for most of the variation in sporulation efficiency do not explain most of the variation in gene expression. The balance between the main effects and gene-gene interactions on gene expression variation is not the same as on sporulation efficiency. Finally, we show that nucleotide variants in the same transcription factor explain the expression variation of different sets of target genes depending on whether the variant alters the level or activity of the transcription factor. Our results suggest that a subset of gene expression changes may be more predictive of ultimate phenotypes than the number of genes affected or the total fraction of variation in gene expression variation explained by causative variants, and that the downstream phenotype is buffered against variation in the gene expression network. PMID:24784239

  4. The bat gene of Halobacterium halobium encodes a trans-acting oxygen inducibility factor.

    PubMed Central

    Gropp, F; Betlach, M C

    1994-01-01

    Oxygen and light affect the expression of the bacterioopsin gene (bop), which encodes a light-driven proton pump in the purple membrane of Halobacterium halobium. This response is thought to be mediated by a set of genes located adjacent to the bop gene. DNA fragments containing either the bop gene or the entire bop gene cluster reversed the phenotype of purple membrane-deficient strains with mutations in the bop gene. Purple membrane synthesis was constitutive in one of these strains transformed with the bop gene alone. The same strain transformed with the bop gene cluster was inducible by low oxygen tension. Moreover, another strain that constitutively expresses purple membrane remained constitutive when transformed with the bop gene alone but the phenotype of the strain changed to inducible when transformed with the bop gene cluster. Additional experiments have confirmed that one of the genes of the bop gene cluster, the bat gene, encodes a trans-acting factor that is necessary and sufficient to confer inducibility of purple membrane synthesis by low oxygen tension. Images PMID:8202511

  5. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Agarwal, Parul; Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2016-05-01

    Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the cough suppressant codeine, the muscle relaxant papaverine and the anti-microbial agent sanguinarine and berberine. Despite several health benefits, biosynthesis of some of these molecules is very low due to tight temporal and spatial regulation of the genes committed to their biosynthesis. Transcription factors, one of the prime regulators of secondary plant product biosynthesis, might be involved in controlled biosynthesis of BIAs in P. somniferum. In this study, identification of members of different transcription factor gene families using transcriptome datasets of 10 cultivars of P. somniferum with distinct chemoprofile has been carried out. Analysis suggests that most represented transcription factor gene family in all the poppy cultivars is WRKY. Comparative transcriptome analysis revealed differential expression pattern of the members of a set of transcription factor gene families among 10 cultivars. Through analysis, two members of WRKY and one member of C3H gene family were identified as potential candidates which might regulate thebaine and papaverine biosynthesis, respectively, in poppy. PMID:26108744

  6. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    PubMed

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks. PMID:24251925

  7. Human von Willebrand factor gene and pseudogene: Structural analysis and differentiation by polymerase chain reaction

    SciTech Connect

    Mancuso, D.J.; Tuley, E.A.; Westfield, L.A.; Lester-Mancuso, T.L.; Sorace, J.M.; Sadler, J.E. ); Le Beau, M.M. )

    1991-01-01

    Structural analysis of the von Willebrand factor gene located on chromosome 12 is complicated by the presence of a partial unprocessed pseudogene on chromosome 22q11-13. The structures of the von Willebrand factor pseudogene and corresponding segment of the gene were determined, and methods were developed for the rapid differentiation of von Willebrand factor gene and pseudogene sequences. The pseudogene is 21-29 kilobases in length and corresponds to 12 exons (exons 23-34) of the von Willebrand factor gene. Approximately 21 kilobases of the gene and pseudogene were sequenced, including the 5{prime} boundary of the pseudogene. The 3{prime} boundary of the pseudogene lies within an 8-kb region corresponding to intron 34 of the gene. The presence of splice site and nonsense mutations suggests that the pseudogene cannot yield functional transcripts. The pseudogene has diverged {approximately}3.1{percent} in nucleotide sequence from the gene. This suggests a recent evolutionary origin {approximately}19-29 million years ago, near the time of divergence of humans and apes from monkeys. Several repetitive sequences were identified, including 4 Alu, one Line-1, and several short simple sequence repeats. Several of these simple repeats differ in length between the gene and pseudogene and provide useful markers for distinguishing these loci. Sequence differences between the gene and pseudogene were exploited to design oligonucleotide primers for use in the polymerase chain reaction to selectivity amplify sequences corresponding to exons 23-34 from either the von Willebrand factor gene or the pseudogene. This method is useful for the analysis of gene defects in patients with von Willebrand disease, without interference from homologous sequences in the pseudogene.

  8. PreImplantation factor (PIF*) promotes embryotrophic and neuroprotective decidual genes: effect negated by epidermal growth factor

    PubMed Central

    2014-01-01

    Background Intimate embryo-maternal interaction is paramount for pregnancy success post-implantation. The embryo follows a specific developmental timeline starting with neural system, dependent on endogenous and decidual factors. Beyond altered genetics/epigenetics, post-natal diseases may initiate at prenatal/neonatal, post-natal period, or through a continuum. Preimplantation factor (PIF) secreted by viable embryos promotes implantation and trophoblast invasion. Synthetic PIF reverses neuroinflammation in non-pregnant models. PIF targets embryo proteins that protect against oxidative stress and protein misfolding. We report of PIF’s embryotrophic role and potential to prevent developmental disorders by regulating uterine milieu at implantation and first trimester. Methods PIF’s effect on human implantation (human endometrial stromal cells (HESC)) and first-trimester decidua cultures (FTDC) was examined, by global gene expression (Affymetrix), disease-biomarkers ranking (GeneGo), neuro-specific genes (Ingenuity) and proteins (mass-spectrometry). PIF co-cultured epidermal growth factor (EGF) in both HESC and FTDC (Affymetrix) was evaluated. Results In HESC, PIF promotes neural differentiation and transmission genes (TLX2, EPHA10) while inhibiting retinoic acid receptor gene, which arrests growth. PIF promotes axon guidance and downregulates EGF-dependent neuroregulin signaling. In FTDC, PIF promotes bone morphogenetic protein pathway (SMAD1, 53-fold) and axonal guidance genes (EPH5) while inhibiting PPP2R2C, negative cell-growth regulator, involved in Alzheimer’s and amyotrophic lateral sclerosis. In HESC, PIF affects angiotensin via beta-arrestin, transforming growth factor-beta (TGF-β), notch, BMP, and wingless-int (WNT) signaling pathways that promote neurogenesis involved in childhood neurodevelopmental diseases—autism and also affected epithelial-mesenchymal transition involved in neuromuscular disorders. In FTDC, PIF upregulates neural development

  9. Gene Risk Factors for Age-Related Brain Disorders May Affect Immune System Function

    MedlinePlus

    ... for age-related brain disorders may affect immune system function June 17, 2014 Scientists have discovered gene ... factors for age-related neurological disorders to immune system functions, such as inflammation, offers new insights into ...

  10. Extracting gene expression profiles common to colon and pancreatic adenocarcinoma using simultaneous nonnegative matrix factorization.

    PubMed

    Badea, Liviu

    2008-01-01

    In this paper we introduce a clustering algorithm capable of simultaneously factorizing two distinct gene expression datasets with the aim of uncovering gene regulatory programs that are common to the two phenotypes. The siNMF algorithm simultaneously searches for two factorizations that share the same gene expression profiles. The two key ingredients of this algorithm are the nonnegativity constraint and the offset variables, which together ensure the sparseness of the factorizations. While cancer is a very heterogeneous disease, there is overwhelming recent evidence that the differences between cancer subtypes implicate entire pathways and biological processes involving large numbers of genes, rather than changes in single genes. We have applied our simultaneous factorization algorithm looking for gene expression profiles that are common between the more homogeneous pancreatic ductal adenocarcinoma (PDAC) and the more heterogeneous colon adenocarcinoma. The fact that the PDAC signature is active in a large fraction of colon adeocarcinoma suggests that the oncogenic mechanisms involved may be similar to those in PDAC, at least in this subset of colon samples. There are many approaches to uncovering common mechanisms involved in different phenotypes, but most are based on comparing gene lists. The approach presented in this paper additionally takes gene expression data into account and can thus be more sensitive. PMID:18229692

  11. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer

    PubMed Central

    Lin, Mei; Huang, Junxing; Shi, Yujuan; Xiao, Yanhong; Guo, Ting

    2015-01-01

    Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression's controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy. PMID:26783511

  12. Molecular cloning of a human gene that is a member of the nerve growth factor family.

    PubMed Central

    Jones, K R; Reichardt, L F

    1990-01-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. We have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development. Images PMID:2236018

  13. Targetfinder.org: a resource for systematic discovery of transcription factor target genes

    PubMed Central

    Kiełbasa, Szymon M.; Blüthgen, Nils; Fähling, Michael

    2010-01-01

    Targetfinder.org (http://targetfinder.org/) provides a web-based resource for finding genes that show a similar expression pattern to a group of user-selected genes. It is based on a large-scale gene expression compendium (>1200 experiments, >13 000 genes). The primary application of Targetfinder.org is to expand a list of known transcription factor targets by new candidate target genes. The user submits a group of genes (the ‘seed’), and as a result the web site provides a list of other genes ranked by similarity of their expression to the expression of the seed genes. Additionally, the web site provides information on a recovery/cross-validation test to check for consistency of the provided seed and the quality of the ranking. Furthermore, the web site allows to analyse affinities of a selected transcription factor to the promoter regions of the top-ranked genes in order to select the best new candidate target genes for further experimental analysis. PMID:20460454

  14. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia

    PubMed Central

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-01-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ∼1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10−11) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10−4), excitability (P=9.0 × 10−4) and cell adhesion and trans-synaptic signaling (P=2.4 × 10−3). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia. PMID:21931320

  15. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example

    PubMed Central

    Taniguchi, Hironori; Wendisch, Volker F.

    2015-01-01

    Bacteria are known to cope with environmental changes by using alternative sigma factors binding to RNA polymerase core enzyme. Sigma factor is one of the targets to modify transcription regulation in bacteria and to influence production capacities. In this study, the effect of overexpressing each annotated sigma factor gene in Corynebacterium glutamicum WT was assayed using an IPTG inducible plasmid system and different IPTG concentrations. It was revealed that growth was severely decreased when sigD or sigH were overexpressed with IPTG concentrations higher than 50 μM. Overexpression of sigH led to an obvious phenotypic change, a yellow-colored supernatant. High performance liquid chromatography analysis revealed that riboflavin was excreted to the medium when sigH was overexpressed and DNA microarray analysis confirmed increased expression of riboflavin biosynthesis genes. In addition, genes for enzymes related to the pentose phosphate pathway and for enzymes dependent on flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), or NADPH as cofactor were upregulated when sigH was overexpressed. To test if sigH overexpression can be exploited for production of riboflavin-derived FMN or FAD, the endogenous gene for bifunctional riboflavin kinase/FMN adenyltransferase was co-expressed with sigH from a plasmid. Balanced expression of sigH and ribF improved accumulation of riboflavin (19.8 ± 0.3 μM) and allowed for its conversion to FMN (33.1 ± 1.8 μM) in the supernatant. While a proof-of-concept was reached, conversion was not complete and titers were not high. This study revealed that inducible and gradable overexpression of sigma factor genes is an interesting approach to switch gene expression profiles and to discover untapped potential of bacteria for chemical production. PMID:26257719

  16. Gene expression in human oral squamous cell carcinoma is influenced by risk factor exposure.

    PubMed

    Cheong, S C; Chandramouli, G V R; Saleh, A; Zain, R B; Lau, S H; Sivakumaren, S; Pathmanathan, R; Prime, S S; Teo, S H; Patel, V; Gutkind, J S

    2009-08-01

    Oral squamous cell carcinoma (OSCC) is a world health problem and is associated with exposure to different risk factors. In the west, smoking and alcohol consumption are considered to be the main risk factors whilst in India and southeast Asia, betel quid (BQ) chewing is predominant. In this study, we compared the gene expression patterns of oral cancers associated with BQ chewing to those caused by smoking using Affymetrix microarrays. We found that 281 genes were differentially expressed between OSCC and normal oral mucosa regardless of aetiological factors including MMP1, PLAU, MAGE-D4, GNA12, IFITM3 and NMU. Further, we identified 168 genes that were differentially expressed between the BQ and smoking groups including CXCL-9, TMPRSS2, CA12 and RNF24. The expression of these genes was validated using qPCR using independent tissue samples. The results demonstrate that whilst common genes/pathways contribute to the development of oral cancer, there are also other gene expression changes that are specific to certain risk factors. The findings suggest that different carcinogens activate or inhibit specific pathways during cancer development and progression. These unique gene expression profiles should be taken into consideration when developing biomarkers for future use in prognostic or therapeutic applications. PMID:19147396

  17. The yeast Hot1 transcription factor is critical for activating a single target gene, STL1

    PubMed Central

    Bai, Chen; Tesker, Masha; Engelberg, David

    2015-01-01

    Transcription factors are commonly activated by signal transduction cascades and induce expression of many genes. They therefore play critical roles in determining the cell's fate. The yeast Hog1 MAP kinase pathway is believed to control the transcription of hundreds of genes via several transcription factors. To identify the bona fide target genes of Hog1, we inducibly expressed the spontaneously active variant Hog1D170A+F318L in cells lacking the Hog1 activator Pbs2. This system allowed monitoring the effects of Hog1 by itself. Expression of Hog1D170A+F318L in pbs2∆ cells imposed induction of just 105 and suppression of only 26 transcripts by at least twofold. We looked for the Hog1-responsive element within the promoter of the most highly induced gene, STL1 (88-fold). A novel Hog1 responsive element (HoRE) was identified and shown to be the direct target of the transcription factor Hot1. Unexpectedly, we could not find this HoRE in any other yeast promoter. In addition, the only gene whose expression was abolished in hot1∆ cells was STL1. Thus Hot1 is essential for transcription of just one gene, STL1. Hot1 may represent a class of transcription factors that are essential for transcription of a very few genes or even just one. PMID:25904326

  18. IFGFA: Identification of featured genes from genomic data using factor analysis.

    PubMed

    Fu, C H; Deng, S; Wu, J H; Wu, X Q; Fu, Z H; Yu, Z G

    2016-01-01

    In this study, a software tool (IFGFA) for identification of featured genes from gene expression data based on latent factor analysis was developed. Despite the availability of computational methods and statistical models appropriate for analyzing special genomic data, IFGFA provides a platform for predicting colon cancer-related genes and can be applied to other cancer types. The computational framework behind IFGFA is based on the well-established Bayesian factor and regression model and prior knowledge about the gene from OMIM. We validated the predicted genes by analyzing somatic mutations in patients. An interface was developed to enable users to run the computational framework efficiently through visual programming. IFGFA is executable in a Windows system and does not require other dependent software packages. This program can be freely downloaded at http://www.fupage.org/downloads/ifgfa.zip. PMID:27525867

  19. In Vivo Gene Therapy of Hemophilia B: Sustained Partial Correction in Factor IX-Deficient Dogs

    NASA Astrophysics Data System (ADS)

    Kay, Mark A.; Rothenberg, Steven; Landen, Charles N.; Bellinger, Dwight A.; Leland, Frances; Toman, Carol; Finegold, Milton; Thompson, Arthur R.; Read, M. S.; Brinkhous, Kenneth M.; Woo, Savio L. C.

    1993-10-01

    The liver represents a model organ for gene therapy. A method has been developed for hepatic gene transfer in vivo by the direct infusion of recombinant retroviral vectors into the portal vasculature, which results in the persistent expression of exogenous genes. To determine if these technologies are applicable for the treatment of hemophilia B patients, preclinical efficacy studies were done in a hemophilia B dog model. When the canine factor IX complementary DNA was transduced directly into the hepatocytes of affected dogs in vivo, the animals constitutively expressed low levels of canine factor IX for more than 5 months. Persistent expression of the clotting. factor resulted in reductions of whole blood clotting and partial thromboplastin times of the treated animals. Thus, long-term treatment of hemophilia B patients may be feasible by direct hepatic gene therapy in vivo.

  20. NanoScript: A Nanoparticle-Based Artificial Transcription Factor for Effective Gene Regulation

    PubMed Central

    2015-01-01

    Transcription factor (TF) proteins are master regulators of transcriptional activity and gene expression. TF-based gene regulation is a promising approach for many biological applications; however, several limitations hinder the full potential of TFs. Herein, we developed an artificial, nanoparticle-based transcription factor, termed NanoScript, which is designed to mimic the structure and function of TFs. NanoScript was constructed by tethering functional peptides and small molecules called synthetic transcription factors, which mimic the individual TF domains, onto gold nanoparticles. We demonstrate that NanoScript localizes within the nucleus and initiates transcription of a reporter plasmid by over 15-fold. Moreover, NanoScript can effectively transcribe targeted genes on endogenous DNA in a nonviral manner. Because NanoScript is a functional replica of TF proteins and a tunable gene-regulating platform, it has great potential for various stem cell applications. PMID:25133310

  1. Identification of putative target genes of the transcription factor RUNX2.

    PubMed

    Kuhlwilm, Martin; Davierwala, Armaity; Pääbo, Svante

    2013-01-01

    Comparisons of the genomes of Neandertals and Denisovans with present-day human genomes have suggested that the gene RUNX2, which encodes a transcription factor, may have been positively selected during early human evolution. Here, we overexpress RUNX2 in ten human cell lines and identify genes that are directly or indirectly affected by RUNX2 expression. We find a number of genes not previously known to be affected by RUNX2 expression, in particular BIRC3, genes encoded on the mitochondrial genome, and several genes involved in bone and tooth formation. These genes are likely to provide inroads into pathways affected by RUNX2 and potentially by the evolutionary changes that affected RUNX2 in modern humans. PMID:24349465

  2. Encoding four gene expression programs in the activation dynamics of a single transcription factor.

    PubMed

    Hansen, Anders S; O'Shea, Erin K

    2016-04-01

    Cellular signaling response pathways often exhibit a bow-tie topology [1,2]: multiple upstream stress signals converge on a single shared transcription factor, which is thought to induce different downstream gene expression programs (Figure 1A). However, if several different signals activate the same transcription factor, can each signal then induce a specific gene expression response? A growing body of literature supports a temporal coding theory where information about environmental signals can be encoded, at least partially, in the temporal dynamics of the shared transcription factor [1,2]. For example, in the case of the budding yeast transcription factor Msn2, different stresses induce distinct Msn2 activation dynamics: Msn2 shows pulsatile nuclear activation with dose-dependent frequency under glucose limitation, but sustained nuclear activation with dose-dependent amplitude under oxidative stress [3]. These dynamic patterns can then lead to differential gene expression responses [3-5], but it is not known how much specificity can be obtained. Thus, a major question of this temporal coding theory is how many gene response programs or cellular functions can be robustly encoded by dynamic control of a single transcription factor. Here we provide the first direct evidence that, simply by regulating the activation dynamics of a single transcription factor, it is possible to preferentially induce four distinct gene expression programs. PMID:27046808

  3. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize

    PubMed Central

    Han, Guomin; Zhou, Lingyan; Ali, Asif; Zhu, Suwen; Li, Xiaoyu

    2016-01-01

    The productivity of maize (Zea mays L.) depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59) were divided into seven groups (I-VII). By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP) analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses. PMID:27560803

  4. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize.

    PubMed

    Liu, Fang; Xu, Yunjian; Han, Guomin; Zhou, Lingyan; Ali, Asif; Zhu, Suwen; Li, Xiaoyu

    2016-01-01

    The productivity of maize (Zea mays L.) depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59) were divided into seven groups (I-VII). By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP) analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses. PMID:27560803

  5. Identification of Transcriptional Factors and Key Genes in Primary Osteoporosis by DNA Microarray

    PubMed Central

    Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei

    2015-01-01

    Background A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. Material/Methods The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. Results A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. Conclusions The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis. PMID:25957414

  6. Tumor necrosis factor-alpha gene is not associated with obsessive-compulsive disorder.

    PubMed

    Zai, Gwyneth; Arnold, Paul D; Burroughs, Eliza; Richter, Margaret A; Kennedy, James L

    2006-02-01

    Dysregulation of the immune system has been suggested to play a role in the complex etiology of obsessive-compulsive disorder. In this context, tumor necrosis factor-alpha is considered an interesting candidate for genetic studies as overproduction of tumor necrosis factor-alpha, which may be genetically modulated, can exert neurotoxic effects and influence neural cell growth and proliferation. Moreover, the tumor necrosis factor-alpha gene is located on chromosome 6p21.3, a region that has been found to be weakly associated with obsessive-compulsive disorder in linkage studies. One functional polymorphism, G-308A, has been found within the gene. PMID:16395130

  7. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    SciTech Connect

    Sundaravaradan, Vasudha; Mehta, Roshni; Harris, David T.; Zack, Jerome A.; Ahmad, Nafees

    2010-04-25

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-kappaB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1beta, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-kappaB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  8. Seed-based systematic discovery of specific transcription factor target genes.

    PubMed

    Mrowka, Ralf; Blüthgen, Nils; Fähling, Michael

    2008-06-01

    Reliable prediction of specific transcription factor target genes is a major challenge in systems biology and functional genomics. Current sequence-based methods yield many false predictions, due to the short and degenerated DNA-binding motifs. Here, we describe a new systematic genome-wide approach, the seed-distribution-distance method, that searches large-scale genome-wide expression data for genes that are similarly expressed as known targets. This method is used to identify genes that are likely targets, allowing sequence-based methods to focus on a subset of genes, giving rise to fewer false-positive predictions. We show by cross-validation that this method is robust in recovering specific target genes. Furthermore, this method identifies genes with typical functions and binding motifs of the seed. The method is illustrated by predicting novel targets of the transcription factor nuclear factor kappaB (NF-kappaB). Among the new targets is optineurin, which plays a key role in the pathogenesis of acquired blindness caused by adult-onset primary open-angle glaucoma. We show experimentally that the optineurin gene and other predicted genes are targets of NF-kappaB. Thus, our data provide a missing link in the signalling of NF-kappaB and the damping function of optineurin in signalling feedback of NF-kappaB. We present a robust and reliable method to enhance the genome-wide prediction of specific transcription factor target genes that exploits the vast amount of expression information available in public databases today. PMID:18485006

  9. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development

    PubMed Central

    2014-01-01

    Background Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. Results We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. Conclusions Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility. PMID:24581456

  10. Krüppel-like Factor 4 activates HBG gene expression in primary erythroid cells

    PubMed Central

    Kalra, Inderdeep S.; Alam, Md M.; Choudhary, Pankaj K.; Pace, Betty S.

    2014-01-01

    Summary The SP1/Krüppel-like Factor (SP1/KLF) family of transcription factors plays a role in diverse cellular processes, including proliferation, differentiation and control of gene transcription. The discovery of KLF1 (EKLF), a key regulator of HBB (β-globin) gene expression, expanded our understanding of the role of KLFs in erythropoiesis. In this study, we investigated a mechanism of HBG (γ-globin) regulation by KLF4. siRNA-mediated gene silencing and enforced expression of KLF4 in K562 cells substantiated the ability of KLF4 to positively regulate endogenous HBG gene transcription. The physiological significance of this finding was confirmed in primary erythroid cells, where KLF4 knockdown at day 11 significantly attenuated HBG mRNA levels and enforced expression at day 28 stimulated the silenced HBG genes. In vitro binding characterization using the γ-CACCC and β-CACCC probes demonstrated KLF4 preferentially binds the endogenous γ-CACCC, while CREB binding protein (CREBBP) binding was not selective. Co-immunoprecipitation studies confirmed protein-protein interaction between KLF4 and CREBBP. Furthermore, sequential chromatin immunoprecipitation assays showed co-localization of both factors in the γ-CACCC region. Subsequent luciferase reporter studies demonstrated that KLF4 trans-activated HBG promoter activity and that CREBBP enforced expression resulted in gene repression. Our data supports a model of antagonistic interaction of KLF4/CREBBP trans-factors in HBG regulation. PMID:21539536

  11. Nonsense-mediated mRNA decay among coagulation factor genes

    PubMed Central

    Shahbazi, Shirin

    2016-01-01

    Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation factor deficiencies such as hemophilia. Materials and Methods: A relevant literature search of PubMed was performed using the keywords coagulation factors, Nonsense-mediated mRNA decay and premature translation termination codons. Search limitations included English language and human-based studies. Results: Mutations that cause premature translation termination codons probably account for one-third of genetically inherited diseases. Transcripts bearing aberrant termination codons are selectively identified and eliminated by an evolutionarily conserved posttranscriptional pathway known as nonsense-mediated mRNA decay (NMD). There are many pieces of evidence of decay among coagulation factor genes. However, the hemophilia gene (F8) does not seem to be subjected to NMD. Since the F8 gene is located on the X-chromosome, a connection between X-linked traits and mRNA decay could be assumed. Conclusion: Considering that not all genes go through decay, this review focuses on the basics of the mechanism in coagulation genes. It is interesting to determine whether this translation-coupled surveillance system represents a general rule for the genes encoding components of the same physiological cascade. PMID:27279976

  12. Master transcription factors and mediator establish super-enhancers at key cell identity genes.

    PubMed

    Whyte, Warren A; Orlando, David A; Hnisz, Denes; Abraham, Brian J; Lin, Charles Y; Kagey, Michael H; Rahl, Peter B; Lee, Tong Ihn; Young, Richard A

    2013-04-11

    Master transcription factors Oct4, Sox2, and Nanog bind enhancer elements and recruit Mediator to activate much of the gene expression program of pluripotent embryonic stem cells (ESCs). We report here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state. These domains, which we call super-enhancers, consist of clusters of enhancers that are densely occupied by the master regulators and Mediator. Super-enhancers differ from typical enhancers in size, transcription factor density and content, ability to activate transcription, and sensitivity to perturbation. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. Super-enhancers thus play key roles in the control of mammalian cell identity. PMID:23582322

  13. Direct phylogenetic evidence for lateral transfer of elongation factor-like gene

    PubMed Central

    Kamikawa, Ryoma; Inagaki, Yuji; Sako, Yoshihiko

    2008-01-01

    Genes encoding elongation factor-like (EFL) proteins, which show high similarity to elongation factor-1α (EF-1α), have been found in phylogenetically distantly related eukaryotes. The sporadic distribution of “EFL-containing” lineages within “EF-1α-containing” lineages indirectly, but strongly, suggests lateral gene transfer as the principal driving force in EFL evolution. However, one of the most critical aspects in the above hypothesis, the donor lineages in any putative cases of lateral EFL gene transfer, remained unclear. In this study, we provide direct evidence for lateral transfer of an EFL gene through the analyses of 10 diatom EFL genes. All diatom EFL homologues tightly clustered in phylogenetic analyses, suggesting acquisition of the exogenous EFL gene early in diatom evolution. Our survey additionally identified Thalassiosira pseudonana as a eukaryote bearing EF-1α and EFL genes and secondary EFL gene loss in Phaeodactylum tricornutum, the complete genome of which encodes only the EF-1α gene. Most importantly, the EFL phylogeny recovered a robust grouping of homologues from diatoms, the cercozoan Bigelowiella natans, and the foraminifer Planoglabratella opecularis, with the diatoms nested within the Bigelowiella plus Planoglabratella (Rhizaria) grouping. The particular relationships recovered are further consistent with two characteristic sequence motifs. The best explanation of our data analyses is an EFL gene transfer from a foraminifer to a diatom, the first case in which the donor–recipient relationship was clarified. Finally, based on a reverse transcriptase quantitative PCR assay and the genome information of Thalassiosira and Phaeodactylum, we propose the loss of elongation factor function in Thalassiosira EF-1α. PMID:18458344

  14. Virulence factors genes of Staphylococcus spp. isolated from caprine subclinical mastitis.

    PubMed

    Salaberry, Sandra Renata Sampaio; Saidenberg, André Becker Simões; Zuniga, Eveline; Melville, Priscilla Anne; Santos, Franklin Gerônimo Bispo; Guimarães, Ednaldo Carvalho; Gregori, Fábio; Benites, Nilson Roberti

    2015-08-01

    The aim of this study was to investigate genes involved in adhesion expression, biofilm formation, and enterotoxin production in isolates of Staphylococcus spp. from goats with subclinical mastitis and associate these results with the staphylococcal species. One hundred and twenty-four isolates were identified and polymerase chain reaction (PCR) was performed to detect the following genes: cna, ebpS, eno, fib, fnbA, fnbB, bap, sea, seb, sec, sed and see. The most commonly Staphylococcus species included S. epidermidis, S. lugdunensis, S. chromogenes, S. capitis ss capitis and S. intermedius. With the exception of fnbB, the genes were detected in different frequencies of occurrence in 86.3% of the Staphylococcus spp. isolates. Eno (73.2%) and bap (94.8%) were more frequently detected in coagulase-negative staphylococci (CNS); ebpS (76%), fib (90.9%) and fnbA (87%) were the most frequent genes in coagulase-positive staphylococci (CPS). Regarding enterotoxins, genes sed (28.2%) and see (24.2%) had a higher frequency of occurrence; sec gene was more frequently detected in CPS (58.8%). There was no association between the presence of the genes and the Staphylococcus species. Different virulence factors genes can be detected in caprine subclinical mastitis caused by CNS and CPS. The knowledge of the occurrence of these virulence factors is important for the development of effective control and prevention measures of subclinical mastitis caused by CNS and CPS in goats. PMID:26026835

  15. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations. PMID:26300000

  16. Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species

    PubMed Central

    Laurençon, Anne; Dubruille, Raphaëlle; Efimenko, Evgeni; Grenier, Guillaume; Bissett, Ryan; Cortier, Elisabeth; Rolland, Vivien; Swoboda, Peter; Durand, Bénédicte

    2007-01-01

    Background Regulatory factor X (RFX) transcription factors play a key role in ciliary assembly in nematode, Drosophila and mouse. Using the tremendous advantages of comparative genomics in closely related species, we identified novel genes regulated by dRFX in Drosophila. Results We first demonstrate that a subset of known ciliary genes in Caenorhabditis elegans and Drosophila are regulated by dRFX and have a conserved RFX binding site (X-box) in their promoters in two highly divergent Drosophila species. We then designed an X-box consensus sequence and carried out a genome wide computer screen to identify novel genes under RFX control. We found 412 genes that share a conserved X-box upstream of the ATG in both species, with 83 genes presenting a more restricted consensus. We analyzed 25 of these 83 genes, 16 of which are indeed RFX target genes. Two of them have never been described as involved in ciliogenesis. In addition, reporter construct expression analysis revealed that three of the identified genes encode proteins specifically localized in ciliated endings of Drosophila sensory neurons. Conclusion Our X-box search strategy led to the identification of novel RFX target genes in Drosophila that are involved in sensory ciliogenesis. We also established a highly valuable Drosophila cilia and basal body dataset. These results demonstrate the accuracy of the X-box screen and will be useful for the identification of candidate genes for human ciliopathies, as several human homologs of RFX target genes are known to be involved in diseases, such as Bardet-Biedl syndrome. PMID:17875208

  17. Regulatory network analysis of transcription factors, microRNAs, target genes and host genes in human multiple myeloma.

    PubMed

    Huang, Zhuoyan; Xu, Zhiwen; Kunhao Wang, Kunhao Wang; Wang, Ning; Wang, Shang

    2015-11-01

    In recent years, molecular biologists have achieved great advance in micro RNA (miRNA) and gene investigation about the pathogenesis of multiple myeloma (MM). Existing research data of the transcription factors (TFs) and miRNAs is disperse and unorganized, which prevents researchers from investigating the mechanism and analyze regulatory pathways of MM systematically. In our research, regulatory interactions among miRNAs, TFs, host genes and target genes were imported to construct regulatory networks at three levels, including the abnormally expressed network and the related network as well as the global network. The abnormally expressed network was primary investigated cause it was an experimentally validated topological network, and it systematically explained the regulatory mechanism of MM. Its outstanding significance lies in that if we correct each abnormally expressed gene and miRNA to normal expression level by transcriptional control adjustment, thus the whole genetic expression network will return to normal state, and MM may not relapse. Additionally, analyses and comparisons to upstream as well as downstream of abnormally expressed miRNAs and genes in three networks highlighted some important regulators and key signaling pathways. For example, STAT3 and hsa-miR-125b, PIAS3 and hsa-miR-21 respectively formed self adaptation feedback regulations. The current research proposed a novel perspective to systematically explained the regulatory mechanism of MM and may contribute to further research and therapy of carcinomas. PMID:26687742

  18. Chemical synthesis of a gene for human epidermal growth factor urogastrone and its expression in yeast.

    PubMed Central

    Urdea, M S; Merryweather, J P; Mullenbach, G T; Coit, D; Heberlein, U; Valenzuela, P; Barr, P J

    1983-01-01

    We have chemically synthesized and expressed in yeast a gene coding for human epidermal growth factor (urogastrone), a 53-amino-acid polypeptide that has been shown to promote epithelial cell proliferation and to inhibit gastric acid secretion. The synthetic gene, consisting of 170 base pairs, was designed with yeast-preferred codons and assembled by enzymatic ligation of synthetic fragments produced by phosphoramidite chemistry. The DNA synthesis protocol used allows for facile synthesis of oligonucleotides larger than 50 bases. Yeast cells were transformed with plasmids containing the synthetic gene under control of a yeast glyceraldehyde-3-phosphate dehydrogenase gene promoter and were shown to synthesize a biologically active human epidermal growth factor. Images PMID:6369317

  19. Transcription factor assembly on the nicotinic receptor beta4 subunit gene promoter.

    PubMed

    Scofield, Michael D; Brüschweiler-Li, Lei; Mou, Zhongming; Gardner, Paul D

    2008-04-16

    Nicotinic acetylcholine receptors are involved in a plethora of fundamental biological processes ranging from muscle contraction to formation of memories. The receptors are pentameric proteins whose subunits are encoded by distinct genes. Subunit composition of a mature nicotinic receptor is governed in part by the transcriptional regulation of each subunit gene. Here, using chromatin immunoprecipitation assays, we report the interaction of the transcription factors Sp1, Sp3, c-Jun and Sox10 with the beta4 subunit gene promoter in neuronal-like cell lines and rodent brain tissue. Our results corroborate previous in-vitro data demonstrating that these transcription factors interact with the beta4 promoter. Taken together, these data suggest that Sp1, Sp3, c-Jun and Sox10 regulate expression of the beta4 subunit gene in the mammalian brain. PMID:18382288

  20. C-axis electrical resistivity of PrO1-aFaBiS2 single crystals

    NASA Astrophysics Data System (ADS)

    Nagao, Masanori; Miura, Akira; Watauchi, Satoshi; Takano, Yoshihiko; Tanaka, Isao

    2015-08-01

    The high anisotropy in RO1-aFaBiS2 (R denotes a rare-earth element) superconductors demonstrates their potential use as intrinsic Josephson junctions, considering the weak coupling among BiS2-PrO(F)-BiS2 (superconducting-normal-superconducting) layers along the c-axis. We grew PrO1-aFaBiS2 single crystals using CsCl/KCl flux. The superconducting anisotropies of the grown single crystals were estimated to be approximately 40-50 from the effective mass model. The c-axis transport properties were characterized using single-crystal s-shaped intrinsic Josephson junctions with a focused ion beam. Along the c-axis, the crystals showed zero resistivity at 2.7 K and a critical current density of 1.33 × 103 A/cm2 at 2.0 K. The current-voltage curve along the c-axis displayed hysteresis. The c-axis transport measurements under a magnetic field parallel to the ab-plane revealed a “lock-in” state due to the Josephson vortex flow, indicating that BiS2 superconductors are promising candidates for intrinsic Josephson junctions.

  1. Impact of experience-dependent and -independent factors on gene expression in songbird brain.

    PubMed

    Drnevich, Jenny; Replogle, Kirstin L; Lovell, Peter; Hahn, Thomas P; Johnson, Frank; Mast, Thomas G; Nordeen, Ernest; Nordeen, Kathy; Strand, Christy; London, Sarah E; Mukai, Motoko; Wingfield, John C; Arnold, Arthur P; Ball, Gregory F; Brenowitz, Eliot A; Wade, Juli; Mello, Claudio V; Clayton, David F

    2012-10-16

    Songbirds provide rich natural models for studying the relationships between brain anatomy, behavior, environmental signals, and gene expression. Under the Songbird Neurogenomics Initiative, investigators from 11 laboratories collected brain samples from six species of songbird under a range of experimental conditions, and 488 of these samples were analyzed systematically for gene expression by microarray. ANOVA was used to test 32 planned contrasts in the data, revealing the relative impact of different factors. The brain region from which tissue was taken had the greatest influence on gene expression profile, affecting the majority of signals measured by 18,848 cDNA spots on the microarray. Social and environmental manipulations had a highly variable impact, interpreted here as a manifestation of paradoxical "constitutive plasticity" (fewer inducible genes) during periods of enhanced behavioral responsiveness. Several specific genes were identified that may be important in the evolution of linkages between environmental signals and behavior. The data were also analyzed using weighted gene coexpression network analysis, followed by gene ontology analysis. This revealed modules of coexpressed genes that are also enriched for specific functional annotations, such as "ribosome" (expressed more highly in juvenile brain) and "dopamine metabolic process" (expressed more highly in striatal song control nucleus area X). These results underscore the complexity of influences on neural gene expression and provide a resource for studying how these influences are integrated during natural experience. PMID:23045667

  2. Recombination between elongation factorgenes from distantly related archaeal lineages

    PubMed Central

    Inagaki, Yuji; Susko, Edward; Roger, Andrew J.

    2006-01-01

    Homologous recombination (HR) and lateral gene transfer are major processes in genome evolution. The combination of the two processes, HR between genes in different species, has been documented but is thought to be restricted to very similar sequences in relatively closely related organisms. Here we report two cases of interspecific HR in the gene encoding the core translational protein translation elongation factor 1α (EF-1α) between distantly related archaeal groups. Maximum-likelihood sliding window analyses indicate that a fragment of the EF-1α gene from the archaeal lineage represented by Methanopyrus kandleri was recombined into the orthologous gene in a common ancestor of the Thermococcales. A second recombination event appears to have occurred between the EF-1α gene of the genus Methanothermobacter and its ortholog in a common ancestor of the Methanosarcinales, a distantly related euryarchaeal lineage. These findings suggest that HR occurs across a much larger evolutionary distance than generally accepted and affects highly conserved essential “informational” genes. Although difficult to detect by standard whole-gene phylogenetic analyses, interspecific HR in highly conserved genes may occur at an appreciable frequency, potentially confounding deep phylogenetic inference and hypothesis testing. PMID:16537397

  3. Close association of RNA polymerase II and many transcription factors with Pol III genes.

    PubMed

    Raha, Debasish; Wang, Zhong; Moqtaderi, Zarmik; Wu, Linfeng; Zhong, Guoneng; Gerstein, Mark; Struhl, Kevin; Snyder, Michael

    2010-02-23

    Transcription of the eukaryotic genomes is carried out by three distinct RNA polymerases I, II, and III, whereby each polymerase is thought to independently transcribe a distinct set of genes. To investigate a possible relationship of RNA polymerases II and III, we mapped their in vivo binding sites throughout the human genome by using ChIP-Seq in two different cell lines, GM12878 and K562 cells. Pol III was found to bind near many known genes as well as several previously unidentified target genes. RNA-Seq studies indicate that a majority of the bound genes are expressed, although a subset are not suggestive of stalling by RNA polymerase III. Pol II was found to bind near many known Pol III genes, including tRNA, U6, HVG, hY, 7SK and previously unidentified Pol III target genes. Similarly, in vivo binding studies also reveal that a number of transcription factors normally associated with Pol II transcription, including c-Fos, c-Jun and c-Myc, also tightly associate with most Pol III-transcribed genes. Inhibition of Pol II activity using alpha-amanitin reduced expression of a number of Pol III genes (e.g., U6, hY, HVG), suggesting that Pol II plays an important role in regulating their transcription. These results indicate that, contrary to previous expectations, polymerases can often work with one another to globally coordinate gene expression. PMID:20139302

  4. Stress-induced expression of NICOTINE2-locus genes and their homologs encoding Ethylene Response Factor transcription factors in tobacco.

    PubMed

    Shoji, Tsubasa; Hashimoto, Takashi

    2015-05-01

    Plants have evolved diverse defense metabolites as adaptations to biotic and abiotic stresses. The defense alkaloid nicotine is produced in Nicotiana tabacum (tobacco) and its biosynthesis is elicited by jasmonates in the roots. At least seven jasmonate-responsive genes that encode transcription factors of the Ethylene Response Factor (ERF) family are clustered at the nicotine-regulatory locus NICOTINE2 (NIC2) in the tobacco genome. A subset of the NIC2-locus ERFs and their homologs, including ERF189 and ERF199, have been shown to be most effective in controlling nicotine biosynthetic pathway genes. Herein reported is that the ERF genes of this group, other than ERF189 and ERF199, were strongly induced by NaCl in tobacco hairy roots, although salt stress had no effect on expression of nicotine biosynthesis genes. Abscisic acid and osmotic stress also increased expression of a subset of these NaCl-inducible ERF genes. Promoter expression analysis in transgenic tobacco hairy roots confirmed that while methyl jasmonate (MJ) activated the promoters of ERF29, ERF210 and ERF199, salt stress up-regulated the promoters of only ERF29 and ERF210, but not ERF199. The protein biosynthesis inhibitor cycloheximide induced expression of the ERFs, and simultaneous addition of MJ and cycloheximide showed synergistic effects. These results indicate that, after several gene duplication events, the NIC2-locus ERFs and possibly their homologs appear to have diverged in their responses to jasmonates and various environmental inputs, including salt stress, and may have evolved to regulate distinct metabolic processes and cellular responses. PMID:24947337

  5. Formal modeling of Gene Ontology annotation predictions based on factor graphs

    NASA Astrophysics Data System (ADS)

    Spetale, Flavio; Murillo, Javier; Tapia, Elizabeth; Arce, Débora; Ponce, Sergio; Bulacio, Pilar

    2016-04-01

    Gene Ontology (GO) is a hierarchical vocabulary for gene product annotation. Its synergy with machine learning classification methods has been widely used for the prediction of protein functions. Current classification methods rely on heuristic solutions to check the consistency with some aspects of the underlying GO structure. In this work we formalize the GO is-a relationship through predicate logic. Moreover, an ontology model based on Forney Factor Graph (FFG) is shown on a general fragment of Cellular Component GO.

  6. Helix-loop-helix transcription factors mediate activation and repression of the p75LNGFR gene.

    PubMed Central

    Chiaramello, A; Neuman, K; Palm, K; Metsis, M; Neuman, T

    1995-01-01

    Sequence analysis of rat and human low-affinity nerve growth factor receptor p75LNGFR gene promoter regions revealed a single E-box cis-acting element, located upstream of the major transcription start sites. Deletion analysis of the E-box sequence demonstrated that it significantly contributes to p75LNGFR promoter activity. This E box has a dual function; it mediates either activation or repression of the p75LNGFR promoter activity, depending on the interacting transcription factors. We showed that the two isoforms of the class A basic helix-loop-helix (bHLH) transcription factor ME1 (ME1a and ME1b), the murine homolog of the human HEB transcription factor, specifically repress p75LNGFR promoter activity. This repression can be released by coexpression of the HLH Id2 transcriptional regulator. In vitro analyses demonstrated that ME1a forms a stable complex with the p75LNGFR E box and likely competes with activating E-box-binding proteins. By using ME1a-overexpressing PC12 cells, we showed that the endogenous p75LNGFR gene is a target of ME1a repression. Together, these data demonstrate that the p75LNGFR E box and the interacting bHLH transcription factors are involved in the regulation of p75LNGFR gene expression. These results also show that class A bHLH transcription factors can repress and Id-like negative regulators can stimulate gene expression. PMID:7565756

  7. Localization and characterization of the human ADP-ribosylation factor 5 (ARF5) gene

    SciTech Connect

    McGuire, R.E. |; Daiger, S.P.; Green, E.D.

    1997-05-01

    ADP-ribosylation factor 5 (ARF5) is a member of the ARF gene family. The ARF proteins stimulate the in vitro ADP-ribosyltransferase activity of cholera toxin and appear to play a role in vesicular trafficking in vivo. We have mapped ARF5, one of the six known mammalian ARF genes, to a well-defined yeast artificial chromosome contig on human chromosome 7q31.3. In addition, we have isolated and sequenced an {approximately}3.2-kb genomic segment that contains the entire ARF5 coding region, revealing the complete intron-exon structure of the gene. With six coding exons and five introns, the genomic structure of ARF5 is unique among the mammalian ARF genes and provides insight about the evolutionary history of this ancient gene family. 20 refs., 2 figs., 1 tab.

  8. Heterogeneity of cytokine and growth factor gene expression in human melanoma cells with different metastatic potentials.

    PubMed

    Singh, R K; Gutman, M; Radinsky, R

    1995-01-01

    The purpose of this study was to determine the mRNA expression level of multiple cytokine and growth factor genes in human malignant melanoma. Melanoma cells were isolated from several surgical specimens, adapted to growth in culture, characterized for their ability to produce experimental metastases in nude mice, and assessed for cytokine and growth factor steady-state gene expression. Highly metastatic in vivo- and in vitro-derived variants isolated from a single melanoma, A375, were also analyzed. Northern blot analyses revealed that all melanomas analyzed constitutively expressed steady-state mRNA transcripts for the growth and angiogenic factors, basic fibroblast growth factor (bFGF), and transforming growth factor alpha (TGF-alpha), which correlated with metastatic propensity. Only one highly metastatic melanoma, TXM-1, originally isolated from a lymph node metastasis, expressed mRNA transcripts specific for monocyte chemotactic and activating factor (MCAF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Similarly, of the nine melanomas examined, only TXM-1 expressed interleukin (IL)-1 alpha, IL-1 beta, and IL-6, important immunomodulatory cytokines. These data demonstrate the differential and heterogeneous expression of cytokine and growth factor genes in human malignant melanoma. PMID:7648437

  9. Growth factor enhanced retroviral gene transfer to the adult central nervous system.

    PubMed

    King, L A; Mitrophanous, K A; Clark, L A; Kim, V N; Rohll, J B; Kingsman, A J; Colello, R J

    2000-07-01

    The use of viral vectors for gene delivery into mammalian cells provides a new approach in the treatment of many human diseases. The first viral vector approved for human clinical trials was murine leukemia virus (MLV), which remains the most commonly used vector in clinical trials to date. However, the application of MLV vectors is limited since MLV requires cells to be actively dividing in order for transduction and therefore gene delivery to occur. This limitation precludes the use of MLV for delivering genes to the adult CNS, where very little cell division is occurring. However, we speculated that this inherent limitation of ML V may be overcome by utilizing the known mitogenic effect of growth factors on cells of the CNS. Specifically, an in vivo application of growth factor to the adult brain, if able to induce cell division, could enhance MLV-based gene transfer to the adult brain. We now show that an exogenous application of basic fibroblast growth factor induces cell division in vivo. Under these conditions, where cells of the adult brain are stimulated to divide, MLV-based gene transfer is significantly enhanced. This novel approach precludes any vector modifications and provides a simple and effective way of delivering genes to cells of the adult brain utilizing MLV-based retroviral vectors. PMID:10918476

  10. Expression of insulin-like growth factor family genes in clear cell renal cell carcinoma

    PubMed Central

    Białożyt, Michał; Plato, Marta; Mazurek, Urszula; Braczkowska, Bogumiła

    2016-01-01

    Aim of the study Despite significant progress in the pathology of clear cell renal cell carcinoma (ccRCC), diagnostic and predictive factors of major importance have not been discovered. Some hopes are associated with insulin-like growth factors. The aim of the study was to compare the expression of genes for insulin-like growth factor family in tumours and in tissue of kidneys without cancer. Material and methods Fifty-two patients years with clear cell renal cell cancer were qualified to the study group; patients nephrectomised because of hydronephrosis were included in the control group. Expression of genes were evaluated by RT-PCR. Results Expression of IGFR-1 gene in tumour accounts for about 60% of cases. The incidence is higher than in corresponding adjacent non-cancerous kidney tissues and higher (but with no statistical significance) than in kidney without cancer. Expression of IGFR-2 gene in tumours has not been established. The incidence of the expression in corresponding adjacent non-cancerous kidney tissues is small. Expression of this gene has been present in all specimens from kidneys without cancer. Expression of IGFBP-3 gene ascertained in all (except four) cases of ccRCC and in the majority of clippings from adjacent tissue. It was not found in kidneys from the control group. IGF-1, IGF-2, and IGFR-1 mRNA copy numbers in ccRCC were higher than in the material from the control group PMID:27358591

  11. Engineering Synthetic TALE and CRISPR/Cas9 Transcription Factors for Regulating Gene Expression

    PubMed Central

    Kabadi, Ami M.; Gersbach, Charles A.

    2014-01-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription Activator-Like Effectors (TALEs) and the RNA-guided Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. PMID:25010559

  12. Polymorphism of the human factor H-related gene (FHR-1) and of factor H in a West African individual

    SciTech Connect

    Meyer, C.G.; Skerka, C.; Zipfel, P.F.

    1995-03-01

    The human factor H-related 1 (FHR-1) protein is structurally and immunogenically related to the regulatory complement protein factor H (FH). Polymorphism of the FHR-1 gene is indicated by the nucleotide differences as described by the five cDNA clones isolated so far. In order to further analyze this polymorphism we identified PCR-primers which allow the simultaneous amplification of FHR-1 and FH alleles in a single polymerase chain reaction (PCR). By DNA sequence analysis, two novel FHR-1 variants and one as yet unrecognized FH allele could be characterized in an individual from Benin, West Africa. 2 refs., 1 fig.

  13. Family-based study of brain-derived neurotrophic factor (BDNF) gene polymorphism in alcohol dependence.

    PubMed

    Grzywacz, Anna; Samochowiec, Agnieszka; Ciechanowicz, Andrzej; Samochowiec, Jerzy

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) belongs to a family of proteins related to the nerve growth factor family, which are responsible for the proliferation, survival and differentiation of neurons. BDNF is thought to be involved in the pathogenesis of bipolar disorder, schizophrenia, eating disorders and addiction. We hypothesize that a functionally relevant polymorphism of the BDNF gene promoter may be associated with the pathogenesis of alcohol dependence. We performed an association study of 141 families with alcohol dependence. One hundred and thirty-eight healthy control subjects were matched based on ethnicity and gender. An association between the BDNF Val66Met gene polymorphism and alcoholism was not found. PMID:21098877

  14. Search for regulatory factors of the pituitary-specific transcription factor PROP1 gene

    PubMed Central

    NISHIMURA, Naoto; UEHARU, Hiroki; NISHIHARA, Hiroto; SHIBUYA, Shiori; YOSHIDA, Saishu; HIGUCHI, Masashi; KANNO, Naoko; HORIGUCHI, Kotaro; KATO, Takako; KATO, Yukio

    2015-01-01

    Pituitary-specific transcription factor PROP1, a factor important for pituitary organogenesis, appears on rat embryonic day 11.5 (E11.5) in SOX2-expressing stem/progenitor cells and always coexists with SOX2 throughout life. PROP1-positive cells at one point occupy all cells in Rathke’s pouch, followed by a rapid decrease in their number. Their regulatory factors, except for RBP-J, have not yet been clarified. This study aimed to use the 3 kb upstream region and 1st intron of mouse prop1 to pinpoint a group of factors selected on the basis of expression in the early pituitary gland for expression of Prop1. Reporter assays for SOX2 and RBP-J showed that the stem/progenitor marker SOX2 has cell type-dependent inhibitory and activating functions through the proximal and distal upstream regions of Prop1, respectively, while RBP-J had small regulatory activity in some cell lines. Reporter assays for another 39 factors using the 3 kb upstream regions in CHO cells ultimately revealed that 8 factors, MSX2, PAX6, PIT1, PITX1, PITX2, RPF1, SOX8 and SOX11, but not RBP-J, regulate Prop1 expression. Furthermore, a synergy effect with SOX2 was observed for an additional 10 factors, FOXJ1, HES1, HEY1, HEY2, KLF6, MSX1, RUNX1, TEAD2, YBX2 and ZFP36Ll, which did not show substantial independent action. Thus, we demonstrated 19 candidates, including SOX2, to be regulatory factors of Prop1 expression. PMID:26640231

  15. Search for regulatory factors of the pituitary-specific transcription factor PROP1 gene.

    PubMed

    Nishimura, Naoto; Ueharu, Hiroki; Nishihara, Hiroto; Shibuya, Shiori; Yoshida, Saishu; Higuchi, Masashi; Kanno, Naoko; Horiguchi, Kotaro; Kato, Takako; Kato, Yukio

    2016-02-20

    Pituitary-specific transcription factor PROP1, a factor important for pituitary organogenesis, appears on rat embryonic day 11.5 (E11.5) in SOX2-expressing stem/progenitor cells and always coexists with SOX2 throughout life. PROP1-positive cells at one point occupy all cells in Rathke's pouch, followed by a rapid decrease in their number. Their regulatory factors, except for RBP-J, have not yet been clarified. This study aimed to use the 3 kb upstream region and 1st intron of mouse prop1 to pinpoint a group of factors selected on the basis of expression in the early pituitary gland for expression of Prop1. Reporter assays for SOX2 and RBP-J showed that the stem/progenitor marker SOX2 has cell type-dependent inhibitory and activating functions through the proximal and distal upstream regions of Prop1, respectively, while RBP-J had small regulatory activity in some cell lines. Reporter assays for another 39 factors using the 3 kb upstream regions in CHO cells ultimately revealed that 8 factors, MSX2, PAX6, PIT1, PITX1, PITX2, RPF1, SOX8 and SOX11, but not RBP-J, regulate Prop1 expression. Furthermore, a synergy effect with SOX2 was observed for an additional 10 factors, FOXJ1, HES1, HEY1, HEY2, KLF6, MSX1, RUNX1, TEAD2, YBX2 and ZFP36Ll, which did not show substantial independent action. Thus, we demonstrated 19 candidates, including SOX2, to be regulatory factors of Prop1 expression. PMID:26640231

  16. Transcriptional regulation of the phosphoenolpyruvate carboxykinase gene by cooperation between hepatic nuclear factors.

    PubMed Central

    Yanuka-Kashles, O; Cohen, H; Trus, M; Aran, A; Benvenisty, N; Reshef, L

    1994-01-01

    To study the transcriptional regulation of the liver gluconeogenic phenotype, the underdifferentiated mouse Hepa-1c1c7 (Hepa) hepatoma cell line was used. These cells mimicked the fetal liver by appreciably expressing the alpha-fetoprotein and albumin genes but not the phosphoenolpyruvate carboxykinase (PEPCK) gene. Unlike the fetal liver, however, Hepa cells failed to express the early-expressed factors hepatocyte nuclear factor 1 alpha (HNF-1 alpha) and HNF-4 and the late-expressed factor C/EBP alpha, thereby providing a suitable system for examining possible cooperation between these factors in the transcriptional regulation of the PEPCK gene. Transient transfection assays of a chimeric PEPCK-chloramphenicol acetyltransferase construct showed a residual PEPCK promoter activity in the Hepa cell line, which was slightly stimulated by cotransfection with a single transcription factor from either the C/EBP family or HNF-1 alpha but not at all affected by cotransfection of HNF-4. In contrast, cotransfection of the PEPCK construct with members from the C/EBP family plus HNF-1 alpha resulted in a synergistic stimulation of the PEPCK promoter activity. This synergistic effect depended on the presence in the PEPCK promoter region of the HNF-1 recognition sequence and on the presence of two C/EBP recognition sequences. The results demonstrate a requirement for coexistence and cooperation between early and late liver-enriched transcription factors in the transcriptional regulation of the PEPCK gene. In addition, the results suggest redundancy between members of the C/EBP family of transcription factors in the regulation of PEPCK gene expression. Images PMID:7935427

  17. Evolution by gene duplication of Medicago truncatula PISTILLATA-like transcription factors.

    PubMed

    Roque, Edelín; Fares, Mario A; Yenush, Lynne; Rochina, Mari Cruz; Wen, Jiangqi; Mysore, Kirankumar S; Gómez-Mena, Concepción; Beltrán, José Pío; Cañas, Luis A

    2016-04-01

    PISTILLATA (PI) is a member of the B-function MADS-box gene family, which controls the identity of both petals and stamens in Arabidopsis thaliana. In Medicago truncatula (Mt), there are two PI-like paralogs, known as MtPI and MtNGL9. These genes differ in their expression patterns, but it is not known whether their functions have also diverged. Describing the evolution of certain duplicated genes, such as transcription factors, remains a challenge owing to the complex expression patterns and functional divergence between the gene copies. Here, we report a number of functional studies, including analyses of gene expression, protein-protein interactions, and reverse genetic approaches designed to demonstrate the respective contributions of each M. truncatula PI-like paralog to the B-function in this species. Also, we have integrated molecular evolution approaches to determine the mode of evolution of Mt PI-like genes after duplication. Our results demonstrate that MtPI functions as a master regulator of B-function in M. truncatula, maintaining the overall ancestral function, while MtNGL9 does not seem to have a role in this regard, suggesting that the pseudogenization could be the functional evolutionary fate for this gene. However, we provide evidence that purifying selection is the primary evolutionary force acting on this paralog, pinpointing the conservation of its biochemical function and, alternatively, the acquisition of a new role for this gene. PMID:26773809

  18. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    SciTech Connect

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  19. Target genes regulated by transcription factor E2F1 in small cell lung cancer.

    PubMed

    Li, Zun-Ling; Jiao, Fei; Ma, Ying; Yue, Zhen; Kong, Li-Jun

    2016-06-25

    Previously, we have reported that transcription factor E2F1 expression is up-regulated in approximately 95% of small cell lung cancer tissue samples and closely associated with invasion and metastasis, but few studies have investigated specific target genes regulated by E2F1 in this disease. The aim of this study was to clarify the target genes controlled by E2F1 in the small cell lung cancer cell line H1688. The results of chromatin immunoprecipitation sequencing (ChIP-seq) showed that total 5 326 potential target genes were identified, in which 4 700 were structural genes and 626 long non-coding RNAs (lncRNAs). Gene Ontology (GO) and enrichment map analysis results indicated that these target genes were associated with three main functions: (1) cell cycle regulation, (2) chromatin and histone modification, and (3) protein transport. MEME4.7.0 software was used to identify the E2F1 binding DNA motif, and six motifs were discovered for coding genes and lncRNAs. These results clarify the target genes of E2F1, and provide the experimental basis for further exploring the roles of E2F1 in tumorigenesis, development, invasion and metastasis, recurrence, and drug resistance in small cell lung cancer. PMID:27350200

  20. Evolution by gene duplication of Medicago truncatula PISTILLATA-like transcription factors

    PubMed Central

    Roque, Edelín; Fares, Mario A.; Yenush, Lynne; Rochina, Mari Cruz; Wen, Jiangqi; Mysore, Kirankumar S.; Gómez-Mena, Concepción; Beltrán, José Pío; Cañas, Luis A.

    2016-01-01

    PISTILLATA (PI) is a member of the B-function MADS-box gene family, which controls the identity of both petals and stamens in Arabidopsis thaliana. In Medicago truncatula (Mt), there are two PI-like paralogs, known as MtPI and MtNGL9. These genes differ in their expression patterns, but it is not known whether their functions have also diverged. Describing the evolution of certain duplicated genes, such as transcription factors, remains a challenge owing to the complex expression patterns and functional divergence between the gene copies. Here, we report a number of functional studies, including analyses of gene expression, protein–protein interactions, and reverse genetic approaches designed to demonstrate the respective contributions of each M. truncatula PI-like paralog to the B-function in this species. Also, we have integrated molecular evolution approaches to determine the mode of evolution of Mt PI-like genes after duplication. Our results demonstrate that MtPI functions as a master regulator of B-function in M. truncatula, maintaining the overall ancestral function, while MtNGL9 does not seem to have a role in this regard, suggesting that the pseudogenization could be the functional evolutionary fate for this gene. However, we provide evidence that purifying selection is the primary evolutionary force acting on this paralog, pinpointing the conservation of its biochemical function and, alternatively, the acquisition of a new role for this gene. PMID:26773809

  1. Linkage and evolutionary relationships of the genes for human clotting factors VII and X

    SciTech Connect

    Polumbo, P.A.; Dierwechter, L.M.; Whitesides, L.D.

    1994-09-01

    Factors VII and X are structurally similar serine proteases which are involved in blood coagulation. The gene for factor X (F10) has been previously mapped to human chromosome 13q34 by in situ hybridization and DNA linkage analysis, and both F10 and the gene for factor VII (F7) have been mapped to this region by dosage studies in patients with chromosomal aneuploidies. We have determined the genetic distance between F7 and F10 using PCR-based polymorphisms and DNA linkage analysis. The F7 locus lies 6 centiMorgans proximal to F10, and the most likely locus order is D13S123-[D13S107/D13S52]-F7-D13S49-D13S54-F10. F7 and F10 share 52% sequence homology in their coding regions, and their exonic organization is identical to the genes for factor IX and protein C. DNA sequence analysis using the neighbor-joining method confirms the evolution of F7 and F10 from a common ancestral gene, but the analysis suggests that one did not arise directly from the other by tandem duplication on chromosome 13. These data contribute to our knowledge of the evolution of the family of vitamin K-dependent serine proteases, and should prove useful in studying families with inherited deficiencies in factor VII or X.

  2. Preimplantation embryo-secreted factors modulate maternal gene expression in rat uterus.

    PubMed

    Yamagami, Kazuki; Islam, M Rashedul; Yoshii, Yuka; Mori, Kazuki; Tashiro, Kosuke; Yamauchi, Nobuhiko

    2016-05-01

    In mammalian reproduction, embryo implantation into the uterus is spatiotemporally regulated by a complex process triggered by a number of factors. Although previous studies have suggested that uterine receptivity is mediated by blastocyst-derived factors, specific functions of embryos remain to be defined during preimplantation. Therefore, the present study was conducted to identify the maternal genes regulated by embryo-secreted factors in the rat uterus. RNA-sequencing (RNA-seq) data revealed that 10 genes are up-regulated in the delayed implantation uterus compared with the pseudopregnancy uterus. The RNA-seq results were further verified by real-time quantitative polymerase chain reaction. Sulf1 expression is significantly (P < 0.05) induced in the delayed implantation uterus, although Areg, Calca, Fxyd4 and Lamc3 show a definite but non-statistically significant increase in their expression levels. During early pregnancy, the levels of Areg, Calca, Fxyd4, Lamc3 and Sulf1 expression at 3.5 days post coitus (dpc) are significantly (P < 0.05) higher than those at 1.5 dpc. Treatment with embryo-conditioned media revealed that Lamc3 and Sulf1 are up-regulated compared with the other genes studied. Thus, embryo-derived factors regulate maternal gene expression, with Lamc3 and Sulf1 possibly being suitable markers for a response study of embryo-secreted factors to improve our understanding of embryo-maternal communication. PMID:26685865

  3. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection.

    PubMed

    Jinno, Masafumi; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu

    2016-09-01

    This study has been done to know what kind of factors in plasmas and processes on cells induce plasma gene transfection. We evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones, inducing gene transfection. First, the laser produced plasma (LPP) was employed to estimate the contribution of the chemical factors. Second, liposomes were fabricated and employed to evaluate the effects of plasma irradiation on membrane under the condition without biochemical reaction. Third, the clathrin-dependent endocytosis, one of the biochemical processes was suppressed. It becomes clear that chemical factors (radicals and reactive oxygen/nitrogen species) do not work by itself alone and electrical factors (electrical current, charge and field) are essential to plasma gene transfection. It turned out the clathrin-dependent endocytosis is the process of the transfection against the 60% in all the transfected cells. The endocytosis and electrical poration are dominant in plasma gene transfection, and neither permeation through ion channels nor chemical poration is dominant processes. The simultaneous achievement of high transfection efficiency and high cell survivability is attributed to the optimization of the contribution weight among three groups of processes by controlling the weight of electrical and chemical factors. PMID:27136710

  4. A Homeodomain Transcription Factor Gene, PfMSX, Activates Expression of Pif Gene in the Pearl Oyster Pinctada fucata

    PubMed Central

    Zhao, Mi; He, Maoxian; Huang, Xiande; Wang, Qi

    2014-01-01

    We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5′ flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster. PMID:25099698

  5. The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed.

    PubMed Central

    Nielsen, P J; Trachsel, H

    1988-01-01

    We have cloned and characterized a family of mouse genomic sequences hybridizing to mouse cDNA probes coding for eIF-4A, one of the protein synthesis initiation factors involved in the binding of mRNA to the ribosome. We estimate that there is a total of approximately 9-13 eIF-4A pseudogenes. We also found an eIF-4A intronless retroposon which, when compared to the cDNA, contains a single nucleotide difference. This possibly functional gene contains a mouse repetitive B1 element integrated in the promoter region. Furthermore, we have cloned two intron-containing eIF-4A genes (termed eIF-4AI and eIF-4AII). The eIF-4AII gene codes for a previously unknown form of eIF-4A. Northern blot hybridization with RNA from several mouse organs shows a variation in eIF-4AI expression within a factor of 7. In contrast, relative to liver, eIF-4AII expression is 20- to 30-times higher in brain and kidney, 10- to 17-fold higher in lung and heart, and is about equally abundant in liver, spleen and thymus. These data suggest that the relative efficiency of protein synthesis initiation for different mRNAs, as reflected by discrimination in messenger 5'-terminal cap recognition and binding to ribosomes, varies in different tissues. Images PMID:3046931

  6. Dynamics of heat shock factor association with native gene loci in living cells.

    PubMed

    Yao, Jie; Munson, Katherine M; Webb, Watt W; Lis, John T

    2006-08-31

    Direct observation of transcription factor action in the living cell nucleus can provide important insights into gene regulatory mechanisms. Live-cell imaging techniques have enabled the visualization of a variety of intranuclear activities, from chromosome dynamics to gene expression. However, progress in studying transcription regulation of specific native genes has been limited, primarily as a result of difficulties in resolving individual gene loci and in detecting the small number of protein molecules functioning within active transcription units. Here we report that multiphoton microscopy imaging of polytene nuclei in living Drosophila salivary glands allows real-time analysis of transcription factor recruitment and exchange on specific native genes. After heat shock, we have visualized the recruitment of RNA polymerase II (Pol II) to native hsp70 gene loci 87A and 87C in real time. We show that heat shock factor (HSF), the transcription activator of hsp70, is localized to the nucleus before heat shock and translocates from nucleoplasm to chromosomal loci after heat shock. Assays based on fluorescence recovery after photobleaching show a rapid exchange of HSF at chromosomal loci under non-heat-shock conditions but a very slow exchange after heat shock. However, this is not a consequence of a change of HSF diffusibility, as shown here directly by fluorescence correlation spectroscopy. Our results provide strong evidence that activated HSF is stably bound to DNA in vivo and that turnover or disassembly of transcription activator is not required for rounds of hsp70 transcription. This and previous studies indicate that transcription activators display diverse dynamic behaviours in their associations with targeted loci in living cells. Our method can be applied to study the dynamics of many factors involved in transcription and RNA processing, and in their regulation at native heat shock genes in vivo. PMID:16929308

  7. Induction of Candida albicans drug resistance genes by hybrid zinc cluster transcription factors.

    PubMed

    Schneider, Sabrina; Morschhäuser, Joachim

    2015-01-01

    The pathogenic yeast Candida albicans can develop resistance to azole antifungal drugs by overexpressing ERG11, which encodes the drug target, or the multidrug efflux pumps MDR1 and CDR1/CDR2. The constitutive upregulation of these genes is usually caused by gain-of-function mutations in the zinc cluster transcription factors Upc2, Mrr1, and Tac1, respectively. These transcription factors are also required for the induction of their target genes in drug-susceptible strains in the presence of specific stimuli. By swapping the DNA-binding domains of Mrr1, Tac1, and Upc2 we investigated if the hybrid transcription factors could activate their new target genes in response to the same signals. When Tac1 was targeted to the MDR1 and ERG11 promoters, the expression of these genes became inducible by fluphenazine. Similarly, MDR1 and CDR2 were strongly upregulated by fluconazole when Upc2 was fused to the DNA-binding domains of Mrr1 and Tac1, respectively. In contrast, Mrr1 was unable to promote gene expression in response to benomyl when it was targeted to the CDR2 and ERG11 promoters instead of the MDR1 promoter. These results suggest that Tac1 and Upc2 themselves are activated by the inducers fluphenazine and fluconazole, respectively, whereas benomyl does not activate Mrr1 itself but a coregulatory factor that is present at the promoters of Mrr1 target genes. Strains in which the expression levels of Mrr1 and Tac1 target genes were controlled by Upc2 exhibited increased fluconazole resistance, demonstrating that the ability to efficiently upregulate the expression of efflux pumps in the presence of the drug results in enhanced intrinsic fluconazole resistance. PMID:25385116

  8. Induction of Candida albicans Drug Resistance Genes by Hybrid Zinc Cluster Transcription Factors

    PubMed Central

    Schneider, Sabrina

    2014-01-01

    The pathogenic yeast Candida albicans can develop resistance to azole antifungal drugs by overexpressing ERG11, which encodes the drug target, or the multidrug efflux pumps MDR1 and CDR1/CDR2. The constitutive upregulation of these genes is usually caused by gain-of-function mutations in the zinc cluster transcription factors Upc2, Mrr1, and Tac1, respectively. These transcription factors are also required for the induction of their target genes in drug-susceptible strains in the presence of specific stimuli. By swapping the DNA-binding domains of Mrr1, Tac1, and Upc2 we investigated if the hybrid transcription factors could activate their new target genes in response to the same signals. When Tac1 was targeted to the MDR1 and ERG11 promoters, the expression of these genes became inducible by fluphenazine. Similarly, MDR1 and CDR2 were strongly upregulated by fluconazole when Upc2 was fused to the DNA-binding domains of Mrr1 and Tac1, respectively. In contrast, Mrr1 was unable to promote gene expression in response to benomyl when it was targeted to the CDR2 and ERG11 promoters instead of the MDR1 promoter. These results suggest that Tac1 and Upc2 themselves are activated by the inducers fluphenazine and fluconazole, respectively, whereas benomyl does not activate Mrr1 itself but a coregulatory factor that is present at the promoters of Mrr1 target genes. Strains in which the expression levels of Mrr1 and Tac1 target genes were controlled by Upc2 exhibited increased fluconazole resistance, demonstrating that the ability to efficiently upregulate the expression of efflux pumps in the presence of the drug results in enhanced intrinsic fluconazole resistance. PMID:25385116

  9. The Role of Transcription Factors at Antisense-Expressing Gene Pairs in Yeast

    PubMed Central

    Mostovoy, Yulia; Thiemicke, Alexander; Hsu, Tiffany Y.; Brem, Rachel B.

    2016-01-01

    Genes encoded close to one another on the chromosome are often coexpressed, by a mechanism and regulatory logic that remain poorly understood. We surveyed the yeast genome for tandem gene pairs oriented tail-to-head at which expression antisense to the upstream gene was conserved across species. The intergenic region at most such tandem pairs is a bidirectional promoter, shared by the downstream gene mRNA and the upstream antisense transcript. Genomic analyses of these intergenic loci revealed distinctive patterns of transcription factor regulation. Mutation of a given transcription factor verified its role as a regulator in trans of tandem gene pair loci, including the proximally initiating upstream antisense transcript and downstream mRNA and the distally initiating upstream mRNA. To investigate cis-regulatory activity at such a locus, we focused on the stress-induced NAD(P)H dehydratase YKL151C and its downstream neighbor, the metabolic enzyme GPM1. Previous work has implicated the region between these genes in regulation of GPM1 expression; our mutation experiments established its function in rich medium as a repressor in cis of the distally initiating YKL151C sense RNA, and an activator of the proximally initiating YKL151C antisense RNA. Wild-type expression of all three transcripts required the transcription factor Gcr2. Thus, at this locus, the intergenic region serves as a focal point of regulatory input, driving antisense expression and mediating the coordinated regulation of YKL151C and GPM1. Together, our findings implicate transcription factors in the joint control of neighboring genes specialized to opposing conditions and the antisense transcripts expressed between them. PMID:27190003

  10. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression.

    PubMed

    Thurlings, Ingrid; de Bruin, Alain

    2016-01-01

    Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growth and DNA metabolism, respectively. These findings provided the first clues that the E2F transcription factor might be an important regulator of the cell cycle. Since this initial discovery in 1987, several additional E2F family members have been identified, and more than 100 targets genes have been shown to be directly regulated by E2Fs, the majority of these are important for controlling the cell cycle. The progression of a cell through the cell cycle is accompanied with the increased expression of a specific set of genes during one phase of the cell cycle and the decrease of the same set of genes during a later phase of the cell cycle. This roller coaster ride, or oscillation, of gene expression is essential for the proper progression through the cell cycle to allow accurate DNA replication and cell division. The E2F transcription factors have been shown to be critical for the temporal expression of the oscillating cell cycle genes. This review will focus on how the oscillation of E2Fs and their targets is regulated by transcriptional, post-transcriptional and post-translational mechanism in mammals, yeast, flies, and worms. Furthermore, we will discuss the functional impact of E2Fs on the cell cycle progression and outline the consequences when E2F expression is disturbed. PMID:26254918

  11. Platelet-Derived Growth Factor Gene Delivery Stimulates ex Vivo Gingival Repair

    PubMed Central

    ANUSAKSATHIEN, ORASA; WEBB, SARAH A.; JIN, QI-MING; GIANNOBILE, WILLIAM V.

    2008-01-01

    Destruction of tooth support due to the chronic inflammatory disease periodontitis is a major cause of tooth loss. There are limitations with available treatment options to tissue engineer soft tissue periodontal defects. The exogenous application of growth factors (GFs) such as platelet-derived growth factor (PDGF) has shown promise to enhance oral and periodontal tissue regeneration. However, the topical administration of GFs has not led to clinically significant improvements in tissue regeneration because of problems in maintaining therapeutic protein levels at the defect site. The utilization of PDGF gene transfer may circumvent many of the limitations with protein delivery to soft tissue wounds. The objective of this study was to test the effect of PDGF-A and PDGF-B gene transfer to human gingival fibroblasts (HGFs) on ex vivo repair in three-dimensional collagen lattices. HGFs were transduced with adenovirus encoding PDGF-A and PDGF-B genes. Defect fill of bilayer collagen gels was measured by image analysis of cell repopulation into the gingival defects. The modulation of gene expression at the defect site and periphery was measured by RT-PCR during a 10-day time course after gene delivery. The results demonstrated that PDGF-B gene transfer stimulated potent (>4-fold) increases in cell repopulation and defect fill above that of PDGF-A and corresponding controls. PDGF-A and PDGF-B gene expression was maintained for at least 10 days. PDGF gene transfer upregulated the expression of phosphatidylinosital 3-kinase and integrin α5 subunit at 5 days after adenovirus transduction. These results suggest that PDGF gene transfer has potential for periodontal soft tissue-engineering applications. PMID:13678451

  12. Tissue-specific targeting of cell fate regulatory genes by E2f factors.

    PubMed

    Julian, L M; Liu, Y; Pakenham, C A; Dugal-Tessier, D; Ruzhynsky, V; Bae, S; Tsai, S-Y; Leone, G; Slack, R S; Blais, A

    2016-04-01

    Cell cycle proteins are important regulators of diverse cell fate decisions, and in this capacity have pivotal roles in neurogenesis and brain development. The mechanisms by which cell cycle regulation is integrated with cell fate control in the brain and other tissues are poorly understood, and an outstanding question is whether the cell cycle machinery regulates fate decisions directly or instead as a secondary consequence of proliferative control. Identification of the genes targeted by E2 promoter binding factor (E2f) transcription factors, effectors of the pRb/E2f cell cycle pathway, will provide essential insights into these mechanisms. We identified the promoter regions bound by three neurogenic E2f factors in neural precursor cells in a genome-wide manner. Through bioinformatic analyses and integration of published genomic data sets we uncovered hundreds of transcriptionally active E2f-bound promoters corresponding to genes that control cell fate processes, including key transcriptional regulators and members of the Notch, fibroblast growth factor, Wnt and Tgf-β signaling pathways. We also demonstrate a striking enrichment of the CCCTC binding factor transcription factor (Ctcf) at E2f3-bound nervous system-related genes, suggesting a potential regulatory co-factor for E2f3 in controlling differentiation. Finally, we provide the first demonstration of extensive tissue specificity among E2f target genes in mammalian cells, whereby E2f3 promoter binding is well conserved between neural and muscle precursors at genes associated with cell cycle processes, but is tissue-specific at differentiation-associated genes. Our findings implicate the cell cycle pathway as a widespread regulator of cell fate genes, and suggest that E2f3 proteins control cell type-specific differentiation programs by regulating unique sets of target genes. This work significantly enhances our understanding of how the cell cycle machinery impacts cell fate and differentiation, and will

  13. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets

    PubMed Central

    Zeller, Karen I; Jegga, Anil G; Aronow, Bruce J; O'Donnell, Kathryn A; Dang, Chi V

    2003-01-01

    We report a database of genes responsive to the Myc oncogenic transcription factor. The database Myc Target Gene prioritizes candidate target genes according to experimental evidence and clusters responsive genes into functional groups. We coupled the prioritization of target genes with phylogenetic sequence comparisons to predict c-Myc target binding sites, which are in turn validated by chromatin immunoprecipitation assays. This database is essential for the understanding of the genetic regulatory networks underlying the genesis of cancers. PMID:14519204

  14. Smooth Muscle Cell Genome Browser: Enabling the Identification of Novel Serum Response Factor Target Genes

    PubMed Central

    Lee, Moon Young; Park, Chanjae; Berent, Robyn M.; Park, Paul J.; Fuchs, Robert; Syn, Hannah; Chin, Albert; Townsend, Jared; Benson, Craig C.; Redelman, Doug; Shen, Tsai-wei; Park, Jong Kun; Miano, Joseph M.; Sanders, Kenton M.; Ro, Seungil

    2015-01-01

    Genome-scale expression data on the absolute numbers of gene isoforms offers essential clues in cellular functions and biological processes. Smooth muscle cells (SMCs) perform a unique contractile function through expression of specific genes controlled by serum response factor (SRF), a transcription factor that binds to DNA sites known as the CArG boxes. To identify SRF-regulated genes specifically expressed in SMCs, we isolated SMC populations from mouse small intestine and colon, obtained their transcriptomes, and constructed an interactive SMC genome and CArGome browser. To our knowledge, this is the first online resource that provides a comprehensive library of all genetic transcripts expressed in primary SMCs. The browser also serves as the first genome-wide map of SRF binding sites. The browser analysis revealed novel SMC-specific transcriptional variants and SRF target genes, which provided new and unique insights into the cellular and biological functions of the cells in gastrointestinal (GI) physiology. The SRF target genes in SMCs, which were discovered in silico, were confirmed by proteomic analysis of SMC-specific Srf knockout mice. Our genome browser offers a new perspective into the alternative expression of genes in the context of SRF binding sites in SMCs and provides a valuable reference for future functional studies. PMID:26241044

  15. MEF2 Transcription Factors Regulate Distinct Gene Programs in Mammalian Skeletal Muscle Differentiation*

    PubMed Central

    Estrella, Nelsa L.; Desjardins, Cody A.; Nocco, Sarah E.; Clark, Amanda L.; Maksimenko, Yevgeniy; Naya, Francisco J.

    2015-01-01

    Skeletal muscle differentiation requires precisely coordinated transcriptional regulation of diverse gene programs that ultimately give rise to the specialized properties of this cell type. In Drosophila, this process is controlled, in part, by MEF2, the sole member of an evolutionarily conserved transcription factor family. By contrast, vertebrate MEF2 is encoded by four distinct genes, Mef2a, -b, -c, and -d, making it far more challenging to link this transcription factor to the regulation of specific muscle gene programs. Here, we have taken the first step in molecularly dissecting vertebrate MEF2 transcriptional function in skeletal muscle differentiation by depleting individual MEF2 proteins in myoblasts. Whereas MEF2A is absolutely required for proper myoblast differentiation, MEF2B, -C, and -D were found to be dispensable for this process. Furthermore, despite the extensive redundancy, we show that mammalian MEF2 proteins regulate a significant subset of nonoverlapping gene programs. These results suggest that individual MEF2 family members are able to recognize specific targets among the entire cohort of MEF2-regulated genes in the muscle genome. These findings provide opportunities to modulate the activity of MEF2 isoforms and their respective gene programs in skeletal muscle homeostasis and disease. PMID:25416778

  16. Decoupling of evolutionary changes in transcription factor binding and gene expression in mammals

    PubMed Central

    Schmitt, Bianca M.; Stefflova, Klara

    2015-01-01

    To understand the evolutionary dynamics between transcription factor (TF) binding and gene expression in mammals, we compared transcriptional output and the binding intensities for three tissue-specific TFs in livers from four closely related mouse species. For each transcription factor, TF-dependent genes and the TF binding sites most likely to influence mRNA expression were identified by comparing mRNA expression levels between wild-type and TF knockout mice. Independent evolution was observed genome-wide between the rate of change in TF binding and the rate of change in mRNA expression across taxa, with the exception of a small number of TF-dependent genes. We also found that binding intensities are preferentially conserved near genes whose expression is dependent on the TF, and the conservation is shared among binding peaks in close proximity to each other near the TSS. Expression of TF-dependent genes typically showed an increased sensitivity to changes in binding levels as measured by mRNA abundance. Taken together, these results highlight a significant tolerance to evolutionary changes in TF binding intensity in mammalian transcriptional networks and suggest that some TF-dependent genes may be largely regulated by a single TF across evolution. PMID:25394363

  17. Expression of cyr61, a growth factor-inducible immediate-early gene.

    PubMed Central

    O'Brien, T P; Yang, G P; Sanders, L; Lau, L F

    1990-01-01

    A set of immediate-early genes that are rapidly activated by serum or purified platelet-derived growth factor in mouse 3T3 fibroblasts has been previously identified. Among these genes, several are related to known or putative transcription factors and growth factors, supporting the notion that some of these genes encode regulatory molecules important to cell growth. We show here that a member of this set of genes, cyr61 (originally identified by its cDNA 3CH61), encodes a 379-amino-acid polypeptide rich in cysteine residues. cyr61 can be induced through protein kinase C-dependent and -independent pathways. Unlike many immediate-early genes that are transiently expressed, the cyr61 mRNA is accumulated from the G0/G1 transition through mid-G1. This expression pattern is due to persistent transcription, while the mRNA is rapidly turned over during the G0/G1 transition and in mid-G1 at the same rate. In logarithmically growing cells, the cyr61 mRNA level is constant throughout the cell cycle. Cyr61 contains an N-terminal secretory signal sequence; however, it is not detected in the culture medium by immunoprecipitation. Cyr61 is synthesized maximally at 1 to 2 h after serum stimulation and has a short half-life within the cell. Images PMID:2355916

  18. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    PubMed

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases. PMID:26699507

  19. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor

    PubMed Central

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light–oxygen–voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na+-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na+ currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases. PMID:26699507

  20. A Histologically Distinctive Interstitial Pneumonia Induced by Overexpression of the Interleukin 6, Transforming Growth Factor β1, or Platelet-Derived Growth Factor B Gene

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu

    1995-10-01

    Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

  1. Trypanosoma cruzi-induced host immune system dysfunction: a rationale for parasite immunosuppressive factor(s) encoding gene targeting

    PubMed Central

    2001-01-01

    An intense suppression of T cell proliferation to mitogens and to antigens is observed in a large number of parasitic infections. The impairment of T cell proliferation also occurred during the acute phase of Chagas' disease, caused by the intracellular protozoan parasite Trypanosoma cruzi. A wealth of evidence has accumulated that illustrates the ability of T. cruzi released molecules to influence directly a variety of diverse immunological functions. In this paper, we review the data concerning the immunoregulatory effects of T. cruzi Tc24 (a B cell activator antigen) and Tc52 (an immunosuppressive protein) released molecules on the host immune system. The gene targeting approach developed to further explore the biological function(s) of Tc52 molecule, revealed interesting unexpected functional properties. Indeed, in addition to its immunusuppressive activity a direct or indirect involvement of Tc52 gene product alone or in combination with other cellular components in T. cruzi differentiation control mechanisms have been evidenced. Moreover, targeted Tc52 replacement allowed the obtention of parasite mutants exhibiting low virulence in vitro and in vivo. Thus, the generation of a complete deficiency state of virulence factors by gene targeting should provide a means to assess the importance of these factors in the pathophysiological processes and disease progression. It is hoped that such approaches might allow rational design of tools to control T. cruzi infections. PMID:12488621

  2. Hepatic nuclear factor 3 is an accessory factor required for the stimulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids.

    PubMed

    Wang, J C; Strömstedt, P E; O'Brien, R M; Granner, D K

    1996-07-01

    Transcription of the hepatic phosphoenolpyruvate carboxykinase gene is stimulated by glucocorticoids and inhibited by insulin. The glucocorticoid response is mediated by a complex glucocorticoid response unit that consists of two glucocorticoid receptor (GR)-binding sites (GR1 and GR2) and two accessory factor-binding sites (AF1 and AF2). The complete unit is required for the full glucocorticoid response. The dominant insulin effect is mediated in part through an insulin response sequence that is coincident with the AF2 element. Members of the hepatic nuclear factor 3 (HNF3) and CCAAT enhancer binding protein (C/EBP) families bind to the AF2 element; however, there is no correlation between binding of these factors and the ability of the AF2 element to mediate an insulin response. We show here that binding of HNF3 does correlate with the stimulation of the glucocorticoid response by the AF2 element and that C/EBP is apparently not involved in this effect. This requirement for HNF3 is quite specific since the substitution of elements known to enhance the action of the GR in other promoters fails to recapitulate AF2 accessory factor activity. By contrast, an HNF3-binding site from the transthyretin gene is able to substitute for the wild type AF2 sequence and elicit a maximal glucocorticoid response. Based on current and previous observations, the glucocorticoid response unit consists of four DNA elements that bind four different proteins. These are: AF1 (hepatic nuclear factor 4/chicken ovalbumin upstream promoter transcription factor), AF2 (HNF3), GR1 (GR), and GR2 (GR). PMID:8813720

  3. Murine chromosomal location of five bHLH-Zip transcription factor genes

    SciTech Connect

    Steingrimsson, E.; Gilbert, D.J.; Copeland, N.G.; Jenkins, N.A.

    1995-07-20

    The genes for the bHLH-Zip transcription factors Tfap4, Mxi1, Tcfeb, Usf1, and Usf2 have been mapped in mouse by interspecific backcross analysis. Mxi1, Usf1, and Usf2 have been mapped previously by in situ hybridization, but their positions on the meiotic linkage map had not been determined. The other two genes have not previously been mapped in mouse. These transcription factors belong to a growing family of transcriptional regulators, some of which are known to form a complex network of interacting proteins that control cell proliferation and apoptosis. As expected, based on mapping studies of other bHLH-Zip genes, these loci were well distributed among mouse chromosomes. In addition, some of the probes used in this study detected multiple, independently segregating loci, suggesting the possible existence of additional family members or species-specific pseudogenes. 34 refs., 1 fig., 1 tab.

  4. Cowden disease: gene marker studies and measurements of epidermal growth factor.

    PubMed Central

    Carlson, H E; Burns, T W; Davenport, S L; Luger, A M; Spence, M A; Sparkes, R S; Orth, D N

    1986-01-01

    Cowden disease (CD) is a familial syndrome characterized by tumors of the skin, oral mucosa, breast, thyroid, and intestinal epithelium. Since the syndrome is inherited as an autosomal dominant, we examined a battery of gene markers in a family with CD to detect linkage between the CD gene and known marker genes. There was no positive evidence for linkage of a CD locus with any of the markers; other investigators can add to our data to confirm and extend these findings. Additionally, we measured epidermal growth factor (EGF) in body fluids from CD patients and controls to determine if elevated EGF levels might be responsible for the widespread epithelial proliferation in CD. EGF levels in saliva, serum, plasma, and urine were similar in CD patients and control subjects. Although alterations in growth factors or their receptors may play a role in CD, excess circulating EGF is not responsible for the manifestations of the syndrome. Images Fig. 2 PMID:3487976

  5. Distribution of fiber development genes and transcription factors between At and Dt subgenomes in tetraploid cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the worlds leading natural material used in the manufacture of textiles, cotton fibers are important seed trichomes derived from individual cells of the epidermal layer of the seed coat. Cotton fiber development is determined by large numbers of genes and transcription factors. However, little ...

  6. Gene-Environment Interplay in Internalizing Disorders: Consistent Findings across Six Environmental Risk Factors

    ERIC Educational Resources Information Center

    Hicks, Brian M.; Dirago, Ana C.; Iacono, William G.; McGue, Matt

    2009-01-01

    Background: Behavior genetic methods can help to elucidate gene-environment (G-E) interplay in the development of internalizing (INT) disorders (i.e., major depression and anxiety disorders). To date, however, no study has conducted a comprehensive analysis examining multiple environmental risk factors with the purpose of delineating general…

  7. CHARACTERIZATION AND GENE EXPRESSION OF BABESIA BOVIS ELONGATION FACTOR-1ALPHA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elongation factor 1 alpha (EF-1') is a constitutively expressed, abundant protein that is a key element in eukaryotic protein translation. Because of its high level of transcription, the EF-1''promoter has been utilized to drive exogenous gene expression in transfected cells. In this study, we ident...

  8. [Molecular biologic study and the factor VIII gene in hemophilia A].

    PubMed

    Bock, I; Melegh, B; Nagy, A; Losonczy, H; Csete, B; Schröder, W; Kardos, M; István, L; Jager, R; Tóth, A M; Tóth, A; Falko, H; Mózsik, G

    1996-11-17

    Results of inversion in the intron 22 region of the VIII factor gene studied by Southern blot are presented. Inversion was found in 20 of 46 patients. In 14 cases (70%) distal and in 6 cases (30%) proximal type of inversion was detected. The significance of the positive result in genetic counseling and in presymptomatic diagnosis of Haemophilia A is emphasized. PMID:9005386

  9. Multiple cis elements and GATA factors regulate a cuticle collagen gene in C. elegans

    PubMed Central

    Yin, Jianghua; Madaan, Uday; Park, Amy; Aftab, Neelum; Savage-Dunn, Cathy

    2015-01-01

    The cuticle of the nematode Caenorhabditis elegans is a specialized extracellular matrix whose major component is collagen. Cuticle collagens are encoded by a large multi-gene family consisting of more than 150 members. Cuticle collagen genes are expressed in epidermis (hypodermis) and may be stage-specific or cyclically expressed. We identified cuticle collagen genes as transcriptional targets of the DBL-1 TGF-β-related signaling pathway. These studies prompted us to investigate the cis-regulatory sequences required for transcription of one of the target genes, col-41. We generated reporter constructs that reproduce stage- and tissue-specific expression of fluorescent markers. We identify four conserved sequence elements that are required for transcription of reporters. Finally, we provide evidence that col-41 expression is controlled by a sequence element containing two GATA sites and by the epidermal GATA transcription factors ELT-1 and ELT-3. PMID:25711168

  10. Characterization of GM-CSF-inhibitory factor and Uracil DNA glycosylase encoding genes from camel pseudocowpoxvirus.

    PubMed

    Nagarajan, G; Swami, Shelesh Kumar; Dahiya, Shyam Singh; Narnaware, S D; Mehta, S C; Singh, P K; Singh, Raghvendar; Tuteja, F C; Patil, N V

    2015-06-01

    The present study describes the PCR amplification of GM-CSF-inhibitory factor (GIF) and Uracil DNA glycosylase (UDG) encoding genes of pseudocowpoxvirus (PCPV) from the Indian Dromedaries (Camelus dromedarius) infected with contagious ecthyma using the primers based on the corresponding gene sequences of human PCPV and reindeer PCPV, respectively. The length of GIF gene of PCPV obtained from camel is 795 bp and due to the addition of one cytosine residue at position 374 and one adenine residue at position 516, the open reading frame (ORF) got altered, resulting in the production of truncated polypeptide. The ORF of UDG encoding gene of camel PCPV is 696 bp encoding a polypeptide of 26.0 kDa. Comparison of amino acid sequence homologies of GIF and UDG of camel PCPV revealed that the camel PCPV is closer to ORFV and PCPV (reference stains of both human and reindeer), respectively. PMID:25816930

  11. Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis.

    PubMed

    Mara, Chloe D; Irish, Vivian F

    2008-06-01

    Floral organogenesis is dependent on the combinatorial action of MADS-box transcription factors, which in turn control the expression of suites of genes required for growth, patterning, and differentiation. In Arabidopsis (Arabidopsis thaliana), the specification of petal and stamen identity depends on the action of two MADS-box gene products, APETALA3 (AP3) and PISTILLATA (PI). In a screen for genes whose expression was altered in response to the induction of AP3 activity, we identified GNC (GATA, nitrate-inducible, carbon-metabolism-involved) as being negatively regulated by AP3 and PI. The GNC gene encodes a member of the Arabidopsis GATA transcription factor family and has been implicated in the regulation of chlorophyll biosynthesis as well as carbon and nitrogen metabolism. In addition, we found that the GNC paralog, GNL (GNC-like), is also negatively regulated by AP3 and PI. Using chromatin immunoprecipitation, we showed that promoter sequences of both GNC and GNL are bound by PI protein, suggesting a direct regulatory interaction. Analyses of single and double gnc and gnl mutants indicated that the two genes share redundant roles in promoting chlorophyll biosynthesis, suggesting that in repressing GNC and GNL, AP3/PI have roles in negatively regulating this biosynthetic pathway in flowers. In addition, coexpression analyses of genes regulated by AP3, PI, GNC, and GNL indicate a complex regulatory interplay between these transcription factors in regulating a variety of light and nutrient responsive genes. Together, these results provide new insights into the transcriptional cascades controlling the specification of floral organ identities. PMID:18417639

  12. elt-1, an embryonically expressed Caenorhabditis elegans gene homologous to the GATA transcription factor family.

    PubMed Central

    Spieth, J; Shim, Y H; Lea, K; Conrad, R; Blumenthal, T

    1991-01-01

    The short, asymmetrical DNA sequence to which the vertebrate GATA family of transcription factors binds is present in some Caenorhabditis elegans gene regulatory regions: it is required for activation of the vitellogenin genes and is also found just 5' of the TATA boxes of tra-2 and the msp genes. In vertebrates GATA-1 is specific to erythroid lineages, whereas GATA-2 and GATA-3 are present in multiple tissues. In an effort to identify the trans-acting factors that may recognize this sequence element in C. elegans, we used a degenerate oligonucleotide to clone a C. elegans homolog to this gene. We call this gene elt-1 (erythrocytelike transcription factor). It is single copy and specifies a 1.75-kb mRNA that is present predominantly, if not exclusively, in embryos. The region of elt-1 encoding two zinc fingers is remarkably similar to the DNA-binding domain of the vertebrate GATA-binding proteins. However, outside of the DNA-binding domains the amino acid sequences are quite divergent. Nevertheless, introns are located at identical or nearly identical positions in elt-1 and the mouse GATA-1 gene. In addition, elt-1 mRNA is trans-spliced to the 22-base untranslated leader, SL1. The DNA upstream of the elt-1 TATA box contains eight copies of the GATA recognition sequence within the first 300 bp, suggesting that elt-1 may be autogenously regulated. Our results suggest that the specialized role of GATA-1 in erythroid gene expression was derived after separation of the nematodes and the line that led to the vertebrates, since C. elegans lacks an erythroid lineage. Images PMID:1875944

  13. The rates and patterns of deletions in the human factor IX gene

    SciTech Connect

    Ketterling, R.P.; Vielhaber, E.L.; Lind, T.J.; Thorland, E.C.; Sommer S.S. )

    1994-02-01

    Deletions are commonly observed in genes with either segments of highly homologous sequences or excessive gene length. However, in the factor IX gene and in most genes, deletions (of [ge]21 bp) are uncommon. The authors have analyzed DNA from 290 families with hemophilia B (203 independent mutations) and have found 12 deletions >20 bp. Eleven of these are >2 kb (range >3-163 kb), and one is 1.1 kb. The junctions of the four deletions that are completely contained within the factor IX gene have been determined. A novel mutation occurred in patient HB128: the data suggest that a 26.8-kb deletion occurred between two segments of alternating purines and pyrimidines and that a 2.3-kb sense strand segment derived from the deleted region was inserted. For a sample of 203 independent mutations, the authors estimate the [open quotes]baseline[close quotes] rates of deletional mutation per base pair per generation as a function of size. The rate for large (>2 kb)I deletions is exceedingly low. For every mutational event in which a given base is at the junction of a large deletion, there are an estimated 58 microdeletions (<20 bp) and 985 single-base substitutions at that base. Analysis of the nine reported deletion junctions in the factor IX gene literature reveals that (i) five are associated with inversion, orphan sequences, or sense strand insertions; (ii) four are simple deletions that display an excess of short direct repeats at their junctions; (iii) there is no dramatic clustering of junctions within the gene; and (iv) with the exception of alternating purines and pyrimidines, deletion junctions are not preferentially associated with repetitive DNA. 58 refs., 5 figs., 5 tabs.

  14. Gene duplication of type-B ARR transcription factors systematically extends transcriptional regulatory structures in Arabidopsis

    PubMed Central

    Choi, Seung Hee; Hyeon, Do Young; Lee, ll Hwan; Park, Su Jin; Han, Seungmin; Lee, In Chul; Hwang, Daehee; Nam, Hong Gil

    2014-01-01

    Many of duplicated genes are enriched in signaling pathways. Recently, gene duplication of kinases has been shown to provide genetic buffering and functional diversification in cellular signaling. Transcription factors (TFs) are also often duplicated. However, how duplication of TFs affects their regulatory structures and functions of target genes has not been explored at the systems level. Here, we examined regulatory and functional roles of duplication of three major ARR TFs (ARR1, 10, and 12) in Arabidopsis cytokinin signaling using wild-type and single, double, and triple deletion mutants of the TFs. Comparative analysis of gene expression profiles obtained from Arabidopsis roots in wild-type and these mutants showed that duplication of ARR TFs systematically extended their transcriptional regulatory structures, leading to enhanced robustness and diversification in functions of target genes, as well as in regulation of cellular networks of target genes. Therefore, our results suggest that duplication of TFs contributes to robustness and diversification in functions of target genes by extending transcriptional regulatory structures. PMID:25425016

  15. Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening

    PubMed Central

    Zhou, Tao; Zhang, Hang; Lai, Tongfei; Qin, Cheng; Shi, Nongnong; Wang, Huizhong; Jin, Mingfei; Zhong, Silin; Fan, Zaifeng; Liu, Yule; Wu, Zirong; Jackson, Stephen; Giovannoni, James J.; Rolin, Dominique; Gallusci, Philippe; Hong, Yiguo

    2012-01-01

    Plant virus technology, in particular virus-induced gene silencing, is a widely used reverse- and forward-genetics tool in plant functional genomics. However the potential of virus technology to express genes to induce phenotypes or to complement mutants in order to understand the function of plant genes is not well documented. Here we exploit Potato virus X as a tool for virus-induced gene complementation (VIGC). Using VIGC in tomato, we demonstrated that ectopic viral expression of LeMADS-RIN, which encodes a MADS-box transcription factor (TF), resulted in functional complementation of the non-ripening rin mutant phenotype and caused fruits to ripen. Comparative gene expression analysis indicated that LeMADS-RIN up-regulated expression of the SBP-box (SQUAMOSA promoter binding protein-like) gene LeSPL-CNR, but down-regulated the expression of LeHB-1, an HD-Zip homeobox TF gene. Our data support the hypothesis that a transcriptional network may exist among key TFs in the modulation of fruit ripening in tomato. PMID:23150786

  16. Construction of a mouse model of factor VIII deficiency by gene targeting

    SciTech Connect

    Bi, L.; Lawler, A.; Gearhart, J.

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  17. Heterogeneity in lipopolysaccharide responsiveness of endothelial cells identified by gene expression profiling: role of transcription factors

    PubMed Central

    Beck, G C; Rafat, N; Brinkkoetter, P; Hanusch, C; Schulte, J; Haak, M; van Ackern, K; van der Woude, F J; Yard, B A

    2006-01-01

    Interindividual differences of endothelial cells in response to endotoxins might contribute to the diversity in clinical outcome among septic patients. The present study was conducted to test the hypothesis that endothelial cells (EC) with high and low proinflammatory potential exist and to dissect the molecular basis underlying this phenomenon. Thirty human umbilical vein endothelial cell (HUVEC) lines were stimulated for 24 h with lipopolysaccharide (LPS) and screened for interleukin (IL)-8 production. Based on IL-8 production five low and five high producers, tentatively called types I and II responders, respectively, were selected for genome-wide gene expression profiling. From the 74 genes that were modulated by LPS in all type II responders, 33 genes were not influenced in type I responders. Among the 41 genes that were increased in both responders, 17 were expressed significantly stronger in type II responders. Apart from IL-8, significant differences in the expression of proinflammatory related genes between types I and II responders were found for adhesion molecules [intercellular adhesion molecule (ICAM-1), E-selectin)], chemokines [monocyte chemoattractant protein (MCP-1), granulocyte chemotactic protein (GCP-2)], cytokines (IL-6) and the transcription factor CCAAT/enhancer binding protein-delta (C/EBP-δ). Type I responders also displayed a low response towards tumour necrosis factor (TNF)-α. In general, maximal activation of nuclear factor (NF)-κB was achieved in type I responders at higher concentrations of LPS compared to type II responders. In the present study we demonstrate that LPS-mediated gene expression differs quantitatively and qualitatively in types I and II responders. Our results suggest a pivotal role for common transcription factors as a low inflammatory response was also observed after TNF-α stimulation. Further studies are required to elucidate the relevance of these findings in terms of clinical outcome in septic patients. PMID

  18. Association of brain-derived neurotrophic factor and nerve growth factor gene polymorphisms with susceptibility to migraine

    PubMed Central

    Coskun, Salih; Varol, Sefer; Ozdemir, Hasan H; Agacayak, Elif; Aydın, Birsen; Kapan, Oktay; Camkurt, Mehmet Akif; Tunc, Saban; Cevik, Mehmet Ugur

    2016-01-01

    Migraine is one of the most common neurological diseases worldwide. Migraine pathophysiology is very complex. Genetic factors play a major role in migraine. Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), play an important role in central nervous system functioning, development, and modulation of pain. This study investigates whether polymorphisms in the BDNF and NGF genes are associated with migraine disease in a Turkish case–control population. Overall, 576 subjects were investigated (288 patients with migraine and 288 healthy controls) for the following polymorphisms: rs6265(G/A), rs8192466(C/T), rs925946(G/T), rs2049046(A/T), and rs12273363(T/C) in the BDNF gene, and rs6330(C/T), rs11466112(C/T), rs11102930(C/A), and rs4839435(G/A) in the NGF gene using 5′-exonuclease allelic discrimination assays. We found no differences in frequency of the analyzed eight polymorphisms between migraine and control groups. However, the frequency of minor A alleles of rs6265 in BDNF gene was borderline significant in the patients compared with the healthy controls (P=0.049; odds ratios [ORs] [95% confidence intervals {CIs}] =0.723 [0.523–0.999]). Moreover, when the migraine patients were divided into two subgroups, migraine with aura (MA) and migraine without aura (MO), the minor TT genotype of rs6330 in NGF was significantly higher in MA patients than in MO patients (P=0.036) or healthy controls (P=0.026), and this disappeared after correction for multiple testing. Also, the rs6330*T minor allele was more common in the MA group than in the MO group or controls (P=0.011, ORs [95% CIs] =1.626 [1.117–2.365] or P=0.007, ORs [95% CIs] =1.610 [1.140–2.274], respectively). In conclusion, this is the first clinical study to evaluate the association between BDNF and NGF polymorphisms in migraine patients compared with health controls. Our findings suggest that the NGF rs6330*T minor allele might be nominated as a risk

  19. Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression.

    PubMed

    Gutu, Andrian; Nesbit, April D; Alverson, Andrew J; Palmer, Jeffrey D; Kehoe, David M

    2013-10-01

    Light-harvesting antennae are critical for collecting energy from sunlight and providing it to photosynthetic reaction centers. Their abundance and composition are tightly regulated to maintain efficient photosynthesis in changing light conditions. Many cyanobacteria alter their light-harvesting antennae in response to changes in ambient light-color conditions through the process of chromatic acclimation. The control of green light induction (Cgi) pathway is a light-color-sensing system that controls the expression of photosynthetic genes during chromatic acclimation, and while some evidence suggests that it operates via transcription attenuation, the components of this pathway have not been identified. We provide evidence that translation initiation factor 3 (IF3), an essential component of the prokaryotic translation initiation machinery that binds the 30S subunit and blocks premature association with the 50S subunit, is part of the control of green light induction pathway. Light regulation of gene expression has not been previously described for any translation initiation factor. Surprisingly, deletion of the IF3-encoding gene infCa was not lethal in the filamentous cyanobacterium Fremyella diplosiphon, and its genome was found to contain a second, redundant, highly divergent infC gene which, when deleted, had no effect on photosynthetic gene expression. Either gene could complement an Escherichia coli infC mutant and thus both encode bona fide IF3s. Analysis of prokaryotic and eukaryotic genome databases established that multiple infC genes are present in the genomes of diverse groups of bacteria and land plants, most of which do not undergo chromatic acclimation. This suggests that IF3 may have repeatedly evolved important roles in the regulation of gene expression in both prokaryotes and eukaryotes. PMID:24048028

  20. The functional importance of telomere clustering: Global changes in gene expression result from SIR factor dispersion

    PubMed Central

    Taddei, Angela; Van Houwe, Griet; Nagai, Shigeki; Erb, Ionas; van Nimwegen, Erik; Gasser, Susan M.

    2009-01-01

    Budding yeast telomeres and cryptic mating-type loci are enriched at the nuclear envelope, forming foci that sequester silent information regulators (SIR factors), much as heterochromatic chromocenters in higher eukaryotes sequester HP1. Here we examine the impact of such subcompartments for regulating transcription genome-wide. We show that the efficiency of subtelomeric reporter gene repression depends not only on the strength of SIR factor recruitment by cis-acting elements, but also on the accumulation of SIRs in such perinuclear foci. To monitor the effects of disrupting this subnuclear compartment, we performed microarray analyses under conditions that eliminate telomere anchoring, while preserving SIR complex integrity. We found 60 genes reproducibly misregulated. Among those with increased expression, 22% were within 20 kb of a telomere, confirming that the nuclear envelope (NE) association of telomeres helps repress natural subtelomeric genes. In contrast, loci that were down-regulated were distributed over all chromosomes. Half of this ectopic repression was SIR complex dependent. We conclude that released SIR factors can promiscuously repress transcription at nontelomeric genes despite the presence of “anti-silencing” mechanisms. Bioinformatic analysis revealed that promoters bearing the PAC (RNA Polymerase A and C promoters) or Abf1 binding consenses are consistently down-regulated by mislocalization of SIR factors. Thus, the normal telomeric sequestration of SIRs both favors subtelomeric repression and prevents promiscuous effects at a distinct subset of promoters. This demonstrates that patterns of gene expression can be regulated by changing the spatial distribution of repetitive DNA sequences that bind repressive factors. PMID:19179643

  1. Nerve Growth Factor Gene Therapy Activates Neuronal Responses in Alzheimer’s Disease

    PubMed Central

    Tuszynski, Mark H.; Yang, Jennifer H.; Barba, David; U, H S.; Bakay, Roy; Pay, Mary M.; Masliah, Eliezer; Conner, James M.; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H.

    2016-01-01

    IMPORTANCE Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and lacks effective disease modifying therapies. In 2001 we initiated a clinical trial of Nerve Growth Factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in AD patients. We present post-mortem findings in 10 subjects with survival times ranging from 1 to 10 years post-treatment. OBJECTIVE To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. DESIGN, SETTING, AND PARTICIPANTS 10 patients with early AD underwent NGF gene therapy using either ex vivo or in vivo gene transfer. The brains of all eight patients in the first Phase 1 ex vivo trial and two patients in a subsequent Phase 1 in vivo trial were examined. MAIN OUTCOME MEASURES Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In two cases, NGF protein levels were measured by ELISA. RESULTS Degenerating neurons in the AD brain respond to NGF. All patients exhibited a trophic response to NGF, in the form of axonal sprouting toward the NGF source. Comparing treated and non-treated sides of the brain in three patients that underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P>0.05). Activation of cellular signaling and functional markers were present in two patients that underwent AAV2-mediated NGF gene transfer. Neurons exhibiting tau pathology as well as neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic genes with resulting activation of cell signaling. No adverse pathological effects related to NGF were observed. CONCLUSIONS AND RELEVANCE These findings indicate that

  2. Isolation of genomic DNA fragments corresponding to genes modulated in vivo by a transcription factor.

    PubMed Central

    Caubín, J; Iglesias, T; Bernal, J; Muñoz, A; Márquez, G; Barbero, J L; Zaballos, A

    1994-01-01

    A new methodology for the identification of genes modulated by transcription factors in vivo is described. Mouse genomic DNA fragments bound by the thyroid hormone receptor (T3R) were selected and amplified in vitro. Subsequent hybridisation with biotinylated cDNA allowed the selection of those DNA fragments containing binding sites for T3R that corresponded to transcribed DNA. Expression analysis of the corresponding genes showed that more than 80% are indeed modulated by thyroid hormones in vivo in the liver. Together with the presence of consensus binding sites for T3R this result suggests that the selected DNA fragments may contain T3R transcriptional regulatory elements. This method, extensive to other ligand-modulated transcription factors, might be useful to all transcription factors with slight modifications. Images PMID:7937138

  3. The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes

    PubMed Central

    McClelland, Shawn; Brennan, Gary P; Dubé, Celine; Rajpara, Seeta; Iyer, Shruti; Richichi, Cristina; Bernard, Christophe; Baram, Tallie Z

    2014-01-01

    The mechanisms generating epileptic neuronal networks following insults such as severe seizures are unknown. We have previously shown that interfering with the function of the neuron-restrictive silencer factor (NRSF/REST), an important transcription factor that influences neuronal phenotype, attenuated development of this disorder. In this study, we found that epilepsy-provoking seizures increased the low NRSF levels in mature hippocampus several fold yet surprisingly, provoked repression of only a subset (∼10%) of potential NRSF target genes. Accordingly, the repressed gene-set was rescued when NRSF binding to chromatin was blocked. Unexpectedly, genes selectively repressed by NRSF had mid-range binding frequencies to the repressor, a property that rendered them sensitive to moderate fluctuations of NRSF levels. Genes selectively regulated by NRSF during epileptogenesis coded for ion channels, receptors, and other crucial contributors to neuronal function. Thus, dynamic, selective regulation of NRSF target genes may play a role in influencing neuronal properties in pathological and physiological contexts. DOI: http://dx.doi.org/10.7554/eLife.01267.001 PMID:25117540

  4. Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco.

    PubMed

    Yao, Wenjing; Wang, Lei; Zhou, Boru; Wang, Shengji; Li, Renhua; Jiang, Tingbo

    2016-07-01

    Ethylene response factors (ERFs) belong to a large plant-specific transcription factor family, which play a significant role in plant development and stress responses. Poplar ERF76 gene, a member of ERF TF family, can be up-regulated in response to salt stress, osmotic stress, and ABA treatment. The ERF76 protein was confirmed to be targeted preferentially in the nucleus of onion cell by particle bombardment. In order to understand the functions of ERF76 gene in salt stress response, we conducted temporal and spatial expression analysis of ERF76 gene in poplar. Then the ERF76 cDNA fragment containing an ORF was cloned from di-haploid Populus simonii×P. nigra and transferred into tobacco (Nicotiana tobacum) genome by Agrobacterium-mediated leaf disc method. Under salt stress, transgenic tobacco over-expressing ERF76 gene showed a significant increase in seed germination rate, plant height, root length, and fresh weight, as well as in relative water content (RWC), superoxide dismutase (SOD) activity, peroxidase (POD) activity, and proline content, compared to control tobacco lines. In contrast, transgenic tobacco lines displayed a decrease in malondialdehyde (MDA) accumulation, relative electrical conductivity (REC) and reactive oxygen species (ROS) accumulation in response to salt stress, compared to control tobacco lines. Over all, the results indicated that ERF76 gene plays a critical role in salt tolerance in transgenic tobacco. PMID:27123829

  5. Chromosomal Organization and Sequence Diversity of Genes Encoding Lachrymatory Factor Synthase in Allium cepa L.

    PubMed

    Masamura, Noriya; McCallum, John; Khrustaleva, Ludmila; Kenel, Fernand; Pither-Joyce, Meegham; Shono, Jinji; Suzuki, Go; Mukai, Yasuhiko; Yamauchi, Naoki; Shigyo, Masayoshi

    2012-06-01

    Lachrymatory factor synthase (LFS) catalyzes the formation of lachrymatory factor, one of the most distinctive traits of bulb onion (Allium cepa L.). Therefore, we used LFS as a model for a functional gene in a huge genome, and we examined the chromosomal organization of LFS in A. cepa by multiple approaches. The first-level analysis completed the chromosomal assignment of LFS gene to chromosome 5 of A. cepa via the use of a complete set of A. fistulosum-shallot (A. cepa L. Aggregatum group) monosomic addition lines. Subsequent use of an F(2) mapping population from the interspecific cross A. cepa × A. roylei confirmed the assignment of an LFS locus to this chromosome. Sequence comparison of two BAC clones bearing LFS genes, LFS amplicons from diverse germplasm, and expressed sequences from a doubled haploid line revealed variation consistent with duplicated LFS genes. Furthermore, the BAC-FISH study using the two BAC clones as a probe showed that LFS genes are localized in the proximal region of the long arm of the chromosome. These results suggested that LFS in A. cepa is transcribed from at least two loci and that they are localized on chromosome 5. PMID:22690373

  6. Structural gene for beta-nerve growth factor not defective in familial dysautonomia.

    PubMed Central

    Breakefield, X O; Orloff, G; Castiglione, C; Coussens, L; Axelrod, F B; Ullrich, A

    1984-01-01

    The developmental loss of neurons in sympathetic, sensory, and some parasympathetic ganglia in familial dysautonomia suggests an inherited defect in the action of beta-nerve growth factor (beta-NGF). The role of this growth factor in dysautonomia has been difficult to resolve as there is no known source of authentic human beta-NGF. The availability of a cloned DNA probe for the human beta-NGF gene has allowed identification of some copies of the gene (alleles) in six affected families. Alleles differ in the length of restriction endonuclease fragments that hybridize to DNA probes for the gene. In two families, affected children did not inherit the same two alleles at the beta-NGF locus. Since this disease is transmitted in an autosomal recessive manner, affected children must share the same alleles at the locus causing the disease. This analysis excludes the beta-NGF gene region as the cause of this neurologic disease but does not eliminate other genes involved in beta-NGF action, such as those coding for processing enzymes, receptors, or other subunits of the NGF complex. Images PMID:6330750

  7. AthaMap-assisted transcription factor target gene identification in Arabidopsis thaliana.

    PubMed

    Bülow, Lorenz; Brill, Yuri; Hehl, Reinhard

    2010-01-01

    The AthaMap database generates a map of potential transcription factor binding sites (TFBS) and small RNA target sites in the Arabidopsis thaliana genome. The database contains sites for 115 different transcription factors (TFs). TFBS were identified with positional weight matrices (PWMs) or with single binding sites. With the new web tool 'Gene Identification', it is possible to identify potential target genes for selected TFs. For these analyses, the user can define a region of interest of up to 6000 bp in all annotated genes. For TFBS determined with PWMs, the search can be restricted to high-quality TFBS. The results are displayed in tables that identify the gene, position of the TFBS and, if applicable, individual score of the TFBS. In addition, data files can be downloaded that harbour positional information of TFBS of all TFs in a region between -2000 and +2000 bp relative to the transcription or translation start site. Also, data content of AthaMap was increased and the database was updated to the TAIR8 genome release. Database URL: http://www.athamap.de/gene_ident.php. PMID:21177332

  8. AthaMap-assisted transcription factor target gene identification in Arabidopsis thaliana

    PubMed Central

    Bülow, Lorenz; Brill, Yuri; Hehl, Reinhard

    2010-01-01

    The AthaMap database generates a map of potential transcription factor binding sites (TFBS) and small RNA target sites in the Arabidopsis thaliana genome. The database contains sites for 115 different transcription factors (TFs). TFBS were identified with positional weight matrices (PWMs) or with single binding sites. With the new web tool ‘Gene Identification’, it is possible to identify potential target genes for selected TFs. For these analyses, the user can define a region of interest of up to 6000 bp in all annotated genes. For TFBS determined with PWMs, the search can be restricted to high-quality TFBS. The results are displayed in tables that identify the gene, position of the TFBS and, if applicable, individual score of the TFBS. In addition, data files can be downloaded that harbour positional information of TFBS of all TFs in a region between −2000 and +2000 bp relative to the transcription or translation start site. Also, data content of AthaMap was increased and the database was updated to the TAIR8 genome release. Database URL: http://www.athamap.de/gene_ident.php PMID:21177332

  9. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    SciTech Connect

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  10. Mutations and a polymorphism in the factor VIII gene discovered by denaturing gradient gel electrophoresis

    SciTech Connect

    Kogan, S.; Gitschier, J. )

    1990-03-01

    Hemophilia A results from mutations in the gene coding for coagulation factor VIII. The authors gradient gel electrophoresis to screen for mutations in the region of the factor VIII gene coding for the first acidic domain. Amplification primers were designed employing the MELTMAP computer program to optimize the ability to detect mutations. Screening of amplified DNA from 228 unselected hemophilia A patients revealed two mutations and one polymorphism. Rescreening the same population by making heteroduplexes between amplified patient and control samples prior to electrophoresis revealed one additional mutation. The mutations include two missense and one 4-base-pair deletion, and each mutation was found in patients with severe hemophilia. The polymorphism, located adjacent to the adenine branch site in intron 7, is useful for genetic prediction in some cases where the Bcl I and Xba I polymorphisms are uninformative. These results suggest that DNA amplification and denaturing gradient gel electrophoresis should be an excellent strategy for identifying mutations and polymorphisms in defined regions of the factor VIII gene and other large genes.

  11. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.

    PubMed

    Zitnik, Marinka; Zupan, Blaž

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps. PMID:24297565

  12. Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed

    PubMed Central

    Jacob, Laurent; Gagnon-Bartsch, Johann A.; Speed, Terence P.

    2016-01-01

    When dealing with large scale gene expression studies, observations are commonly contaminated by sources of unwanted variation such as platforms or batches. Not taking this unwanted variation into account when analyzing the data can lead to spurious associations and to missing important signals. When the analysis is unsupervised, e.g. when the goal is to cluster the samples or to build a corrected version of the dataset—as opposed to the study of an observed factor of interest—taking unwanted variation into account can become a difficult task. The factors driving unwanted variation may be correlated with the unobserved factor of interest, so that correcting for the former can remove the latter if not done carefully. We show how negative control genes and replicate samples can be used to estimate unwanted variation in gene expression, and discuss how this information can be used to correct the expression data. The proposed methods are then evaluated on synthetic data and three gene expression datasets. They generally manage to remove unwanted variation without losing the signal of interest and compare favorably to state-of-the-art corrections. All proposed methods are implemented in the bioconductor package RUVnormalize. PMID:26286812

  13. Interleukin and growth factor gene variants and risk of carpal tunnel syndrome.

    PubMed

    Burger, Marilize C; de Wet, Hanli; Collins, Malcolm

    2015-06-10

    Recent research has identified DNA sequence variants within genes encoding structural components of the collagen fibril, the basic structural unit of tendons, to modify the risk of carpal tunnel syndrome (CTS). Since the expression of these previously associated genes are regulated by cytokine and growth factor signalling pathways, the aim of this study was to determine whether variants within these cell signalling pathway genes, namely interleukin 1β (IL-1β), IL-6, interleukin 6 receptor (IL-6R) and vascular endothelial growth factor A(VEGFA), are also associated with CTS. One hundred and three self-reported Coloured participants, with a history of carpal tunnel release surgery (CTS) and 149 matched control participants (CON) without any reported history of CTS symptoms were genotyped for the functional IL-1β rs16944 (-511C/T), IL-6 rs1800795 (-174G/C), IL-6R rs2228145 (C/A) and VEGFA rs699947 (-2578C/A) variants. Only the IL-6R variant was significantly associated with CTS (p=0.005, OR=0.41, 95% CI 0.22-0.75). When the previously reported associated COL5A1 and BGN variants were included in the analysis, gene-gene interactions were also shown to significantly modulate the risk of CTS. In conclusion, the AA genotype of IL-6R rs2228145 was independently associated with reduced risk of CTS in a South African Coloured population. The IL-6R variant interacted with the previously reported COL5A1 and BGN variants to modulate CTS risk. This highlights that interleukin and growth factor gene variants should also be considered, in addition to the extracellular matrix proteins, for future research in determining the aetiology of CTS. PMID:25813875

  14. Nodulation gene factors and plant response in the Rhizobium-legume symbiosis. [Nodulation

    SciTech Connect

    Long, S.R.

    1990-01-01

    Our original application aimed to identify genes outside the common nod region involved in nodulation and host range of alfalfa. This has been revised by adding other studies on nodulation gene action and removing molecular studies of gene action. Our restated goals and progress are as follows. An early goal was identification and characterization of additional nodulation genes. By means of transposon mutagenesis, mapping and marker exchange we have established 87 independent mutations in a 20kb area represented by plasmid pRmJT5. We discovered four new genes: nodP, nodD3, syrA and syrM. The sequence, start site and protein product for nodFe, nodG, and nodH were also identified. Regulation of nod FEGH was studied. nod FEGH can be induced by luteolin in the presence of noodle; nodD1; noD3 and syrM, a symbiotic regulator gene also increase transcription of nod FEGH. syrA will interact with syrM; syrM also regulates exopolysaccharide genes and is believed to be a master regulator. As part of these studies, an in vitro transcription/translation system for Rhizobium was developed. Adjacent to nodP we discussed nodQ, nodPQ occurrs in two highly consumed copies. nodQ appears by sequence analysis to be similar to initiation and elongation factors, with the highest homology in the GDP binding domain. We have also investigated the nod strain, WL131. WL131 has an insertion, ISRm3, interrupting nodG, and a nonsase mutation in nodH, nodH is responsible for the lack of nodulation. We are currently investigating supernatant factors, host range effects C by spot inoculation, glucaronidase fusion proteins, and are developing, a single root hair inoculation protocol. 7 refs., 6 figs., 1 tab.

  15. Nucleotide sequence of the gene for the b subunit of human factor XIII

    SciTech Connect

    Bottenus, R.E.; Ichinose, A.; Davie, E.W. )

    1990-12-01

    Factor XIII (M{sub r} 320 000) is a blood coagulation factor that stabilizes and strengthens the fibrin clot. It circulates in blood as a tetramer composed of two a subunits (M{sub r} 75 000 each) and two b subunits (M{sub r} 80 000 each). The b subunit consists of 641 amino acids and includes 10 tandem repeats of 60 amino acids known as GP-I structures, short consensus repeats (SCR), or sushi domains. In the present study, the human gene for the b subunit has been isolated from three different genomic libraries prepared in {lambda} phage. Fifteen independent phage with inserts coding for the entire gene were isolated and characterized by restriction mapping, Southern blotting, and DNA sequencing. The gene was found to be 28 kilobases in length and consisted of 12 exons (I-XII) separated by 11 intervening sequences. The leader sequence was encoded by exon I, while the carbonyl-terminal region of the protein was encoded by exon XII. Exons II-XI each coded for a single sushi domain, suggesting that the gene evolved through exon shuffling and duplication. The 12 exons in the gene ranged in size from 64 to 222 base pairs, while the introns ranged in size from 87 to 9970 nucleotides and made up 92{percent} of the gene. One nucleotide change was found in the coding region of the gene when its sequence was compared to that of the cDNA. This difference, however, did not result in a change in the amino acid sequence of the protein.

  16. Global Gene Regulation by Fusarium Transcription Factors Tri6 and Tri10 Reveals Adaptations for Toxin Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes are isoprenoid mycotoxins and harmful contaminants of wheat infected with the filamentous fungus Fusarium graminearum. The expression of some fungal genes for trichothecene biosynthesis (Tri genes) are known to be under control of transcription factors encoded by the genes Tri6 and Tr...

  17. Identification and Expression of the Genes Encoding a Reactivating Factor for Adenosylcobalamin-Dependent Glycerol Dehydratase

    PubMed Central

    Tobimatsu, Takamasa; Kajiura, Hideki; Yunoki, Michio; Azuma, Muneaki; Toraya, Tetsuo

    1999-01-01

    Adenosylcobalamin-dependent glycerol dehydratase undergoes inactivation by glycerol, the physiological substrate, during catalysis. In permeabilized cells of Klebsiella pneumoniae, the inactivated enzyme is reactivated in the presence of ATP, Mg2+, and adenosylcobalamin. We identified the two open reading frames as the genes for a reactivating factor for glycerol dehydratase and designated them gdrA and gdrB. The reactivation of the inactivated glycerol dehydratase by the gene products was confirmed in permeabilized recombinant Escherichia coli cells coexpressing GdrA and GdrB proteins with glycerol dehydratase. PMID:10383983

  18. Localization of the gene for the ciliary neutrotrophic factor receptor (CNTFR) to human chromosome 9

    SciTech Connect

    Donaldson, D.H.; Jones, C.; Patterson, D. Univ. of Colorado Health Science Center, Denver, CO ); Britt, D.E.; Jackson, C.L. )

    1993-09-01

    Ciliary neurotrophic factor (CNTF) has recently been found to be important for the survival of motor neurons and has shown activity in animal models of amyotrophic lateral sclerosis (ALS). CNTF therefore holds promise as a treatment for ALS, and it and its receptor (CNTFR) are candidates for a gene involved in familial ALS. The CNTFR gene was mapped to chromosome 9 by PCR on a panel of human/CHO somatic cell hybrids and localized to 9p13 by PCR on a panel of radiation hybrids. 18 ref., 1 fig., 2 tabs.

  19. Pleiohomeotic Interacts with the Core Transcription Elongation Factor Spt5 to Regulate Gene Expression in Drosophila

    PubMed Central

    Jennings, Barbara H.

    2013-01-01

    The early elongation checkpoint regulated by Positive Transcription Elongation Factor b (P-TEFb) is a critical control point for the expression of many genes. Spt5 interacts directly with RNA polymerase II and has an essential role in establishing this checkpoint, and also for further transcript elongation. Here we demonstrate that Drosophila Spt5 interacts both physically and genetically with the Polycomb Group (PcG) protein Pleiohomeotic (Pho), and the majority of Pho binding sites overlap with Spt5 binding sites across the genome in S2 cells. Our results indicate that Pho can interact with Spt5 to regulate transcription elongation in a gene specific manner. PMID:23894613

  20. Divergence among Genes Encoding the Elongation Factor Tu of Yersinia Species▿

    PubMed Central

    Isabel, Sandra; Leblanc, Éric; Boissinot, Maurice; Boudreau, Dominique K.; Grondin, Myrian; Picard, François J.; Martel, Eric A.; Parham, Nicholas J.; Chain, Patrick S. G.; Bader, Douglas E.; Mulvey, Michael R.; Bryden, Louis; Roy, Paul H.; Ouellette, Marc; Bergeron, Michel G.

    2008-01-01

    Elongation factor Tu (EF-Tu), encoded by tuf genes, carries aminoacyl-tRNA to the ribosome during protein synthesis. Duplicated tuf genes (tufA and tufB), which are commonly found in enterobacterial species, usually coevolve via gene conversion and are very similar to one another. However, sequence analysis of tuf genes in our laboratory has revealed highly divergent copies in 72 strains spanning the genus Yersinia (representing 12 Yersinia species). The levels of intragenomic divergence between tufA and tufB sequences ranged from 8.3 to 16.2% for the genus Yersinia, which is significantly greater than the 0.0 to 3.6% divergence observed for other enterobacterial genera. We further explored tuf gene evolution in Yersinia and other Enterobacteriaceae by performing directed sequencing and phylogenetic analyses. Phylogenetic trees constructed using concatenated tufA and tufB sequences revealed a monophyletic genus Yersinia in the family Enterobacteriaceae. Moreover, Yersinia strains form clades within the genus that mostly correlate with their phenotypic and genetic classifications. These genetic analyses revealed an unusual divergence between Yersinia tufA and tufB sequences, a feature unique among sequenced Enterobacteriaceae and indicative of a genus-wide loss of gene conversion. Furthermore, they provided valuable phylogenetic information for possible reclassification and identification of Yersinia species. PMID:18790860

  1. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    SciTech Connect

    Kanbe, Takamasa |; Murai, Rie; Mukoyama, Tomoyuki; Murawaki, Yoshiyuki |; Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro; Harada, Ken-ichi; Yashima, Kazuo; Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Kawasaki, Hironaka; Murawaki, Yoshikazu; Shiota, Goshi . E-mail: gshiota@grape.med.tottori-u.ac.jp

    2006-07-14

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SR{alpha} promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes.

  2. The Future of Hemophilia Treatment: Longer-Acting Factor Concentrates versus Gene Therapy.

    PubMed

    Giangrande, Paul

    2016-07-01

    Gene therapy is the only novel technology that currently offers the prospect of a lasting cure for hemophilia and freedom from the burden of repeated injections. Recent data from a handful of patients who have undergone gene therapy for hemophilia B are very encouraging with a sustained factor IX (FIX) level of 0.05 IU/mL maintained for over 4 years. While this level is above the current usual target trough levels, it falls well short of the level that patients on prophylaxis with longer-acting products can expect. Prophylaxis is also associated with high peak levels, which permits patients to maintain an active lifestyle. A major barrier to widespread adoption of gene therapy is a high seroprevalence of antibodies to adeno-associated virus (AAV) vectors in the general population. Young children would be the best candidates for gene therapy in view of much lower seroprevalence to AAV in infants. A stable level of FIX early in life would prevent the onset of joint bleeds and the development of arthropathy. The recent experience with apolipoprotein tiparvovec (Glybera; uniQure, Amsterdam, the Netherlands) indicates that gene therapy is unlikely to prove to be a cheap therapeutic option. It is also quite possible that other new technologies that do not require viral vectors (such as stem cell therapy) may overtake gene therapy during development and make it redundant. PMID:27148842

  3. Multiple transcription factor binding sites predict AID targeting in non-immunoglobulin genes

    PubMed Central

    Duke, Jamie L.; Liu, Man; Yaari, Gur; Khalil, Ashraf M.; Tomayko, Mary M.; Shlomchik, Mark J.; Schatz, David G.; Kleinstein, Steven H.

    2013-01-01

    Aberrant targeting of the enzyme Activation Induced Cytidine Deaminase (AID) results in the accumulation of somatic mutations in approximately 25% of expressed genes in germinal center B cells. Observations in Ung−/− Msh2−/− mice suggest that many other genes efficiently repair AID-induced lesions, so that up to 45% of genes may actually be targeted by AID. It is important to understand the mechanisms that recruit AID to certain genes, as this mis-targeting represents an important risk for genome instability. We hypothesize that several mechanisms will combine to target AID to each locus. In order to resolve which mechanisms affect AID targeting, we analyze 7.3Mb of sequence data, along with the regulatory context, from 83 genes in Ung−/− Msh2−/− mice to identify common properties of AID targets. This analysis identifies the involvement of three transcription factor binding sites (E-box motifs, along with YY1 and C/EBP-beta binding sites) that may work together to recruit AID. Based on previous knowledge and these newly discovered features, a classification tree model was built to predict genome-wide AID targeting. Using this predictive model we were able to identify a set of 101 high-interest genes that are likely targets of AID. PMID:23514741

  4. Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF

    SciTech Connect

    Suyari, Osamu; Ida, Hiroyuki; Yoshioka, Yasuhide; Kato, Yasuko; Hashimoto, Reina; Yamaguchi, Masamitsu

    2009-05-01

    The Mes4 gene has been identified as one of the maternal Dorsal target genes in Drosophila. In the present study, we found a DNA replication-related element (DRE, 5'-TATCGATA) in the Mes4 promoter recognized by the DRE-binding factor (DREF). Luciferase transient expression assays in S2 cells using Mes4 promoter-luciferase fusion plasmids revealed that the DRE sequence is essential for Mes4 promoter activity. Requirement of DRE for Mes4 promoter activity was further confirmed by anti-{beta}-galactosidase antibody-staining of various tissues from transgenic flies carrying Mes4 promoter-lacZ fusion genes. Furthermore, wild type Mes4 promoter activity was decreased by 40% in DREF-depleted S2 cells. These results indicate that DREF positively regulates Mes4 gene expression. Band mobility shift analyses using Kc cell nuclear extracts further indicated that the DRE sequence in the Mes4 promoter is especially important for binding to DREF. Moreover, specific binding of DREF to the involved genomic region could be demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. These results, taken together, indicate that the DRE/DREF system activates transcription of the Mes4 gene. In addition, knockdown of the Mes4 gene in wing imaginal discs using the GAL4-UAS system caused an atrophied wing phenotype, suggesting that Mes4 is required for wing morphogenesis.

  5. Promoter region of the human platelet-derived growth factor A-chain gene

    SciTech Connect

    Takimoto, Yasuo; Wang, Zhao Yi; Kobler, K.; Deuel, T.F. )

    1991-03-01

    The platelet-derived growth factor (PDGF) A- and B-chain genes are widely expressed in mammalian tissues and their homodimeric gene products appear to regulate the autocrine growth of both normal and transformed cells. In this study, we analyzed the 5{prime} flanking sequences of the human PDGF A-chain gene to seek elements important to regulating its transcription. The promoter reigon was exceptionally G + C-rich and contained a TATA box but no CAAT box. The transcription start site was identified 845 base pairs 5{prime} to the translation initiation site by S1 nuclease mapping and by primer extension. Both in vitro transcription and transient expression of the chloramphenicol acetyltransferase gene linked to the PDGF A-chain 5{prime} flanking sequences established that the putative promoter region was active, and RNase H mapping established that the three characteristic mRNAs used the same transcription start site, which was used in normal endothelial cells and in two human tumor cell lines that express high levels of A-chain transcripts. The results extablished an exceptionally G + C-rich promoter region and a single transcription start site active for each of the three mRNAs of the PDGF A-chain gene. DNA sites of potential importance in mediating the activation of the PDGF A-chain gene in normal cells and in transformed cell lines expressing high levels of PDGF A-chain were identified.

  6. IL8 gene as modifier of cystic fibrosis: unraveling the factors which influence clinical variability.

    PubMed

    Furlan, Larissa Lazzarini; Marson, Fernando Augusto Lima; Ribeiro, José Dirceu; Bertuzzo, Carmen Sílvia; Salomão Junior, João Batista; Souza, Dorotéia Rossi Silva

    2016-08-01

    The severity of cystic fibrosis (CF) is associated with classes of mutations in the CFTR gene (cystic fibrosis transmembrane regulator), physical environment and modifier genes interaction. The IL8 gene (interleukin 8), according to its respective polymorphisms, influences inflammatory responses. This study analyzed IL8 gene polymorphisms (rs4073, rs2227306 and rs2227307), by means of PCR/RFLP, and their association with pulmonary function markers and clinical severity scores in 186 patients with CF, considering the CFTR genotype. There was an association between rs2227307 and precocity of the disease. The severity of lung disease was associated with the following markers: transcutaneous arterial hemoglobin oxygen saturation (SaO2) (regardless of CFTR genotype, for the polymorphisms rs4073, rs2227306 and rs2227307); mucoid Pseudomonas aeruginosa (regardless of CFTR genotype, for the polymorphisms rs2227306 and rs2227307). Pulmonary function markers (SaO2 and spirometric variables) and clinical severity scores were also associated with IL8 gene polymorphisms. This study identified the IL8 gene, represented by rs4073 and rs2227306 polymorphisms, and particularly the rs2227307 polymorphism, as potentiating factors for the degree of variability in the severity of CF, especially in pulmonary clinical manifestation correlated with increased morbidity and mortality. PMID:27209008

  7. Structure, sequence, and chromosomal location of the gene for USF2 transcription factors in mouse.

    PubMed

    Henrion, A A; Martinez, A; Mattei, M G; Kahn, A; Raymondjean, M

    1995-01-01

    The ubiquitously expressed upstream stimulatory factor (USF) involved in the transcription of a wide variety of cellular genes is defined as dimers of c-myc-related proteins, composed of a basic helix-loop-helix/leucine zipper region. The USF family consists of different members that split into two groups: MLTF or USF1 and USF2 or FIP. We present here evidence that USF1 and USF2 are distinct closely related genes in human, rat, and mouse. Based on the recent cloning of rat and human new cDNAs, we have isolated genomic clones encompassing the murine USF2 gene, which consists of at least 10 exons spanning a minimum of 10 kb of genomic DNA. Unexpectedly, the organization of USF2 appears very split up by introns (0.08 to over 6 kb in size), compared to the myc gene structure. The entire gene (but the larger intron) and 1.6 kb of the 5' flanking region were sequenced. This 5' flanking region is GC-rich, contains several putative transcription binding sites, and has no apparent TATA box. Gene mapping of murine USF2 and USF1 has been determined by in situ hybridization, indicating the localization of USF2 on chromosome 7 and of USF1 on chromosomes 1 and 11. PMID:7774954

  8. Analysis of mutations in the entire coding sequence of the factor VIII gene

    SciTech Connect

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M.

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  9. Effect of Growth Factors on the Proliferation and Gene Expression of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Liu, Shaohui; Kam, Wendy R.; Ding, Juan; Hatton, Mark P.; Sullivan, David A.

    2013-01-01

    Purpose. We hypothesize that growth factors, including epidermal growth factor (EGF) and bovine pituitary extract (BPE), induce proliferation, but not differentiation (e.g., lipid accumulation), of human meibomian gland epithelial cells. We also hypothesize that these actions involve a significant upregulation of genes linked to cell cycle processes, and a significant downregulation of genes associated with differentiation. Our objective was to test these hypotheses. Methods. Immortalized human meibomian gland and conjunctival epithelial cells were cultured for varying time periods in the presence or absence of EGF, BPE, EGF + BPE, or serum, followed by cell counting, neutral lipid staining, or RNA isolation for molecular biological procedures. Results. Our studies show that growth factors stimulate a significant, time-dependent proliferation of human meibomian gland epithelial cells. These effects are associated with a significant upregulation of genes linked to cell cycle, DNA replication, ribosomes, and translation, and a significant decrease in those related to cell differentiation, tissue development, lipid metabolic processes, and peroxisome proliferator-activated receptor signaling. Serum-induced differentiation, but not growth factor-related proliferation, elicits a pronounced lipid accumulation in human meibomian gland epithelial cells. This lipogenic response is unique, and is not duplicated by human conjunctival epithelial cells. Conclusions. Our results demonstrate that EGF and BPE stimulate human meibomian gland epithelial cells to proliferate. Further, our findings show that action is associated with an upregulation of cell cycle and translation ontologies, and a downregulation of genetic pathways linked to differentiation and lipid biosynthesis. PMID:23493293

  10. Bacterial α2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome?

    PubMed Central

    Budd, Aidan; Blandin, Stephanie; Levashina, Elena A; Gibson, Toby J

    2004-01-01

    Background Invasive bacteria are known to have captured and adapted eukaryotic host genes. They also readily acquire colonizing genes from other bacteria by horizontal gene transfer. Closely related species such as Helicobacter pylori and Helicobacter hepaticus, which exploit different host tissues, share almost none of their colonization genes. The protease inhibitor α2-macroglobulin provides a major metazoan defense against invasive bacteria, trapping attacking proteases required by parasites for successful invasion. Results Database searches with metazoan α2-macroglobulin sequences revealed homologous sequences in bacterial proteomes. The bacterial α2-macroglobulin phylogenetic distribution is patchy and violates the vertical descent model. Bacterial α2-macroglobulin genes are found in diverse clades, including purple bacteria (proteobacteria), fusobacteria, spirochetes, bacteroidetes, deinococcids, cyanobacteria, planctomycetes and thermotogae. Most bacterial species with bacterial α2-macroglobulin genes exploit higher eukaryotes (multicellular plants and animals) as hosts. Both pathogenically invasive and saprophytically colonizing species possess bacterial α2-macroglobulins, indicating that bacterial α2-macroglobulin is a colonization rather than a virulence factor. Conclusions Metazoan α2-macroglobulins inhibit proteases of pathogens. The bacterial homologs may function in reverse to block host antimicrobial defenses. α2-macroglobulin was probably acquired one or more times from metazoan hosts and has then spread widely through other colonizing bacterial species by more than 10 independent horizontal gene transfers. yfhM-like bacterial α2-macroglobulin genes are often found tightly linked with pbpC, encoding an atypical peptidoglycan transglycosylase, PBP1C, that does not function in vegetative peptidoglycan synthesis. We suggest that YfhM and PBP1C are coupled together as a periplasmic defense and repair system. Bacterial α2-macroglobulins might

  11. Effect of Plant and Environmental Factors on ALS-resistant Gene Transfer from ClearfieldTM Rice to Red Rice.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Imazethapyr-resistant gene from ClearfieldTM (CL) rice varieties transfers through pollen flow to red rice (Oryza sativa L.), a noxious weed in rice production in southern states. Factors which affect gene transfer rate include, but are not limited to, plant and environmental factors. Thus, we aimed...

  12. Chicken ovalbumin upstream promoter transcription factors act as auxiliary cofactors for hepatocyte nuclear factor 4 and enhance hepatic gene expression.

    PubMed Central

    Ktistaki, E; Talianidis, I

    1997-01-01

    Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) strongly inhibit transcriptional activation mediated by nuclear hormone receptors, including hepatocyte nuclear factor 4 (HNF-4). COUP-TFs repress HNF-4-dependent gene expression by competition with HNF-4 for common binding sites found in several regulatory regions. Here we show that promoters, such as the HNF-1 promoter, which are recognized by HNF-4 but not by COUP-TFs are activated by COUP-TFI and COUP-TFII in conjunction with HNF-4 more than 100-fold above basal levels, as opposed to about 8-fold activation by HNF-4 alone. This enhancement was strictly dependent on an intact HNF-4 E domain. In vitro and in vivo evidence suggests that COUP-TFs enhance HNF-4 activity by a mechanism that involves their physical interaction with the amino acid 227 to 271 region of HNF-4. Our results indicate that in certain promoters, COUP-TFs act as auxiliary cofactors for HNF-4, orienting the HNF-4 activation domain in a more efficient configuration to achieve enhanced transcriptional activity. These findings provide new insights into the regulatory functions of COUP-TFs, suggesting their involvement in the initial activation and subsequent high-level expression of hepatic regulators, as well as in the positive and negative modulation of downstream target genes. PMID:9111350

  13. Chicken ovalbumin upstream promoter transcription factors act as auxiliary cofactors for hepatocyte nuclear factor 4 and enhance hepatic gene expression.

    PubMed

    Ktistaki, E; Talianidis, I

    1997-05-01

    Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) strongly inhibit transcriptional activation mediated by nuclear hormone receptors, including hepatocyte nuclear factor 4 (HNF-4). COUP-TFs repress HNF-4-dependent gene expression by competition with HNF-4 for common binding sites found in several regulatory regions. Here we show that promoters, such as the HNF-1 promoter, which are recognized by HNF-4 but not by COUP-TFs are activated by COUP-TFI and COUP-TFII in conjunction with HNF-4 more than 100-fold above basal levels, as opposed to about 8-fold activation by HNF-4 alone. This enhancement was strictly dependent on an intact HNF-4 E domain. In vitro and in vivo evidence suggests that COUP-TFs enhance HNF-4 activity by a mechanism that involves their physical interaction with the amino acid 227 to 271 region of HNF-4. Our results indicate that in certain promoters, COUP-TFs act as auxiliary cofactors for HNF-4, orienting the HNF-4 activation domain in a more efficient configuration to achieve enhanced transcriptional activity. These findings provide new insights into the regulatory functions of COUP-TFs, suggesting their involvement in the initial activation and subsequent high-level expression of hepatic regulators, as well as in the positive and negative modulation of downstream target genes. PMID:9111350

  14. Genes for the dimerization cofactor of hepatocyte nuclear factor-1[alpha] (DCOH) are on human and murine chromsomes 10

    SciTech Connect

    Milatovich, A.; Mendel, D.B.; Crabtree, G.R.; Francke, U. )

    1993-04-01

    Hepatocyte nuclear factor-1[alpha] (HNF-1[alpha]; gene symbol, TCF1) forms dimers with itself as well as with HNF-1[beta] and regulates the expression of several liver-specific genes. Recently, a dimerization cofactor of hepatocyte nuclear factor-1[alpha], called DCOH, has been identified. Here, the authors report the chromosomal localization of the genes for this cofactor to chromosomes 10 in both humans and mice by Southern blot analyses of somatic cell hybrids. 25 refs., 1 fig., 2 tabs.

  15. Differential expression of anti-angiogenic factors and guidance genes in the developing macula

    PubMed Central

    Kozulin, Peter; Natoli, Riccardo; O’Brien, Keely M. Bumsted; Madigan, Michele C.

    2009-01-01

    . Furthermore, we found significant upregulation of three anti-angiogenic factors in the macula: pigment epithelium derived factor (PEDF), natriuretic peptide precurusor B (NPPB), and collagen type IVα2. Differential expression of several members of the ephrin and semaphorin axon guidance gene families, PEDF, and NPPB was verified by QRT–PCR. Localization of PEDF and Eph-A6 mRNAs in sections of macaque retina shows expression of both genes concentrates in the ganglion cell layer (GCL) at the developing fovea, consistent with an involvement in definition of the foveal avascular area. Conclusions Because the axons of macular ganglion cells exit the retina from around 8 WG, we suggest that the axon guidance genes highly expressed at the macula at 19–20 WG are also involved in vascular patterning, along with PEDF and NPPB. Localization of both PEDF and Eph-A6 mRNAs to the GCL of the developing fovea supports this idea. It is possible that specialization of the macular vessels, including definition of the foveal avascular area, is mediated by processes that piggyback on axon guidance mechanisms in effect earlier in development. These findings may be useful to understand the vulnerability of the macula to degeneration and to develop new therapeutic strategies to inhibit neovascularization. PMID:19145251

  16. Expression of the CD4 gene requires a Myb transcription factor.

    PubMed Central

    Siu, G; Wurster, A L; Lipsick, J S; Hedrick, S M

    1992-01-01

    We have analyzed the control of developmental expression of the CD4 gene, which encodes an important recognition molecule and differentiation antigen on T cells. We have determined that the CD4 promoter alone functions at high levels in the CD4+ CD8- mature T cell but not at the early CD4+ CD8+ stage of T-cell development. In addition, the CD4 promoter functions only in T lymphocytes; thus, the stage and tissue specificity of the CD4 gene is mediated in part by its promoter. We have determined that a Myb transcription factor binds to the CD4 promoter and is critical for full promoter function. Thus, Myb plays an important role in the expression of T-cell-specific developmentally regulated genes. Images PMID:1347906

  17. Identification of the gene encoding the mitochondrial elongation factor G in mammals.

    PubMed Central

    Barker, C; Makris, A; Patriotis, C; Bear, S E; Tsichlis, P N

    1993-01-01

    Protein synthesis in cytosolic and rough endoplasmic reticulum associated ribosomes is directed by factors, many of which have been well characterized. Although these factors have been the subject of intense study, most of the corresponding factors regulating protein synthesis in the mitochondrial ribosomes remain unknown. In this report we present the cloning and initial characterization of the gene encoding the rat mitochondrial elongation factor-G (rEF-Gmt). The rat gene encoding EF-Gmt (rMef-g) maps to rat chromosome 2 and it is expressed in all tissues with highest levels in liver, thymus and brain. Its DNA sequence predicts a 752 amino acid protein exhibiting 72% homology to the yeast Saccharomyces cerevisiae mitochondrial elongation factor-G (YMEF-G), 62% and 61% homology to the Thermus thermophilus and E. coli elongation factor-G (EF-G) respectively and 52% homology to the rat elongation factor-2 (EF-2). The deduced amino acid sequence of EF-G contains characteristic motifs shared by all GTP binding proteins. Therefore, similarly to other elongation factors, the enzymatic function of EF-Gmt is predicted to depend on GTP binding and hydrolysis. EF-Gmt differs from its cytoplasmic homolog, EF-2, in that it contains an aspartic acid residue at amino acid position 621 which corresponds to the EF-2 histidine residue at position 715. Since this histidine residue, following posttranslational modification into diphthamide, appears to be the sole cellular target of diphtheria toxin and Pseudomonas aeruginosa endotoxin A, we conclude that EF-Gmt will not be inactivated by these toxins. The severe effects of these toxins on protein elongation in tissues expressing EF-Gmt suggest that EF-Gmt and EF-2 exhibit nonoverlapping functions. The cloning and characterization of the mammalian mitochondrial elongation factor G will permit us to address its role in the regulation of normal mitochondrial function and in disease states attributed to mitochondrial dysfunction. Images

  18. Expression of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development.

    PubMed

    Cesario, Jeffry M; Almaidhan, Asma A; Jeong, Juhee

    2016-03-01

    Development of the face is regulated by a large number of genes that are expressed in temporally and spatially specific patterns. While significant progress has been made on characterizing the genes that operate in the oral region of the face, those regulating development of the aboral (lateral) region remain largely unknown. Recently, we discovered that transcription factors LIM homeobox (LHX) 6 and LHX8, which are key regulators of oral development, repressed the expression of the genes encoding forkhead box transcription factors, Foxp1 and Foxp2, in the oral region. To gain insights into the potential role of the Foxp genes in region-specific development of the face, we examined their expression patterns in the first pharyngeal arch (primordium for the jaw) of mouse embryos at a high spatial and temporal resolution. Foxp1 and Foxp2 were preferentially expressed in the aboral and posterior parts of the first pharyngeal arch, including the developing temporomandibular joint. Through double immunofluorescence and double fluorescent RNA in situ hybridization, we found that Foxp1 was expressed in the progenitor cells for the muscle, bone, and connective tissue. Foxp2 was expressed in subsets of bone and connective tissue progenitors but not in the myoblasts. Neither gene was expressed in the dental mesenchyme nor in the oral half of the palatal shelf undergoing extensive growth and morphogenesis. Together, we demonstrated for the first time that Foxp1 and Foxp2 are expressed during craniofacial development. Our data suggest that the Foxp genes may regulate development of the aboral and posterior regions of the jaw. PMID:26969076

  19. Platelet-derived growth factor gene expression in human atherosclerotic plaques and normal artery wall.

    PubMed Central

    Barrett, T B; Benditt, E P

    1988-01-01

    We previously demonstrated that the B chain of platelet-derived growth factor (PDGF-B) is transcribed in human atherosclerotic plaques, indicating that production of growth factors within plaques could occur during atherogenesis. However, since atherosclerotic plaques are composed of several cell types and three of these--macrophages, endothelial cells, and smooth muscle cells--can express the PDGF genes, the cell type responsible for PDGF gene expression was not clear. In the present study we explore further the expression of PDGF-A and -B and identify transcriptionally active cell types. We assayed PDGF-A and -B mRNA levels in dissected fractions of carotid atherosclerotic plaques and normal artery and then sequentially rehybridized these blots with three cDNA probes that recognize cell type-specific markers: fms for macrophages, von Willebrand factor for endothelial cells, and smooth muscle alpha-actin for smooth muscle cells. In plaques, PDGF-A expression correlated with smooth muscle actin; PDGF-B expression correlated strongly with fms. PDGF-A expression correlated with smooth muscle actin. In normal vessel wall, PDGF-A expression was high in the media and again correlated with smooth muscle actin, whereas PDGF-B expression was high in the adventitia. Since transcripts from both PDGF genes are found in normal artery where cell turnover is very low, we suggest that PDGF gene expression does not necessarily function to produce smooth muscle cell proliferation. We propose that these genes may have an important nonmitogenic, maintenance function in normal arterial tissue and in the atherosclerotic plaque. Images PMID:3282240

  20. The Intracellular DNA Sensor IFI16 Gene Acts as Restriction Factor for Human Cytomegalovirus Replication

    PubMed Central

    Gariano, Grazia Rosaria; Dell'Oste, Valentina; Bronzini, Matteo; Gatti, Deborah; Luganini, Anna; De Andrea, Marco; Gribaudo, Giorgio; Gariglio, Marisa; Landolfo, Santo

    2012-01-01

    Human interferon (IFN)-inducible IFI16 protein, an innate immune sensor of intracellular DNA, modulates various cell functions, however, its role in regulating virus growth remains unresolved. Here, we adopt two approaches to investigate whether IFI16 exerts pro- and/or anti-viral actions. First, the IFI16 gene was silenced using specific small interfering RNAs (siRNA) in human embryo lung fibroblasts (HELF) and replication of DNA and RNA viruses evaluated. IFI16-knockdown resulted in enhanced replication of Herpesviruses, in particular, Human Cytomegalovirus (HCMV). Consistent with this, HELF transduction with a dominant negative form of IFI16 lacking the PYRIN domain (PYD) enhanced the replication of HCMV. Second, HCMV replication was compared between HELFs overexpressing either the IFI16 gene or the LacZ gene. IFI16 overexpression decreased both virus yield and viral DNA copy number. Early and late, but not immediate-early, mRNAs and proteins were strongly down-regulated, thus IFI16 may exert its antiviral effect by impairing viral DNA synthesis. Constructs with the luciferase reporter gene driven by deleted or site-specific mutated forms of the HCMV DNA polymerase (UL54) promoter demonstrated that the inverted repeat element 1 (IR-1), located between −54 and −43 relative to the transcription start site, is the target of IFI16 suppression. Indeed, electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated that suppression of the UL54 promoter is mediated by IFI16-induced blocking of Sp1-like factors. Consistent with these results, deletion of the putative Sp1 responsive element from the HCMV UL44 promoter also relieved IFI16 suppression. Together, these data implicate IFI16 as a novel restriction factor against HCMV replication and provide new insight into the physiological functions of the IFN-inducible gene IFI16 as a viral restriction factor. PMID:22291595

  1. Mutations of von Willebrand factor gene in families with von Willebrand disease in the Aland Islands

    SciTech Connect

    Zhang, Z.P.; Blombaeck, M.; Anvret, M. ); Nyman, D. )

    1993-09-01

    Patients with von Willebrand disease in four families in the Aland Islands, including the original family that was described in 1926 by the Finnish physician von Willebrand, were screened for mutations in the Swedish hot-spot' regions (exons 18, 28, 32, 43, and 45) of the von Willebrand factor gene. One cytosine deletion in exon 18 was detected in each of these families. Linkage analysis and genealogical studies suggest that the deletion present in these four families probably has an origin in common with the mutations in the Swedish patients. Apart from the deletion in exon 18, two close transitions (G [yields] A at S1263 and C [yields] T at P1266) in exon 28 on the same chromosome were identified in one individual who married into the original family and in his two children. The transitions could be due to a recombination between the von Willebrand factor gene and its pseudogene. 24 refs., 3 figs., 3 tabs.

  2. Vascular endothelial growth factor gene polymorphisms and vitreous proteome changes in diabetic retinopathy.

    PubMed

    Dyer, Kelli H; Silva, Paolo S; Sun, Jennifer K

    2013-01-01

    Ischemic retinal diseases, particularly diabetic retinopathy, continue to significantly impact vision and remain a leading cause of vision loss in working-aged adults. Identifying specific genetic risk factors for ischemic-driven pathways that increase susceptibility to developing diabetic retinopathy is a priority to allow development of accurate risk assessment algorithms, employ earlier intervention, and design novel treatment strategies to reduce the associated visual complications. Single nucleotide polymorphisms (SNPs) in the VEGF gene have been shown to influence the expression of the VEGF protein. Several studies suggest that SNPs in the VEGF gene mediate genetic predisposition to diabetic retinopathy. In addition, alterations in the vitreous proteome, including carbonic anhydrase mediated vascular permeability, have been found to be associated with sight-threatening proliferative diabetic retinopathy and macular edema. Inhibition of these factors could provide new therapeutic opportunities for the treatment of diabetic retinopathy. PMID:24138044

  3. The role of gene regulatory factors in the evolutionary history of humans.

    PubMed

    Perdomo-Sabogal, Alvaro; Kanton, Sabina; Walter, Maria Beatriz C; Nowick, Katja

    2014-12-01

    Deciphering the molecular basis of how modern human phenotypes have evolved is one of the most fascinating challenges in biology. Here, we will focus on the roles of gene regulatory factors (GRFs), in particular transcription factors (TFs) and long non-coding RNAs (lncRNAs) during human evolution. We will present examples of TFs and lncRNAs that have changed or show signs of positive selection in humans compared to chimpanzees, in modern humans compared to archaic humans, or within modern human populations. On the basis of current knowledge about the functions of these GRF genes, we speculate that they have been involved in speciation as well as in shaping phenotypes such as brain functions, skeletal morphology, and metabolic processes. PMID:25215414

  4. Induction of liver alpha-1 acid glycoprotein gene expression involves both positive and negative transcription factors.

    PubMed Central

    Lee, Y M; Tsai, W H; Lai, M Y; Chen, D S; Lee, S C

    1993-01-01

    Expression of the alpha-1 acid glycoprotein (AGP) gene is liver specific and acute phase responsive. Within the 180-bp region of the AGP promoter, at least five cis elements have been found to interact with trans-acting factors. Four of these elements (A, C, D, and E) interacted with AGP/EBP, a liver-enriched transcription factor, as shown by footprinting analysis and by an anti-AGP/EBP antibody-induced supershift in a gel retardation assay. Modification of these sites by site-directed mutagenesis coupled with transfection analysis indicated that AGP/EBP binding to all of these sites resulted in positive regulation of the promoter. Dose-response data suggest that AGP/EBP binding to these sites results in the cooperative activation of the promoter. In contrast, functional assays showed that element B is a negative regulatory element; this element is recognized by heat-stable DNA-binding factors which are found in many cells and tissues. The regulation of these binding proteins was studied in rat liver treated with lipopolysaccharide (LPS), which induced an acute-phase reaction. We found that LPS treatment resulted in a two- to threefold increase in AGP/EBP activity and a severalfold decrease in the activity of factors that bind to element B in the liver. These results indicate that expression of the AGP gene can be regulated by both positive and negative factors and that the modulation of these factors can account for the LPS induction of the AGP gene. Images PMID:8417341

  5. Sphingolipids, Transcription Factors, and Conserved Toolkit Genes: Developmental Plasticity in the Ant Cardiocondyla obscurior

    PubMed Central

    Schrader, Lukas; Simola, Daniel F.; Heinze, Jürgen; Oettler, Jan

    2015-01-01

    Developmental plasticity allows for the remarkable morphological specialization of individuals into castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste fates are typically determined by specific environmental stimuli that induce larvae to express and maintain distinct gene expression patterns. Although most eusocial species express two castes, queens and workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in ants. We sequenced and analyzed the transcriptomes of 28 individual C. obscurior larvae of known developmental trajectory, providing the first in-depth analysis of gene expression in eusocial insect larvae. Clustering and transcription factor binding site analyses revealed that different transcription factors and functionally distinct sets of genes are recruited during larval development to induce the four alternative trajectories. In particular, we found complex patterns of gene regulation pertaining to sphingolipid metabolism, a conserved molecular pathway involved in development, obesity, and aging. PMID:25725431

  6. Direct transfer of transforming growth factor beta 1 gene into arteries stimulates fibrocellular hyperplasia.

    PubMed Central

    Nabel, E G; Shum, L; Pompili, V J; Yang, Z Y; San, H; Shu, H B; Liptay, S; Gold, L; Gordon, D; Derynck, R

    1993-01-01

    The arterial wall responds to thrombosis or mechanical injury through the induction of specific gene products that increase cellular proliferation and connective tissue formation. These changes result in intimal hyperplasia that is observed in restenosis and the early phases of atherosclerosis. Transforming growth factor beta 1 (TGF-beta 1) is a secreted multi-functional protein that plays an important role in embryonal development and in repair following tissue injury. However, the function of TGF-beta 1 in vascular cell growth in vivo has not been defined. In this report, we have evaluated the role of TGF-beta 1 in the pathophysiology of intimal and medial hyperplasia by gene transfer of an expression plasmid encoding active TGF-beta 1 into porcine arteries. Expression of TGF-beta 1 in normal arteries resulted in substantial extracellular matrix production accompanied by intimal and medial hyperplasia. Increased procollagen, collagen, and proteoglycan synthesis in the neointima was demonstrated by immunohistochemistry relative to control transfected arteries. Expression of TGF-beta 1 induced a distinctly different program of gene expression and biologic response from the platelet-derived growth factor B (PDGF B) gene: procollagen synthesis induced by TGF-beta 1 was greater, and cellular proliferation was less prominent. These findings show that TGF-beta 1 differentially modulates extracellular matrix production and cellular proliferation in the arterial wall in vivo and could play a reparative role in the response to arterial injury. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8248168

  7. Rice ASR1 and ASR5 are complementary transcription factors regulating aluminium responsive genes.

    PubMed

    Arenhart, Rafael Augusto; Schunemann, Mariana; Bucker Neto, Lauro; Margis, Rogerio; Wang, Zhi-Yong; Margis-Pinheiro, Marcia

    2016-03-01

    Rice is the most tolerant staple crop to aluminium (Al) toxicity, which is a limiting stress for grain production worldwide. This Al tolerance is the result of combined mechanisms that are triggered in part by the transcription factor ASR5. ASRs are dual target proteins that participate as chaperones in the cytoplasm and as transcription factors in the nucleus. Moreover, these proteins respond to biotic and abiotic stresses, including salt, drought and Al. Rice plants with silenced ASR genes are highly sensitive to Al. ASR5, a well-characterized protein, binds to specific cis elements in Al responsive genes and regulates their expression. Because the Al sensitive phenotype found in silenced rice plants could be due to the mutual silencing of ASR1 and ASR5, we investigated the effect of the specific silencing of ASR5. Plants with artificial microRNA silencing of ASR5 present a non-transformed phenotype in response to Al because of the induction of ASR1. ASR1 has the same subcellular localization as ASR5, binds to ASR5 cis-regulatory elements, regulates ASR5 regulated genes in a non-preferential manner and might replace ASR5 under certain conditions. Our results indicate that ASR1 and ASR5 act in concert and complementarily to regulate gene expression in response to Al. PMID:26476017

  8. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    PubMed

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  9. Gene Expression in Mouse Thyrotrope Adenoma: Transcription Elongation Factor Stimulates Proliferation.

    PubMed

    Gergics, Peter; Christian, Helen C; Choo, Monica S; Ajmal, Adnan; Camper, Sally A

    2016-09-01

    Thyrotrope hyperplasia and hypertrophy are common responses to primary hypothyroidism. To understand the genetic regulation of these processes, we studied gene expression changes in the pituitaries of Cga(-/-) mice, which are deficient in the common α-subunit of TSH, LH, and FSH. These mice have thyrotrope hypertrophy and hyperplasia and develop thyrotrope adenoma. We report that cell proliferation is increased, but the expression of most stem cell markers is unchanged. The α-subunit is required for secretion of the glycoprotein hormone β-subunits, and mutants exhibit elevated expression of many genes involved in the unfolded protein response, consistent with dilation and stress of the endoplasmic reticulum. Mutants have elevated expression of transcription factors that are important in thyrotrope function, such as Gata2 and Islet 1, and those that stimulate proliferation, including Nupr1, E2f1, and Etv5. We characterized the expression and function of a novel, overexpressed gene, transcription elongation factor A (SII)-like 5 (Tceal5). Stable expression of Tceal5 in a pituitary progenitor cell line is sufficient to increase cell proliferation. Thus, Tceal5 may act as a proto-oncogene. This study provides a rich resource for comparing pituitary transcriptomes and an analysis of gene expression networks. PMID:27580811

  10. Tissue Factor Pathway Inhibitor-2 Gene Polymorphisms Associate With Coronary Atherosclerosis in Chinese Population

    PubMed Central

    Yu, Jia; Liu, Rong-Le; Luo, Xin-Ping; Shi, Hai-ming; Ma, Duan; Pan, Jun-Jie; Ni, Huan-Chun

    2015-01-01

    Abstract Tissue factor pathway inhibitor-2 (TFPI-2) may play critical roles in the pathogenesis of atherosclerosis. In this study, we aimed to investigate the association between TFPI-2 gene polymorphisms and coronary atherosclerosis. Four hundred and seven patients with coronary atherosclerosis and 306 individuals with normal coronary artery were enrolled in the present study. Nine single-nucleotide polymorphisms (SNPs) (rs3763473, rs59805398, rs60215632, rs59999573, rs59740167, rs34489123, rs4517, rs4264, and rs4271) were detected with polymerase chain reaction-direct sequencing method. Severity of coronary atherosclerosis was assessed by Gensini score. After the baseline investigation, patients with coronary atherosclerosis were followed up for incidence of cardiovascular events (CVEs). Eight SNPs were in accordance with the Hardy–Weinberg equilibrium, and 8 haplotypes were constructed based on rs59999573, rs59740167, and rs34489123 after linkage disequilibrium and haplotype analysis. Two SNPs (rs59805398 and rs34489123) and 5 haplotypes correlated with coronary atherosclerosis even after adjustment by Gensini score. At follow-up (median 53 months, range 1–60 months), 85 patients experienced CVE. However, there was no strong association between the gene polymorphisms and the occurrence of CVE. Tissue factor pathway inhibitor-2 gene polymorphisms were associated with coronary atherosclerosis in the Chinese population, suggesting that the information about TFPI-2 gene polymorphisms was useful for assessing the risk of developing coronary atherosclerosis, but there was not enough evidence showing it could predict occurrence of CVE. PMID:26496276

  11. Elongation factor Ts of Chlamydia trachomatis: structure of the gene and properties of the protein.

    PubMed

    Zhang, Y; Tao, J; Zhou, M; Meng, Q; Zhang, L; Shen, L; Klein, R; Miller, D L

    1997-08-01

    A putative structural gene cluster containing four open reading frames (ORFs) located downstream of the omp1 gene of Chlamydia trachomatis mouse pneumonitis (MoPn) was cloned and sequenced. A GenBank survey indicated that the identified cluster is similar to the rpsB-tsf-pyrH(smbA)-frr region of Escherichia coli. The second ORF was 846 bp encoding a 282-amino-acid polypeptide with a calculated M(r) 30,824. Alignment of this deduced protein sequence and E. coli elongation factor Ts (EF-Ts, product of tsf) demonstrated 34% identity and an additional 14% similarity. The putative chlamydial tsf gene was expressed in E. coli as a nonfusion protein and as a 6x His-tagged fusion protein. By SDS-PAGE analysis, the molecular weights of the nonfusion recombinant protein and a protein of chlamydial elementary bodies (EBs), which was recognized by monoclonal antibodies derived from the nonfusion recombinant protein, are 34 kDa. The purified recombinant 6x His-tagged fusion protein increased the rate of GDP exchange with both Chlamydia and E. coli elongation factor Tu (EF-Tu). These data show that the second gene of the identified cluster is tsf. Unlike EF-Ts from any other species, its activity was comparable to that of E. coli EF-Ts in exchange reaction with E. coli EF-Tu. PMID:9244380

  12. Interactions of Environmental Factors and APOA1-APOC3-APOA4-APOA5 Gene Cluster Gene Polymorphisms with Metabolic Syndrome

    PubMed Central

    Wu, Yanhua; Yu, Yaqin; Zhao, Tiancheng; Wang, Shibin; Fu, Yingli; Qi, Yue; Yang, Guang; Yao, Wenwang; Su, Yingying; Ma, Yue; Shi, Jieping; Jiang, Jing; Kou, Changgui

    2016-01-01

    Objective The present study investigated the prevalence and risk factors for Metabolic syndrome. We evaluated the association between single nucleotide polymorphisms (SNPs) in the apolipoprotein APOA1/C3/A4/A5 gene cluster and the MetS risk and analyzed the interactions of environmental factors and APOA1/C3/A4/A5 gene cluster polymorphisms with MetS. Methods A study on the prevalence and risk factors for MetS was conducted using data from a large cross-sectional survey representative of the population of Jilin Province situated in northeastern China. A total of 16,831 participations were randomly chosen by multistage stratified cluster sampling of residents aged from 18 to 79 years in all nine administrative areas of the province. Environmental factors associated with MetS were examined using univariate and multivariate logistic regression analyses based on the weighted sample data. A sub-sample of 1813 survey subjects who met the criteria for MetS patients and 2037 controls from this case-control study were used to evaluate the association between SNPs and MetS risk. Genomic DNA was extracted from peripheral blood lymphocytes, and SNP genotyping was determined by MALDI-TOF-MS. The associations between SNPs and MetS were examined using a case-control study design. The interactions of environmental factors and APOA1/C3/A4/A5 gene cluster polymorphisms with MetS were assessed using multivariate logistic regression analysis. Results The overall adjusted prevalence of MetS was 32.86% in Jilin province. The prevalence of MetS in men was 36.64%, which was significantly higher than the prevalence in women (29.66%). MetS was more common in urban areas (33.86%) than in rural areas (31.80%). The prevalence of MetS significantly increased with age (OR = 8.621, 95%CI = 6.594–11.272). Mental labor (OR = 1.098, 95%CI = 1.008–1.195), current smoking (OR = 1.259, 95%CI = 1.108–1.429), excess salt intake (OR = 1.252, 95%CI = 1.149–1.363), and a fruit and dairy intake less

  13. A pilot study on risk factors and p53 gene expression in colorectal cancer.

    PubMed

    Fredrikson, M; Axelson, O; Sun, X F; Arbman, G; Nilsson, E; Nordenskjöld, B; Sjödahl, R; Söderkvist, P

    1996-06-01

    Of 311 colorectal cancers diagnosed in 1984-86 in the county of Ostergotland, Sweden, 179 were included in a case-control study, and, of these, 70 were investigated using immunohistochemical staining for p53 gene mutations. Alcohol use as well as medication with hydralazine-containing antihypertensive drugs, but not heredity were associated with p53 staining. The study is offered to illustrate the possible value of investigating molecularly defined tumour subtypes in relation to specific risk factors. PMID:8645592

  14. Splicing factor Spf30 assists exosome-mediated gene silencing in fission yeast.

    PubMed

    Bernard, Pascal; Drogat, Julie; Dheur, Sonia; Genier, Sylvie; Javerzat, Jean-Paul

    2010-03-01

    Heterochromatin assembly in fission yeast relies on the processing of cognate noncoding RNAs by both the RNA interference and the exosome degradation pathways. Recent evidence indicates that splicing factors facilitate the cotranscriptional processing of centromeric transcripts into small interfering RNAs (siRNAs). In contrast, how the exosome contributes to heterochromatin assembly and whether it also relies upon splicing factors were unknown. We provide here evidence that fission yeast Spf30 is a splicing factor involved in the exosome pathway of heterochromatin silencing. Spf30 and Dis3, the main exosome RNase, colocalize at centromeric heterochromatin and euchromatic genes. At the centromeres, Dis3 helps recruiting Spf30, whose deficiency phenocopies the dis3-54 mutant: heterochromatin is impaired, as evidenced by reduced silencing and the accumulation of polyadenylated centromeric transcripts, but the production of siRNAs appears to be unaffected. Consistent with a direct role, Spf30 binds centromeric transcripts and locates at the centromeres in an RNA-dependent manner. We propose that Spf30, bound to nascent centromeric transcripts, perhaps with other splicing factors, assists their processing by the exosome. Splicing factor intercession may thus be a common feature of gene silencing pathways. PMID:20028739

  15. Tumor necrosis factor-alpha inhibits albumin gene expression in a murine model of cachexia.

    PubMed Central

    Brenner, D A; Buck, M; Feitelberg, S P; Chojkier, M

    1990-01-01

    The mechanisms responsible for decreased serum albumin levels in patients with cachexia-associated infection, inflammation, and cancer are unknown. Since tumor necrosis factor-alpha (TNF alpha) is elevated in cachexia-associated diseases, and chronic administration of TNF alpha induces cachexia in animal models, we assessed the regulation of albumin gene expression by TNF alpha in vivo. In this animal model of cachexia, Chinese hamster ovary cells transfected with the functional gene for human TNF alpha were inoculated into nude mice (TNF alpha mice). TNF alpha mice became cachectic and manifested decreased serum albumin levels, albumin synthesis, and albumin mRNA levels. However, even before the TNF alpha mice lost weight, their albumin mRNA steady-state levels were decreased approximately 90%, and in situ hybridization revealed a low level of albumin gene expression throughout the hepatic lobule. The mRNA levels of several other genes were unchanged. Hepatic nuclei from TNF alpha mice before the onset of weight loss were markedly less active in transcribing the albumin gene than hepatic nuclei from control mice. Therefore, TNF alpha selectively inhibits the genetic expression of albumin in this model before weight loss. Images PMID:2295699

  16. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1).

    PubMed

    Terranova, Christopher; Narla, Sridhar T; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K; Tzanakakis, Emmanuel S; Buck, Michael J; Birkaya, Barbara; Stachowiak, Michal K

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development. PMID:25923916

  17. GIP2, a Putative Transcription Factor That Regulates the Aurofusarin Biosynthetic Gene Cluster in Gibberella zeae

    PubMed Central

    Kim, Jung-Eun; Jin, Jianming; Kim, Hun; Kim, Jin-Cheol; Yun, Sung-Hwan; Lee, Yin-Won

    2006-01-01

    Gibberella zeae (anamorph: Fusarium graminearum) is an important pathogen of maize, wheat, and rice. Colonies of G. zeae produce yellow-to-tan mycelia with the white-to-carmine red margins. In this study, we focused on nine putative open reading frames (ORFs) closely linked to PKS12 and GIP1, which are required for aurofusarin biosynthesis in G. zeae. Among them is an ORF designated GIP2 (for Gibberella zeae pigment gene 2), which encodes a putative protein of 398 amino acids that carries a Zn(II)2Cys6 binuclear cluster DNA-binding domain commonly found in transcription factors of yeasts and filamentous fungi. Targeted gene deletion and complementation analyses confirmed that GIP2 is required for aurofusarin biosynthesis. Expression of GIP2 in carrot medium correlated with aurofusarin production by G. zeae and was restricted to vegetative mycelia. Inactivation of the 10 contiguous genes in the ΔGIP2 strain delineates an aurofusarin biosynthetic gene cluster. Overexpression of GIP2 in both the ΔGIP2 and the wild-type strains increases aurofusarin production and reduces mycelial growth. Thus, GIP2 is a putative positive regulator of the aurofusarin biosynthetic gene cluster, and aurofusarin production is negatively correlated with vegetative growth by G. zeae. PMID:16461721

  18. Combinations of FUT2 gene polymorphisms and environmental factors are associated with oral cancer risk.

    PubMed

    Su, Kuo-Jung; Ho, Chuan-Chen; Lin, Chiao-Wen; Chen, Mu-Kuan; Su, Shih-Chi; Yu, Yung-Luen; Yang, Shun-Fa

    2016-05-01

    In humans, fucosyltransferase-2 (FUT2) plays an important role in α1,2- linkage of fucose and participates in complex cellular processes such as fertilization, embryogenesis, and immune responses. However, little information is available concerning the FUT2 expression in tumorigenesis. The aim of this work was to investigate the combined effect of FUT2 gene polymorphisms and exposure to environmental carcinogens on the susceptibility and clinic pathological characteristics of oral cancer. Four SNPs of the FUT2 gene (rs281377, rs1047781, rs601338, and rs602662) from 1200 non-cancer controls and 700 oral squamous cell carcinoma (OSCC) patients were analyzed by real-time polymerase chain reaction (PCR). The samples were further analyzed to clarify the associations between these gene polymorphisms and the risk of OSCC, and the impact of these SNPs on the susceptibility and clinic pathological characteristics of OSCC. After adjusting for other covariant, we observed that betel quid chewing among 1255 smokers who carrying at least one C genotype (TC and CC) at rs281377 and least one T genotype (TA and TT) at rs1047781 were exhibited synergistic effects of environmental factors (betel quid and cigarette use) on the susceptibility of oral cancer. Taken together, our results support gene-environment interactions of FUT2 polymorphisms with smoking and betel quid chewing habits possibly altering oral cancer susceptibility. Furthermore, to our knowledge, this is the first study of association between FUT2 gene variants and OSCC risk. PMID:26646561

  19. Negative Regulation of DsbA-L Gene Expression by the Transcription Factor Sp1

    PubMed Central

    Fang, Qichen; Yang, Wenjing; Li, Huating; Hu, Wenxiu; Chen, Lihui; Jiang, Shan; Dong, Kun; Song, Qianqian; Wang, Chen; Chen, Shuo; Liu, Feng

    2014-01-01

    Disulfide-bond A oxidoreductase-like protein (DsbA-L) possesses beneficial effects such as promoting adiponectin multimerization and stability, increasing insulin sensitivity, and enhancing energy metabolism. The expression level of DsbA-L is negatively correlated with obesity in mice and humans, but the underlying mechanisms remain unknown. To address this question, we generated reporter gene constructs containing the promoter sequence of the mouse DsbA-L gene. Deletion analysis showed that the proximal promoter of mouse DsbA-L is located between −186 and −34 bp relative to the transcription start site. In silico analysis identified a putative Sp1 transcription factor binding site in the first intron of the DsbA-L gene. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis indicated that Sp1 bound to this intron region in vitro and in intact cells. Overexpression of Sp1 or suppressing Sp1 expression by siRNA reduced or increased DsbA-L promoter activity, respectively. The binding activity of Sp1 was gradually decreased during 3T3-L1 cell differentiation and was significantly increased in adipose tissues of obese mice. Our results identify Sp1 as an inhibitor of DsbA-L gene transcription, and the Sp1-mediated inhibition of DsbA-L gene expression may provide a mechanism underlying obesity-induced adiponectin downregulation and insulin resistance. PMID:25024375

  20. Fission Yeast CSL Transcription Factors: Mapping Their Target Genes and Biological Roles

    PubMed Central

    Převorovský, Martin; Oravcová, Martina; Tvarůžková, Jarmila; Zach, Róbert; Folk, Petr; Půta, František; Bähler, Jürg

    2015-01-01

    Background Cbf11 and Cbf12, the fission yeast CSL transcription factors, have been implicated in the regulation of cell-cycle progression, but no specific roles have been described and their target genes have been only partially mapped. Methodology/Principal Findings Using a combination of transcriptome profiling under various conditions and genome-wide analysis of CSL-DNA interactions, we identify genes regulated directly and indirectly by CSL proteins in fission yeast. We show that the expression of stress-response genes and genes that are expressed periodically during the cell cycle is deregulated upon genetic manipulation of cbf11 and/or cbf12. Accordingly, the coordination of mitosis and cytokinesis is perturbed in cells with genetically manipulated CSL protein levels, together with other specific defects in cell-cycle progression. Cbf11 activity is nutrient-dependent and Δcbf11-associated defects are mitigated by inactivation of the protein kinase A (Pka1) and stress-activated MAP kinase (Sty1p38) pathways. Furthermore, Cbf11 directly regulates a set of lipid metabolism genes and Δcbf11 cells feature a stark decrease in the number of storage lipid droplets. Conclusions/Significance Our results provide a framework for a more detailed understanding of the role of CSL proteins in the regulation of cell-cycle progression in fission yeast. PMID:26366556

  1. A characterization of grapevine of GRAS domain transcription factor gene family.

    PubMed

    Sun, Xin; Xie, Zhengqiang; Zhang, Cheng; Mu, Qian; Wu, Weimin; Wang, Baoju; Fang, Jinggui

    2016-07-01

    GRAS domain genes are a group of important plant-specific transcription factors that have been reported to be involved in plant development. In order to know the roles of GRAS genes in grapevine, a widely cultivated fruit crop, the study on grapevine GRAS (VvGRAS) was carried out, and from which, 43 were identified from 12× assemble grapevine genomic sequences. Further, the genomic structures, synteny, phylogeny, expression profiles in different tissues of these genes, and their roles in response to stress were investigated. Among the genes, two potential target genes (VvSCL15 and VvSCL22) for VvmiR171 were experimentally verified by PPM-RACE and RLM-RACE, in that not only the cleavage sites of miR171 on the target mRNA were mapped but also the cleaved fragments and their expressing patterns were detected. Transgenic Arabidopsis plants over expression VvSCL15 showed lower tolerance to drought and salt treatments. PMID:26842940

  2. Human tumor necrosis factor alpha gene regulation by virus and lipopolysaccharide.

    PubMed Central

    Goldfeld, A E; Doyle, C; Maniatis, T

    1990-01-01

    We have identified a region of the human tumor necrosis factor alpha (TNF-alpha) gene promoter that is necessary for maximal constitutive, virus-induced, and lipopolysaccharide (LPS)-induced transcription. This region contains three sites that match an NF-kappa B binding-site consensus sequence. We show that these three sites specifically bind NF-kappa B in vitro, yet each of these sites can be deleted from the TNF-alpha promoter with little effect on the induction of the gene by virus or LPS. Moreover, when multimers of these three sites are placed upstream from a truncated TNF-alpha promoter, or a heterologous promoter, an increase in the basal level of transcription is observed that is influenced by sequence context and cell type. However, these multimers are not sufficient for virus or LPS induction of either promoter. Thus, unlike other virus- and LPS-inducible promoters that contain NF-kappa B binding sites, these sites from the TNF-alpha promoter are neither required nor sufficient for virus or LPS induction. Comparison of the sequence requirements of virus induction of the human TNF-alpha gene in mouse L929 and P388D1 cells reveals significant differences, indicating that the sequence requirements for virus induction of the gene are cell type-specific. However, the sequences required for virus and LPS induction of the gene in a single cell type, P388D1, overlap. Images PMID:2263628

  3. Structural characterization and chromosomal location of the mouse macrophage migration inhibitory factor gene and pseudogenes

    SciTech Connect

    Bozza, M.; Gerard, C.; Kolakowski, L.F. Jr.

    1995-06-10

    Macrophage migration inhibitory factor, MIF, is a cytokine released by T-lymphocytes, macrophages, and the pituitary gland that serves to integrate peripheral and central inflammatory responses. Ubiquitous expression and developmental regulation suggest that MIF may have additional roles outside of the immune system. Here we report the structure and chromosomal location of the mouse Mif gene and the partial characterization of five Mif pseudogenes. The mouse Mif gene spans less than 0.7 kb of chromosomal DNA and is composed of three exons. A comparison between the mouse and the human genes shows a similar gene structure and common regulatory elements in both promoter regions. The mouse Mif gene maps to the middle region of chromosome 10, between Bcr and S100b, which have been mapped to human chromosomes 22q11 and 21q22.3, respectively. The entire sequence of two pseudogenes demonstrates the absence of introns, the presence of the 5{prime} untranslated region of the cDNA, a 3{prime} poly(A) tail, and the lack of sequence similarity with untranscribed regions of the gene. The five pseudogenes are highly homologous to the cDNA, but contain a variable number of mutations that would produce mutated or truncated MIF-like proteins. Phylogenetic analyses of MIF genes and pseudogenes indicate several independent genetic events that can account for multiple genomic integrations. Three of the Mif pseudogenes were also mapped by interspecific backcross to chromosomes 1, 9, and 17. These results suggest that Mif pseudogenes originated by retrotransposition. 46 refs., 5 figs., 1 tab.

  4. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe.

    PubMed

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  5. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe

    PubMed Central

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  6. The Transcription Factors Islet and Lim3 Combinatorially Regulate Ion Channel Gene Expression

    PubMed Central

    Wolfram, Verena; Southall, Tony D.; Günay, Cengiz; Prinz, Astrid A.; Brand, Andrea H.

    2014-01-01

    Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons. Analysis of targets for Islet (Isl), Lim3, Hb9, and Even-skipped (Eve) identifies both ion channel genes and genes predicted to regulate aspects of dendritic and axonal morphology. Significantly, some ion channel genes are bound by more than one TF, consistent with the possibility of combinatorial regulation. One such gene is Shaker (Sh), which encodes a voltage-dependent fast K+ channel (Kv1.1). DamID reveals that Sh is bound by both Isl and Lim3. We used body wall muscle as a test tissue because in conditions of low Ca2+, the fast K+ current is carried solely by Sh channels (unlike neurons in which a second fast K+ current, Shal, also contributes). Ectopic expression of isl, but not Lim3, is sufficient to reduce both Sh transcript and Sh current level. By contrast, coexpression of both TFs is additive, resulting in a significantly greater reduction in both Sh transcript and current compared with isl expression alone. These observations provide evidence for combinatorial activity of Isl and Lim3 in regulating ion channel gene expression. PMID:24523544

  7. A comprehensive look at transcription factor gene expression changes in colorectal adenomas

    PubMed Central

    2014-01-01

    Background Biological processes are controlled by transcription networks. Expression changes of transcription factor (TF) genes in precancerous lesions are therefore crucial events in tumorigenesis. Our aim was to obtain a comprehensive picture of these changes in colorectal adenomas. Methods Using a 3-pronged selection procedure, we analyzed transcriptomic data on 34 human tissue samples (17 adenomas and paired samples of normal mucosa, all collected with ethics committee approval and written, informed patient consent) to identify TFs with highly significant tumor-associated gene expression changes whose potential roles in colorectal tumorigenesis have been under-researched. Microarray data were subjected to stringent statistical analysis of TF expression in tumor vs. normal tissues, MetaCore-mediated identification of TF networks displaying enrichment for genes that were differentially expressed in tumors, and a novel quantitative analysis of the publications examining the TF genes’ roles in colorectal tumorigenesis. Results The 261 TF genes identified with this procedure included DACH1, which plays essential roles in the proper proliferation and differentiation of retinal and leg precursor cell populations in Drosophila melanogaster. Its possible roles in colorectal tumorigenesis are completely unknown, but it was found to be markedly overexpressed (mRNA and protein) in all colorectal adenomas and in most colorectal carcinomas. However, DACH1 expression was absent in some carcinomas, most of which were DNA mismatch-repair deficient. When networks were built using the set of TF genes identified by all three selection procedures, as well as the entire set of transcriptomic changes in adenomas, five hub genes (TGFB1, BIRC5, MYB, NR3C1, and TERT) where identified as putatively crucial components of the adenomatous transformation process. Conclusion The transcription-regulating network of colorectal adenomas (compared with that of normal colorectal mucosa) is

  8. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    SciTech Connect

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; Hill, Karen K.; Detter, John C.; Arnon, Stephen S.

    2014-05-22

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  9. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    PubMed Central

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; Hill, Karen K.; Detter, John C.; Arnon, Stephen S.

    2014-01-01

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii. PMID:24853378

  10. Allelic mutations in noncoding genomic sequences construct novel transcription factor binding sites that promote gene overexpression.

    PubMed

    Tian, Erming; Børset, Magne; Sawyer, Jeffrey R; Brede, Gaute; Våtsveen, Thea K; Hov, Håkon; Waage, Anders; Barlogie, Bart; Shaughnessy, John D; Epstein, Joshua; Sundan, Anders

    2015-11-01

    The growth and survival factor hepatocyte growth factor (HGF) is expressed at high levels in multiple myeloma (MM) cells. We report here that elevated HGF transcription in MM was traced to DNA mutations in the promoter alleles of HGF. Sequence analysis revealed a previously undiscovered single-nucleotide polymorphism (SNP) and crucial single-nucleotide variants (SNVs) in the promoters of myeloma cells that produce large amounts of HGF. The allele-specific mutations functionally reassembled wild-type sequences into the motifs that affiliate with endogenous transcription factors NFKB (nuclear factor kappa-B), MZF1 (myeloid zinc finger 1), and NRF-2 (nuclear factor erythroid 2-related factor 2). In vitro, a mutant allele that gained novel NFKB-binding sites directly responded to transcriptional signaling induced by tumor necrosis factor alpha (TNFα) to promote high levels of luciferase reporter. Given the recent discovery by genome-wide sequencing (GWS) of numerous non-coding mutations in myeloma genomes, our data provide evidence that heterogeneous SNVs in the gene regulatory regions may frequently transform wild-type alleles into novel transcription factor binding properties to aberrantly interact with dysregulated transcriptional signals in MM and other cancer cells. PMID:26220195

  11. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments. PMID:27026484

  12. An Improved Systematic Approach to Predicting Transcription Factor Target Genes Using Support Vector Machine

    PubMed Central

    Cui, Song; Youn, Eunseog; Lee, Joohyun; Maas, Stephan J.

    2014-01-01

    Biological prediction of transcription factor binding sites and their corresponding transcription factor target genes (TFTGs) makes great contribution to understanding the gene regulatory networks. However, these approaches are based on laborious and time-consuming biological experiments. Numerous computational approaches have shown great potential to circumvent laborious biological methods. However, the majority of these algorithms provide limited performances and fail to consider the structural property of the datasets. We proposed a refined systematic computational approach for predicting TFTGs. Based on previous work done on identifying auxin response factor target genes from Arabidopsis thaliana co-expression data, we adopted a novel reverse-complementary distance-sensitive n-gram profile algorithm. This algorithm converts each upstream sub-sequence into a high-dimensional vector data point and transforms the prediction task into a classification problem using support vector machine-based classifier. Our approach showed significant improvement compared to other computational methods based on the area under curve value of the receiver operating characteristic curve using 10-fold cross validation. In addition, in the light of the highly skewed structure of the dataset, we also evaluated other metrics and their associated curves, such as precision-recall curves and cost curves, which provided highly satisfactory results. PMID:24743548

  13. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema.

    PubMed

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten; Thomsen, Carsten; Juhler, Marianne; Laursen, Henning; Broholm, Helle

    2011-12-01

    Meningiomas are the second most common primary intracranial tumors in adults. Although meningiomas are mostly benign, more than 50% of patients with meningioma develop peritumoral brain edema (PTBE), which may be fatal because of increased intracranial pressure. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and angiogen. VEGF-A protein, which is identical to vascular permeability factor, is a regulator of angiogenesis. In this study, 101 patients with meningiomas, and possible co-factors to PTBE, such as meningioma subtypes and tumor location, were examined. Forty-three patients had primary, solitary, supratentorial meningiomas with PTBE. In these, correlations in PTBE, edema index, VEGF-A protein, VEGF gene expression, capillary length, and tumor water content were investigated. DNA-branched hybridization was used for measuring VEGF gene expression in tissue homogenates prepared from frozen tissue samples. The method for VEGF-A analysis resembled an ELISA assay, but was based on chemiluminescence. The edema index was positively correlated to VEGF-A protein (p = 0.014) and VEGF gene expression (p < 0.05). The capillary length in the meningiomas was positively correlated to the PTBE (p = 0.038). If VEGF is responsible for the formation of PTBE, the edema may be treated with the anti-VEGF drug Bevacizumab (Avastin), which has been shown to reduce PTBE in patients with glioblastoma multiforme. PMID:22085359

  14. Characterization of a novel Medicago sativa NAC transcription factor gene involved in response to drought stress.

    PubMed

    Wang, Yong Xin

    2013-11-01

    Relying on the regulation of transcription factors, plants resist to various abiotic and biotic stresses. NAC (NAM, ATAF1/2, CUC2) are one of the largest families of plant-specific transcription factors and known to play important roles in plant development and response to environmental stresses. A new NAC gene was cloned on the basis of 503 bp EST fragment from the SSH cDNA library of Medicago sativa. It was 1,115 bp including an 816 bp ORF and encodes 271 amino acids. A highly conserved region is located from the 7th amino acid to the 315th amino acid in its N-terminal domain. The NAC protein is subcellularly localized in the nucleus of onion epidemical cells and possible functions as a transcription factor. The relative quantitative real-time RT-PCR was performed at different stress time. The results revealed that the transcription expression of NAC gene could be induced by drought, high salinity and ABA. The transgenic Arabidopsis with NAC gene has the drought tolerance better than the wild-type. PMID:24057250

  15. From System-Wide Differential Gene Expression to Perturbed Regulatory Factors: A Combinatorial Approach

    PubMed Central

    Mahajan, Gaurang; Mande, Shekhar C.

    2015-01-01

    High-throughput experiments such as microarrays and deep sequencing provide large scale information on the pattern of gene expression, which undergoes extensive remodeling as the cell dynamically responds to varying environmental cues or has its function disrupted under pathological conditions. An important initial step in the systematic analysis and interpretation of genome-scale expression alteration involves identification of a set of perturbed transcriptional regulators whose differential activity can provide a proximate hypothesis to account for these transcriptomic changes. In the present work, we propose an unbiased and logically natural approach to transcription factor enrichment. It involves overlaying a list of experimentally determined differentially expressed genes on a background regulatory network coming from e.g. literature curation or computational motif scanning, and identifying that subset of regulators whose aggregated target set best discriminates between the altered and the unaffected genes. In other words, our methodology entails testing of all possible regulatory subnetworks, rather than just the target sets of individual regulators as is followed in most standard approaches. We have proposed an iterative search method to efficiently find such a combination, and benchmarked it on E. coli microarray and regulatory network data available in the public domain. Comparative analysis carried out on artificially generated differential expression profiles, as well as empirical factor overexpression data for M. tuberculosis, shows that our methodology provides marked improvement in accuracy of regulatory inference relative to the standard method that involves evaluating factor enrichment in an individual manner. PMID:26562430

  16. Molecular cloning and characterization of a Bombyx mori gene encoding the transcription factor Atonal.

    PubMed

    Hu, Ping; Feng, Fan; Xia, Hengchuan; Chen, Liang; Yao, Qin; Chen, Keping

    2014-01-01

    The atonal genes are an evolutionarily conserved group of genes encoding regulatory basic helix-loop-helix (bHLH) transcription factors. These transcription factors have a critical antioncogenic function in the retina, and are necessary for cell fate determination through the regulation of the cell signal pathway. In this study, the atonal gene was cloned from Bombyx mori, and the transcription factor was named BmAtonal. Sequence analysis showed that the BmAtonal protein shares extensive homology with other invertebrate Atonal proteins with the bHLH motif. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses revealed that BmAtonal was expressed in all developmental stages of B. mori and various larval tissues. The BmAtonal protein was expressed in Escherichia coli, and polyclonal antibodies were raised against the purified protein. By immunofluorescence, the BmAtonal protein was localized to both the nucleus and cytoplasm of BmN cells. After knocking out nuclear localization signals (NLS), the BmAtonal protein was only detected in the cytoplasm. In addition, using the B. mori nuclear polyhedrosis virus (BmNPV) baculovirus expression system, the recombinant BmAtonal protein was successfully expressed in the B. mori cell line BmN. This work lays the foundation for exploring the biological functions of the BmAtonal protein, such as identifying its potential binding partners and understanding the molecular control of the formation of sensory organs. PMID:24873037

  17. USP15 stabilizes the transcription factor Nrf1 in the nucleus, promoting the proteasome gene expression.

    PubMed

    Fukagai, Kousuke; Waku, Tsuyoshi; Chowdhury, A M Masudul Azad; Kubo, Kaori; Matsumoto, Mariko; Kato, Hiroki; Natsume, Tohru; Tsuruta, Fuminori; Chiba, Tomoki; Taniguchi, Hiroaki; Kobayashi, Akira

    2016-09-01

    The transcriptional factor Nrf1 (NF-E2-related factor 1) sustains protein homeostasis (proteostasis) by regulating the expression of proteasome genes. Under physiological conditions, the transcriptional activity of Nrf1 is repressed by its sequestration into the endoplasmic reticulum (ER) and furthermore by two independent ubiquitin-proteasome pathways, comprising Hrd1 and β-TrCP in the cytoplasm and nucleus, respectively. However, the molecular mechanisms underlying Nrf1 activation remain unclear. Here, we report that USP15 (Ubiquitin-Specific Protease 15) activates Nrf1 in the nucleus by stabilizing it through deubiquitination. We first identified USP15 as an Nrf1-associated factor through proteome analysis. USP15 physically interacts with Nrf1, and it markedly stabilizes Nrf1 by removing its ubiquitin moieties. USP15 activates the Nrf1-mediated expression of a proteasome gene luciferase reporter and endogenous proteasome activity. The siRNA-mediated knockdown of USP15 diminishes the Nrf1-induced proteasome gene expression in response to proteasome inhibition. These results uncover a new regulatory mechanism that USP15 activates Nrf1 against the β-TrCP inhibition to maintain proteostasis. PMID:27416755

  18. Core Binding Factor-β Knockdown Alters Ovarian Gene Expression and Function in the Mouse.

    PubMed

    Wilson, Kalin; Park, Jiyeon; Curry, Thomas E; Mishra, Birendra; Gossen, Jan; Taniuchi, Ichiro; Jo, Misung

    2016-07-01

    Core binding factor (CBF) is a heterodimeric transcription factor complex composed of a DNA-binding subunit, one of three runt-related transcription factor (RUNX) factors, and a non-DNA binding subunit, CBFβ. CBFβ is critical for DNA binding and stability of the CBF transcription factor complex. In the ovary, the LH surge increases the expression of Runx1 and Runx2 in periovulatory follicles, implicating a role for CBFs in the periovulatory process. The present study investigated the functional significance of CBFs (RUNX1/CBFβ and RUNX2/CBFβ) in the ovary by examining the ovarian phenotype of granulosa cell-specific CBFβ knockdown mice; CBFβ f/f * Cyp19 cre. The mutant female mice exhibited significant reductions in fertility, with smaller litter sizes, decreased progesterone during gestation, and fewer cumulus oocyte complexes collected after an induced superovulation. RNA sequencing and transcriptome assembly revealed altered expression of more than 200 mRNA transcripts in the granulosa cells of Cbfb knockdown mice after human chorionic gonadotropin stimulation in vitro. Among the affected transcripts are known regulators of ovulation and luteinization including Sfrp4, Sgk1, Lhcgr, Prlr, Wnt4, and Edn2 as well as many genes not yet characterized in the ovary. Cbfβ knockdown mice also exhibited decreased expression of key genes within the corpora lutea and morphological changes in the ovarian structure, including the presence of large antral follicles well into the luteal phase. Overall, these data suggest a role for CBFs as significant regulators of gene expression, ovulatory processes, and luteal development in the ovary. PMID:27176614

  19. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    PubMed Central

    2011-01-01

    Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4) showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3) were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue. PMID:21668942

  20. Expression profiling of genes regulated by Fra-1/AP-1 transcription factor during bleomycin-induced pulmonary fibrosis

    PubMed Central

    2013-01-01

    Background The Fra-1/AP-1 transcription factor regulates the expression of genes controlling various processes including migration, invasion, and survival as well as extracellular remodeling. We recently demonstrated that loss of Fra-1 leads to exacerbated bleomycin-induced pulmonary fibrosis, accompanied by enhanced expression of various inflammatory and fibrotic genes. To better understand the molecular mechanisms by which Fra-1 confers protection during bleomycin-induced lung injury, genome-wide mRNA expression profiling was performed. Results We found that Fra-1 regulates gene expression programs that include: 1) several cytokines and chemokines involved in inflammation, 2) several genes involved in the extracellular remodeling and cell adhesion, and 3) several genes involved in programmed cell death. Conclusion Loss of Fra-1 leads to the enhanced expression of genes regulating inflammation and immune responses and decreased the expression of genes involved in apoptosis, suggesting that this transcription factor distinctly modulates early pro-fibrotic cellular responses. PMID:23758685

  1. Overexpression of c-myc in diabetic mice restores altered expression of the transcription factor genes that regulate liver metabolism.

    PubMed Central

    Riu, Efren; Ferre, Tura; Mas, Alex; Hidalgo, Antonio; Franckhauser, Sylvie; Bosch, Fatima

    2002-01-01

    Overexpression of the c-Myc transcription factor in liver induces glucose uptake and utilization. Here we examined the effects of c- myc overexpression on the expression of hepatocyte-specific transcription factor genes which regulate the expression of genes controlling hepatic metabolism. At 4 months after streptozotocin (STZ) treatment, most diabetic control mice were highly hyperglycaemic and died, whereas in STZ-treated transgenic mice hyperglycaemia was markedly lower, the serum levels of beta-hydroxybutyrate, triacylglycerols and non-esterified fatty acids were normal, and they had greater viability in the absence of insulin. Furthermore, long-term STZ-treated transgenic mice showed similar glucose utilization and storage to healthy controls. This was consistent with the expression of glycolytic genes becoming normalized. In addition, restoration of gene expression of the transcription factor, sterol receptor element binding protein 1c, was observed in the livers of these transgenic mice. Further, in STZ-treated transgenic mice the expression of genes involved in the control of gluconeogenesis (phosphoenolpyruvate carbokykinase), ketogenesis (3-hydroxy-3-methylglutaryl-CoA synthase) and energy metabolism (uncoupling protein 2) had returned to normal. These findings were correlated with decreased expression of genes encoding the transcription factors hepatocyte nuclear factor 3gamma, peroxisome proliferator-activated receptor alpha and retinoid X receptor. These results indicate that c- myc overexpression may counteract diabetic changes by controlling hepatic glucose metabolism, both directly by altering the expression of metabolic genes and through the expression of key transcription factor genes. PMID:12230428

  2. A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice.

    PubMed

    Li, Jigang; Li, Xiaojuan; Guo, Lei; Lu, Feng; Feng, Xiaojie; He, Kun; Wei, Liping; Chen, Zhangliang; Qu, Li-Jia; Gu, Hongya

    2006-01-01

    MYB transcription factor genes play important roles in many developmental processes and in various defence responses of plants. Two Arabidopsis R2R3-type MYB genes, AtMYB59 and AtMYB48, were found to undergo similar alternative splicing. Both genes have four distinctively spliced transcripts that encode either MYB-related proteins or R2R3-MYB proteins. An extensive BLAST search of the GenBank database resulted in finding and cloning two rice homologues, both of which were also found to share a similar alternative splicing pattern. In a semi-quantitative study, the expression of one splice variant of AtMYB59 was found to be differentially regulated in treatments with different phytohormones and stresses. GFP fusion protein analysis revealed that both of the two predicted nuclear localization signals (NLSs) in the R3 domain are required for localizing to the nucleus. Promoter-GUS analysis in transgenic plants showed that 5'-UTR is sufficient for the translation initiation of type 3 transcripts (encoding R2R3-MYB proteins), but not for type 2 transcripts (encoding MYB-related proteins). Moreover, a new type of non-canonical intron, with the same nucleotide repeats at the 5' and 3' splice sites, was identified. Thirty-eight Arabidopsis and rice genes were found to have this type of non-canonical intron, most of which undergo alternative splicing. These data suggest that this subgroup of transcription factor genes may be involved in multiple biological processes and may be transcriptionally regulated by alternative splicing. PMID:16531467

  3. The CREB Transcription Factor Controls Transcriptional Activity of the Human RIC8B Gene.

    PubMed

    Maureira, Alejandro; Sánchez, Rodolfo; Valenzuela, Nicole; Torrejón, Marcela; Hinrichs, María V; Olate, Juan; Gutiérrez, José L

    2016-08-01

    Proper regulation of gene expression is essential for normal development, cellular growth, and differentiation. Differential expression profiles of mRNA coding for vertebrate Ric-8B during embryo and adult stages have been observed. In addition, Ric-8B is expressed in few cerebral nuclei subareas. These facts point to a dynamic control of RIC8B gene expression. In order to understand the transcriptional regulation of this gene, we searched for cis-elements in the sequence of the human RIC8B promoter region, identifying binding sites for the basic/leucine zipper (bZip) CREB transcription factor family (CRE sites) and C/EBP transcription factor family (C/EBP sites). CRE sites were found clustered near the transcription start site, while the C/EBP sites were found clustered at around 300 bp upstream the CRE sites. Here, we demonstrate the ability of CREB1 and C/EBPβ to bind their respective elements identified in the RIC8B promoter. Comparative protein-DNA interaction analyses revealed only the proximal elements as high affinity sites for CREB1 and only the distal elements as high affinity sites for C/EBPβ. Chromatin immunoprecipitation analyses, carried out using a human neuroblastoma cell line, confirmed the preferential association of CREB to the proximal region of the RIC8B promoter. By performing luciferase reporter assays, we found the CRE sites as the most relevant elements for its transcriptional activity. Taken together, these data show the existence of functional CREB and C/EBP binding sites in the human RIC8B gene promoter, a particular distribution of these sites and demonstrate a relevant role of CREB in stimulating transcriptional activity of this gene. J. Cell. Biochem. 117: 1797-1805, 2016. © 2016 Wiley Periodicals, Inc. PMID:26729411

  4. Enhanced jun gene expression is an early genomic response to transforming growth factor beta stimulation.

    PubMed Central

    Pertovaara, L; Sistonen, L; Bos, T J; Vogt, P K; Keski-Oja, J; Alitalo, K

    1989-01-01

    Transforming growth factor beta (TGF beta) is a multifunctional polypeptide that regulates proliferation, differentiation, and other functions of many cell types. The pathway of TGF beta signal transduction in cells is unknown. We report here that an early effect of TGF beta is an enhancement of the expression of two genes encoding serum- and phorbol ester tumor promoter-regulated transcription factors: the junB gene and the c-jun proto-oncogene, respectively. This stimulation was observed in human lung adenocarcinoma A549 cells which were growth inhibited by TGF beta, AKR-2B mouse embryo fibroblasts which were growth stimulated by TGF beta, and K562 human erythroleukemia cells, which were not appreciably affected in their growth by TGF beta. The increase in jun mRNA occurred with picomolar TGF beta concentrations within 1 h of TGF beta stimulation, reached a peak between 1 and 5 h in different cells, and declined gradually to base-line levels. This mRNA response was followed by a large increase in the biosynthesis of the c-jun protein (AP-1), as shown by metabolic labeling and immunoprecipitation analysis. However, differential and cell type-specific regulation appeared to determine the timing and magnitude of the response of each jun gene in a given cell. In AKR-2B and NIH 3T3 cells, only junB was induced by TGF beta, evidently in a protein synthesis-independent fashion. The junB response to TGF beta was maintained in c-Ha-ras and neu oncogene-transformed cells. Thus, one of the earliest genomic responses to TGF beta may involve nuclear signal transduction and amplification by the junB and c-jun transcription factors in concert with c-fos, which is also induced. The differential activation of the jun genes may explain some of the pleiotropic effects of TGF beta. Images PMID:2725496

  5. Improved Induction of Immune Tolerance to Factor IX by Hepatic AAV-8 Gene Transfer

    PubMed Central

    Cooper, Mario; Nayak, Sushrusha; Hoffman, Brad E.; Terhorst, Cox; Cao, Ou

    2009-01-01

    Abstract Gene therapy for hemophilia B has been shown to result in long-term expression and immune tolerance to factor IX (F.IX) after in vivo transduction of hepatocytes with adeno-associated viral (AAV-2) vectors in experimental animals. An optimized protocol was effective in several strains of mice with a factor 9 gene deletion (F9−/−). However, immune responses against F.IX were repeatedly observed in C3H/HeJ F9−/− mice. We sought to establish a gene transfer protocol that results in sustained expression without a requirement for additional manipulation of the immune system. Compared with AAV-2, AAV-8 was more efficient in transgene expression and induction of tolerance to F.IX in three different strains of wild-type mice. At equal vector doses, AAV-8 induced transgene product-specific regulatory CD4+CD25+FoxP3+ T cells at significantly higher frequency. Moreover, sustained correction of hemophilia B in C3H/HeJ F9−/− mice without antibody formation was documented in all animals treated with ≥4 × 1011 vector genomes (VG)/kg and in 80% of mice treated with 8 × 1010 VG/kg. Therefore, it is possible to develop a gene transfer protocol that reliably induces tolerance to F.IX largely independent of genetic factors. A comparison with other studies suggests that additional parameters besides plateau levels of F.IX expression contributed to the improved success rate of tolerance induction. PMID:19309290

  6. Gene amplification of the transcription factor DP1 and CTNND1 in human lung cancer.

    PubMed

    Castillo, Sandra D; Angulo, Barbara; Suarez-Gauthier, Ana; Melchor, Lorenzo; Medina, Pedro P; Sanchez-Verde, Lydia; Torres-Lanzas, Juan; Pita, Guillermo; Benitez, Javier; Sanchez-Cespedes, Montse

    2010-09-01

    The search for novel oncogenes is important because they could be the target of future specific anticancer therapies. In the present paper we report the identification of novel amplified genes in lung cancer by means of global gene expression analysis. To screen for amplicons, we aligned the gene expression data according to the position of transcripts in the human genome and searched for clusters of over-expressed genes. We found several clusters with gene over-expression, suggesting an underlying genomic amplification. FISH and microarray analysis for DNA copy number in two clusters, at chromosomes 11q12 and 13q34, confirmed the presence of amplifications spanning about 0.4 and 1 Mb for 11q12 and 13q34, respectively. Amplification at these regions each occurred at a frequency of 3%. Moreover, quantitative RT-PCR of each individual transcript within the amplicons allowed us to verify the increased in gene expression of several genes. The p120ctn and DP1 proteins, encoded by two candidate oncogenes, CTNND1 and TFDP1, at 11q12 and 13q amplicons, respectively, showed very strong immunostaining in lung tumours with gene amplification. We then focused on the 13q34 amplicon and in the TFDP1 candidate oncogene. To further determine the oncogenic properties of DP1, we searched for lung cancer cell lines carrying TFDP1 amplification. Depletion of TFDP1 expression by small interference RNA in a lung cancer cell line (HCC33) with TFDP1 amplification and protein over-expression reduced cell viability by 50%. In conclusion, we report the identification of two novel amplicons, at 13q34 and 11q12, each occurring at a frequency of 3% of non-small cell lung cancers. TFDP1, which encodes the E2F-associated transcription factor DP1 is a candidate oncogene at 13q34. The data discussed in this publication have been deposited in NCBIs Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series Accession No. GSE21168. PMID:20556744

  7. Multiple substitutions in the von Willebrand factor gene that mimic the pseudogene sequence

    SciTech Connect

    Eikenboom, J.C.; Brieet, E.; Reitsma, P.H.; Vink, T.; Sixma, J.J.

    1994-03-15

    The authors have analyzed a type IIB and a type I von Willebrand disease family for the presence of mutations in the region coding for the glycoprotein Ib binding domain of the von Willebrand factor. Since this sequence is also present in the highly homologous von Willebrand factor pseudogene, the authors have studied genomic DNA as well as cDNA, which was produced from RNA isolated from endothelial cells or platelets. In both families, they have detected multiple consecutive nucleotide substitutions in the 5{prime} end of exon 28 that result in a sequence identical to the von Willebrand factor pseudogene. These substitutions were also found in cDNA, which proves that they are present in the active gene. The occurrence of multiple adjacent substitutions that exactly reflect a part of the sequence of the von Willebrand factor pseudogene is difficult to reconcile with sequential single mutational events. They therefore hypothesize that each of these multiple substitutions arose from one recombinational event between gene and pseudogene. 34 refs., 4 figs., 2 tabs.

  8. Gene therapy with growth factors for periodontal tissue engineering–A review

    PubMed Central

    Gupta, Shipra; Mahendra, Aneet

    2012-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. A challenge faced by periodontal therapy is the predictable regeneration of periodontal tissues lost as a consequence of disease. Growth factors are critical to the development, maturation, maintenance and repair of oral tissues as they establish an extra-cellular environment that is conducive to cell and tissue growth. Tissue engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. The aim of this paper is to review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Various such materials have been formulated into devices that can be used as vehicles for delivery of cells, growth factors and DNA. Different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral and tooth supporting structure. Key words: Periodontal disease, gene therapy, regeneration, tissue repair, growth factors, tissue engineering. PMID:22143705

  9. Evolution of a Sigma Factor: An All-In-One of Gene Duplication, Horizontal Gene Transfer, Purifying Selection, and Promoter Differentiation

    PubMed Central

    López-Leal, Gamaliel; Cevallos, Miguel A.; Castillo-Ramírez, Santiago

    2016-01-01

    Sigma factors are an essential part of bacterial gene regulation and have been extensively studied as far as their molecular mechanisms and protein structure are concerned. However, their molecular evolution, especially for the alternative sigma factors, is poorly understood. Here, we analyze the evolutionary forces that have shaped the rpoH sigma factors within the alphaproteobacteria. We found that an ancient duplication gave rise to two major groups of rpoH sigma factors and that after this event horizontal gene transfer (HGT) occurred in rpoH1 group. We also noted that purifying selection has differentially affected distinct parts of the gene; singularly, the gene segment that encodes the region 4.2, which interacts with the −35 motif of the RpoH-dependent genes, has been under relaxed purifying selection. Furthermore, these two major groups are clearly differentiated from one another regarding their promoter selectivity, as rpoH1 is under the transcriptional control of σ70 and σ32, whereas rpoH2 is under the transcriptional control of σ24. Our results suggest a scenario in which HGT, gene loss, variable purifying selection and clear promoter specialization occurred after the ancestral duplication event. More generally, our study offers insights into the molecular evolution of alternative sigma factors and highlights the importance of analyzing not only the coding regions but also the promoter regions. PMID:27199915

  10. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation.

    PubMed

    Müller, Christine; Birmes, Franziska S; Rückert, Christian; Kalinowski, Jörn; Fetzner, Susanne

    2015-11-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s(-1), respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  11. Cloning, characterization and expression analysis of coagulation factor II gene in grass carp (Ctenopharyngodon idella).

    PubMed

    Xu, B H; Chen, K J; Yao, Y B; Liu, Q L; Xiao, T Y; Su, J M; Peng, H Z

    2015-01-01

    Here, we characterized the structure and function of the coagulation factor II (FII) gene in grass carp and determined its role in coagulation mechanisms. The FII gene EST was obtained using a constructed splenic transcriptome database; the full-length FII gene sequence was obtained by 3' and 5' RACE. The open reading frame (ORF) of FII was cloned and the full-length gene was found to be 1718 bp, with an ORF of 1572 bp; the gene contained a 25 bp 5'-untranslated region (UTR) and 108 bp 3'-UTR. The ORF encoded 524 amino acids, including 74 alkaline amino acids (arginine and lysine) and 69 acidic amino acids (aspartic acid and glutamic acid). The theoretical pI was 6.22. The calculated instability index (II) was 39.81, indicating that FII was a stable protein; the half-life period was predicted to be approximately 30 h. Amino acid sequence comparisons indicated that grass carp FII showed most similarity (71%) to FII of Takifugu rubripes, followed by Oplegnathus fasciatus (48% similarity) and Larimichthys crocea (47% similarity). A real-time reverse transcription PCR analysis showed that under normal circumstances, FII was most highly expressed in the liver, followed by the gill, spleen, thymus, and head-kidney (P < 0.001). After injection of the grass carp reovirus 873 (GCRV873), the pattern of FII expression was significantly altered (P < 0.001); gene expression was high after injection, suggesting a response involving the initiation of the coagulation system and defense of the body in combination with the platelet and complement system. PMID:26535692

  12. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Rückert, Christian; Kalinowski, Jörn

    2015-01-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s−1, respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  13. Intermedin/adrenomedullin 2 is a stress-inducible gene controlled by activating transcription factor 4.

    PubMed

    Kovaleva, Irina E; Garaeva, Alisa A; Chumakov, Peter M; Evstafieva, Alexandra G

    2016-09-15

    Intermedin or adrenomedullin 2 is a set of calcitonin-related peptides with a putative tumor angiogenesis promoting activity that are formed by proteolytic processing of the ADM2 gene product. It has been proposed that the ADM2 gene is regulated by the estrogen response element (ERE) and hypoxia response elements (HRE) found within its promoter region. In the present study we reveal a functional mechanism by which ADM2 participates in the unfolded protein response (UPR) and in responses to the mitochondrial respiration chain inhibition. We show that the ADM2 gene is controlled by activating transcription factor 4 (ATF4), the principal regulator of the integrated stress response (ISR). The upregulation of ADM2 mRNA could be prevented by the pharmacological ISR inhibitor ISRIB and by the downregulation of ATF4 with specific shRNA, while ectopic expression of ATF4 cDNA resulted in a notable increase in ADM2 gene transcription. A potential ATF4-binding site was identified in the coding region of the ADM2 gene and the requirement of this site during the ATF4-mediated ADM2 gene promoter activation was validated by the luciferase reporter assay. Mutagenesis of the putative ATF4-response element prevented the induction of luciferase activity in response to ATF4 overproduction, as well as in response to mitochondrial electron transfer chain inhibition by piericidin A and ER stress induction by tunicamycin and brefeldin A. Since ADM2 was shown to inhibit ATF4 expression during myocardial ER stress, a feedback mechanism could be proposed for the ADM2 regulation under ER stress conditions. PMID:27328454

  14. Identification of Transcription Factor AML-1 Binding Site Upstream of Human Cytomegalovirus UL111A Gene

    PubMed Central

    Zheng, Xiaoqun; Gao, Yan; Zhang, Qi; Liu, Yanqing; Peng, Ying; Fu, Miao; Ji, Yanhong

    2015-01-01

    Human cytomegalovirus (HCMV) interleukin-10 (hcmvIL-10), encoded by HCMV UL111A gene, is a homolog of human IL-10. It exerts immunomodulatory effects that allow HCMV to evade host defense mechanisms. However, the exact mechanism underlying the regulation of hcmvIL-10 expression is not well understood. The transcription factor acute myeloid leukemia 1 (AML-1) plays an important role in the regulation of various genes involved in the differentiation of hematopoietic lineages. A putative AML-1 binding site is present within the upstream regulatory region (URR) of UL111A gene. To provide evidence that AML-1 is involved in regulating UL111A gene expression, we examined the interaction of AML-1 with the URR of UL111A in HCMV-infected human monocytic THP-1 cells using a chromatin immunoprecipitation assay. HcmvIL-10 transcription was detected in differentiated THP-1 cells, but not in undifferentiated ones. Furthermore, the URR of UL111A showed a higher intensity of AML-1 binding, a higher level of histone H3 acetyl-K9, but a lower level of histone H3 dimethyl-K9 in differentiated THP-1 cells than undifferentiated cells. Down-regulation of AML1 by RNA interference decreased the expression of the UL111A gene. Our results suggest that AML-1 may contribute to the epigenetic regulation of UL111A gene via histone modification in HCMV-infected differentiated THP-1 cells. This finding could be useful for the development of new anti-viral therapies. PMID:25658598

  15. Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells.

    PubMed Central

    McClain, D A; Paterson, A J; Roos, M D; Wei, X; Kudlow, J E

    1992-01-01

    We have investigated the regulation of the expression of two growth factors found in vascular smooth muscle, transforming growth factor alpha (TGF alpha) and basic fibroblast growth factor (bFGF). Cells cultured in medium containing 30 mM glucose exhibited a 2-fold increase in TGF alpha mRNA and a 3-fold increase in bFGF mRNA compared with cells grown in normal (5.5 mM) glucose. Glucosamine was more potent than glucose, leading to a 6-fold increase in TGF alpha mRNA. TGF alpha protein levels were also increased by glucosamine treatment, and the predominant species present was the membrane-bound precursor form of TGF alpha. To examine further the regulation of growth factors by sugars, cultured rat aortic smooth muscle cells were transfected with a plasmid construct consisting of a 1.2-kilobase-pair fragment of the TGF alpha promoter linked to a luciferase reporter gene. Increasing the concentration of glucose in the culture medium from 5.5 mM to 30 mM led to a rapid, 1.7-fold increase in the activity of the TGF alpha promoter. Glucosamine was much more potent than glucose in this stimulation, with 2 mM glucosamine causing a 12-fold increase in TGF alpha promoter activity. Insulin had no effect on luciferase activity in either the presence or the absence of added sugars. The glucose response element of the TGF alpha gene maps to a 130-base-pair segment that includes three potential binding sites for the transcription factor Sp1. We conclude that high glucose concentrations such as are reached in diabetes mellitus can stimulate the transcription of the genes for growth factors in vascular smooth muscle cells. This signaling pathway apparently involves the metabolism of glucose to glucosamine. This effect could be representative of nutritional regulation of a family of genes and could contribute to the toxicity of hyperglycemia and the vascular complications of diabetes. Images PMID:1518840

  16. Cloning and Characterization of the Human Trefoil Factor 3 Gene Promoter

    PubMed Central

    Zhou, Yifang; Mao, Xuefei; Deng, Xiangdong

    2014-01-01

    Human trefoil factor 3 (hTFF3) is a small-molecule peptide with potential medicinal value. Its main pharmacological function is to alleviate gastrointestinal mucosal injuries caused by various factors and promote the repair of damaged mucosa. However, how its transcription is regulated is not yet known. The aim of this study was to clone the hTFF3 gene promoter region, identify the core promoter and any transcription factors that bind to the promoter, and begin to clarify the regulation of its expression. The 5′ flanking sequence of the hTFF3 gene was cloned from human whole blood genomic DNA by PCR. Truncated promoter fragments with different were cloned and inserted into the pGL3-Basic vector to determine the position of the core hTFF3 promoter. Transcription element maintaining basic transcriptional activity was assessed by mutation techniques. Protein-DNA interactions were analyzed by chromatin immunoprecipitation (ChIP). RNA interference and gene over-expression were performed to assay the effect of transcription factor on the hTFF3 expression. The results showed that approximately 1,826 bp of the fragment upstream of hTFF3 was successfully amplified, and its core promoter region was determined to be from −300 bp to −280 bp through analysis of truncated mutants. Mutation analysis confirmed that the sequence required to maintain basic transcriptional activity was accurately positioned from −300 bp to −296 bp. Bioinformatic analysis indicated that this area contained a Sp1 binding site. Sp1 binding to the hTFF3 promoter was confirmed by ChIP experiments. Sp1 over-expression and interference experiments showed that Sp1 enhanced the transcriptional activity of the hTFF3 promoter and increased hTFF3 expression. This study demonstrated that Sp1 plays an important role in maintaining the transcription of hTFF3. PMID:24743382

  17. MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to directly activate myelin genes.

    PubMed

    Bujalka, Helena; Koenning, Matthias; Jackson, Stacey; Perreau, Victoria M; Pope, Bernard; Hay, Curtis M; Mitew, Stanlislaw; Hill, Andrew F; Lu, Q Richard; Wegner, Michael; Srinivasan, Rajini; Svaren, John; Willingham, Melanie; Barres, Ben A; Emery, Ben

    2013-01-01

    The myelination of axons is a crucial step during vertebrate central nervous system (CNS) development, allowing for rapid and energy efficient saltatory conduction of nerve impulses. Accordingly, the differentiation of oligodendrocytes, the myelinating cells of the CNS, and their expression of myelin genes are under tight transcriptional control. We previously identified a putative transcription factor, Myelin Regulatory Factor (Myrf), as being vital for CNS myelination. Myrf is required for the generation of CNS myelination during development and also for its maintenance in the adult. It has been controversial, however, whether Myrf directly regulates transcription, with reports of a transmembrane domain and lack of nuclear localization. Here we show that Myrf is a membrane-associated transcription factor that undergoes an activating proteolytic cleavage to separate its transmembrane domain-containing C-terminal region from a nuclear-targeted N-terminal region. Unexpectedly, this cleavage event occurs via a protein domain related to the autoproteolytic intramolecular chaperone domain of the bacteriophage tail spike proteins, the first time this domain has been found to play a role in eukaryotic proteins. Using ChIP-Seq we show that the N-terminal cleavage product directly binds the enhancer regions of oligodendrocyte-specific and myelin genes. This binding occurs via a defined DNA-binding consensus sequence and strongly promotes the expression of target genes. These findings identify Myrf as a novel example of a membrane-associated transcription factor and provide a direct molecular mechanism for its regulation of oligodendrocyte differentiation and CNS myelination. PMID:23966833

  18. Gene size differentially affects the binding of yeast transcription factor tau to two intragenic regions.

    PubMed Central

    Baker, R E; Camier, S; Sentenac, A; Hall, B D

    1987-01-01

    Yeast transcription factor tau (transcription factor IIIC) specifically interacts with tRNA genes, binding to both the A block and the B block elements of the internal promoter. To study the influence of A block-B block spacing, we analyzed the binding of purified tau protein to a series of internally deleted yeast tRNA(3Leu) genes with A and B blocks separated by 0 to 74 base pairs. Optimal binding occurred with genes having A block-B block distances of 30-60 base pairs; the relative helical orientation of the A and B blocks was unimportant. Results from DNase I "footprinting" and lambda exonuclease protection experiments were consistent with these findings and further revealed that changes in A block-B block distance primarily affect the ability of tau to interact with A block sequences; B block interactions are unaltered. When the A block-B block distance is 17 base pairs or less, tau interacts with a sequence located 15 base pairs upstream of the normal A block, and a new RNA initiation site is observed by in vitro transcription. We propose that the initial binding of tau to the B block activates transcription by enhancing its ability to bind at the A block, and that the A block interaction ultimately directs initiation by RNA polymerase III. Images PMID:2827154

  19. Genomic organization of the mouse fibroblast growth factor receptor 3 (Fgfr3) gene

    SciTech Connect

    Perez-Castro, A.V.; Wilson, J.; Altherr, M.R.

    1995-11-20

    The fibroblast growth factor receptor 3 (Fgfr3) protein is a tyrosine kinase receptor involved in the signal transduction of various fibroblast growth factors. Recent studies suggest its important role in normal development. In humans, mutation in Fgfr3 is responsible for growth disorders such as achondroplasia, hypoachondroplasia, and thanatophoric dysplasia. Here, we report the complete genomic organization of the mouse Fgfr3 gene. The murine gene spans approximately 15 kb and consists of 19 exons and 18 introns. One major and one minor transcription initiation site were identified. Position +1 is located 614 nucleotides upstream from the ATG initiation codon. The translation initiation and termination sites are located in exons 2 and 19, respectively. Five Sp1 sites, two AP2 sites, one Zeste site, and one Krox 24 site were observed in the 5{prime}-flanking region. The Fgfr3 promoter appears to be contained within a CpG island and, as is common in genes having multiple Sp1-binding sites, lacks a TATA box. 35 refs., 3 figs., 1 tab.

  20. Analysis of gene expression of secreted factors associated with breast cancer metastases in breast cancer subtypes

    PubMed Central

    Fertig, Elana J.; Lee, Esak; Pandey, Niranjan B.; Popel, Aleksander S.

    2015-01-01

    Breast cancer is a heterogeneous disease, having multiple subtypes with different malignant phenotypes. The triple-negative breast cancer, or basal breast cancer, is highly aggressive, metastatic, and difficult to treat. Previously, we identified that key molecules (IL6, CSF2, CCL5, VEGFA, and VEGFC) secreted by tumor cells and stromal cells in basal breast cancer can promote metastasis. It remains to assess whether these molecules function similarly in other subtypes of breast cancer. Here, we characterize the relative gene expression of the five secreted molecules and their associated receptors (GP130, GMRA, GMRB, CCR5, VEGFR2, NRP1, VEGFR3, NRP2) in the basal, HER2 (human epidermal growth factor receptor 2) positive, luminal A, and luminal B subtypes using high throughput data from tumor samples in The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). IL6 and CCL5 gene expression are basal breast cancer specific, whereas high gene expression of GP130 was observed in luminal A/B. VEGFA/C and CSF2 mRNA are overexpressed in HER2 positive breast cancer, with VEGFA and CSF2 also overexpressed in basal breast cancer. Further study of the specific protein function of these factors within their associated cancer subtypes may yield personalized biomarkers and treatment modalities. PMID:26173622

  1. Analysis of gene expression of secreted factors associated with breast cancer metastases in breast cancer subtypes.

    PubMed

    Fertig, Elana J; Lee, Esak; Pandey, Niranjan B; Popel, Aleksander S

    2015-01-01

    Breast cancer is a heterogeneous disease, having multiple subtypes with different malignant phenotypes. The triple-negative breast cancer, or basal breast cancer, is highly aggressive, metastatic, and difficult to treat. Previously, we identified that key molecules (IL6, CSF2, CCL5, VEGFA, and VEGFC) secreted by tumor cells and stromal cells in basal breast cancer can promote metastasis. It remains to assess whether these molecules function similarly in other subtypes of breast cancer. Here, we characterize the relative gene expression of the five secreted molecules and their associated receptors (GP130, GMRA, GMRB, CCR5, VEGFR2, NRP1, VEGFR3, NRP2) in the basal, HER2 (human epidermal growth factor receptor 2) positive, luminal A, and luminal B subtypes using high throughput data from tumor samples in The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). IL6 and CCL5 gene expression are basal breast cancer specific, whereas high gene expression of GP130 was observed in luminal A/B. VEGFA/C and CSF2 mRNA are overexpressed in HER2 positive breast cancer, with VEGFA and CSF2 also overexpressed in basal breast cancer. Further study of the specific protein function of these factors within their associated cancer subtypes may yield personalized biomarkers and treatment modalities. PMID:26173622

  2. Transcriptional regulation of the human TR2 orphan receptor gene by nuclear factor 1-A

    SciTech Connect

    Lin, Y.-L.; Wang, Y.-H.; Lee, H.-J. . E-mail: hjlee@mail.ndhu.edu.tw

    2006-11-17

    The human testicular receptor 2 (TR2), a member of the nuclear hormone receptor superfamily, has no identified ligand yet. Previous evidence demonstrated that a 63 bp DNA fragment, named the promoter activating cis-element (PACE), has been identified as a positive regulatory region in the 5' promoter region of the human TR2 gene. In the present report, the human nuclear factor 1-A (NF1-A) was identified as a transcriptional activator to recognize the center of the PACE, called the PACE-C. NF1-A could bind to the 18 bp PACE-C region, and enhance about 13- to 17-fold of the luciferase reporter gene activity via the PACE-C in dose-dependent and orientation-independent manners. This transcriptional activation was further confirmed by real-time RT-PCR assay. In conclusion, our results indicated that NF1-A transcription factor plays an important role in the transcriptional activation of the TR2 gene expression via the PACE-C in the minimal promoter region.

  3. Structural organization and chromosomal assignment of the mouse embryonic TEA domain-containing factor (ETF) gene

    SciTech Connect

    Suzuki, Kazuo; Yasunami, Michio; Matsuda, Yoichi

    1996-09-01

    Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed that Etdf spans approximately 17.9 kb and consists of 12 exons. The exon-intron structure of Etdf closely resembles that of the Drosophila scalloped gene, indicating that these genes may have evolved from a common ancestor. Then multiple transcription initiation sites revealed by S1 protection and primer extension analyses are consistent with the absence of the canonical TATA and CAAT boxes in the 5{prime}-flanking region, which contains many potential regulatory sequences, such as the E-box, N-box, Sp1 element, GATA-1 element, TAATGARAT element, and B2 short interspersed element (SINE) as well as several direct and inverted repeat sequences. The Etdf locus was assigned to the proximal region of mouse chromosome 7 using fluorescence in situ hybridization and linkage mapping analyses. These results provide the molecular basis for studying the regulation, in vivo function, and evolution of Etdf. 29 refs., 5 figs., 1 tab.

  4. Binding of a liver-specific factor to the human albumin gene promoter and enhancer

    SciTech Connect

    Frain, M.; Hardon, E.; Ciliberto, G. ); Sala-Trepat, J.M. )

    1990-03-01

    A segment of 1,022 base pairs (bp) of the 5{prime}-flanking region of the human albumin gene, fused to a reporter gene, directs hepatoma-specific transcription. Three functionally distinct regions have been defined by deletion analysis: a negative element located between bp {minus}673 and {minus}486, an enhancer essential for efficient albumin transcription located between bp {minus}486 and {minus}221, and a promoter spanning a region highly conserved throughout evolution. Protein-binding studies have demonstrated that a liver {ital trans}-acting factor which interacts with the enhancer region is the well-characterized transcription factor LF-B1, which binds to promoters of several liver-specific genes. A synthetic oligodeoxynucleotide containing the LF-B1-binding site is sufficient to act as a tissue-specific transcriptional enhancer when placed in front of the albumin promoter. The fact that the same binding site functions in both an enhancer and a promoter suggests that these two elements influence the initiation of transcription through similar mechanisms.

  5. Brain-derived neurotrophic factor reduces amyloidogenic processing through control of SORLA gene expression.

    PubMed

    Rohe, Michael; Synowitz, Michael; Glass, Rainer; Paul, Steven M; Nykjaer, Anders; Willnow, Thomas E

    2009-12-01

    Sorting protein-related receptor with A-type repeats (SORLA) is a major risk factor in cellular processes leading to Alzheimer's disease (AD). It acts as sorting receptor for the amyloid precursor protein (APP) that regulates intracellular trafficking and processing into amyloidogenic-beta peptides (A beta). Overexpression of SORLA in neurons reduces while inactivation of gene expression (as in knock-out mouse models) accelerates amyloidogenic processing and senile plaque formation. The current study aimed at identifying molecular pathways that control SORLA gene transcription in vivo and that may contribute to low levels of receptor expression in the brain of patients with AD. Using screening approaches in primary neurons, we identified brain-derived neurotrophic factor (BDNF) as a major inducer of Sorla that activates receptor gene transcription through the ERK (extracellular regulated kinase) pathway. In line with a physiological role as regulator of Sorla, expression of the receptor is significantly impaired in mouse models with genetic (Bdnf(-/-)) or disease-related loss of BDNF activity in the brain (Huntington's disease). Intriguingly, exogenous application of BDNF reduced A beta production in primary neurons and in the brain of wild-type mice in vivo, but not in animals genetically deficient for Sorla. These findings demonstrate that the beneficial effects ascribed to BDNF in APP metabolism act through induction of Sorla that encodes a negative regulator of neuronal APP processing. PMID:20007471

  6. Arabidopsis Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress[W

    PubMed Central

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-01-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. PMID:25549671

  7. Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages.

    PubMed Central

    Nishizawa, M; Nagata, S

    1990-01-01

    Granulocyte colony-stimulating factor (G-CSF) plays an essential role in granulopoiesis during bacterial infection. Macrophages produce G-CSF in response to bacterial endotoxins such as lipopolysaccharide (LPS). To elucidate the mechanism of the induction of G-CSF gene in macrophages or macrophage-monocytes, we have examined regulatory cis elements in the promoter of mouse G-CSF gene. Analyses of linker-scanning and internal deletion mutants of the G-CSF promoter by the chloramphenicol acetyltransferase assay have indicated that at least three regulatory elements are indispensable for the LPS-induced expression of the G-CSF gene in macrophages. When one of the three elements was reiterated and placed upstream of the TATA box of the G-CSF promoter, it mediated inducibility as a tissue-specific and orientation-independent enhancer. Although this element contains a conserved NF-kappa B-like binding site, the gel retardation assay and DNA footprint analysis with nuclear extracts from macrophage cell lines demonstrated that nuclear proteins bind to the DNA sequence downstream of the NF-kappa B-like element, but not to the conserved element itself. The DNA sequence of the binding site was found to have some similarities to the LPS-responsive element which was recently identified in the promoter of the mouse class II major histocompatibility gene. Images PMID:1691438

  8. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression

    PubMed Central

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-01-01

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division. PMID:24714560

  9. The evolution of gene expression and binding specificity of the largest transcription factor family in primates

    PubMed Central

    Kapopoulou, Adamandia; Mathew, Lisha; Wong, Alex; Trono, Didier; Jensen, Jeffrey D.

    2016-01-01

    The KRAB-containing zinc finger (KRAB-ZF) proteins represent the largest family of transcription factors (TFs) in humans, yet for the great majority, their function and specific genomic target remain unknown. However, it has been shown that a large fraction of these genes arose from segmental duplications, and that they have expanded in gene and zinc finger number throughout vertebrate evolution. To determine whether this expansion is linked to selective pressures acting on different domains, we have manually curated all KRAB-ZF genes present in the human genome together with their orthologous genes in three closely related species and assessed the evolutionary forces acting at the sequence level as well as on their expression profiles. We provide evidence that KRAB-ZFs can be separated into two categories according to the polymorphism present in their DNA-contacting residues. Those carrying a nonsynonymous single nucleotide polymorphism (SNP) in their DNA-contacting amino acids exhibit significantly reduced expression in all tissues, have emerged in a recent lineage, and seem to be less strongly constrained evolutionarily than those without such a polymorphism. This work provides evidence for a link between age of the TF, as well as polymorphism in their DNA-contacting residues and expression levels—both of which may be jointly affected by selection. PMID:26593440

  10. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    PubMed

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation. PMID:26600674

  11. Monoallelic expression of the insulin-like growth factor-2 gene in ovarian cancer.

    PubMed Central

    Yun, K.; Fukumoto, M.; Jinno, Y.

    1996-01-01

    Genomic imprinting is defined as a gamete-specific modification causing differential expression of the two alleles of a gene in somatic cells and is becoming increasingly recognized as playing an important role in a number of human diseases including cancer. We have reported that the loss of the insulin-like growth factor-2 (IGF2) gene imprinting results in the deregulation of both IGF2 alleles, which may contribute to the onset of Wilms tumor. It is important to see whether such abnormal genomic imprinting is implicated in the etiology of common adulthood cancers. In the present study we have examined the expression level and imprinting status of the IGF2 gene in human ovaries and ovarian cancers. We confirm that IGF2 is significantly expressed in ovaries and ovarian cancers. In normal ovaries, both surface epithelium and the ovary proper demonstrate monoallelic IGF2 expression. Among 27 tumors, all 11 heterozygous for the IGF2 locus show monoallelic IGF2 expression (2 of them are proven to be from the paternal allele). The data suggest that the increased IGF2 gene expression in ovarian cancer may be achieved by a mechanism other than loss of imprinting. Images Figure 1 Figure 2 Figure 3 PMID:8644850

  12. Bookmarking Target Genes in Mitosis: A Shared Epigenetic Trait of Phenotypic Transcription Factors and Oncogenes?

    PubMed Central

    Zaidi, Sayyed K.; Grandy, Rodrigo A.; Lopez-Camacho, Cesar; Montecino, Martin M.; van Wijnen, Andre J.; Lian, Jane B.; Stein, Janet L.; Stein, Gary S.

    2014-01-01

    The regulatory information for phenotype, proliferation, and growth of normal and tumor cells must be maintained through genome replication in the S-phase and cell division during mitosis. Epigenetic mechanisms that include DNA methylation, posttranslational modifications of histones, selective utilization of histone variants, and inheritable RNA molecules play pivotal roles in maintaining cellular identity through mitotic divisions. Recent studies demonstrate that mitotic occupancy of genes, which are determinants of cell fate, growth and proliferation, by lineage restricted transcription factors is a key epigenetic mechanism for retention and transmission of cellular expression memory. Evidence is emerging for the presence of distinct transcriptional regulatory microenvironments in mitotic chromosomes where the genes bookmarked for reactivation post-mitotically reside. Importantly, some oncoproteins are present in mitotic microenvironments where they occupy target genes during mitosis and may contribute to perpetuating the transformed phenotype. We will discuss emerging regulatory implications of epigenetically bookmarking genes during mitosis for physiological control as well as for the onset and progression of cancer. PMID:24408924

  13. Global characterization of interferon regulatory factor (IRF) genes in vertebrates: Glimpse of the diversification in evolution

    PubMed Central

    2010-01-01

    Background Interferon regulatory factors (IRFs), which can be identified based on a unique helix-turn-helix DNA-binding domain (DBD) are a large family of transcription factors involved in host immune response, haemotopoietic differentiation and immunomodulation. Despite the identification of ten IRF family members in mammals, and some recent effort to identify these members in fish, relatively little is known in the composition of these members in other classes of vertebrates, and the evolution and probably the origin of the IRF family have not been investigated in vertebrates. Results Genome data mining has been performed to identify any possible IRF family members in human, mouse, dog, chicken, anole lizard, frog, and some teleost fish, mainly zebrafish and stickleback, and also in non-vertebrate deuterostomes including the hemichordate, cephalochordate, urochordate and echinoderm. In vertebrates, all ten IRF family members, i.e. IRF-1 to IRF-10 were identified, with two genes of IRF-4 and IRF-6 identified in fish and frog, respectively, except that in zebrafish exist three IRF-4 genes. Surprisingly, an additional member in the IRF family, IRF-11 was found in teleost fish. A range of two to ten IRF-like genes were detected in the non-vertebrate deuterostomes, and they had little similarity to those IRF family members in vertebrates as revealed in genomic structure and in phylogenetic analysis. However, the ten IRF family members, IRF-1 to IRF-10 showed certain degrees of conservation in terms of genomic structure and gene synteny. In particular, IRF-1, IRF-2, IRF-6, IRF-8 are quite conserved in their genomic structure in all vertebrates, and to a less degree, some IRF family members, such as IRF-5 and IRF-9 are comparable in the structure. Synteny analysis revealed that the gene loci for the ten IRF family members in vertebrates were also quite conservative, but in zebrafish conserved genes were distributed in a much longer distance in chromosomes. Furthermore

  14. Genes and lifestyle factors in obesity: results from 12 462 subjects from MONICA/KORA

    PubMed Central

    Holzapfel, Christina; Grallert, Harald; Huth, Cornelia; Wahl, Simone; Fischer, Beate; Döring, Angela; Rückert, Ina M; Hinney, Anke; Hebebrand, Johannes; Wichmann, H.-Erich; Hauner, Hans; Illig, Thomas; Heid, Iris M

    2011-01-01

    Background Data from meta-analyses of genome-wide association studies provided evidence for an association of polymorphisms with body mass index (BMI), and gene expression results indicated a role of these variants in the hypothalamus. It was consecutively hypothesized that these associations might be evoked by a modulation of nutritional intake or energy expenditure. Objective It was our aim to investigate the association of these genetic factors with BMI in a large homogenous population-based sample to explore the association of these polymorphisms with lifestyle factors related to nutritional intake or energy expenditure, and whether such lifestyle factors could be mediators of the detected single-nucleotide polymorphism (SNP)-association with BMI. It was a further aim to compare the proportion of BMI explained by genetic factors with the one explained by lifestyle factors. Design The association of seven polymorphisms in or near the genes NEGR1, TMEM18, MTCH2, FTO, MC4R, SH2B1and KCTD15 was analyzed in 12 462 subjects from the population-based MONICA/KORA Augsburg study. Information on lifestyle factors was based on standardized questionnaires. For statistical analysis, regression-based models were used. Results The minor allele of polymorphism rs6548238 C>T (TMEM18) was associated with lower BMI (−0.418 kg/m2, p=1.22×10−8), and of polymorphisms rs9935401 G>A (FTO) and rs7498665 A>G (SH2B1) with increased BMI (0.290 kg/m2, p=2.85×10−7 and 0.145 kg/m2, p=9.83×10−3). The other polymorphisms were not significantly associated. Lifestyle factors were correlated with BMI and explained 0.037 % of the BMI variance as compared to 0.006 % of explained variance by the associated genetic factors. The genetic variants associated with BMI were not significantly associated with lifestyle factors and there was no evidence of lifestyle factors mediating the SNP-BMI association. Conclusions Our data first confirm the findings for TMEM18 with BMI in a single study on

  15. Tumour necrosis factor-alpha up-regulates decay-accelerating factor gene expression in human intestinal epithelial cells.

    PubMed Central

    Andoh, A; Fujiyama, Y; Sumiyoshi, K; Sakumoto, H; Okabe, H; Bamba, T

    1997-01-01

    The increased expression of decay-accelerating factor (DAF) has been detected in intestinal epithelial cells at the inflamed mucosa. In this study, we examined the effects of tumour necrosis factor (TNF)-alpha on DAF expression in three intestinal epithelial cell lines. DAF mRNA expression was evaluated by Northern blot analysis, and DAF protein expression was analysed by biotin labelling and immunoprecipitation. TNF-alpha induced a marked increase in DAF mRNA and protein expression in HT-29, T84 and Caco-2 cells. In HT-29 cells, the effects of TNF-a on DAF mRNA accumulation were observed in a dose-dependent manner; DAF mRNA accumulation reached a maximum at 3-6 hr, and then gradually decreased. These effects of TNF-alpha required de novo protein synthesis. Messenger RNA stability studies suggested that TNF-alpha partially regulated DAF gene expression by a posttranscriptional mechanism. Moreover, the combination of TNF-alpha and interleukin (IL)-4 induced an additive increase in DAF mRNA accumulation in HT-29 and T84 cells. In human intestinal epithelial cells, TNF-alpha acts as a potent inducer of DAF mRNA expression, indicating an important role for TNF-alpha in the regulation of DAF expression at the inflamed mucosa. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 PMID:9155641

  16. The effect of hyperammonemia on myostatin and myogenic regulatory factor gene expression in broiler embryos

    PubMed Central

    Stern, R.A.; Ashwell, C.M.; Dasarathy, S.; Mozdziak, P.E.

    2015-01-01

    Myogenesis is facilitated by four myogenic regulatory factors and is significantly inhibited by myostatin. The objective of the current study was to examine embryonic gene regulation of myostatin/myogenic regulatory factors, and subsequent manipulations of protein synthesis, in broiler embryos under induced hyperammonemia. Broiler eggs were injected with ammonium acetate solution four times over 48 hours beginning on either embryonic day (ED) 15 or 17. Serum ammonia concentration was significantly higher (P < 0.05) in ammonium acetate injected embryos for both ED17 and ED19 collected samples when compared to sham-injected controls. Expression of mRNA, extracted from pectoralis major of experimental and control embryos, was measured using real-time quantitative PCR for myostatin, myogenic regulatory factors myogenic factor 5, myogenic determination factor 1, myogenin, myogenic regulatory factor 4, and paired box 7. A significantly lower (P < 0.01) myostatin expression was accompanied by a higher serum ammonia concentration in both ED17 and ED19 collected samples. Myogenic factor 5 expression was higher (P < 0.05) in ED17 collected samples administered ammonium acetate. In both ED17 and ED19 collected samples, myogenic regulatory factor 4 was lower (P ≤ 0.05) in ammonium acetate injected embryos. No significant difference was seen in myogenic determination factor 1, myogenin, or paired box 7 expression between treatment groups for either age of sample collection. Additionally, there was no significant difference in BrdU staining of histological samples taken from treated and control embryos. Myostatin protein levels were evaluated by Western blot analysis, and also showed lower myostatin expression (P < 0.05). Overall, it appears possible to inhibit myostatin expression through hyperammonemia, which is expected to have a positive effect on embryonic myogenesis and postnatal muscle growth. PMID:25689990

  17. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    PubMed Central

    Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M.; Bansal, Kailash C.

    2015-01-01

    MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by “top-down” and “guide-gene” approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via “top-down” approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by “guide-gene” approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  18. Influence factors and gene expression patterns during MeJa-induced gummosis in peach.

    PubMed

    Li, Minji; Liu, Meiyan; Peng, Futian; Fang, Long

    2015-06-15

    Jasmonates (JAs) play important roles in gummosis in peach. Mechanical damage, methyl jasmonate (MeJa), and ethylene can induce gummosis on peach shoots in the field. In this study, we used MeJa (2%, w/w) to induce gummosis on current-year shoots in peach on high temperature (35°C). Based on the experimental model, we studied the influence of factors on the development of peach gummosis. Our experimental results showed that high temperature could promote gummosis development induced by MeJa. Exogenous CaCl2 treatment reduced the degree of gummosis by increasing the calcium content in shoots, which is conducive to the synthesis and maintenance of the cell wall. Using digital gene expression (DGE), 3831 differentially expressed genes were identified in the MeJa treatment versus the control. By analyzing changes in gene expression associated with cell wall degradation, genes encoding pectin methylesterase (PME) and endo-polygalacturonase (PG) were found to be significantly induced, suggesting that they are key enzymes in cell wall degradation that occurs during MeJa-induced gummosis. Genes for glycosyltransferase (GT) and cellulose synthase (CS) were also significantly upregulated by MeJa. This result suggests that MeJa treatment not only promotes the degradation of polysaccharides to destroy the cell wall, but also promotes the synthesis of new polysaccharides. We also analyzed changes in gene expression associated with sugar metabolism, senescence, and defense. MeJa treatment affected the expression of genes related to sugar metabolism and promoted plant senescence. Among the defense genes, the expression pattern of phenylalanine ammonium lyase (PAL) suggested that PAL may play an important role in protecting against the effects of MeJa treatment. Our experimental results showed that MeJa treatment can promote the biosynthesis and signal transduction of ethylene in peach shoots; they can induce gummosis on peach shoots respectively, and there are overlaps between

  19. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution.

    PubMed

    Okpeku, Moses; Esmailizadeh, Ali; Adeola, Adeniyi C; Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M; Imumorin, Ikhide G; Peters, Sunday O; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats' populations. Fu and Li tests were significantly positive but Tajima's D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3

  20. Validation of candidate genes associated with cardiovascular risk factors in psychiatric patients

    PubMed Central

    Windemuth, Andreas; de Leon, Jose; Goethe, John W.; Schwartz, Harold I.; Woolley, Stephen; Susce, Margaret; Kocherla, Mohan; Bogaard, Kali; Holford, Theodore R.; Seip, Richard L.; Ruaño, Gualberto

    2016-01-01

    The purpose of this study was to identify genetic variants predictive of cardiovascular risk factors in a psychiatric population treated with second generation antipsychotics (SGA). 924 patients undergoing treatment for severe mental illness at four US hospitals were genotyped at 1.2 million single nucleotide polymorphisms. Patients were assessed for fasting serum lipid (low density lipoprotein cholesterol [LDLc], high density lipoprotein cholesterol [HDLc], and triglycerides) and obesity phenotypes (body mass index, BMI). Thirteen candidate genes from previous studies of the same phenotypes in non-psychiatric populations were tested for association. We confirmed 8 of the 13 candidate genes at the 95% confidence level. An increased genetic effect size was observed for triglycerides in the psychiatric population compared to that in the cardiovascular population. PMID:21851846

  1. [Viral transfer of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in gene therapy].

    PubMed

    Wędrowska, Ewelina; Wandtke, Tomasz; Dyczek, Andrzej; Woźniak, Joanna

    2015-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces carcinoma cell death through the extrinsic pathway of apoptosis. Preclinical trials of gene therapy have been conducted using viral transfer of the TRAIL transgene into prostate, bladder, breast, kidney, liver, non-small cell lung cancer and also glioblastoma cells. Experiments in vitro demonstrated the extensive apoptosis of target cells as well as frequent disease regression or remission. TRAIL transfer did not show any side effects, opposite to chemotherapy. Encouraging results of TRAIL-related gene therapy were observed in rheumatoid arthritis and type 1 diabetes. Adenoviral vectors (AdV) encoding TRAIL are the most promising tool in anti-tumor therapy. They have undergone numerous modifications by increasing transfection efficiency and transgene expression in target cells. However, only one clinical phase I trial has been performed. AdV encoding the TRAIL transgene caused local inflammation and apoptosis in patients with prostate cancer. PMID:27259213

  2. Irrepressible, truncated auxin response factors: natural roles and applications in dissecting auxin gene regulation pathways.

    PubMed

    Ckurshumova, Wenzislava; Krogan, Naden T; Marcos, Danielle; Caragea, Adriana E; Berleth, Thomas

    2012-08-01

    The molecularly well-characterized auxin signal transduction pathway involves two evolutionarily conserved families interacting through their C-terminal domains III and IV: the Auxin Response Factors (ARFs) and their repressors the Aux/IAAs, to control auxin-responsive genes, among them genes involved in auxin transport. ( 1) (,) ( 2) We have developed a new genetic tool to study ARF function. Using MONOPTEROS (MP)/ARF5, we have generated a truncated version of MP (MPΔ), ( 3) which has lost the target domains for repression by Aux/IAA proteins. Besides exploring genetic interactions between MP and Aux/IAAs, we used this construct to trace MP's role in vascular patterning, a previously characterized auxin dependent process. ( 4) (,) ( 5) Here we summarize examples of naturally occurring truncated ARFs and summarize potential applications of truncated ARFs as analytical tools. PMID:22827953

  3. Mutant Huntingtin Downregulates Myelin Regulatory Factor-Mediated Myelin Gene Expression and Affects Mature Oligodendrocytes

    PubMed Central

    Huang, Brenda; Wei, Wenjie; Wang, Guohao; Gaertig, Marta A.; Feng, Yue; Wang, Wei; Li, Xiao-Jiang; Li, Shihua

    2015-01-01

    SUMMARY Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington’s disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remain unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knock-in mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target. PMID:25789755

  4. Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes.

    PubMed

    Huang, Brenda; Wei, WenJie; Wang, Guohao; Gaertig, Marta A; Feng, Yue; Wang, Wei; Li, Xiao-Jiang; Li, Shihua

    2015-03-18

    Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington's disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remains unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knockin mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target. PMID:25789755

  5. The multiple lives of NMD factors: balancing roles in gene and genome regulation

    PubMed Central

    Isken, Olaf; Maquat, Lynne E.

    2013-01-01

    Nonsense-mediated mRNA decay (NMD) largely functions to ensure the quality of gene expression. However, NMD is also crucial to regulating appropriate expression levels for certain genes and for maintaining genome stability. Furthermore, just as NMD serves cells in multiple ways, so do its constituent proteins. Recent studies have clarified that UPF and SMG proteins, which were originally discovered to function in NMD, also have roles in other pathways, including specialized pathways of mRNA decay, DNA synthesis and cell-cycle progression, and the maintenance of telomeres. These findings suggest a delicate balance of metabolic events — some not obviously related to NMD — that can be influenced by the cellular abundance, location and activity of NMD factors and their binding partners. PMID:18679436

  6. Hepatocyte nuclear factor-4alpha and bile acids regulate human concentrative nucleoside transporter-1 gene expression.

    PubMed

    Klein, Kerstin; Kullak-Ublick, Gerd A; Wagner, Martin; Trauner, Michael; Eloranta, Jyrki J

    2009-04-01

    The concentrative nucleoside transporter-1 (CNT1) is a member of the solute carrier 28 (SLC28) gene family and is expressed in the liver, intestine, and kidneys. CNT1 mediates the uptake of naturally occurring pyrimidine nucleosides, but also nucleoside analogs used in anticancer and antiviral therapy. Thus expression levels of CNT1 may affect the pharmacokinetics of these drugs and the outcome of drug therapy. Because little is known about the transcriptional regulation of human CNT1 gene expression, we have characterized the CNT1 promoter with respect to DNA response elements and their binding factors. The transcriptional start site of the CNT1 gene was determined by 5'-RACE. In silico analysis revealed the existence of three putative binding sites for the nuclear receptor hepatocyte nuclear factor-4alpha (HNF-4alpha) within the CNT1 promoter. A luciferase reporter gene construct containing the CNT1 promoter region was transactivated by HNF-4alpha in human cell lines derived from the liver, intestine, and kidneys. Consistent with this, we showed in electromobility shift assays that HNF-4alpha specifically binds to two conserved direct repeat-1 motifs within the proximal CNT1 promoter. In cotransfection experiments, the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha further increased, whereas the bile acid-inducible corepressor small heterodimer partner reduced, HNF-4alpha-dependent CNT1 promoter activity. Consistent with the latter phenomenon, CNT1 mRNA expression levels were suppressed in primary human hepatocytes upon bile acid treatment. Supporting the physiological relevance and species conservation of this effect, ileal Cnt1 mRNA expression was decreased upon bile acid feeding and increased upon bile duct ligation in mice. PMID:19228884

  7. Human mitochondrial transcription factor A (mtTFA): gene structure and characterization of related pseudogenes.

    PubMed

    Reyes, Aurelio; Mezzina, Maria; Gadaleta, Gemma

    2002-05-29

    Mitochondrial transcription factor A (mtTFA or Tfam) is a 25 kDa protein encoded by a nuclear gene and imported to mitochondria, where it functions as a key regulator of mammalian mitochondrial (mt) DNA transcription and replication. The coding sequence of the human mtTFA gene is reported in the literature and the sizes of few introns are known. In this paper we present the genomic structure of the human mtTFA gene along with the complete sequence of its six intronic regions. Three of the introns (I, III, VI) have been found to be less than 600 bp, while the other three were greater than 1.8 kb. In the course of this work, we discovered that, in addition to the active copy, different homologous sequences identified as processed pseudogenes psi h-mtTFA have been isolated and sequenced. Using an 'in silico' mapping approach we determined their locations on chromosomes 7, 11 and X. psi h-mtTFA locations are different from that of the gene, previously reported on chromosome 10. Transcription analysis by means of reverse transcriptase-polymerase chain reaction has shown that other than the RNA corresponding to the full-length transcript, an isoform lacking 96 bp is also present. Among the three sequenced pseudogenes only one of them located on chromosome 11 has been found to be transcribed in Jurkat cells under these culture conditions, even though transcription initiation and binding sites for different transcription factors have also been found upstream from the other two pseudogenes. PMID:12095695

  8. Transcriptional Control by A-Factor of Two Trypsin Genes in Streptomyces griseus

    PubMed Central

    Kato, Jun-ya; Chi, Won-Jae; Ohnishi, Yasuo; Hong, Soon-Kwang; Horinouchi, Sueharu

    2005-01-01

    AdpA is the key transcriptional activator for a number of genes of various functions in the A-factor regulatory cascade in Streptomyces griseus, forming an AdpA regulon. Trypsin-like activity was detected at a late stage of growth in the wild-type strain but not in an A-factor-deficient mutant. Consistent with these observations, two trypsin genes, sprT and sprU, in S. griseus were found to be members of the AdpA regulon; AdpA activated the transcription of both genes by binding to the operators located at about −50 nucleotide positions with respect to the transcriptional start point. The transcription of sprT and sprU, induced by AdpA, was most active at the onset of sporulation. Most trypsin activity exerted by S. griseus was attributed to SprT, because trypsin activity in an sprT-disrupted mutant was greatly reduced but that in an sprU-disrupted mutant was only slightly reduced. This was consistent with the observation that the amount of the sprT mRNA was much greater than that of the sprU transcript. Disruption of both sprT and sprU (mutant ΔsprTU) reduced trypsin activity to almost zero, indicating that no trypsin genes other than these two were present in S. griseus. Even the double mutant ΔsprTU grew normally and developed aerial hyphae and spores over the same time course as the wild-type strain. PMID:15601713

  9. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    SciTech Connect

    Yasmin, Tania; Takahashi-Yanaga, Fumi . E-mail: yanaga@clipharm.med.kyushu-u.ac.jp; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-12-16

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of {beta}-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3{beta} (GSK-3{beta}) and inhibition of GSK-3{beta} attenuated the DIF-1-induced {beta}-catenin degradation, indicating the involvement of GSK-3{beta} in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/{beta}-catenin signaling, resulting in the suppression of cyclin D1 promoter activity.

  10. Why does the human factor IX gene have a G + C content of 40%?

    PubMed Central

    Bottema, C D; Bottema, M J; Ketterling, R P; Yoon, H S; Janco, R L; Phillips, J A; Sommer, S S

    1991-01-01

    The factor IX gene has a G + C content of approximately 40% in all mammalian species examined. In human factor IX, C----T and G----A transitions at the dinucleotide CpG are elevated at least 24-fold relative to other transitions. Can the G + C content be explained solely by this hot spot of mutation? Using our mathematical model, we show that the elevation of mutation at CpG cannot alone lower the G + C content below 45%. To search for other hot spots of mutation that might contribute to the reduction of G + C content, we assessed the relative rates of base substitution in our sample of 160 families with hemophilia B. Seventeen independent single-base substitutions are reported herein for a total of 96 independent point mutations in our sample. The following conclusions emerge from the analysis of our data and, where appropriate, the data of others: (1) Transversions at CpG are elevated an estimated 7.7-fold relative to other transversions. (2) The mutation rates at non-CpG dinucleotides are remarkably uniform; none of the observed rates are either more than twofold above the median for transitions or more than threefold above the median for transversions. (3) The pattern of recent mutation is compatible with the pattern during mammalian evolution that has maintained the G + C content of the factor IX gene at approximately 40%. PMID:1897528

  11. Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding

    PubMed Central

    van Steensel, Bas; Delrow, Jeffrey; Bussemaker, Harmen J.

    2003-01-01

    The association of sequence-specific DNA-binding factors with their cognate target sequences in vivo depends on the local molecular context, yet this context is poorly understood. To address this issue, we have performed genomewide mapping of in vivo target genes of Drosophila GAGA factor (GAF). The resulting list of ≈250 target genes indicates that GAF regulates many cellular pathways. We applied unbiased motif-based regression analysis to identify the sequence context that determines GAF binding. Our results confirm that GAF selectively associates with (GA)n repeat elements in vivo. GAF binding occurs in upstream regulatory regions, but less in downstream regions. Surprisingly, GAF binds abundantly to introns but is virtually absent from exons, even though the density of (GA)n is roughly the same. Intron binding occurs equally frequently in last introns compared with first introns, suggesting that GAF may not only regulate transcription initiation, but possibly also elongation. We provide evidence for cooperative binding of GAF to closely spaced (GA)n elements and explain the lack of GAF binding to exons by the absence of such closely spaced GA repeats. Our approach for revealing determinants of context-dependent DNA binding will be applicable to many other transcription factors. PMID:12601174

  12. Glucose availability is a decisive factor for Nrf2-mediated gene expression.

    PubMed

    Heiss, Elke H; Schachner, Daniel; Zimmermann, Kristin; Dirsch, Verena M

    2013-01-01

    Activation of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) is one of the major cellular defense lines against oxidative and xenobiotic stress, but also influences genes involved in lipid and glucose metabolism. It is unresolved whether the cytoprotective and metabolic responses mediated by Nrf2 are connected or separable events in non-malignant cells. In this study we show that activation of Nrf2, either by the small molecule sulforaphane or knockout of the Nrf2 inhibitor Keap1, leads to increased cellular glucose uptake and increased glucose addiction in fibroblasts. Upon Nrf2 activation glucose is preferentially metabolized through the pentose phosphate pathway with increased production of NADPH. Interference with the supply of glucose or the pentose phosphate pathway and NADPH generation not only hampers Nrf2-mediated detoxification of reactive oxygen species on the enzyme level but also Nrf2-initiated expression of antioxidant defense proteins, such as glutathione reductase and heme-oxygenase1. We conclude that the Nrf2-dependent protection against oxidative stress relies on an intact pentose phosphate pathway and that there is crosstalk between metabolism and detoxification already at the level of gene expression in mammalian cells. PMID:24024172

  13. Glucose availability is a decisive factor for Nrf2-mediated gene expression☆

    PubMed Central

    Heiss, Elke H.; Schachner, Daniel; Zimmermann, Kristin; Dirsch, Verena M.

    2013-01-01

    Activation of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) is one of the major cellular defense lines against oxidative and xenobiotic stress, but also influences genes involved in lipid and glucose metabolism. It is unresolved whether the cytoprotective and metabolic responses mediated by Nrf2 are connected or separable events in non-malignant cells. In this study we show that activation of Nrf2, either by the small molecule sulforaphane or knockout of the Nrf2 inhibitor Keap1, leads to increased cellular glucose uptake and increased glucose addiction in fibroblasts. Upon Nrf2 activation glucose is preferentially metabolized through the pentose phosphate pathway with increased production of NADPH. Interference with the supply of glucose or the pentose phosphate pathway and NADPH generation not only hampers Nrf2-mediated detoxification of reactive oxygen species on the enzyme level but also Nrf2-initiated expression of antioxidant defense proteins, such as glutathione reductase and heme-oxygenase1. We conclude that the Nrf2-dependent protection against oxidative stress relies on an intact pentose phosphate pathway and that there is crosstalk between metabolism and detoxification already at the level of gene expression in mammalian cells. PMID:24024172

  14. Proteomic Analysis of Nuclear Factors Binding to an Intronic Enhancer in the Myelin Proteolipid Protein Gene

    PubMed Central

    Dobretsova, Anna; Johnson, Jennifer W.; Jones, Richard C.; Edmondson, Ricky D.; Wight, Patricia A.

    2015-01-01

    The myelin proteolipid protein gene (Plp1) encodes the most abundant protein found in CNS myelin, accounting for nearly one-half of the total protein. Its expression in oligodendrocytes is developmentally regulated – peaking during the active myelination period of CNS development. Previously we have identified a novel enhancer (designated ASE) in intron 1 DNA that appears to be important in mediating the surge of Plp1 gene activity during the active myelination period. Evidence suggests that the ASE participates in the formation of a specialized multi-protein/DNA complex called an enhanceosome. The current study describes an optimized, five-step, DNA affinity chromatography purification procedure to purify nuclear proteins from mouse brain that bind to the 85-bp ASE sequence, specifically. EMSA analysis demonstrated that specific DNA binding activity was retained throughout the purification procedure, resulting in concomitant enrichment of nucleoprotein complexes. Identification of the purported regulatory factors was achieved through mass spectrometry analysis and included over twenty sequence-specific DNA-binding proteins. Supplementary Western blot analyses to determine which of these sequence-specific factors are present in oligodendrocytes, and their developmental and regional expression in whole brain, suggest that Purα and Purβ rank highest among the candidate factors as constituents of the multi-protein complex formed on the ASE. PMID:18266931

  15. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes.

    PubMed Central

    Meissner, R C; Jin, H; Cominelli, E; Denekamp, M; Fuertes, A; Greco, R; Kranz, H D; Penfield, S; Petroni, K; Urzainqui, A; Martin, C; Paz-Ares, J; Smeekens, S; Tonelli, C; Weisshaar, B; Baumann, E; Klimyuk, V; Marillonnet, S; Patel, K; Speulman, E; Tissier, A F; Bouchez, D; Jones, J J; Pereira, A; Wisman, E

    1999-01-01

    More than 92 genes encoding MYB transcription factors of the R2R3 class have been described in Arabidopsis. The functions of a few members of this large gene family have been described, indicating important roles for R2R3 MYB transcription factors in the regulation of secondary metabolism, cell shape, and disease resistance, and in responses to growth regulators and stresses. For the majority of the genes in this family, however, little functional information is available. As the first step to characterizing these genes functionally, the sequences of >90 family members, and the map positions and expression profiles of >60 members, have been determined previously. An important second step in the functional analysis of the MYB family, through a process of reverse genetics that entails the isolation of insertion mutants, is described here. For this purpose, a variety of gene disruption resources has been used, including T-DNA-insertion populations and three distinct populations that harbor transposon insertions. We report the isolation of 47 insertions into 36 distinct MYB genes by screening a total of 73 genes. These defined insertion lines will provide the foundation for subsequent detailed functional analyses for the assignment of specific functions to individual members of the R2R3 MYB gene family. PMID:10521515

  16. Demethionylation of Pro-1 variants of 4-oxalocrotonate tautomerase in Escherichia coli by co-expression with an engineered methionine aminopeptidase

    PubMed Central

    Baas, Bert-Jan; Zandvoort, Ellen; Wasiel, Anna A.; Poelarends, Gerrit J.

    2014-01-01

    4-Oxalocrotonate tautomerase (4-OT) catalyzes the enol-keto tautomerization of 2-hydroxymuconate, utilizing its N-terminal proline (Pro-1) as general base catalyst. Substituting Pro-1 with bulky or charged residues will result in poor or no post-translational removal of the translation-initiating methionine by the methionine aminopeptidase (MetAP) of the Escherichiacoli expression host. Here, we set out to investigate whether co-expression with previously engineered aminopeptidase MetAP-∗TG can be used to produce the P1S, P1H and P1Q variants of 4-OT in a demethionylated form. The P1S variant, which carries a small residue at the penultimate position (the first position after the initiating methionine), was found to be fully processed by wild-type MetAP. The P1S variant has low-level 2-hydroxymuconate tautomerase and promiscuous oxaloacetate decarboxylase activity. The P1Q and P1H variants of 4-OT, which carry bulky residues at the penultimate position, could only be obtained in a demethionylated form (a minor fraction of the purified protein is still composed of methionylated enzyme) by co-expression with MetAP-∗TG. Interestingly, the Gln-1 residue of the demethionylated P1Q variant undergoes intramolecular cyclization to form pyroglutamate (pE), yielding variant P1pE. Whereas the P1H/M1P2H mixture has low-level tautomerase activity, the P1pE/M1P2Q mixture has robust tautomerase activity. The substitution of Pro-1 by Gln, followed by removal of the initiating Met and cyclization of Gln-1 to form pE, is a unique way to obtain a structural analogue of proline on the N-terminus of 4-OT. This opens up new possibilities to study the importance of Pro-1 in recently discovered C–C bond-forming activities of this highly promiscuous tautomerase. PMID:25161874

  17. Association of Factor V Leiden Gene Polymorphism With Arteriovenous Graft Failure

    PubMed Central

    Allon, Michael; Zhang, Li; Maya, Ivan D.; Bray, Molly S.; Fernandez, Jose R.

    2011-01-01

    Background Dialysis grafts fail due to recurrent stenosis and thrombosis. Vasoactive and pro-thrombotic substances affecting intimal hyperplasia or thrombosis may modify graft outcomes. Study design Genetic polymorphisms association study of patients enrolled in a multi-center, randomized clinical trial. Setting and participants 354 Dialysis Access Consortium (DAC) Study patients receiving a new graft with DNA samples obtained. Subjects were randomized to treatment with aspirin+dipyridamole vs placebo. Predictor DNA sequence polymorphisms for the following candidate genes and their interaction with the study intervention: methylenetetrahydrofolate reductase (MTHFR), heme oxygenase 1 (HO-1), Factor V (F5), transforming growth factor β1 (TGF-β1), Klotho, nitric oxide synthase (NOS), and angiotensin converting enzyme (ACE). Outcome Graft failure (>50% stenosis, angioplasty, thrombosis, surgical intervention or permanent loss of function). Results During a median patient follow-up of 34.3 months, 304 grafts failed. After adjusting for clinical factors (patient age, gender, access location, diabetes, cardiovascular disease, baseline aspirin use, body mass index, timing of graft placement, and study treatment) and genetic ancestral background, SNP rs6019 of the Factor V gene was significantly associated with graft failure in a dominant model (HR of 1.70 [95% CI, 1.32–2.19; p<0.001] for G/C and G/G genotypes vs C/C genotypes). There was no significant association between graft failure and polymorphisms of MTHFR, HO-1, TGF-β1, Klotho, NOS, or ACE. Limitations Small sample size Conclusion Factor V Leiden is associated with an increased risk of graft failure. Anticoagulation may reduce graft failure in patients with the G/C or G/G genotypes. PMID:22281051

  18. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier

    PubMed Central

    Peng, Yu-Shiang; Lai, Po-Liang; Peng, Sydney; Wu, His-Chin; Yu, Siang; Tseng, Tsan-Yun; Wang, Li-Fang; Chu, I-Ming

    2014-01-01

    Parkinson’s disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF) have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood–brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI) is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI) and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol) of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively) by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810). This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA) polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the polymer:DNA weight ratio of 10:1, which was 1.7-fold higher than the maximal GDNF expression of PEI1800-g-CHI/DNA. The low toxicity and high transfection efficiency of PEI600-g-CHI make it ideal for application to GDNF gene therapy, which has potential for the treatment of Parkinson’s disease. PMID:25061293

  19. The roles of eighteen baculovirus late expression factor genes in transcription and DNA replication.

    PubMed Central

    Lu, A; Miller, L K

    1995-01-01

    A set of 18 plasmid subclones of the Autographa californica nuclear polyhedrosis virus genome supports expression from a late viral promoter in transient expression assays (J. W. Todd, A. L. Passarelli, and L. K. Miller, J. Virol. 69:968-974, 1995). Using this set of plasmids, we have assigned a role for each of the 18 genes required for optimal late gene expression with respect to its involvement at the levels of transcription, translation, and/or DNA replication. RNase protection analyses demonstrated that all of the known late expression factor genes (lefs) affected the steady-state level of reporter gene RNA. Thus, none of the lefs appeared to be specifically involved in translation. A subset of the lefs supported plasmid replication; ie-1, lef-1, lef-2, lef-3, p143, and p35 were essential for plasmid replication, while ie-n, lef-7, and dnapol had stimulatory effects. The predicted sequence of lef-7 suggests that it is a homolog of herpesvirus single-stranded DNA-binding protein (UL29). The role of p35 in plasmid replication appears to be suppression of apoptosis, because p35 could be functionally replaced in the replication assay by either Cp-iap or Op-iap, two heterologous baculovirus genes which suppress apoptosis by a mechanism which appears to differ from that of p35. Thus, one or more of the replication-related lefs or the process of plasmid replication appears to induce cellular apoptosis. Our results indicate that the remaining lefs, lefs 4 through 11, p47, and 39K (pp31), function either at the level of transcription or at that of mRNA stabilization. PMID:7815565

  20. Developmental stage-specific regulation of atrial natriuretic factor gene transcription in cardiac cells.

    PubMed Central

    Argentin, S; Ardati, A; Tremblay, S; Lihrmann, I; Robitaille, L; Drouin, J; Nemer, M

    1994-01-01

    Cardiac myocytes undergo a major genetic switch within the first week of postnatal development, when cell division ceases terminally and many cardiac genes are either activated or silenced. We have developed stage-specific cardiocyte cultures to analyze transcriptional control of the rat atrial natriuretic factor (ANF) gene to identify the mechanisms underlying tissue-specific and developmental regulation of this gene in the heart. The first 700 bp of ANF flanking sequences was sufficient for cardiac muscle- and stage-specific expression in both atrial and ventricular myocytes, and a cardiac muscle-specific enhancer was localized between -136 and -700 bp. Deletion of this enhancer markedly reduced promoter activity in cardiac myocytes and derepressed ANF promoter activity in nonexpressing cells. Two distinct domains of the enhancer appeared to contribute differentially to cardiac specificity depending on the differentiation stage of the myocytes. DNase I footprinting of the enhancer domain active in differentiated cells revealed four putative regulatory elements including an A+T-rich region and a CArG element. Deletion mutagenesis and promoter reconstitution assays revealed an important role for the CArG-containing element exclusively in cardiac cells, where its activity was switched on in differentiated myocytes. Transcriptional activity of the ANF-CArG box correlated with the presence of a cardiac- and stage-specific DNA-binding complex which was not recognized by the c-fos serum response element. Thus, the use of this in vitro model system representing stage-specific cardiac development unraveled the presence of different regulatory mechanisms for transcription of the ANF gene during cardiac differentiation and may be useful for studying the regulatory pathways of other genes that undergo switching during cardiac myogenesis. Images PMID:8264645

  1. Involvement of GATA transcription factors in the regulation of endogenous bovine interferon-tau gene transcription.

    PubMed

    Bai, Hanako; Sakurai, Toshihiro; Kim, Min-Su; Muroi, Yoshikage; Ideta, Atsushi; Aoyagi, Yoshito; Nakajima, Hiromi; Takahashi, Masashi; Nagaoka, Kentaro; Imakawa, Kazuhiko

    2009-12-01

    Expression of interferon-tau (IFNT), necessary for pregnancy establishment in ruminant ungulates, is regulated in a temporal and spatial manner. However, molecular mechanisms by which IFNT gene transcription is regulated in this manner have not been firmly established. In this study, DNA microarray/RT-PCR analysis between bovine trophoblast CT-1 and Mardin-Darby bovine kidney (MDBK) cells was initially performed, finding that transcription factors GATA2, GATA3, and GATA6 mRNAs were specific to CT-1 cells. These mRNAs were also found in Days 17, 20, and 22 (Day 0 = day of estrus) bovine conceptuses. In examining other bovine cell lines, ovary cumulus granulosa (oCG) and ear fibroblast (EF) cells, GATA2 and GATA3, but not GATA6, were found specific to the bovine trophoblast cells. In transient transfection analyses using the upstream region (-631 to +59 bp) of bovine IFNT gene (bIFNT, IFN-tau-c1), over-expression of GATA2/GATA3 did not affect the transcription of bIFNT-reporter construct in human choriocarcinoma JEG3 cells. Transfection of GATA2, GATA3, ETS2, and/or CDX2, however, was effective in the up-regulation of the bIFNT construct transfected into bovine oCG and EF cells. One Point mutation studies revealed that among six potential GATA binding sites located on the upstream region of the bIFNT gene, the one next to ETS2 site exhibited reduced luciferase activity. In CT-1 cells, endogenous bIFNT gene transcription was up-regulated by over-expression of GATA2 or GATA3, but down-regulated by siRNA specific to GATA2 mRNA. These data suggest that GATA2/3 is involved in trophoblast-specific regulation of bIFNT gene transcription. PMID:19598245

  2. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    SciTech Connect

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  3. Analysis of inversions in the factor VIII gene in Spanish hemophilia A patients and families

    SciTech Connect

    Domenech, M.; Tizzano, E.; Baiget, M.; Altisent, C.

    1994-09-01

    Intron 22 is the largest intron of the factor VIII gene and contains a CpG island from which two additional transcripts originate. One of these transcripts corresponds to the F8A gene which have telomeric extragenic copies in the X chromosome. An inversion involving homologous recombination between the intragenic and the distal or proximal copies of the F8A gene has been recently described as a common cause of severe hemophilia A (HA). We analyzed intron 22 rearrangements in 195 HA patients (123 familial and 72 sporadic cases). According to factor VIII levels, our sample was classified as severe in 114 cases, moderate in 29 cases and mild in 52 cases. An intron 22 (F8A) probe was hybridized to Southern blots of BcII digested DNA obtained from peripheral blood. A clear pattern of altered bands identifies distal or proximal inversions. We detected an abnormal pattern identifying an inversion in 49 (25%) of the analyzed cases. 43% of severe HA patients (49 cases) showed an inversion. As expected, no inversion was found in the moderate and mild group of patients. We found a high proportion (78%) of the distal rearrangement. From 49 identified inversions, 33 were found in familial cases (27%), while the remaining 15 were detected in sporadic patients (22%) in support that this mutational event occurs with a similar frequency in familial or sporadic cases. In addition, we detected a significant tendency of distal inversion to occur more frequently in familial cases than in sporadic cases. Inhibitor development to factor VIII was documented in approximately 1/3 of the patients with inversion. The identification of such a frequent molecular event in severe hemophilia A patients has been applied in our families to carrier and prenatal diagnosis, to determine the origin of the mutation in the sporadic cases and to detect the presence of germinal mosaicism.

  4. Direct lineage reprogramming via pioneer factors; a detour through developmental gene regulatory networks.

    PubMed

    Morris, Samantha A

    2016-08-01

    Although many approaches have been employed to generate defined fate in vitro, the resultant cells often appear developmentally immature or incompletely specified, limiting their utility. Growing evidence suggests that current methods of direct lineage conversion may rely on the transition through a developmental intermediate. Here, I hypothesize that complete conversion between cell fates is more probable and feasible via reversion to a developmentally immature state. I posit that this is due to the role of pioneer transcription factors in engaging silent, unmarked chromatin and activating hierarchical gene regulatory networks responsible for embryonic patterning. Understanding these developmental contexts will be essential for the precise engineering of cell identity. PMID:27486230

  5. Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene, second edition.

    PubMed Central

    Tuddenham, E G; Schwaab, R; Seehafer, J; Millar, D S; Gitschier, J; Higuchi, M; Bidichandani, S; Connor, J M; Hoyer, L W; Yoshioka, A

    1994-01-01

    A large number of different mutations in the factor VIII (F8) gene have been identified as a cause of haemophilia A. This compilation lists known single base-pair substitutions, deletions and insertions in the F8 gene and reviews the status of the inversional events which account for a substantial proportion of mutations causing severe haemophilia A. PMID:7937051

  6. Global Gene Regulation by Fusarium Transcription Factors Tri6 and Tri10 Reveals Adaptations for Toxin Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes are isoprenoid mycotoxins in wheat infected with the filamentous fungus Fusarium graminearum. Some fungal genes for trichothecene biosynthesis (Tri genes) are known to be under control of transcription factors encoded by Tri6 and Tri10. Tri6 and Tri10 deletion mutants were constructed...

  7. Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families.

    PubMed

    Zhang, Zhongbao; Li, Xianglong; Zhang, Chun; Zou, Huawen; Wu, Zhongyi

    2016-09-16

    NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. The 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNF-Ys may have significant roles in the response to abiotic and biotic stresses. PMID:27498027

  8. Analysis of factor VIII gene inversions in 164 unrelated hemophilia A families

    SciTech Connect

    Vnencak-Jones, L.; Phillips, J.A. III; Janco, R.L.

    1994-09-01

    Hemophilia A is an X-linked recessive disease with variable phenotype and both heterogeneous and wide spread mutations in the factor VIII (F8) gene. As a result, diagnostic carrier or prenatal testing often relies upon laborious DNA linkage analysis. Recently, inversion mutations resulting from an intrachromosomal recombination between DNA sequences in one of two A genes {approximately}500 kb upstream from the F8 gene and a homologous A gene in intron 22 of the F8 gene were identified and found in 45% of severe hemophiliacs. We have analyzed banked DNA collected since 1986 from affected males or obligate carrier females representing 164 unrelated hemophilia A families. The disease was sporadic in 37%, familial in 54% and in 10% of families incomplete information was given. A unique deletion was identified in 1/164, a normal pattern was observed in 110/164 (67%), and 53/164 (32%) families had inversion mutations with 43/53 (81%) involving the distal A gene (R3 pattern) and 10/53 (19%) involving the proximal A gene (R2 pattern). While 19% of all rearrangements were R2, in 35 families with severe disease (< 1% VIII:C activity) all 16 rearrangements seen were R3. In 18 families with the R3 pattern and known activities, 16 (89%) had levels < 1%, with the remaining 2 families having {le} 2.4% activity. Further, 18 referrals specifically noted the production of inhibitors and 8/18 (45%) had the R3 pattern. Our findings demonstrate that the R3 inversion mutation patterns is (1) only seen with VIII:C activity levels of {le} 2.4%, (2) seen in 46% of families with severe hemophilia, (3) seen in 45% of hemophiliacs known to have inhibitors, (4) not correlated with sporadic or familial disease and (5) not in disequilibrium with the Bcl I or Taq I intron 18 or ST14 polymorphisms. Finally, in families positive for an inversion mutation, direct testing offers a highly accurate and less expensive alternative to DNA linkage analysis.

  9. AUXIN RESPONSE FACTOR7 Restores the Expression of Auxin-Responsive Genes in Mutant Arabidopsis Leaf Mesophyll ProtoplastsW⃞

    PubMed Central

    Wang, Shucai; Tiwari, Shiv B.; Hagen, Gretchen; Guilfoyle, Tom J.

    2005-01-01

    AUXIN RESPONSE FACTOR7 (ARF7) is one of five ARF transcriptional activators in Arabidopsis thaliana that is proposed to regulate auxin-responsive expression of genes containing TGTCTC auxin response elements in their promoters. An Arabidopsis mutant (nonphototropic hypocotyl4-1 [nph4-1]) that is a null for ARF7 showed strongly reduced expression of integrated auxin-responsive reporter genes and natural genes that were monitored in Arabidopsis leaf mesophyll protoplasts. Expression of the reporter and natural genes was restored in an auxin-dependent manner when protoplasts were transfected with a 35S:ARF7 effector gene, encoding a full-length ARF7 protein. Transfection of effector genes encoding other ARF activators restored auxin-responsive gene expression to varying degrees, but less than that observed with the ARF7 effector gene. Arabidopsis lines that were null for ARF6, ARF8, or ARF19 were not defective in expression of the reporter and natural auxin response genes assayed in mesophyll protoplasts, suggesting that ARF7 plays a major role in regulating expression of a subset of auxin response genes in leaf mesophyll cells. Auxin-responsive gene expression was induced in wild-type protoplasts and restored in nph4-1 protoplasts only with auxin and not with other hormones, including brassinolide. In the presence of auxin, however, brassinolide modestly enhanced auxin-responsive gene expression. PMID:15923351

  10. Multiple hepatocyte-enriched nuclear factors function in the regulation of transthyretin and. alpha. 1-antitrypsin genes

    SciTech Connect

    Costa, R.H. ); Grayson, D.R. ); Darnell, J.E. Jr. )

    1989-04-01

    Transthyretin (TTR) and {alpha}1-antitrypsin ({alpha}1-AT) are expressed at high levels in the liver and also in at least one other cell type. The authors report here a detailed analysis of the proximal regulatory region of the TTR gene, which has uncovered two new DNA-binding factors that are present mainly (or only) in hepatocytes. One of these new factors, hepatocyte nuclear factor 3 (HNF-3), binds to two sites that are crucial in TTR expression as well as to two additional sites in the {alpha}1-AT proximal enhancer region. The second new factor, HNF-4, binds to two sites in TTR that are required for gene activity. The authors had previously identified binding sites for another hepatocyte-enriched DNA-binding protein (C/EBP or a relative thereof), and additional promoter-proximal sites for that protein in both TTR and {alpha}1-AT are also reported here. From these results it seems clear that cell-specific expression is not simply the result of a single cell-specific factor for each gene but the results of a combination of such factors. The variation and distribution of such factors among different cell types could be an important basis for the coordinate expression of the TTR and {alpha}1-AT genes in the liver or the discordant transcriptional activation of these genes in a few other cell types. The identification of such cell-enriched factors is a necessary prelude to understanding the basis for cell specificity.

  11. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter.

    PubMed Central

    Adams, L F; Brown, K L; Whiteley, H R

    1991-01-01

    Two sigma factors, sigma 35 and sigma 28, direct transcription from the Bt I and Bt II promoters of the cryIA(a) gene of Bacillus thuringiensis; this gene encodes a lepidopteran-specific crystal protoxin. These sigma factors were biochemically characterized in previous work (K. L. Brown and H. R. Whiteley, Proc. Natl. Acad. Sci. USA 85:4166-4170, 1988; K. L. Brown and H. R. Whiteley, J. Bacteriol. 172:6682-6688, 1990). In this paper, we describe the cloning of the genes encoding these two sigma factors, as well as their nucleotide and deduced amino acid sequences. The deduced amino acid sequences of the sigma 35 and sigma 28 genes show 88 and 85% identity, respectively, to the sporulation-specific sigma E and sigma K polypeptides of Bacillus subtilis. Transformation of the sigma 35 and sigma 28 genes into B. subtilis shows that the respective B. thuringiensis sigma factor genes can complement spoIIG55 (sigma E) and spoIIIC94 (sigma K) defects. Further, B. thuringiensis core polymerase reconstituted with either the sigma 35 or sigma 28 polypeptide directs transcription from B. subtilis promoters recognized by B. subtilis RNA polymerase containing sigma E and sigma K, respectively. Thus, sigma 35 and sigma 28 of B. thuringiensis appear to be functionally equivalent to sigma E and sigma K of B. subtilis. However, unlike the situation for sigma K in B. subtilis, the homologous sigma 28 gene in B. thuringiensis does not result from a late-sporulation-phase chromosomal rearrangement of two separate, partial genes. Images PMID:1904859

  12. PAX6 Isoforms, along with Reprogramming Factors, Differentially Regulate the Induction of Cornea-specific Genes

    PubMed Central

    Sasamoto, Yuzuru; Hayashi, Ryuhei; Park, Sung-Joon; Saito-Adachi, Mihoko; Suzuki, Yutaka; Kawasaki, Satoshi; Quantock, Andrew J.; Nakai, Kenta; Tsujikawa, Motokazu; Nishida, Kohji

    2016-01-01

    PAX6 is the key transcription factor involved in eye development in humans, but the differential functions of the two PAX6 isoforms, isoform-a and isoform-b, are largely unknown. To reveal their function in the corneal epithelium, PAX6 isoforms, along with reprogramming factors, were transduced into human non-ocular epithelial cells. Herein, we show that the two PAX6 isoforms differentially and cooperatively regulate the expression of genes specific to the structure and functions of the corneal epithelium, particularly keratin 3 (KRT3) and keratin 12 (KRT12). PAX6 isoform-a induced KRT3 expression by targeting its upstream region. KLF4 enhanced this induction. A combination of PAX6 isoform-b, KLF4, and OCT4 induced KRT12 expression. These new findings will contribute to furthering the understanding of the molecular basis of the corneal epithelium specific phenotype. PMID:26899008

  13. Transcription factor AP-2 regulates human immunodeficiency virus type 1 gene expression.

    PubMed Central

    Perkins, N D; Agranoff, A B; Duckett, C S; Nabel, G J

    1994-01-01

    Human immunodeficiency virus type 1 (HIV-1) gene expression is regulated by an enhancer region composed of multiple potential cis-acting regulatory sites. Here, we describe binding sites for the transcription factor AP-2 in the HIV-1 long terminal repeat which modulate HIV enhancer function. One site is embedded within the two previously described kappa B elements, and a second site is detected further downstream. DNase I footprinting and electrophoretic mobility shift assay experiments demonstrated that AP-2 binds to the site between the kappa B elements. Interestingly, AP-2 and NF-kappa B bind to this region in a mutually exclusive manner. Mutations which disrupt this AP-2-binding site lower basal levels of transcription but do not affect NF-kappa B-mediated induction by tumor necrosis factor alpha in Jurkat T leukemia cells. Images PMID:8084021

  14. Association of interleukin 10 and transforming growth factor β gene polymorphisms with chronic idiopathic urticaria.

    PubMed

    Tavakol, Marzieh; Movahedi, Masoud; Amirzargar, Ali Akbar; Aryan, Zahra; Bidoki, Alireza Zare; Heidari, Kimia; Soltani, Samaneh; Gharagozlou, Mohammad; Aghamohammadi, Asghar; Nabavi, Mohammad; Nasiri, Rasoul; Ahmadvand, Alireza; Rezaei, Nima

    2014-01-01

    Transforming growth factor β (TGF-β) and interleukin 10 (IL-10) are two anti-inflammatory cytokines that are implicated in the pathogenesis of urticaria. The goal of this study was to examine the possible association of polymorphisms of TGF-β and IL-10 genes with susceptibility to chronic idiopathic urticaria (CIU). This study was conducted on 90 patients with CIU. Polymerase chain reaction (PCR) was done to determine the genotype at 5 polymorphic sites; TGF-β (codon10C/T and codon25G/C) and IL-10 (-1082G/A, -819C/T, and -592C/A). The C allele at codon 25 of TGF-β was more prevalent in CIU patients compared to controls (OR = 9.5, 95% CI = 5.4-16.8, P<0.001). Genotypes of CT and CG at 10 and 25 codons of TGF-β gene, respectively, and AG, CT, and CA for loci of -1082, -819, and -592 of IL-10 gene were significantly higher in CIU patients (P<0.001). In haplotype analysis, frequency of TGF-β haplotypes differed between patients with CIU and controls; CC haplotype was overrepresented, while CG and TG haplotypes were underrepresented (P<0.001). These results suggest that TGF-β and IL-10 genetic variability could contribute to susceptibility to CIU. Additionally, patients with CIU seem to have genotypes leading to high production of TGF-β and IL-10. PMID:25580782

  15. CREB1 gene polymorphisms combined with environmental risk factors increase susceptibility to major depressive disorder (MDD)

    PubMed Central

    Wang, Peng; Yang, Yanjie; Yang, Xiuxian; Qiu, Xiaohui; Qiao, Zhengxue; Wang, Lin; Zhu, Xiongzhao; Sui, Hong; Ma, Jingsong

    2015-01-01

    Major depressive disorder (MDD) is one of the most severe psychiatric disorders. The objective of this study was to explore the effects of CREB1 gene polymorphisms on risk of developing MDD and the joint effects of gene-environment interactions. Genotyping was performed by Taqman allelic discrimination assay among 586 patients and 586 healthy controls. A significant impact on rs6740584 genotype distribution was found for childhood trauma (P = 0.015). We did not find an association of CREB1 polymorphisms with MDD susceptibility. However, we found a significantly increased risk associated with the interactions of CREB1 polymorphisms and drinking (OR = 11.67, 95% CI = 2.52-54.18; OR = 11.52, 95% CI = 2.55-51.95 for rs11904814; OR = 4.18, 95% CI = 1.87-9.38; OR = 5.02, 95% CI = 2.27-11.14 for rs6740584; OR = 7.58, 95% CI = 2.05-27.98; OR = 7.59, 95% CI = 2.12-27.14 for rs2553206; OR = 8.37, 95% CI = 3.02-23.23; OR = 7.84, 95% CI = 2.93-20.98 for rs2551941). We also noted that CREB polymorphisms combined with family harmony and childhood trauma conferred increased susceptibility for MDD. In conclusion, polymorphisms in the CREB gene may not be independently associated with MDD risk, but they are likely to confer increased susceptibility by interacting with environmental risk factors in the Chinese population. PMID:25755794

  16. Zinc finger transcription factor Slug is a novel target gene of aryl hydrocarbon receptor

    SciTech Connect

    Ikuta, Togo; Kawajiri, Kaname . E-mail: kawajiri@cancer-c.pref.saitama.jp

    2006-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. We previously showed that AhR localizes predominantly in the cytoplasm under high cell densities of a keratinocytes cell line, HaCaT, but accumulates in the nucleus at low cell densities. In the current report, we show that the Slug, which is a member of the snail/slug family of zinc finger transcriptional repressors critical for induction of epithelial-mesenchymal transitions (EMT), is activated transcriptionally in accordance with nuclear accumulation of AhR. By reporter assay of the promoter of the Slug gene, gel shift and chromatin immunoprecipitation analyses showed AhR directly binds to xenobiotic responsive element 5 at - 0.7 kb of the gene. AhR-targeted gene silencing by small interfering RNA duplexes led to the abolishment of not only CYP1A1 but also Slug induction by 3-methycholanthrene. The Slug was co-localized to the AhR at the wound margins of HaCaT cells, where apparent nuclear distribution of AhR and Slug was observed. The induced Slug was associated with reduction of an epithelial marker of cytokeratin-18 and with an increase in the mesenchymal marker, fibronectin. Taken together, these findings suggest that AhR participated in Slug induction, which, in turn, regulates cellular physiology including cell adhesion and migration.

  17. The WRKY Transcription Factor Genes in Eggplant (Solanum melongena L.) and Turkey Berry (Solanum torvum Sw.)

    PubMed Central

    Yang, Xu; Deng, Cao; Zhang, Yu; Cheng, Yufu; Huo, Qiuyue; Xue, Linbao

    2015-01-01

    WRKY transcription factors, which play critical roles in stress responses, have not been characterized in eggplant or its wild relative, turkey berry. The recent availability of RNA-sequencing data provides the opportunity to examine WRKY genes from a global perspective. We identified 50 and 62 WRKY genes in eggplant (SmelWRKYs) and turkey berry (StorWRKYs), respectively, all of which could be classified into three groups (I–III) based on the WRKY protein structure. The SmelWRKYs and StorWRKYs contain ~76% and ~95% of the number of WRKYs found in other sequenced asterid species, respectively. Positive selection analysis revealed that different selection constraints could have affected the evolution of these groups. Positively-selected sites were found in Groups IIc and III. Branch-specific selection pressure analysis indicated that most WRKY domains from SmelWRKYs and StorWRKYs are conserved and have evolved at low rates since their divergence. Comparison to homologous WRKY genes in Arabidopsis revealed several potential pathogen resistance-related SmelWRKYs and StorWRKYs, providing possible candidate genetic resources for improving stress tolerance in eggplant and probably other Solanaceae plants. To our knowledge, this is the first report of a genome-wide analyses of the SmelWRKYs and StorWRKYs. PMID:25853261

  18. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression

    PubMed Central

    Kharerin, Hungyo; Bhat, Paike J.; Marko, John F.; Padinhateeri, Ranjith

    2016-01-01

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA. PMID:26843321

  19. Transcriptional Activation of the Cyclin A Gene by the Architectural Transcription Factor HMGA2

    PubMed Central

    Tessari, Michela A.; Gostissa, Monica; Altamura, Sandro; Sgarra, Riccardo; Rustighi, Alessandra; Salvagno, Clio; Caretti, Giuseppina; Imbriano, Carol; Mantovani, Roberto; Del Sal, Giannino; Giancotti, Vincenzo; Manfioletti, Guidalberto

    2003-01-01

    The HMGA2 protein belongs to the HMGA family of architectural transcription factors, which play an important role in chromatin organization. HMGA proteins are overexpressed in several experimental and human tumors and have been implicated in the process of neoplastic transformation. Hmga2 knockout results in the pygmy phenotype in mice and in a decreased growth rate of embryonic fibroblasts, thus indicating a role for HMGA2 in cell proliferation. Here we show that HMGA2 associates with the E1A-regulated transcriptional repressor p120E4F, interfering with p120E4F binding to the cyclin A promoter. Ectopic expression of HMGA2 results in the activation of the cyclin A promoter and induction of the endogenous cyclin A gene. In addition, chromatin immunoprecipitation experiments show that HMGA2 associates with the cyclin A promoter only when the gene is transcriptionally activated. These data identify the cyclin A gene as a cellular target for HMGA2 and, for the first time, suggest a mechanism for HMGA2-dependent cell cycle regulation. PMID:14645522

  20. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression

    PubMed Central

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  1. The WRKY transcription factor genes in eggplant (Solanum melongena L.) and Turkey Berry (Solanum torvum Sw.).

    PubMed

    Yang, Xu; Deng, Cao; Zhang, Yu; Cheng, Yufu; Huo, Qiuyue; Xue, Linbao

    2015-01-01

    WRKY transcription factors, which play critical roles in stress responses, have not been characterized in eggplant or its wild relative, turkey berry. The recent availability of RNA-sequencing data provides the opportunity to examine WRKY genes from a global perspective. We identified 50 and 62 WRKY genes in eggplant (SmelWRKYs) and turkey berry (StorWRKYs), respectively, all of which could be classified into three groups (I-III) based on the WRKY protein structure. The SmelWRKYs and StorWRKYs contain ~76% and ~95% of the number of WRKYs found in other sequenced asterid species, respectively. Positive selection analysis revealed that different selection constraints could have affected the evolution of these groups. Positively-selected sites were found in Groups IIc and III. Branch-specific selection pressure analysis indicated that most WRKY domains from SmelWRKYs and StorWRKYs are conserved and have evolved at low rates since their divergence. Comparison to homologous WRKY genes in Arabidopsis revealed several potential pathogen resistance-related SmelWRKYs and StorWRKYs, providing possible candidate genetic resources for improving stress tolerance in eggplant and probably other Solanaceae plants. To our knowledge, this is the first report of a genome-wide analyses of the SmelWRKYs and StorWRKYs. PMID:25853261

  2. Prolyl 4-hydroxylase activity-responsive transcription factors: From hydroxylation to gene expression and neuroprotection

    PubMed Central

    Siddiq, Ambreena; Aminova, Leila R; Ratan, Rajiv R

    2008-01-01

    Most homeostatic processes including gene transcription occur as a result of deviations in physiological tone that threatens the survival of the organism. A prototypical homeostatic stress response includes changes in gene expression following alterations in oxygen, iron or 2-oxoglutarate levels. Each of these cofactors plays an important role in cellular metabolism. Accordingly, a family of enzymes known as the Prolyl 4-hydroxylase (PHD) enzymes are a group of dioxygenases that have evolved to sense changes in 2-oxoglutarate, oxygen and iron via changes in enzyme activity. Indeed, PHDs are a part of an established oxygen sensor system that regulates transcriptional regulation of hypoxia/stress-regulated genes and thus are an important component of events leading to cellular rescue from oxygen, iron or 2-oxoglutarate deprivations. The ability of PHD activity to regulate homeostatic responses to oxygen, iron or 2-oxoglutarate metabolism has led to the development of small molecule inhibitors of the PHDs as a strategy for activating or augmenting cellular stress responses. These small molecules are proving effective in preclinical models of stroke and Parkinson's disease. However the precise protective pathways engaged by PHD inhibition are only beginning to be defined. In the current review, we summarize the role of iron, 2-oxoglutarate and oxygen in the PHD catalyzed hydroxylation reaction and provide a brief discussion of some of the transcription factors that play an effective role in neuroprotection against oxidative stress as a result of changes in PHD activity. PMID:17981760

  3. Human Gene-Centered Transcription Factor Networks for Enhancers and Disease Variants

    PubMed Central

    Bass, Juan I. Fuxman; Sahni, Nidhi; Shrestha, Shaleen; Garcia-Gonzalez, Aurian; Mori, Akihiro; Bhat, Numana; Yi, Song; Hill, David E.; Vidal, Marc; Walhout, Albertha J.M.

    2015-01-01

    SUMMARY Gene regulatory networks (GRNs) comprising interactions between transcription factors (TFs) and regulatory loci control development and physiology. Numerous disease-associated mutations have been identified, the vast majority residing in non-coding regions of the genome. As current GRN mapping methods test one TF at a time and require the use of cells harboring the mutation(s) of interest, they are not suitable to identify TFs that bind to wild type and mutant loci. Here, we use gene-centered yeast one-hybrid (eY1H) assays to interrogate binding of 1,086 human TFs to 246 enhancers, as well as to 109 non-coding disease mutations. We detect both loss and gain of TF interactions with mutant loci that are concordant with target gene expression changes. This work establishes eY1H assays as a powerful addition to the toolkit of mapping human GRNs and for the high-throughput characterization of genomic variants that are rapidly being identified by genome-wide association studies. PMID:25910213

  4. Association of transforming growth-factor alpha gene polymorphisms with nonsyndromic cleft palate only (CPO)

    SciTech Connect

    Shiang, R. ); Lidral, A.C.; Ardinger, H.H.; Murray, J.C.; Romitti, P.A.; Munger, R.G.; Buetow, K.H.

    1993-10-01

    Genetic analysis and tissue-specific expression studies support a role for transforming growth-factor alpha (TGFA) in craniofacial development. Previous studies have confirmed an association of alleles for TGFA with nonsyndromic cleft lip with or without cleft palate (CL/P) in humans. The authors carried out a retrospective association study to determine whether specific allelic variants of the TGFA gene are also associated with cleft palate only (CPO). The PCR products from 12 overlapping sets of primers to the TGFA cDNA were examined by using single-strand conformational polymorphism analysis. Four DNA polymorphic sites for TGFA were identified in the 3[prime] untranslated region of the TGFA gene. These variants, as well as previously identified RFLPs for TGFA, were characterized in case and control populations for CPO by using X[sup 2] analysis. A significant association between alleles of TGFA and CPO was identified which further supports a role for this gene as one of the genetic determinants of craniofacial development. Sequence analysis of the variants disclosed a cluster of three variable sites within 30 bp of each other in the 3[prime] untranslated region previously associated with an antisense transcript. These studies extend the role for TGFA in craniofacial morphogenesis and support an interrelated mechanism underlying nonsyndromic forms of CL/P. 46 refs., 3 figs., 3 tabs.

  5. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    PubMed

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration. PMID:26849417

  6. Interaction between ORF24 and ORF34 in the Kaposi's Sarcoma-Associated Herpesvirus Late Gene Transcription Factor Complex Is Essential for Viral Late Gene Expression

    PubMed Central

    Davis, Zoe H.; Hesser, Charles R.; Park, Jimin

    2015-01-01

    Transcription of herpesviral late genes is stimulated after the onset of viral DNA replication but otherwise restricted. Late gene expression in gammaherpesviruses requires the coordination of six early viral proteins, termed viral transactivation factors (vTFs). Here, we mapped the organization of this protein complex for Kaposi's sarcoma-associated herpesvirus. Disruption of this complex via point mutation of the interaction interface between the open reading frame 24 (ORF24) and ORF34 vTFs ablated both late gene expression and viral replication. PMID:26468530

  7. Enhanced jun gene expression is an early genomic response to transforming growth factor. beta. stimulation

    SciTech Connect

    Pertovaara, L.; Sistonen, L.; Keski-Oja, J.; Alitalo, K. ); Bos, T.J.; Vogt, P.K. . Dept. of Microbiology)

    1989-03-01

    Transforming growth factor {beta} (TGF{beta}) is a multifunctional polypeptide4 that regulates proliferation, differentiation, and other functions of many cell types. The pathway of TGF{beta} signal transduction in cells is unknown. The authors report here that an early effect of TGF{beta} is an enhancement of the expression of two genes encoding serum- and phorbol ester tumor promoter-regulated transcription factors: the junB gene and the c-jun proto-oncogene, respectively. This stimulation was observed in human lung adenocarcinoma A549 cells which were growth inhibited by TGF{beta}, AKR-2B mouse embryo fibroblasts which were growth stimulated by TGF{beta}, and K562 human erythroleukemia cells, which were not appreciably affected in their growth by TFG{beta}. The increase in jun mRNA occurred with picomolar TGF{beta} concentrations within 1 h of TGF{beta} stimulation, reached a peak between 1 and 5 h in different cells, and declined gradually to base-fine levels. This mRNA response was followed by a large increase in the biosynthesis of the c-jun protein (AP-1), as shown by metabolic labeling and immunoprecipitation analysis. However, differential and cell type-specific regulation appeared to determine the timing and magnitude of the response of each jun gene in a given cell. In AKR-2B and NIH 3T3 cells, only junB was induced by TGF{beta}, evidently in a protein synthesis-independent fashion. The junB response to TGF{beta} was maintained in c-Ha-ras and neu oncogene-transformed cells. Thus, one of the earliest genomic responses to TGF{beta} may involve nuclear signal transduction and amplification by the junB and c-jun transcription factors in concert with c-fos, which is also induced. The differential activation of the jun genes may explain some of the pleiotropic effects of TGF{beta}.

  8. Mutation of the PIK3CA gene as a prognostic factor in patients with colorectal cancer

    PubMed Central

    STEC, RAFAŁ; SEMENIUK-WOJTAŚ, ALEKSANDRA; CHARKIEWICZ, RADOSŁAW; BODNAR, LUBOMIR; KORNILUK, JAN; SMOTER, MARTA; CHYCZEWSKI, LECH; NIKLIŃSKI, JACEK; SZCZYLIK, CEZARY

    2015-01-01

    Colorectal cancer (CRC) is one of the most common cancers worldwide, with ~700,000 mortalities occurring due to CRC in 2012. The treatment options are effective in a small percentage of patients, and it is important to identify specific biomarkers in order to determine patients for whom the available therapies will be beneficial. It has been hypothesised that the PIK3CA gene mutation may affect the response to therapy of patients with metastatic CRC. In the present study, primary tumour specimens were collected from 156 patients with CRC who were treated in the Military Institute of Medicine in Warsaw (Warsaw, Poland). Codons 12 and 13 of exon 1 of KRAS, exons 11 and 15 of BRAF and exons 9 and 20 of PIK3CA were analysed for mutation using direct sequencing. The prognostic value of each mutation and the clinical and pathological variables of these tumours were estimated. The results revealed that PIK3CA mutations were present in 15 patients (9.6%), of whom seven (46.7%) possessed mutations in codon 9 and eight (53.3%) possessed mutations in codon 20. Mutation in the PIK3CA gene was detected in six patients with KRAS gene mutations, which accounted for 40% of PIK3CA-mutated tumours, and in one patient with BRAF mutations, which accounted for 6.6% of PIK3CA-mutated tumours. No significant differences were identified between the overall survival (OS) rates of patients with PIK3CA mutations (median OS, 56.7 months) and those with wild-type PIK3CA genes (median OS, 47.6 months) (P=0.1270). Univariate analysis identified that the following prognostic factors affected the OS rate in the current patient cohort: Gender, female patients survived for 57.5 months compared with 39.3 months for male patients (P=0.0111); and lymph node involvement grade, as survival of patients without lymph node metastases was 61.4 months compared with 45.4 months in patients presenting with metastases (P=0.0122). The findings of the present analysis indicate that PIK3CA mutation status is not a

  9. Elongation Factor-Tu (EF-Tu) proteins structural stability and bioinformatics in ancestral gene reconstruction

    NASA Astrophysics Data System (ADS)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Schneider, P.; Lieberman, D.; Holden, T.; Cheung, T.

    2013-09-01

    A paleo-experimental evolution report on elongation factor EF-Tu structural stability results has provided an opportunity to rewind the tape of life using the ancestral protein sequence reconstruction modeling approach; consistent with the book of life dogma in current biology and being an important component in the astrobiology community. Fractal dimension via the Higuchi fractal method and Shannon entropy of the DNA sequence classification could be used in a diagram that serves as a simple summary. Results from biomedical gene research provide examples on the diagram methodology. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, DLG1 in cognitive skill, and HLA-C in mosquito bite immunology with EF Tu DNA sequences have accounted for the reported circular dichroism thermo-stability data systematically; the results also infer a relatively less volatility geologic time period from 2 to 3 Gyr from adaptation viewpoint. Comparison to Thermotoga maritima MSB8 and Psychrobacter shows that Thermus thermophilus HB8 EF-Tu calibration sequence could be an outlier, consistent with free energy calculation by NUPACK. Diagram methodology allows computer simulation studies and HAR1 shows about 0.5% probability from chimp to human in terms of diagram location, and SNP simulation results such as amoebic meningoencephalitis NAF1 suggest correlation. Extensions to the studies of the translation and transcription elongation factor sequences in Megavirus Chiliensis, Megavirus Lba and Pandoravirus show that the studied Pandoravirus sequence could be an outlier with the highest fractal dimension and lowest entropy, as compared to chicken as a deviant in the DNMT3A DNA methylation gene sequences from zebrafish to human and to the less than one percent probability in computer simulation using the HAR1 0.5% probability as reference. The diagram methodology would be useful in ancestral gene

  10. The ternary complex factor net is downregulated by hypoxia and regulates hypoxia-responsive genes.

    PubMed

    Gross, Christian; Buchwalter, Gilles; Dubois-Pot, Hélène; Cler, Emilie; Zheng, Hong; Wasylyk, Bohdan

    2007-06-01

    Hypoxia and the Net ternary complex factor (TCF) regulate similar processes (angiogenesis, wound healing, and cellular migration) and genes (PAI-1, c-fos, erg-1, NOS-2, HO-1, and vascular endothelial growth factor genes), suggesting that they are involved in related pathways. We show here that hypoxia regulates Net differently from the other TCFs and that Net plays a role in the hypoxic response in vivo in mice and in cells. Hypoxia induces Net depletion from target promoters, nuclear export, ubiquitylation, and proteasomal degradation. Key mediators of the hypoxic response, the prolyl-4-hydroxylases containing domain proteins (PHDs), regulate Net. PHD downregulation in normoxia leads to Net degradation, and PHD overexpression delays Net downregulation by hypoxia. Net inhibition by RNA interference or mutation leads to altered regulation by hypoxia of the Net targets PAI-1, c-fos, and egr-1. We propose that hypoxia stimulates transcription of target promoters through removal of the repressor function of Net. Interestingly, the hematocrit response to a chemical inducer of hypoxia-like responses (cobalt chloride) is strongly altered in Net mutant mice. Our results show that the Net TCF is part of the biological response to hypoxia, adding a new component to an important pathological and physiological process. PMID:17403894

  11. Alfalfa Enod12 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion.

    PubMed Central

    Bauer, P; Crespi, M D; Szécsi, J; Allison, L A; Schultze, M; Ratet, P; Kondorosi, E; Kondorosi, A

    1994-01-01

    MsEnod12A and MsEnod12B are two early nodulin genes from alfalfa (Medicago sativa). Differential expression of these genes was demonstrated using a reverse transcription-polymerase chain reaction approach. MsEnod12A RNA was detected only in nodules and not in other plant tissues. In contrast, MsEnod12B transcripts were found in nodules and also at low levels in roots, flowers, stems, and leaves. MsEnod12B expression was enhanced in the root early after inoculation with the microsymbiont Rhizobium meliloti and after treatment with purified Nod factors, whereas MsEnod12A induction was detected only when developing nodules were visible. In situ hybridization showed that in nodules, MsEnod12 expression occurred in the infection zone. In empty Fix- nodules the MsEnod12A transcript level was much reduced, and in spontaneous nodules it was not detectable. These data indicate that MsEnod12B expression in roots is related to the action of Nod factors, whereas MsEnod12A expression is associated with the invasion process in nodules. Therefore, alfalfa possesses different mechanisms regulating MsEnod12A and MsEnod12B expression. PMID:8066132

  12. The Myxococcus xanthus dsg gene product performs functions of translation initiation factor IF3 in vivo.

    PubMed Central

    Kalman, L V; Cheng, Y L; Kaiser, D

    1994-01-01

    The amino acid sequence of the Dsg protein is 50% identical to that of translation initiation factor IF3 of Escherichia coli, the product of its infC gene. Anti-E. coli IF3 antibodies cross-react with the Dsg protein. Tn5 insertion mutations in dsg are lethal. When ample nutrients are available, however, certain dsg point mutant strains grow at the same rate as wild-type cells. Under the starvation conditions that induce fruiting body development, these dsg mutants begin to aggregate but fail to develop further. The level of Dsg antigen, as a fraction of total cell protein, does not change detectably during growth and development, as expected for a factor essential for protein synthesis. The amount of IF3 protein in E. coli is known to be autoregulated at the translational level. This autoregulation is lost in an E. coli infC362 missense mutant. The dsg+ gene from Myxococcus xanthus restores normal autoregulation to the infC362 mutant strain. Dsg is distinguished from IF3 of E. coli, other enteric bacteria, and Bacillus stearothermophilus by having a C-terminal tail of 66 amino acids. Partial and complete deletion of this tail showed that it is needed for certain vegetative and developmental functions but not for viability. Images PMID:8113185

  13. Effective gene therapy for haemophilic mice with pathogenic factor IX antibodies

    PubMed Central

    Markusic, David M; Hoffman, Brad E; Perrin, George Q; Nayak, Sushrusha; Wang, Xiaomei; LoDuca, Paul A; High, Katherine A; Herzog, Roland W

    2013-01-01

    Formation of pathogenic antibodies is a major problem in replacement therapies for inherited protein deficiencies. For example, antibodies to coagulation factors (‘inhibitors’) seriously complicate treatment of haemophilia. While immune tolerance induction (ITI) protocols have been developed, inhibitors against factor IX (FIX) are difficult to eradicate due to anaphylactic reactions and nephrotic syndrome and thus substantially elevate risks for morbidity and mortality. However, hepatic gene transfer with an adeno-associated virus (AAV) serotype 8 vector expressing FIX (at levels of ≥4% of normal) rapidly reversed pre-existing high-titre inhibitors in haemophilia B mice, eliminated antibody production by B cells, desensitized from anaphylaxis (even if protein therapy was resumed) and provided long-term correction. High levels of FIX protein suppressed memory B cells and increased Treg induction, indicating direct and indirect mechanisms of suppression of inhibitor formation. Persistent presence of Treg was required to prevent relapse of antibodies. Together, these data suggest that hepatic gene transfer-based ITI provides a safe and effective alternative to eradicate inhibitors. This strategy may be broadly applicable to reversal of antibodies in different genetic diseases. PMID:24106230

  14. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  15. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

    PubMed

    Stanga, Serena; Zanou, Nadège; Audouard, Emilie; Tasiaux, Bernadette; Contino, Sabrina; Vandermeulen, Gaëlle; René, Frédérique; Loeffler, Jean-Philippe; Clotman, Frédéric; Gailly, Philippe; Dewachter, Ilse; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2016-05-01

    Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation. PMID:26718890

  16. Tumor necrosis factor alpha negatively regulates hepatitis B virus gene expression in transgenic mice.

    PubMed Central

    Gilles, P N; Fey, G; Chisari, F V

    1992-01-01

    It is well known that several inflammatory cytokines can modulate hepatocellular gene expression in a complex physiological process known as the hepatic acute-phase response. Since hepatitis B virus (HBV) characteristically induces a vigorous lymphomononuclear inflammatory response in the liver during acute and chronic hepatitis, it is possible that hepatocellular HBV gene expression may also be modulated by one or more of the cytokines produced by these cells. Using bacterial lipopolysaccharide (LPS) as a surrogate inducer of inflammatory cytokines in vivo, we have tested this hypothesis in a transgenic mouse model system. In experiments with two independent transgenic mouse lineages that express the HBV envelope region under the control of either HBV or cellular promoters, we observed a 50 to 80% reduction in the hepatic steady-state content of a 2.1-kb HBV mRNA following administration of a single intraperitoneal dose of LPS. The regulatory influence of several inflammatory cytokines known to be induced by LPS was also examined in this system. The negative regulatory effect of LPS was consistently reproduced by the administration of a single nontoxic dose of tumor necrosis factor alpha, and it was occasionally observed following the administration of high doses of alpha interferon and interleukin-6, while no effect was detectable in response to high-dose interleukin-1 alpha or to gamma interferon. These observations suggest that tumor necrosis factor alpha and perhaps other cytokines may activate a heretofore unsuspected intracellular pathway that negatively regulates HBV gene expression. The intracellular mechanism(s) responsible for this effect and its pathophysiologic relevance remain to be elucidated. Images PMID:1583737

  17. Epidermal Growth Factor Receptor Tyrosine Kinase Defines Critical Prognostic Genes of Stage I Lung Adenocarcinoma

    PubMed Central

    Nagasaki, Masao; Shimamura, Teppei; Imoto, Seiya; Saito, Ayumu; Ueno, Kazuko; Hatanaka, Yousuke; Yoshida, Ryo; Higuchi, Tomoyuki; Nomura, Masaharu; Beer, David G.; Yokota, Jun; Miyano, Satoru; Gotoh, Noriko

    2012-01-01

    Purpose To identify stage I lung adenocarcinoma patients with a poor prognosis who will benefit from adjuvant therapy. Patients and Methods Whole gene expression profiles were obtained at 19 time points over a 48-hour time course from human primary lung epithelial cells that were stimulated with epidermal growth factor (EGF) in the presence or absence of a clinically used EGF receptor tyrosine kinase (RTK)-specific inhibitor, gefitinib. The data were subjected to a mathematical simulation using the State Space Model (SSM). “Gefitinib-sensitive” genes, the expressional dynamics of which were altered by addition of gefitinib, were identified. A risk scoring model was constructed to classify high- or low-risk patients based on expression signatures of 139 gefitinib-sensitive genes in lung cancer using a training data set of 253 lung adenocarcinomas of North American cohort. The predictive ability of the risk scoring model was examined in independent cohorts of surgical specimens of lung cancer. Results The risk scoring model enabled the identification of high-risk stage IA and IB cases in another North American cohort for overall survival (OS) with a hazard ratio (HR) of 7.16 (P = 0.029) and 3.26 (P = 0.0072), respectively. It also enabled the identification of high-risk stage I cases without bronchioalveolar carcinoma (BAC) histology in a Japanese cohort for OS and recurrence-free survival (RFS) with HRs of 8.79 (P = 0.001) and 3.72 (P = 0.0049), respectively. Conclusion The set of 139 gefitinib-sensitive genes includes many genes known to be involved in biological aspects of cancer phenotypes, but not known to be involved in EGF signaling. The present result strongly re-emphasizes that EGF signaling status in cancer cells underlies an aggressive phenotype of cancer cells, which is useful for the selection of early-stage lung adenocarcinoma patients with a poor prognosis. Trial Registration The Gene Expression Omnibus (GEO) GSE31210 PMID:23028479

  18. Serum Response Factor Mediated Gene Activity in Physiological and Pathological Processes of Neuronal Motility

    PubMed Central

    Knöll, Bernd

    2011-01-01

    In recent years, the transcription factor serum response factor (SRF) was shown to contribute to various physiological processes linked to neuronal motility. The latter include cell migration, axon guidance, and, e.g., synapse function relying on cytoskeletal dynamics, neurite outgrowth, axonal and dendritic differentiation, growth cone motility, and neurite branching. SRF teams up with myocardin related transcription factors (MRTFs) and ternary complex factors (TCFs) to mediate cellular actin cytoskeletal dynamics and the immediate-early gene (IEG) response, a bona fide indicator of neuronal activation. Herein, I will discuss how SRF and cofactors might modulate physiological processes of neuronal motility. Further, potential mechanisms engaged by neurite growth promoting molecules and axon guidance cues to target SRF’s transcriptional machinery in physiological neuronal motility will be presented. Of note, altered cytoskeletal dynamics and rapid initiation of an IEG response are a hallmark of injured neurons in various neurological disorders. Thus, SRF and its MRTF and TCF cofactors might emerge as a novel trio modulating peripheral and central axon regeneration. PMID:22164132

  19. Candidate genes and their interactions with other genetic / environmental risk factors in the etiology of schizophrenia

    PubMed Central

    Prasad, KM; Talkowski, MT; Chowdari, KV; McClain, L; Yolken, RH

    2016-01-01

    Identification of causative factors for common, chronic disorders is a major focus of current human health science research. These disorders are likely to be caused by multiple etiological agents. Available evidence also suggests that interactions between the risk factors may explain some of their pathogenic effects. While progress in genomics and allied biological research has brought forth powerful analytic techniques, the predicted complexity poses daunting analytic challenges. The search for pathogenesis of schizophrenia shares most of these challenges. We have reviewed the analytic and logistic problems associated with the search for pathogenesis. Evidence for pathogenic interactions is presented for selected diseases and for schizophrenia. We end by suggesting ‘recursive analyses’ as a potential design to address these challenges. This scheme involves initial focused searches for interactions motivated by available evidence, typically involving identified individual risk factors, such as candidate gene variants. Putative interactions are tested rigorously for replication and for biological plausibility. Support for the interactions from statistical and functional analyses motivates a progressively larger array of interactants that are evaluated recursively. The risk explained by the interactions is assessed concurrently and further elaborate searches may be guided by the results of such analyses. By way of example, we summarize our ongoing analyses of dopaminergic polymorphisms, as well as infectious etiological factors in schizophrenia genesis to exemplify this approach. PMID:19729054

  20. Genes encoding tumor necrosis factor alpha and granzyme A are expressed during development of autoimmune diabetes.

    PubMed Central

    Held, W; MacDonald, H R; Weissman, I L; Hess, M W; Mueller, C

    1990-01-01

    Progressive destruction of the insulin-producing beta cells in nonobese diabetic mice is observed after infiltration of the pancreas with lymphocytes [Makino, S., Kunimoto, K., Muraoka, Y., Mizushima, Y., Katagiri, K. & Tochino, Y. (1980) Exp. Anim. (Tokyo) 29, 1-13]. We show that the genes for tumor necrosis factor alpha and granzyme A, a serine protease associated with cytoplasmic granules of cytotoxic cells, are expressed during the development of spontaneous diabetes mellitus in the nonobese diabetic mouse. Granzyme A-positive cells are found both in and surrounding the islets, implying induction prior to islet infiltration. Tumor necrosis factor alpha expression is exclusively observed in the intra-islet infiltrate, predominantly in lymphocytes adjacent to insulin-producing beta cells, the targets of the autoimmune destruction, implying that tumor necrosis factor alpha expression is induced locally--i.e., in the islet. A considerable portion of cells expressing tumor necrosis factor alpha appear to be CD4+ T cells. This T-cell subset was previously shown to be necessary for development of the disease. Thus, these findings may be important for understanding the pathogenesis of autoimmune diabetes mellitus and potentially also for that of other T-cell-mediated autoimmune diseases. Images PMID:2179951

  1. Negative elongation factor NELF controls transcription of immediate early genes in a stimulus-specific manner

    SciTech Connect

    Fujita, Toshitsugu; Piuz, Isabelle; Schlegel, Werner

    2009-01-15

    The transcription rate of immediate early genes (IEGs) is controlled directly by transcription elongation factors at the transcription elongation step. Negative elongation factor (NELF) and 5,6-dichloro-1-{beta}-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) stall RNA polymerase II (pol II) soon after transcription initiation. Upon induction of IEG transcription, DSIF is converted into an accelerator for pol II elongation. To address whether and how NELF as well as DSIF controls overall IEG transcription, its expression was reduced using stable RNA interference in GH4C1 cells. NELF knock-down reduced thyrotropin-releasing hormone (TRH)-induced transcription of the IEGs c-fos, MKP-1, and junB. In contrast, epidermal growth factor (EGF)-induced transcription of these IEGs was unaltered or even slightly increased by NELF knock-down. Thus, stable knock-down of NELF affects IEG transcription stimulation-specifically. Conversely, DSIF knock-down reduced both TRH- and EGF-induced transcription of the three IEGs. Interestingly, TRH-induced activation of the MAP kinase pathway, a pathway essential for transcription of the three IEGs, was down-regulated by NELF knock-down. Thus, stable knock-down of NELF, by modulating intracellular signaling pathways, caused stimulation-specific loss of IEG transcription. These observations indicate that NELF controls overall IEG transcription via multiple mechanisms both directly and indirectly.

  2. Brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cells

    PubMed Central

    HAN, ZHONG-MIN; HUANG, HE-MEI; WANG, FEI-FEI

    2015-01-01

    The present study aimed to investigate the effects of human brain-derived neurotrophic factor (hBDNF) on the differentiation of bone marrow mesenchymal stem cells (MSCs) into neuron-like cells. Lentiviral vectors carrying the hBDNF gene were used to modify the bone marrow stromal cells (BMSCs) of Sprague-Dawley (SD) rats. The rat BMSCs were isolated, cultured and identified. A lentivirus bearing hBDNF and enhanced green fluorescent protein (eGFP) genes was subcultured and used to infect the SD rat BMSCs. The expression of eGFP was observed under a fluorescence microscope to determine the infection rate and growth of the transfected cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) was used to detect the proliferation rate of cells following transfection. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to detect the expression levels of hBDNF. Differentiation of neuron-like cells was induced in vitro and the differentiation rate of the induced neural-like cells was compared with that in control groups and analyzed statistically. In the cultured cells, flow cytometry demonstrated positive expression of cluster of differentiation (CD)90 and CD44, and negative expression of CD34 and CD45. The proliferation rate of the rat BMSCs increased following gene transfection. The expression of hBDNF-eGFP was detected in the BMSCs of the experimental group. The differentiation rate of hBDNF-modified cells into neuron-like cells in the experimental group was higher compared with that in empty plasmid and untransfected negative control groups. The difference was statistically significant (P<0.05). Thus, BDNF gene transfection is able to promote the differentiation of BMSCs into neuron-like cells. BDNF may play an important role in the differentiation of MSCs into neuron-like cells. PMID:25574226

  3. Copy number variants in patients with intellectual disability affect the regulation of ARX transcription factor gene.

    PubMed

    Ishibashi, Minaka; Manning, Elizabeth; Shoubridge, Cheryl; Krecsmarik, Monika; Hawkins, Thomas A; Giacomotto, Jean; Zhao, Ting; Mueller, Thomas; Bader, Patricia I; Cheung, Sau W; Stankiewicz, Pawel; Bain, Nicole L; Hackett, Anna; Reddy, Chilamakuri C S; Mechaly, Alejandro S; Peers, Bernard; Wilson, Stephen W; Lenhard, Boris; Bally-Cuif, Laure; Gecz, Jozef; Becker, Thomas S; Rinkwitz, Silke

    2015-11-01

    Protein-coding mutations in the transcription factor-encoding gene ARX cause various forms of intellectual disability (ID) and epilepsy. In contrast, variations in surrounding non-coding sequences are correlated with milder forms of non-syndromic ID and autism and had suggested the importance of ARX gene regulation in the etiology of these disorders. We compile data on several novel and some already identified patients with or without ID that carry duplications of ARX genomic region and consider likely genetic mechanisms underlying the neurodevelopmental defects. We establish the long-range regulatory domain of ARX and identify its brain region-specific autoregulation. We conclude that neurodevelopmental disturbances in the patients may not simply arise from increased dosage due to ARX duplication. This is further exemplified by a small duplication involving a non-functional ARX copy, but with duplicated enhancers. ARX enhancers are located within a 504-kb region and regulate expression specifically in the forebrain in developing and adult zebrafish. Transgenic enhancer-reporter lines were used as in vivo tools to delineate a brain region-specific negative and positive autoregulation of ARX. We find autorepression of ARX in the telencephalon and autoactivation in the ventral thalamus. Fluorescently labeled brain regions in the transgenic lines facilitated the identification of neuronal outgrowth and pathfinding disturbances in the ventral thalamus and telencephalon that occur when arxa dosage is diminished. In summary, we have established a model for how breakpoints in long-range gene regulation alter the expression levels of a target gene brain region-specifically, and how this can cause subtle neuronal phenotypes relating to the etiology of associated neuropsychiatric disease. PMID:26337422

  4. Diversification and Molecular Evolution of ATOH8, a Gene Encoding a bHLH Transcription Factor

    PubMed Central

    Balakrishnan-Renuka, Ajeesh; Leese, Florian; Schempp, Werner; Schaller, Felix; Hoffmann, Michael M.; Morosan-Puopolo, Gabriela; Yusuf, Faisal; Bisschoff, Izak Johannes; Chankiewitz, Verena; Xue, Jinglun; Chen, Jingzhong; Ying, Kang; Brand-Saberi, Beate

    2011-01-01

    ATOH8 is a bHLH domain transcription factor implicated in the development of the nervous system, kidney, pancreas, retina and muscle. In the present study, we collected sequence of ATOH8 orthologues from 18 vertebrate species and 24 invertebrate species. The reconstruction of ATOH8 phylogeny and sequence analysis showed that this gene underwent notable divergences during evolution. For those vertebrate species investigated, we analyzed the gene structure and regulatory elements of ATOH8. We found that the bHLH domain of vertebrate ATOH8 was highly conserved. Mammals retained some specific amino acids in contrast to the non-mammalian orthologues. Mammals also developed another potential isoform, verified by a human expressed sequence tag (EST). Comparative genomic analyses of the regulatory elements revealed a replacement of the ancestral TATA box by CpG-islands in the eutherian mammals and an evolutionary tendency for TATA box reduction in vertebrates in general. We furthermore identified the region of the effective promoter of human ATOH8 which could drive the expression of EGFP reporter in the chicken embryo. In the opossum, both the coding region and regulatory elements of ATOH8 have some special features, such as the unique extended C-terminus encoded by the third exon and absence of both CpG islands and TATA elements in the regulatory region. Our gene mapping data showed that in human, ATOH8 was hosted in one chromosome which is a fusion product of two orthologous chromosomes in non-human primates. This unique chromosomal environment of human ATOH8 probably subjects its expression to the regulation at chromosomal level. We deduce that the great interspecific differences found in both ATOH8 gene sequence and its regulatory elements might be significant for the fine regulation of its spatiotemporal expression and roles of ATOH8, thus orchestrating its function in different tissues and organisms. PMID:21857980

  5. Combined folate gene MTHFD and TC polymorphisms as maternal risk factors for Down syndrome in China.

    PubMed

    Liao, Y P; Zhang, D; Zhou, W; Meng, F M; Bao, M S; Xiang, P; Liu, C Q

    2014-01-01

    We examined whether polymorphisms in the methylenetetrahydrofolate dehydrogenase (MTHFD) and transcobalamin (TC) genes, which are involved in folate metabolism, affect maternal risk for Down syndrome. We investigated 76 Down syndrome mothers and 115 control mothers from Bengbu, China. Genomic DNA was isolated from the peripheral lymphocytes. Polymerase chain reaction and restriction fragment length polymorphism were used to examine the polymorphisms of MTHFD G1958A and TC C776G. The frequencies of the polymorphic alleles were 24.3 and 19.1% for MTHFD 1958A, 53.9 and 54.2% for TC 776G, in the case and control groups, respectively. No significant differences were found between two groups in relation to either the allele or the genotype frequency for both polymorphisms. However, when gene-gene interactions between these two polymorphisms together with previous studied C677T and A1298C polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene were analyzed, the combined MTHFR 677CT/TT and MTHFD 1958AA/GA genotype was found to be significantly associated with the risk of having a Down syndrome child [odds ratio (OR) = 3.11; 95% confidence interval (95%CI) = 1.07-9.02]. In addition, the combined TC 776CG and MTHFR 677TT genotype increased the risk of having a child with Down syndrome 3.64-fold (OR = 3.64; 95%CI = 1.28-10.31). In conclusion, neither MTHFD G1958A nor TC C776G polymorphisms are an independent risk factor for Down syndrome. However, the combined MTHFD/MTHFR, TC/MTHFR genotypes play a role in the risk of bearing a Down syndrome child in the Chinese population. PMID:24668664

  6. Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines

    PubMed Central

    Olsen, Aaron; Chen, Yong; Ji, Qingzhou; Zhu, Guofeng; De Silva, Aruna Dharshan; Vilchèze, Catherine; Weisbrod, Torin; Li, Weimin; Xu, Jiayong; Larsen, Michelle; Zhang, Jinghang; Porcelli, Steven A.; Jacobs, William R.

    2016-01-01

    ABSTRACT Tumor necrosis factor alpha (TNF) plays a critical role in the control of Mycobacterium tuberculosis, in part by augmenting T cell responses through promoting macrophage phagolysosomal fusion (thereby optimizing CD4+ T cell immunity by enhancing antigen presentation) and apoptosis (a process that can lead to cross-priming of CD8+ T cells). M. tuberculosis can evade antituberculosis (anti-TB) immunity by inhibiting host cell TNF production via expression of specific mycobacterial components. We hypothesized that M. tuberculosis mutants with an increased capacity to induce host cell TNF production (TNF-enhancing mutants) and thus with enhanced immunogenicity can be useful for vaccine development. To identify mycobacterial genes that regulate host cell TNF production, we used a TNF reporter macrophage clone to screen an H37Rv M. tuberculosis cosmid library constructed in M. smegmatis. The screen has identified a set of TNF-downregulating mycobacterial genes that, when deleted in H37Rv, generate TNF-enhancing mutants. Analysis of mutants disrupted for a subset of TNF-downregulating genes, annotated to code for triacylglycerol synthases and fatty acyl-coenzyme A (acyl-CoA) synthetase, enzymes that concern lipid biosynthesis and metabolism, has revealed that these strains can promote macrophage phagolysosomal fusion and apoptosis better than wild-type (WT) bacilli. Immunization of mice with the TNF-enhancing M. tuberculosis mutants elicits CD4+ and CD8+ T cell responses that are superior to those engendered by WT H37Rv. The results suggest that TNF-upregulating M. tuberculosis genes can be targeted to enhance the immunogenicity of mycobacterial strains that can serve as the substrates for the development of novel anti-TB vaccines. PMID:27247233

  7. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer

    PubMed Central

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  8. Inversions in the factor VIII gene: improvement of carrier detection and prenatal diagnosis in Dutch haemophilia A families.

    PubMed Central

    Deutz-Terlouw, P P; Losekoot, M; Olmer, R; Pieneman, W C; de Vries-v d Weerd, S; Briët, E; Bakker, E

    1995-01-01

    Haemophilia A is an X linked bleeding disorder caused by a heterogeneous spectrum of mutations in the factor VIII gene. It has recently been reported that about 50% of severe haemophilia A cases are the result of an iversion in the factor VIII gene. The inversion results from homologous recombination between the A gene located in intron 22 of the FVIII gene and one of the two distal A genes, thus disrupting the coding sequence of the factor VIII gene. The inversion can be detected by conventional Southern blotting and hybridisation techniques. Here we present an analysis of 177 unrelated Dutch haemophilia A cases for the presence of an inversion. In 57% of the patients with severe disease an inversion was found and also in at least one of the 26 patients with moderately severe disease. The majority of inversions (85%) involved the most distal A gene, while in a minority (15%) the more proximal A gene was involved. We show that direct mutation detection greatly improves the assessment of carrier status and prenatal diagnosis for haemophilia A, especially in families with an isolated patient. The inversion is predominantly of grandpaternal origin. Images PMID:7643361

  9. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer.

    PubMed

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  10. Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL.

    PubMed

    Dixit, Shalabh; Kumar Biswal, Akshaya; Min, Aye; Henry, Amelia; Oane, Rowena H; Raorane, Manish L; Longkumer, Toshisangba; Pabuayon, Isaiah M; Mutte, Sumanth K; Vardarajan, Adithi R; Miro, Berta; Govindan, Ganesan; Albano-Enriquez, Blesilda; Pueffeld, Mandy; Sreenivasulu, Nese; Slamet-Loedin, Inez; Sundarvelpandian, Kalaipandian; Tsai, Yuan-Ching; Raghuvanshi, Saurabh; Hsing, Yue-Ie C; Kumar, Arvind; Kohli, Ajay

    2015-01-01

    Sub-QTLs and multiple intra-QTL genes are hypothesized to underpin large-effect QTLs. Known QTLs over gene families, biosynthetic pathways or certain traits represent functional gene-clusters of genes of the same gene ontology (GO). Gene-clusters containing genes of different GO have not been elaborated, except in silico as coexpressed genes within QTLs. Here we demonstrate the requirement of multiple intra-QTL genes for the full impact of QTL qDTY12.1 on rice yield under drought. Multiple evidences are presented for the need of the transcription factor 'no apical meristem' (OsNAM12.1) and its co-localized target genes of separate GO categories for qDTY12.1 function, raising a regulon-like model of genetic architecture. The molecular underpinnings of qDTY12.1 support its effectiveness in further improving a drought tolerant genotype and for its validity in multiple genotypes/ecosystems/environments. Resolving the combinatorial value of OsNAM12.1 with individual intra-QTL genes notwithstanding, identification and analyses of qDTY12.1has fast-tracked rice improvement towards food security. PMID:26507552

  11. Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL

    PubMed Central

    Dixit, Shalabh; Kumar Biswal, Akshaya; Min, Aye; Henry, Amelia; Oane, Rowena H.; Raorane, Manish L.; Longkumer, Toshisangba; Pabuayon, Isaiah M.; Mutte, Sumanth K.; Vardarajan, Adithi R.; Miro, Berta; Govindan, Ganesan; Albano-Enriquez, Blesilda; Pueffeld, Mandy; Sreenivasulu, Nese; Slamet-Loedin, Inez; Sundarvelpandian, Kalaipandian; Tsai, Yuan-Ching; Raghuvanshi, Saurabh; Hsing, Yue-Ie C.; Kumar, Arvind; Kohli, Ajay

    2015-01-01

    Sub-QTLs and multiple intra-QTL genes are hypothesized to underpin large-effect QTLs. Known QTLs over gene families, biosynthetic pathways or certain traits represent functional gene-clusters of genes of the same gene ontology (GO). Gene-clusters containing genes of different GO have not been elaborated, except in silico as coexpressed genes within QTLs. Here we demonstrate the requirement of multiple intra-QTL genes for the full impact of QTL qDTY12.1 on rice yield under drought. Multiple evidences are presented for the need of the transcription factor ‘no apical meristem’ (OsNAM12.1) and its co-localized target genes of separate GO categories for qDTY12.1 function, raising a regulon-like model of genetic architecture. The molecular underpinnings of qDTY12.1 support its effectiveness in further improving a drought tolerant genotype and for its validity in multiple genotypes/ecosystems/environments. Resolving the combinatorial value of OsNAM12.1 with individual intra-QTL genes notwithstanding, identification and analyses of qDTY12.1has fast-tracked rice improvement towards food security. PMID:26507552

  12. Activation of a T-box-Otx2-Gsc gene network independent of TBP and TBP-related factors

    PubMed Central

    Gazdag, Emese; Jacobi, Ulrike G.; van Kruijsbergen, Ila; Weeks, Daniel L.

    2016-01-01

    Embryonic development relies on activating and repressing regulatory influences that are faithfully integrated at the core promoter of individual genes. In vertebrates, the basal machinery recognizing the core promoter includes TATA-binding protein (TBP) and two TBP-related factors. In Xenopus embryos, the three TBP family factors are all essential for development and are required for expression of distinct subsets of genes. Here, we report on a non-canonical TBP family-insensitive (TFI) mechanism of transcription initiation that involves mesoderm and organizer gene expression. Using TBP family single- and triple-knockdown experiments, α-amanitin treatment, transcriptome profiling and chromatin immunoprecipitation, we found that TFI gene expression cannot be explained by functional redundancy, is supported by active transcription and shows normal recruitment of the initiating form of RNA polymerase II to the promoter. Strikingly, recruitment of Gcn5 (also known as Kat2a), a co-activator that has been implicated in transcription initiation, to TFI gene promoters is increased upon depletion of TBP family factors. TFI genes are part of a densely connected TBP family-insensitive T-box-Otx2-Gsc interaction network. The results indicate that this network of genes bound by Vegt, Eomes, Otx2 and Gsc utilizes a novel, flexible and non-canonical mechanism of transcription that does not require TBP or TBP-related factors. PMID:26952988

  13. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    DOE PAGESBeta

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; Hill, Karen K.; Detter, John C.; Arnon, Stephen S.

    2014-05-22

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bontmore » gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.« less

  14. Regulation of platelet-activating factor receptor gene expression in vivo by endotoxin, platelet-activating factor and endogenous tumour necrosis factor.

    PubMed Central

    Wang, H; Tan, X; Chang, H; Gonzalez-Crussi, F; Remick, D G; Hsueh, W

    1997-01-01

    A competitive PCR assay was developed to quantify platelet-activating factor (PAF) receptor (PAF-R) transcripts in rat tissues using a synthetic RNA as a competitor. We found PAF-R mRNA constitutively expressed in the eight organs tested, with the ileum containing the highest concentration [(3.49+/-0.15) x 10(7) molecules/microg of RNA]. Significant but lower levels were also detected in the jejunum, spleen, lungs, kidneys, heart, stomach and liver. Furthermore we defined the regulatory role of inflammatory mediators in ileal PAF-R gene expression using a rat model of intestinal injury induced by PAF or lipopolysaccharide (LPS). Injection of LPS or low-dose PAF resulted in a marked increase in ileal PAF-R mRNA within 30 min. The up-regulation on PAF-R elicited by PAF was biphasic, peaking first at 90 min, then again at 6 h. In contrast, LPS elicited a weak monophasic response. The second phase of PAF-R mRNA increase after PAF administration was completely abolished by WEB 2170, a PAF antagonist, and partially inhibited by antitumour necrosis factor (TNF) antibody. These observations indicate the involvement of endogenous PAF and TNF in this event. In conclusion, we found: (a) preferential PAF-R expression in the ileum, suggesting a role for PAF in intestinal inflammation; (b) induction of PAF-R expression in vivo by its own agonist; (c) a complex regulation of PAR-R gene expression in vivo involving a network of various pro-inflammatory mediators. PMID:9065783

  15. Factor IXMadrid 2: a deletion/insertion in factor IX gene which abolishes the sequence of the donor junction at the exon IV-intron d splice site.

    PubMed Central

    Solera, J; Magallón, M; Martin-Villar, J; Coloma, A

    1992-01-01

    DNA from a patient with severe hemophilia B was evaluated by RFLP analysis, producing results which suggested the existence of a partial deletion within the factor IX gene. The deletion was further localized and characterized by PCR amplification and sequencing. The altered allele has a 4,442-bp deletion which removes both the donor splice site located at the 5' end of intron d and the two last coding nucleotides located at the 3' end of exon IV in the normal factor IX gene; this fragment has been replaced by a 47-bp sequence from the normal factor IX gene, although this fragment has been inserted in inverted orientation. Two homologous sequences have been discovered at the ends of the deleted DNA fragment. Images Figure 1 PMID:1346483

  16. Association of Nuclear Factor-Erythroid 2-Related Factor 2, Thioredoxin Interacting Protein, and Heme Oxygenase-1 Gene Polymorphisms with Diabetes and Obesity in Mexican Patients

    PubMed Central

    Jiménez-Osorio, Angélica Saraí; González-Reyes, Susana; García-Niño, Wylly Ramsés; Moreno-Macías, Hortensia; Rodríguez-Arellano, Martha Eunice; Vargas-Alarcón, Gilberto; Zúñiga, Joaquín; Barquera, Rodrigo; Pedraza-Chaverri, José

    2016-01-01

    The nuclear factor-erythroid 2- (NF-E2-) related factor 2 (Nrf2) is abated and its ability to reduce oxidative stress is impaired in type 2 diabetes and obesity. Thus, the aim of this study was to explore if polymorphisms in Nrf2 and target genes are associated with diabetes and obesity in Mexican mestizo subjects. The rs1800566 of NAD(P)H:quinone oxidoreductase 1 (NQO1) gene, rs7211 of thioredoxin interacting protein (TXNIP) gene, rs2071749 of heme oxygenase-1 (HMOX1) gene, and the rs6721961 and the rs2364723 from Nrf2 gene were genotyped in 627 diabetic subjects and 1020 controls. The results showed that the rs7211 polymorphism is a protective factor against obesity in nondiabetic subjects (CC + CT versus TT, OR = 0.40, P = 0.005) and in women (CC versus CT + TT, OR = 0.7, P = 0.016). TT carriers had lower high-density lipoprotein cholesterol levels and lower body mass index. The rs2071749 was positively associated with obesity (AA versus AG + GG, OR = 1.25, P = 0.026). Finally, the rs6721961 was negatively associated with diabetes in men (CC versus CA + AA, OR = 0.62, P = 0.003). AA carriers showed lower glucose concentrations. No association was found for rs1800566 and rs2364723 polymorphisms. In conclusion, the presence of Nrf2 and related genes polymorphisms are associated with diabetes and obesity in Mexican patients. PMID:27274779

  17. Genomic organization of the human fibroblast growth factor receptor 3 (FGFR3) gene and comparative sequence analysis with the mouse Fgfr3 gene

    SciTech Connect

    Perez-Castro, A.V.; Wilson, J.; Altherr, M.R.

    1997-12-31

    Fibroblast growth factor receptor 3 (FGFR3) is a developmentally regulated transmembrane protein. Three other FGFRs (1, 2, and 4) in conjunction with FGFR3 are part of the receptor tyrosine kinase superfamily. Mutations in three of these genes (FGFR1, 2, and 3) have been determined to be the cause of human growth and developmental disorders. We have characterized a 22-kb DNA fragment containing the human FGFR3 gene and determined 11 kb of its nucleotide sequence. The gene consists of 19 exons and 18 introns spanning 16.5 kb, and the boundaries between exons and introns follow the GT/AG rule. The translation initiation and termination sites are located in exon 2 and exon 19, respectively. The sequence of the 5{prime}-flanking region (1.5 kb) lacks the typical TATA or CAAT boxes. However, several putative binding sites for transcription factors SP1, AP2, Krox 24, IgHC.4, and Zeste are present. The 0.77-kb region from position -889 (5{prime}-flanking region) to -119 (intron 1) contains a CpG island. A comparative sequence analysis of the human and mouse FGFR3 genes indicates that the overall genomic structure and organization of the human gene are nearly identical to those of its mouse counterpart. Furthermore, there is a striking similarity in the promoter regions of both genes, and several of the putative transcription factor-binding sites are conserved across species, suggesting a definitive role of these factors in the transcriptional regulation of these genes. 29 refs., 4 figs., 1 tab.

  18. Chagas’ disease parasite-derived neurotrophic factor activates cholinergic gene expression in neuronal PC12 cells

    PubMed Central

    Akpan, Nsikan; Caradonna, Kacey; Chuenkova, Marina V.; PereiraPerrin, Mercio

    2008-01-01

    A parasite-derived neurotrophic factor (PDNF) produced by the Chagas’ disease parasite Trypanosoma cruzi binds nerve growth factor (NGF) receptor TrkA, increasing receptor autophosphorylation, activating phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK/Erk) pathways, and transcription factor CREB. The end-result is enhanced survival and neuritogenesis of various types of neurons. PDNF also enhances the expression and activity of tyrosine hydroxylase, a rate limiting enzyme in the synthesis of dopamine and other catecholamine neurotransmitters. It remains unknown, however, if PDNF alters expression and metabolism of acetylcholine (ACh), a neurotransmitter thought to play a role in Chagas’ disease progression. Here we demonstrate that PDNF stimulates mRNA and protein expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), which are critical for synthesis and storage of ACh. Stimulation requires functional TrkA because it did not occur in cell mutants that lack the receptor and in TrkA-expressing wild-type cells treated with K252a, an inhibitor of TrkA kinase activity. It also requires TrkA-dependent PI3K and MAPK/Erk signaling pathways because PDNF stimulation of cholinergic transcripts is abolished by specific pharmacological inhibitors. Furthermore, the cholinergic actions of PDNF were reproduced by PDNF-expressing extracellular T. cruzi trypomastigotes at the start of host cell invasion. In contrast, host cells bearing intracellular T. cruzi showed decreased, rather than increased, cholinergic gene expression. These results suggest that T. cruzi invasion of the nervous system alters cholinergic gene expression and that could play a role in neuropathology, and/or lack thereof, in Chagas’ disease patients. PMID:18502403

  19. Chagas' disease parasite-derived neurotrophic factor activates cholinergic gene expression in neuronal PC12 cells.

    PubMed

    Akpan, Nsikan; Caradonna, Kacey; Chuenkova, Marina V; PereiraPerrin, Mercio

    2008-06-27

    A parasite-derived neurotrophic factor (PDNF) produced by the Chagas' disease parasite Trypanosoma cruzi binds nerve growth factor (NGF) receptor TrkA, increasing receptor autophosphorylation, and activating phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK/Erk) pathways, and transcription factor CREB. The end-result is enhanced survival and neuritogenesis of various types of neurons. PDNF also enhances the expression and activity of tyrosine hydroxylase, a rate limiting enzyme in the synthesis of dopamine and other catecholamine neurotransmitters. It remains unknown, however, if PDNF alters expression and metabolism of acetylcholine (ACh), a neurotransmitter thought to play a role in Chagas' disease progression. Here we demonstrate that PDNF stimulates mRNA and protein expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), which are critical for synthesis and storage of ACh. Stimulation requires functional TrkA because it did not occur in cell mutants that lack the receptor and in TrkA-expressing wild-type cells treated with K252a, an inhibitor of TrkA kinase activity. It also requires TrkA-dependent PI3K and MAPK/Erk signaling pathways because PDNF stimulation of cholinergic transcripts is abolished by specific pharmacological inhibitors. Furthermore, the cholinergic actions of PDNF were reproduced by PDNF-expressing extracellular T. cruzi trypomastigotes at the start of host cell invasion. In contrast, host cells bearing intracellular T. cruzi showed decreased, rather than increased, cholinergic gene expression. These results suggest that T. cruzi invasion of the nervous system alters cholinergic gene expression and that could play a role in neuropathology, and/or lack thereof, in Chagas' disease patients. PMID:18502403

  20. Global Analysis of Fission Yeast Mating Genes Reveals New Autophagy Factors

    PubMed Central

    Sun, Ling-Ling; Shen, En-Zhi; Yang, Bing; Dong, Meng-Qiu; He, Wan-Zhong; Du, Li-Lin

    2013-01-01

    Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in animal development and human diseases. Molecular understanding of autophagy has mainly come from the budding yeast Saccharomyces cerevisiae, and it remains unclear to what extent the mechanisms are the same in other organisms. Here, through screening the mating phenotype of a genome-wide deletion collection of the fission yeast Schizosaccharomyces pombe, we obtained a comprehensive catalog of autophagy genes in this highly tractable organism, including genes encoding three heretofore unidentified core Atg proteins, Atg10, Atg14, and Atg16, and two novel factors, Ctl1 and Fsc1. We systematically examined the subcellular localization of fission yeast autophagy factors for the first time and characterized the phenotypes of their mutants, thereby uncovering both similarities and differences between the two yeasts. Unlike budding yeast, all three Atg18/WIPI proteins in fission yeast are essential for autophagy, and we found that they play different roles, with Atg18a uniquely required for the targeting of the Atg12–Atg5·Atg16 complex. Our investigation of the two novel factors revealed unforeseen autophagy mechanisms. The choline transporter-like protein Ctl1 interacts with Atg9 and is required for autophagosome formation. The fasciclin domain protein Fsc1 localizes to the vacuole membrane and is required for autophagosome-vacuole fusion but not other vacuolar fusion events. Our study sheds new light on the evolutionary diversity of the autophagy machinery and establishes the fission yeast as a useful model for dissecting the mechanisms of autophagy. PMID:23950735

  1. Alzheimer amyloid peptide aβ42 regulates gene expression of transcription and growth factors.

    PubMed

    Barucker, Christian; Sommer, Anette; Beckmann, Georg; Eravci, Murat; Harmeier, Anja; Schipke, Carola G; Brockschnieder, Damian; Dyrks, Thomas; Althoff, Veit; Fraser, Paul E; Hazrati, Lili-Naz; George-Hyslop, Peter St; Breitner, John C S; Peters, Oliver; Multhaup, Gerhard

    2015-01-01

    The pathogenesis of Alzheimer's disease (AD) is characterized by the aggregation of amyloid-β (Aβ) peptides leading to deposition of senile plaques and a progressive decline of cognitive functions, which currently remains the main criterion for its diagnosis. Robust biomarkers for AD do not yet exist, although changes in the cerebrospinal fluid levels of tau and Aβ represent promising candidates in addition to brain imaging and genetic risk profiling. Although concentrations of soluble Aβ42 correlate with symptoms of AD, less is known about the biological activities of Aβ peptides which are generated from the amyloid-β protein precursor. An unbiased DNA microarray study showed that Aβ42, at sub-lethal concentrations, specifically increases expression of several genes in neuroblastoma cells, notably the insulin-like growth factor binding proteins 3 and 5 (IGFBP3/5), the transcription regulator inhibitor of DNA binding, and the transcription factor Lim only domain protein 4. Using qRT-PCR, we confirmed that mRNA levels of the identified candidate genes were exclusively increased by the potentially neurotoxic Aβ42 wild-type peptide, as both the less toxic Aβ40 and a non-toxic substitution peptide Aβ42 G33A did not affect mRNA levels. In vivo immunohistochemistry revealed a corresponding increase in both hippocampal and cortical IGFBP5 expression in an AD mouse model. Proteomic analyses of human AD cerebrospinal fluid displayed increased in vivo concentrations of IGFBPs. IGFBPs and transcription factors, as identified here, are modulated by soluble Aβ42 and may represent useful early biomarkers. PMID:25318543

  2. A growth factor-responsive gene of murine BALB/c 3T3 cells encodes a protein homologous to human tissue factor

    SciTech Connect

    Hartzell, S.; Ryder, K.; Lanahan, A.; Nathans, D.; Lau, L.F.

    1989-06-01

    Polypeptide growth factors rapidly induce the transcription of a set of genes that appear to mediate cell growth. The authors report that one of the genes induced in BALB/c mouse 3T3 cells encodes a transmembrane protein (mTF) homologous to human tissue factor, which is involved in the proteolytic activation of blood clotting. mTF mRNA is present in many murine tissues and cell lines. The authors' results raise the possibility that mTF may also play a role in cell growth.

  3. Interindividual concordance of methylation profiles in human genes for tumor necrosis factors alpha and beta.

    PubMed Central

    Kochanek, S; Toth, M; Dehmel, A; Renz, D; Doerfler, W

    1990-01-01

    The DNA in mammalian genomes is characterized by complex patterns of DNA methylation that reflect the states of all genetic activities of that genome. The modified nucleotide 5-methyldeoxycytidine (5mdC) can affect the interactions of specific proteins with DNA sequence motifs. The most extensively studied effect of sequence-specific methylations is that of the long-term silencing of eukaryotic (mammalian) promoters. We have initiated studies on the methylation status of parts of the human genome to view patterns of DNA methylation as indicators for genetic activities. In this report, analyses using both restriction enzyme--Southern blotting and the very precise genomic sequencing technique have been done. The genes for tumor necrosis factors (TNF) alpha and beta--in particular, their 5'-upstream and promoter regions--have been investigated in DNA isolated from human lymphocytes, granulocytes, and sperm. The results are characterized by a remarkable interindividual concordance of DNA methylation in specific human cell types. The patterns are identical in the DNA from one cell type for different individuals even of different genetic origins but different in the DNA from different cell types. As an example, in the DNA from human granulocytes of 15 different individuals (ages 20-48 yr, both sexes), 5mdC residues have been localized by the genomic sequencing technique in three identical sequence positions in the 5'-upstream region and in one downstream position of the gene encoding TNF-alpha. The promoter of this gene is free of 5mdC, and TNF-alpha is expressed in human granulocytes. The TNF-beta promoter is methylated in granulocytes from 9 different individuals, and TNF-beta is not expressed. In human lymphocytes, the main source of TNF-beta, the TNF-beta promoter is free of 5mdC residues. All 5'-CG-3' sites studied in the TNF-alpha and -beta genes are methylated in DNA from human sperm. In human cell lines HL-60, Jurkat, and RPMI 1788, the extent of DNA methylation

  4. Selective suicide gene therapy of colon cancer cell lines exploiting fibroblast growth factor 18 promoter.

    PubMed

    Teimoori-Toolabi, Ladan; Azadmanesh, Kayhan; Zeinali, Sirous

    2010-02-01

    Fibroblast growth factor 18 (FGF18) is one of the genes downstream of Wnt, one of the most important signaling pathways activated in colon cancer. An FGF18 promoter containing a single T-cell factor/lymphocyte enhancing factor 1 (TCF/LEF1) binding site was inserted upstream of a thymidine kinase (TK) suicide gene module, while a bacterial beta-Gal (LacZ) element served as the reporter gene. Following transient transfection with pUCFGF18LacZ, beta-Gal staining showed that 5% of SW480, 10% of HCT116, 0% of human umbilical vein endothelial cells (HUVECs) and 0% of normal colon cells (NCCs) had expressed LacZ. beta-Gal enzyme-linked immunosorbent assay revealed that the ratio of pUCFGF18LacZ activity to that of positive control was 0.09 and 0.25 in SW480 and HCT116, respectively (significantly higher than mock plasmid), while there were no significant changes in the beta-Gal expression in HUVEC and NCC cells transfected with pUCFGF18LacZ or mock plasmid. Following transfection with pUCFGF18TK and pUCCMVTK (positive control), cytotoxicity analysis of transfected cells showed that treatment with ganciclovir (GCV) significantly decreased SW480 and HCT116 cell survival at GCV concentrations above 20 microg/mL. An inverse correlation between GCV concentration and cell viability was evident in both colon cancer cell lines following transfection with these suicide plasmids. pUCFGF18TK and pUCCMVTK induced apoptosis after the administration of GCV in HCT116, but not in SW480, as demonstrated by M30 cytodeath antibody. This discrepancy may stem from differences in the mechanisms of TK/GCV-induced apoptosis in p53-proficient (HCT116) and -deficient (SW480) cells. The specific activity of the FGF18 promoter in HCT116 and SW480 may reflect the advantage of this promoter over artificial promoters containing artificial TCF/LEF binding sites. PMID:20187803

  5. Molecular evolution and gene expression differences within the HD-Zip transcription factor family of Zea mays L.

    PubMed

    Mao, Hude; Yu, Lijuan; Li, Zhanjie; Liu, Hui; Han, Ran

    2016-04-01

    Homeodomain-leucine zipper (HD-Zip) transcription factors regulate developmental processes and stress responses in plants, and they vary widely in gene number and family structure. In this study, 55 predicted maize HD-Zip genes were systematically analyzed with respect to their phylogenetic relationships, molecular evolution, and gene expression in order to understand the functional diversification within the family. Phylogenetic analysis of HD-Zip proteins from Zea mays, Oryza sativa, Arabidopsis thaliana, Vitis vinifera, and Physcomitrella patens showed that they group into four classes. We inferred that the copy numbers of classes I and III genes were relatively conserved in all five species. The 55 maize HD-Zip genes are distributed randomly on the ten chromosomes, with 15 segmental duplication and 4 tandem duplication events, suggesting that segmental duplications were the major contributors in the expansion of the maize HD-Zip gene family. Expression analysis of the 55 maize HD-Zip genes in different tissues and drought conditions revealed differences in the expression levels and patterns between the four classes. Promoter analysis revealed that a number of stress response-, hormone response-, light response-, and development-related cis-acting elements were present in their promoters. Our results provide novel insights into the molecular evolution and gene expression within the HD-Zip gene family in maize, and provide a solid foundation for future functional study of the HD-Zip genes in maize. PMID:26979310

  6. Expression of Tumor Necrosis Factor-Alpha-Mediated Genes Predicts Recurrence-Free Survival in Lung Cancer

    PubMed Central

    Zhou, Lianya; Zhang, Helin; Duan, Lin; He, Wenshu; Zhu, Yihua; Bai, Yunfei; Zhu, Miao

    2014-01-01

    In this study, we conducted a meta-analysis on high-throughput gene expression data to identify TNF-α-mediated genes implicated in lung cancer. We first investigated the gene expression profiles of two independent TNF-α/TNFR KO murine models. The EGF receptor signaling pathway was the top pathway associated with genes mediated by TNF-α. After matching the TNF-α-mediated mouse genes to their human orthologs, we compared the expression patterns of the TNF-α-mediated genes in normal and tumor lung tissues obtained from humans. Based on the TNF-α-mediated genes that were dysregulated in lung tumors, we developed a prognostic gene signature that effectively predicted recurrence-free survival in lung cancer in two validation cohorts. Resampling tests suggested that the prognostic power of the gene signature was not by chance, and multivariate analysis suggested that this gene signature was independent of the traditional clinical factors and enhanced the identification of lung cancer patients at greater risk for recurrence. PMID:25548907

  7. A Delta-Sarcoglycan Gene Polymorphism as a Risk Factor for Hypertrophic Cardiomyopathy

    PubMed Central

    Garrido-Garduño, Martín H.; Pérez-Martínez, Ramón A.; Ruiz, Victor M.; Herrera-Tepatlán, Esteban; Rodríguez-Cruz, Maricela; Jiménez-Vaca, Ana L.; Minauro-Sanmiguel, Fernando; Salamanca-Gómez, Fabio A.

    2012-01-01

    Background: The C allele of c.−94C>G polymorphism of the delta-sarcoglycan gene was associated as a risk factor for coronary spasm in Japanese patients with hypertrophic cardiomyopathy (HCM). Aim: We evaluated whether the c.−94C>G polymorphism can be a risk factor for HCM in Mexican patients. Methods: The polymorphism was genotyped and the risk was estimated in 35 HCM patients and 145 healthy unrelated individuals. Data of this polymorphism reported in Mexican Amerindian populations were included. Results: The C allele frequency in HCM patients was higher with an odds ratio (OR) of 2.37, and the risk for the CC genotype increased to 5.0. The analysis with Mexican Amerindian populations showed that the C allele frequency was significantly higher in HCM patients with an OR of 2.96 and for CC genotype the risk increased to 7.60. Conclusions: The C allele of the c.−94C>G polymorphism is a risk factor for HCM, which is increased by the Amerindian component and can play an important role in the etiology and progression of disease in Mexican patients. PMID:22524166

  8. Cloning and sequence analysis of candidate human natural killer-enhancing factor genes

    SciTech Connect

    Shau, H.; Butterfield, L.H.; Chiu, R.; Kim, A.

    1994-12-31

    A cytosol factor from human red blood cells enhances natural killer (NK) activity. This factor, termed NK-enhancing factor (NKEF), is a protein of 44000 M{sub r} consisting of two subunits of equal size linked by disulfide bonds. NKEF is expressed in the NK-sensitive erythroleukemic cell line K562. Using an antibody specific for NKEF as a probe for immunoblot screening, we isolated several clones from a {lambda}gt11 cDNA library of K562. Additional subcloning and sequencing revealed that the candidate NKEF cDNAs fell into one of two categories of closely related but non-identical genes, referred to as NKEF A and B. They are 88% identical in amino acid sequence and 71% identical in nucleotide sequence. Southern blot analysis suggests that there are two to three NKEF family members in the genome. Analysis of predicted amino acid sequences indicates that both NKEF A and B are cytosol proteins with several phosphorylation sites each, but that they have no glycosylation sites. They are significantly homologous to several other proteins from a wide variety of organisms ranging from prokaryotes to mammals, especially with regard to several well-conserved motifs within the amino acid sequences. The biological functions of these proteins in other species are mostly unknown, but some of them were reported to be induced by oxidative stress. Therefore, as well as for immunoregulation of NK activity, NKEF may be important for cells in coping with oxidative insults. 32 refs., 3 figs.

  9. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    SciTech Connect

    Mohareer, Krishnaveni; Sahdev, Sudhir; Hasnain, Seyed E.

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors, which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.

  10. Dictyostelium ribosomal protein genes and the elongation factor 1B gene show coordinate developmental regulation which is under post-transcriptional control.

    PubMed

    Agarwal, A K; Blumberg, D D

    1999-06-01

    Starvation for amino acids initiates the developmental program in the cellular slime mold, Dictyostelium discoideum [19, 20]. One of the earliest developmental events is the decline in ribosomal protein synthesis [2, 17, 29, 30]. The ribosomal protein mRNAs are excluded from polysomes with 20 min to 1 h following the removal of nutrients, and their mRNA levels decline sharply at about 9 h into the 24-h developmental cycle [28, 31, 35, 36]. It has been generally assumed that the decline in r-protein mRNA levels during late development reflected a decline in the transcription rate [12, 32, 43]. Here we demonstrate that this is not the case. The transcription rates of three ribosomal protein genes, rpL11, rpL23 and rpS9 as well as an elongation factor 1B gene have been determined during growth and development in Dictyostelium. Throughout growth and development the transcription rate of the ribosomal protein genes remains relatively constant at 0.2%-0.5% of the rate of rRNA transcription while the elongation factor 1B gene is transcribed at 0.4%-0.6% of the rRNA rate. This low but constant transcription rate is in contrast to a spore coat protein gene Psp D, which is transcribed at 6% of the rRNA rate in late developing cells. The elongation factor 1B gene appears to be co-regulated with the ribosomal protein genes both in terms of its transcription rate and mRNA accumulation. Dictyostelium has been a popular model for understanding signal transduction and the growth to differentiation transition, thus it is of significance that the regulation of ribosome biosynthesis in Dictyostelium resembles that of higher eukaryotes in being regulated largely at the post-transcriptional level in response to starvation as opposed to yeasts where the regulation is largely transcriptional [27]. PMID:10374261

  11. Keratinocyte Growth Factor Gene Electroporation into Skeletal Muscle as a Novel Gene Therapeutic Approach for Elastase-Induced Pulmonary Emphysema in Mice

    PubMed Central

    Tobinaga, Shuichi; Matsumoto, Keitaro; Nagayasu, Takeshi; Furukawa, Katsuro; Abo, Takafumi; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Koji, Takehiko

    2015-01-01

    Pulmonary emphysema is a progressive disease with airspace destruction and an effective therapy is needed. Keratinocyte growth factor (KGF) promotes pulmonary epithelial proliferation and has the potential to induce lung regeneration. The aim of this study was to determine the possibility of using KGF gene therapy for treatment of a mouse emphysema model induced by porcine pancreatic elastase (PPE). Eight-week-old BALB/c male mice treated with intra-tracheal PPE administration were transfected with 80 μg of a recombinant human KGF (rhKGF)-expressing FLAG-CMV14 plasmid (pKGF-FLAG gene), or with the pFLAG gene expressing plasmid as a control, into the quadriceps muscle by electroporation. In the lung, the expression of proliferating cell nuclear antigen (PCNA) was augmented, and surfactant protein A (SP-A) and KGF receptor (KGFR) were co-expressed in PCNA-positive cells. Moreover, endogenous KGF and KGFR gene expression increased significantly by pKGF-FLAG gene transfection. Arterial blood gas analysis revealed that the PaO2 level was not significantly reduced on day 14 after PPE instillation with pKGF-FLAG gene transfection compared to that of normal mice. These results indicated that KGF gene therapy with electroporation stimulated lung epithelial proliferation and protected depression of pulmonary function in a mouse emphysema model, suggesting a possible method of treating pulmonary emphysema. PMID:26160987

  12. A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley.

    PubMed

    Yuo, Takahisa; Yamashita, Yuko; Kanamori, Hiroyuki; Matsumoto, Takashi; Lundqvist, Udda; Sato, Kazuhiro; Ichii, Masahiko; Jobling, Stephen A; Taketa, Shin

    2012-09-01

    The awn, an apical extension from the lemma of the spikelet, plays important roles in seed dispersal, burial, and photosynthesis. Barley typically has long awns, but short-awn variants exist. The short awn 2 (lks2) gene, which produces awns about 50% shorter than normal, is a natural variant that is restricted to Eastern Asia. Positional cloning revealed that Lks2 encodes a SHI-family transcription factor. Allelism tests showed that lks2 is allelic to unbranched style 4 (ubs4) and breviaristatum-d (ari-d), for which the phenotypes are very short awn and sparse stigma hairs. The gene identity was validated by 25 mutant alleles with lesions in the Lks2 gene. Of these, 17 affected either or both conserved regions: the zinc-binding RING-finger motif and the IGGH domain. Lks2 is highly expressed in awns and pistils. Histological observations of longitudinal awn sections showed that the lks2 short-awn phenotype resulted from reduced cell number. Natural variants of lks2 were classified into three types, but all shared a single-nucleotide polymorphism (SNP) that causes a proline-to-leucine change at position 245 in the IGGH domain. All three lks2 natural variants were regarded as weak alleles because their awn and pistil phenotypes are mild compared with those of the 25 mutant alleles. Natural variants of lks2 found in the east of China and the Himalayas had considerably different sequences in the regions flanking the critical SNP, suggesting independent origins. The available results suggest that the lks2 allele might have a selective advantage in the adaptation of barley to high-precipitation areas of Eastern Asia. PMID:22791834

  13. Population genetic study of the brain-derived neurotrophic factor (BDNF) gene

    PubMed Central

    Petryshen, TL; Sabeti, PC; Aldinger, KA; Fry, B; Fan, JB; Schaffner, SF; Waggoner, SG; Tahl, AR; Sklar, P

    2009-01-01

    Genetic variants in the brain-derived neurotrophic factor (BDNF) gene, predominantly the functional Val66Met polymorphism, have been associated with risk of bipolar disorder and other psychiatric disorders. However, not all studies support these findings, and overall the evidence for BDNF association with disease risk is weak. As differences in population genetic structure between patient samples could cause discrepant or spurious association results, we investigated this possibility by carrying out population genetic analyses of the BDNF genomic region. Substantial variation was detected in BDNF coding region SNP allele and haplotype frequencies between 58 global populations, with the derived Met allele of Val66Met ranging from 0–72% frequency across populations. FST analyses to assess diversity in the HapMap populations determined that the Val66Met FST value was at the 99.8th percentile among all SNPs in the genome. As the BDNF population genetic differences may be due to local selection, we performed the long-range haplotype (LRH) test for selection using 68 SNPs spanning the BDNF genomic region in 12 European-derived pedigrees. Evidence for positive selection was found for a high frequency Val-carrying haplotype, with a relative extended haplotype homozygosity (REHH) value above the 99th percentile compared to HapMap data (P=4.6 ×10−4). In conclusion, we observed considerable BDNF allele and haplotype diversity among global populations and evidence for positive selection at the BDNF locus. These phenomena can have a profound impact on detection of disease susceptibility genes and must be considered in gene association studies of BDNF. PMID:19255578

  14. Polymorphisms of Insulin-Like Growth Factor 1 Pathway Genes and Breast Cancer Risk

    PubMed Central

    Shi, Joy; Aronson, Kristan J.; Grundy, Anne; Kobayashi, Lindsay C.; Burstyn, Igor; Schuetz, Johanna M.; Lohrisch, Caroline A.; SenGupta, Sandip K.; Lai, Agnes S.; Brooks-Wilson, Angela; Spinelli, John J.; Richardson, Harriet

    2016-01-01

    Genetic variants of insulin-like growth factor 1 (IGF1) pathway genes have been shown to be associated with breast density and IGF1 levels and, therefore, may also influence breast cancer risk via pro-survival signaling cascades. The aim of this study was to investigate associations between IGF1 pathway single nucleotide polymorphisms (SNPs) and breast cancer risk among European and East Asian women, and potential interactions with menopausal status and breast tumor subtype. Stratified analyses of 1,037 cases and 1,050 controls from a population-based case–control study were conducted to assess associations with breast cancer for 22 SNPs across 5 IGF1 pathway genes in European and East Asian women. Odds ratios were calculated using logistic regression in additive genetic models. Polytomous logistic regression was used to assess heterogeneity by breast tumor subtype. Two SNPs of the IGF1 gene (rs1019731 and rs12821878) were associated with breast cancer risk among European women. Four highly linked IGF1 SNPs (rs2288378, rs17727841, rs7136446, and rs7956547) were modified by menopausal status among East Asian women only and associated with postmenopausal breast cancers. The association between rs2288378 and breast cancer risk was also modified by breast tumor subtype among East Asian women. Several IGF1 polymorphisms were found to be associated with breast cancer risk and some of these associations were modified by menopausal status or breast tumor subtype. Such interactions should be considered when assessing the role of these variants in breast cancer etiology. PMID:27376028

  15. [Gene mutation analysis of coagulation factor VIII from a female patient with hemophilia A].

    PubMed

    Zhou, Jing; Yan, Nai-hong; Jia, Yong-qian; Lu, Yi-lu; Yu, Jiang; Cao, Gui-qun; Chen, Qing-ying; Wang, Ling; Zhang, Fa-qiang; Xia, Oing-jie

    2006-05-01

    Hemophilia A affects male, whereas females are carriers and generally spared from this disease. However, we here reported a 65-year-old female with Hemophilia A while screening the gene mutation of coagulation factor VIII. The female went to hospital because of tripping to lead her right chest to be injured with subcutaneous hematoma. She had historically a hemorrhagic diathesis. The physical examination discovered her hip limited to bend and move, but no discrepancy length between her two legs. The initial laboratory tests showed that the activated partial thromboplastin time (APTT) was 61. 3 seconds (20-40 seconds), and the APTT corrected by mixing with normal plasma was 41.3 s, but the levels of PT, FIB and TT were normal. The plain radiographs revealed the hip joints to suffer from the acetabular dysplasia and osteoarthritis. The level of FVIII:C was 2%, F IX:C 200%, vWF:Ag 120%, vWF:Rcof 100%, vWF:CBA 128%, and the F VIII binding assay to vWF was normal. The primers for exon 14 of F VIII gene were designed according to the NM - 000132 gene sequence. DNA was abstracted from the patient blood. PCR were carried out and the DNA sequence was followed. A new mutation of 4111A-->C was discovered, which caused the amino acid sequence changed (T 1314 P). The mutation of T 1314 P may be the cause of this female patient to get the hemophilia A. This mutation was a novel one which has never been reported before. PMID:16761442

  16. Mitochondrial dysfunction induces SESN2 gene expression through Activating Transcription Factor 4.

    PubMed

    Garaeva, Alisa A; Kovaleva, Irina E; Chumakov, Peter M; Evstafieva, Alexandra G

    2016-01-01

    We found that inhibitors of mitochondrial respiratory chain complexes III (myxothiazol) and I (piericidin A) in some epithelial carcinoma cell lines induce transcription of the p53-responsive SESN2 gene that plays an important role in stress response and homeostatic regulation. However, the effect did not depend on p53 because i) there was no induction of p53 after the treatment with piericidin A; ii) after the treatment with myxothiazol the peak of SESN2 gene upregulation occurred as early as 5h, before the onset of p53 activation (13h); iii) a supplementation with uridine that abolishes the p53 activation in response to myxothiazol did not abrogate the induction of SESN2 transcripts; iv) in the p53 negative HCT116 p53 -/- cells SESN2 transcription could be also induced by myxothiazol. In response to the respiratory chain inhibitors we observed an induction of ATF4, the key transcription factor of the integrated stress response (ISR). We found that the induction of SESN2 transcripts could be prevented by the ISR inhibitory small molecule ISRIB. Also, by inhibiting or overexpressing ATF4 with specific shRNA or ATF4-expressing constructs, respectively, we have confirmed the role of ATF4 in the SESN2 gene upregulation induced by mitochondrial dysfunction. At a distance of 228 bp upstream from the SESN2 transcription start site we found a candidate sequence for the ATF4 binding site and confirmed its requirement for the induction of SESN2 in luciferase reporter experiments. We suggest that the upregulation of SESN2 by mitochondrial dysfunction provides a homeostatic feedback that attenuates biosynthetic processes during temporal losses of energy supply from mitochondria thereby assisting better adaptation and viability of cells in hostile environments. PMID:26771712

  17. Allelic associations of two polymorphic microsatellites in intron 40 of the human von Willebrand factor gene

    SciTech Connect

    Pena, S.D.J.; De Souza, K.T. ); De Andrade, M.; Chakraborty, R. )

    1994-01-18

    At intron 40 of the von Willebrand factor (vWF) gene, two GATA-repeat polymorphic sites exist that are physically separated by 212 bp. At the first site (vWF1 locus), seven segregating repeat alleles were observed in a Brazilian Caucasian population, and at the second (vWF2 locus) there were eight alleles, detected through PCR amplifications of this DNA region. Haplotype analysis of individuals revealed 36 different haplotypes in a sample of 338 chromosomes examined. Allele frequencies between generations and gender at each locus were not significantly different, and the genotype frequencies were consistent with their Hardy-Weinberg expectations. Linkage disequilibrium between loci is highly significant with positive allele size association; that is, large alleles at the loci tend to occur together, and so do the same alleles. Variability at each locus appeared to have arisen in a stepwise fashion, suggesting replication slippage as a possible mechanism of production of new alleles. However, the authors observed an increased number of haplotypes, in contrast with the predictions of a stepwise production of variation in the entire region, suggesting some form of cooperative changes between loci that could be due to either gene conversion, or a common control mechanism of production of new variation at these repeat polymorphism sites. The high degree of polymorphism (gene diversity values of 72% and 78% at vWF1 and vWF2, respectively, and of 93% at the haplotype level) makes these markers informative for paternity testing, genetic counseling, and individual-identification purposes.

  18. Polymorphisms of Insulin-Like Growth Factor 1 Pathway Genes and Breast Cancer Risk.

    PubMed

    Shi, Joy; Aronson, Kristan J; Grundy, Anne; Kobayashi, Lindsay C; Burstyn, Igor; Schuetz, Johanna M; Lohrisch, Caroline A; SenGupta, Sandip K; Lai, Agnes S; Brooks-Wilson, Angela; Spinelli, John J; Richardson, Harriet

    2016-01-01

    Genetic variants of insulin-like growth factor 1 (IGF1) pathway genes have been shown to be associated with breast density and IGF1 levels and, therefore, may also influence breast cancer risk via pro-survival signaling cascades. The aim of this study was to investigate associations between IGF1 pathway single nucleotide polymorphisms (SNPs) and breast cancer risk among European and East Asian women, and potential interactions with menopausal status and breast tumor subtype. Stratified analyses of 1,037 cases and 1,050 controls from a population-based case-control study were conducted to assess associations with breast cancer for 22 SNPs across 5 IGF1 pathway genes in European and East Asian women. Odds ratios were calculated using logistic regression in additive genetic models. Polytomous logistic regression was used to assess heterogeneity by breast tumor subtype. Two SNPs of the IGF1 gene (rs1019731 and rs12821878) were associated with breast cancer risk among European women. Four highly linked IGF1 SNPs (rs2288378, rs17727841, rs7136446, and rs7956547) were modified by menopausal status among East Asian women only and associated with postmenopausal breast cancers. The association between rs2288378 and breast cancer risk was also modified by breast tumor subtype among East Asian women. Several IGF1 polymorphisms were found to be associated with breast cancer risk and some of these associations were modified by menopausal status or breast tumor subtype. Such interactions should be considered when assessing the role of these variants in breast cancer etiology. PMID:27376028

  19. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression.

    PubMed

    Reddy, Timothy E; Gertz, Jason; Pauli, Florencia; Kucera, Katerina S; Varley, Katherine E; Newberry, Kimberly M; Marinov, Georgi K; Mortazavi, Ali; Williams, Brian A; Song, Lingyun; Crawford, Gregory E; Wold, Barbara; Willard, Huntington F; Myers, Richard M

    2012-05-01

    A complex interplay between transcription factors (TFs) and the genome regulates transcription. However, connecting variation in genome sequence with variation in TF binding and gene expression is challenging due to environmental differences between individuals and cell types. To address this problem, we measured genome-wide differential allelic occupancy of 24 TFs and EP300 in a human lymphoblastoid cell line GM12878. Overall, 5% of human TF binding sites have an allelic imbalance in occupancy. At many sites, TFs clustered in TF-binding hubs on the same homolog in especially open chromatin. While genetic variation in core TF binding motifs generally resulted in large allelic differences in TF occupancy, most allelic differences in occupancy were subtle and associated with disruption of weak or noncanonical motifs. We also measured genome-wide differential allelic expression of genes with and without heterozygous exonic variants in the same cells. We found that genes with differential allelic expression were overall less expressed both in GM12878 cells and in unrelated human cell lines. Comparing TF occupancy with expression, we found strong association between allelic occupancy and expression within 100 bp of transcription start sites (TSSs), and weak association up to 100 kb from TSSs. Sites of differential allelic occupancy were significantly enriched for variants associated with disease, particularly autoimmune disease, suggesting that allelic differences in TF occupancy give functional insights into intergenic variants associated with disease. Our results have the potential to increase the power and interpretability of association studies by targeting functional intergenic variants in addition to protein coding sequences. PMID:22300769

  20. Dysregulation of the homeobox transcription factor gene HOXB13: role in prostate cancer

    PubMed Central

    Decker, Brennan; Ostrander, Elaine A

    2014-01-01

    Prostate cancer (PC) is the most common noncutaneous cancer in men, and epidemiological studies suggest that about 40% of PC risk is heritable. Linkage analyses in hereditary PC families have identified multiple putative loci. However, until recently, identification of specific risk alleles has proven elusive. Cooney et al used linkage mapping and segregation analysis to identify a putative risk locus on chromosome 17q21-22. In search of causative variant(s) in genes from the candidate region, a novel, potentially deleterious G84E substitution in homeobox transcription factor gene HOXB13 was observed in multiple hereditary PC families. In follow-up testing, the G84E allele was enriched in cases, especially those with an early diagnosis or positive family history of disease. This finding was replicated by others, confirming HOXB13 as a PC risk gene. The HOXB13 protein plays diverse biological roles in embryonic development and terminally differentiated tissue. In tumor cell lines, HOXB13 participates in a number of biological functions, including coactivation and localization of the androgen receptor and FOXA1. However, no consensus role has emerged and many questions remain. All HOXB13 variants with a proposed role in PC risk are predicted to damage the protein and lie in domains that are highly conserved across species. The G84E variant has the strongest epidemiological support and lies in a highly conserved MEIS protein-binding domain, which binds cofactors required for activation. On the basis of epidemiological and biological data, the G84E variant likely modulates the interaction between the HOXB13 protein and the androgen receptor, as well as affecting FOXA1-mediated transcriptional programming. However, further studies of the mutated protein are required to clarify the mechanisms by which this translates into PC risk. PMID:25206306

  1. Evaluation of antitumor effects following tumor necrosis factorgene delivery using nanobubbles and ultrasound.

    PubMed

    Horie, Sachiko; Watanabe, Yukiko; Ono, Masao; Mori, Shiro; Kodama, Tetsuya

    2011-11-01

    The antitumor effects of tumor necrosis factor (TNF-α) were evaluated following transfection of TNF-α plasmid DNA into solid mouse tumors using the nanobubbles (NBs) and ultrasound (US) gene delivery system. Murine breast carcinoma (EMT6) cells expressing luciferase (1 × 10(6) cells) were injected intradermally into the flanks of 6-7-week-old male SCID mice on day 0. Ten microliters of TNF-α (5 μg/μL) or TNF-α mock plasmid DNA (5 μg/μL) with/without NBs (15 μL) and saline was injected intratumorally in a total volume of 30 μL, and tumors were exposed to US (frequency, 1 MHz; intensity, 3.0 W/cm(2); duty cycle, 20%; number of pulses, 200; and exposure time, 60 s) on days 2, 4, 7, and 9. Changes in tumor size were measured with an in vivo bioluminescent imaging system and a mechanical caliper. Changes in tumor vessel area were quantified using contrast-enhanced US imaging with Sonazoid and a high frequency US imaging system (40 MHz) and immunohistochemistry (CD31). At the mRNA level, expression of TNF-α, caspase-3, and p53 were quantified using real-time quantitative RT-PCR. At the protein level, expression of caspase-3 and p53 were confirmed by immunohistochemistry. We show that repeated TNF-α gene delivery using NBs and US can lead to the local production of TNF-α. This results in antitumor effects, including activation of p53-dependent apoptosis, decrease in tumor vessel density, and suppression of tumor size. In this study, we showed the effectiveness of using NBs and US for TNF-α gene delivery into tumor cells. PMID:21824220

  2. Limited influence of local and landscape factors on finescale gene flow in two pond-breeding amphibians.

    PubMed

    Coster, Stephanie S; Babbitt, Kimberly J; Cooper, Andrew; Kovach, Adrienne I

    2015-02-01

    Dispersal and gene flow within animal populations are influenced by the composition and configuration of the landscape. In this study, we evaluated hypotheses about the impact of natural and anthropogenic factors on genetic differentiation in two amphibian species, the spotted salamander (Ambystoma maculatum) and the wood frog (Lithobates sylvaticus) in a commercial forest in central Maine. We conducted this analysis at two scales: a local level, focused on factors measured at each breeding pond, and a landscape level, focused on factors measured between ponds. We investigated the effects of a number of environmental factors in six categories including Productivity, Physical, Land Composition, Land Configuration, Isolation and Location. Embryos were sampled from 56 spotted salamander breeding ponds and 39 wood frog breeding ponds. We used a hierarchical Bayesian approach in the program GESTE at each breeding pond and a random forest algorithm in conjunction with a network analysis between the ponds. We found overall high genetic connectivity across distances up to 17 km for both species and a limited effect of natural and anthropogenic factors on gene flow. We found the null models best explained patterns of genetic differentiation at a local level and found several factors at the landscape level that weakly influenced gene flow. This research indicates multiscale investigations that incorporate local and landscape factors are valuable for understanding patterns of gene flow. Our findings suggest that dispersal rates in this system are high enough to minimize genetic structuring and that current forestry practices do not significantly impede dispersal. PMID:25580642

  3. Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages

    PubMed Central

    Tallam, Aravind; Perumal, Thaneer M.; Antony, Paul M.; Jäger, Christian; Fritz, Joëlle V.; Vallar, Laurent; Balling, Rudi; del Sol, Antonio; Michelucci, Alessandro

    2016-01-01

    Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels

  4. Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages.

    PubMed

    Tallam, Aravind; Perumal, Thaneer M; Antony, Paul M; Jäger, Christian; Fritz, Joëlle V; Vallar, Laurent; Balling, Rudi; Del Sol, Antonio; Michelucci, Alessandro

    2016-01-01

    Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels

  5. From milliseconds to lifetimes: tracking the dynamic behavior of transcription factors in gene networks.

    PubMed

    Li, Ying; Varala, Kranthi; Coruzzi, Gloria M

    2015-09-01

    Modeling dynamic gene regulatory networks (GRNs) is a new frontier in systems biology. It has special implications for plants, whose survival requires rapid deployment of GRNs in response to environmental changes. However, capturing and dissecting transient interactions of transcription factors (TFs) and their targets in GRNs remains a considerable experimental challenge. Here we review recent progress in understanding GRNs as a function of time and discuss the relevance of these findings in plants to studies in other eukaryotes. We cover progress in profiling and modeling time-course transcriptome changes across plant species and the insights they have provided into the regulatory mechanisms underlying these temporal transcriptional responses, with a focus on the dynamic behavior of TFs. Lastly, we review state-of-the-art techniques to monitor the single-molecule dynamics of TFs in vivo. Together, these advances have helped develop new models for dynamic transcriptional control with relevance across eukaryotes. PMID:26072453

  6. Familial C3 glomerulonephritis associated with mutations in the gene for complement factor B.

    PubMed

    Imamura, Hideaki; Konomoto, Takao; Tanaka, Etsuko; Hisano, Satoshi; Yoshida, Yoko; Fujimura, Yoshihiro; Miyata, Toshiyuki; Nunoi, Hiroyuki

    2015-05-01

    We report the first case of familial C3 glomerulonephritis (C3GN) associated with mutations in the gene for complement factor B (CFB). A 12-year-old girl was diagnosed with biopsy-proven C3GN. Her mother had a history of treatment for membranoproliferative glomerulonephritis, and her brother had hypocomplementemia without urinary abnormalities. DNA analysis revealed heterozygosity for CFB p.S367R in the patient, mother and brother. Evaluation of the structure-function relationship supports that this mutation has gain-of-function effects in CFB. The present case suggests that CFB has an important role in the etiology of C3GN and provides a new insight into anticomplement therapy approaches. PMID:25758434

  7. Factor B (Bf) and glyoxalase genes in insulin-dependent diabetes mellitus.

    PubMed

    Allannic, H; Fauchet, R; Gueguen, M; Pheng Savath, H; Dinh Knoi, T; Genetet, B

    1985-02-01

    The frequency distribution of alleles controlled by the factor B (Bf) and glyoxalase genes that are found close to the HLA system on chromosome 6 was studied in 170 insulin-dependent diabetic patients. The data were compared with those for HLA-A, -B and -DR antigens and were related to age of onset of diabetes. All the diabetics were ketosis prone and on permanent insulin therapy. A significant excess of BfF1 was seen in the diabetic patients (p less than 10(-4]. Glyoxalase frequency distribution showed no significant deviation from controls, whereas HLA-DR3 (p less than 10(-4] HLA-DR4 (p less than 10(-4] were increased. Breakdown of data by age of diagnosis of disease showed no increase in the frequency of BfF1 and GLO1-2 but an increase of HLA DR3 and DR4 in patients with early onset diabetes. The findings of the study are consistent with data reported by others investigators and support the notion that one or more genes mapping close to the HLA A. B and DR and to the Bf loci confer susceptibility to insulin dependent diabetes. PMID:3856541

  8. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    PubMed Central

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  9. Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy

    PubMed Central

    Nair, Nisha; Rincon, Melvin Y.; Evens, Hanneke; Sarcar, Shilpita; Dastidar, Sumitava; Samara-Kuko, Emira; Ghandeharian, Omid; Man Viecelli, Hiu; Thöny, Beat; De Bleser, Pieter; Chuah, Marinee K.

    2014-01-01

    The development of the next-generation gene therapy vectors for hemophilia requires using lower and thus potentially safer vector doses and augmenting their therapeutic efficacy. We have identified hepatocyte-specific transcriptional cis-regulatory modules (CRMs) by using a computational strategy that increased factor IX (FIX) levels 11- to 15-fold. Vector efficacy could be enhanced by combining these hepatocyte-specific CRMs with a synthetic codon-optimized hyperfunctional FIX-R338L Padua transgene. This Padua mutation boosted FIX activity up to sevenfold, with no apparent increase in thrombotic risk. We then validated this combination approach using self-complementary adenoassociated virus serotype 9 (scAAV9) vectors in hemophilia B mice. This resulted in sustained supraphysiologic FIX activity (400%), correction of the bleeding diathesis at clinically relevant, low vector doses (5 × 1010 vector genomes [vg]/kg) that are considered safe in patients undergoing gene therapy. Moreover, immune tolerance could be induced that precluded induction of inhibitory antibodies to FIX upon immunization with recombinant FIX protein. PMID:24637359

  10. A Hierarchical Factor Model of Executive Functions in Adolescents: Evidence of Gene-Environment Interplay

    PubMed Central

    Li, James J.; Chung, Tammy A.; Vanyukov, Michael M.; Wood, D. Scott; Ferrell, Robert; Clark, Duncan B.

    2015-01-01

    Executive functions (EF) are a complex set of neurodevelopmental, higher-ordered processes that are especially salient during adolescence. Disruptions to these processes are predictive of psychiatric problems in later adolescence and adulthood. The objectives of the current study were to characterize the latent structure of EF using bifactor analysis and to investigate the independent and interactive effects of genes and environments on EF during adolescence. Using a representative young adolescent sample, we tested the interaction of a polymorphism in the serotonin transporter gene (5-HTTLPR) and parental supervision for EF through hierarchical linear regression. To account for the possibility of a hierarchical factor structure for EF, a bifactor analysis was conducted on the eight subtests of the Delis-Kaplan Executive Functions System (D-KEFS). The bifactor analysis revealed the presence of a general EF construct and three EF subdomains (i.e., conceptual flexibility, inhibition, and fluency). A significant 5-HTTLPR by parental supervision interaction was found for conceptual flexibility, but not for general EF, fluency or inhibition. Specifically, youth with the L/L genotype had significantly lower conceptual flexibility scores compared to youth with S/S or S/L genotypes given low levels of parental supervision. Our findings indicate that adolescents with the L/L genotype were especially vulnerable to poor parental supervision on EF. This vulnerability may be amenable to preventive interventions. PMID:25499600

  11. Effects of molecular size and chemical factor on plasma gene transfection

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  12. The elongation factor Spt5 facilitates transcription initiation for rapid induction of inflammatory-response genes

    PubMed Central

    Diamant, Gil; Bahat, Anat; Dikstein, Rivka

    2016-01-01

    A subset of inflammatory-response NF-κB target genes is activated immediately following pro-inflammatory signal. Here we followed the kinetics of primary transcript accumulation after NF-κB activation when the elongation factor Spt5 is knocked down. While elongation rate is unchanged, the transcript synthesis at the 5′-end and at the earliest time points is delayed and reduced, suggesting an unexpected role in early transcription. Investigating the underlying mechanism reveals that the induced TFIID–promoter association is practically abolished by Spt5 depletion. This effect is associated with a decrease in promoter-proximal H3K4me3 and H4K5Ac histone modifications that are differentially required for rapid transcriptional induction. In contrast, the displacement of TFIIE and Mediator, which occurs during promoter escape, is attenuated in the absence of Spt5. Our findings are consistent with a central role of Spt5 in maintenance of TFIID–promoter association and promoter escape to support rapid transcriptional induction and re-initiation of inflammatory-response genes. PMID:27180651

  13. Orthologous transcription factors in bacteria have differentfunctions and regulate different genes

    SciTech Connect

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2007-07-25

    Transcription factors (TFs) form large paralogous genefamilies and have complex evolutionary histories. Here, we ask whetherputative orthologs of TFs, from bidirectional best BLAST hits (BBHs), areevolutionary orthologs with conserved functions. We show that BBHs of TFsfrom distantly related bacteria are usually not evolutionary orthologs.Furthermore, the false orthologs usually respond to different signals andregulate distinct pathways, while the few BBHs that are evolutionaryorthologs do have conserved functions. To test the conservation ofregulatory interactions, we analyze expression patterns. We find thatregulatory relationships between TFs and their regulated genes areusually not conserved for BBHs in Escherichia coli K12 and Bacillussubtilis. Even in the much more closely related bacteria Vibrio choleraeand Shewanella oneidensis MR-1, predicting regulation from E. coli BBHshas high error rates. Using gene-regulon correlations, we identify geneswhose expression pattern differs between E. coli and S. oneidensis. Usingliterature searches and sequence analysis, we show that these changes inexpression patterns reflect changes ingene regulation, even forevolutionary orthologs. We conclude that the evolution of bacterialregulation should be analyzed with phylogenetic trees, rather than BBHs,and that bacterial regulatory networks evolve more rapidly thanpreviously thought.

  14. Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation.

    SciTech Connect

    Hallahan, D. E.; Virudachalam, S.; Sherman, M. L.; Huberman, E.; Kufe, D. W.; Weichselbaum, R. R.; Univ. of Chicago; Dana-Farber Cancer Inst.; Univ. of Chicago

    1991-01-01

    Tumor necrosis factor (TNF) production following X-irradiation has been implicated in the biological response to ionizing radiation. Protein kinase C (PKC) is suggested to participate in TNF transcriptional induction and X-ray-mediated gene expression. We therefore studied radiation-mediated TNF expression in HL-60 cells with diminished PKC activity produced by either pretreatment with protein kinase inhibitors or prolonged 12-O-tetradecanoylphorbol-13-acetate treatment. Both treatments resulted in attenuation of radiation-mediated TNF induction. Consistent with these results, we found no detectable induction of TNF expression following X-irradiation in the HL-60 variant deficient in PKC-mediated signal transduction. The rapid activation of PKC following {gamma}-irradiation was established using an in vitro assay measuring phosphorylation of a PKC specific substrate. A 4.5-fold increase in PKC activity occurred 15 to 30 s following irradiation, which declined to baseline at 60 s. Two-dimensional gel electrophoresis of phosphoproteins extracted from irradiated cells demonstrated in vivo phosphorylation of the PKC specific substrate Mr 80,000 protein at 45 s following X-irradiation. These findings indicate that signal transduction via the PKC pathway is required for the induction of TNF gene expression by ionizing radiation.

  15. Physical Factors Affecting Plasmid DNA Compaction in Stearylamine-Containing Nanoemulsions Intended for Gene Delivery

    PubMed Central

    Silva, André Leandro; Júnior, Francisco Alexandrino; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-01-01

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. PMID:24281666

  16. A new gene encoding a putative transcription factor regulated by the Drosophila circadian clock.

    PubMed

    Rouyer, F; Rachidi, M; Pikielny, C; Rosbash, M

    1997-07-01

    Circadian rhythms of locomotor activity and eclosion in Drosophila depend upon the reciprocal autoregulation of the period (per) and timeless (tim) genes. As part of this regulatory loop, per and tim mRNA levels oscillate in a circadian fashion. Other cycling transcripts may participate in this central pacemaker mechanism or represent outputs of the clock. In this paper, we report the isolation of Crg-1, a new circadianly regulated gene. Like per and tim transcript levels, Crg-1 transcript levels oscillate with a 24 h period in light:dark (LD) conditions, with a maximal abundance at the beginning of the night. These oscillations persist in complete darkness and depend upon per and tim proteins. The putative CRG-1 proteins show some sequence similarity with the DNA-binding domain of the HNF3/fork head family of transcription factors. In the adult head, in situ hybridization analysis reveals that per and Crg-1 have similar expression patterns in the eyes and optic lobes. PMID:9233804

  17. Physical factors affecting plasmid DNA compaction in stearylamine-containing nanoemulsions intended for gene delivery.

    PubMed

    Silva, André Leandro; Alexandrino, Francisco; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-01-01

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. PMID:24281666

  18. Loss of epigenetic silencing of the DUX4 transcription factor gene in facioscapulohumeral muscular dystrophy.

    PubMed

    Hewitt, Jane E

    2015-10-15

    Current genetic and molecular evidence best supports an epigenetic mechanism for facioscapulohumeral muscular dystrophy (FSHD), whereby de-repression of the D4Z4 macrosatellite array leads to aberrant expression of the DUX4 transcription factor in skeletal muscle. This de-repression is triggered by either array contraction or (more rarely) by mutation of the SMCHD1 (structural maintenance of chromosomes flexible hinge domain containing 1) gene. Activation of DUX4 targets, including germline genes and several mammalian retrotransposons, then drives pathogenesis. A direct role for DUX4 mRNA in suppression of nonsense-mediated decay pathways has recently been demonstrated and may also contribute to muscle pathology. Loss of D4Z4 repression in FSHD is observed as hypomethylation of the array accompanied by loss of repressive chromatin marks. The molecular mechanisms of D4Z4 repression are poorly understood, but recent data have identified an Argonaute (AGO)-dependent siRNA pathway. Targeting this pathway by exogenous siRNAs could be a therapeutic strategy for FSHD. PMID:26113644

  19. Activation of the glutaredoxin-1 gene by Nuclear Factor kappa B enhances signaling

    PubMed Central

    Aesif, Scott W.; Kuipers, Ine; van der Velden, Jos; Tully, Jane E.; Guala, Amy S.; Anathy, Vikas; Sheely, Juliana I.; Reynaert, Niki L.; Wouters, Emiel F. M.; van der Vliet, Albert; Janssen-Heininger, Yvonne M. W.

    2011-01-01

    The transcription factor, Nuclear Factor kappa B (NF-κB) is a critical regulator of inflammation and immunity, and is negatively regulated via S-glutathionylation. The inhibitory effect of S-glutathionylation is overcome by glutaredoxin-1 (Grx1), which under physiological conditions catalyses deglutathionylation and enhances NF-κB activation. The mechanisms whereby expression of the Glrx1 gene is regulated remain unknown. Here we examined the role of NF-κB in regulating activation of Glrx1. Transgenic mice which express a doxycyclin-inducible constitutively active version of inhibitory kappa B kinase-beta (CA-IKKβ) demonstrate elevated expression of Grx1. Transient transfection of CA-IKKβ also resulted in significant induction of Grx1. A 2kb region Glrx1 promoter that contains two putative NF-κB binding sites was activated by CA-IKKβ, RelA/p50, and lipopolysaccharide (LPS). Chromatin immunoprecipitation experiments confirmed binding of RelA to the promoter of Glrx1 in response to LPS. Stimulation of C10 lung epithelial cells with LPS caused transient increases in Grx1 mRNA expression, and time-dependent increases in S-glutathionylation of IKKβ. Overexpression of Grx1 decreased S-glutathionylation of IKKβ, prolonged NF-κB activation, and increased levels of pro-inflammatory mediators. Collectively, this study demonstrates that the Glrx1 gene is positively regulated by NF-κB, and suggests a feed forward mechanism to promote NF-κB signaling by decreasing S-glutathionylation. PMID:21762778

  20. Impact of VEGF-C Gene Polymorphisms and Environmental Factors on Oral Cancer Susceptibility in Taiwan

    PubMed Central

    Chien, Ming-Hsien; Liu, Yu-Fan; Hsin, Chung-Han; Lin, Chien-Huang; Shih, Chun-Han; Yang, Shun-Fa; Cheng, Chao-Wen; Lin, Chiao-Wen

    2013-01-01

    Background Oral cancer, which is the fourth most common male cancer, is associated with environmental carcinogens in Taiwan. Vascular endothelial growth factor (VEGF)-C, an angiogenic/lymphangiogenic factor with high expression levels in tumor tissues, plays important roles in the development of several malignancies. This study was designed to examine associations of five VEGF-C gene polymorphisms with the susceptibility to and clinicopathological characteristics of oral squamous cell carcinoma. Methodology/Principal Findings Five single-nucleotide polymorphisms (SNPs) of VEGF-C were analyzed by a real-time polymerase chain reaction (PCR) in 470 male patients with oral cancer and 426 cancer-free controls. In this study, we found that the VEGF-C rs7664413 and rs2046463 polymorphisms were associated with oral-cancer susceptibility but not with any clinicopathological parameters. The GGACA or GACTG haplotype of five VEGF-C SNPs (rs3775194, rs11947611, rs1485766, rs7664413, and rs2046463) combined was also related to the risk of oral cancer. Among 611 male smokers, VEGF-C polymorphism carriers who also chewed betel quid were found to have a 14.5–24.2-fold risk of having oral cancer compared to the VEGF-C wild-type carrier who did not chew betel quid. Among 461 male betel-quid chewers, VEGF-C polymorphism carriers who also smoked had a 2.7–18.1-fold risk of having oral cancer compared to those who carried the wild type but did not smoke. Conclusions Our results suggest that the two SNPs of VEGF-C (rs7664413 and rs2046463) and either of two haplotypes of five SNPs combined have potential predictive significance in oral carcinogenesis. Gene-environmental interactions among VEGF-C polymorphisms, smoking, and betel-quid chewing might alter one's susceptibility to oral cancer. PMID:23593187

  1. MicroRNA Gene Polymorphisms and Environmental Factors Increase Patient Susceptibility to Hepatocellular Carcinoma

    PubMed Central

    Chu, Yin-Hung; Hsieh, Ming-Ju; Chiou, Hui-Ling; Liou, Yi-Sheng; Yang, Chen-Chieh; Yang, Shun-Fa; Kuo, Wu-Hsien

    2014-01-01

    Background Micro RNAs (miRNAs) are small RNA fragments that naturally exist in the human body. Through various physiological mechanisms, miRNAs can generate different functions for regulating RNA protein levels and balancing abnormalities. Abnormal miRNA expression has been reported to be highly related to several diseases and cancers. Single-nucleotide polymorphisms (SNPs) in miRNAs have been reported to increase patient susceptibility and affect patient prognosis and survival. We adopted a case-control research design to verify the relationship between miRNAs and hepatocellular carcinoma. Methodology/Principal Findings A total of 525 subjects, including 377 controls and 188 hepatocellular carcinoma patients, were selected. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and real-time PCR were used to analyze miRNA146a (rs2910164), miRNA149 (rs2292832), miRNA196 (rs11614913), and miRNA499 (rs3746444) genetic polymorphisms between the control group and the case group. The results indicate that people who carry the rs3746444 CT or CC genotypes may have a significantly increased susceptibility to hepatocellular carcinoma (adjusted odds ratio [AOR] = 2.84, 95% confidence interval [CI] = 1.88–4.30). In addition, when combined with environmental risk factors, such as smoking and alcohol consumption, interaction effects were observed between gene polymorphisms and environmental factors (odds ratio [OR] = 4.69, 95% CI = 2.52–8.70; AOR = 3.38, 95% CI = 1.68–6.80). Conclusions These results suggest that a significant association exists between miRNA499 SNPs and hepatocellular carcinoma. Gene-environment interactions of miRNA499 polymorphisms, smoking, and alcohol consumption might alter hepatocellular carcinoma susceptibility. PMID:24587132

  2. Polymorphisms in the nuclear factor kappa B gene association with recurrent embryo implantation failure.

    PubMed

    Luo, L; Li, D H; Li, X P; Zhang, S C; Yan, C F; Wu, J F; Qi, Y H; Zhao, J

    2016-01-01

    Despite more than a century of intensive study, the mechanisms of successful pregnancy remain unclear. Recent research suggests that NF-κB (nuclear factor kappa B) plays an important role in embryo implantation. In the current study, we aimed to identify SNPs that contribute to genetic susceptibility for recurrent implantation failure (RIF). Thus, we examined the potential associations between RIF and ten SNPs (rs28362491, rs3774932, rs1598856, rs230528, rs230521, rs3774956, rs4648055, rs3774964, rs4648068, and rs3774968) of the NF-κB gene. Participants included 209 patients with RIF and 395 controls. Our results revealed that there were statistically significant differences observed in the allelic and genotypic frequencies of the rs28362491 promoter in the NF-κB gene. The frequency of the del/ del genotype was significantly higher in RIF patients than in healthy controls (P = 0.004). Compared with healthy controls, the RIF patients carried a higher frequency of the rs28362491 del allele (P = 0.010). Furthermore, strong linkage disequilibrium was observed in the three identified haplotype blocks (D' > 0.9). Particularly, in block 1 (rs230528-rs230521), the A-C haplotype occurred significantly more frequently (P = 0.029) in subjects with RIF (P = 0.0003). In contrast, the A-G haplotype occurred significantly less frequently (P = 0.008) in RIF subjects. These findings support an important role for G-712A polymorphisms of NF-κB in RIF, and may guide future studies that aim to characterize genetic risk factors for RIF. PMID:27173287

  3. Pathway-based factor analysis of gene expression data produces highly heritable phenotypes that associate with age.

    PubMed

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-05-01

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824

  4. Exposure to Early Life Stress Results in Epigenetic Changes in Neurotrophic Factor Gene Expression in a Parkinsonian Rat Model

    PubMed Central

    Mpofana, Thabisile; Daniels, Willie M. U.; Mabandla, Musa V.

    2016-01-01

    Early life adversity increases the risk of mental disorders later in life. Chronic early life stress may alter neurotrophic factor gene expression including those for brain derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF) that are important in neuronal growth, survival, and maintenance. Maternal separation was used in this study to model early life stress. Following unilateral injection of a mild dose of 6-hydroxydopamine (6-OHDA), we measured corticosterone (CORT) in the blood and striatum of stressed and nonstressed rats; we also measured DNA methylation and BDNF and GDNF gene expression in the striatum using real time PCR. In the presence of stress, we found that there was increased corticosterone concentration in both blood and striatal tissue. Further to this, we found higher DNA methylation and decreased neurotrophic factor gene expression. 6-OHDA lesion increased neurotrophic factor gene expression in both stressed and nonstressed rats but this increase was higher in the nonstressed rats. Our results suggest that exposure to early postnatal stress increases corticosterone concentration which leads to increased DNA methylation. This effect results in decreased BDNF and GDNF gene expression in the striatum leading to decreased protection against subsequent insults later in life. PMID:26881180

  5. Pathway-Based Factor Analysis of Gene Expression Data Produces Highly Heritable Phenotypes That Associate with Age

    PubMed Central

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-01-01

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 “pathway phenotypes” that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold (P<5.38×10−5). These phenotypes are more heritable (h2=0.32) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824

  6. Coagulation profile, gene expression and bioinformatics characterization of coagulation factor X of striped murrel Channa striatus.

    PubMed

    Arasu, Abirami; Kumaresan, Venkatesh; Sathyamoorthi, Akila; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Arockiaraj, Jesu

    2016-08-01

    A transcriptome wide analysis of the constructed cDNA library of snakehead murrel Channa striatus revealed a full length cDNA sequence of coagulation factor X. Sequence analysis of C. striatus coagulation factor X (CsFX) showed that the cDNA contained 1232 base pairs (bp) comprising 1209 bp open reading frame (ORF). The ORF region encodes 424 amino acids with a molecular mass of 59 kDa. The polypeptide contains γ-carboxyglutamic acid (GLA) rich domain and two epidermal growth factor (EGF) like domains including EGF-CA domain and serine proteases trypsin signature profile. CsFX exhibited the maximum similarity with fish species such as Stegastes partitus (78%), Poecilia formosa (76%) and Cynoglossus semilaevis (74%). Phylogenetically, CsFX is clustered together with the fish group belonging to Actinopterygii. Secondary structure of factor X includes alpha helix 28.54%, extended strand 20.75%, beta turn 7.78% and random coil 42.92%. A predicted 3D model of CsFX revealed a short α-helix and a Ca(2+) (Gla domain) binding site in the coil. Four disulfide bridges were found in serine protease trypsin profile. Obviously, the highest gene expression (P < 0.05) was noticed in blood. Further, the changes in expression of CsFX was observed after inducing with bacterial (Aeromonas hydrophila) and fungal (Aphanomyces invadans) infections and other synthetic immune stimulants. Variation in blood clotting time (CT), prothrombin time (PT) and activated prothromboplastin time (APTT) was analyzed and compared between healthy and bacterial infected fishes. During infection, PT and APTT showed a declined clotting time due to the raised level of thrombocytes. PMID:27235370

  7. Expression of human factor IX in rabbit hepatocytes by retrovirus-mediated gene transfer: Potential for gene therapy of hemophilia B

    SciTech Connect

    Thompson, A.R. Puget Sound Blood Center, Seattle, WA ); Darlington, G. ); Armentano, D.; Woo, S.L.C.

    1990-08-01

    Hemophilia B (Christmas disease) is a chromosome X-linked blood clotting disorder which results when factor IX is deficient or functionally defective. The enzyme is synthesized in the liver, and the existence of animal models for this genetic disease will permit the development of somatic gene therapy protocols aimed at transfer of the functional gene into the liver. The authors report the construction of an N2-based recombinant retroviral vector, NCMVFIX, for efficient transfer and expression of human factor IX cDNA in primary rabbit hepatocytes. In this construct the human cytomegalovirus immediate early promoter directs the expression of factor IX. Hepatocytes were isolated from 3-week-old New Zealand White rabbits, infected with the recombinant virus, and analyzed for secretion of active factor IX. The infected rabbit hepatocytes produced human factor IX that is indistinguishable from enzyme derived from normal human plasma. The recombinant protein is sufficiently {gamma}-carboxylated and is functionally active in clotting assays. These results establish the feasibility of using infected hepatocytes for the expression of this protein and are a step toward the goal of correcting hemophilia B by hepatic gene transfer.

  8. RAGE gene polymorphism and environmental factor in the risk of oral cancer.

    PubMed

    Su, S; Chien, M; Lin, C; Chen, M; Yang, S

    2015-03-01

    Oral squamous cell carcinoma is a common neoplasm that is known to be causally associated with genetic factors and environmental carcinogens. The receptor for advanced glycosylation endproducts (RAGE) is a transmembrane protein of the immunoglobulin superfamily with broad specificity for multiple ligands, and it has been shown to play vital roles in several pathophysiologic processes, including diabetes, Alzheimer disease, renal disease, cardiovascular disease, and cancer. The present study aimed to assess the influences of RAGE gene polymorphisms, combined with environmental carcinogens on the predisposition to oral tumorigenesis. Five polymorphisms of the RAGE gene-including -374T>A (rs1800624), -429T>C (rs1800625), 1704G>T (rs184003), Gly82Ser (rs2070600), and a 63-bp deletion allele (-407 to -345)-were examined from 592 controls and 618 patients with oral cancer. We found that individuals carrying the polymorphic allele of rs1800625 are more susceptible to oral cancer (odds ratio [OR], 1.899; 95% confidence interval [CI], 1.355 to 2.661; adjusted OR [AOR], 2.053; 95% CI, 1.269 to 3.345) after adjustment for age, sex, betel nut chewing, and tobacco consumption. Moreover, we observed a significant association of rs1800625 variants with late-stage tumors (stage III/IV, OR, 1.736; 95% CI, 1.126 to 2.677; AOR, 1.771; 95% CI, 1.101 to 2.851) and large-size tumors (>2 cm in the greatest dimension; OR, 1.644; 95% CI, 1.083 to 2.493; AOR, 1.728; 95% CI, 1.089 to 2.741). Based on behavioral exposure of environmental carcinogens, the presence of 4 RAGE single-nucleotide polymorphisms (SNPs), combined with betel quid chewing and/or tobacco use, greatly augmented the risk of oral cancer. In addition, carriers of particular haplotypes of the 4 RAGE SNPs examined are more prone to develop oral cancer. These results indicate an involvement of RAGE SNP rs1800625 in the development of oral squamous cell carcinoma and implicate the interaction between RAGE gene polymorphisms and

  9. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver

    PubMed Central

    Liu, Wanqing; Ramírez, Jacqueline; Gamazon, Eric R.; Mirkov, Snezana; Chen, Peixian; Wu, Kehua; Sun, Chang; Cox, Nancy J.; Cook, Edwin; Das, Soma; Ratain, Mark J.

    2014-01-01

    The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74–217% and 52%, 39–105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6–58%; 47%, 9–58%; and 52%, 24–75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P < 0.05) associated with mRNA expression and/or activities of UGT1A1, UGT1A3 and UGT2B17. We found novel SNPs in the UGT2B17 CNV region accounting for variability in UGT2B17 gene transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs. PMID:24879639

  10. Phenylpropanoids Accumulation in Eggplant Fruit: Characterization of Biosynthetic Genes and Regulation by a MYB Transcription Factor.

    PubMed

    Docimo, Teresa; Francese, Gianluca; Ruggiero, Alessandra; Batelli, Giorgia; De Palma, Monica; Bassolino, Laura; Toppino, Laura; Rotino, Giuseppe L; Mennella, Giuseppe; Tucci, Marina

    2015-01-01

    Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena) fruits. Chlorogenic acid (CGA) accounts for 70-90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena. Higher contents of CGA, Delphinidin 3-rutinoside, and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR, and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group six MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties. In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation. Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9) resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of the C

  11. Phenylpropanoids Accumulation in Eggplant Fruit: Characterization of Biosynthetic Genes and Regulation by a MYB Transcription Factor

    PubMed Central

    Docimo, Teresa; Francese, Gianluca; Ruggiero, Alessandra; Batelli, Giorgia; De Palma, Monica; Bassolino, Laura; Toppino, Laura; Rotino, Giuseppe L.; Mennella, Giuseppe; Tucci, Marina

    2016-01-01

    Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena) fruits. Chlorogenic acid (CGA) accounts for 70–90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena. Higher contents of CGA, Delphinidin 3-rutinoside, and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR, and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group six MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties. In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation. Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9) resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of the C

  12. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors

    PubMed Central

    Boer, Karin; Crino, Peter B.; Gorter, Jan A.; Nellist, Mark; Jansen, Floor E.; Spliet, Wim G.M.; van Rijen, Peter C.; Wittink, Floyd R.A.; Breit, Timo M.; Troost, Dirk; Wadman, Wytse J.; Aronica, Eleonora

    2009-01-01

    Cortical tubers in patients with tuberous sclerosis complex are associated with disabling neurological manifestations, including intractable epilepsy. While these malformations are believed to result from the effects of TSC1 or TSC2 gene mutations, the molecular mechanisms leading to tuber formation, as well as the onset of seizures remain largely unknown. We used the Affymetrix Gene Chip platform to provide the first genome wide investigation of gene expression in surgically resected tubers, compared with histological normal perituberal tissue from the same patients or autopsy control tissue. We identified 2501 differentially expressed genes in cortical tubers compared with autopsy controls. Expression of genes associated with cell adhesion e.g., VCAM1, integrins and CD44, or with the inflammatory response, including complement factors, serpinA3, CCL2 and several cytokines, was increased in cortical tubers, whereas genes related to synaptic transmission e.g., the glial glutamate transporter GLT-1, and voltage-gated channel activity, exhibited lower expression. Gene expression in perituberal cortex was distinct from autopsy control cortex suggesting that even in the absence of tissue pathology the transcriptome is altered in TSC. Changes in gene expression yield insights into new candidate genes that may contribute to tuber formation or seizure onset, representing new targets for potential therapeutic development. PMID:19912235

  13. Analysis of factor VIII gene inversion mutations in 166 unrelated haemophilia A families: frequency and utility in genetic counselling.

    PubMed

    Vnencak-Jones, C L; Iii, J A; Janco, R L; Cohen, M P; Dupont, W D; Kazazian, H H; Rossiter, J P

    1996-01-01

    Haemophilia A is an X-linked recessive bleeding disorder of variable severity that is caused by a deficiency of coagulation factor VIII (FVIII). The disease results from mutations in the FVIII gene which are heterogenous both in type and position within the gene. Recently, however, inversion mutations were found to be common to patients with severe disease (Lakich et al., 1993). These mutations result from intrachromosomal recombinations between DNA sequences in the A gene (located in intron 22 of the FVIII gene) and one of two A genes upstream to the FVIII gene. To determine the frequency of these inversions we performed Southern blot analysis on banked DNA from 166 consecutive, unrelated haemophilia A families previously referred for carrier or prenatal testing. In 57/166 (34%) families an inversion or other unique mutation was detected. The distal and proximal A genes lying upstream to the FVIII gene were involved in 79% and 18% of the mutations, respectively, but in 3% of the families the sequences involved in the mutation have not been identified. In 20/38 (53%) families with severe disease a mutation was detected. Interestingly, the relative risk of developing inhibitors in patients with FVIII gene inversions or other 3° mutations detected by this assay, as compared to patients with no detectable mutation by this assay, was 3.8. In families for which a mutation is detected, direct DNA testing is an accurate and inexpensive alternative to linkage analysis for prenatal or haemophilia A carrier testing. PMID:27213900

  14. The Lineage-Specific Transcription Factor PU.1 Prevents Polycomb-Mediated Heterochromatin Formation at Macrophage-Specific Genes.

    PubMed

    Tagore, Mohita; McAndrew, Michael J; Gjidoda, Alison; Floer, Monique

    2015-08-01

    Lineage-specific transcription factors (TFs) are important determinants of cellular identity, but their exact mode of action has remained unclear. Here we show using a macrophage differentiation system that the lineage-specific TF PU.1 keeps macrophage-specific genes accessible during differentiation by preventing Polycomb repressive complex 2 (PRC2) binding to transcriptional regulatory elements. We demonstrate that the distal enhancer of a gene becomes bound by PRC2 as cells differentiate in the absence of PU.1 binding and that the gene is wrapped into heterochromatin, which is characterized by increased nucleosome occupancy and H3K27 trimethylation. This renders the gene inaccessible to the transcriptional machinery and prevents induction of the gene in response to an external signal in mature cells. In contrast, if PU.1 is bound at the transcriptional regulatory region of a gene during differentiation, PRC2 is not recruited, nucleosome occupancy is kept low, and the gene can be induced in mature macrophages. Similar results were obtained at the enhancers of other macrophage-specific genes that fail to bind PU.1 as an estrogen receptor fusion (PUER) in this system. These results show that one role of PU.1 is to exclude PRC2 and to prevent heterochromatin formation at macrophage-specific genes. PMID:26012552

  15. The gene family encoding the Arabidopsis thaliana translation elongation factor EF-1 alpha: molecular cloning, characterization and expression.

    PubMed

    Axelos, M; Bardet, C; Liboz, T; Le Van Thai, A; Curie, C; Lescure, B

    1989-10-01

    The gene family encoding the Arabidopsis thaliana translation elongation factor (EF-1 alpha) was analysed. This family contains four genes (A1-A4) organized in a similar manner in different varieties of Arabidopsis. Based upon both their physical separation and a comparison of their sequences, it is suggested that the A4 gene and the A1, A2, and A3 genes constitute two distinct subfamilies within the genome. By introducing chimaeric gene constructs into Arabidopsis cells, we showed that the A1 gene promoter mediates a transient expression about twofold higher than that obtained using the CaMV 35 S promoter. This expression depends on a 348 bp DNA fragment extending from -982 to -634 bp upstream of the initiation codon. This element contains a characteristic telomeric sequence (AACCCTAA) which is also found in the promoters of the A2 and A4 genes as well as in the promoters of the Drosophila EF-1 alpha F1 gene and of several highly expressed plant genes. PMID:2615757

  16. Vascular endothelial growth factor and hypoxia-inducible factor-1α gene polymorphisms and coronary collateral formation in patients with coronary chronic total occlusions

    PubMed Central

    Amoah, Vincent; Wrigley, Benjamin; Holroyd, Eric; Smallwood, Andrew; Armesilla, Angel L; Nevill, Alan; Cotton, James

    2016-01-01

    Introduction: We evaluated the association between two single nucleotide polymorphisms of the vascular endothelial growth factor gene and one of the hypoxia-inducible factor-1α gene and the degree of coronary collateral formation in patients with a coronary chronic total occlusion. Methods: Totally, 98 patients with symptomatic coronary artery disease and a chronic total occlusion observed during coronary angiography were recruited. Genotyping of two vascular endothelial growth factor promoter single nucleotide polymorphisms (−152G>A and −165C>T) and the C1772T single nucleotide polymorphism of hypoxia-inducible factor-1α were performed using polymerase chain reaction and restriction fragment length polymorphism analysis. The presence and extent of collateral vessel filling was scored by blinded observers using the Rentrop grade. Results: We found no association between the vascular endothelial growth factor −152G>A, −165C>T and hypoxia-inducible factor-1α −1772C>T with the presence and filling of coronary collateral vessels. A history of percutaneous coronary intervention and transient ischaemic attack/cerebrovascular accident were associated with the presence of enhanced collateral vessel formation following binary logistic regression analysis. Conclusion: The study findings suggest that coronary collateral formation is not associated with the tested polymorphic variants of vascular endothelial growth factor and hypoxia-inducible factor-1α in patients with symptomatic coronary artery disease and the presence of a chronic total occlusion. PMID:27621802

  17. Expression Profiling of the Maize Flavonoid Pathway Genes Controlled by Estradiol-Inducible Transcription Factors CRC and P

    PubMed Central

    Bruce, Wesley; Folkerts, Otto; Garnaat, Carl; Crasta, Oswald; Roth, Brad; Bowen, Ben

    2000-01-01

    To determine the scope of gene expression controlled by the maize transcription factors C1/R and P, which are responsible for activating flavonoid synthesis, we used GeneCalling, an open-ended, gel-based, mRNA-profiling technology, to analyze cell suspension lines of the maize inbred Black Mexican Sweet (BMS) that harbored estradiol-inducible versions of these factors. BMS cells were transformed with a continually expressed estrogen receptor/maize C1 activator domain fusion gene (ER–C1) and either a fusion of C1 and R (CRC), P, or luciferase genes regulated by a promoter containing four repeats of an estrogen receptor binding site. Increasing amounts of luciferase activity, anthocyanins, and flavan-4-ols were detected in the respective cell lines after the addition of estradiol. The expression of both known and novel genes was detected simultaneously in these BMS lines by profiling the mRNA isolated from replicate samples at 0, 6, and 24 hr after estradiol treatment. Numerous cDNA fragments were identified that showed a twofold or greater difference in abundance at 6 and 24 hr than at 0 hr. The cDNA fragments from the known flavonoid genes, except chalcone isomerase (chi1), were induced in the CRC-expressing line after hormone induction, whereas only the chalcone synthase (c2) and flavanone/dihydroflavonol reductase (a1) genes were induced in the P-expressing line, as was expected. Many novel cDNA fragments were also induced or repressed by lines expressing CRC alone, P alone, or both transcription factors in unique temporal patterns. The temporal differences and the evidence of repression indicate a more diverse set of regulatory controls by CRC or P than originally expected. GeneCalling analysis was successful in detecting members of complex metabolic pathways and uncovering novel genes that were either coincidentally regulated or directly involved in such pathways. PMID:10634908

  18. Construction of recombinant Escherichia coli strains for secretory expression of artificial genes for human granulocyte-macrophage colony stimulating factor

    SciTech Connect

    Petrovskaya, L.E.; Ruzin, A.V.; Shingarova, L.N.; Korobko, V.G.

    1995-11-01

    A number of recombinant plasmids for expression of artificial genes encoding human granulocyte-macrophage colony stimulating factor (GM-CSF) were constructed. A hybrid gene was obtained that contains a sequence encoding the leader peptide and a tandem of two IgG-binding domains of protein A from Staphylococcus aureus coupled, through an enteropepdidase linker, to a synthetic gmcsf gene. The construction enables Escherichia coli to carry out biosynthesis of the hybrid protein and its subsequent transport into the periplasmic space of bacteria. Another hybrid gene, combining sequences for the signal peptide of the E. coli outer membrane protein OmpA and GM-CSF, was obtained using polymerase chain reaction. The localization of the mature protein produced by the hybrid gene was found to depend on the strength of the promoter used. 39 refs., 6 figs.

  19. Common nucleotide sequence of structural gene encoding fibroblast growth factor 4 in eight cattle derived from three breeds.

    PubMed

    Sato, Sho; Takahashi, Toshikiyo; Nishinomiya, Hiroshi; Katoh, Makiko; Itoh, Ryu; Yokoo, Masaki; Yokoo, Mari; Iha, Momoe; Mori, Yuki; Kasuga, Kano; Kojima, Ikuo; Kobayashi, Masayuki

    2012-03-01

    Fibroblast growth factor 4 (FGF4) is considered as a crucial gene for the proper development of bovine embryos. However, the complete nucleotide sequences of the structural genes encoding FGF4 in identified breeds are still unknown. In the present study, direct sequencing of PCR products derived from genomic DNA samples obtained from three Japanese Black, two Japanese Shorthorn and three Holstein cattle, revealed that the nucleotide sequences of the structural gene encoding FGF4 matched completely among these eight cattle. On the other hand, differences in the nucleotide sequences, leading to substitutions, insertions or deletions of amino acid residues were detected when compared with the already reported sequence from unidentified breeds. We cannot rule out a possibility that the structural gene elucidated in the present study is widely distributed in cattle. To the best of our knowledge, this is the first determination of the complete nucleotide sequence of the structural gene encoding bovine FGF4 in identified breeds. PMID:22435631

  20. PCBs alter gene expression of nuclear transcription factors and other heart-specific genes in cultures of primary cardiomyocytes: possible implications for cardiotoxicity.

    PubMed

    Borlak, J; Thum, T

    2002-12-01

    1. Polychlorinated biphenyls (PCBs) are well-known environmental pollutants that bioaccumulate mainly in the fatty tissue of animals and humans. Although contamination occurs primarily via the food chain, waste combustion leads to airborne PCBs. From epidemiological studies, there is substantial evidence that cardiovascular disease is linked to air pollution, but little is known about the underlying molecular events. 2. We investigated the effects of Aroclor 1254, a complex mixture of >80 PCB isomers and congeners, on the expression of nuclear transcription factors (GATA-4, Nkx-2.5, MEF-2c, OCT-1) and of downstream target genes (atrial and brain natriuretic peptide, alpha- and beta-myosin heavy chain, alpha-cardiac and alpha-skeletal actin), which play an important role in cardiac biology. 3. We treated cultures of primary cardiomyocytes of adult rats with Aroclor 1254 (10.0 micro M) and found significant induction of the transcription factor genes GATA-4 and MEF-2c and of genes regulated by these factors, i.e. atrial natriuretic peptide, brain-type natriuretic peptide, alpha- and beta-myosin heavy chain, and skeletal alpha actin. 4. We have shown PCBs to modulate expression of genes coding for programmes of cellular differentiation and stress (e.g. atrial natriuretic peptide, brain-type natriuretic peptide) and these alterations may be important in the increase of cardiovascular disease in polluted areas. PMID:12593764

  1. Risk of open angle glaucoma due to tumor necrosis factor alpha gene polymorphisms

    PubMed Central

    Hamid, Mona Abdel; Moemen, Leqaa; Labib, Hany; Helmy, Hazem; Elsergany, Tarek

    2016-01-01

    Introduction Axonal degeneration and retinal ganglion cell apoptosis in glaucoma is associated with tumor necrosis factor alpha (TNF-α), which is an important pro-inflammatory cytokine. The aim of this study was to determine the association between the risk of open angle glaucoma (OAG) in the Egyptian population and tumor necrosis factor alpha (TNF-α) gene polymorphisms. Methods Sixty OAG patients and 26 healthy unrelated controls were used to analyze TNF-α polymorphism G-308A using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). Results the GG genotype was found at a higher frequency in the controls than in the patients, and the AA and GA genotypes were associated strongly with OAG. Conclusion In this study, we found that the TNF-α polymorphism G-308A was associated significantly with OAG in the Egyptian population. However, there is a need for population-based studies with large numbers of subjects. Also, long-term follow up is required to verify the association between TNF-α polymorphism G-308A and glaucoma susceptibility. PMID:27054008

  2. The GATA transcription factor GtaC regulates early developmental gene expression dynamics in Dictyostelium.

    PubMed

    Santhanam, Balaji; Cai, Huaqing; Devreotes, Peter N; Shaulsky, Gad; Katoh-Kurasawa, Mariko

    2015-01-01

    In many systems, including the social amoeba Dictyostelium discoideum, development is often marked by dynamic morphological and transcriptional changes orchestrated by key transcription factors. However, efforts to examine sequential genome-wide changes of gene regulation in developmental processes have been fairly limited. Here we report the developmental regulatory dynamics of GtaC, a GATA-type zinc-finger transcription factor, through the analyses of serial ChIP- and RNA-sequencing data. GtaC is essential for developmental progression, decoding extracellular cAMP pulses during early development and may play a role in mediating cell-type differentiation at later stages. We find that GtaC exhibits temporally distinctive DNA-binding patterns concordant with each developmental stage. We identify direct GtaC targets and observe cotemporaneous GtaC-binding and developmental expression regulation. Our results suggest that GtaC regulates multiple physiological processes as Dictyostelium transitions from a group of unicellular amoebae to an integrated multicellular organism. PMID:26144553

  3. Transcription factor organic cation transporter 1 (OCT-1) affects the expression of porcine Klotho (KL) gene

    PubMed Central

    Zhou, Jiawei

    2016-01-01

    Klotho (KL), originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp) as the porcine KL core promoter. MARC0022311SNP (A or G) in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1), which was confirmed using electrophoretic mobility shift assays (EMSA) and chromatin immune-precipitation (ChIP). Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1. PMID:27478698

  4. Isolation and Characterization of Six AP2/ERF Transcription Factor Genes in Chrysanthemum nankingense

    PubMed Central

    Gao, Chunyan; Li, Peiling; Song, Aiping; Wang, Haibin; Wang, Yinjie; Ren, Liping; Qi, Xiangyu; Chen, Fadi; Jiang, Jiafu; Chen, Sumei

    2015-01-01

    The AP2/ERF family of plant transcription factors (TFs) regulate a variety of developmental and physiological processes. Here, we report the isolation of six AP2/ERF TF family genes from Chrysanthemum nankingense. On the basis of sequence similarity, one of these belonged to the Ethylene Responsive Factor (ERF) subfamily and the other five to the Dehydration Responsive Element Binding protein (DREB) subfamily. A transient expression experiment showed that all six AP2/ERF proteins localized to the nucleus. A yeast-one hybrid assay demonstrated that CnDREB1-1, 1-2 and 1-3 all function as transactivators, while CnERF1, CnDREB3-1 and 3-2 have no transcriptional activation ability. The transcription response of the six TFs in response to wounding, salinity and low temperature stress and treatment with abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) showed that CnERF1 was up-regulated by wounding and low temperature stress but suppressed by salinity stress. The transcription of CnDREB1-1, 1-2 and 1-3 was down-regulated by ABA and JA to varying degrees. CnDREB3-1 and 3-2 was moderately increased or decreased by wounding and SA treatment, suppressed by salinity stress and JA treatment, and enhanced by low temperature stress and ABA treatment. PMID:25607731

  5. Overexpression of Meloe Gene in Melanomas Is Controlled Both by Specific Transcription Factors and Hypomethylation

    PubMed Central

    Bobinet, Mathilde; Vignard, Virginie; Florenceau, Laetitia; Lang, Francois

    2013-01-01

    The melanoma antigens MELOE-1 and MELOE-2 are encoded by a messenger, called meloe, overexpressed in melanomas compared with other tumour cell types and healthy tissues. They are both able to elicit melanoma-specific T cell responses in melanoma patients, and MELOE-1-specific CD8 T cells have been involved in melanoma immunosurveillance. With the aim to develop immunotherapies targeting this antigen, we investigated the transcriptional mechanisms leading to the preferential expression of meloe messenger in the melanocytic lineage. We defined the minimal promoter region of meloe gene and identified binding motifs for a set of transcription factors. Using mutagenesis, co-transfection experiments and chromatin immunoprecipitation, we showed that transcription factors involved in meloe promoter activity in melanomas were the melanocytic specific SOX9 and SOX10 proteins together with the activated P-CREB protein. Furthermore, we showed that meloe promoter was hypomethylated in melanomas and melanocytes, and hypermethylated in colon cancer cell lines and mesotheliomas, thus explaining the absence of P-CREB binding in these cell lines. This was a second key to explain the overerexpression of meloe messenger in the melanocytic lineage. To our knowledge, such a dual transcriptional control conferring tissue-specificity has never been described for the expression of tumour antigens. PMID:24086527

  6. Transcription factor organic cation transporter 1 (OCT-1) affects the expression of porcine Klotho (KL) gene.

    PubMed

    Li, Yan; Wang, Lei; Zhou, Jiawei; Li, Fenge

    2016-01-01

    Klotho (KL), originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (-418 bp to -3 bp) as the porcine KL core promoter. MARC0022311SNP (A or G) in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1), which was confirmed using electrophoretic mobility shift assays (EMSA) and chromatin immune-precipitation (ChIP). Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1. PMID:27478698

  7. Risk factors and gene type for infections of MRSA in diabetic foot patients in Tianjin, China.

    PubMed

    Feng, Shu-Hong; Chu, Yue-Jie; Wang, Peng-Hua; Jun, Xu; Min, Ding; Li, Xue-Mei

    2013-06-01

    The objective was to study risk factors and gene type of DF patients infected with MRSA. A total of 429 DF patients were recruited. The patients with S aureus infections were divided into MRSA and MSSA groups. MRSA were genotyped by SCCmec. pvl and lukE-lukD were detected. A total of 559 pathogens were isolated from them, with G+ bacteria firstly(59.0%), followed G- bacilli (37.7%) and true fungi (3.3%). The 3 most frequently isolated pathogens were S aureus (35.2%), S epidermidis (12.3%), and Pseudomonas aeruginosa (11.2%). SCCmec III MRSA and SCCmec IVa MRSA had the same antibacterial spectrum. mecA positive rate was 100%. lukE-lukD and pvl positive rates were 100% and 0%, respectively. 28 strains belonged to SCCmec III and the others belonged to SCCmec IVa. The G+ cocci were the main pathogens, S aureus and S epidermidis were predominant among them. Antibiotic usage in 6 months prior to hospitalization, long course of ulcer, osteomyelitis and hypoproteinemia are risk factors for MRSA. SCCmec IVa is high in proportion to MRSA isolates, suggesting that CA-MRSA has become major pathogen of DF infection. All the MRSA were harboring lukE-lukD, which has been reported to present poor leucotoxin compared to pvl, and may be a response to atypical local inflammatory reaction in DF infection. PMID:23771611

  8. The GATA transcription factor GtaC regulates early developmental gene expression dynamics in Dictyostelium

    PubMed Central

    Santhanam, Balaji; Cai, Huaqing; Devreotes, Peter N.; Shaulsky, Gad; Katoh-Kurasawa, Mariko

    2015-01-01

    In many systems, including the social amoeba Dictyostelium discoideum, development is often marked by dynamic morphological and transcriptional changes orchestrated by key transcription factors. However, efforts to examine sequential genome-wide changes of gene regulation in developmental processes have been fairly limited. Here we report the developmental regulatory dynamics of GtaC, a GATA-type zinc-finger transcription factor, through the analyses of serial ChIP- and RNA-sequencing data. GtaC is essential for developmental progression, decoding extracellular cAMP pulses during early development and may play a role in mediating cell-type differentiation at later stages. We find that GtaC exhibits temporally distinctive DNA-binding patterns concordant with each developmental stage. We identify direct GtaC targets and observe cotemporaneous GtaC-binding and developmental expression regulation. Our results suggest that GtaC regulates multiple physiological processes as Dictyostelium transitions from a group of unicellular amoebae to an integrated multicellular organism. PMID:26144553

  9. Determination of ligand-binding specificity by alternative splicing: Two distinct growth factor receptors encoded by a single gene

    SciTech Connect

    Miki, T.; Bottaro, D.P.; Fleming, T.P.; Smith, C.L.; Chan, A.M.L.; Aaronson, S.A. ); Burgess, W.H. )

    1992-01-01

    Expression cDNA cloning and structural analysis of the human keratinocyte growth factor receptor (KGFR) revealed identity with one of the fibroblast growth factor (FGF) receptors encoded by the bek gene (FGFR-2), except for a divergent stretch of 49 amino acids in their extracellular domains. Binding assays demonstrated that the KGFR was a high-affinity receptor for both KGF and acidic FGF, while FGFR-2 showed high affinity for basic and acidic FGF but no detectable binding by KGF. Genomic analysis of the bek gene revealed two alternative exons responsible for the region of divergence between the two receptors. The KGFR transcript was specific to epithelial cells, and it appeared to be differentially regulated with respect to the alternative FGFR-2 transcript. Thus, two growth factor receptors with different ligand-binding specificities and expression patterns are encoded by alternative transcripts of the same gene.

  10. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    SciTech Connect

    Chandrasekharan, Sabarinath; Kandasamy, Krishna Kumar; Dayalan, Pavithra; Ramamurthy, Viraragavan

    2013-08-02

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  11. Architectural factor HMGA induces promoter bending and recruits C/EBP and GATA during silkmoth chorion gene regulation.

    PubMed

    Papantonis, Argyris; Vanden Broeck, Josef; Lecanidou, Rena

    2008-11-15

    A protein displaying significant similarity to mammalian HMGA (high-mobility group A) proteins, but also bearing unique structural features, was isolated from silkmoth (Bombyx mori) follicular cells. This factor, named BmHMGA, exhibits specific binding preference for chorion gene promoter elements and induces DNA bending thereon. BmHMGA deploys temporal-specific interaction with transcription factors BmC/EBP (C/EBP is CCAAT/enhancer-binding protein) and BmGATAbeta during follicle maturation. The respective protein complexes can be detected on chorion gene promoters in vivo, with different developmental profiles each time. Analogous interaction takes place on the putative promoter of the BmC/EBP gene, hinting towards a transcriptional circuit that is responsible for the progress of choriogenesis as a whole. Finally, transient suppression of BmHMGA expression led to down-regulation of chorion genes and the BmC/EBP gene, and revealed recruitment of BmC/EBP, BmGATAbeta and TFIID (transcription factor IID)/TBP (TATA-box-binding protein) by BmHMGA. A revised model for chorion gene regulation is discussed in view of these findings. PMID:18636971

  12. Integration host factor and LuxR synergistically bind DNA to coactivate quorum-sensing genes in Vibrio harveyi.

    PubMed

    Chaparian, Ryan R; Olney, Stephen G; Hustmyer, Christine M; Rowe-Magnus, Dean A; van Kessel, Julia C

    2016-09-01

    The cell-cell signaling process called quorum sensing allows bacteria to control behaviors in response to changes in population density. In Vibrio harveyi, the master quorum-sensing transcription factor LuxR is a member of the TetR family of transcription factors that both activates and represses genes to coordinate group behaviors, including bioluminescence. Here, we show that integration host factor (IHF) is a key coactivator of the luxCDABE bioluminescence genes that is required together with LuxR for precise timing and expression levels of bioluminescence during quorum sensing. IHF binds to multiple sites in the luxCDABE promoter and bends the DNA in vitro. IHF and LuxR synergistically bind luxCDABE promoter DNA at overlapping, essential binding sites that are required for maximal gene expression in vivo. RNA-seq analysis demonstrated that IHF regulates 300 genes in V. harveyi, and among these are a core set of 19 genes that are also directly bound and regulated by LuxR. We validated these global analyses by demonstrating that both IHF and LuxR are required for transcriptional activation of the osmotic stress response genes betIBA-proXWV. These data suggest that IHF plays an integral role in one mechanism of transcriptional activation by the LuxR-type family of quorum-sensing regulators in vibrios. PMID:27191515

  13. Transcription factors GAF and HSF act at distinct regulatory steps to modulate stress-induced gene activation

    PubMed Central

    Fuda, Nicholas J.; Mahat, Dig B.; Core, Leighton J.; Guertin, Michael J.

    2016-01-01

    The coordinated regulation of gene expression at the transcriptional level is fundamental to development and homeostasis. Inducible systems are invaluable when studying transcription because the regulatory process can be triggered instantaneously, allowing the tracking of ordered mechanistic events. Here, we use precision run-on sequencing (PRO-seq) to examine the genome-wide heat shock (HS) response in Drosophila and the function of two key transcription factors on the immediate transcription activation or repression of all genes regulated by HS. We identify the primary HS response genes and the rate-limiting steps in the transcription cycle that GAGA-associated factor (GAF) and HS factor (HSF) regulate. We demonstrate that GAF acts upstream of promoter-proximally paused RNA polymerase II (Pol II) formation (likely at the step of chromatin opening) and that GAF-facilitated Pol II pausing is critical for HS activation. In contrast, HSF is dispensable for establishing or maintaining Pol II pausing but is critical for the release of paused Pol II into the gene body at a subset of highly activated genes. Additionally, HSF has no detectable role in the rapid HS repression of thousands of genes. PMID:27492368

  14. Association of Genetic Variants in Complement Factor H and Factor H-Related Genes with Systemic Lupus Erythematosus Susceptibility

    PubMed Central

    Zhao, Jian; Wu, Hui; Khosravi, Melanie; Cui, Huijuan; Qian, Xiaoxia; Kelly, Jennifer A.; Kaufman, Kenneth M.; Langefeld, Carl D.; Williams, Adrienne H.; Comeau, Mary E.; Ziegler, Julie T.; Marion, Miranda C.; Adler, Adam; Glenn, Stuart B.; Alarcón-Riquelme, Marta E.; Pons-Estel, Bernardo A.; Harley, John B.; Bae, Sang-Cheol; Bang, So-Young; Cho, Soo-Kyung; Jacob, Chaim O.; Vyse, Timothy J.; Niewold, Timothy B.; Gaffney, Patrick M.; Moser, Kathy L.; Kimberly, Robert P.; Edberg, Jeffrey C.; Brown, Elizabeth E.; Alarcon, Graciela S.; Petri, Michelle A.; Ramsey-Goldman, Rosalind; Vilá, Luis M.; Reveille, John D.; James, Judith A.; Gilkeson, Gary S.; Kamen, Diane L.; Freedman, Barry I.; Anaya, Juan-Manuel; Merrill, Joan T.; Criswell, Lindsey A.; Scofield, R. Hal; Stevens, Anne M.; Guthridge, Joel M.; Chang, Deh-Ming; Song, Yeong Wook; Park, Ji Ah; Lee, Eun Young; Boackle, Susan A.; Grossman, Jennifer M.; Hahn, Bevra H.; Goodship, Timothy H. J.; Cantor, Rita M.; Yu, Chack-Yung; Shen, Nan; Tsao, Betty P.

    2011-01-01

    Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement

  15. Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility.

    PubMed

    Zhao, Jian; Wu, Hui; Khosravi, Melanie; Cui, Huijuan; Qian, Xiaoxia; Kelly, Jennifer A; Kaufman, Kenneth M; Langefeld, Carl D; Williams, Adrienne H; Comeau, Mary E; Ziegler, Julie T; Marion, Miranda C; Adler, Adam; Glenn, Stuart B; Alarcón-Riquelme, Marta E; Pons-Estel, Bernardo A; Harley, John B; Bae, Sang-Cheol; Bang, So-Young; Cho, Soo-Kyung; Jacob, Chaim O; Vyse, Timothy J; Niewold, Timothy B; Gaffney, Patrick M; Moser, Kathy L; Kimberly, Robert P; Edberg, Jeffrey C; Brown, Elizabeth E; Alarcon, Graciela S; Petri, Michelle A; Ramsey-Goldman, Rosalind; Vilá, Luis M; Reveille, John D; James, Judith A; Gilkeson, Gary S; Kamen, Diane L; Freedman, Barry I; Anaya, Juan-Manuel; Merrill, Joan T; Criswell, Lindsey A; Scofield, R Hal; Stevens, Anne M; Guthridge, Joel M; Chang, Deh-Ming; Song, Yeong Wook; Park, Ji Ah; Lee, Eun Young; Boackle, Susan A; Grossman, Jennifer M; Hahn, Bevra H; Goodship, Timothy H J; Cantor, Rita M; Yu, Chack-Yung; Shen, Nan; Tsao, Betty P

    2011-05-01

    Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, P(meta) = 6.6×10(-8), OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, P(meta) = 2.9×10(-7), OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ~146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (P(meta) = 3.2×10(-7), OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (P(meta) = 3.5×10(-4), OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of

  16. Effects of dietary intake and genetic factors on hypermethylation of the hMLH1 gene promoter in gastric cancer

    PubMed Central

    Nan, Hong-Mei; Song, Young-Jin; Yun, Hyo-Yung; Park, Joo-Seung; Kim, Heon

    2005-01-01

    AIM: Hypermethylation of the promoter of the hMLH1 gene, which plays an important role in mismatch repair during DNA replication, occurs in more than 30% of human gastric cancer tissues. The purpose of this study was to investigate the effects of environmental factors, genetic polymorphisms of major metabolic enzymes, and microsatellite instability on hypermethylation of the promoter of the hMLH1 gene in gastric cancer. METHODS: Data were obtained from a hospital-based, case-control study of gastric cancer. One hundred and ten gastric cancer patients and 220 age- and sex-matched control patients completed a structured questionnaire regarding their exposure to environmental risk factors. Hypermethylation of the hMLH1 gene promoter, polymorphisms of the GSTM1, GSTT1, CYP1A1, CYP2E1, ALDH2 and L-myc genes, microsatellite instability and mutations of p53 and Ki-ras genes were investigated. RESULTS: Both smoking and alcohol consumption were associated with a higher risk of gastric cancer with hypermethylation of the hMLH1 gene promoter. High intake of vegetables and low intake of potato were associated with increased likelihood of gastric cancer with hypermethylation of the hMLH1 gene promoter. Genetic polymorphisms of the GSTM1, GSTT1, CYP1A1, CYP2E1, ALDH2, and L-myc genes were not significantly associated with the risk of gastric cancer either with or without hypermethylation in the promoter of the hMLH1 gene. Hypermethylation of the hMLH1 promoter was significantly associated with microsatellite instability (MSI): 10 of the 14 (71.4%) MSI-positive tumors showed hypermethylation, whereas 28 of 94 (29.8%) the MSI-negative tumors were hypermethylated at the hMLH1 promoter region. Hypermethylation of the hMLH1 gene promoter was significantly inversely correlated with mutation of the p53 gene. CONCLUSION: These results suggest that cigarette smoking and alcohol consumption may influence the development of hMLH1-positive gastric cancer. Most dietary factors and

  17. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene.

    PubMed Central

    Semenza, G L; Nejfelt, M K; Chi, S M; Antonarakis, S E

    1991-01-01

    Human erythropoietin gene expression in liver and kidney is inducible by anemia or hypoxia. DNase I-hypersensitive sites were identified 3' to the human erythropoietin gene in liver nuclei. A 256-base-pair region of 3' flanking sequence was shown by DNase I protection and electrophoretic mobility-shift assays to bind four or more different nuclear factors, at least two of which are induced by anemia in both liver and kidney, and the region functioned as a hypoxia-inducible enhancer in transient expression assays. These results provide insight into the molecular basis for the regulation of gene expression by a fundamental physiologic stimulus, hypoxia. Images PMID:2062846

  18. The Zinc Finger Transcription Factor ZXDC Activates CCL2 Gene Expression by Opposing BCL6-mediated Repression

    PubMed Central

    Ramsey, Jon E.; Fontes, Joseph D.

    2013-01-01

    The zinc finger X-linked duplicated (ZXD) family of transcription factors has been implicated in regulating transcription of major histocompatibility complex class II genes in antigen presenting cells; roles beyond this function are not yet known. The expression of one gene in this family, ZXD family zinc finger C (ZXDC), is enriched in myeloid lineages and therefore we hypothesized that ZXDC may regulate myeloid-specific gene expression. Here we demonstrate that ZXDC regulates genes involved in myeloid cell differentiation and inflammation. Overexpression of the larger isoform of ZXDC, ZXDC1, activates expression of monocyte-specific markers of differentiation and synergizes with phorbol 12-myristate 13-acetate (which causes differentiation) in the human leukemic monoblast cell line U937. To identify additional gene targets of ZXDC1, we performed gene expression profiling which revealed multiple inflammatory gene clusters regulated by ZXDC1. Using a combination of approaches we show that ZXDC1 activates transcription of a gene within one of the regulated clusters, chemokine (C-C motif) ligand 2 (CCL2; monocyte chemoattractant protein 1; MCP1) via a previously defined distal regulatory element. Further, ZXDC1-dependent up-regulation of the gene involves eviction of the transcriptional repressor B-cell CLL/lymphoma 6 (BCL6), a factor known to be important in resolving inflammatory responses, from this region of the promoter. Collectively, our data show that ZXDC1 is a regulator in the process of myeloid function and that ZXDC1 is responsible for Ccl2 gene de-repression by BCL6. PMID:23954399

  19. A New Family of Predicted Krüppel-Like Factor Genes and Pseudogenes in Placental Mammals

    PubMed Central

    Pei, Jimin; Grishin, Nick V.

    2013-01-01

    Krüppel-like factors (KLF) and specificity proteins (SP) constitute a family of zinc-finger-containing transcription factors that play important roles in a wide range of processes including differentiation and development of various tissues. The human genome possesses 17 KLF genes (KLF1–KLF17) and nine SP genes (SP1–SP9) with diverse functions. We used sequence similarity searches and gene synteny analysis to identify a new putative KLF gene/pseudogene named KLF18 that is present in most of the placental mammals with sequenced genomes. KLF18 is a chromosomal neighbor of the KLF17 gene and is likely a product of its duplication. Phylogenetic analyses revealed that mammalian predicted KLF18 proteins and KLF17 proteins experienced elevated rates of evolution and are grouped with KLF1/KLF2/KLF4 and non-mammalian KLF17. Predicted KLF18 proteins maintain conserved features in the zinc fingers of the SP/KLF family, while possessing repeats of a unique sequence motif in their N-terminal regions. No expression data have been reported for KLF18, suggesting that it either has highly restricted expression patterns and specialized functions, or could have become a pseudogene in extant placental mammals. Besides KLF18 genes/pseudogenes, we identified several KLF18-like genes such as Zfp352, Zfp352-like, and Zfp353 in the genomes of mouse and rat. These KLF18-like genes do not possess introns inside their coding regions, and gene expression data indicate that some of them may function in early embryonic development. They represent further expansions of KLF members in the murine lineage, most likely resulted from several events of retrotransposition and local gene duplication starting from an ancient spliced mRNA of KLF18. PMID:24244731

  20. Transcription factor AtbZIP60 regulates expression of Ca2+ -dependent protein kinase genes in transgenic cells.

    PubMed

    Tang, Wei; Page, Michael

    2013-03-01

    The Arabidopsis thaliana bZIP60 (AtbZIP60) transcription factor regulates stress signaling. However, its molecular mechanism remains to be elucidated. In this investigation, cell suspension cultures of two different plant species rice (Oryza sativa L.) and white pine (Pinus strobes L.) were transformed using Agrobacterium tumefaciens strain LBA4404 harboring pBI-AtZIP60. Integration of the AtbZIP60 gene into the genome of rice and white pine has been confirmed by polymerase chain reaction (PCR), southern blotting, and northern blotting analyses. Six transgenic cell lines from O. sativa and three transgenic cell lines from P. strobus were used to analyze the salt, drought, and cold tolerance conferred by the overexpression of the AtbZIP60 gene. Our results demonstrated that expression of the AtbZIP60 gene enhanced salt, drought, and cold tolerance in rice and white pine transgenic cell lines. In rice, transcription factor AtbZIP60 increased expression of Ca(2+)-dependent protein kinase genes OsCPK6, OsCPK9, OsCPK10, OsCPK19, OsCPK25, and OsCPK26 under treatment of salt, drought, and cold. These results demonstrated that overexpression of the AtbZIP60 gene in transgenic cell lines improved salt, drought, and cold stress tolerances by regulating expression of Ca(2+)-dependent protein kinase genes. Overexpression of the AtbZIP60 gene could be an alternative choice for engineering plant abiotic stress tolerance. PMID:23275191

  1. Ruguo key genes and tumor driving factors identification of bladder cancer based on the RNA-seq profile

    PubMed Central

    Zhang, Minglei; Li, Hongyan; Zou, Di; Gao, Ji

    2016-01-01

    Aim This study aimed to select several signature genes associated with bladder cancer, thus to investigate the possible mechanism in bladder cancer. Methods The mRNA expression profile data of GSE31614, including ten bladder tissues and ten control samples, was downloaded from the Gene Expression Omnibus. The differentially expressed genes (DEGs) in bladder cancer samples compared with the control samples were screened using the Student’s t-test method. Functional analysis for the DEGs was analyzed using the Database for Annotation, Visualization, and Integrated Discovery from the Gene Ontology database, followed by the transcription function annotation of DEGs from Tumor-Associated Gene database. Motifs of genes that had transcription functions in promoter region were analyzed using the Seqpos. Results A total of 1,571 upregulated and 1,507 downregulated DEGs in the bladder cancer samples were screened. ELF3 and MYBL2 involved in cell cycle and DNA replication were tumor suppressors. MEG3, APEX1, and EZH2 were related with the cell epigenetic regulation in bladder cancer. Moreover, HOXB9 and EN1 that have their own motif were the transcription factors. Conclusion Our study has identified several key genes involved in bladder cancer. ELF3 and MYBL2 are tumor suppressers, HOXB9 and EN1 are the main regulators, while MEG3, APEX1, and EZH2 are driving factors for bladder cancer progression. PMID:27217782

  2. GLABRA2 Directly Suppresses Basic Helix-Loop-Helix Transcription Factor Genes with Diverse Functions in Root Hair Development

    PubMed Central

    Lin, Qing; Ohashi, Yohei; Kato, Mariko; Tsuge, Tomohiko; Gu, Hongya; Qu, Li-Jia; Aoyama, Takashi

    2015-01-01

    The Arabidopsis thaliana GLABRA2 (GL2) gene encodes a transcription factor involved in the cell differentiation of various epidermal tissues. During root hair pattern formation, GL2 suppresses root hair development in non-hair cells, acting as a node between the gene regulatory networks for cell fate determination and cell differentiation. Despite the importance of GL2 function, its molecular basis remains obscure because the GL2 target genes leading to the network for cell differentiation are unknown. We identified five basic helix-loop-helix (bHLH) transcription factor genes—ROOT HAIR DEFECTIVE6 (RHD6), RHD6-LIKE1 (RSL1), RSL2, LjRHL1-LIKE1 (LRL1), and LRL2—as GL2 direct targets using transcriptional and post-translational induction systems. Chromatin immunoprecipitation analysis confirmed GL2 binding to upstream regions of these genes in planta. Reporter gene analyses showed that these genes are expressed in various stages of root hair development and are suppressed by GL2 in non-hair cells. GL2 promoter-driven green fluorescent protein fusions of LRL1 and LRL2, but not those of the other bHLH proteins, conferred root hair development on non-hair cells. These results indicate that GL2 directly suppresses bHLH genes with diverse functions in root hair development. PMID:26486447

  3. Identification of the Drosophila eIF4A gene as a target of the DREF transcription factor

    SciTech Connect

    Ida, Hiroyuki; Yoshida, Hideki; Nakamura, Kumi; Yamaguchi, Masamitsu

    2007-12-10

    The DNA replication-related element-binding factor (DREF) regulates cell proliferation-related gene expression in Drosophila. We have carried out a genetic screening, taking advantage of the rough eye phenotype of transgenic flies that express full-length DREF in the eye imaginal discs and identified the eukaryotic initiation factor 4A (eIF4A) gene as a dominant suppressor of the DREF-induced rough eye phenotype. The eIF4A gene was here found to carry three DRE sequences, DRE1 (- 40 to - 47), DRE2 (- 48 to - 55), and DRE3 (- 267 to - 274) in its promoter region, these all being important for the eIF4A gene promoter activity in cultured Drosophila Kc cells and in living flies. Knockdown of DREF in Drosophila S2 cells decreased the eIF4A mRNA level and the eIF4A gene promoter activity. Furthermore, specific binding of DREF to genomic regions containing DRE sequences was demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. Band mobility shift assays using Kc cell nuclear extracts revealed that DREF could bind to DRE1 and DRE3 sequences in the eIF4A gene promoter in vitro, but not to the DRE2 sequence. The results suggest that the eIF4A gene is under the control of the DREF pathway and DREF is therefore involved in the regulation of protein synthesis.

  4. Manganese Superoxide Dismutase Gene Expression Is Induced by Nanog and Oct4, Essential Pluripotent Stem Cells' Transcription Factors.

    PubMed

    Solari, Claudia; Vázquez Echegaray, Camila; Cosentino, María Soledad; Petrone, María Victoria; Waisman, Ariel; Luzzani, Carlos; Francia, Marcos; Villodre, Emilly; Lenz, Guido; Miriuka, Santiago; Barañao, Lino; Guberman, Alejandra

    2015-01-01

    Pluripotent stem cells possess complex systems that protect them from oxidative stress and ensure genomic stability, vital for their role in development. Even though it has been reported that antioxidant activity diminishes along stem cell differentiation, little is known about the transcriptional regulation of the involved genes. The reported modulation of some of these genes led us to hypothesize that some of them could be regulated by the transcription factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse differentiation protocols showing an expression pattern similar to Nanog gene. Moreover, Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactivation assay using two different reporter constructions. Finally, we studied Sod2 gene regulation by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that downregulation of any of them reduced Sod2 expression. Our results indicate that pluripotency transcription factors positively modulate Sod2 gene transcription. PMID:26642061

  5. Manganese Superoxide Dismutase Gene Expression Is Induced by Nanog and Oct4, Essential Pluripotent Stem Cells’ Transcription Factors

    PubMed Central

    Solari, Claudia; Vázquez Echegaray, Camila; Cosentino, María Soledad; Petrone, María Victoria; Waisman, Ariel; Luzzani, Carlos; Francia, Marcos; Villodre, Emilly; Lenz, Guido; Miriuka, Santiago; Barañao, Lino; Guberman, Alejandra

    2015-01-01

    Pluripotent stem cells possess complex systems that protect them from oxidative stress and ensure genomic stability, vital for their role in development. Even though it has been reported that antioxidant activity diminishes along stem cell differentiation, little is known about the transcriptional regulation of the involved genes. The reported modulation of some of these genes led us to hypothesize that some of them could be regulated by the transcription factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse differentiation protocols showing an expression pattern similar to Nanog gene. Moreover, Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactivation assay using two different reporter constructions. Finally, we studied Sod2 gene regulation by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that downregulation of any of them reduced Sod2 expression. Our results indicate that pluripotency transcription factors positively modulate Sod2 gene transcription. PMID:26642061

  6. A serine–arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii

    PubMed Central

    Yeoh, Lee M.; Goodman, Christopher D.; Hall, Nathan E.; van Dooren, Giel G.; McFadden, Geoffrey I.; Ralph, Stuart A.

    2015-01-01