Sample records for factor h-related protein

  1. Factor H-related proteins.

    PubMed

    Józsi, Mihály; Meri, Seppo

    2014-01-01

    Factor H-related proteins (CFHRs) are plasma glycoproteins related in structure and antigenicity to each other and to the complement inhibitory protein factor H. Such proteins are found in most mammals but their number and domain composition vary. This chapter summarizes our current knowledge on the human factor H-related proteins. In contrast to factor H, they have no strong complement inhibitory activity, although for some of them regulatory or complement modulatory activity has been reported. A common feature of CFHRs is that they bind to the C3b component of complement. Novel links between CFHRs and various diseases (C3 glomerulopathies, atypical hemolytic uremic syndrome and age-related macular degeneration) have been revealed in recent years, but we are still far from understanding their biological function.

  2. Complement factor H-related proteins in IgA nephropathy-sometimes a gentle nudge does the trick.

    PubMed

    Thurman, Joshua M; Laskowski, Jennifer

    2017-10-01

    Complement activation probably contributes to glomerular inflammation and damage in IgA nephropathy. In this issue, 2 groups report that levels of factor H-related protein 1 are elevated in patients with IgA nephropathy and correlate with disease progression. These studies provide new evidence that the complement cascade is important to the pathogenesis of this disease. These results also suggest that factor H-related protein 1 levels may be useful for identifying those patients at high risk of disease progression. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  3. The Murine Factor H-Related Protein FHR-B Promotes Complement Activation.

    PubMed

    Cserhalmi, Marcell; Csincsi, Ádám I; Mezei, Zoltán; Kopp, Anne; Hebecker, Mario; Uzonyi, Barbara; Józsi, Mihály

    2017-01-01

    Factor H-related (FHR) proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH). While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3), and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM) extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.

  4. Complement factor H family proteins in their non-canonical role as modulators of cellular functions.

    PubMed

    Józsi, Mihály; Schneider, Andrea E; Kárpáti, Éva; Sándor, Noémi

    2018-01-04

    Complement factor H is a major regulator of the alternative pathway of the complement system. The factor H-related proteins are less characterized, but recent data indicate that they rather promote complement activation. These proteins have some common ligands with factor H and have both overlapping and distinct functions depending on domain composition and the degree of conservation of amino acid sequence. Factor H and some of the factor H-related proteins also appear in a non-canonical function that is beyond their role in the modulation of complement activation. This review covers our current understanding on this emerging role of factor H family proteins in modulating the activation and function of various cells by binding to receptors or receptor ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Kelch-like ECH-associated Protein 1-dependent Nuclear Factor-E2-related Factor 2 Activation in Relation to Antioxidation Induced by Sevoflurane Preconditioning.

    PubMed

    Cai, Min; Tong, Li; Dong, Beibei; Hou, Wugang; Shi, Likai; Dong, Hailong

    2017-03-01

    The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2-related factor 2 through multiple pathways. However, whether nuclear factor-E2-related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown. Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2-related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2-related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH-associated protein 1-nuclear factor-E2-related factor 2 signal was modulated by nuclear factor-E2-related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed. Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2-related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2-related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch

  6. Mapping the Complement Factor H-Related Protein 1 (CFHR1):C3b/C3d Interactions

    PubMed Central

    Laskowski, Jennifer; Thurman, Joshua M.; Hageman, Gregory S.; Holers, V. Michael

    2016-01-01

    Complement factor H-related protein 1 (CFHR1) is a complement regulator which has been reported to regulate complement by blocking C5 convertase activity and interfering with C5b surface association. CFHR1 also competes with complement factor H (CFH) for binding to C3b, and may act as an antagonist of CFH-directed regulation on cell surfaces. We have employed site-directed mutagenesis in conjunction with ELISA-based and functional assays to isolate the binding interaction that CFHR1 undertakes with complement components C3b and C3d to a single shared interface. The C3b/C3d:CFHR1 interface is identical to that which occurs between the two C-terminal domains (SCR19-20) of CFH and C3b. Moreover, we have been able to corroborate that dimerization of CFHR1 is necessary for this molecule to bind effectively to C3b and C3d, or compete with CFH. Finally, we have established that CFHR1 competes with complement factor H-like protein 1 (CFHL-1) for binding to C3b. CFHL-1 is a CFH gene splice variant, which is almost identical to the N-terminal 7 domains of CFH (SCR1-7). CFHR1, therefore, not only competes with the C-terminus of CFH for binding to C3b, but also sterically blocks the interaction that the N-terminus of CFH undertakes with C3b, and which is required for CFH-regulation. PMID:27814381

  7. Arrestin-related proteins mediate pH signaling in fungi.

    PubMed

    Herranz, Silvia; Rodríguez, José M; Bussink, Henk-Jan; Sánchez-Ferrero, Juan C; Arst, Herbert N; Peñalva, Miguel A; Vincent, Olivier

    2005-08-23

    Metazoan arrestins bind to seven-transmembrane (7TM) receptors to regulate function. Aspergillus nidulans PalF, a protein involved in the fungal ambient pH signaling pathway, contains arrestin N-terminal and C-terminal domains and binds strongly to two different regions within the C-terminal cytoplasmic tail of the 7TM, putative pH sensor PalH. Upon exposure to alkaline ambient pH, PalF is phosphorylated and, like mammalian beta-arrestins, ubiquitinated in a signal-dependent and 7TM protein-dependent manner. Substitution in PalF of a highly conserved arrestin N-terminal domain Ser residue prevents PalF-PalH interaction and pH signaling in vivo. Thus, PalF is the first experimentally documented fungal arrestin-related protein, dispelling the notion that arrestins are restricted to animal proteomes. Epistasis analyses demonstrate that PalF posttranslational modification is partially dependent on the 4TM protein PalI but independent of the remaining pH signal transduction pathway proteins PalA, PalB, and PalC, yielding experimental evidence bearing on the order of participation of the six components of the pH signal transduction pathway. Our data strongly implicate PalH as an ambient pH sensor, possibly with the cooperation of PalI.

  8. High level expression, purification and characterization of active fusion human C1q and tumor necrosis factor related protein 2 (hCTRP2) in Escherichia coli.

    PubMed

    Li, Hongbo; Gao, Xuefei; Zhou, Yi; Li, Na; Ge, Caozuo; Hui, Xiaoyan; Wang, Yu; Xu, Aimin; Jin, Shouguang; Wu, Donghai

    2011-09-01

    C1q and tumor necrosis factor related proteins (CTRPs) are a family of adiponectin paralogues. Among them, CTRP2 is the only CTRP protein that has been shown to possess similar biological activities as adiponectin. To further explore the physiological roles of human CTRP2 and its mechanisms of action, hCTRP2 gene was expressed in Escherichia coli and Pichia pastoris, respectively. In the P. pastoris expression system, recombinant hCTRP2 could be secreted into the culture medium under induction condition, however, the resultant recombinant protein was highly unstable, resulting two main degradation products with molecular masses of approximately 20 and 26 kDa, respectively. In the E. coli expression system, a large amount of soluble thioredoxin (Trx)-hCTRP2 fusion protein could be produced, which accounts about 42% of the total soluble bacterial proteins. The recombinant Trx-hCTRP2 fusion protein was purified to an approximately 95% purity using Ni-NTA affinity chromatography and Superdex G-75 column with a yield of about 15 mg/l protein from 1l bacterial culture. The purified recombinant Trx-hCTRP2 was shown to be active under in vitro assay conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Factor H-binding protein, a unique meningococcal vaccine antigen.

    PubMed

    Pizza, Mariagrazia; Donnelly, John; Rappuoli, Rino

    2008-12-30

    GNA1870, also named factor H-binding protein (fHbp) or rLP-2086, is a genome-derived antigen and one of the components of a rationally designed vaccine against Neisseria meningitidis serogroup B, which has entered phase III clinical trials. It has been classified into three main non-cross-protective variant groups. GNA1870 has also been termed fHbp because of its ability to bind factor H, a key regulatory component of the alternative complement pathway. fHbp is important for survival in human blood, human sera, and in presence of antimicrobial peptides, independently of its expression level. All these properties make fHbp a unique vaccine antigen.

  10. New Insights into Disease-Specific Absence of Complement Factor H Related Protein C in Mouse Models of Spontaneous Autoimmune Diseases

    PubMed Central

    Mehta, Gaurav; Ferreira, Viviana P.; Pickering, Matthew C.; Skerka, Christine; Zipfel, Peter F.; Banda, Nirmal K.

    2014-01-01

    Complement factor H (CFH) protein is an inhibitor of the alternative pathway of complement (AP) both in the fluid phase and on the surface of host cells. Mouse and human complement factor H-related (CFHR) proteins also belong to the fH family of plasma glycoproteins. The main goal of the current study was to compare the presence of mRNA for two mCFHR proteins in spontaneously developing autoimmune diseases in mice such as dense deposit disease (DDD), diabetes mellitus (DM), basal laminar deposits (BLD), collagen antibody-induced arthrits (CAIA) and systemic lupus erythematosus (SLE). Here we report for the first time that the CFHR-C mRNA was universally absent in the liver from three strains of lupus-prone mice and in a diabetic-prone mouse strain. The mRNA levels (pg/ng) for CFH and CFHR-B in MRL-lpr/lpr, at 9 wks and 23 wks were 707.2 ± 44.4, 54.5 ± 5.75 and 729 ± 252.9, 74.04 ± 22.76 respectively. The mRNA levels for CFH and CFHR-B in NZB/NZW mice, at 9 wks and 54 wks were 579.9 ± 23.8, 58.8 ± 1.41 and 890.3 ± 135.2, 63.30 ± 9.2 respectively. CFHR-C protein was absent in the circulation of MRL-lpr/lpr and NZB/NZW mice before and after the development of lupus. Similarly, mRNA and protein for CFHR-C was universally absent in liver and other organs and in the circulation of NOD mice before and after the development of DM. In contrast, the mRNAs for CFH, CFHR-B and CFHR-C were universally present in the liver from mice with and without DDD, BLD and CAIA. The levels of mRNA for CFHR-B in mice with and without BLD were ~4 times higher than the mice with lupus. The complete absence of mRNA for CFHR-C in lupus and diabetic-prone strains indicates that polymorphic variation within the mouse CFHR family exists and raises the possibility that such variation contributes to lupus and diabetic phenotypes. PMID:25033230

  11. Interactions between whey proteins and salivary proteins as related to astringency of whey protein beverages at low pH.

    PubMed

    Ye, A; Streicher, C; Singh, H

    2011-12-01

    Whey protein beverages have been shown to be astringent at low pH. In the present study, the interactions between model whey proteins (β-lactoglobulin and lactoferrin) and human saliva in the pH range from 7 to 2 were investigated using particle size, turbidity, and ζ-potential measurements and sodium dodecyl sulfate-PAGE. The correlation between the sensory results of astringency and the physicochemical data was discussed. Strong interactions between β-lactoglobulin and salivary proteins led to an increase in the particle size and turbidity of mixtures of both unheated and heated β-lactoglobulin and human saliva at pH ∼3.4. However, the large particle size and high turbidity that occurred at pH 2.0 were the result of aggregation of human salivary proteins. The intense astringency in whey protein beverages may result from these increases in particle size and turbidity at these pH values and from the aggregation and precipitation of human salivary proteins alone at pH <3.0. The involvement of salivary proteins in the interaction is a key factor in the perception of astringency in whey protein beverages. At any pH, the increases in particle size and turbidity were much smaller in mixtures of lactoferrin and saliva, which suggests that aggregation and precipitation may not be the only mechanism linked to the perception of astringency in whey protein. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy.

    PubMed

    Tortajada, Agustín; Gutiérrez, Eduardo; Goicoechea de Jorge, Elena; Anter, Jaouad; Segarra, Alfons; Espinosa, Mario; Blasco, Miquel; Roman, Elena; Marco, Helena; Quintana, Luis F; Gutiérrez, Josué; Pinto, Sheila; Lopez-Trascasa, Margarita; Praga, Manuel; Rodriguez de Córdoba, Santiago

    2017-10-01

    IgA nephropathy (IgAN), a frequent cause of chronic kidney disease worldwide, is characterized by mesangial deposition of galactose-deficient IgA1-containing immune complexes. Complement involvement in IgAN pathogenesis is suggested by the glomerular deposition of complement components and the strong protection from IgAN development conferred by the deletion of the CFHR3 and CFHR1 genes (Δ CFHR3-CFHR1 ). Here we searched for correlations between clinical progression and levels of factor H (FH) and FH-related protein 1 (FHR-1) using well-characterized patient cohorts consisting of 112 patients with IgAN, 46 with non-complement-related autosomal dominant polycystic kidney disease (ADPKD), and 76 control individuals. Patients with either IgAN or ADPKD presented normal FH but abnormally elevated FHR-1 levels and FHR-1/FH ratios compared to control individuals. Highest FHR-1 levels and FHR-1/FH ratios are found in patients with IgAN with disease progression and in patients with ADPKD who have reached chronic kidney disease, suggesting that renal function impairment elevates the FHR-1/FH ratio, which may increase FHR-1/FH competition for activated C3 fragments. Interestingly, Δ CFHR3-CFHR1 homozygotes are protected from IgAN, but not from ADPKD, and we found five IgAN patients with low FH carrying CFH or CFI pathogenic variants. These data support a decreased FH activity in IgAN due to increased FHR-1/FH competition or pathogenic CFH variants. They also suggest that alternative pathway complement activation in patients with IgAN, initially triggered by galactose-deficient IgA1-containing immune complexes, may exacerbate in a vicious circle as renal function deterioration increase FHR-1 levels. Thus, a role of FHR-1 in IgAN pathogenesis is to compete with complement regulation by FH. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Transcription Factor IIB (TFIIB)-Related Protein (pBrp), a Plant-Specific Member of the TFIIB-Related Protein Family

    PubMed Central

    Lagrange, Thierry; Hakimi, Mohamed-Ali; Pontier, Dominique; Courtois, Florence; Alcaraz, Jean Pierre; Grunwald, Didier; Lam, Eric; Lerbs-Mache, Silva

    2003-01-01

    Although it is now well documented that metazoans have evolved general transcription factor (GTF) variants to regulate their complex patterns of gene expression, there is so far no information regarding the existence of specific GTFs in plants. Here we report the characterization of a ubiquitously expressed gene that encodes a bona fide novel transcription factor IIB (TFIIB)-related protein in Arabidopsis thaliana. We have shown that this protein is the founding member of a plant-specific TFIIB-related protein family named pBrp (for plant-specific TFIIB-related protein). Surprisingly, in contrast to common GTFs that are localized in the nucleus, the bulk of pBrp proteins are bound to the cytoplasmic face of the plastid envelope, suggesting an organelle-specific function for this novel class of TFIIB-related protein. We show that pBrp proteins harbor conditional proteolytic signals that can target these proteins for rapid turnover by the proteasome-mediated protein degradation pathway. Interestingly, under conditions of proteasome inhibition, pBrp proteins accumulate in the nucleus. Together, our results suggest a possible involvement of these proteins in an intracellular signaling pathway between plastids and the nucleus. Our data provide the first evidence for an organelle-related evolution of the eukaryotic general transcription machinery. PMID:12697827

  14. Antibody mediated rejection associated with complement factor h-related protein 3/1 deficiency successfully treated with eculizumab.

    PubMed

    Noone, D; Al-Matrafi, J; Tinckam, K; Zipfel, P F; Herzenberg, A M; Thorner, P S; Pluthero, F G; Kahr, W H A; Filler, G; Hebert, D; Harvey, E; Licht, C

    2012-09-01

    Antibody mediated rejection (AMR) activates the classical complement pathway and can be detrimental to graft survival. AMR can be accompanied by thrombotic microangiopathy (TMA). Eculizumab, a monoclonal C5 antibody prevents induction of the terminal complement cascade (TCC) and has recently emerged as a therapeutic option for AMR. We present a highly sensitized 13-year-old female with end-stage kidney disease secondary to spina bifida-associated reflux nephropathy, who developed severe steroid-, ATG- and plasmapheresis-resistant AMR with TMA 1 week post second kidney transplant despite previous desensitization therapy with immunoglobulin infusions. Eculizumab rescue therapy resulted in a dramatic improvement in biochemical (C3; creatinine) and hematological (platelets) parameters within 6 days. The patient was proven to be deficient in complement Factor H-related protein 3/1 (CFHR3/1), a plasma protein that regulates the complement cascade at the level of C5 conversion and has been involved in the pathogenesis of atypical hemolytic uremic syndrome caused by CFH autoantibodies (DEAP-HUS). CFHR1 deficiency may have worsened the severe clinical progression of AMR and possibly contributed to the development of donor-specific antibodies. Thus, screening for CFHR3/1 deficiency should be considered in patients with severe AMR associated with TMA. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  15. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding.

    PubMed

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2011-09-01

    Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.

  16. Accumulation of transcription factors and cell signaling-related proteins in the nucleus during citrus-Xanthomonas interaction.

    PubMed

    Rani, T Swaroopa; Durgeshwar, P; Podile, Appa Rao

    2015-07-20

    The nucleus is the maestro of the cell and is involved in the modulation of cell signaling during stress. We performed a comprehensive nuclear proteome analysis of Citrus sinensis during interaction with host (Xanthomonas citri pv. citri-Xcc) and non-host (Xanthomonas oryzae pv. oryzae-Xoo) pathogens. The nuclear proteome was obtained using a sequential method of organelle enrichment and determined by nano-LC-MS/MS analysis. A total of 243 proteins accumulated differentially during citrus-Xanthomonas interaction, belonging to 11 functional groups, with signaling and transcription-related proteins dominating. MADS-box transcription factors, DEAD-box RNA helicase and leucine aminopeptidase, mainly involved in jasmonic acid (JA) responses, were in high abundance during non-host interaction (Xoo). Signaling-related proteins like serine/threonine kinase, histones (H3.2, H2A), phosphoglycerate kinase, dynamin, actin and aldolase showed increased accumulation early during Xoo interaction. Our results suggest that there is a possible involvement of JA-triggered defense responses during non-host resistance, with early recognition of the non-host pathogen. Copyright © 2015. Published by Elsevier GmbH.

  17. Complement Factor H, Vitronectin, and Opticin Are Tyrosine-Sulfated Proteins of the Retinal Pigment Epithelium

    PubMed Central

    Kanan, Yogita; Siefert, Joseph C.; Kinter, Michael; Al-Ubaidi, Muayyad R.

    2014-01-01

    Lack of tyrosine sulfation of ocular proteins results in disorganized photoreceptor structure and drastically reduced visual function, demonstrating the importance of this post-translational modification to vision. To understand the role that tyrosine sulfation plays in the function of ocular proteins, we identified some tyrosine-sulfated proteins in the retinal pigment epithelium using two independent methods, immuno-affinity column purification with an anti-sulfotyrosine specific antibody and computer-based sequence analysis of retinal pigment epithelium secretome by means of the prediction program Sulfinator. Radioactive labeling followed by thin layer electrophoresis revealed that three proteins, vitronectin, opticin, and complement factor H (CFH), were post-translationally modified by tyrosine sulfation. The identification of vitronectin and CFH as tyrosine-sulfated proteins is significant, since both are deposited in drusen in the eyes of patients with age-related macular degeneration (AMD). Furthermore, mutations in CFH have been determined to be a major risk factor in the development of AMD. Future studies that seek to understand the role of CFH in the development of AMD should take into account the role that tyrosine sulfation plays in the interaction of this protein with its partners, and examine whether modulating sulfation provides a potential therapeutic target. PMID:25136834

  18. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Hong Shik; Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791; Baek, Jeong-Hwa

    2014-07-11

    Highlights: • HRP-3 is a radiation- and anticancer drug-responsive protein in H1299 cells. • Depletion of HRP-3 induces apoptosis of radio- and chemoresistant H1299 cells. • Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. • ROS generation enhances NF-κB activity, which acts as an upstream signal in the c-Myc/Noxa apoptotic pathway. - Abstract: We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates themore » radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.« less

  19. Affinity purification of human factor H on polypeptides derived from streptococcal m protein: enrichment of the Y402 variant.

    PubMed

    Nilsson, O Rickard; Lannergård, Jonas; Morgan, B Paul; Lindahl, Gunnar; Gustafsson, Mattias C U

    2013-01-01

    Recent studies indicate that defective activity of complement factor H (FH) is associated with several human diseases, suggesting that pure FH may be used for therapy. Here, we describe a simple method to isolate human FH, based on the specific interaction between FH and the hypervariable region (HVR) of certain Streptococcus pyogenes M proteins. Special interest was focused on the FH polymorphism Y402H, which is associated with the common eye disease age-related macular degeneration (AMD) and has also been implicated in the binding to M protein. Using a fusion protein containing two copies of the M5-HVR, we found that the Y402 and H402 variants of FH could be efficiently purified by single-step affinity chromatography from human serum containing the corresponding protein. Different M proteins vary in their binding properties, and the M6 and M5 proteins, but not the M18 protein, showed selective binding of the FH Y402 variant. Accordingly, chromatography on a fusion protein derived from the M6-HVR allowed enrichment of the Y402 protein from serum containing both variants. Thus, the exquisite binding specificity of a bacterial protein can be exploited to develop a simple and robust procedure to purify FH and to enrich for the FH variant that protects against AMD.

  20. A De Novo Deletion in the Regulators of Complement Activation Cluster Producing a Hybrid Complement Factor H/Complement Factor H-Related 3 Gene in Atypical Hemolytic Uremic Syndrome.

    PubMed

    Challis, Rachel C; Araujo, Geisilaine S R; Wong, Edwin K S; Anderson, Holly E; Awan, Atif; Dorman, Anthony M; Waldron, Mary; Wilson, Valerie; Brocklebank, Vicky; Strain, Lisa; Morgan, B Paul; Harris, Claire L; Marchbank, Kevin J; Goodship, Timothy H J; Kavanagh, David

    2016-06-01

    The regulators of complement activation cluster at chromosome 1q32 contains the complement factor H (CFH) and five complement factor H-related (CFHR) genes. This area of the genome arose from several large genomic duplications, and these low-copy repeats can cause genome instability in this region. Genomic disorders affecting these genes have been described in atypical hemolytic uremic syndrome, arising commonly through nonallelic homologous recombination. We describe a novel CFH/CFHR3 hybrid gene secondary to a de novo 6.3-kb deletion that arose through microhomology-mediated end joining rather than nonallelic homologous recombination. We confirmed a transcript from this hybrid gene and showed a secreted protein product that lacks the recognition domain of factor H and exhibits impaired cell surface complement regulation. The fact that the formation of this hybrid gene arose as a de novo event suggests that this cluster is a dynamic area of the genome in which additional genomic disorders may arise. Copyright © 2016 by the American Society of Nephrology.

  1. Interaction of Leptospira Elongation Factor Tu with Plasminogen and Complement Factor H: A Metabolic Leptospiral Protein with Moonlighting Activities

    PubMed Central

    Abe, Cecília M.; Monaris, Denize; Morais, Zenaide M.; Souza, Gisele O.; Vasconcellos, Sílvio A.; Isaac, Lourdes; Abreu, Patrícia A. E.; Barbosa, Angela S.

    2013-01-01

    The elongation factor Tu (EF-Tu), an abundant bacterial protein involved in protein synthesis, has been shown to display moonlighting activities. Known to perform more than one function at different times or in different places, it is found in several subcellular locations in a single organism, and may serve as a virulence factor in a range of important human pathogens. Here we demonstrate that Leptospira EF-Tu is surface-exposed and performs additional roles as a cell-surface receptor for host plasma proteins. It binds plasminogen in a dose-dependent manner, and lysine residues are critical for this interaction. Bound plasminogen is converted to active plasmin, which, in turn, is able to cleave the natural substrates C3b and fibrinogen. Leptospira EF-Tu also acquires the complement regulator Factor H (FH). FH bound to immobilized EF-Tu displays cofactor activity, mediating C3b degradation by Factor I (FI). In this manner, EF-Tu may contribute to leptospiral tissue invasion and complement inactivation. To our knowledge, this is the first description of a leptospiral protein exhibiting moonlighting activities. PMID:24312361

  2. Polyanion-Induced Self Association of Complement Factor H1

    PubMed Central

    Pangburn, Michael K.; Rawal, Nenoo; Cortes, Claudio; Alam, M. Nurul; Ferreira, Viviana P.; Atkinson, Mark A. L.

    2008-01-01

    Factor H is the primary soluble regulator of activation of the alternative pathway of complement. It prevents activation of complement on host cells and tissues upon association with C3b and surface polyanions such as sialic acids, heparin and other glycosaminoglycans. Here we show that interaction with polyanions causes self-association forming tetramers of the 155,000 Da glycosylated protein. Monomeric human factor H is an extended flexible protein that exhibits an apparent size of 330,000 Da, relative to globular standards, during gel filtration chromatography in the absence of polyanions. In the presence of dextran sulfate (5,000 Da) or heparin an intermediate species of apparent m.w. 700,000 and a limit species of m.w. 1,400,000 were observed by gel filtration. Sedimentation equilibrium analysis by analytical ultracentrifugation indicated a monomer Mr of 163,000 in the absence of polyanions and a Mr of 607,000, corresponding to a tetramer, in the presence of less than a 2-fold molar excess of dextran sulfate. Increasing concentrations of dextran sulfate increased binding of factor H to zymosan-C3b 4.5-fold. This was accompanied by an increase in both the decay accelerating and cofactor activity of factor H on these cells. An expressed fragment encompassing the C-terminal polyanion binding site (complement control protein domains 18–20) also exhibited polyanion-induced self association, suggesting that the C-terminal ends of factor H mediate self-association. The results suggest that recognition of polyanionic markers on host cells and tissues by factor H, and the resulting regulation of complement activation, may involve formation of dimers and tetramers of factor H. PMID:19124749

  3. pH modulates the binding of early growth response protein 1 transcription factor to DNA.

    PubMed

    Mikles, David C; Bhat, Vikas; Schuchardt, Brett J; Deegan, Brian J; Seldeen, Kenneth L; McDonald, Caleb B; Farooq, Amjad

    2013-08-01

    The transcription factor early growth response protein (EGR)1 orchestrates a plethora of signaling cascades involved in cellular homeostasis, and its downregulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with an increase in pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as His382 by virtue of the fact that its replacement by nonionizable residues abolishes the pH dependence of the binding of EGR1 to DNA. Notably, His382 inserts into the major groove of DNA, and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, His382 is mainly conserved across other members of the EGR family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating the protein-DNA interactions that are central to this family of transcription factors. Collectively, our findings reveal an unexpected but a key step in the molecular recognition of the EGR family of transcription factors, and suggest that they may act as sensors of pH within the intracellular environment. © 2013 FEBS.

  4. Age-related macular degeneration and modification of systemic complement factor H production through liver transplantation.

    PubMed

    Khandhadia, Samir; Hakobyan, Svetlana; Heng, Ling Z; Gibson, Jane; Adams, David H; Alexander, Graeme J; Gibson, Jonathan M; Martin, Keith R; Menon, Geeta; Nash, Kathryn; Sivaprasad, Sobha; Ennis, Sarah; Cree, Angela J; Morgan, B Paul; Lotery, Andrew J

    2013-08-01

    To investigate whether modification of liver complement factor H (CFH) production, by alteration of liver CFH Y402H genotype through liver transplantation (LT), influences the development of age-related macular degeneration (AMD). Multicenter, cross-sectional study. We recruited 223 Western European patients ≥ 55 years old who had undergone LT ≥ 5 years previously. We determined AMD status using a standard grading system. Recipient CFH Y402H genotype was obtained from DNA extracted from recipient blood samples. Donor CFH Y402H genotype was inferred from recipient plasma CFH Y402H protein allotype, measured using enzyme-linked immunosorbent assays. This approach was verified by genotyping donor tissue from a subgroup of patients. Systemic complement activity was ascertained by measuring levels of plasma complement proteins using an enzyme-linked immunosorbent assay, including substrates (C3, C4), activation products (C3a, C4a, and terminal complement complex), and regulators (total CFH, C1 inhibitor). We evaluated AMD status and recipient and donor CFH Y402H genotype. In LT patients, AMD was associated with recipient CFH Y402H genotype (P = 0.036; odds ratio [OR], 1.6; 95% confidence interval [CI], 1.0-2.4) but not with donor CFH Y402H genotype (P = 0.626), after controlling for age, sex, smoking status, and body mass index. Recipient plasma CFH Y402H protein allotype predicted donor CFH Y402H genotype with 100% accuracy (n = 49). Plasma complement protein or activation product levels were similar in LT patients with and without AMD. Compared with previously reported prevalence figures (Rotterdam Study), LT patients demonstrated a high prevalence of both AMD (64.6% vs 37.1%; OR, 3.09; P<0.001) and the CFH Y402H sequence variation (41.9% vs 36.2%; OR, 1.27; P = 0.014). Presence of AMD is not associated with modification of hepatic CFH production. In addition, AMD is not associated with systemic complement activity in LT patients. These findings suggest that local

  5. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding

    PubMed Central

    Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287

  6. Potentiation of Tumor Necrosis Factor-α-induced Tumor Cell Apoptosis by a Small Molecule Inhibitor for Anti-apoptotic Protein hPEBP4

    PubMed Central

    Qiu, Jianming; Xiao, Jianfeng; Han, Chaofeng; Li, Nan; Shen, Xu; Jiang, Hualiang; Cao, Xuetao

    2010-01-01

    hPEBP4 (human phosphatidylethanolamine-binding protein 4) has been identified to be able to potentiate the resistance of breast, prostate, and ovarian cancers, with the preferential expression of hPEBP4, to tumor necrosis factor-α (TNF-α) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, suggesting that inhibitors targeting the anti-apoptotic protein hPEBP4 may be useful to increase the sensitivity of hPEBP4-expressing cancer cells to TNF-α or TRAIL-induced apoptosis. By structure-based virtual screening and following surface plasmon resonance-based binding assay, seven small compounds were found to potently bind with hPEBP4. The hit compounds were further functionally screened for their ability to inhibit cancer cell growth, and one small compound, IOI-42, was identified to be able to promote TNF-α-mediated growth inhibition of MCF-7 breast cancer cells. IOI-42 could potentiate TNF-α-induced apoptosis of MCF-7 cells by inhibiting hPEBP4 and could suppress anchorage-independent cell growth of MCF-7 cells. We further demonstrated that IOI-42 could reduce the endogenous association of hPEBP4 with Raf-1/MEK1 and enhance the activation of ERK1/2 and JNK while inhibiting Akt activation. Furthermore, IOI-42 also promoted TRAIL-induced cell apoptosis of prostate cancer cells. Taken together, our data suggest that IOI-42, as the first chemical inhibitor of anti-apoptotic protein hPEBP4, may serve as a potential anti-tumor drug by sensitizing tumor cells to apoptotic inducers. PMID:20177075

  7. Zinc-induced Self-association of Complement C3b and Factor H

    PubMed Central

    Nan, Ruodan; Tetchner, Stuart; Rodriguez, Elizabeth; Pao, Po-Jung; Gor, Jayesh; Lengyel, Imre; Perkins, Stephen J.

    2013-01-01

    The sub-retinal pigment epithelial deposits that are a hallmark of age-related macular degeneration contain both C3b and millimolar levels of zinc. C3 is the central protein of complement, whereas C3u is formed by the spontaneous hydrolysis of the thioester bridge in C3. During activation, C3 is cleaved to form active C3b, then C3b is inactivated by Factor I and Factor H to form the C3c and C3d fragments. The interaction of zinc with C3 was quantified using analytical ultracentrifugation and x-ray scattering. C3, C3u, and C3b associated strongly in >100 μm zinc, whereas C3c and C3d showed weak association. With zinc, C3 forms soluble oligomers, whereas C3u and C3b precipitate. We conclude that the C3, C3u, and C3b association with zinc depended on the relative positions of C3d and C3c in each protein. Computational predictions showed that putative weak zinc binding sites with different capacities exist in all five proteins, in agreement with experiments. Factor H forms large oligomers in >10 μm zinc. In contrast to C3b or Factor H alone, the solubility of the central C3b-Factor H complex was much reduced at 60 μm zinc and even more so at >100 μm zinc. The removal of the C3b-Factor H complex by zinc explains the reduced C3u/C3b inactivation rates by zinc. Zinc-induced precipitation may contribute to the initial development of sub-retinal pigment epithelial deposits in the retina as well as reducing the progression to advanced age-related macular degeneration in higher risk patients. PMID:23661701

  8. The Scl1 protein of M6-type group A Streptococcus binds the human complement regulatory protein, factor H, and inhibits the alternative pathway of complement.

    PubMed

    Caswell, Clayton C; Han, Runlin; Hovis, Kelley M; Ciborowski, Pawel; Keene, Douglas R; Marconi, Richard T; Lukomski, Slawomir

    2008-02-01

    Non-specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement-mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen-like protein Scl1.6 of M6-type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co-eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH-related protein-1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure-function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6-bound FH for factor I-mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6-type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement-mediated opsonization and phagocytosis.

  9. Alternative sigma factor RpoN and its modulation protein YhbH are indispensable for Erwinia amylovora virulence.

    PubMed

    Ancona, Veronica; Li, Wenting; Zhao, Youfu

    2014-01-01

    In Erwinia amylovora, ECF (extracytoplasmic functions) alternative sigma factor HrpL regulates the transcription of hrp (hypersensitive response and pathogenicity)-type III secretion system (T3SS) genes by binding to a consensus sequence known as the hrp box in hrp gene promoters. In turn, the expression of hrpL has been proposed to be positively controlled by alternative sigma factor 54 (σ(54)) (RpoN) and HrpS, a member of the σ(54) enhancer-binding proteins (EBPs). However, the function of RpoN has not been characterized genetically in E. amylovora. In this study, we investigated the role of RpoN, a nitrogen limitation sigma factor, and its modulation protein YhbH, a novel ribosome-associated protein, in E. amylovora virulence. Our results showed that mutations in hrpS, hrpL, rpoN and yhbH, but not yfiA and rmf3, resulted in a nonpathogenic phenotype on immature pear fruits and apple shoots. Consistently, the expression of T3SS genes, including hrpL, dspE, hrpN and hrpA, was barely detected in hrpS, hrpL, rpoN and yhbH mutants. These mutants were also not capable of eliciting a hypersensitive response (HR) on tobacco; however, the overexpression of hrpL using an inducible promoter rescued the HR-eliciting abilities of these mutants. These results suggest that a sigma factor cascade exists in the regulatory networks of E. amylovora and regulates important virulence factors. On the basis of this study and previously reported data, a model is proposed for the regulation of T3SS in E. amylovora. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  10. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Cong; Wang, Jingchao; Guo, Wei

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated thatmore » triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.« less

  11. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.

    PubMed

    Zhou, Hufeng; Rezaei, Javad; Hugo, Willy; Gao, Shangzhi; Jin, Jingjing; Fan, Mengyuan; Yong, Chern-Han; Wozniak, Michal; Wong, Limsoon

    2013-01-01

    H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are very important information to illuminate the infection mechanism of M. tuberculosis H37Rv. But current H. sapiens-M. tuberculosis H37Rv PPI data are very scarce. This seriously limits the study of the interaction between this important pathogen and its host H. sapiens. Computational prediction of H. sapiens-M. tuberculosis H37Rv PPIs is an important strategy to fill in the gap. Domain-domain interaction (DDI) based prediction is one of the frequently used computational approaches in predicting both intra-species and inter-species PPIs. However, the performance of DDI-based host-pathogen PPI prediction has been rather limited. We develop a stringent DDI-based prediction approach with emphasis on (i) differences between the specific domain sequences on annotated regions of proteins under the same domain ID and (ii) calculation of the interaction strength of predicted PPIs based on the interacting residues in their interaction interfaces. We compare our stringent DDI-based approach to a conventional DDI-based approach for predicting PPIs based on gold standard intra-species PPIs and coherent informative Gene Ontology terms assessment. The assessment results show that our stringent DDI-based approach achieves much better performance in predicting PPIs than the conventional approach. Using our stringent DDI-based approach, we have predicted a small set of reliable H. sapiens-M. tuberculosis H37Rv PPIs which could be very useful for a variety of related studies. We also analyze the H. sapiens-M. tuberculosis H37Rv PPIs predicted by our stringent DDI-based approach using cellular compartment distribution analysis, functional category enrichment analysis and pathway enrichment analysis. The analyses support the validity of our prediction result. Also, based on an analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent DDI-based approach, we have discovered some

  12. Stringent DDI-based Prediction of H. sapiens-M. tuberculosis H37Rv Protein-Protein Interactions

    PubMed Central

    2013-01-01

    Background H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are very important information to illuminate the infection mechanism of M. tuberculosis H37Rv. But current H. sapiens-M. tuberculosis H37Rv PPI data are very scarce. This seriously limits the study of the interaction between this important pathogen and its host H. sapiens. Computational prediction of H. sapiens-M. tuberculosis H37Rv PPIs is an important strategy to fill in the gap. Domain-domain interaction (DDI) based prediction is one of the frequently used computational approaches in predicting both intra-species and inter-species PPIs. However, the performance of DDI-based host-pathogen PPI prediction has been rather limited. Results We develop a stringent DDI-based prediction approach with emphasis on (i) differences between the specific domain sequences on annotated regions of proteins under the same domain ID and (ii) calculation of the interaction strength of predicted PPIs based on the interacting residues in their interaction interfaces. We compare our stringent DDI-based approach to a conventional DDI-based approach for predicting PPIs based on gold standard intra-species PPIs and coherent informative Gene Ontology terms assessment. The assessment results show that our stringent DDI-based approach achieves much better performance in predicting PPIs than the conventional approach. Using our stringent DDI-based approach, we have predicted a small set of reliable H. sapiens-M. tuberculosis H37Rv PPIs which could be very useful for a variety of related studies. We also analyze the H. sapiens-M. tuberculosis H37Rv PPIs predicted by our stringent DDI-based approach using cellular compartment distribution analysis, functional category enrichment analysis and pathway enrichment analysis. The analyses support the validity of our prediction result. Also, based on an analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent DDI-based approach, we have

  13. Localization of complement factor H gene expression and protein distribution in the mouse outer retina

    PubMed Central

    Smit-McBride, Zeljka; Oltjen, Sharon L.; Radu, Roxana A.; Estep, Jason; Nguyen, Anthony T.; Gong, Qizhi

    2015-01-01

    Purpose To determine the localization of complement factor H (Cfh) mRNA and its protein in the mouse outer retina. Methods Quantitative real-time PCR (qPCR) was used to determine the expression of Cfh and Cfh-related (Cfhr) transcripts in the RPE/choroid. In situ hybridization (ISH) was performed using the novel RNAscope 2.0 FFPE assay to localize the expression of Cfh mRNA in the mouse outer retina. Immunohistochemistry (IHC) was used to localize Cfh protein expression, and western blots were used to characterize CFH antibodies used for IHC. Results Cfh and Cfhr2 transcripts were detected in the mouse RPE/choroid using qPCR, while Cfhr1, Cfhr3, and Cfhrc (Gm4788) were not detected. ISH showed abundant Cfh mRNA in the RPE of all mouse strains (C57BL/6, BALB/c, 129/Sv) tested, with the exception of the Cfh−/− eye. Surprisingly, the Cfh protein was detected by immunohistochemistry in photoreceptors rather than in RPE cells. The specificity of the CFH antibodies was tested by western blotting. Our CFH antibodies recognized purified mouse Cfh protein, serum Cfh protein in wild-type C57BL/6, BALB/c, and 129/Sv, and showed an absence of the Cfh protein in the serum of Cfh−/− mice. Greatly reduced Cfh protein immunohistological signals in the Cfh−/− eyes also supported the specificity of the Cfh protein distribution results. Conclusions Only Cfh and Cfhr2 genes are expressed in the mouse outer retina. Only Cfh mRNA was detected in the RPE, but no protein. We hypothesize that the steady-state concentration of Cfh protein is low in the cells due to secretion, and therefore is below the detection level for IHC. PMID:25684976

  14. Monoclonal antibodies to meningococcal factor H binding protein with overlapping epitopes and discordant functional activity.

    PubMed

    Giuntini, Serena; Beernink, Peter T; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, which inhibited fH binding, had human complement-mediated bactericidal activity. The lack of human complement-mediated bactericidal activity by anti-fHbp mAb502 appeared to result from an inability to inhibit binding of fH. These results underscore the importance of inhibition of fH binding for anti-fHbp mAb bactericidal activity.

  15. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.

    PubMed

    Zhou, Hufeng; Gao, Shangzhi; Nguyen, Nam Ninh; Fan, Mengyuan; Jin, Jingjing; Liu, Bing; Zhao, Liang; Xiong, Geng; Tan, Min; Li, Shijun; Wong, Limsoon

    2014-04-08

    H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are essential for understanding the infection mechanism of the formidable pathogen M. tuberculosis H37Rv. Computational prediction is an important strategy to fill the gap in experimental H. sapiens-M. tuberculosis H37Rv PPI data. Homology-based prediction is frequently used in predicting both intra-species and inter-species PPIs. However, some limitations are not properly resolved in several published works that predict eukaryote-prokaryote inter-species PPIs using intra-species template PPIs. We develop a stringent homology-based prediction approach by taking into account (i) differences between eukaryotic and prokaryotic proteins and (ii) differences between inter-species and intra-species PPI interfaces. We compare our stringent homology-based approach to a conventional homology-based approach for predicting host-pathogen PPIs, based on cellular compartment distribution analysis, disease gene list enrichment analysis, pathway enrichment analysis and functional category enrichment analysis. These analyses support the validity of our prediction result, and clearly show that our approach has better performance in predicting H. sapiens-M. tuberculosis H37Rv PPIs. Using our stringent homology-based approach, we have predicted a set of highly plausible H. sapiens-M. tuberculosis H37Rv PPIs which might be useful for many of related studies. Based on our analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent homology-based approach, we have discovered several interesting properties which are reported here for the first time. We find that both host proteins and pathogen proteins involved in the host-pathogen PPIs tend to be hubs in their own intra-species PPI network. Also, both host and pathogen proteins involved in host-pathogen PPIs tend to have longer primary sequence, tend to have more domains, tend to be more hydrophilic, etc. And the protein domains from both

  16. The major autoantibody epitope on factor H in atypical hemolytic uremic syndrome is structurally different from its homologous site in factor H-related protein 1, supporting a novel model for induction of autoimmunity in this disease.

    PubMed

    Bhattacharjee, Arnab; Reuter, Stefanie; Trojnár, Eszter; Kolodziejczyk, Robert; Seeberger, Harald; Hyvärinen, Satu; Uzonyi, Barbara; Szilágyi, Ágnes; Prohászka, Zoltán; Goldman, Adrian; Józsi, Mihály; Jokiranta, T Sakari

    2015-04-10

    Atypical hemolytic uremic syndrome (aHUS) is characterized by complement attack against host cells due to mutations in complement proteins or autoantibodies against complement factor H (CFH). It is unknown why nearly all patients with autoimmune aHUS lack CFHR1 (CFH-related protein-1). These patients have autoantibodies against CFH domains 19 and 20 (CFH19-20), which are nearly identical to CFHR1 domains 4 and 5 (CFHR14-5). Here, binding site mapping of autoantibodies from 17 patients using mutant CFH19-20 constructs revealed an autoantibody epitope cluster within a loop on domain 20, next to the two buried residues that are different in CFH19-20 and CFHR14-5. The crystal structure of CFHR14-5 revealed a difference in conformation of the autoantigenic loop in the C-terminal domains of CFH and CFHR1, explaining the variation in binding of autoantibodies from some aHUS patients to CFH19-20 and CFHR14-5. The autoantigenic loop on CFH seems to be generally flexible, as its conformation in previously published structures of CFH19-20 bound to the microbial protein OspE and a sialic acid glycan is somewhat altered. Cumulatively, our data suggest that association of CFHR1 deficiency with autoimmune aHUS could be due to the structural difference between CFHR1 and the autoantigenic CFH epitope, suggesting a novel explanation for CFHR1 deficiency in the pathogenesis of autoimmune aHUS. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Crystal structures of the Erp protein family members ErpP and ErpC from Borrelia burgdorferi reveal the reason for different affinities for complement regulator factor H.

    PubMed

    Brangulis, Kalvis; Petrovskis, Ivars; Kazaks, Andris; Akopjana, Inara; Tars, Kaspars

    2015-05-01

    Borrelia burgdorferi is the causative agent of Lyme disease, which can be acquired after the bite of an infected Ixodes tick. As a strategy to resist the innate immunity and to successfully spread and proliferate, B. burgdorferi expresses a set of outer membrane proteins that are capable of binding complement regulator factor H (CFH), factor H-like protein 1 (CFHL-1) and factor H-related proteins (CFHR) to avoid complement-mediated killing. B. burgdorferi B31 contains three proteins that belong to the Erp (OspE/F-related) protein family and are capable of binding CFH and some CFHRs, namely ErpA, ErpC and ErpP. We have determined the crystal structure of ErpP at 2.53Å resolution and the crystal structure of ErpC at 2.15Å resolution. Recently, the crystal structure of the Erp family member OspE from B. burgdorferi N40 was determined in complex with CFH domains 19-20, revealing the residues involved in the complex formation. Despite the high sequence conservation between ErpA, ErpC, ErpP and the homologous protein OspE (78-80%), the affinity for CFH and CFHRs differs markedly among the Erp family members, suggesting that ErpC may bind only CFHRs but not CFH. A comparison of the binding site in OspE with those of ErpC and ErpP revealed that the extended loop region, which is only observed in the potential binding site of ErpC, plays an important role by preventing the binding of CFH. These results can explain the inability of ErpC to bind CFH, whereas ErpP and ErpA still possess the ability to bind CFH. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Complement factor H in host defense and immune evasion.

    PubMed

    Parente, Raffaella; Clark, Simon J; Inforzato, Antonio; Day, Anthony J

    2017-05-01

    Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.

  19. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions

    PubMed Central

    2014-01-01

    Background H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are essential for understanding the infection mechanism of the formidable pathogen M. tuberculosis H37Rv. Computational prediction is an important strategy to fill the gap in experimental H. sapiens-M. tuberculosis H37Rv PPI data. Homology-based prediction is frequently used in predicting both intra-species and inter-species PPIs. However, some limitations are not properly resolved in several published works that predict eukaryote-prokaryote inter-species PPIs using intra-species template PPIs. Results We develop a stringent homology-based prediction approach by taking into account (i) differences between eukaryotic and prokaryotic proteins and (ii) differences between inter-species and intra-species PPI interfaces. We compare our stringent homology-based approach to a conventional homology-based approach for predicting host-pathogen PPIs, based on cellular compartment distribution analysis, disease gene list enrichment analysis, pathway enrichment analysis and functional category enrichment analysis. These analyses support the validity of our prediction result, and clearly show that our approach has better performance in predicting H. sapiens-M. tuberculosis H37Rv PPIs. Using our stringent homology-based approach, we have predicted a set of highly plausible H. sapiens-M. tuberculosis H37Rv PPIs which might be useful for many of related studies. Based on our analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent homology-based approach, we have discovered several interesting properties which are reported here for the first time. We find that both host proteins and pathogen proteins involved in the host-pathogen PPIs tend to be hubs in their own intra-species PPI network. Also, both host and pathogen proteins involved in host-pathogen PPIs tend to have longer primary sequence, tend to have more domains, tend to be more hydrophilic, etc. And the protein

  20. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product.

    PubMed

    Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B

    2010-10-01

    The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of <3%, we identified 111 candidates from conditioned medium, including 44 proteins that have signal peptides or are described as secreted proteins in the UniProt database. As validation, we confirmed that one of these proteins, insulin-like growth factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.

  1. Lack of A-factor production induces the expression of nutrient scavenging and stress-related proteins in Streptomyces griseus.

    PubMed

    Birkó, Zsuzsanna; Swiatek, Magdalena; Szájli, Emília; Medzihradszky, Katalin F; Vijgenboom, Erik; Penyige, András; Keseru, Judit; van Wezel, Gilles P; Biró, Sándor

    2009-10-01

    The small gamma-butyrolactone A-factor is an important autoregulatory signaling molecule for the soil-inhabiting streptomycetes. Starvation is a major trigger for development, and nutrients are provided by degradation of the vegetative mycelium via a process of programmed cell death, reusing proteins, nucleic acids, and cell wall material. The A-factor regulon includes many extracellular hydrolases. Here we show via proteomics analysis that many nutrient-scavenging and stress-related proteins were overexpressed in an A-factor non-producing mutant of Streptomyces griseus B-2682. Transcript analysis showed that this is primarily due to differential transcription of the target genes during early development. The targets include proteins relating to nutrient stress and environmental stress and an orthologue of the Bacillus sporulation control protein Spo0M. The enhanced expression of these proteins underlines the stress that is generated by the absence of A-factor. Wild-type developmental gene expression was restored to the A-factor non-producing mutant by the signaling protein Factor C in line with our earlier observation that Factor C triggers A-factor production.

  2. Inflammation, Complement Factor H, and Age-Related Macular Degeneration: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Klein, Ronald; Knudtson, Michael D.; Klein, Barbara E. K.; Wong, Tien Y.; Cotch, Mary Frances; Liu, Kiang; Cheng, Ching Y.; Burke, Gregory L.; Saad, Mohammed F.; Jacobs, David R.; Sharrett, A. Richey

    2010-01-01

    Objective To describe the relationship of systemic inflammatory disease, complement factor H (CFH) Y402H (1277T→C) genotype status and age-related macular degeneration (AMD) prevalence in a multiethnic population of whites, blacks, Hispanics, and Chinese. Design Population-based, cross-sectional study. Participants We included 5887 persons aged 45 to 84 years with gradable AMD. Methods Digital fundus photographs were used to measure AMD. Two years earlier, biomarkers of inflammation were measured and history of inflammatory disease and use of antiinflammatory agents obtained. Main Outcome Measure Prevalence of AMD. Results While controlling for age, gender, race/ethnicity, and study site, there were no associations between systemic inflammatory factors and AMD severity. Higher levels of high-sensitivity C-reactive protein (odds ratio [OR] per standard deviation [SD] increase in natural log [ln] units, 2.34; 95% confidence interval [CI], 1.33–4.13) and interleukin-6 (OR per SD in ln, 2.06; 95% CI, 1.21–3.49) were associated with geographic atrophy but not other AMD end points. History of periodontal disease (OR, 1.68; 95% CI, 1.14–2.47) was related to increased retinal pigment. A history of arthritis was associated with soft distinct drusen (OR, 1.24; 95% CI, 1.06–1.46). A history of oral steroid use was related to large drusen (OR, 2.13; 95% CI, 1.14–3.97) and soft distinct drusen (OR, 1.76; 95% CI, 1.00–3.10) and history of cyclooxygenase 2 inhibitor use were associated with large drusen (OR, 1.50; 95% CI, 1.10–2.04), soft indistinct drusen (OR, 1.84; 95% CI, 1.09–3.10), and large drusen area (OR, 1.66; 95% CI, 1.02–2.71). Whites, blacks, and Hispanics with CFH Y402H CC variant genotype had the highest frequency of early AMD compared with those with wild TT genotype. The frequency of CFH did explain some of the difference in AMD prevalence between Chinese and Hispanics compared with whites, but did not explain the difference in prevalence

  3. N-(4-bromophenethyl) Caffeamide Inhibits Melanogenesis by Regulating AKT/Glycogen Synthase Kinase 3 Beta/Microphthalmia-associated Transcription Factor and Tyrosinase-related Protein 1/Tyrosinase.

    PubMed

    Kuo, Yueh-Hsiung; Chen, Chien-Chia; Lin, Ping; You, Ya-Jhen; Chiang, Hsiu-Mei

    2015-01-01

    Skin color is primarily produced by melanin, which is a crucial pigment that protects the skin from UV-induced damage and prevents carcinogenesis. However, accumulated melanin in the skin may cause hyperpigmentation and related disorders. Melanin synthesis comprises consecutive oxidative reactions, and tyrosinase is the enzyme that catalyzes the rate-limiting process of melanogenesis. In this study, tyrosinase-related protein 1 (TRP-1) and TRP-2 contributed to melanin formation. N-(4-bromophenethyl) caffeamide ((E)-N-(4-bromophenethyl)-3-(3,4-dihydroxyphenyl)acrylamide; K36H), a caffeic acid phenyl amide derivative, inhibited α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity in B16F0 cells. In addition, K36H reduced the protein expression of the phospho-cAMP response element binding protein (p-CREB), microphthalmia-associated transcription factor (MITF), tyrosinase, and TRP-1. Moreover, K36H promoted AKT and glycogen synthase kinase 3 beta (GSK3β) phosphorylation, thereby inhibiting MITF transcription activity. Thus, K36H attenuated α-MSH-induced cAMP pathways, contributing to hypopigmentation. The results of a safety assay revealed that K36H did not exhibit cytotoxicity or irritate the skin or eyes. According to these results, K36H may have the potential to be used as a whitening agent in the cosmetic and pharmaceutical industries.

  4. An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins

    PubMed Central

    Cao, Zheng; Bowie, James U

    2014-01-01

    Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as –7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by –4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies. PMID:24501090

  5. Factors regulating astringency of whey protein beverages.

    PubMed

    Beecher, J W; Drake, M A; Luck, P J; Foegeding, E A

    2008-07-01

    A rapidly growing area of whey protein use is in beverages. There are 2 types of whey protein-containing beverages: those at neutral pH and those at low pH. Astringency is very pronounced at low pH. Astringency is thought to be caused by compounds in foods that bind with and precipitate salivary proteins; however, the mechanism of astringency of whey proteins is not understood. The effect of viscosity and pH on the astringency of a model beverage containing whey protein isolate was investigated. Trained sensory panelists (n = 8) evaluated the viscosity and pH effects on astringency and basic tastes of whey protein beverages containing 6% wt/vol protein. Unlike what has been shown for alum and polyphenols, increasing viscosity (1.6 to 7.7 mPa.s) did not decrease the perception of astringency. In contrast, the pH of the whey protein solution had a major effect on astringency. A pH 6.8 whey protein beverage had a maximum astringency intensity of 1.2 (15-point scale), whereas that of a pH 3.4 beverage was 8.8 (15-point scale). Astringency decreased between pH 3.4 and 2.6, coinciding with an increase in sourness. Decreases in astringency corresponded to decreases in protein aggregation as observed by turbidity. We propose that astringency is related to interactions between positively charged whey proteins and negatively charged saliva proteins. As the pH decreased between 3.4 and 2.6, the negative charge on the saliva proteins decreased, causing the interactions with whey proteins to decrease.

  6. hPDI: a database of experimental human protein-DNA interactions.

    PubMed

    Xie, Zhi; Hu, Shaohui; Blackshaw, Seth; Zhu, Heng; Qian, Jiang

    2010-01-15

    The human protein DNA Interactome (hPDI) database holds experimental protein-DNA interaction data for humans identified by protein microarray assays. The unique characteristics of hPDI are that it contains consensus DNA-binding sequences not only for nearly 500 human transcription factors but also for >500 unconventional DNA-binding proteins, which are completely uncharacterized previously. Users can browse, search and download a subset or the entire data via a web interface. This database is freely accessible for any academic purposes. http://bioinfo.wilmer.jhu.edu/PDI/.

  7. Spectral characteristics of the mutant form GGBP/H152C of D-glucose/D-galactose-binding protein labeled with fluorescent dye BADAN: influence of external factors.

    PubMed

    Fonin, Alexander V; Stepanenko, Olga V; Povarova, Olga I; Volova, Catherine A; Philippova, Elizaveta M; Bublikov, Grigory S; Kuznetsova, Irina M; Demchenko, Alexander P; Turoverov, Konstantin K

    2014-01-01

    The mutant form GGBP/H152C of the D-glucose/D-galactose-binding protein with the solvatochromic dye BADAN linked to cysteine residue Cys 152 can be used as a potential base for a sensitive element of glucose biosensor system. We investigated the influence of various external factors on the physical-chemical properties of GGBP/H152C-BADAN and its complex with glucose. The high affinity (Kd = 8.5 µM) and high binding rate of glucose make GGBP/H152C-BADAN a good candidate to determine the sugar content in biological fluids extracted using transdermal techniques. It was shown that changes in the ionic strength and pH of solution within the physiological range did not have a significant influence on the fluorescent characteristics of GGBP/H152C-BADAN. The mutant form GGBP/H152C has relatively low resistance to denaturation action of GdnHCl and urea. This result emphasizes the need to find more stable proteins for the creation of a sensitive element for a glucose biosensor system.

  8. Pathogenic Leptospira Species Acquire Factor H and Vitronectin via the Surface Protein LcpA

    PubMed Central

    da Silva, Ludmila Bezerra; Miragaia, Lidia dos Santos; Breda, Leandro Carvalho Dantas; Abe, Cecilia Mari; Schmidt, Mariana Costa Braga; Moro, Ana Maria; Monaris, Denize; Conde, Jonas Nascimento; Józsi, Mihály; Isaac, Lourdes; Abreu, Patrícia Antônia Estima

    2014-01-01

    Upon infection, pathogenic Leptospira species bind several complement regulators in order to overcome host innate immunity. We previously characterized a 20-kDa leptospiral surface protein which interacts with C4b binding protein (C4BP): leptospiral complement regulator-acquiring protein A (LcpA). Here we show that LcpA also interacts with human factor H (FH), which remains functionally active once bound to the protein. Antibodies directed against short consensus repeat 20 (SCR20) inhibited binding of FH to LcpA by approximately 90%, thus confirming that this particular domain is involved in the interaction. We have also shown for the first time that leptospires bind human vitronectin and that the interaction is mediated by LcpA. Coincubation with heparin blocked LcpA-vitronectin interaction in a dose-dependent manner, strongly suggesting that binding may occur through the heparin binding domains of vitronectin. LcpA also bound to the terminal pathway component C9 and inhibited Zn2+-induced polymerization and membrane attack complex (MAC) formation. Competitive binding assays indicated that LcpA interacts with C4BP, FH, and vitronectin through distinct sites. Taken together, our findings indicate that LcpA may play a role in leptospiral immune evasion. PMID:25534939

  9. Pathogenic Leptospira species acquire factor H and vitronectin via the surface protein LcpA.

    PubMed

    da Silva, Ludmila Bezerra; Miragaia, Lidia Dos Santos; Breda, Leandro Carvalho Dantas; Abe, Cecilia Mari; Schmidt, Mariana Costa Braga; Moro, Ana Maria; Monaris, Denize; Conde, Jonas Nascimento; Józsi, Mihály; Isaac, Lourdes; Abreu, Patrícia Antônia Estima; Barbosa, Angela Silva

    2015-03-01

    Upon infection, pathogenic Leptospira species bind several complement regulators in order to overcome host innate immunity. We previously characterized a 20-kDa leptospiral surface protein which interacts with C4b binding protein (C4BP): leptospiral complement regulator-acquiring protein A (LcpA). Here we show that LcpA also interacts with human factor H (FH), which remains functionally active once bound to the protein. Antibodies directed against short consensus repeat 20 (SCR20) inhibited binding of FH to LcpA by approximately 90%, thus confirming that this particular domain is involved in the interaction. We have also shown for the first time that leptospires bind human vitronectin and that the interaction is mediated by LcpA. Coincubation with heparin blocked LcpA-vitronectin interaction in a dose-dependent manner, strongly suggesting that binding may occur through the heparin binding domains of vitronectin. LcpA also bound to the terminal pathway component C9 and inhibited Zn(2+)-induced polymerization and membrane attack complex (MAC) formation. Competitive binding assays indicated that LcpA interacts with C4BP, FH, and vitronectin through distinct sites. Taken together, our findings indicate that LcpA may play a role in leptospiral immune evasion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. An Induced Pluripotent Stem Cell Patient Specific Model of Complement Factor H (Y402H) Polymorphism Displays Characteristic Features of Age-Related Macular Degeneration and Indicates a Beneficial Role for UV Light Exposure.

    PubMed

    Hallam, Dean; Collin, Joseph; Bojic, Sanja; Chichagova, Valeria; Buskin, Adriana; Xu, Yaobo; Lafage, Lucia; Otten, Elsje G; Anyfantis, George; Mellough, Carla; Przyborski, Stefan; Alharthi, Sameer; Korolchuk, Viktor; Lotery, Andrew; Saretzki, Gabriele; McKibbin, Martin; Armstrong, Lyle; Steel, David; Kavanagh, David; Lako, Majlinda

    2017-11-01

    Age-related macular degeneration (AMD) is the most common cause of blindness, accounting for 8.7% of all blindness globally. Vision loss is caused ultimately by apoptosis of the retinal pigment epithelium (RPE) and overlying photoreceptors. Treatments are evolving for the wet form of the disease; however, these do not exist for the dry form. Complement factor H polymorphism in exon 9 (Y402H) has shown a strong association with susceptibility to AMD resulting in complement activation, recruitment of phagocytes, RPE damage, and visual decline. We have derived and characterized induced pluripotent stem cell (iPSC) lines from two subjects without AMD and low-risk genotype and two patients with advanced AMD and high-risk genotype and generated RPE cells that show local secretion of several proteins involved in the complement pathway including factor H, factor I, and factor H-like protein 1. The iPSC RPE cells derived from high-risk patients mimic several key features of AMD including increased inflammation and cellular stress, accumulation of lipid droplets, impaired autophagy, and deposition of "drüsen"-like deposits. The low- and high-risk RPE cells respond differently to intermittent exposure to UV light, which leads to an improvement in cellular and functional phenotype only in the high-risk AMD-RPE cells. Taken together, our data indicate that the patient specific iPSC model provides a robust platform for understanding the role of complement activation in AMD, evaluating new therapies based on complement modulation and drug testing. Stem Cells 2017;35:2305-2320. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  11. Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus

    PubMed Central

    Kalashnikova, Anna A.; Winkler, Duane D.; McBryant, Steven J.; Henderson, Ryan K.; Herman, Jacob A.; DeLuca, Jennifer G.; Luger, Karolin; Prenni, Jessica E.; Hansen, Jeffrey C.

    2013-01-01

    The H1 linker histones are abundant chromatin-associated DNA-binding proteins. Recent evidence suggests that linker histones also may function through protein–protein interactions. To gain a better understanding of the scope of linker histone involvement in protein–protein interactions, we used a proteomics approach to identify H1-binding proteins in human nuclear extracts. Full-length H1.0 and H1.0 lacking its C-terminal domain (CTD) were used for protein pull-downs. A total of 107 candidate H1.0 binding proteins were identified by LC-MS/MS. About one-third of the H1.0-dependent interactions were mediated by the CTD, and two-thirds by the N-terminal domain-globular domain fragment. Many of the proteins pulled down by H1.0 were core splicing factors. Another group of H1-binding proteins functions in rRNA biogenesis. H1.0 also pulled down numerous ribosomal proteins and proteins involved in cellular transport. Strikingly, nearly all of the H1.0-binding proteins are found in the nucleolus. Quantitative biophysical studies with recombinant proteins confirmed that H1.0 directly binds to FACT and the splicing factors SF2/ASF and U2AF65. Our results demonstrate that H1.0 interacts with an extensive network of proteins that function in RNA metabolism in the nucleolus, and suggest that a new paradigm for linker histone action is in order. PMID:23435226

  12. Potential influences of complement factor H in autoimmune inflammatory and thrombotic disorders.

    PubMed

    Ferluga, Janez; Kouser, Lubna; Murugaiah, Valarmathy; Sim, Robert B; Kishore, Uday

    2017-04-01

    Complement system homeostasis is important for host self-protection and anti-microbial immune surveillance, and recent research indicates roles in tissue development and remodelling. Complement also appears to have several points of interaction with the blood coagulation system. Deficiency and altered function due to gene mutations and polymorphisms in complement effectors and regulators, including Factor H, have been associated with familial and sporadic autoimmune inflammatory - thrombotic disorders, in which autoantibodies play a part. These include systemic lupus erythematosus, rheumatoid arthritis, atypical haemolytic uremic syndrome, anti-phospholipid syndrome and age-related macular degeneration. Such diseases are generally complex - multigenic and heterogeneous in their symptoms and predisposition/susceptibility. They usually need to be triggered by vascular trauma, drugs or infection and non-complement genetic factors also play a part. Underlying events seem to include decline in peripheral regulatory T cells, dendritic cell, and B cell tolerance, associated with alterations in lymphoid organ microenvironment. Factor H is an abundant protein, synthesised in many cell types, and its reported binding to many different ligands, even if not of high affinity, may influence a large number of molecular interactions, together with the accepted role of Factor H within the complement system. Factor H is involved in mesenchymal stem cell mediated tolerance and also contributes to self-tolerance by augmenting iC3b production and opsonisation of apoptotic cells for their silent dendritic cell engulfment via complement receptor CR3, which mediates anti-inflammatory-tolerogenic effects in the apoptotic cell context. There may be co-operation with other phagocytic receptors, such as complement C1q receptors, and the Tim glycoprotein family, which specifically bind phosphatidylserine expressed on the apoptotic cell surface. Factor H is able to discriminate between self and

  13. [The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation].

    PubMed

    Xu, Xiao-liang; Dai, Ke-rong; Tang, Ting-ting

    2003-09-01

    To clarify the mechanisms of the signal transduction of bone morphogenetic proteins (BMPs) inducing bone formation and to provide theoretical basis for basic and applying research of BMPs. We looked up the literature of the role of Smads and related transcription factors in the signal transduction of BMPs inducing bone formation. The signal transduction processes of BMPs included: 1. BMPs combined with type II and type I receptors; 2. the type I receptor phosphorylated Smads; and 3. Smads entered the cell nucleus, interacted with transcription factors and influenced the transcription of related proteins. Smads could be divided into receptor-regulated Smads (R-Smads: Smad1, Smad2, Smad3, Smad5, Smad8 and Smad9), common-mediator Smad (co-Smad: Smad4), and inhibitory Smads (I-Smads: Smad6 and Smad7). Smad1, Smad5, Smad8, and probable Smad9 were involved in the signal transduction of BMPs. Multiple kinases, such as focal adhesion kinase (FAK), Ras-extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and Akt serine/threonine kinase were related to Smads signal transduction. Smad1 and Smad5 related with transcription factors included core binding factor A1 (CBFA1), smad-interacting protein 1 (SIP1), ornithine decarboxylase antizyme (OAZ), activating protein-1 (AP-1), xenopus ventralizing homeobox protein-2 (Xvent-2), sandostatin (Ski), antiproliferative proteins (Tob), and homeodomain-containing transcriptian factor-8 (Hoxc-8), et al. CBFA1 could interact with Smad1, Smad2, Smad3, and Smad5, so it was involved in TGF-beta and BMP-2 signal transduction, and played an important role in the bone formation. Cleidocranial dysplasia (CCD) was thought to be caused by heterozygous mutations in CBFA1. The CBFA1 knockout mice showed no osteogenesis and had maturational disturbance of chondrocytes. Smads and related transcription factors, especially Smad1, Smad5, Smad8 and CBFA1, play an important role in the signal transduction of BMPs inducing bone

  14. Eukaryotic elongation factor 2 kinase regulates the synthesis of microtubule-related proteins in neurons.

    PubMed

    Kenney, Justin W; Genheden, Maja; Moon, Kyung-Mee; Wang, Xuemin; Foster, Leonard J; Proud, Christopher G

    2016-01-01

    Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in both neurons and other cell types. Elongation is primarily regulated via eukaryotic elongation factor 2 kinase (eEF2K). However, the consequence of altering eEF2K activity on the synthesis of specific proteins is largely unknown. Using both pharmacological and genetic manipulations of eEF2K combined with two protein-labeling techniques, stable isotope labeling of amino acids in cell culture and bio-orthogonal non-canonical amino acid tagging, we identified a subset of proteins whose synthesis is sensitive to inhibition of eEF2K in murine primary cortical neurons. Gene ontology (GO) analyses indicated that processes related to microtubules are particularly sensitive to eEF2K inhibition. Our findings suggest that eEF2K likely contributes to neuronal function by regulating the synthesis of microtubule-related proteins. Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in neurons. Here, using labeling of new proteins coupled with proteomic techniques in primary cortical neurons, we find that the synthesis of microtubule-related proteins is up-regulated by inhibition of elongation. This suggests that translation elongation is a key regulator of cytoskeletal dynamics in neurons. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  15. Characterization of diverse subvariants of the meningococcal factor H (fH) binding protein for their ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies.

    PubMed

    Seib, Kate L; Brunelli, Brunella; Brogioni, Barbara; Palumbo, Emmanuelle; Bambini, Stefania; Muzzi, Alessandro; DiMarcello, Federica; Marchi, Sara; van der Ende, Arie; Aricó, Beatrice; Savino, Silvana; Scarselli, Maria; Comanducci, Maurizio; Rappuoli, Rino; Giuliani, Marzia M; Pizza, Mariagrazia

    2011-02-01

    Neisseria meningitidis is a commensal of the human nasopharynx but is also a major cause of septicemia and meningitis. The meningococcal factor H binding protein (fHbp) binds human factor H (fH), enabling downregulation of complement activation on the bacterial surface. fHbp is a component of two serogroup B meningococcal vaccines currently in clinical development. Here we characterize 12 fHbp subvariants for their level of surface exposure and ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Flow cytometry and Western analysis revealed that all strains examined expressed fHbp on their surface to different extents and bound fH in an fHbp-dependent manner. However, differences in fH binding did not always correlate with the level of fHbp expression, indicating that this is not the only factor affecting the amount of fH bound. To overcome the issue of strain variability in fHbp expression, the MC58ΔfHbp strain was genetically engineered to express different subvariants from a constitutive heterologous promoter. These recombinant strains were characterized for fH binding, and the data confirmed that each subvariant binds different levels of fH. Surface plasmon resonance revealed differences in the stability of the fHbp-fH complexes that ranged over 2 orders of magnitude, indicating that differences in residues between and within variant groups can influence fH binding. Interestingly, the level of survival in human sera of recombinant MC58 strains expressing diverse subvariants did not correlate with the level of fH binding, suggesting that the interaction of fHbp with fH is not the only function of fHbp that influences serum resistance. Furthermore, cross-reactive bactericidal activity was seen within each variant group, although the degree of activity varied, suggesting that amino acid differences within each variant group influence the bactericidal antibody response.

  16. Different Cellular Origins and Functions of Extracellular Proteins from Escherichia coli O157:H7 and O104:H4 as Determined by Comparative Proteomic Analysis

    PubMed Central

    Islam, Nazrul; Nagy, Attila; Garrett, Wesley M.; Shelton, Dan

    2016-01-01

    ABSTRACT Extracellular proteins play important roles in bacterial interactions with the environmental matrices. In this study, we examined the extracellular proteins from Escherichia coli O157:H7 and O104:H4 by tandem mass spectrometry. We identified 500 and 859 proteins from the growth media of E. coli O157:H7 and O104:H4, respectively, including 371 proteins common to both strains. Among proteins that were considered specific to E. coli O157:H7 or present at higher relative abundances in O157:H7 medium, most (57 of 65) had secretion signal sequences in their encoding genes. Noticeably, the proteins included locus of enterocyte effacement (LEE) virulence factors, proteins required for peptidyl-lipoprotein accumulation, and proteins involved in iron scavenging. In contrast, a much smaller proportion of proteins (37 of 150) that were considered specific to O104:H4 or presented at higher relative abundances in O104:H4 medium had signals targeting them for secretion. These proteins included Shiga toxin 2 subunit B and O104:H4 signature proteins, including AAF/1 major fimbrial subunit and serine protease autotransporters. Most of the abundant proteins from the growth medium of E. coli O104:H4 were annotated as having functions in the cytoplasm. We provide evidence that the extensive presence of cytoplasmic proteins in E. coli O104:H4 growth medium was due to biological processes independent of cell lysis, indicating alternative mechanisms for this potent pathogen releasing cytoplasmic contents into the growth milieu, which could play a role in interaction with the environmental matrices, such as pathogenesis and biofilm formation. IMPORTANCE In this study, we compared the extracellular proteins from two of the most prominent foodborne pathogenic E. coli organisms that have caused severe outbreaks in the United States and in Europe. E. coli O157:H7 is a well-studied Shiga toxigenic foodborne pathogen of the enterohemorrhagic pathotype that has caused numerous outbreaks

  17. Different Cellular Origins and Functions of Extracellular Proteins from Escherichia coli O157:H7 and O104:H4 as Determined by Comparative Proteomic Analysis.

    PubMed

    Islam, Nazrul; Nagy, Attila; Garrett, Wesley M; Shelton, Dan; Cooper, Bret; Nou, Xiangwu

    2016-07-15

    Extracellular proteins play important roles in bacterial interactions with the environmental matrices. In this study, we examined the extracellular proteins from Escherichia coli O157:H7 and O104:H4 by tandem mass spectrometry. We identified 500 and 859 proteins from the growth media of E. coli O157:H7 and O104:H4, respectively, including 371 proteins common to both strains. Among proteins that were considered specific to E. coli O157:H7 or present at higher relative abundances in O157:H7 medium, most (57 of 65) had secretion signal sequences in their encoding genes. Noticeably, the proteins included locus of enterocyte effacement (LEE) virulence factors, proteins required for peptidyl-lipoprotein accumulation, and proteins involved in iron scavenging. In contrast, a much smaller proportion of proteins (37 of 150) that were considered specific to O104:H4 or presented at higher relative abundances in O104:H4 medium had signals targeting them for secretion. These proteins included Shiga toxin 2 subunit B and O104:H4 signature proteins, including AAF/1 major fimbrial subunit and serine protease autotransporters. Most of the abundant proteins from the growth medium of E. coli O104:H4 were annotated as having functions in the cytoplasm. We provide evidence that the extensive presence of cytoplasmic proteins in E. coli O104:H4 growth medium was due to biological processes independent of cell lysis, indicating alternative mechanisms for this potent pathogen releasing cytoplasmic contents into the growth milieu, which could play a role in interaction with the environmental matrices, such as pathogenesis and biofilm formation. In this study, we compared the extracellular proteins from two of the most prominent foodborne pathogenic E. coli organisms that have caused severe outbreaks in the United States and in Europe. E. coli O157:H7 is a well-studied Shiga toxigenic foodborne pathogen of the enterohemorrhagic pathotype that has caused numerous outbreaks associated with

  18. Protein concentration in pre-ovulatory follicular fluid related to ovarian stimulation.

    PubMed

    Suchanek, E; Mujkic-Klaric, A; Grizelj, V; Simunic, V; Kopjar, B

    1990-05-01

    Sixty follicular fluids obtained from 26 women with either clomiphene citrate and human menopausal gonadotropins (hMG) or hMG-induced ovulation were analyzed for the contents of total proteins, fibrinogen, plasminogen, antithrombin III, ceruloplasmin, alpha-2 macroglobulin, alpha-1 antitrypsin and immunoglobulins (IgG, IgA, IgM). Concentrations of these proteins was correlated to the type of ovarian follicle growth induction. Follicular fluids from patients stimulated with clomiphene citrate-hMG contained significantly higher concentrations of ceruloplasmin than those treated with hMG alone. No significant differences in the concentrations of other proteins were noted between the two types of ovarian induction. A multivariate data analysis resulted in three Varimax factors (VRX I) suggesting that proteins with antiprotease activity in the follicular fluid may play a role in human follicle maturation. Follicular fluid Ig may reflect the degree of follicular wall permeability under hMG treatment. Accordingly, it may be assumed that a combination of different proteins described by VRX factors could be used for evaluation of ovarian stimulation.

  19. Structural and functional characterization of the product of disease-related factor H gene conversion.

    PubMed

    Herbert, Andrew P; Kavanagh, David; Johansson, Conny; Morgan, Hugh P; Blaum, Bärbel S; Hannan, Jonathan P; Barlow, Paul N; Uhrín, Dušan

    2012-03-06

    Numerous complement factor H (FH) mutations predispose patients to atypical hemolytic uremic syndrome (aHUS) and other disorders arising from inadequately regulated complement activation. No unifying structural or mechanistic consequences have been ascribed to these mutants beyond impaired self-cell protection. The S1191L and V1197A mutations toward the C-terminus of FH, which occur in patients singly or together, arose from gene conversion between CFH encoding FH and CFHR1 encoding FH-related 1. We show that neither single nor double mutations structurally perturbed recombinant proteins consisting of the FH C-terminal modules, 19 and 20 (FH19-20), although all three FH19-20 mutants were poor, compared to wild-type FH19-20, at promoting hemolysis of C3b-coated erythrocytes through competition with full-length FH. Indeed, our new crystal structure of the S1191L mutant of FH19-20 complexed with an activation-specific complement fragment, C3d, was nearly identical to that of the wild-type FH19-20:C3d complex, consistent with mutants binding to C3b with wild-type-like affinity. The S1191L mutation enhanced thermal stability of module 20, whereas the V1197A mutation dramatically decreased it. Thus, although mutant proteins were folded at 37 °C, they differ in conformational rigidity. Neither single substitutions nor double substitutions increased measurably the extent of FH19-20 self-association, nor did these mutations significantly affect the affinity of FH19-20 for three glycosaminoglycans, despite critical roles of module 20 in recognizing polyanionic self-surface markers. Unexpectedly, FH19-20 mutants containing Leu1191 self-associated on a heparin-coated surface to a higher degree than on surfaces coated with dermatan or chondroitin sulfates. Thus, potentially disease-related functional distinctions between mutants, and between FH and FH-related 1, may manifest in the presence of specific glycosaminoglycans.

  20. Expression of Human Complement Factor H Prevents Age-Related Macular Degeneration–Like Retina Damage and Kidney Abnormalities in Aged Cfh Knockout Mice

    PubMed Central

    Ding, Jin-Dong; Kelly, Una; Landowski, Michael; Toomey, Christopher B.; Groelle, Marybeth; Miller, Chelsey; Smith, Stephanie G.; Klingeborn, Mikael; Singhapricha, Terry; Jiang, Haixiang; Frank, Michael M.; Bowes Rickman, Catherine

    2016-01-01

    Complement factor H (CFH) is an important regulatory protein in the alternative pathway of the complement system, and CFH polymorphisms increase the genetic risk of age-related macular degeneration dramatically. These same human CFH variants have also been associated with dense deposit disease. To mechanistically study the function of CFH in the pathogenesis of these diseases, we created transgenic mouse lines using human CFH bacterial artificial chromosomes expressing full-length human CFH variants and crossed these to Cfh knockout (Cfh−/−) mice. Human CFH protein inhibited cleavage of mouse complement component 3 and factor B in plasma and in retinal pigment epithelium/choroid/sclera, establishing that human CFH regulates activation of the mouse alternative pathway. One of the mouse lines, which express relatively higher levels of CFH, demonstrated functional and structural protection of the retina owing to the Cfh deletion. Impaired visual function, detected as a deficit in the scotopic electroretinographic response, was improved in this transgenic mouse line compared with Cfh−/− mice, and transgenics had a thicker outer nuclear layer and less sub–retinal pigment epithelium deposit accumulation. In addition, expression of human CFH also completely protected the mice from developing kidney abnormalities associated with loss of CFH. These humanized CFH mice present a valuable model for study of the molecular mechanisms of age-related macular degeneration and dense deposit disease and for testing therapeutic targets. PMID:25447048

  1. Protein-protein Förster resonance energy transfer analysis of nucleosome core particles containing H2A and H2A.Z.

    PubMed

    Hoch, Duane A; Stratton, Jessica J; Gloss, Lisa M

    2007-08-24

    A protein-protein Förster resonance energy transfer (FRET) system, employing probes at multiple positions, was designed to specifically monitor the dissociation of the H2A-H2B dimer from the nucleosome core particle (NCP). Tryptophan donors and Cys-AEDANS acceptors were chosen because, compared to previous NCP FRET fluorophores, they: (1) are smaller and less hydrophobic, which should minimize perturbations of histone and NCP structure; and (2) have an R0 of 20 A, which is much less than the dimensions of the NCP (approximately 50 A width and approximately 100 A diameter). Equilibrium protein unfolding titrations indicate that the donor and acceptor moieties have minimal effects on the stability of the H2A-H2B dimer and (H3-H4)2 tetramer. NCPs containing the various FRET pairs were reconstituted with the 601 DNA positioning element. Equilibrium NaCl-induced dissociation of the modified NCPs showed that the 601 sequence stabilized the NCP to dimer dissociation relative to weaker positioning sequences. This finding implies a significant role for the H2A-H2B dimers in determining the DNA sequence dependence of NCP stability. The free energy of dissociation determined from reversible and well-defined sigmoidal transitions revealed two distinct phases reflecting the dissociation of individual H2A-H2B dimers, confirming cooperativity as suggested previously; these data allow quantitative description of the cooperativity. The FRET system was then used to study the effects of the histone variant H2A.Z on NCP stability; previous studies have reported both destabilizing and stabilizing effects. H2A.Z FRET NCP dissociation transitions suggest a slight increase in stability but a significant increase in cooperativity of the dimer dissociations. Thus, the utility of this protein-protein FRET system to monitor the effects of histone variants on NCP dynamics has been demonstrated, and the system appears equally well-suited for dissection of the kinetic processes of dimer

  2. Modulation of Caenorhabditis elegans transcription factor activity by HIM-8 and the related Zinc-Finger ZIM proteins.

    PubMed

    Sun, Hongliu; Nelms, Brian L; Sleiman, Sama F; Chamberlin, Helen M; Hanna-Rose, Wendy

    2007-10-01

    The previously reported negative regulatory activity of HIM-8 on the Sox protein EGL-13 is shared by the HIM-8-related ZIM proteins. Furthermore, mutation of HIM-8 can modulate the effects of substitution mutations in the DNA-binding domains of at least four other transcription factors, suggesting broad regulatory activity by HIM-8.

  3. Drug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins

    PubMed Central

    Walsh, Dustin R.; Nolin, Thomas D.

    2015-01-01

    Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithelia, drug transporters must be targeted and stabilized to appropriate regions of the cell membrane (i.e., apical versus basolateral). Despite the critical importance of drug transporter membrane targeting, the mechanisms that underlie these processes are largely unknown. Several clinically significant drug transporters possess a recognition sequence that binds to PSD-95/Drosophila discs large/ZO-1 (PDZ) proteins. PDZ proteins, such as the Na+/H+ exchanger regulatory factor (NHERF) family, act to stabilize and organize membrane targeting of multiple transmembrane proteins, including many clinically relevant drug transporters. These PDZ proteins are normally abundant at apical membranes, where they tether membrane-delimited transporters. NHERF expression is particularly high at the apical membrane in polarized tissue such as intestinal, hepatic, and renal epithelia, tissues important to drug disposition. Several recent studies have highlighted NHERF proteins as determinants of drug transporter function secondary to their role in controlling membrane abundance and localization. Mounting evidence strongly suggests that NHERF proteins may have clinically significant roles in pharmacokinetics and pharmacodynamics of several pharmacologically active compounds and may affect drug action in cancer and chronic kidney disease. For these reasons, NHERF proteins represent a novel class of post-translational mediators of drug transport and novel targets for new drug development. PMID:26092975

  4. Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human

    PubMed Central

    Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling

    2014-01-01

    Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046

  5. Factor H-IgG Chimeric Proteins as a Therapeutic Approach against the Gram-Positive Bacterial Pathogen Streptococcus pyogenes.

    PubMed

    Blom, Anna M; Magda, Michal; Kohl, Lisa; Shaughnessy, Jutamas; Lambris, John D; Ram, Sanjay; Ermert, David

    2017-12-01

    Bacteria can cause life-threatening infections, such as pneumonia, meningitis, or sepsis. Antibiotic therapy is a mainstay of treatment, although antimicrobial resistance has drastically increased over the years. Unfortunately, safe and effective vaccines against most pathogens have not yet been approved, and thus developing alternative treatments is important. We analyzed the efficiency of factor H (FH)6-7/Fc, a novel antibacterial immunotherapeutic protein against the Gram-positive bacterium Streptococcus pyogenes This protein is composed of two domains of complement inhibitor human FH (FH complement control protein modules 6 and 7) that bind to S. pyogenes , linked to the Fc region of IgG (FH6-7/Fc). FH6-7/Fc has previously been shown to enhance complement-dependent killing of, and facilitate bacterial clearance in, animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized that activation of complement by FH6-7/Fc on the surface of Gram-positive bacteria such as S. pyogenes will enable professional phagocytes to eliminate the pathogen. We found that FH6-7/Fc alleviated S. pyogenes- induced sepsis in a transgenic mouse model expressing human FH ( S. pyogenes binds FH in a human-specific manner). Furthermore, FH6-7/Fc, which binds to protein H and selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activation, and reduced bacterial blood burden by opsonophagocytosis in a C3-dependent manner in an ex vivo human whole-blood model. In conclusion, FH-Fc chimeric proteins could serve as adjunctive treatments against multidrug-resistant bacterial infections. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Protein-protein interfaces are vdW dominant with selective H-bonds and (or) electrostatics towards broad functional specificity.

    PubMed

    Nilofer, Christina; Sukhwal, Anshul; Mohanapriya, Arumugam; Kangueane, Pandjassarame

    2017-01-01

    Several catalysis, cellular regulation, immune function, cell wall assembly, transport, signaling and inhibition occur through Protein- Protein Interactions (PPI). This is possible with the formation of specific yet stable protein-protein interfaces. Therefore, it is of interest to understand its molecular principles using structural data in relation to known function. Several interface features have been documented using known X-ray structures of protein complexes since 1975. This has improved our understanding of the interface using structural features such as interface area, binding energy, hydrophobicity, relative hydrophobicity, salt bridges and hydrogen bonds. The strength of binding between two proteins is dependent on interface size (number of residues at the interface) and thus its corresponding interface area. It is known that large interfaces have high binding energy (sum of (van der Waals) vdW, H-bonds, electrostatics). However, the selective role played by each of these energy components and more especially that of vdW is not explicitly known. Therefore, it is important to document their individual role in known protein-protein structural complexes. It is of interest to relate interface size with vdW, H-bonds and electrostatic interactions at the interfaces of protein structural complexes with known function using statistical and multiple linear regression analysis methods to identify the prominent force. We used the manually curated non-redundant dataset of 278 hetero-dimeric protein structural complexes grouped using known functions by Sowmya et al. (2015) to gain additional insight to this phenomenon using a robust inter-atomic non-covalent interaction analyzing tool PPCheck (Anshul and Sowdhamini, 2015). This dataset consists of obligatory (enzymes, regulator, biological assembly), immune and nonobligatory (enzyme and regulator inhibitors) complexes. Results show that the total binding energy is more for large interfaces. However, this is not true

  7. Designing pH induced fold switch in proteins

    NASA Astrophysics Data System (ADS)

    Baruah, Anupaul; Biswas, Parbati

    2015-05-01

    This work investigates the computational design of a pH induced protein fold switch based on a self-consistent mean-field approach by identifying the ensemble averaged characteristics of sequences that encode a fold switch. The primary challenge to balance the alternative sets of interactions present in both target structures is overcome by simultaneously optimizing two foldability criteria corresponding to two target structures. The change in pH is modeled by altering the residual charge on the amino acids. The energy landscape of the fold switch protein is found to be double funneled. The fold switch sequences stabilize the interactions of the sites with similar relative surface accessibility in both target structures. Fold switch sequences have low sequence complexity and hence lower sequence entropy. The pH induced fold switch is mediated by attractive electrostatic interactions rather than hydrophobic-hydrophobic contacts. This study may provide valuable insights to the design of fold switch proteins.

  8. Leukemia/lymphoma-related factor, a POZ domain-containing transcriptional repressor, interacts with histone deacetylase-1 and inhibits cartilage oligomeric matrix protein gene expression and chondrogenesis.

    PubMed

    Liu, Chuan-ju; Prazak, Lisa; Fajardo, Marc; Yu, Shuang; Tyagi, Neetu; Di Cesare, Paul E

    2004-11-05

    Mutations in the human cartilage oligomeric matrix protein (COMP) gene have been linked to the development of pseudoachondroplasia and multiple epiphyseal dysplasia. We previously cloned the promoter region of the COMP gene and delineated a minimal negative regulatory element (NRE) that is both necessary and sufficient to repress its promoter (Issack, P. S., Fang, C. H., Leslie, M. P., and Di Cesare, P. E. (2000) J. Orthop. Res. 18, 345-350; Issack, P. S., Liu, C. J., Prazak, L., and Di Cesare, P. E. (2004) J. Orthop. Res. 22, 751-758). In this study, a yeast one-hybrid screen for proteins that associate with the NRE led to the identification of the leukemia/lymphoma-related factor (LRF), a transcriptional repressor that contains a POZ (poxvirus zinc finger) domain, as an NRE-binding protein. LRF bound directly to the NRE both in vitro and in living cells. Nine nucleotides (GAGGGTCCC) in the 30-bp NRE are essential for binding to LRF. LRF showed dose-dependent inhibition of COMP-specific reporter gene activity, and exogenous overexpression of LRF repressed COMP gene expression in both rat chondrosarcoma cells and bone morphogenetic protein-2-treated C3H10T1/2 progenitor cells. In addition, LRF also inhibited bone morphogenetic protein-2-induced chondrogenesis in high density micromass cultures of C3H10T1/2 cells, as evidenced by lack of expression of other chondrocytic markers, such as aggrecan and collagen types II, IX, X, and XI, and by Alcian blue staining. LRF associated with histone deacetylase-1 (HDAC1), and experiments utilizing the HDAC inhibitor trichostatin A revealed that LRF-mediated repression requires deacetylase activity. LRF is the first transcription factor found to bind directly to the COMP gene promoter, to recruit HDAC1, and to regulate both COMP gene expression and chondrogenic differentiation.

  9. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner.

    PubMed

    Nomura, Kazumi; Hayakawa, Kimihide; Tatsumi, Hitoshi; Ono, Shoichiro

    2016-03-04

    Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    PubMed

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  11. Expanding pH screening space using multiple droplets with secondary buffers for protein crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Chen-Yan; Dong, Chen; Lu, Xiao-Li; Wang, Bei; He, Tian-Yuan; Yang, Rui-Zeng; Lin, Hua-Long; Yang, Xue-Zhou; Yin, Da-Chuan

    2017-04-01

    We have proposed a rational strategy for selecting a suitable pH of protein solution based on protein biochemical properties. However, it is difficult to use this strategy for biochemical properties unknown proteins. In this paper, a simpler and faster pH buffer strategy was proposed. An additional pH-controlling buffer was added to crystallization droplet mixed with protein solution and commercial crystallization reagents to adjust its pH. The results revealed that protein crystallization success rates were enhanced by this strategy due to expansion of the pH screening space, which was closely related with protein solubility. Thus, the possibility of reaching supersaturation was increased by using this strategy.

  12. Functional anatomy of complement factor H.

    PubMed

    Makou, Elisavet; Herbert, Andrew P; Barlow, Paul N

    2013-06-11

    Factor H (FH) is a soluble regulator of the proteolytic cascade at the core of the evolutionarily ancient vertebrate complement system. Although FH consists of a single chain of similar protein modules, it has a demanding job description. Its chief role is to prevent complement-mediated injury to healthy host cells and tissues. This entails recognition of molecular patterns on host surfaces combined with control of one of nature's most dangerous examples of a positive-feedback loop. In this way, FH modulates, where and when needed, an amplification process that otherwise exponentially escalates the production of the pro-inflammatory, pro-phagocytic, and pro-cytolytic cleavage products of complement proteins C3 and C5. Mutations and single-nucleotide polymorphisms in the FH gene and autoantibodies against FH predispose individuals to diseases, including age-related macular degeneration, dense-deposit disease, and atypical hemolytic uremic syndrome. Moreover, deletions or variations of genes for FH-related proteins also influence the risk of disease. Numerous pathogens hijack FH and use it for self-defense. As reviewed herein, a molecular understanding of FH function is emerging. While its functional oligomeric status remains uncertain, progress has been achieved in characterizing its three-dimensional architecture and, to a lesser extent, its intermodular flexibility. Models are proposed, based on the reconciliation of older data with a wealth of recent evidence, in which a latent circulating form of FH is activated by its principal target, C3b tethered to a self-surface. Such models suggest hypotheses linking sequence variations to pathophysiology, but improved, more quantitative, functional assays and rigorous data analysis are required to test these ideas.

  13. Systemic delivery of factor IX messenger RNA for protein replacement therapy

    PubMed Central

    Ramaswamy, Suvasini; Tonnu, Nina; Tachikawa, Kiyoshi; Limphong, Pattraranee; Vega, Jerel B.; Karmali, Priya P.; Chivukula, Pad; Verma, Inder M.

    2017-01-01

    Safe and efficient delivery of messenger RNAs for protein replacement therapies offers great promise but remains challenging. In this report, we demonstrate systemic, in vivo, nonviral mRNA delivery through lipid nanoparticles (LNPs) to treat a Factor IX (FIX)-deficient mouse model of hemophilia B. Delivery of human FIX (hFIX) mRNA encapsulated in our LUNAR LNPs results in a rapid pulse of FIX protein (within 4–6 h) that remains stable for up to 4–6 d and is therapeutically effective, like the recombinant human factor IX protein (rhFIX) that is the current standard of care. Extensive cytokine and liver enzyme profiling showed that repeated administration of the mRNA–LUNAR complex does not cause any adverse innate or adaptive immune responses in immune-competent, hemophilic mice. The levels of hFIX protein that were produced also remained consistent during repeated administrations. These results suggest that delivery of long mRNAs is a viable therapeutic alternative for many clotting disorders and for other hepatic diseases where recombinant proteins may be unaffordable or unsuitable. PMID:28202722

  14. Comparative analysis and assessment of M. tuberculosis H37Rv protein-protein interaction datasets

    PubMed Central

    2011-01-01

    Background M. tuberculosis is a formidable bacterial pathogen. There is thus an increasing demand on understanding the function and relationship of proteins in various strains of M. tuberculosis. Protein-protein interactions (PPIs) data are crucial for this kind of knowledge. However, the quality of the main available M. tuberculosis PPI datasets is unclear. This hampers the effectiveness of research works that rely on these PPI datasets. Here, we analyze the two main available M. tuberculosis H37Rv PPI datasets. The first dataset is the high-throughput B2H PPI dataset from Wang et al’s recent paper in Journal of Proteome Research. The second dataset is from STRING database, version 8.3, comprising entirely of H37Rv PPIs predicted using various methods. We find that these two datasets have a surprisingly low level of agreement. We postulate the following causes for this low level of agreement: (i) the H37Rv B2H PPI dataset is of low quality; (ii) the H37Rv STRING PPI dataset is of low quality; and/or (iii) the H37Rv STRING PPIs are predictions of other forms of functional associations rather than direct physical interactions. Results To test the quality of these two datasets, we evaluate them based on correlated gene expression profiles, coherent informative GO term annotations, and conservation in other organisms. We observe a significantly greater portion of PPIs in the H37Rv STRING PPI dataset (with score ≥ 770) having correlated gene expression profiles and coherent informative GO term annotations in both interaction partners than that in the H37Rv B2H PPI dataset. Predicted H37Rv interologs derived from non-M. tuberculosis experimental PPIs are much more similar to the H37Rv STRING functional associations dataset (with score ≥ 770) than the H37Rv B2H PPI dataset. H37Rv predicted physical interologs from IntAct also show extremely low similarity with the H37Rv B2H PPI dataset; and this similarity level is much lower than that between the S. aureus MRSA252

  15. Identification of climate factors related to human infection with avian influenza A H7N9 and H5N1 viruses in China.

    PubMed

    Li, Jing; Rao, Yuhan; Sun, Qinglan; Wu, Xiaoxu; Jin, Jiao; Bi, Yuhai; Chen, Jin; Lei, Fumin; Liu, Qiyong; Duan, Ziyuan; Ma, Juncai; Gao, George F; Liu, Di; Liu, Wenjun

    2015-12-11

    Human influenza infections display a strongly seasonal pattern. However, whether H7N9 and H5N1 infections correlate with climate factors has not been examined. Here, we analyzed 350 cases of H7N9 infection and 47 cases of H5N1 infection. The spatial characteristics of these cases revealed that H5N1 infections mainly occurred in the South, Middle, and Northwest of China, while the occurrence of H7N9 was concentrated in coastal areas of East and South of China. Aside from spatial-temporal characteristics, the most adaptive meteorological conditions for the occurrence of human infections by these two viral subtypes were different. We found that H7N9 infections correlate with climate factors, especially temperature (TEM) and relative humidity (RHU), while H5N1 infections correlate with TEM and atmospheric pressure (PRS). Hence, we propose a risky window (TEM 4-14 °C and RHU 65-95%) for H7N9 infection and (TEM 2-22 °C and PRS 980-1025 kPa) for H5N1 infection. Our results represent the first step in determining the effects of climate factors on two different virus infections in China and provide warning guidelines for the future when provinces fall into the risky windows. These findings revealed integrated predictive meteorological factors rooted in statistic data that enable the establishment of preventive actions and precautionary measures against future outbreaks.

  16. Structure-function mapping of BbCRASP-1, the key complement factor H and FHL-1 binding protein of Borrelia burgdorferi.

    PubMed

    Cordes, Frank S; Kraiczy, Peter; Roversi, Pietro; Simon, Markus M; Brade, Volker; Jahraus, Oliver; Wallis, Russell; Goodstadt, Leo; Ponting, Chris P; Skerka, Christine; Zipfel, Peter F; Wallich, Reinhard; Lea, Susan M

    2006-05-01

    Borrelia burgdorferi, a spirochaete transmitted to human hosts during feeding of infected Ixodes ticks, is the causative agent of Lyme disease, the most frequent vector-borne disease in Eurasia and North America. Sporadically Lyme disease develops into a chronic, multisystemic disorder. Serum-resistant B. burgdorferi strains bind complement factor H (FH) and FH-like protein 1 (FHL-1) on the spirochaete surface. This binding is dependent on the expression of proteins termed complement-regulator acquiring surface proteins (CRASPs). The atomic structure of BbCRASP-1, the key FHL-1/FH-binding protein of B. burgdorferi, has recently been determined. Our analysis indicates that its protein topology apparently evolved to provide a high affinity interaction site for FH/FHL-1 and leads to an atomic-level hypothesis for the functioning of BbCRASP-1. This work demonstrates that pathogens interact with complement regulators in ways that are distinct from the mechanisms used by the host and are thus obvious targets for drug design.

  17. Histone H1 functions as a stimulatory factor in backup pathways of NHEJ

    PubMed Central

    Rosidi, Bustanur; Wang, Minli; Wu, Wenqi; Sharma, Aparna; Wang, Huichen; Iliakis, George

    2008-01-01

    DNA double-strand breaks (DSBs) induced in the genome of higher eukaryotes by ionizing radiation (IR) are predominantly removed by two pathways of non-homologous end-joining (NHEJ) termed D-NHEJ and B-NHEJ. While D-NHEJ depends on the activities of the DNA-dependent protein kinase (DNA-PK) and DNA ligase IV/XRCC4/XLF, B-NHEJ utilizes, at least partly, DNA ligase III/XRCC1 and PARP-1. Using in vitro end-joining assays and protein fractionation protocols similar to those previously applied for the characterization of DNA ligase III as an end-joining factor, we identify here histone H1 as an additional putative NHEJ factor. H1 strongly enhances DNA-end joining and shifts the product spectrum from circles to multimers. While H1 enhances the DNA-end-joining activities of both DNA Ligase IV and DNA Ligase III, the effect on ligase III is significantly stronger. Histone H1 also enhances the activity of PARP-1. Since histone H1 has been shown to counteract D-NHEJ, these observations and the known functions of the protein identify it as a putative alignment factor operating preferentially within B-NHEJ. PMID:18250087

  18. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response.

    PubMed

    Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K

    2001-04-01

    Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta.

  19. Discovery and Development of Kelch-like ECH-Associated Protein 1. Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1:NRF2) Protein-Protein Interaction Inhibitors: Achievements, Challenges, and Future Directions.

    PubMed

    Jiang, Zheng-Yu; Lu, Meng-Chen; You, Qi-Dong

    2016-12-22

    The transcription factor Nrf2 is the primary regulator of the cellular defense system, and enhancing Nrf2 activity has potential usages in various diseases, especially chronic age-related and inflammatory diseases. Recently, directly targeting Keap1-Nrf2 protein-protein interaction (PPI) has been an emerging strategy to selectively and effectively activate Nrf2. This Perspective summarizes the progress in the discovery and development of Keap1-Nrf2 PPI inhibitors, including the Keap1-Nrf2 regulatory mechanisms, biochemical techniques for inhibitor identification, and approaches for identifying peptide and small-molecule inhibitors, as well as discusses privileged structures and future directions for further development of Keap1-Nrf2 PPI inhibitors.

  20. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors.

    PubMed

    Wallqvist, Anders; Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V; Kwon, Keehwan; Yu, Chenggang; Hoover, Timothy A; Reifman, Jaques

    2015-12-29

    Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Direct interactions with specific host proteins and the

  1. How protein chemists learned about the hydrophobic factor.

    PubMed Central

    Tanford, C.

    1997-01-01

    It is generally accepted today that the hydrophobic force is the dominant energetic factor that leads to the folding of polypeptide chains into compact globular entities. This principle was first explicitly introduced to protein chemists in 1938 by Irving Langmuir, past master in the application of hydrophobicity to other problems, and was enthusiastically endorsed by J.D. Bernal. But both proposal and endorsement came in the course of a debate about a quite different structural principle, the so-called "cyclol hypothesis" proposed by D. Wrinch, which soon proved to be theoretically and experimentally unsupportable. Being a more tangible idea, directly expressed in structural terms, the cyclol hypothesis received more attention than the hydrophobic principle and the latter never actually entered the mainstream of protein science until 1959, when it was thrust into the limelight in a lucid review by W. Kauzmann. A theoretical paper by H.S. Frank and M. Evans, not itself related to protein folding, probably played a major role in the acceptance of the hydrophobicity concept by protein chemists because it provided a crude but tangible picture of the origin of hydrophobicity per se in terms of water structure. PMID:9194199

  2. Urea synthesis in patients with chronic pancreatitis: relation to glucagon secretion and dietary protein intake.

    PubMed

    Hamberg, O; Andersen, V; Sonne, J; Larsen, S; Vilstrup, H

    2001-12-01

    Up-regulation of urea synthesis by amino acids and dietary protein intake may be impaired in patients with chronic pancreatitis (CP) due to the reduced glucagon secretion. Conversely, urea synthesis may be increased as a result of the chronic inflammation. The aims of the study were to determine urea synthesis kinetics in CP patients in relation to glucagon secretion (study I) and during an increase in protein intake (study II). In study I, urea synthesis rate, calculated as urinary excretion rate corrected for accumulation in total body water and intestinal loss, was measured during infusion of alanine in 7 CP patients and 5 control subjects on spontaneous protein intake. The functional hepatic nitrogen clearance (FHNC), i.e. urea synthesis expressed independent of changes in plasma amino acid concentration, was calculated as the slope of the linear relation between urea synthesis rate and plasma alpha -amino nitrogen concentration. In study II, 6 of the patients of study I had urea synthesis and FHNC determined before and after a period of 14 days of supplementation with a protein-enriched liquid (dietary sequence randomized). Study I: Alanine infusion increased urea synthesis rate by a factor of 10 in the control subjects, and by a factor of 5 in the CP patients (P<0.01). FHNC was 31.9+/-2.4 l/h in the control subjects and 16.5+/-2.0 l/h (P<0.05) in the CP patients. The glucagon response to alanine infusion (AUC) was reduced by 75 % in the CP patients. The reduction in FHNC paralleled the reduced glucagon response (r(2)=0.55, P<0.01). Study II: The spontaneous protein intake was 0.75+/-0.14 g/(kg x day) and increased during the high protein period to 1.77+/-0.12 g/(kg x day). This increased alanine stimulated urea synthesis by a factor of 1.3 (P<0.05), FHNC from 13.5+/-2.6 l/h to 19.4+/-3.1 l/h (P<0.01), and the glucagon response to alanine infusion (AUC) by a factor of 1.8 (P<0.05). Urea synthesis rate and FHNC are markedly reduced in CP patients. This is

  3. Helicobacter pylori neutrophil activating protein as target for new drugs against H. pylori inflammation.

    PubMed

    Choli-Papadopoulou, Theodora; Kottakis, Filippos; Papadopoulos, Georgios; Pendas, Stefanos

    2011-06-07

    Helicobacter pylori (H. pylori) infection is among the most common human infections and the major risk factor for peptic ulcer disease and gastric cancer. Within this work we present the implication of C-terminal region of H. pylori neutrophil activating protein in the stimulation of neutrophil activation as well as the evidence that the C-terminal region of H. pylori activating protein is indispensable for neutrophil adhesion to endothelial cells, a step necessary to H. pylori inflammation. In addition we show that arabino galactan proteins derived from chios mastic gum, the natural resin of the plant Pistacia lentiscus var. Chia inhibit neutrophil activation in vitro.

  4. Acquisition of Complement Inhibitor Serine Protease Factor I and Its Cofactors C4b-Binding Protein and Factor H by Prevotella intermedia

    PubMed Central

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M.

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases. PMID:22514678

  5. Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein ig-h3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis.

    PubMed

    Kontostathi, Georgia; Zoidakis, Jerome; Makridakis, Manousos; Lygirou, Vasiliki; Mermelekas, George; Papadopoulos, Theofilos; Vougas, Konstantinos; Vlamis-Gardikas, Alexios; Drakakis, Peter; Loutradis, Dimitrios; Vlahou, Antonia; Anagnou, Nicholas P; Pappa, Kalliopi I

    2017-01-01

    Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV-), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis.

  6. The MTA family proteins as novel histone H3 binding proteins.

    PubMed

    Wu, Meng; Wang, Lina; Li, Qian; Li, Jiwen; Qin, Jun; Wong, Jiemin

    2013-01-03

    The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.

  7. The MTA family proteins as novel histone H3 binding proteins

    PubMed Central

    2013-01-01

    Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail. PMID:23286669

  8. Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB

    PubMed Central

    Fiume, Giuseppe; Rossi, Annalisa; de Laurentiis, Annamaria; Falcone, Cristina; Pisano, Antonio; Vecchio, Eleonora; Pontoriero, Marilena; Scala, Iris; Scialdone, Annarita; Masci, Francesca Fasanella; Mimmi, Selena; Palmieri, Camillo; Scala, Giuseppe; Quinto, Ileana

    2013-01-01

    Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control. PMID:23776612

  9. Factor H: A Complement Regulator in Health and Disease, and a Mediator of Cellular Interactions

    PubMed Central

    Kopp, Anne; Hebecker, Mario; Svobodová, Eliška; Józsi, Mihály

    2012-01-01

    Complement is an essential part of innate immunity as it participates in host defense against infections, disposal of cellular debris and apoptotic cells, inflammatory processes and modulation of adaptive immune responses. Several soluble and membrane-bound regulators protect the host from the potentially deleterious effects of uncontrolled and misdirected complement activation. Factor H is a major soluble regulator of the alternative complement pathway, but it can also bind to host cells and tissues, protecting them from complement attack. Interactions of factor H with various endogenous ligands, such as pentraxins, extracellular matrix proteins and DNA are important in limiting local complement-mediated inflammation. Impaired regulatory as well as ligand and cell recognition functions of factor H, caused by mutations or autoantibodies, are associated with the kidney diseases: atypical hemolytic uremic syndrome and dense deposit disease and the eye disorder: age-related macular degeneration. In addition, factor H binds to receptors on host cells and is involved in adhesion, phagocytosis and modulation of cell activation. In this review we discuss current concepts on the physiological and pathophysiological roles of factor H in light of new data and recent developments in our understanding of the versatile roles of factor H as an inhibitor of complement activation and inflammation, as well as a mediator of cellular interactions. A detailed knowledge of the functions of factor H in health and disease is expected to unravel novel therapeutic intervention possibilities and to facilitate the development or improvement of therapies. PMID:24970127

  10. Investigation of the pH-dependence of dye-doped protein-protein interactions.

    PubMed

    Nudelman, Roman; Gloukhikh, Ekaterina; Rekun, Antonina; Richter, Shachar

    2016-11-01

    Proteins can dramatically change their conformation under environmental conditions such as temperature and pH. In this context, Glycoprotein's conformational determination is challenging. This is due to the variety of domains which contain rich chemical characters existing within this complex. Here we demonstrate a new, straightforward and efficient technique that uses the pH-dependent properties of dyes-doped Pig Gastric Mucin (PGM) for predicting and controlling protein-protein interaction and conformation. We utilize the PGM as natural host matrix which is capable of dynamically changing its conformational shape and adsorbing hydrophobic and hydrophilic dyes under different pH conditions and investigate and control the fluorescent properties of these composites in solution. It is shown at various pH conditions, a large variety of light emission from these complexes such as red, green and white is obtained. This phenomenon is explained by pH-dependent protein folding and protein-protein interactions that induce different emission spectra which are mediated and controlled by means of dye-dye interactions and surrounding environment. This process is used to form the technologically challenging white light-emitting liquid or solid coating for LED devices. © 2016 The Protein Society.

  11. Role of protein concentration and protein-saliva interactions in the astringency of whey proteins at low pH.

    PubMed

    Kelly, M; Vardhanabhuti, B; Luck, P; Drake, M A; Osborne, J; Foegeding, E A

    2010-05-01

    Whey protein beverages are adjusted to pH <4.5 to enhance clarity and stability, but this pH level is also associated with increased astringency. The goal of this investigation was to determine the effects of protein concentration on astringency and interactions between whey and salivary proteins. Whey protein beverages containing 0.25 to 13% (wt/wt) beta-lactoglobulin and 0.017% (wt/wt) sucralose at pH 2.6 to 4.2 were examined using descriptive sensory analysis. Controls were similar pH phosphate buffers at phosphate concentrations equivalent to the amount of phosphoric acid required to adjust the pH of the protein solution. Changes in astringency with protein concentration depended on pH. At pH 3.5, astringency significantly increased with protein concentration from 0.25 to 4% (wt/wt) and then remained constant from 4 to 13% (wt/wt). Conversely, at pH 2.6, astringency decreased with an increase in protein concentration [0.5-10% (wt/wt)]. This suggests a complex relationship that includes pH and buffering capacity of the beverages. Furthermore, saliva flow rates increased with increasing protein concentrations, showing that the physiological conditions in the mouth change with protein concentration. Maximum turbidity of whey protein-saliva mixtures was observed between pH 4.6 and 5.2. Both sensory evaluation and in vitro study of interactions between beta-LG and saliva indicate that astringency of whey proteins is a complex process determined by the extent of aggregation occurring in the mouth, which depends on the whey protein beverage pH and buffering capacity in addition to saliva flow rate. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Interaction of factor H-binding protein of Streptococcus suis with globotriaosylceramide promotes the development of meningitis

    PubMed Central

    Kong, Decong; Chen, Zhe; Wang, Junping; Lv, Qingyu; Jiang, Hua; Zheng, Yuling; Xu, Maokai; Zhou, Xuyu; Hao, Huaijie; Jiang, Yongqiang

    2017-01-01

    ABSTRACT Streptococcus suis is an important emerging zoonotic agent that causes acute bacterial meningitis in humans with high mortality and morbidity. Our previous work showed that factor H-binding protein (Fhb) contributed to virulence of S. suis, but the role of Fhb in the development of S. suis meningitis remained unclear. In this study, we demonstrated for the first time that Fhb contributed to the traversal of S. suis across the human blood–brain barrier by allelic-exchange mutagenesis, complementation and specific antibody blocking studies. We also showed that globotriaosylceramide (Gb3), the receptor of Fhb, was involved in this process and affected S. suis infection-induced activation of myosin light chain 2 through Rho/ROCK signaling in hCMEC/D3 cells. Using a murine model of S. suis meningitis, we further demonstrated that Gb3-deficiency prevented the mice from developing severe brain inflammation or injury. Our results demonstrate that the Fhb-Gb3 interaction plays an important role in the development of S. suis meningitis and might be a potential therapeutic target against S. suis infection. PMID:28402705

  13. Ubiquitination-Related MdBT Scaffold Proteins Target a bHLH Transcription Factor for Iron Homeostasis1[OPEN

    PubMed Central

    Zhao, Qiang; Wang, Qing-Jie; Wang, Xiao-Fei; You, Chun-Xiang

    2016-01-01

    Iron (Fe) homeostasis is crucial for plant growth and development. A network of basic helix-loop-helix (bHLH) transcription factors positively regulates Fe uptake during iron deficiency. However, their up-regulation or overexpression leads to Fe overload and reactive oxygen species generation, thereby damaging the plants. Here, we found that two BTB/TAZ proteins, MdBT1 and MdBT2, interact with the MbHLH104 protein in apple. In addition, the function of MdBT2 was characterized as a regulator of MdbHLH104 degradation via ubiquitination and the 26S proteasome pathway, thereby controlling the activity of plasma membrane H+-ATPases and the acquisition of iron. Furthermore, MdBT2 interacted with MdCUL3 proteins, which were required for the MdBT2-mediated ubiquitination modification of MdbHLH104 and its degradation. In sum, our findings demonstrate that MdBT proteins interact with MdCUL3 to bridge the formation of the MdBTsMdCUL3 complex, which negatively modulates the degradation of the MdbHLH104 protein in response to changes in Fe status to maintain iron homeostasis in plants. PMID:27660166

  14. Phylogeny-Based Systematization of Arabidopsis Proteins with Histone H1 Globular Domain.

    PubMed

    Kotliński, Maciej; Knizewski, Lukasz; Muszewska, Anna; Rutowicz, Kinga; Lirski, Maciej; Schmidt, Anja; Baroux, Célia; Ginalski, Krzysztof; Jerzmanowski, Andrzej

    2017-05-01

    H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis ( Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Loss of Regulatory Protein RfaH Attenuates Virulence of Uropathogenic Escherichia coli

    PubMed Central

    Nagy, Gábor; Dobrindt, Ulrich; Schneider, György; Khan, A. Salam; Hacker, Jörg; Emödy, Levente

    2002-01-01

    RfaH is a regulatory protein in Escherichia coli and Salmonella enterica serovar Typhimurium. Although it enhances expression of different factors that are proposed to play a role in bacterial virulence, a direct effect of RfaH on virulence has not been investigated so far. We report that inactivation of rfaH dramatically decreases the virulence of uropathogenic E. coli strain 536 in an ascending mouse model of urinary tract infection. The mortality rate caused by the wild-type strain in this assay is 100%, whereas that of its isogenic rfaH mutant does not exceed 18%. In the case of coinfection, the wild-type strain 536 shows higher potential to colonize the urinary tract even when it is outnumbered 100-fold by its rfaH mutant in the inoculum. In contrast to the wild-type strain, serum resistance of strain 536rfaH::cat is fully abolished. Furthermore, we give evidence that, besides a major decrease in the amount of hemin receptor ChuA (G. Nagy, U. Dobrindt, M. Kupfer, L. Emody, H. Karch, and J. Hacker, Infect. Immun. 69:1924-1928, 2001), loss of the RfaH protein results in an altered lipopolysaccharide phenotype as well as decreased expression of K15 capsule and alpha-hemolysin, whereas levels of other pathogenicity factors such as siderophores, flagella, Prf, and S fimbriae appear to be unaltered in strain 536rfaH::cat in comparison to the wild-type strain. trans complementation of the mutant strain with the rfaH gene restores wild-type levels of the affected virulence factors and consequently restitutes virulence in the mouse model of ascending urinary tract infection. PMID:12117951

  16. Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein ig-h3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis

    PubMed Central

    Zoidakis, Jerome; Makridakis, Manousos; Lygirou, Vasiliki; Mermelekas, George; Vougas, Konstantinos; Drakakis, Peter

    2017-01-01

    Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV−), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis. PMID:28261610

  17. Complement factor H polymorphisms in Japanese population with age-related macular degeneration.

    PubMed

    Okamoto, Haru; Umeda, Shinsuke; Obazawa, Minoru; Minami, Masayoshi; Noda, Toru; Mizota, Atsushi; Honda, Miki; Tanaka, Minoru; Koyama, Risa; Takagi, Ikue; Sakamoto, Yoshihiro; Saito, Yoshihiro; Miyake, Yozo; Iwata, Takeshi

    2006-03-06

    To study the frequency of five haplotypes previously reported in the complement factor H (CFH) gene for Japanese patients with age-related macular degeneration (AMD). Genomic DNA was isolated from peripheral blood samples taken from 96 Japanese AMD patients and 89 age-matched controls. All patients were diagnosed as having exudative (wet-type) AMD. The amplified polymerase chain reaction (PCR) products of CFH exons 2, 9, and 13, and intron 6 were analyzed by temperature gradient capillary electrophoresis (TGCE) and by direct sequencing. The haplotypes were identified, and their frequencies were calculated and compared with reported results. Five haplotypes were identified in the Japanese population including four already reported in the American population. The frequencies of these haplotypes were significantly different between Japanese and American in both control and case groups. The haplotype containing Y402H, which was previously reported to be associated with AMD, was only 4% in the control and case population, with a p value of 0.802. However, two other haplotypes were found as risk factors, which gave an increased likelihood of AMD of 1.9 and 2.5 fold (95% CI 1.12-3.69 and 1.42-6.38). One protective haplotype that decreased the likelihood of AMD by 1.6 fold (95% CI 0.26-0.67) was identified. The frequencies for five haplotypes previously identified were analyzed in a Japanese population with AMD. Four previously found haplotypes were identified and one additional haplotype was found. The frequencies of each haplotype were significantly different from that in found Americans affected with AMD. Two of the haplotypes were identified as risk factors and one was considered protective.

  18. DNA aptamer affinity ligands for highly selective purification of human plasma-related proteins from multiple sources.

    PubMed

    Forier, Cynthia; Boschetti, Egisto; Ouhammouch, Mohamed; Cibiel, Agnès; Ducongé, Frédéric; Nogré, Michel; Tellier, Michel; Bataille, Damien; Bihoreau, Nicolas; Santambien, Patrick; Chtourou, Sami; Perret, Gérald

    2017-03-17

    Nucleic acid aptamers are promising ligands for analytical and preparative-scale affinity chromatography applications. However, a full industrial exploitation requires that aptamer-grafted chromatography media provide a number of high technical standards that remained largely untested. Ideally, they should exhibit relatively high binding capacity associated to a very high degree of specificity. In addition, they must be highly resistant to harsh cleaning/sanitization conditions, as well as to prolonged and repeated exposure to biological environment. Here, we present practical examples of aptamer affinity chromatography for the purification of three human therapeutic proteins from various sources: Factor VII, Factor H and Factor IX. In a single chromatographic step, three DNA aptamer ligands enabled the efficient purification of their target protein, with an unprecedented degree of selectivity (from 0.5% to 98% of purity in one step). Furthermore, these aptamers demonstrated a high stability under harsh sanitization conditions (100h soaking in 1M NaOH). These results pave the way toward a wider adoption of aptamer-based affinity ligands in the industrial-scale purification of not only plasma-derived proteins but also of any other protein in general. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Protein Expression Level of Skin Wrinkle-Related Factors in Hairless Mice Fed Hyaluronic Acid.

    PubMed

    Yun, Min-Kyu; Lee, Sung-Jin; Song, Hye-Jin; Yu, Heui-Jong; Rha, Chan Su; Kim, Dae-Ok; Choe, Soo-Young; Sohn, Johann

    2017-04-01

    The aim of this study was to evaluate the wrinkle improving effect of hyaluronic acid intakes. Wrinkles were induced by exposing the skin of hairless mice to ultraviolet B (UVB) irradiation for 14 weeks. Hyaluronic acid was administered to the mice for 14 weeks including 4 weeks before experiments. Skin tissue was assayed by enzyme-linked immunosorbent assay to determine protein expression of wrinkle-related markers. The group supplemented with high concentrations of hyaluronic acid appeared significantly better than control group for collagen, matrix metalloproteinase 1, interleukin (IL)-1β, and IL-6 assay. Transforming growth factor-β1 (TGF-β1) and hyaluronic acid synthase 2 (HAS-2) were not shown to be significantly different. In conclusion, hyaluronic acid administration regulated expression levels of proteins associated with skin integrity, and improved the wrinkle level in skin subjected to UVB irradiation.

  20. Protein-Protein Förster Resonance Energy Transfer Analysis of Nucleosome Core Particles Containing H2A and H2A.Z

    PubMed Central

    Hoch, Duane A.; Stratton, Jessica J.; Gloss, Lisa M.

    2007-01-01

    A protein-protein Förster resonance energy transfer (FRET) system, employing probes at multiple positions, was designed to specifically monitor the dissociation of the H2A-H2B dimer from the nucleosome core particle (NCP). Tryptophan donors and Cys-AEDANS acceptors were chosen because, in comparison to fluorophores used in previous NCP FRET studies, they: 1) are smaller and less hydrophobic which should minimize perturbations of histone and NCP structure; and 2) have an R0 of 20 Å, which is much less than the dimensions of the NCP (~50 Å width and ~100 Å diameter). CD and FL equilibrium protein unfolding titrations indicate that the donor and acceptor moieties have minimal effects on the stability of the H2A-H2B dimer and (H3-H4)2 tetramer. NCPs containing the various FRET pairs were reconstituted with the 601 artificial positioning DNA sequence. Equilibrium NaCl-induced dissociation of the modified NCPs showed that the 601 sequence stabilized the NCP to dimer dissociation as compared to previous studies using weaker positioning sequences. This finding implies a significant role for the H2A-H2B dimers in determining the DNA sequence dependence of NCP stability. The free energy of dissociation determined from reversible and well-defined sigmoidal transitions revealed two distinct phases reflecting the dissociation of each H2A-H2B dimer, confirming cooperativity in dimer dissociation. While cooperativity in the association/dissociation of the H2A-H2B dimers has been suggested previously, these data allow its quantitative description. The protein-protein FRET system was then used to study the effects of the histone variant H2A.Z on NCP stability; previous studies have reported both destabilizing and stabilizing effects. Comparison of the H2A and H2A.Z FRET NCP dissociation transitions suggest a slight increase in stability but a significant increase in cooperativity for dimer dissociation from H2A.Z NCPs. Thus, the utility of this protein-protein FRET system to

  1. ReAsH/FlAsH labeling and image analysis of tetracysteine sensor proteins in cells.

    PubMed

    Irtegun, Sevgi; Ramdzan, Yasmin M; Mulhern, Terrence D; Hatters, Danny M

    2011-08-31

    Fluorescent proteins and dyes are essential tools for the study of protein trafficking, localization and function in cells. While fluorescent proteins such as green fluorescence protein (GFP) have been extensively used as fusion partners to proteins to track the properties of a protein of interest, recent developments with smaller tags enable new functionalities of proteins to be examined in cells such as conformational change and protein-association. One small tag system involves a tetracysteine motif (CCXXCC) genetically inserted into a target protein, which binds to biarsenical dyes, ReAsH (red fluorescent) and FlAsH (green fluorescent), with high specificity even in live cells. The TC/biarsenical dye system offers far less steric constraints to the host protein than fluorescent proteins which has enabled several new approaches to measure conformational change and protein-protein interactions. We recently developed a novel application of TC tags as sensors of oligomerization in cells expressing mutant huntingtin, which when mutated aggregates in neurons in Huntington disease. Huntingtin was tagged with two fluorescent dyes, one a fluorescent protein to track protein location, and the second a TC tag which only binds biarsenical dyes in monomers. Hence, changes in colocalization between protein and biarsenical dye reactivity enabled submicroscopic oligomer content to be spatially mapped within cells. Here, we describe how to label TC-tagged proteins fused to a fluorescent protein (Cherry, GFP or CFP) with FlAsH or ReAsH in live mammalian cells and how to quantify the two color fluorescence (Cherry/FlAsH, CFP/FlAsH or GFP/ReAsH combinations).

  2. Involvement of Retinoblastoma Protein and HBP1 in Histone H10 Gene Expression

    PubMed Central

    Lemercier, Claudie; Duncliffe, Kym; Boibessot, Isabelle; Zhang, Hui; Verdel, André; Angelov, Dimitar; Khochbin, Saadi

    2000-01-01

    The histone H10-encoding gene is expressed in vertebrates in differentiating cells during the arrest of proliferation. In the H10 promoter, a specific regulatory element, which we named the H4 box, exhibits features which implicate a role in mediating H10 gene expression in response to both differentiation and cell cycle control signals. For instance, within the linker histone gene family, the H4 box is found only in the promoters of differentiation-associated subtypes, suggesting that it is specifically involved in differentiation-dependent expression of these genes. In addition, an element nearly identical to the H4 box is conserved in the promoters of histone H4-encoding genes and is known to be involved in their cell cycle-dependent expression. The transcription factors interacting with the H10 H4 box were therefore expected to link differentiation-dependent expression of H10 to the cell cycle control machinery. The aim of this work was to identify such transcription factors and to obtain information concerning the regulatory pathway involved. Interestingly, our cloning strategy led to the isolation of a retinoblastoma protein (RB) partner known as HBP1. HBP1, a high-mobility group box transcription factor, interacted specifically with the H10 H4 box and moreover was expressed in a differentiation-dependent manner. We also showed that the HBP1-encoding gene is able to produce different forms of HBP1. Finally, we demonstrated that both HBP1 and RB were involved in the activation of H10 gene expression. We therefore propose that HBP1 mediates a link between the cell cycle control machinery and cell differentiation signals. Through modulating the expression of specific chromatin-associated proteins such as histone H10, HBP1 plays a vital role in chromatin remodeling events during the arrest of cell proliferation in differentiating cells. PMID:10958660

  3. Specific DNA binding of a potential transcriptional regulator, inosine 5'-monophosphate dehydrogenase-related protein VII, to the promoter region of a methyl coenzyme m reductase I-encoding operon retrieved from Methanothermobacter thermautotrophicus strain DeltaH.

    PubMed

    Shinzato, Naoya; Enoki, Miho; Sato, Hiroaki; Nakamura, Kohei; Matsui, Toru; Kamagata, Yoichi

    2008-10-01

    Two methyl coenzyme M reductases (MCRs) encoded by the mcr and mrt operons of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus DeltaH are expressed in response to H(2) availability. In the present study, cis elements and trans-acting factors responsible for the gene expression of MCRs were investigated by using electrophoretic mobility shift assay (EMSA) and affinity particle purification. A survey of their operator regions by EMSA with protein extracts from mrt-expressing cultures restricted them to 46- and 41-bp-long mcr and mrt upstream regions, respectively. Affinity particle purification of DNA-binding proteins conjugated with putative operator regions resulted in the retrieval of a protein attributed to IMP dehydrogenase-related protein VII (IMPDH VII). IMPDH VII is predicted to have a winged helix-turn-helix DNA-binding motif and two cystathionine beta-synthase domains, and it has been suspected to be an energy-sensing module. EMSA with oligonucleotide probes with unusual sequences showed that the binding site of IMPDH VII mostly overlaps the factor B-responsible element-TATA box of the mcr operon. The results presented here suggest that IMPDH VII encoded by MTH126 is a plausible candidate for the transcriptional regulator of the mcr operon in this methanogen.

  4. A novel firmicute protein family related to the actinobacterial resuscitation-promoting factors by non-orthologous domain displacement.

    PubMed

    Ravagnani, Adriana; Finan, Christopher L; Young, Michael

    2005-03-17

    In Micrococcus luteus growth and resuscitation from starvation-induced dormancy is controlled by the production of a secreted growth factor. This autocrine resuscitation-promoting factor (Rpf) is the founder member of a family of proteins found throughout and confined to the actinobacteria (high G + C Gram-positive bacteria). The aim of this work was to search for and characterise a cognate gene family in the firmicutes (low G + C Gram-positive bacteria) and obtain information about how they may control bacterial growth and resuscitation. In silico analysis of the accessory domains of the Rpf proteins permitted their classification into several subfamilies. The RpfB subfamily is related to a group of firmicute proteins of unknown function, represented by YabE of Bacillus subtilis. The actinobacterial RpfB and firmicute YabE proteins have very similar domain structures and genomic contexts, except that in YabE, the actinobacterial Rpf domain is replaced by another domain, which we have called Sps. Although totally unrelated in both sequence and secondary structure, the Rpf and Sps domains fulfil the same function. We propose that these proteins have undergone "non-orthologous domain displacement", a phenomenon akin to "non-orthologous gene displacement" that has been described previously. Proteins containing the Sps domain are widely distributed throughout the firmicutes and they too fall into a number of distinct subfamilies. Comparative analysis of the accessory domains in the Rpf and Sps proteins, together with their weak similarity to lytic transglycosylases, provide clear evidence that they are muralytic enzymes. The results indicate that the firmicute Sps proteins and the actinobacterial Rpf proteins are cognate and that they control bacterial culturability via enzymatic modification of the bacterial cell envelope.

  5. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulatingmore » the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.« less

  6. Expression, purification, crystallization and structure determination of the N terminal domain of Fhb, a factor H binding protein from Streptococcus suis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chunmao; Yu, You; Yang, Maojun, E-mail: maojunyang@tsinghua.edu.cn

    2015-10-23

    Fhb is a surface virulence protein from Streptococcus suis, which could aid bacterial evasion of host innate immune defense by recruiting complement regulator factor H to inactivate C3b deposited on bacterial surface in blood. Here we successfully expressed and purified the N terminal domain of Fhb (N-Fhb) and obtained crystals of the N-Fhb by sitting-drop vapor diffusion method with a resolution of 1.50 Å. The crystals belong to space group C2 with unit cell parameters a = 127.1 Å, b = 77.3 Å, c = 131.6 Å, α = 90°, β = 115.9°, γ = 90°. The structure of N-Fhb was determined by SAD method and the core structure of N-Fhb is a β sandwich. Wemore » speculated that binding of Fhb to human factor H may be mainly mediated by surface amino acids with negative charges. - Highlights: • We expressed N-Fhb as the soluble protein in Escherichia coli. • Crystals of N-Fhb were grown by sitting drop vapor diffusion method. • Crystals of N-Fhb could diffracted to 1.5 Å. • The core structure of N-Fhb was a β sandwich. • A part of the surface of N-Fhb was rich with negative charges.« less

  7. Calcium-calmodulin and pH regulate protein tyrosine phosphorylation in stallion sperm.

    PubMed

    González-Fernández, L; Macías-García, B; Velez, I C; Varner, D D; Hinrichs, K

    2012-10-01

    The mechanisms leading to capacitation in stallion sperm are poorly understood. The objective of our study was to define factors associated with regulation of protein tyrosine phosphorylation in stallion sperm. Stallion sperm were incubated for 4 h in modified Whitten's media with or without bicarbonate, calcium, or BSA. When sperm were incubated in air at 30×10⁶/ml at initial pH 7.25, protein tyrosine phosphorylation was detected only in medium containing 25 mM bicarbonate alone; calcium and BSA inhibited phosphorylation. Surprisingly, this inhibition did not occur when sperm were incubated at 10×10⁶/ml. The final pH values after incubation at 30×10⁶ and 10×10⁶ sperm/ml were 7.43 ± 0.04 and 7.83 ± 0.07 (mean ± s.e.m.) respectively. Sperm were then incubated at initial pH values of 7.25, 7.90, or 8.50 in either air or 5% CO₂. Protein tyrosine phosphorylation increased with increasing final medium pH, regardless of the addition of bicarbonate or BSA. An increase in environmental pH was observed when raw semen was instilled into the uteri of estrous mares and retrieved after 30 min (from 7.47 ± 0.10 to 7.85 ± 0.08), demonstrating a potential physiological role for pH regulation of capacitation. Sperm incubated in the presence of the calmodulin (CaM) inhibitor W-7 exhibited a dose-dependent increase in protein tyrosine phosphorylation, suggesting that the inhibitory effect of calcium was CaM mediated. These results show for the first time a major regulatory role of external pH, calcium, and CaM in stallion sperm protein tyrosine phosphorylation.

  8. ReAsH/FlAsH Labeling and Image Analysis of Tetracysteine Sensor Proteins in Cells

    PubMed Central

    Irtegun, Sevgi; Ramdzan, Yasmin M.; Mulhern, Terrence D.; Hatters, Danny M.

    2011-01-01

    Fluorescent proteins and dyes are essential tools for the study of protein trafficking, localization and function in cells. While fluorescent proteins such as green fluorescence protein (GFP) have been extensively used as fusion partners to proteins to track the properties of a protein of interest1, recent developments with smaller tags enable new functionalities of proteins to be examined in cells such as conformational change and protein-association 2, 3. One small tag system involves a tetracysteine motif (CCXXCC) genetically inserted into a target protein, which binds to biarsenical dyes, ReAsH (red fluorescent) and FlAsH (green fluorescent), with high specificity even in live cells 2. The TC/biarsenical dye system offers far less steric constraints to the host protein than fluorescent proteins which has enabled several new approaches to measure conformational change and protein-protein interactions 4-7. We recently developed a novel application of TC tags as sensors of oligomerization in cells expressing mutant huntingtin, which when mutated aggregates in neurons in Huntington disease 7. Huntingtin was tagged with two fluorescent dyes, one a fluorescent protein to track protein location, and the second a TC tag which only binds biarsenical dyes in monomers. Hence, changes in colocalization between protein and biarsenical dye reactivity enabled submicroscopic oligomer content to be spatially mapped within cells. Here, we describe how to label TC-tagged proteins fused to a fluorescent protein (Cherry, GFP or CFP) with FlAsH or ReAsH in live mammalian cells and how to quantify the two color fluorescence (Cherry/FlAsH, CFP/FlAsH or GFP/ReAsH combinations). PMID:21897361

  9. NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of homocysteine-induced endoplasmic reticulum protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Tomoji, E-mail: t-maeda@nichiyaku.ac.jp; Tanabe-Fujimura, Chiaki; Fujita, Yu

    2016-05-13

    Homocysteine-induced endoplasmic reticulum (ER) protein (Herp) is an ER stress-inducible key regulatory component of ER-associated degradation (ERAD) that has been implicated in insulin hypersecretion in diabetic mouse models. Herp expression is tightly regulated. Additionally, Herp is a highly labile protein and interacts with various proteins, which are characteristic features of ubiquitinated protein. Previously, we reported that ubiquitination is not required for Herp degradation. In addition, we found that the lysine residues of Herp (which are ubiquitinated by E3 ubiquitin ligase) are not sufficient for regulation of Herp degradation. In this study, we found that NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated targetingmore » of Herp to the proteasome was involved in Herp degradation. In addition, we found that Herp protein levels were markedly elevated in synoviolin-null cells. The E3 ubiquitin ligase synoviolin is a central component of ERAD and is involved in the degradation of nuclear factor E2-related factor-2 (Nrf2), which regulates cellular reactive oxygen species. Additionally, NQO1 is a target of Nrf2. Thus, our findings indicated that NQO1 could stabilize Herp protein expression via indirect regulation of synoviolin. -- Highlights: •Herp interacts with NQO1. •NQO1 regulates Herp degradation.« less

  10. Complement Regulator Factor H Mediates a Two-step Uptake of Streptococcus pneumoniae by Human Cells*

    PubMed Central

    Agarwal, Vaibhav; Asmat, Tauseef M.; Luo, Shanshan; Jensch, Inga; Zipfel, Peter F.; Hammerschmidt, Sven

    2010-01-01

    Streptococcus pneumoniae, a human pathogen, recruits complement regulator factor H to its bacterial cell surface. The bacterial PspC protein binds Factor H via short consensus repeats (SCR) 8–11 and SCR19–20. In this study, we define how bacterially bound Factor H promotes pneumococcal adherence to and uptake by epithelial cells or human polymorphonuclear leukocytes (PMNs) via a two-step process. First, pneumococcal adherence to epithelial cells was significantly reduced by heparin and dermatan sulfate. However, none of the glycosaminoglycans affected binding of Factor H to pneumococci. Adherence of pneumococci to human epithelial cells was inhibited by monoclonal antibodies recognizing SCR19–20 of Factor H suggesting that the C-terminal glycosaminoglycan-binding region of Factor H mediates the contact between pneumococci and human cells. Blocking of the integrin CR3 receptor, i.e. CD11b and CD18, of PMNs or CR3-expressing epithelial cells reduced significantly the interaction of pneumococci with both cell types. Similarly, an additional CR3 ligand, Pra1, derived from Candida albicans, blocked the interaction of pneumococci with PMNs. Strikingly, Pra1 inhibited also pneumococcal uptake by lung epithelial cells but not adherence. In addition, invasion of Factor H-coated pneumococci required the dynamics of host-cell actin microfilaments and was affected by inhibitors of protein-tyrosine kinases and phosphatidylinositol 3-kinase. In conclusion, pneumococcal entry into host cells via Factor H is based on a two-step mechanism. The first and initial contact of Factor H-coated pneumococci is mediated by glycosaminoglycans expressed on the surface of human cells, and the second step, pneumococcal uptake, is integrin-mediated and depends on host signaling molecules such as phosphatidylinositol 3-kinase. PMID:20504767

  11. Protein-protein interactions in the regulation of WRKY transcription factors.

    PubMed

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  12. New partner proteins containing novel internal recognition motif for human Glutaminase Interacting Protein (hGIP)

    PubMed Central

    Zencir, Sevil; Banerjee, Monimoy; Dobson, Melanie J.; Ayaydin, Ferhan; Fodor, Elfrieda Ayaydin; Topcu, Zeki; Mohanty, Smita

    2013-01-01

    Regulation of gene expression in cells is mediated by protein-protein, DNA-protein and receptor-ligand interactions. PDZ (PSD-95/Discs-large/ZO-1) domains are protein–protein interaction modules. PDZ-containing proteins function in the organization of multi-protein complexes controlling spatial and temporal fidelity of intracellular signaling pathways. In general, PDZ proteins possess multiple domains facilitating distinct interactions. The human Glutaminase Interacting Protein (hGIP) is an unusual PDZ protein comprising entirely of a single PDZ domain and plays pivotal roles in many cellular processes through its interaction with the C-terminus of partner proteins. Here, we report the identification by yeast two-hybrid screening of two new hGIP-interacting partners, DTX1 and STAU1. Both proteins lack the typical C-terminal PDZ recognition motif but contain a novel internal hGIP recognition motif recently identified in a phage display library screen. Fluorescence resonance energy transfer and confocal microscopy analysis confirmed the in vivo association of hGIP with DTX1 and STAU1 in mammalian cells validating the previous discovery of S/T-X-V/L-D as a consensus internal motif for hGIP recognition. Similar to hGIP, DTX1 and STAU1 have been implicated in neuronal function. Identification of these new interacting partners furthers our understanding of GIP-regulated signaling cascades and these interactions may represent potential new drug targets in humans. PMID:23395680

  13. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii

    DOE PAGES

    Ballottari, Matteo; Truong, Thuy B.; De Re, Eleonora; ...

    2016-01-27

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp 117,more » Glu 221, and Glu 224 were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide.« less

  14. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballottari, Matteo; Truong, Thuy B.; De Re, Eleonora

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp 117,more » Glu 221, and Glu 224 were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide.« less

  15. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii.

    PubMed

    Ballottari, Matteo; Truong, Thuy B; De Re, Eleonora; Erickson, Erika; Stella, Giulio R; Fleming, Graham R; Bassi, Roberto; Niyogi, Krishna K

    2016-04-01

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green algaChlamydomonas reinhardtii Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesisin vivoandin vitrofor identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp(117), Glu(221), and Glu(224)were shown to be essential for LHCSR3-dependent NPQ induction inC. reinhardtii Analysis of recombinant proteins carrying the same mutations refoldedin vitrowith pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa).

    PubMed

    Du, Yiwei; He, Wei; Deng, Changwang; Chen, Xi; Gou, Lanming; Zhu, Fugui; Guo, Wei; Zhang, Jianfu; Wang, Tao

    2016-01-01

    Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was 23-26 days earlier than that of wild-type plants. FRRP1 is a novel rice gene that encodes a C3HC4-type Really Interesting Novel Gene (RING) finger domain protein. In addition to the early flowering time, FRRP1-RNAi knockdown transgenic rice caused changes on an array of agronomic traits, including plant height, panicle length and grain length. We analyzed the expression of some key genes associated with the flowering time and other agronomic traits in the FRRP1-RNAi knockdown lines and compared with that in wild-type lines. The expression of Hd3a increased significantly, which was the key factor in the early flowering time. Further experiments showed that the level of histone H2B monoubiquitination (H2Bub1) was noticeably reduced in the FRRP1-RNAi knockdown transgenic rice lines compared with wild-type plants and MBP-FRRP1-F1 was capable of self-ubiquitination. The results indicate that Flowering Related RING Protein 1 (FRRP1) is involved in histone H2B monoubiquitination and suggest that FRRP1 functions as an E3 ligase in vivo and in vitro. In conclusion, FRRP1 probably regulates flowering time and yield potential in rice by affecting histone H2B monoubiquitination, which leads to changes in gene expression in multiple processes.

  17. Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa)

    PubMed Central

    Deng, Changwang; Chen, Xi; Gou, Lanming; Zhu, Fugui; Guo, Wei; Zhang, Jianfu; Wang, Tao

    2016-01-01

    Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was 23–26 days earlier than that of wild-type plants. FRRP1 is a novel rice gene that encodes a C3HC4-type Really Interesting Novel Gene (RING) finger domain protein. In addition to the early flowering time, FRRP1-RNAi knockdown transgenic rice caused changes on an array of agronomic traits, including plant height, panicle length and grain length. We analyzed the expression of some key genes associated with the flowering time and other agronomic traits in the FRRP1-RNAi knockdown lines and compared with that in wild-type lines. The expression of Hd3a increased significantly, which was the key factor in the early flowering time. Further experiments showed that the level of histone H2B monoubiquitination (H2Bub1) was noticeably reduced in the FRRP1-RNAi knockdown transgenic rice lines compared with wild-type plants and MBP-FRRP1-F1 was capable of self-ubiquitination. The results indicate that Flowering Related RING Protein 1 (FRRP1) is involved in histone H2B monoubiquitination and suggest that FRRP1 functions as an E3 ligase in vivo and in vitro. In conclusion, FRRP1 probably regulates flowering time and yield potential in rice by affecting histone H2B monoubiquitination, which leads to changes in gene expression in multiple processes. PMID:26934377

  18. Factor VII and protein C are phosphatidic acid-binding proteins.

    PubMed

    Tavoosi, Narjes; Smith, Stephanie A; Davis-Harrison, Rebecca L; Morrissey, James H

    2013-08-20

    Seven proteins in the human blood clotting cascade bind, via their GLA (γ-carboxyglutamate-rich) domains, to membranes containing exposed phosphatidylserine (PS), although with membrane binding affinities that vary by 3 orders of magnitude. Here we employed nanodiscs of defined phospholipid composition to quantify the phospholipid binding specificities of these seven clotting proteins. All bound preferentially to nanobilayers in which PS headgroups contained l-serine versus d-serine. Surprisingly, however, nanobilayers containing phosphatidic acid (PA) bound substantially more of two of these proteins, factor VIIa and activated protein C, than did equivalent bilayers containing PS. Consistent with this finding, liposomes containing PA supported higher proteolytic activity by factor VIIa and activated protein C toward their natural substrates (factors X and Va, respectively) than did PS-containing liposomes. Moreover, treating activated human platelets with phospholipase D enhanced the rates of factor X activation by factor VIIa in the presence of soluble tissue factor. We hypothesize that factor VII and protein C bind preferentially to the monoester phosphate of PA because of its accessibility and higher negative charge compared with the diester phosphates of most other phospholipids. We further found that phosphatidylinositol 4-phosphate, which contains a monoester phosphate attached to its myo-inositol headgroup, also supported enhanced enzymatic activity of factor VIIa and activated protein C. We conclude that factor VII and protein C bind preferentially to monoester phosphates, which may have implications for the function of these proteases in vivo.

  19. Factor h and properdin recognize different epitopes on renal tubular epithelial heparan sulfate.

    PubMed

    Zaferani, Azadeh; Vivès, Romain R; van der Pol, Pieter; Navis, Gerjan J; Daha, Mohamed R; van Kooten, Cees; Lortat-Jacob, Hugues; Seelen, Marc A; van den Born, Jacob

    2012-09-07

    During proteinuria, renal tubular epithelial cells become exposed to ultrafiltrate-derived serum proteins, including complement factors. Recently, we showed that properdin binds to tubular heparan sulfates (HS). We now document that factor H also binds to tubular HS, although to a different epitope than properdin. Factor H was present on the urinary side of renal tubular cells in proteinuric, but not in normal renal tissues and colocalized with properdin in proteinuric kidneys. Factor H dose-dependently bound to proximal tubular epithelial cells (PTEC) in vitro. Preincubation of factor H with exogenous heparin and pretreatment of PTECs with heparitinase abolished the binding to PTECs. Surface plasmon resonance experiments showed high affinity of factor H for heparin and HS (K(D) values of 32 and 93 nm, respectively). Using a library of HS-like polysaccharides, we showed that chain length and high sulfation density are the most important determinants for glycosaminoglycan-factor H interaction and clearly differ from properdin-heparinoid interaction. Coincubation of properdin and factor H did not hamper HS/heparin binding of one another, indicating recognition of different nonoverlapping epitopes on HS/heparin by factor H and properdin. Finally we showed that certain low anticoagulant heparinoids can inhibit properdin binding to tubular HS, with a minor effect on factor H binding to tubular HS. As a result, these heparinoids can control the alternative complement pathway. In conclusion, factor H and properdin interact with different HS epitopes of PTECs. These interactions can be manipulated with some low anticoagulant heparinoids, which can be important for preventing complement-derived tubular injury in proteinuric renal diseases.

  20. Nuclear factor erythroid 2-related factor 2 antioxidant response element pathways protect bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro.

    PubMed

    Ma, Y F; Wu, Z H; Gao, M; Loor, J J

    2018-06-01

    The experiment was conducted to determine the role of nuclear factor (erythroid-derived 2)-like factor 2 (NFE2L2, formerly Nrf2) antioxidant response element (ARE) pathway in protecting bovine mammary epithelial cells (BMEC) against H 2 O 2 -induced oxidative stress injury. An NFE2L2 small interfering RNA (siRNA) interference or a pCMV6-XL5-NFE2L2 plasmid fragment was transfected to independently downregulate or upregulate expression of NFE2L2. Isolated BMEC in triplicate were exposed to H 2 O 2 (600 μM) for 6 h to induce oxidative stress before transient transfection with scrambled siRNA, NFE2L2-siRNA, pCMV6-XL5, and pCMV6-XL5-NFE2L2. Cell proliferation, apoptosis and necrosis rates, antioxidant enzyme activities, reactive oxygen species (ROS) and malondialdehyde (MDA) production, protein and mRNA expression of NFE2L2 and downstream target genes, and fluorescence activity of ARE were measured. The results revealed that compared with the control, BMEC transfected with NFE2L2-siRNA3 had proliferation rates that were 9 or 65% lower without or with H 2 O 2 , respectively. These cells also had apoptosis and necrosis rates that were 27 and 3.5 times greater with H 2 O 2 compared with the control group, respectively. In contrast, transfected pCMV6-XL5-NFE2L2 had proliferation rates that were 64.3% greater or 17% lower without or with H 2 O 2 compared with the control group, respectively. Apoptosis rates were 1.8 times lower with H 2 O 2 compared with the control. In addition, compared with the control, production of ROS and MDA and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and glutathione-S-transferase (GST) increased markedly in cells transfected with pCMV6-XL5-NFE2L2 and without H 2 O 2 . However, compared with the control, production of ROS and MDA and activity of CAT and GSH-Px increased markedly, whereas activities of SOD and GST decreased in cells transfected with pCMV6-XL5-NFE2L2 and incubated with H 2 O 2

  1. Phylogeny-Based Systematization of Arabidopsis Proteins with Histone H1 Globular Domain1[OPEN

    PubMed Central

    Knizewski, Lukasz; Schmidt, Anja; Ginalski, Krzysztof

    2017-01-01

    H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis (Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species. PMID:28298478

  2. Endothelium-derived hyperpolarizing factor and protein kinase G Iα activation: H2O2 versus S-nitrosothiols.

    PubMed

    Bautista-Niño, Paula K; van der Stel, Marien; Batenburg, Wendy W; de Vries, René; Roks, Anton J M; Danser, A H Jan

    2018-05-15

    Protein kinase G (PKG) Iα mediates the cyclic guanosine monophosphate-mediated vasodilatory effects induced by NO. Endothelium-derived hyperpolarizing factors (EDHFs), like H 2 O 2 can activate PKGIα in a cyclic guanosine monophosphate-independent manner, but whether this is true for all EDHFs (e.g., S-nitrosothiols) is unknown. Here, we investigated the contribution of PKGIα to bradykinin-, H 2 O 2 -, L-S-nitrosocysteine-, and light-induced relaxation in porcine coronary arteries, making use of the fact that thioredoxin reductase inhibition with auranofin or 1-chloro-2,4-dinitrobenzene potentiates PKGIα. Thioredoxin reductase inhibition potentiated bradykinin and H 2 O 2 , but not L-S-nitrosocysteine or light. The relaxations by the latter 2 and bradykinin, but not those by H 2 O 2 , were prevented by the soluble guanylyl cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Yet, after S-nitrosothiol depletion with ethacrynic acid, thioredoxin reductase inhibition also potentiated light-induced relaxation, and this was prevented by the Na + -K + ATPase inhibitor ouabain. This indicates that photorelaxation depends on sGC activation by S-nitrosothiols, while only after S-nitrosothiol depletion oxidized PKGIα comes into play, and acts via Na + -K + ATPase. In conclusion, both bradykinin- and light-induced relaxation of porcine coronary arteries depend, at least partially, on oxidized PKGIα, and this does not involve sGC. H 2 O 2 also acts via oxidized PKGIα in an sGC-independent manner. Yet, S-nitrosothiol-induced relaxation is PKGIα-independent. Clearly, PKG activation does not contribute universally to all EDHF responses, and targeting PKGIα may only mimick EDHF under certain conditions. It is therefore unlikely that PKGIα activators will be universal vasodilators. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic.

    PubMed

    Walbott, Hélène; Machado-Pinilla, Rosario; Liger, Dominique; Blaud, Magali; Réty, Stéphane; Grozdanov, Petar N; Godin, Kate; van Tilbeurgh, Herman; Varani, Gabriele; Meier, U Thomas; Leulliot, Nicolas

    2011-11-15

    SHQ1 is an essential assembly factor for H/ACA ribonucleoproteins (RNPs) required for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. SHQ1 binds dyskerin/NAP57, the catalytic subunit of human H/ACA RNPs, and this interaction is modulated by mutations causing X-linked dyskeratosis congenita. We report the crystal structure of the C-terminal domain of yeast SHQ1, Shq1p, and its complex with yeast dyskerin/NAP57, Cbf5p, lacking its catalytic domain. The C-terminal domain of Shq1p interacts with the RNA-binding domain of Cbf5p and, through structural mimicry, uses the RNA-protein-binding sites to achieve a specific protein-protein interface. We propose that Shq1p operates as a Cbf5p chaperone during RNP assembly by acting as an RNA placeholder, thereby preventing Cbf5p from nonspecific RNA binding before association with an H/ACA RNA and the other core RNP proteins.

  4. Host cell interactome of PA protein of H5N1 influenza A virus in chicken cells.

    PubMed

    Wang, Qiao; Li, Qinghe; Liu, Ranran; Zheng, Maiqing; Wen, Jie; Zhao, Guiping

    2016-03-16

    Influenza A virus (IAV) heavily depends on viral-host protein interactions in order to replicate and spread. Identification of host factors that interact with viral proteins plays crucial roles in understanding the mechanism of IAV infection. Here we report the interaction landscape of H5N1 IAV PA protein in chicken cells through the use of affinity purification and mass spectrometry. PA protein was expressed in chicken cells and PA interacting complexes were captured by co-immunoprecipitation and analyzed by mass spectrometry. A total of 134 proteins were identified as PA-host interacting factors. Protein complexes including the minichromosome maintenance complex (MCM), 26S proteasome and the coat protein I (COPI) complex associated with PA in chicken cells, indicating the essential roles of these functional protein complexes during the course of IAV infection. Gene Ontology and pathway enrichment analysis both showed strong enrichment of PA interacting proteins in the category of DNA replication, covering genes such as PCNA, MCM2, MCM3, MCM4, MCM5 and MCM7. This study has uncovered the comprehensive interactome of H5N1 IAV PA protein in its chicken host and helps to establish the foundation for further investigation into the newly identified viral-host interactions. Influenza A virus (IAV) is a great threat to public health and avian production. However, the manner in which avian IAV recruits the host cellular machinery for replication and how the host antagonizes the IAV infection was previously poorly understood. Here we present the viral-host interactome of the H5N1 IAV PA protein and reveal the comprehensive association of host factors with PA. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Postprandial Regulation of Growth- and Metabolism-Related Factors in Zebrafish

    PubMed Central

    Médale, Françoise; Aguirre, Peyo; Larquier, Mélanie; Lanneretonne, Laura; Alami-Durante, Hélène; Panserat, Stéphane; Skiba-Cassy, Sandrine

    2013-01-01

    Abstract Zebrafish (Danio rerio) have been proposed as a possible model organism for nutritional physiology. However, this potential has not yet been realized and studies on the field remain scarce. In this work, we investigated in this species the effect of a single meal as well as that of an increase in the ratio of dietary carbohydrates/proteins on the postprandial expression of several hepatic and muscle metabolism-related genes and proteins. Fish were fed once either a commercial diet (experiment 1) or one of two experimental diets (experiment 2) containing different protein and carbohydrate levels after 72 h of starvation. Refeeding induced the postprandial expression of genes of glycolysis (GK, HK1) and lipogenesis (FAS, G6PDH, ACCa) and inhibited those of gluconeogenesis (cPEPCK) and beta-oxidation (CPT1b) in the viscera. In the muscle, refeeding increased transcript levels of myogenesis (Myf5, Myogenin), inhibited those of Ub-proteasomal proteolytic system (Atrogin1, Murf1a, Murf1b), and induced the activation of key signaling factors of protein synthesis (Akt, 4EBP1, S6K1, S6). However, diet composition had a low impact on the studied factors. Together, these results highlight some specificity of the zebrafish metabolism and demonstrate the interest and the limits of this species as a model organism for nutritional physiology studies. PMID:23659367

  6. Risk factors for 2009 pandemic influenza A (H1N1)-related hospitalization and death among racial/ethnic groups in New Mexico.

    PubMed

    Thompson, Deborah L; Jungk, Jessica; Hancock, Emily; Smelser, Chad; Landen, Michael; Nichols, Megin; Selvage, David; Baumbach, Joan; Sewell, Mack

    2011-09-01

    We assessed risk factors for 2009 pandemic influenza A (H1N1)-related hospitalization, mechanical ventilation, and death among New Mexico residents. We calculated population rate ratios using Poisson regression to analyze risk factors for H1N1-related hospitalization. We performed a cross-sectional analysis of hospitalizations during September 14, 2009 through January 13, 2010, using logistic regression to assess risk factors for mechanical ventilation and death among those hospitalized. During the study period, 926 laboratory-confirmed H1N1-related hospitalizations were identified. H1N1-related hospitalization was significantly higher among American Indians (risk ratio [RR] = 2.6; 95% confidence interval [CI] = 2.2, 3.2), Blacks (RR = 1.7; 95% CI = 1.2, 2.4), and Hispanics (RR = 1.8; 95% CI = 1.5, 2.0) than it was among non-Hispanic Whites, and also was higher among persons of younger age and lower household income. Mechanical ventilation was significantly associated with age 25 years and older, obesity, and lack of or delayed antiviral treatment. Death was significantly associated with male gender, cancer during the previous 12 months, and liver disorder. This analysis supports recent national efforts to include American Indian/Alaska Native race as a group at high risk for complications of influenza with respect to vaccination and antiviral treatment recommendations.

  7. Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.

    PubMed

    Goh, Garrett B; Hulbert, Benjamin S; Zhou, Huiqing; Brooks, Charles L

    2014-07-01

    pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions, and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMD(MSλD)). In the CPHMD(MSλD) framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMD(MSλD) simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal protein L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMD(MSλD) framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules-proteins and nucleic acids is now possible. © 2013 Wiley Periodicals, Inc.

  8. Extracellular vesicles shed by melanoma cells contain a modified form of H1.0 linker histone and H1.0 mRNA-binding proteins.

    PubMed

    Schiera, Gabriella; Di Liegro, Carlo Maria; Puleo, Veronica; Colletta, Oriana; Fricano, Anna; Cancemi, Patrizia; Di Cara, Gianluca; Di Liegro, Italia

    2016-11-01

    Extracellular vesicles (EVs) are now recognized as a fundamental way for cell-to-cell horizontal transfer of properties, in both physiological and pathological conditions. Most of EV-mediated cross-talk among cells depend on the exchange of proteins, and nucleic acids, among which mRNAs, and non-coding RNAs such as different species of miRNAs. Cancer cells, in particular, use EVs to discard molecules which could be dangerous to them (for example differentiation-inducing proteins such as histone H1.0, or antitumor drugs), to transfer molecules which, after entering the surrounding cells, are able to transform their phenotype, and even to secrete factors, which allow escaping from immune surveillance. Herein we report that melanoma cells not only secrete EVs which contain a modified form of H1.0 histone, but also transport the corresponding mRNA. Given the already known role in tumorigenesis of some RNA binding proteins (RBPs), we also searched for proteins of this class in EVs. This study revealed the presence in A375 melanoma cells of at least three RBPs, with apparent MW of about 65, 45 and 38 kDa, which are able to bind H1.0 mRNA. Moreover, we purified one of these proteins, which by MALDI-TOF mass spectrometry was identified as the already known transcription factor MYEF2.

  9. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum

    PubMed Central

    2012-01-01

    Background The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response. Results Transcription analyses revealed that the sigH gene and rshA gene are cotranscribed from four sigH housekeeping promoters in C. glutamicum. In addition, a SigH-controlled rshA promoter was found to only drive the transcription of the rshA gene. To test the role of the putative anti-sigma factor gene rshA under normal growth conditions, a C. glutamicum rshA deletion strain was constructed and used for genome-wide transcription profiling with DNA microarrays. In total, 83 genes organized in 61 putative transcriptional units, including those previously detected using sigH mutant strains, exhibited increased transcript levels in the rshA deletion mutant compared to its parental strain. The genes encoding proteins related to disulphide stress response, heat stress proteins, components of the SOS-response to DNA damage and proteasome components were the most markedly upregulated gene groups. Altogether six SigH-dependent promoters upstream of the identified genes were determined by primer extension and a refined consensus promoter consisting of 45 original promoter sequences was constructed. Conclusions The rshA gene codes for an anti-sigma factor controlling the function of the stress-responsive sigma factor SigH in C. glutamicum. Transcription of rshA from a SigH-dependent promoter may serve to quickly shutdown the SigH-dependent stress

  10. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum.

    PubMed

    Busche, Tobias; Silar, Radoslav; Pičmanová, Martina; Pátek, Miroslav; Kalinowski, Jörn

    2012-09-03

    The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response. Transcription analyses revealed that the sigH gene and rshA gene are cotranscribed from four sigH housekeeping promoters in C. glutamicum. In addition, a SigH-controlled rshA promoter was found to only drive the transcription of the rshA gene. To test the role of the putative anti-sigma factor gene rshA under normal growth conditions, a C. glutamicum rshA deletion strain was constructed and used for genome-wide transcription profiling with DNA microarrays. In total, 83 genes organized in 61 putative transcriptional units, including those previously detected using sigH mutant strains, exhibited increased transcript levels in the rshA deletion mutant compared to its parental strain. The genes encoding proteins related to disulphide stress response, heat stress proteins, components of the SOS-response to DNA damage and proteasome components were the most markedly upregulated gene groups. Altogether six SigH-dependent promoters upstream of the identified genes were determined by primer extension and a refined consensus promoter consisting of 45 original promoter sequences was constructed. The rshA gene codes for an anti-sigma factor controlling the function of the stress-responsive sigma factor SigH in C. glutamicum. Transcription of rshA from a SigH-dependent promoter may serve to quickly shutdown the SigH-dependent stress response after the cells have

  11. Basic Helix-Loop-Helix Transcription Factor Bmsage Is Involved in Regulation of fibroin H-chain Gene via Interaction with SGF1 in Bombyx mori

    PubMed Central

    Li, Qiong-Yan; Hu, Wen-Bo; Zhou, Meng-Ting; Nie, Hong-Yi; Zhang, Yin-Xia; Peng, Zhang-Chuan; Zhao, Ping; Xia, Qing-You

    2014-01-01

    Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix–loop–helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells. PMID:24740008

  12. Simultaneous Hypoxia and Low Extracellular pH Suppress Overall Metabolic Rate and Protein Synthesis In Vitro.

    PubMed

    Sørensen, Brita Singers; Busk, Morten; Overgaard, Jens; Horsman, Michael R; Alsner, Jan

    2015-01-01

    The tumor microenvironment is characterized by regions of hypoxia and acidosis which are linked to poor prognosis. This occurs due to an aberrant vasculature as well as high rates of glycolysis and lactate production in tumor cells even in the presence of oxygen (the Warburg effect), which weakens the spatial linkage between hypoxia and acidosis. Five different human squamous cell carcinoma cell lines (SiHa, FaDuDD, UTSCC5, UTSCC14 and UTSCC15) were treated with hypoxia, acidosis (pH 6.3), or a combination, and gene expression analyzed using microarray. SiHa and FaDuDD were chosen for further characterization of cell energetics and protein synthesis. Total cellular ATP turnover and relative glycolytic dependency was determined by simultaneous measurements of oxygen consumption and lactate synthesis rates and total protein synthesis was determined by autoradiographic quantification of the incorporation of 35S-labelled methionine and cysteine into protein. Microarray analysis allowed differentiation between genes induced at low oxygen only at normal extracellular pH (pHe), genes induced at low oxygen at both normal and low pHe, and genes induced at low pHe independent of oxygen concentration. Several genes were found to be upregulated by acidosis independent of oxygenation. Acidosis resulted in a more wide-scale change in gene expression profiles than hypoxia including upregulation of genes involved in the translation process, for example Eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2), and Ribosomal protein L37 (RPL37). Acidosis suppressed overall ATP turnover and protein synthesis by 50%. Protein synthesis, but not total ATP production, was also suppressed under hypoxic conditions. A dramatic decrease in ATP turnover (SiHa) and protein synthesis (both cell lines) was observed when hypoxia and low pHe were combined. We demonstrate here that the influence of hypoxia and acidosis causes different responses, both in gene expression and in de novo

  13. Simian Virus 40 Large T Antigen Interacts with Human TFIIB-Related Factor and Small Nuclear RNA-Activating Protein Complex for Transcriptional Activation of TATA-Containing Polymerase III Promoters

    PubMed Central

    Damania, Blossom; Mital, Renu; Alwine, James C.

    1998-01-01

    The TATA-binding protein (TBP) is common to the basal transcription factors of all three RNA polymerases, being associated with polymerase-specific TBP-associated factors (TAFs). Simian virus 40 large T antigen has previously been shown to interact with the TBP-TAFII complexes, TFIID (B. Damania and J. C. Alwine, Genes Dev. 10:1369–1381, 1996), and the TBP-TAFI complex, SL1 (W. Zhai, J. Tuan, and L. Comai, Genes Dev. 11:1605–1617, 1997), and in both cases these interactions are critical for transcriptional activation. We show a similar mechanism for activation of the class 3 polymerase III (pol III) promoter for the U6 RNA gene. Large T antigen can activate this promoter, which contains a TATA box and an upstream proximal sequence element but cannot activate the TATA-less, intragenic VAI promoter (a class 2, pol III promoter). Mutants of large T antigen that cannot activate pol II promoters also fail to activate the U6 promoter. We provide evidence that large T antigen can interact with the TBP-containing pol III transcription factor human TFIIB-related factor (hBRF), as well as with at least two of the three TAFs in the pol III-specific small nuclear RNA-activating protein complex (SNAPc). In addition, we demonstrate that large T antigen can cofractionate and coimmunoprecipitate with the hBRF-containing complex TFIIIB derived from HeLa cells infected with a recombinant adenovirus which expresses large T antigen. Hence, similar to its function with pol I and pol II promoters, large T antigen interacts with TBP-containing, basal pol III transcription factors and appears to perform a TAF-like function. PMID:9488448

  14. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin.

    PubMed

    Qi, Li; Pujanauski, Lindsey M; Davis, A Sally; Schwartzman, Louis M; Chertow, Daniel S; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L; Slemons, Richard D; Walters, Kathie-Anne; Kash, John C; Taubenberger, Jeffery K

    2014-11-18

    Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections

  15. The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus replication and pathogenesis in mice.

    PubMed

    Zaraket, Hassan; Bridges, Olga A; Russell, Charles J

    2013-05-01

    After receptor binding and internalization during influenza virus entry, the hemagglutinin (HA) protein is triggered by low pH to undergo irreversible conformational changes that mediate membrane fusion. To investigate how mutations that alter the activation pH of the HA protein influence the fitness of an avian H5N1 influenza virus in a mammalian model, we infected C57BL/6J or DBA/2J mice and compared the replication and virulence of recombinant A/chicken/Vietnam/C58/04 (H5N1) HA-Y231H mutant, wild-type, and HA-H241Q and HA-K582I mutant viruses that have HA activation pH values of 6.3, 5.9, 5.6, and 5.4, respectively. The HA-Y231H mutant virus was highly susceptible to acid inactivation in vitro and was attenuated for growth and virulence in mice, suggesting that an H5N1 HA protein triggered at pH 6.3 is too unstable for the virus to remain fit. Wild-type and HA-H241Q viruses were similar in pathogenicity and grew to similar levels in mice, ducks, and cell cultures derived from both avian and mammalian tissues, suggesting that H5N1 HA proteins triggered at pH values in the range of 5.9 to 5.6 broadly support replication. The HA-K582I mutant virus had greater growth and virulence in DBA/2J mice than the wild type did, although the mutant virus was highly attenuated in ducks. The data suggest that adaptation of avian H5N1 influenza virus for infection in mammals is supported by a decrease in the HA activation pH to 5.4. Identification of the HA activation pH as a host-specific infectivity factor is expected to aid in the surveillance and risk assessment of currently circulating H5N1 influenza viruses.

  16. Bounds and inequalities relating h-index, g-index, e-index and generalized impact factor: an improvement over existing models.

    PubMed

    Abbas, Ash Mohammad

    2012-01-01

    In this paper, we describe some bounds and inequalities relating h-index, g-index, e-index, and generalized impact factor. We derive the bounds and inequalities relating these indexing parameters from their basic definitions and without assuming any continuous model to be followed by any of them. We verify the theorems using citation data for five Price Medalists. We observe that the lower bound for h-index given by Theorem 2, [formula: see text], g ≥ 1, comes out to be more accurate as compared to Schubert-Glanzel relation h is proportional to C(2/3)P(-1/3) for a proportionality constant of 1, where C is the number of citations and P is the number of papers referenced. Also, the values of h-index obtained using Theorem 2 outperform those obtained using Egghe-Liang-Rousseau power law model for the given citation data of Price Medalists. Further, we computed the values of upper bound on g-index given by Theorem 3, g ≤ (h + e), where e denotes the value of e-index. We observe that the upper bound on g-index given by Theorem 3 is reasonably tight for the given citation record of Price Medalists.

  17. The Borrelia afzelii outer membrane protein BAPKO_0422 binds human factor-H and is predicted to form a membrane-spanning β-barrel

    PubMed Central

    Dyer, Adam; Brown, Gemma; Stejskal, Lenka; Laity, Peter R.; Bingham, Richard J.

    2015-01-01

    The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane, is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The outer membrane protein A (OmpA) domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work, we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans (EM) rash in Europe. Structural characterization of one these proteins (BAPKO_0422) by SAXS and CD indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25×45 Å (1 Å=0.1 nm). Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal phenylalanine residue commonly found in Proteobacterial OM proteins is replaced by isoleucine/leucine or asparagine. BAPKO_0422 is demonstrated to bind human factor H (fH) and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value. PMID:26181365

  18. Constant pH Molecular Dynamics of Proteins in Explicit Solvent with Proton Tautomerism

    PubMed Central

    Goh, Garrett B.; Hulbert, Benjamin S.; Zhou, Huiqing; Brooks, Charles L.

    2015-01-01

    pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMDMSλD). In the CPHMDMSλD framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMDMSλD simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMDMSλD framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules – proteins and nucleic acids is now possible. PMID:24375620

  19. Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H.

    PubMed

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2017-04-01

    Recombinant protein expression in the bacterium Escherichia coli still is the number one choice for large-scale protein production. Nevertheless, many complications can arise using this microorganism, such as low yields, the formation of inclusion bodies, and the requirement for difficult purification steps. Most of these problems can be solved with the use of fusion proteins. Here, the use of the metal-binding protein CusF3H+ is described as a new fusion protein for recombinant protein expression and purification in E. coli. We have previously shown that CusF produces large amounts of soluble protein, with low levels of formation of inclusion bodies, and that proteins can be purified using IMAC resins charged with Cu(II) ions. CusF3H+ is an enhanced variant of CusF, formed by the addition of three histidine residues at the N-terminus. These residues then can bind Ni(II) ions allowing improved purity after affinity chromatography. Expression and purification of Green Fluorescent Protein tagged with CusF3H+ showed that the mutation did not alter the capacity of the fusion protein to increase protein expression, and purity improved considerably after affinity chromatography with immobilized nickel ions; high yields are obtained after tag-removal since CusF3H+ is a small protein of just 10 kDa. Furthermore, the results of experiments involving expression of tagged proteins having medium to large molecular weights indicate that the presence of the CusF3H+ tag improves protein solubility, as compared to a His-tag. We therefore endorse CusF3H+ as a useful alternative fusion protein/affinity tag for production of recombinant proteins in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Aggregation factor analysis for protein formulation by a systematic approach using FTIR, SEC and design of experiments techniques.

    PubMed

    Feng, Yan Wen; Ooishi, Ayako; Honda, Shinya

    2012-01-05

    A simple systematic approach using Fourier transform infrared (FTIR) spectroscopy, size exclusion chromatography (SEC) and design of experiments (DOE) techniques was applied to the analysis of aggregation factors for protein formulations in stress and accelerated testings. FTIR and SEC were used to evaluate protein conformational and storage stabilities, respectively. DOE was used to determine the suitable formulation and to analyze both the main effect of single factors and the interaction effect of combined factors on aggregation. Our results indicated that (i) analysis at a low protein concentration is not always applicable to high concentration formulations; (ii) an investigation of interaction effects of combined factors as well as main effects of single factors is effective for improving conformational stability of proteins; (iii) with the exception of pH, the results of stress testing with regard to aggregation factors would be available for suitable formulation instead of performing time-consuming accelerated testing; (iv) a suitable pH condition should not be determined in stress testing but in accelerated testing, because of inconsistent effects of pH on conformational and storage stabilities. In summary, we propose a three-step strategy, using FTIR, SEC and DOE techniques, to effectively analyze the aggregation factors and perform a rapid screening for suitable conditions of protein formulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Translational Mini-Review Series on Complement Factor H: Structural and functional correlations for factor H

    PubMed Central

    Schmidt, C Q; Herbert, A P; Hocking, H G; Uhrín, D; Barlow, P N

    2008-01-01

    The 155-kDa glycoprotein, complement factor H (CFH), is a regulator of complement activation that is abundant in human plasma. Three-dimensional structures of over half the 20 complement control protein (CCP) modules in CFH have been solved in the context of single-, double- and triple-module segments. Proven binding sites for C3b occupy the N and C termini of this elongated molecule and may be brought together by a bend in CFH mediated by its central CCP modules. The C-terminal CCP 20 is key to the ability of the molecule to adhere to polyanionic markers on self-surfaces where CFH acts to regulate amplification of the alternative pathway of complement. The surface patch on CCP 20 that binds to model glycosaminoglycans has been mapped using nuclear magnetic resonance (NMR), as has a second glycosaminoglycan-binding patch on CCP 7. These patches include many of the residue positions at which sequence variations have been linked to three complement-mediated disorders: dense deposit disease, age-related macular degeneration and atypical haemolytic uraemic syndrome. In one plausible model, CCP 20 anchors CFH to self-surfaces via a C3b/polyanion composite binding site, CCP 7 acts as a ‘proof-reader’ to help discriminate self- from non-self patterns of sulphation, and CCPs 1–4 disrupt C3/C5 convertase formation and stability. PMID:18081691

  2. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    PubMed

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+) current. H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  3. A new pH-responsive peptide tag for protein purification.

    PubMed

    Nonaka, Takahiro; Tsurui, Noriko; Mannen, Teruhisa; Kikuchi, Yoshimi; Shiraki, Kentaro

    2018-06-01

    This paper describes a new pH-responsive peptide tag that adds a protein reversible precipitation and redissolution character. This peptide tag is a part of a cell surface protein B (CspB) derived from Corynebacterium glutamicum. Proinsulin that genetically fused with a peptide of N-terminal 6, 17, 50, or 250 amino acid residues of CspB showed that the reversible precipitation and redissolution depended on the pH. The transition occurred within a physiological and narrow pH range. A CspB50 tag comprising 50 amino acid residues of N-terminal CspB was further evaluated as a representative using other pharmaceutical proteins. Below pH 6.8, almost all CspB50-Teriparatide fusion formed an aggregated state. Subsequent addition of alkali turned the cloudy protein solution transparent above pH 7.3, in which almost all the CspB50-Teriparatide fusion redissolved. The CspB50-Bivalirudin fusion showed a similar behavior with slightly different pH range. This tag is offering a new protein purification method based on liquid-solid separation which does not require an affinity ligand. This sharp response around neutral pH is useful as a pH-responsive tag for the purification of unstable proteins at a non-physiological pH. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Protein quality control in organelles - AAA/FtsH story.

    PubMed

    Janska, Hanna; Kwasniak, Malgorzata; Szczepanowska, Joanna

    2013-02-01

    This review focuses on organellar AAA/FtsH proteases, whose proteolytic and chaperone-like activity is a crucial component of the protein quality control systems of mitochondrial and chloroplast membranes. We compare the AAA/FtsH proteases from yeast, mammals and plants. The nature of the complexes formed by AAA/FtsH proteases and the current view on their involvement in degradation of non-native organellar proteins or assembly of membrane complexes are discussed. Additional functions of AAA proteases not directly connected with protein quality control found in yeast and mammals but not yet in plants are also described shortly. Following an overview of the molecular functions of the AAA/FtsH proteases we discuss physiological consequences of their inactivation in yeast, mammals and plants. The molecular basis of phenotypes associated with inactivation of the AAA/FtsH proteases is not fully understood yet, with the notable exception of those observed in m-AAA protease-deficient yeast cells, which are caused by impaired maturation of mitochondrial ribosomal protein. Finally, examples of cytosolic events affecting protein quality control in mitochondria and chloroplasts are given. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The trypanocidal benznidazole promotes adaptive response to oxidative injury: Involvement of the nuclear factor-erythroid 2-related factor-2 (Nrf2) and multidrug resistance associated protein 2 (MRP2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigalli, Juan Pablo

    Oxidative stress is a frequent cause underlying drug-induced hepatotoxicity. Benznidazole (BZL) is the only trypanocidal agent available for treatment of Chagas disease in endemic areas. Its use is associated with side effects, including increases in biomarkers of hepatotoxicity. However, BZL potential to cause oxidative stress has been poorly investigated. Here, we evaluated the effect of a pharmacologically relevant BZL concentration (200 μM) at different time points on redox status and the counteracting mechanisms in the human hepatic cell line HepG2. BZL increased reactive oxygen species (ROS) after 1 and 3 h of exposure, returning to normality at 24 h. Additionally,more » BZL increased glutathione peroxidase activity at 12 h and the oxidized glutathione/total glutathione (GSSG/GSSG + GSH) ratio that reached a peak at 24 h. Thus, an enhanced detoxification of peroxide and GSSG formation could account for ROS normalization. GSSG/GSSG + GSH returned to control values at 48 h. Expression of the multidrug resistance-associated protein 2 (MRP2) and GSSG efflux via MRP2 were induced by BZL at 24 and 48 h, explaining normalization of GSSG/GSSG + GSH. BZL activated the nuclear erythroid 2-related factor 2 (Nrf2), already shown to modulate MRP2 expression in response to oxidative stress. Nrf2 participation was confirmed using Nrf2-knockout mice in which MRP2 mRNA expression was not affected by BZL. In summary, we demonstrated a ROS increase by BZL in HepG2 cells and a glutathione peroxidase- and MRP2 driven counteracting mechanism, being Nrf2 a key modulator of this response. Our results could explain hepatic alterations associated with BZL therapy. - Highlights: • BZL triggers a redox imbalance in the human hepatic cell line HepG2. • Concomitantly BZL triggers compensatory mechanisms to alleviate the redox injury. • Response mechanisms comprise an enhanced glutathione peroxidase and MRP2 activity. • Transcription factor Nrf2 plays a key role orchestrating

  6. A novel atypical hemolytic uremic syndrome-associated hybrid CFHR1/CFH gene encoding a fusion protein that antagonizes factor H-dependent complement regulation.

    PubMed

    Valoti, Elisabetta; Alberti, Marta; Tortajada, Agustin; Garcia-Fernandez, Jesus; Gastoldi, Sara; Besso, Luca; Bresin, Elena; Remuzzi, Giuseppe; Rodriguez de Cordoba, Santiago; Noris, Marina

    2015-01-01

    Genomic aberrations affecting the genes encoding factor H (FH) and the five FH-related proteins (FHRs) have been described in patients with atypical hemolytic uremic syndrome (aHUS), a rare condition characterized by microangiopathic hemolytic anemia, thrombocytopenia, and ARF. These genomic rearrangements occur through nonallelic homologous recombinations caused by the presence of repeated homologous sequences in CFH and CFHR1-R5 genes. In this study, we found heterozygous genomic rearrangements among CFH and CFHR genes in 4.5% of patients with aHUS. CFH/CFHR rearrangements were associated with poor clinical prognosis and high risk of post-transplant recurrence. Five patients carried known CFH/CFHR1 genes, but we found a duplication leading to a novel CFHR1/CFH hybrid gene in a family with two affected subjects. The resulting fusion protein contains the first four short consensus repeats of FHR1 and the terminal short consensus repeat 20 of FH. In an FH-dependent hemolysis assay, we showed that the hybrid protein causes sheep erythrocyte lysis. Functional analysis of the FHR1 fraction purified from serum of heterozygous carriers of the CFHR1/CFH hybrid gene indicated that the FHR1/FH hybrid protein acts as a competitive antagonist of FH. Furthermore, sera from carriers of the hybrid CFHR1/CFH gene induced more C5b-9 deposition on endothelial cells than control serum. These results suggest that this novel genomic hybrid mediates disease pathogenesis through dysregulation of complement at the endothelial cell surface. We recommend that genetic screening of aHUS includes analysis of CFH and CFHR rearrangements, particularly before a kidney transplant. Copyright © 2015 by the American Society of Nephrology.

  7. Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins

    PubMed Central

    Valéry, Céline; Deville-Foillard, Stéphanie; Lefebvre, Christelle; Taberner, Nuria; Legrand, Pierre; Meneau, Florian; Meriadec, Cristelle; Delvaux, Camille; Bizien, Thomas; Kasotakis, Emmanouil; Lopez-Iglesias, Carmen; Gall, Andrew; Bressanelli, Stéphane; Le Du, Marie-Hélène; Paternostre, Maïté; Artzner, Franck

    2015-01-01

    External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials. PMID:26190377

  8. Production of biologically active recombinant human factor H in Physcomitrella.

    PubMed

    Büttner-Mainik, Annette; Parsons, Juliana; Jérôme, Hanna; Hartmann, Andrea; Lamer, Stephanie; Schaaf, Andreas; Schlosser, Andreas; Zipfel, Peter F; Reski, Ralf; Decker, Eva L

    2011-04-01

    The human complement regulatory serum protein factor H (FH) is a promising future biopharmaceutical. Defects in the gene encoding FH are associated with human diseases like severe kidney and retinal disorders in the form of atypical haemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis II (MPGN II) or age-related macular degeneration (AMD). There is a current need to apply intact full-length FH for the therapy of patients with congenital or acquired defects of this protein. Application of purified or recombinant FH (rFH) to these patients is an important and promising approach for the treatment of these diseases. However, neither protein purified from plasma of healthy individuals nor recombinant protein is currently available on the market. Here, we report the first stable expression of the full-length human FH cDNA and the subsequent production of this glycoprotein in a plant system. The moss Physcomitrella patens perfectly suits the requirements for the production of complex biopharmaceuticals as this eukaryotic system not only offers an outstanding genetical accessibility, but moreover, proteins can be produced safely in scalable photobioreactors without the need for animal-derived medium compounds. Transgenic moss lines were created, which express the human FH cDNA and target the recombinant protein to the culture supernatant via a moss-derived secretion signal. Correct processing of the signal peptide and integrity of the moss-produced rFH were verified via peptide mapping by mass spectrometry. Ultimately, we show that the rFH displays complement regulatory activity comparable to FH purified from plasma. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  9. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors.

    PubMed

    Justus, Calvin R; Dong, Lixue; Yang, Li V

    2013-12-05

    The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.

  10. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose

    PubMed Central

    DiScipio, Richard G.; Liddington, Robert C.; Schraufstatter, Ingrid U.

    2016-01-01

    A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma. PMID:26826315

  11. Fission yeast translation initiation factor 3 subunit eIF3h is not essential for global translation initiation, but deletion of eif3h+ affects spore formation.

    PubMed

    Ray, Anirban; Bandyopadhyay, Amitabha; Matsumoto, Tomohiro; Deng, Haiteng; Maitra, Umadas

    2008-11-01

    The fission yeast Schizosaccharomyces pombe homologue of the p40/eIF3h subunit of mammalian translation initiation factor eIF3 has been characterized in this study. We show that this protein physically associates with the 40S ribosomal particles as a constituent of the multimeric eIF3 protein complex, which consists of all five known eIF3 core subunits (eIF3a, eIF3b, eIF3c, eIF3g and eIF3i) as well as the five non-core subunits (eIF3d, eIF3e, eIF3f, eIF3h and eIF3m) that constitute an eIF3 holocomplex in fission yeast. However, affinity purification of eIF3 from fission yeast cells expressing TAP-tagged eIF3h suggests the presence of distinct forms of eIF3 that differ in their composition of the non-core subunits. Further characterization of eIF3h shows that strains lacking eif3h(+) (eif3hDelta) are viable and show no gross defects, either in vegetative growth or in the rate of in vivo protein synthesis. Polysome profile analysis shows no apparent defects in translation initiation. Furthermore, deletion of eif3h(+) does not affect the ability of the other eIF3 subunits to remain associated with one another in a tight protein complex similar to the situation in wild-type cells. Additionally, we show that human eIF3h can functionally substitute fission yeast eIF3h in complementing in vivo a genetic deletion of eif3h(+). Interestingly, mutant eif3hDelta cells show several prominent phenotypic properties. They are hypersensitive to caffeine and highly defective in meiosis, producing either no spores or incomplete tetrads with a very high frequency. The implications of these results in relation to the functions of eIF3h in Sz. pombe are discussed. (c) 2008 John Wiley & Sons, Ltd.

  12. What makes protein indigestible from tissue-related, cellular, and molecular aspects?

    PubMed

    Becker, Petra M; Yu, Peiqiang

    2013-10-01

    This paper gives an insight into key factors, which impair enzymatic protein digestion. By nature, some proteins in raw products are already poorly digestible because of structural peculiarities, or due to their occurrence in plant cytoplasmic organelles or in cell membranes. In plant-based protein, molecular and structural changes can be induced by genetic engineering, even if protein is not a target compound class of the genetic modification. Other proteins only become difficult to digest due to changes that occur during the processing of proteinaceous products, such as extruding, boiling, or acidic or alkaline treatment. The utilization of proteinaceous raw materials in industrial fermentations can also have negative impacts on protein digestibility, when reused as fermentation by-products for animal nutrition, such as brewers' grains. After consumption, protein digestion can be impeded in the intestine by the presence of antinutritional factors, which are ingested together with the food or feedstuff. It is concluded that the encircling matrix, but also molecular, chemical, and structural peculiarities or modifications to amino acids and proteins obstruct protein digestion by common proteolytic enzymes in humans and animals. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants.

    PubMed

    Jutras, Philippe V; D'Aoust, Marc-André; Couture, Manon M-J; Vézina, Louis-Philippe; Goulet, Marie-Claire; Michaud, Dominique; Sainsbury, Frank

    2015-09-01

    Eukaryotic expression systems are used for the production of complex secreted proteins. However, recombinant proteins face considerable biochemical challenges along the secretory pathway, including proteolysis and pH variation between organelles. As the use of synthetic biology matures into solutions for protein production, various host-cell engineering approaches are being developed to ameliorate host-cell factors that can limit recombinant protein quality and yield. We report the potential of the influenza M2 ion channel as a novel tool to neutralize the pH in acidic subcellular compartments. Using transient expression in the plant host, Nicotiana benthamiana, we show that ion channel expression can significantly raise pH in the Golgi apparatus and that this can have a strong stabilizing effect on a fusion protein separated by an acid-susceptible linker peptide. We exemplify the utility of this effect in recombinant protein production using influenza hemagglutinin subtypes differentially stable at low pH; the expression of hemagglutinins prone to conformational change in mildly acidic conditions is considerably enhanced by M2 co-expression. The co-expression of a heterologous ion channel to stabilize acid-labile proteins and peptides represents a novel approach to increasing the yield and quality of secreted recombinant proteins in plants and, possibly, in other eukaryotic expression hosts. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic

    PubMed Central

    Walbott, Hélène; Machado-Pinilla, Rosario; Liger, Dominique; Blaud, Magali; Réty, Stéphane; Grozdanov, Petar N.; Godin, Kate; van Tilbeurgh, Herman; Varani, Gabriele; Meier, U. Thomas; Leulliot, Nicolas

    2011-01-01

    SHQ1 is an essential assembly factor for H/ACA ribonucleoproteins (RNPs) required for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. SHQ1 binds dyskerin/NAP57, the catalytic subunit of human H/ACA RNPs, and this interaction is modulated by mutations causing X-linked dyskeratosis congenita. We report the crystal structure of the C-terminal domain of yeast SHQ1, Shq1p, and its complex with yeast dyskerin/NAP57, Cbf5p, lacking its catalytic domain. The C-terminal domain of Shq1p interacts with the RNA-binding domain of Cbf5p and, through structural mimicry, uses the RNA–protein-binding sites to achieve a specific protein–protein interface. We propose that Shq1p operates as a Cbf5p chaperone during RNP assembly by acting as an RNA placeholder, thereby preventing Cbf5p from nonspecific RNA binding before association with an H/ACA RNA and the other core RNP proteins. PMID:22085966

  15. Current overview of allergens of plant pathogenesis related protein families.

    PubMed

    Sinha, Mau; Singh, Rashmi Prabha; Kushwaha, Gajraj Singh; Iqbal, Naseer; Singh, Avinash; Kaushik, Sanket; Kaur, Punit; Sharma, Sujata; Singh, Tej P

    2014-01-01

    Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens.

  16. Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state.

    PubMed

    Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo

    2008-05-01

    To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5-8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH < 4.5 the border between the metastable region and the nucleation region shifted to the left (lower precipitant concentration) in the phase diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25-40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme.

  17. Optimizing pH response of affinity between protein G and IgG Fc: how electrostatic modulations affect protein-protein interactions.

    PubMed

    Watanabe, Hideki; Matsumaru, Hiroyuki; Ooishi, Ayako; Feng, Yanwen; Odahara, Takayuki; Suto, Kyoko; Honda, Shinya

    2009-05-01

    Protein-protein interaction in response to environmental conditions enables sophisticated biological and biotechnological processes. Aiming toward the rational design of a pH-sensitive protein-protein interaction, we engineered pH-sensitive mutants of streptococcal protein G B1, a binder to the IgG constant region. We systematically introduced histidine residues into the binding interface to cause electrostatic repulsion on the basis of a rigid body model. Exquisite pH sensitivity of this interaction was confirmed by surface plasmon resonance and affinity chromatography employing a clinically used human IgG. The pH-sensitive mechanism of the interaction was analyzed and evaluated from kinetic, thermodynamic, and structural viewpoints. Histidine-mediated electrostatic repulsion resulted in significant loss of exothermic heat of the binding that decreased the affinity only at acidic conditions, thereby improving the pH sensitivity. The reduced binding energy was partly recovered by "enthalpy-entropy compensation." Crystal structures of the designed mutants confirmed the validity of the rigid body model on which the effective electrostatic repulsion was based. Moreover, our data suggested that the entropy gain involved exclusion of water molecules solvated in a space formed by the introduced histidine and adjacent tryptophan residue. Our findings concerning the mechanism of histidine-introduced interactions will provide a guideline for the rational design of pH-sensitive protein-protein recognition.

  18. A longitudinal analysis of circulating stress-related proteins and chronic ethanol self-administration in cynomolgus macaques

    PubMed Central

    Helms, Christa M.; Messaoudi, Ilhem; Jeng, Sophia; Freeman, Willard M.; Vrana, Kent E.; Grant, Kathleen A.

    2011-01-01

    Background Alcoholics have alterations in endocrine and immune function and increased susceptibility to stress-related disorders. A longitudinal analysis of chronic ethanol intake on homeostatic mechanisms is, however, incompletely characterized in primates. Methods Plasma proteins (n = 60; Luminex) and hormones (adrenocorticotropic hormone, ACTH; cortisol) were repeatedly measured in adult male cynomolgus monkeys (Macaca fascicularis, n = 10) during a 32-month experimental protocol at baseline, during induction of water and ethanol (4% w/v in water) self-administration, after 4 months and after 12 months of 22-h daily concurrent access to ethanol and water. Results Significant changes were observed in ACTH, cortisol and 45/60 plasma proteins: a majority (28/45) were suppressed as a function of ethanol self-administration, eight proteins were elevated and nine showed biphasic changes. Cortisol and ACTH were greatest during induction, and correlations between these hormones and plasma proteins varied across the experiment. Pathway analyses implicated nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) as possible mediators of ethanol-induced effects on immune-related proteins in primates. Conclusion Chronic ethanol consumption in primates leads to an allostatic state of physiological compromise with respect to circulating immune- and stress-related proteins in NF-κB- and STAT/JAK-related pathways in correlation with altered endocrine activity. PMID:22141444

  19. Analysis of ER Resident Proteins in S. cerevisiae: Implementation of H/KDEL Retrieval Sequences

    PubMed Central

    Young, Carissa L.; Raden, David L.; Robinson, Anne S.

    2013-01-01

    An elaborate quality control system regulates ER homeostasis by ensuring the fidelity of protein synthesis and maturation. In budding yeast, genomic analyses and high-throughput proteomic studies have identified ER resident proteins that restore homeostasis following local perturbations. Yet, how these folding factors modulate stress has been largely unexplored. In this study, we designed a series of PCR-based modules including codon-optimized epitopes and FP variants complete with C-terminal H/KDEL retrieval motifs. These conserved sequences are inherent to most soluble ER resident proteins. To monitor multiple proteins simultaneously, H/KDEL cassettes are available with six different selection markers, providing optimal flexibility for live-cell imaging and multicolor labeling in vivo. A single pair of PCR primers can be used for the amplification of these 26 modules, enabling numerous combinations of tags and selection markers. The versatility of pCY H/KDEL cassettes was demonstrated by labeling BiP/Kar2p, Pdi1p, and Scj1p with all novel tags, thus providing a direct comparison among FP variants. Furthermore, to advance in vitro studies of yeast ER proteins, Strep-tag II was engineered with a C-terminal retrieval sequence. Here, an efficient purification strategy was established for BiP under physiological conditions. PMID:23324027

  20. Multiple antibacterial histone H2B proteins are expressed in tissues of American oyster.

    PubMed

    Seo, Jung-Kil; Stephenson, Jeana; Noga, Edward J

    2011-03-01

    We have previously identified a histone H2B isomer (cvH2B-1) from tissue extracts of the bivalve mollusk, the American oyster (Crassostrea virginica). In this paper, we isolate an additional three antibacterial proteins from acidified gill extract by preparative acid-urea-polyacrylamide gel electrophoresis and reversed-phase high performance liquid chromatography. Extraction of these proteins from tissue was best accomplished by briefly boiling the tissues in a weak acetic acid solution. Addition of protease inhibitors while boiling resulted in somewhat lower yields, with one protein being totally absent with this method. Via mass spectrometry, the masses of one of these purified proteins was 13607.0Da (peak 2), which is consistent with the molecular weight of histone H2B. In addition, via western-blotting using anti-calf histone H2B antibody, all three proteins were positive and were thus named cvH2B-2, cvH2B-3 and cvH2B-4. The antibacterial activity of cvH2B-2 was similar to that of cvH2B-1, with activity against a Gram-positive bacterium (Lactococcus lactis subsp. lactis; minimum effective concentration [MEC] 52-57μg/mL) but inactive against Staphylococcus aureus (MEC>250μg/mL). However, both proteins had relatively potent activity against the Gram-negative oyster pathogen Vibrio parahemolyticus (MEC 11.5-14μg/mL) as well as the human pathogen Vibrio vulnificus (MEC 21.3-25.3μg/mL). cvH2B-3 and cvH2B-4 also had similarly strong activity against Vibrio vulnificus. These data provide further evidence for the antimicrobial function of histone H2B isomers in modulating bacterial populations in oyster tissues. The combined estimated concentrations of these histone H2B isomers were far above the inhibitory concentrations for the tested vibrios, including human pathogens. Our results indicate that the highly conserved histone proteins might be important components not only of immune defenses in oysters but have the potential to influence the abundance of a

  1. Telobox motifs recruit CLF/SWN-PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis.

    PubMed

    Zhou, Yue; Wang, Yuejun; Krause, Kristin; Yang, Tingting; Dongus, Joram A; Zhang, Yijing; Turck, Franziska

    2018-05-01

    Polycomb repressive complexes (PRCs) control organismic development in higher eukaryotes through epigenetic gene repression 1-4 . PRC proteins do not contain DNA-binding domains, thus prompting questions regarding how PRCs find their target loci 5 . Here we present genome-wide evidence of PRC2 recruitment by telomere-repeat-binding factors (TRBs) through telobox-related motifs in Arabidopsis. A triple trb1-2, trb2-1, and trb3-2 (trb1/2/3) mutant with a developmental phenotype and a transcriptome strikingly similar to those of strong PRC2 mutants showed redistribution of trimethyl histone H3 Lys27 (H3K27me3) marks and lower H3K27me3 levels, which were correlated with derepression of TRB1-target genes. TRB1-3 physically interacted with the PRC2 proteins CLF and SWN. A SEP3 reporter gene with a telobox mutation showed ectopic expression, which was correlated with H3K27me3 depletion, whereas tethering TRB1 to the mutated cis element partially restored repression. We propose that telobox-related motifs recruit PRC2 through the interaction between TRBs and CLF/SWN, a mechanism essential for H3K27me3 deposition at a subset of target genes.

  2. Risk Factors for 2009 Pandemic Influenza A (H1N1)–Related Hospitalization and Death Among Racial/Ethnic Groups in New Mexico

    PubMed Central

    Jungk, Jessica; Hancock, Emily; Smelser, Chad; Landen, Michael; Nichols, Megin; Selvage, David; Baumbach, Joan; Sewell, Mack

    2011-01-01

    Objectives. We assessed risk factors for 2009 pandemic influenza A (H1N1)–related hospitalization, mechanical ventilation, and death among New Mexico residents. Methods. We calculated population rate ratios using Poisson regression to analyze risk factors for H1N1-related hospitalization. We performed a cross-sectional analysis of hospitalizations during September 14, 2009 through January 13, 2010, using logistic regression to assess risk factors for mechanical ventilation and death among those hospitalized. Results. During the study period, 926 laboratory-confirmed H1N1-related hospitalizations were identified. H1N1-related hospitalization was significantly higher among American Indians (risk ratio [RR] = 2.6; 95% confidence interval [CI] = 2.2, 3.2), Blacks (RR = 1.7; 95% CI = 1.2, 2.4), and Hispanics (RR = 1.8; 95% CI = 1.5, 2.0) than it was among non-Hispanic Whites, and also was higher among persons of younger age and lower household income. Mechanical ventilation was significantly associated with age 25 years and older, obesity, and lack of or delayed antiviral treatment. Death was significantly associated with male gender, cancer during the previous 12 months, and liver disorder. Conclusions. This analysis supports recent national efforts to include American Indian/Alaska Native race as a group at high risk for complications of influenza with respect to vaccination and antiviral treatment recommendations. PMID:21778495

  3. A Sinorhizobium meliloti RpoH-Regulated Gene Is Involved in Iron-Sulfur Protein Metabolism and Effective Plant Symbiosis under Intrinsic Iron Limitation.

    PubMed

    Sasaki, Shohei; Minamisawa, Kiwamu; Mitsui, Hisayuki

    2016-09-01

    In Sinorhizobium meliloti, RpoH-type sigma factors have a global impact on gene expression during heat shock and play an essential role in symbiosis with leguminous plants. Using mutational analysis of a set of genes showing highly RpoH-dependent expression during heat shock, we identified a gene indispensable for effective symbiosis. This gene, designated sufT, was located downstream of the sufBCDS homologs that specify the iron-sulfur (Fe/S) cluster assembly pathway. The identified transcription start site was preceded by an RpoH-dependent promoter consensus sequence. SufT was related to a conserved protein family of unknown molecular function, of which some members are involved in Fe/S cluster metabolism in diverse organisms. A sufT mutation decreased bacterial growth in both rich and minimal media, tolerance to stresses such as iron starvation, and activities of some Fe/S cluster-dependent enzymes. These results support the involvement of SufT in SUF (sulfur mobilization) system-mediated Fe/S protein metabolism. Furthermore, we isolated spontaneous pseudorevertants of the sufT mutant with partially recovered growth; each of them had a mutation in rirA This gene encodes a global iron regulator whose loss increases the intracellular iron content. Deletion of rirA in the original sufT mutant improved growth and restored Fe/S enzyme activities and effective symbiosis. These results suggest that enhanced iron availability compensates for the lack of SufT in the maintenance of Fe/S proteins. Although RpoH-type sigma factors of the RNA polymerase are present in diverse proteobacteria, their role as global regulators of protein homeostasis has been studied mainly in the enteric gammaproteobacterium Escherichia coli In the soil alphaproteobacterium Sinorhizobium meliloti, the rpoH mutations have a strong impact on symbiosis with leguminous plants. We found that sufT is a unique member of the S. meliloti RpoH regulon; sufT contributes to Fe/S protein metabolism and

  4. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence.

    PubMed

    Gustafsson, Mattias C U; Lannergård, Jonas; Nilsson, O Rickard; Kristensen, Bodil M; Olsen, John E; Harris, Claire L; Ufret-Vincenty, Rafael L; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.

  5. Factor H Binds to the Hypervariable Region of Many Streptococcus pyogenes M Proteins but Does Not Promote Phagocytosis Resistance or Acute Virulence

    PubMed Central

    Kristensen, Bodil M.; Olsen, John E.; Harris, Claire L.; Ufret-Vincenty, Rafael L.; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. PMID:23637608

  6. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate.

    PubMed

    Benelhadj, Sonda; Gharsallaoui, Adem; Degraeve, Pascal; Attia, Hamadi; Ghorbel, Dorra

    2016-03-01

    In the present study, a protein isolate extracted from Arthrospira platensis by isoelectric precipitation was evaluated for its functional properties. The maximum nitrogen solubility was 59.6±0.7% (w/w) at pH 10. The A. platensis protein isolate (API) showed relatively high oil (252.7±0.3g oil/100g API) and water (428.8±15.4g of water/100g of API at pH 10) absorption capacities. The protein zeta potential, the emulsifying capacity, the emulsion ageing stability, the emulsion microstructure and the emulsion opacity as well as the foaming capacity and the foam stability were shown to be greatly affected by pH. Especially, emulsifying and foaming capacities were positively correlated to the protein solubility. Moreover, the API was able to form films when sorbitol (30% (w/w)) was used as plasticizer and to form gels when the API concentration exceeded 12% (w/w). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Simultaneous Hypoxia and Low Extracellular pH Suppress Overall Metabolic Rate and Protein Synthesis In Vitro

    PubMed Central

    Sørensen, Brita Singers; Busk, Morten; Overgaard, Jens; Horsman, Michael R.; Alsner, Jan

    2015-01-01

    Background The tumor microenvironment is characterized by regions of hypoxia and acidosis which are linked to poor prognosis. This occurs due to an aberrant vasculature as well as high rates of glycolysis and lactate production in tumor cells even in the presence of oxygen (the Warburg effect), which weakens the spatial linkage between hypoxia and acidosis. Methods Five different human squamous cell carcinoma cell lines (SiHa, FaDuDD, UTSCC5, UTSCC14 and UTSCC15) were treated with hypoxia, acidosis (pH 6.3), or a combination, and gene expression analyzed using microarray. SiHa and FaDuDD were chosen for further characterization of cell energetics and protein synthesis. Total cellular ATP turnover and relative glycolytic dependency was determined by simultaneous measurements of oxygen consumption and lactate synthesis rates and total protein synthesis was determined by autoradiographic quantification of the incorporation of 35S-labelled methionine and cysteine into protein. Results Microarray analysis allowed differentiation between genes induced at low oxygen only at normal extracellular pH (pHe), genes induced at low oxygen at both normal and low pHe, and genes induced at low pHe independent of oxygen concentration. Several genes were found to be upregulated by acidosis independent of oxygenation. Acidosis resulted in a more wide-scale change in gene expression profiles than hypoxia including upregulation of genes involved in the translation process, for example Eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2), and Ribosomal protein L37 (RPL37). Acidosis suppressed overall ATP turnover and protein synthesis by 50%. Protein synthesis, but not total ATP production, was also suppressed under hypoxic conditions. A dramatic decrease in ATP turnover (SiHa) and protein synthesis (both cell lines) was observed when hypoxia and low pHe were combined. Conclusions We demonstrate here that the influence of hypoxia and acidosis causes different responses, both

  8. Functional and rheological properties of proteins in frozen turkey breast meat with different ultimate pH.

    PubMed

    Chan, J T Y; Omana, D A; Betti, M

    2011-05-01

    Functional and rheological properties of proteins from frozen turkey breast meat with different ultimate pH at 24 h postmortem (pH(24)) have been studied. Sixteen breast fillets from Hybrid Tom turkeys were initially selected based on lightness (L*) values for each color group (pale, normal, and dark), with a total of 48 breast fillets. Further selection of 8 breast samples was made within each class of meat according to the pH(24). The average L* and pH values of the samples were within the following range: pale (L* >52; pH ≤5.7), normal (46 < L* < 52; 5.9 < pH <6.1), and dark (L* <46; pH ≥6.3), referred to as low, normal, and high pH meat, respectively. Ultimate pH did not cause major changes in the emulsifying and foaming properties of the extracted sarcoplasmic and myofibrillar proteins. An SDS-PAGE profile of proteins from low and normal pH meat was similar, which revealed that the extent of protein denaturation was the same. Low pH meat had the lowest water-holding capacity compared with normal and high pH meat as shown by the increase in cooking loss, which can be explained by factors other than protein denaturation. Gel strength analysis and folding test revealed that gel-forming ability was better for high pH meat compared with low and normal pH meat.Dynamic viscoelastic behavior showed that myosin denaturation temperature was independent of pH(24). Normal and high pH meat had similar hardness, springiness, and chewiness values as revealed by texture profile analysis. The results from this study indicate that high pH meat had similar or better functional properties than normal pH meat. Therefore, high pH meat is suitable for further processed products, whereas low pH meat may need additional treatment or ingredient formulations to improve its functionality.

  9. Prediction of the Ebola Virus Infection Related Human Genes Using Protein-Protein Interaction Network.

    PubMed

    Cao, HuanHuan; Zhang, YuHang; Zhao, Jia; Zhu, Liucun; Wang, Yi; Li, JiaRui; Feng, Yuan-Ming; Zhang, Ning

    2017-01-01

    Ebola hemorrhagic fever (EHF) is caused by Ebola virus (EBOV). It is reported that human could be infected by EBOV with a high fatality rate. However, association factors between EBOV and host still tend to be ambiguous. According to the "guilt by association" (GBA) principle, proteins interacting with each other are very likely to function similarly or the same. Based on this assumption, we tried to obtain EBOV infection-related human genes in a protein-protein interaction network using Dijkstra algorithm. We hope it could contribute to the discovery of novel effective treatments. Finally, 15 genes were selected as potential EBOV infection-related human genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Characterization of monomeric DNA-binding protein Histone H1 in Leishmania braziliensis.

    PubMed

    Carmelo, Emma; González, Gloria; Cruz, Teresa; Osuna, Antonio; Hernández, Mariano; Valladares, Basilio

    2011-08-01

    Histone H1 in Leishmania presents relevant differences compared to higher eukaryote counterparts, such as the lack of a DNA-binding central globular domain. Despite that, it is apparently fully functional since its differential expression levels have been related to changes in chromatin condensation and infectivity, among other features. The localization and the aggregation state of L. braziliensis H1 has been determined by immunolocalization, mass spectrometry, cross-linking and electrophoretic mobility shift assays. Analysis of H1 sequences from the Leishmania Genome Database revealed that our protein is included in a very divergent group of histones H1 that is present only in L. braziliensis. An antibody raised against recombinant L. braziliensis H1 recognized specifically that protein by immunoblot in L. braziliensis extracts, but not in other Leishmania species, a consequence of the sequence divergences observed among Leishmania species. Mass spectrometry analysis and in vitro DNA-binding experiments have also proven that L. braziliensis H1 is monomeric in solution, but oligomerizes upon binding to DNA. Finally, despite the lack of a globular domain, L. braziliensis H1 is able to form complexes with DNA in vitro, with higher affinity for supercoiled compared to linear DNA.

  11. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins.

    PubMed

    Lewis, Lauren A; Radulović, Željko M; Kim, Tae K; Porter, Lindsay M; Mulenga, Albert

    2015-04-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24h post attachment to be transmitted. This study describes identification of 24h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ∼19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ∼81% (147/182) of contigs were provisionally identified based on matches in GenBank including ∼18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (∼3%, 5/147), transporters and/or ligand binding proteins (∼6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (∼31%, 46/147), and those classified as miscellaneous (∼24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24h, before the majority of TBD agents can be transmitted. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. The in vitro cleavage of the hAtg proteins by cell death proteases.

    PubMed

    Norman, Joanna M; Cohen, Gerald M; Bampton, Edward T W

    2010-11-01

    It is becoming increasingly clear that there is crosstalk between the apoptotic and autophagic pathways, with autophagy helping to contribute to cell death by providing energy to allow the energy-requiring programmed cell death process to complete, as well as degrading cellular material in its own right. Recent evidence has suggested that Atg proteins can themselves be targets of caspases, providing potential regulation of autophagy as well as uncovering novel functions for fragments derived from Atg proteins. However, to date there has not been a detailed examination of which Atg proteins may be the targets of which death proteases. We show that the majority of human Atg (hAtg) proteins can be cleaved by calpain 1, which is activated in some apoptotic paradigms, as well as other forms of death. We also show that hAtg3 is cleaved by caspases-3, -6 and -8, hAtg6 (Beclin 1) is cleaved by caspase-3 and -6, while hAtg9, hAtg7 and the hAtg4 homologues can be cleaved by caspase-3. Cleavage of Beclin 1 was also seen in apoptosis of HeLa cells induced by staurosporine and TRAIL, along with cleavage of Atg3 and Atg4C. There were subtle effects of caspase inhibition on GFP-LC3 lipidation but more marked effects on the formation of GFP-LC3 puncta (a marker of autophagosome formation) and p62 degradation, indicating that caspase cleavage of autophagy-related proteins can affect the autophagic process. Notably we show that p62 is a target for caspase-6 and -8 cleavage.

  13. Prognostic relevance of Centromere protein H expression in esophageal carcinoma.

    PubMed

    Guo, Xian-Zhi; Zhang, Ge; Wang, Jun-Ye; Liu, Wan-Li; Wang, Fang; Dong, Ju-Qin; Xu, Li-Hua; Cao, Jing-Yan; Song, Li-Bing; Zeng, Mu-Sheng

    2008-08-13

    Many kinetochore proteins have been shown to be associated with human cancers. The aim of the present study was to clarify the expression of Centromere protein H (CENP-H), one of the fundamental components of the human active kinetochore, in esophageal carcinoma and its correlation with clinicopathological features. We examined the expression of CENP-H in immortalized esophageal epithelial cells as well as in esophageal carcinoma cells, and in 12 cases of esophageal carcinoma tissues and the paired normal esophageal tissues by RT-PCR and Western blot analysis. In addition, we analyzed CENP-H protein expression in 177 clinicopathologically characterized esophageal carcinoma cases by immunohistochemistry. Statistical analyses were applied to test for prognostic and diagnostic associations. The level of CENP-H mRNA and protein were higher in the immortalized cells, cancer cell lines and most cancer tissues than in normal control tissues. Immunohistochemistry showed that CENP-H was expressed in 127 of 171 ESCC cases (74.3%) and in 3 of 6 esophageal adenocarcinoma cases (50%). Statistical analysis of ESCC cases showed that there was a significant difference of CENP-H expression in patients categorized according to gender (P = 0.013), stage (P = 0.023) and T classification (P = 0.019). Patients with lower CENP-H expression had longer overall survival time than those with higher CENP-H expression. Multivariate analysis suggested that CENP-H expression was an independent prognostic marker for esophageal carcinoma patients. A prognostic value of CENP-H was also found in the subgroup of T3 approximately T4 and N0 tumor classification. Our results suggest that CENP-H protein is a valuable marker of esophageal carcinoma progression. CENP-H might be used as a valuable prognostic marker for esophageal carcinoma patients.

  14. Myocardin-Related Transcription Factor A Epigenetically Regulates Renal Fibrosis in Diabetic Nephropathy

    PubMed Central

    Xu, Huihui; Wu, Xiaoyan; Qin, Hao; Tian, Wenfang; Chen, Junliang; Sun, Lina; Fang, Mingming

    2015-01-01

    Diabetic nephropathy (DN) is one of the most common complications associated with diabetes and characterized by renal microvascular injury along with accelerated synthesis of extracellular matrix proteins causing tubulointerstitial fibrosis. Production of type I collagen, the major component of extracellular matrix, is augmented during renal fibrosis after chronic exposure to hyperglycemia. However, the transcriptional modulator responsible for the epigenetic manipulation leading to induction of type I collagen genes is not clearly defined. We show here that tubulointerstitial fibrosis as a result of DN was diminished in myocardin-related transcription factor A (MRTF-A) -deficient mice. In cultured renal tubular epithelial cells and the kidneys of mice with DN, MRTF-A was induced by glucose and synergized with glucose to activate collagen transcription. Notably, MRTF-A silencing led to the disappearance of prominent histone modifications indicative of transcriptional activation, including acetylated histone H3K18/K27 and trimethylated histone H3K4. Detailed analysis revealed that MRTF-A recruited p300, a histone acetyltransferase, and WD repeat-containing protein 5 (WDR5), a key component of the histone H3K4 methyltransferase complex, to the collagen promoters and engaged these proteins in transcriptional activation. Estradiol suppressed collagen production by dampening the expression and binding activity of MRTF-A and interfering with the interaction between p300 and WDR5 in renal epithelial cells. Therefore, targeting the MRTF-A–associated epigenetic machinery might yield interventional strategies against DN-associated renal fibrosis. PMID:25349198

  15. Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state

    PubMed Central

    Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo

    2008-01-01

    To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5–8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH < 4.5 the border between the metastable region and the nucleation region shifted to the left (lower precipitant concentration) in the phase diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25–40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme. PMID:18421167

  16. The effects of different preservation processes on the total protein and growth factor content in a new biological product developed from human amniotic membrane.

    PubMed

    Russo, Alessandra; Bonci, Paola; Bonci, Paolo

    2012-06-01

    The aim of this work is to quantify the total protein and growth factors content in a tissue-suspension obtained from processed human amniotic membrane (hAM). hAM was collected, frozen, freeze dried, powdered and sterilized by γ-irradiation. At each step of the process, samples were characterized for the total protein amounts by a Bradford protein assay and for the growth factor concentrations by ELISA test of the tissue suspensions. Frozen-hAM samples show higher release of total proteins and specific growth factors in the tissue suspension in comparison with freeze-dried hAM. We observed that even if the protein extraction is hindered once the tissue is dried, the powdering process allows a greater release in the tissue suspension of total proteins and growth factors after tissue re-solubilization in comparison with only the freeze-drying process (+91 ± 13% for EGF, +16 ± 4% for HGF, +11 ± 5% for FGF, +16 ± 9% for TGF-β1), and a greater release of EGF (85 ± 10%) in comparison with only the freezing process, because proteins become much readily solubilized in the solution. According with these results, we describe a protocol to obtain a new sterile biological product from hAM tissue, with well-known effects of thermal, mechanical and physical processes on the total protein and grow factors contents.

  17. Sequentially Integrated Optimization of the Conditions to Obtain a High-Protein and Low-Antinutritional Factors Protein Isolate from Edible Jatropha curcas Seed Cake.

    PubMed

    León-López, Liliana; Dávila-Ortiz, Gloria; Jiménez-Martínez, Cristian; Hernández-Sánchez, Humberto

    2013-01-01

    Jatropha curcas seed cake is a protein-rich byproduct of oil extraction which could be used to produce protein isolates. The purpose of this study was the optimization of the protein isolation process from the seed cake of an edible provenance of J. curcas by an alkaline extraction followed by isoelectric precipitation method via a sequentially integrated optimization approach. The influence of four different factors (solubilization pH, extraction temperature, NaCl addition, and precipitation pH) on the protein and antinutritional compounds content of the isolate was evaluated. The estimated optimal conditions were an extraction temperature of 20°C, a precipitation pH of 4, and an amount of NaCl in the extraction solution of 0.6 M for a predicted protein content of 93.3%. Under these conditions, it was possible to obtain experimentally a protein isolate with 93.21% of proteins, 316.5 mg 100 g(-1) of total phenolics, 2891.84 mg 100 g(-1) of phytates and 168 mg 100 g(-1) of saponins. The protein content of the this isolate was higher than the content reported by other authors.

  18. Sequentially Integrated Optimization of the Conditions to Obtain a High-Protein and Low-Antinutritional Factors Protein Isolate from Edible Jatropha curcas Seed Cake

    PubMed Central

    León-López, Liliana; Dávila-Ortiz, Gloria; Jiménez-Martínez, Cristian; Hernández-Sánchez, Humberto

    2013-01-01

    Jatropha curcas seed cake is a protein-rich byproduct of oil extraction which could be used to produce protein isolates. The purpose of this study was the optimization of the protein isolation process from the seed cake of an edible provenance of J. curcas by an alkaline extraction followed by isoelectric precipitation method via a sequentially integrated optimization approach. The influence of four different factors (solubilization pH, extraction temperature, NaCl addition, and precipitation pH) on the protein and antinutritional compounds content of the isolate was evaluated. The estimated optimal conditions were an extraction temperature of 20°C, a precipitation pH of 4, and an amount of NaCl in the extraction solution of 0.6 M for a predicted protein content of 93.3%. Under these conditions, it was possible to obtain experimentally a protein isolate with 93.21% of proteins, 316.5 mg 100 g−1 of total phenolics, 2891.84 mg 100 g−1 of phytates and 168 mg 100 g−1 of saponins. The protein content of the this isolate was higher than the content reported by other authors. PMID:25937971

  19. Oligomeric domain structure of human complement factor H by X-ray and neutron solution scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, S.J.; Nealis, A.S.; Sim, R.B.

    1991-03-19

    Factor H is a regulatory component of the complement system. It has a monomer M{sub r} of 150,000. Primary structure analysis shows that the polypeptide is divided into 20 homologous regions, each 60 amino acid residues long. These are independently folding domains and are termed short consensus repeats (SCRs) or complement control protein (CCP) repeats. High-flux synchrotron x-ray and neutron scatteriing studies were performed in order to define its solution structure in conditions close to physiological. The M{sub r} of factor H was determined as 250,000-320,000 to show that factor H is dimeric. The radius of gyration R{sub G} ofmore » native factor H by X-rays or by neutrons in 0% or 100% {sup 2}H{sub 2}O buffers is not measurable but is greater than 12.5 nm. Two cross-sectional radii of gyration R{sub XS-1} and R{sub XS-2} were determined as 3.0-3.1 and 1.8 nm, respectively. Analyses of the cross-sectional intensities show that factor H is composed of two distinct subunits. This model corresponds to an actual R{sub G} fo 21-23 nm. The separation between each SCR/CCP in factor H is close to 4 nm. In the solution structure of factor H, the SCR/CCP domains are in a highly extended conformation.« less

  20. Identification of H209 as Essential for pH 8-Triggered Receptor-Independent Syncytium Formation by S Protein of Mouse Hepatitis Virus A59.

    PubMed

    Li, Pei; Shan, Yiwei; Zheng, Wangliang; Ou, Xiuyuan; Mi, Dan; Mu, Zhixia; Holmes, Kathryn V; Qian, Zhaohui

    2018-06-01

    The spike glycoprotein (S) of murine coronavirus mouse hepatitis virus (MHV) strain A59 uses murine carcinoembryonic antigen-related cell adhesion molecule 1a as its receptor for cell entry, but S protein can also be triggered in the absence of receptor by pH 8.0 alone at 37°C. The mechanism by which conformational changes of this S glycoprotein can be triggered by pH 8.0 has not yet been determined. Here, we show that MHV-A59 S protein is triggered by pH 8.0 at 37°C to induce receptor-independent syncytium (RIS) formation on 293T cells, and that the conformational changes in S proteins triggered by pH 8.0 are very similar to those triggered by receptor binding. We systemically mutated each of 15 histidine residues in S protein and found that H209 is essential for pH 8.0-triggered RIS formation, while H179, H441, H643, and H759 also play important roles in this process. Replacement of H209 with Ala had no effect on receptor binding, but in murine 17Cl.1 cells mutant H209A MHV-A59 showed delayed growth kinetics and was readily outcompeted by wild-type virus when mixed together, indicating that the H209A mutation caused a defect in virus fitness. Finally, the H209A mutation significantly increased the thermostability of S protein in its prefusion conformation, which may raise the energy barrier for conformational change of S protein required for membrane fusion and lead to a decrease in virus fitness in cell culture. Thus, MHV-A59 may have evolved to lower the stability of its S protein in order to increase virus fitness. IMPORTANCE Enveloped viruses enter cells through fusion of viral and cellular membranes, and the process is mediated by interactions between viral envelope proteins and their host receptors. In the prefusion conformation, viral envelope proteins are metastable, and activation to the fusion conformation is tightly regulated, since premature activation would lead to loss of viral infectivity. The stability of viral envelope proteins greatly

  1. Screening host proteins required for bacterial adherence after H9N2 virus infection.

    PubMed

    Ma, Li-Li; Sun, Zhen-Hong; Xu, Yu-Lin; Wang, Shu-Juan; Wang, Hui-Ning; Zhang, Hao; Hu, Li-Ping; Sun, Xiao-Mei; Zhu, Lin; Shang, Hong-Qi; Zhu, Rui-Liang; Wei, Kai

    2018-01-01

    H9N2 subtype low pathogenic avian influenza virus (LPAIV) is distributed worldwide and causes great economic losses in the poultry industry, especially when complicated with other bacterial infections. Tissue damages caused by virus infection provide an opportunity for bacteria invasion, but this mechanism is not sufficient for low pathogenic strains. Moreover, although H9N2 virus infection was demonstrated to promote bacterial infection in several studies, its mechanism remained unclear. In this study, infection experiments in vivo and in vitro demonstrated that the adhesion of Escherichia coli (E. coli) to host cells significantly increased after H9N2 virus infection, and this increase was not caused by pathological damages. Subsequently, we constructed a late chicken embryo infection model and used proteomics techniques to analyze the expression of proteins associated with bacterial adhesion after H9N2 virus infection. A total of 279 significantly differential expressed proteins were detected through isobaric tags for relative and absolute quantitation (iTRAQ) coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analysis. The results of Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that differentially expressed proteins were enriched in host innate immunity; cell proliferation, differentiation, and apoptosis; and pathogenicity-related signaling pathways. Finally, we screened out several proteins, such as TGF-β1, integrins, cortactin, E-cadherin, vinculin, and fibromodulin, which were probably associated with bacterial adhesion. The study analyzed the mechanism of secondary bacterial infection induced by H9N2 virus infection from a novel perspective, which provided theoretical and data support for investigating the synergistic infection mechanism between the H9N2 virus and bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Protein-bound NAD(P)H Lifetime is Sensitive to Multiple Fates of Glucose Carbon.

    PubMed

    Sharick, Joe T; Favreau, Peter F; Gillette, Amani A; Sdao, Sophia M; Merrins, Matthew J; Skala, Melissa C

    2018-04-03

    While NAD(P)H fluorescence lifetime imaging (FLIM) can detect changes in flux through the TCA cycle and electron transport chain (ETC), it remains unclear whether NAD(P)H FLIM is sensitive to other potential fates of glucose. Glucose carbon can be diverted from mitochondria by the pentose phosphate pathway (via glucose 6-phosphate dehydrogenase, G6PDH), lactate production (via lactate dehydrogenase, LDH), and rejection of carbon from the TCA cycle (via pyruvate dehydrogenase kinase, PDK), all of which can be upregulated in cancer cells. Here, we demonstrate that multiphoton NAD(P)H FLIM can be used to quantify the relative concentrations of recombinant LDH and malate dehydrogenase (MDH) in solution. In multiple epithelial cell lines, NAD(P)H FLIM was also sensitive to inhibition of LDH and PDK, as well as the directionality of LDH in cells forced to use pyruvate versus lactate as fuel sources. Among the parameters measurable by FLIM, only the lifetime of protein-bound NAD(P)H (τ 2 ) was sensitive to these changes, in contrast to the optical redox ratio, mean NAD(P)H lifetime, free NAD(P)H lifetime, or the relative amount of free and protein-bound NAD(P)H. NAD(P)H τ 2 offers the ability to non-invasively quantify diversions of carbon away from the TCA cycle/ETC, which may support mechanisms of drug resistance.

  3. pH Modulates the Binding of EGR1 Transcription Factor to DNA

    PubMed Central

    Mikles, David C.; Bhat, Vikas; Schuchardt, Brett J.; Deegan, Brian J.; Seldeen, Kenneth L.; McDonald, Caleb B.; Farooq, Amjad

    2013-01-01

    EGR1 transcription factor orchestrates a plethora of signaling cascades involved in cellular homeostasis and its down-regulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with increasing pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as H382 by virtue of the fact that its substitution to non-ionizable residues abolishes pH-dependence of the binding of EGR1 to DNA. Notably, H382 inserts into the major groove of DNA and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, H382 is predominantly conserved across other members of EGR1 family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating protein-DNA interactions central to this family of transcription factors. Collectively, our findings uncover an unexpected but a key step in the molecular recognition of EGR1 family of transcription factors and suggest that they may act as sensors of pH within the intracellular environment. PMID:23718776

  4. HPV16 E7 Protein and hTERT Proteins Defective for Telomere Maintenance Cooperate to Immortalize Human Keratinocytes

    PubMed Central

    Miller, Jonathan; Dakic, Aleksandra; Chen, Renxiang; Palechor-Ceron, Nancy; Dai, Yuhai; Kallakury, Bhaskar; Schlegel, Richard; Liu, Xuefeng

    2013-01-01

    Previous studies have shown that wild-type human telomerase reverse transcriptase (hTERT) protein can functionally replace the human papillomavirus type 16 (HPV-16) E6 protein, which cooperates with the viral E7 protein in the immortalization of primary keratinocytes. In the current study, we made the surprising finding that catalytically inactive hTERT (hTERT-D868A), elongation-defective hTERT (hTERT-HA), and telomere recruitment-defective hTERT (hTERT N+T) also cooperate with E7 in mediating bypass of the senescence blockade and effecting cell immortalization. This suggests that hTERT has activities independent of its telomere maintenance functions that mediate transit across this restriction point. Since hTERT has been shown to have a role in gene activation, we performed microarray studies and discovered that E6, hTERT and mutant hTERT proteins altered the expression of highly overlapping sets of cellular genes. Most important, the E6 and hTERT proteins induced mRNA and protein levels of Bmi1, the core subunit of the Polycomb Group (PcG) complex 1. We show further that Bmi1 substitutes for E6 or hTERT in cell immortalization. Finally, tissue array studies demonstrated that expression of Bmi1 increased with the severity of cervical dysplasia, suggesting a potential role in the progression of cervical cancer. Together, these data demonstrate that hTERT has extra-telomeric activities that facilitate cell immortalization and that its induction of Bmi1 is one potential mechanism for mediating this activity. PMID:23592995

  5. Computational design of a pH-sensitive IgG binding protein.

    PubMed

    Strauch, Eva-Maria; Fleishman, Sarel J; Baker, David

    2014-01-14

    Computational design provides the opportunity to program protein-protein interactions for desired applications. We used de novo protein interface design to generate a pH-dependent Fc domain binding protein that buries immunoglobulin G (IgG) His-433. Using next-generation sequencing of naïve and selected pools of a library of design variants, we generated a molecular footprint of the designed binding surface, confirming the binding mode and guiding further optimization of the balance between affinity and pH sensitivity. In biolayer interferometry experiments, the optimized design binds IgG with a Kd of ∼ 4 nM at pH 8.2, and approximately 500-fold more weakly at pH 5.5. The protein is extremely stable, heat-resistant and highly expressed in bacteria, and allows pH-based control of binding for IgG affinity purification and diagnostic devices.

  6. Factors related to elevated vaginal pH in the first trimester of pregnancy.

    PubMed

    Zodzika, Jana; Rezeberga, Dace; Jermakova, Irina; Vasina, Olga; Vedmedovska, Natalija; Donders, Gilbert

    2011-01-01

    To assess different bacterial and epidemiological factors associations with increased vaginal pH in the pregnant women population during the first trimester. A cross-sectional, observational study. Three outpatient clinics in Riga. From July 2009 until January 2010, 139 unselected consecutive pregnant women at the first prenatal visit. Pregnant women were submitted to an interview, vaginal examination and vaginal specimen collection for pH measurement and native microscopy. Vaginal pH ≥4.5 was considered as elevated. Abnormal bacterial microflora was classified according to Donders. Elevated vaginal pH was significantly associated with bacterial vaginosis (p < 0.001), aerobic vaginitis (p < 0.001) and mixed aerobic vaginitis and bacterial vaginosis flora (p < 0.001) and presence of sperm cells in the smears (p= 0.024). Most cases with sperm were associated with abnormal vaginal flora. Normal lactobacillary morphotypes were more often found in the pH ≤4.4 group (p < 0.001), while leptosomic and short types were found more frequently with increased pH. Elevated vaginal pH is associated with different types of abnormal vaginal flora and the presence of sperm cells. © 2010 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2010 Nordic Federation of Societies of Obstetrics and Gynecology.

  7. Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal pH and Influences Tyrosinase Activity

    PubMed Central

    Bin, Bum-Ho; Bhin, Jinhyuk; Yang, Seung Ha; Shin, Misun; Nam, Yeon-Ju; Choi, Dong-Hwa; Shin, Dong Wook; Lee, Ai-Young; Hwang, Daehee; Cho, Eun-Gyung; Lee, Tae Ryong

    2015-01-01

    The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP). Mutations of this gene cause oculocutaneous albinism type 4 (OCA4). However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH. PMID:26057890

  8. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems.

    PubMed

    Yadav, Indresh; Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2017-02-07

    The pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption. Despite having a different nature of interactions, both proteins render a similar phase behavior where nanoparticle-protein systems transform from being one-phase (clear) to two-phase (turbid) above a critical protein concentration (CPC). The measurements have been carried out for a fixed concentration of silica nanoparticles (1 wt %) with varying protein concentrations (0-5 wt %). The CPC is found to be much higher for BSA than for lysozyme and increases for lysozyme but decreases for BSA as pH approaches their respective IEPs. The structure and interaction in these systems have been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The effective hydrodynamic size of the nanoparticles measured using DLS increases with protein concentration and is related to the aggregation of the nanoparticles above the CPC. The propensity of the nanoparticles to aggregate is suppressed for lysozyme and enhanced for BSA as pH approached their respective IEPs. This behavior is understood from SANS data through the interaction potential determined by the interplay of electrostatic repulsion with a short-range attraction for lysozyme and long-range attraction for BSA. The nanoparticle aggregation is caused by charge neutralization by the oppositely charged lysozyme and through depletion for similarly charged BSA. Lysozyme-mediated attractive interaction decreases as pH approaches the IEP because of a decrease in the charge on the protein. In the case of

  9. Structural conversion of the transformer protein RfaH: new insights derived from protein structure prediction and molecular dynamics simulations.

    PubMed

    Balasco, Nicole; Barone, Daniela; Vitagliano, Luigi

    2015-01-01

    Recent structural investigations have shown that the C-terminal domain (CTD) of the transcription factor RfaH undergoes unique structural modifications that have a profound impact into its functional properties. These modifications cause a complete change in RfaH(CTD) topology that converts from an α-hairpin to a β-barrel fold. To gain insights into the determinants of this major structural conversion, we here performed computational studies (protein structure prediction and molecular dynamics simulations) on RfaH(CTD). Although these analyses, in line with literature data, suggest that the isolated RfaH(CTD) has a strong preference for the β-barrel fold, they also highlight that a specific region of the protein is endowed with a chameleon conformational behavior. In particular, the Leu-rich region (residues 141-145) has a good propensity to adopt both α-helical and β-structured states. Intriguingly, in the RfaH homolog NusG, whose CTD uniquely adopts the β-barrel fold, the corresponding region is rich in residues as Val or Ile that present a strong preference for the β-structure. On this basis, we suggest that the presence of this Leu-rich element in RfaH(CTD) may be responsible for the peculiar structural behavior of the domain. The analysis of the sequences of RfaH family (PfamA code PF02357) unraveled that other members potentially share the structural properties of RfaH(CTD). These observations suggest that the unusual conformational behavior of RfaH(CTD) may be rare but not unique.

  10. Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors.

    PubMed

    Yokoyama, Katsushi; Ishijima, Sanae A; Clowney, Lester; Koike, Hideaki; Aramaki, Hironori; Tanaka, Chikako; Makino, Kozo; Suzuki, Masashi

    2006-01-01

    Feast/famine regulatory proteins comprise a diverse family of transcription factors, which have been referred to in various individual identifications, including Escherichia coli leucine-responsive regulatory protein and asparagine synthase C gene product. A full length feast/famine regulatory protein consists of the N-terminal DNA-binding domain and the C-domain, which is involved in dimerization and further assembly, thereby producing, for example, a disc or a chromatin-like cylinder. Various ligands of the size of amino acids bind at the interface between feast/famine regulatory protein dimers, thereby altering their assembly forms. Also, the combination of feast/famine regulatory protein subunits forming the same assembly is altered. In this way, a small number of feast/famine regulatory proteins are able to regulate a large number of genes in response to various environmental changes. Because feast/famine regulatory proteins are shared by archaea and eubacteria, the genome-wide regulation by feast/famine regulatory proteins is traceable back to their common ancestor, being the prototype of highly differentiated transcription regulatory mechanisms found in organisms nowadays.

  11. pH-selective mutagenesis of protein-protein interfaces: in silico design of therapeutic antibodies with prolonged half-life.

    PubMed

    Spassov, Velin Z; Yan, Lisa

    2013-04-01

    Understanding the effects of mutation on pH-dependent protein binding affinity is important in protein design, especially in the area of protein therapeutics. We propose a novel method for fast in silico mutagenesis of protein-protein complexes to calculate the effect of mutation as a function of pH. The free energy differences between the wild type and mutants are evaluated from a molecular mechanics model, combined with calculations of the equilibria of proton binding. The predicted pH-dependent energy profiles demonstrate excellent agreement with experimentally measured pH-dependency of the effect of mutations on the dissociation constants for the complex of turkey ovomucoid third domain (OMTKY3) and proteinase B. The virtual scanning mutagenesis identifies all hotspots responsible for pH-dependent binding of immunoglobulin G (IgG) to neonatal Fc receptor (FcRn) and the results support the current understanding of the salvage mechanism of the antibody by FcRn based on pH-selective binding. The method can be used to select mutations that change the pH-dependent binding profiles of proteins and guide the time consuming and expensive protein engineering experiments. As an application of this method, we propose a computational strategy to search for mutations that can alter the pH-dependent binding behavior of IgG to FcRn with the aim of improving the half-life of therapeutic antibodies in the target organism. Copyright © 2013 Wiley Periodicals, Inc.

  12. Thioredoxin h regulates calcium dependent protein kinases in plasma membranes.

    PubMed

    Ueoka-Nakanishi, Hanayo; Sazuka, Takashi; Nakanishi, Yoichi; Maeshima, Masayoshi; Mori, Hitoshi; Hisabori, Toru

    2013-07-01

    Thioredoxin (Trx) is a key player in redox homeostasis in various cells, modulating the functions of target proteins by catalyzing a thiol-disulfide exchange reaction. Target proteins of cytosolic Trx-h of higher plants were studied, particularly in the plasma membrane, because plant plasma membranes include various functionally important protein molecules such as transporters and signal receptors. Plasma membrane proteins from Arabidopsis thaliana cell cultures were screened using a resin Trx-h1 mutant-immobilized, and a total of 48 candidate proteins obtained. These included two calcium-sensing proteins: a phosphoinositide-specific phospholipase 2 (AtPLC2) and a calcium-dependent protein kinase 21 (AtCPK21). A redox-dependent change in AtCPK21 kinase activity was demonstrated in vitro. Oxidation of AtCPK21 resulted in a decrease in kinase activity to 19% of that of untreated AtCPK21, but Trx-h1 effectively restored the activity to 90%. An intramolecular disulfide bond (Cys97-Cys108) that is responsible for this redox modulation was then identified. In addition, endogenous AtCPK21 was shown to be oxidized in vivo when the culture cells were treated with H2 O2 . These results suggest that redox regulation of AtCPK21 by Trx-h in response to external stimuli is important for appropriate cellular responses. The relationship between the redox regulation system and Ca(2+) signaling pathways is discussed. © 2013 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  13. Examination of the relation between periodontal health status and cardiovascular risk factors: serum total and high density lipoprotein cholesterol, C-reactive protein, and plasma fibrinogen.

    PubMed

    Wu, T; Trevisan, M; Genco, R J; Falkner, K L; Dorn, J P; Sempos, C T

    2000-02-01

    Using data from the Third National Health and Nutrition Examination Survey (1988-1994), the authors examined the relation between periodontal health and cardiovascular risk factors: serum total and high density lipoprotein cholesterol, C-reactive protein, and plasma fibrinogen. A total of 10,146 participants were included in the analyses of cholesterol and C-reactive protein and 4,461 in the analyses of fibrinogen. Periodontal health indicators included the gingival bleeding index, calculus index, and periodontal disease status (defined by pocket depth and attachment loss). While cholesterol and fibrinogen were analyzed as continuous variables, C-reactive protein was dichotomized into two levels. The results show a significant relation between indicators of poor periodontal status and increased C-reactive protein and fibrinogen. The association between periodontal status and total cholesterol level is much weaker. No consistent association between periodontal status and high density lipoprotein cholesterol was detectable. Similar patterns of association were observed for participants aged 17-54 years and those 55 years and older. In conclusion, this study suggests that total cholesterol, C-reactive protein, and fibrinogen are possible intermediate factors that may link periodontal disease to elevated cardiovascular risk.

  14. Structural Insights into Helicobacter pylori Cag Protein Interactions with Host Cell Factors.

    PubMed

    Bergé, Célia; Terradot, Laurent

    2017-01-01

    The most virulent strains of Helicobacter pylori carry a genomic island (cagPAI) containing a set of 27-31 genes. The encoded proteins assemble a syringe-like apparatus to inject the cytotoxin-associated gene A (CagA) protein into gastric cells. This molecular device belongs to the type IV secretion system (T4SS) family albeit with unique characteristics. The cagPAI-encoded T4SS and its effector protein CagA have an intricate relationship with the host cell, with multiple interactions that only start to be deciphered from a structural point of view. On the one hand, the major roles of the interactions between CagL and CagA (and perhaps CagI and CagY) and host cell factors are to facilitate H. pylori adhesion and to mediate the injection of the CagA oncoprotein. On the other hand, CagA interactions with host cell partners interfere with cellular pathways to subvert cell defences and to promote H. pylori infection. Although a clear mechanism for CagA translocation is still lacking, the structural definition of CagA and CagL domains involved in interactions with signalling proteins are progressively coming to light. In this chapter, we will focus on the structural aspects of Cag protein interactions with host cell molecules, critical molecular events precluding H. pylori-mediated gastric cancer development.

  15. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Tsuyoshi, E-mail: tsuyo@nbiochem.med.osaka-u.ac.jp; Hayashi, Ken’ichiro

    2013-08-02

    Highlights: •Tβ4 competed with MRTF-A for G-actin binding. •Tβ4 activated the MRTF–SRF signaling pathway. •Tβ4 increased the endogenous expression of SRF-dependent genes. -- Abstract: Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4more » (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin–MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF–SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin–MRTFs interaction.« less

  16. Systematic interpolation method predicts protein chromatographic elution with salt gradients, pH gradients and combined salt/pH gradients.

    PubMed

    Creasy, Arch; Barker, Gregory; Carta, Giorgio

    2017-03-01

    A methodology is presented to predict protein elution behavior from an ion exchange column using both individual or combined pH and salt gradients based on high-throughput batch isotherm data. The buffer compositions are first optimized to generate linear pH gradients from pH 5.5 to 7 with defined concentrations of sodium chloride. Next, high-throughput batch isotherm data are collected for a monoclonal antibody on the cation exchange resin POROS XS over a range of protein concentrations, salt concentrations, and solution pH. Finally, a previously developed empirical interpolation (EI) method is extended to describe protein binding as a function of the protein and salt concentration and solution pH without using an explicit isotherm model. The interpolated isotherm data are then used with a lumped kinetic model to predict the protein elution behavior. Experimental results obtained for laboratory scale columns show excellent agreement with the predicted elution curves for both individual or combined pH and salt gradients at protein loads up to 45 mg/mL of column. Numerical studies show that the model predictions are robust as long as the isotherm data cover the range of mobile phase compositions where the protein actually elutes from the column. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Activation of multiple mitogen-activated protein kinases by recombinant calcitonin gene-related peptide receptor.

    PubMed

    Parameswaran, N; Disa, J; Spielman, W S; Brooks, D P; Nambi, P; Aiyar, N

    2000-02-18

    Calcitonin gene-related peptide is a 37-amino-acid neuropeptide and a potent vasodilator. Although calcitonin gene-related peptide has been shown to have a number of effects in a variety of systems, the mechanisms of action and the intracellular signaling pathways, especially the regulation of mitogen-activated protien kinase (MAPK) pathway, is not known. In the present study we investigated the role of calcitonin gene-related peptide in the regulation of MAPKs in human embryonic kidney (HEK) 293 cells stably transfected with a recombinant porcine calcitonin gene-related peptide-1 receptor. Calcitonin gene-related peptide caused a significant dose-dependent increase in cAMP response and the effect was inhibited by calcitonin gene-related peptide(8-37), the calcitonin gene-related peptide-receptor antagonist. Calcitonin gene-related peptide also caused a time- and concentration-dependent increase in extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38 MAPK) activities, with apparently no significant change in cjun-N-terminal kinase (JNK) activity. Forskolin, a direct activator of adenylyl cyclase also stimulated ERK and P38 activities in these cells suggesting the invovement of cAMP in this process. Calcitonin gene-related peptide-stimulated ERK and P38 MAPK activities were inhibited significantly by calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide-(8-37) suggesting the involvement of calcitonin gene-related peptide-1 receptor. Preincubation of the cells with the cAMP-dependent protein kinase inhibitor, H89 [¿N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, hydrochloride¿] inhibited calcitonin gene-related peptide-mediated activation of ERK and p38 kinases. On the other hand, preincubation of the cells with wortmannin ¿[1S-(1alpha,6balpha,9abeta,11alpha, 11bbeta)]-11-(acetyloxy)-1,6b,7,8,9a,10,11, 11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3, 2-de]indeno[4,5-h]-2

  18. Hepatoma-derived growth factor: A survival-related protein in prostate oncogenesis and a potential target for vitamin K2.

    PubMed

    Shetty, Aditya; Dasari, Subramanyam; Banerjee, Souresh; Gheewala, Taher; Zheng, Guoxing; Chen, Aoshuang; Kajdacsy-Balla, Andre; Bosland, Maarten C; Munirathinam, Gnanasekar

    2016-11-01

    Hepatoma-derived growth factor (HDGF) is a heparin-binding growth factor, which has previously been shown to be expressed in a variety of cancers. HDGF overexpression has also previously been correlated with a poor prognosis in several cancers. The significance of HDGF in prostate cancer, however, has not been investigated. Here, we show that HDGF is overexpressed in both androgen-sensitive LNCaP cells and androgen-insensitive DU145, 22RV1, and PC-3 cells. Forced overexpression enhanced cell viability of RWPE-1 cells, whereas HDGF knockdown reduced cell proliferation in human prostate cancer cells. We also show that HDGF may serve as a survival-related protein as ectopic overexpression of HDGF in RWPE cells up-regulated the expression of antiapoptosis proteins cyclin E and BCL-2, whereas simultaneously down-regulating proapoptotic protein BAX. Western blot analysis also showed that HDGF overexpression modulated the activity of phospho-AKT as well as NF-kB, and these results correlated with in vitro migration and invasion assays. We next assessed the therapeutic potential of HDGF inhibition with a HDGF monoclonal antibody and vitamin k 2 , showing reduced cell proliferation as well as inhibition of NF-kB expression in HDGF overexpressed RWPE cells treated with a HDGF monoclonal antibody and vitamin K 2 . Collectively, our results suggest that HDGF is a relevant protein in prostate oncogenesis and may serve as a potential therapeutic target in prostate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    PubMed

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein.

    PubMed Central

    Avram, Dorina; Fields, Andrew; Senawong, Thanaset; Topark-Ngarm, Acharawan; Leid, Mark

    2002-01-01

    Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting proteins 1 and 2 [CTIP1/Evi9/B cell leukaemia (Bcl) l1a and CTIP2/Bcl11b respectively] are highly related C(2)H(2) zinc finger proteins that are abundantly expressed in brain and the immune system, and are associated with immune system malignancies. A selection procedure was employed to isolate high-affinity DNA binding sites for CTIP1. The core binding site on DNA identified in these studies, 5'-GGCCGG-3' (upper strand), is highly related to the canonical GC box and was bound by a CTIP1 oligomeric complex(es) in vitro. Furthermore, both CTIP1 and CTIP2 repressed transcription of a reporter gene harbouring a multimerized CTIP binding site, and this repression was neither reversed by trichostatin A (an inhibitor of known class I and II histone deacetylases) nor stimulated by co-transfection of a COUP-TF family member. These results demonstrate that CTIP1 is a sequence-specific DNA binding protein and a bona fide transcriptional repressor that is capable of functioning independently of COUP-TF family members. These findings may be relevant to the physiological and/or pathological action(s) of CTIPs in cells that do not express COUP-TF family members, such as cells of the haematopoietic and immune systems. PMID:12196208

  1. Leucine-rich Repeat Neuronal Protein 1 Regulates Differentiation of Embryonic Stem Cells by Posttranslational Modifications of Pluripotency Factors.

    PubMed

    Liao, Chien Huang; Wang, Ya-Hui; Chang, Wei-Wei; Yang, Bei-Chia; Wu, Tsai-Jung; Liu, Wei-Li; Yu, Alice L; Yu, John

    2018-06-11

    Stem cell surface markers may facilitate a better understanding of stem cell biology through molecular function studies or serve as tools to monitor the differentiation status and behavior of stem cells in culture or tissue. Thus, it is important to identify additional, novel stem cell markers. We used glycoproteomics to discover surface glycoproteins on human embryonic stem cells (hESCs) that may be useful stem cell markers. We found that a surface glycoprotein, leucine-rich repeat neuronal protein 1 (LRRN1), is expressed abundantly on the surface of hESCs prior to differentiation into embryoid bodies (EBs). Silencing of LRRN1 with short hairpin RNA (shLRRN1) in hESCs resulted in decreased capacity of self-renewal, and skewed differentiation toward endoderm/mesoderm lineages in vitro and in vivo. Meanwhile, the protein expression levels of the pluripotency factors OCT4, NANOG and SOX2 were reduced. Interestingly, the mRNA levels of these pluripotency factors were not affected in LRRN1 silenced cells, but protein half-lives were substantially shortened. Furthermore, we found LRRN1 silencing led to nuclear export and proteasomal degradation of all three pluripotency factors. In addition, the effects on nuclear export were mediated by AKT phosphorylation. These results suggest that LRRN1 plays an important role in maintaining the protein stability of pluripotency factors through AKT phosphorylation, thus maintaining hESC self-renewal capacity and pluripotency. Overall, we found that LRRN1 contributes to pluripotency of hESC by preventing translocation of OCT4, NANOG and SOX2 from nucleus to cytoplasm, thereby lessening their post-translational modification and degradation. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  2. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization.

    PubMed

    Vanz, Ana Ls; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-04-04

    Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-beta-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The

  3. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization

    PubMed Central

    Vanz, Ana LS; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-01-01

    Background Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Results Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. Conclusion The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large

  4. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

    PubMed

    Martín-Sánchez, Paloma; Luengo, Alicia; Griera, Mercedes; Orea, María Jesús; López-Olañeta, Marina; Chiloeches, Antonio; Lara-Pezzi, Enrique; de Frutos, Sergio; Rodríguez-Puyol, Manuel; Calleros, Laura; Rodríguez-Puyol, Diego

    2018-02-01

    Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras -/- ) and control wild-type (H -ras +/+ ) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iβ protein expression in H -ras -/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras -/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3β-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iβ overexpression in H -ras -/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iβ overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

  5. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    PubMed

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  6. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells*

    PubMed Central

    Schauwecker, Suzanne M.; Kim, J. Julie; Licht, Jonathan D.; Clevenger, Charles V.

    2017-01-01

    The hormone prolactin (PRL) contributes to breast cancer pathogenesis through various signaling pathways, one of the most notable being the JAK2/signal transducer and activator of transcription 5 (STAT5) pathway. PRL-induced activation of the transcription factor STAT5 results in the up-regulation of numerous genes implicated in breast cancer pathogenesis. However, the molecular mechanisms that enable STAT5 to access the promoters of these genes are not well understood. Here, we show that PRL signaling induces chromatin decompaction at promoter DNA, corresponding with STAT5 binding. The chromatin-modifying protein high mobility group nucleosomal binding domain 2 (HMGN2) specifically promotes STAT5 accessibility at promoter DNA by facilitating the dissociation of the linker histone H1 in response to PRL. Knockdown of H1 rescues the decrease in PRL-induced transcription following HMGN2 knockdown, and it does so by allowing increased STAT5 recruitment. Moreover, H1 and STAT5 are shown to function antagonistically in regulating PRL-induced transcription as well as breast cancer cell biology. While reduced STAT5 activation results in decreased PRL-induced transcription and cell proliferation, knockdown of H1 rescues both of these effects. Taken together, we elucidate a novel mechanism whereby the linker histone H1 prevents STAT5 binding at promoter DNA, and the PRL-induced dissociation of H1 mediated by HMGN2 is necessary to allow full STAT5 recruitment and promote the biological effects of PRL signaling. PMID:28035005

  7. Role of carbohydrate in multimeric structure of factor VIII/von Willebrand factor protein.

    PubMed Central

    Gralnick, H R; Williams, S B; Rick, M E

    1983-01-01

    The carbohydrate moiety of the factor VIII/von Willebrand (vW) factor protein is important in the expression of vW factor activity and the intravascular survival of the protein. Studies of normal human factor VIII/vW factor protein indicate that there is a requirement of a full complement of penultimate galactose for the maintenance of a normal multimeric structure. Release of penultimate galactose by beta-galactosidase or modification by galactose oxidase results in loss of the largest molecular weight multimers and increased numbers of intermediate and smaller multimers. In contrast, terminal galactose on the factor VIII/vW factor protein does not appear to play a significant role in the maintenance of the multimer organization. The abnormalities in multimeric structure and molecular size were demonstrated by NaDodSO4/polyacrylamide/agarose gel electrophoresis, NaDodSO4/glyoxyl-agarose electrophoresis, and sucrose density ultracentrifugation. These studies indicate that the penultimate galactose plays a role in the maintenance of the largest multimers of the factor VIII/vW factor protein. This may explain why, in some patients with variant forms of vW disease, a carbohydrate abnormality also may affect the multimeric structure of the plasma factor VIII/vW factor protein. Images PMID:6601805

  8. Non-covalent Small-Molecule Kelch-like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Inhibitors and Their Potential for Targeting Central Nervous System Diseases.

    PubMed

    Pallesen, Jakob S; Tran, Kim T; Bach, Anders

    2018-05-29

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) has a protective effect against oxidative stress and plays a major role in inflammation and central nervous system (CNS) diseases. Inhibition of the protein-protein interaction (PPI) between Nrf2 and its repressor protein, Kelch-like ECH-associated protein 1 (Keap1), leads to translocation of Nrf2 from the cytosol to the nucleus and expression of detoxifying antioxidant enzymes. To date, several non-covalent small-molecule Keap1-Nrf2 inhibitors have been identified; however, many of them contain carboxylic acids and are rather large in size, which likely prevents or decreases CNS permeability. This Perspective describes current small-molecule Keap1-Nrf2 inhibitors with experimental evidence for the ability to inhibit the Keap1-Nrf2 interaction by binding to Keap1 in a non-covalent manner. Binding data, biostructural studies, and biological activity are summarized for the inhibitors, and their potential as CNS tool compounds is discussed by analyzing physicochemical properties, including CNS multiparameter optimization (MPO) scoring algorithms. Finally, several strategies for identifying CNS-targeting Keap1 inhibitors are described.

  9. Complement factor H: spatial and temporal expression and localization in the eye.

    PubMed

    Mandal, Md Nawajes A; Ayyagari, Radha

    2006-09-01

    Complement factor H (CFH) is a component of the mammalian complement system, which regulates the alternative pathway of complement activation and protects the host cell from inappropriate complement activation. CFH is a key regulator of innate immunity, and CFH deficiency leads to membranoproliferative glomerulonephritis type II. A variation in human CFH, Y402H, has been shown to be associated with an increased risk for age-related macular degeneration. The authors describe studies on the spatial and temporal expression of the CFH gene and localization of this protein in ocular tissues to gain insight into its role in the eye. CFH expression in human and mouse tissues was studied by quantitative RT-PCR and Western blot analysis, and localization of CFH was studied by immunohistochemical analysis followed by fluorescence microscopy. In human and mouse, CFH expression was found to be similar to the highest level of expression in the liver. In ocular tissue, CFH was detected in the distalmost optic nerve (3 mm) cut from the scleral surface of the eyeball, sclera, RPE-choroid, retina, lens, and ciliary body. In mouse, Cfh expression was observed from early embryonic stages, and in the eye its expression increased with age. A significant level of CFH expression is maintained in different ocular tissues during development and aging. Sustained high levels of CFH expression in eye tissues suggest that this protein may play a role in protecting these tissues from indiscriminate complement activation and inflammatory insult.

  10. Identification of 80K-H as a protein involved in GLUT4 vesicle trafficking

    PubMed Central

    2005-01-01

    PKCζ (protein kinase Cζ) is a serine/threonine protein kinase controlled by insulin, various growth factors and phosphoinositide 3-kinase. It has been implicated in controlling glucose transport in response to insulin by the translocation of GLUT4-(glucose transporter 4) containing vesicles to the plasma membrane in stimulated cells. How PKCζ modulates GLUT4 vesicle trafficking remains unknown. A yeast two-hybrid screen using full-length human PKCζ identified 80K-H protein as an interactor with PKCζ. GST (glutathione S-transferase) pull-down assays with GST-tagged 80K-H constructs confirmed the interaction and showed that the N-terminal portion of 80K-H was not required for the interaction. Immunoprecipitates of endogenous PKCζ from Cho cells, 3T3-L1 adipocytes or L6 myotubes contained endogenous 80K-H, demonstrating a physiological interaction. Insulin stimulation enhanced the association 3–5-fold. Immunoprecipitates of endogenous 80K-H contained endogenous munc18c and immunoprecipitates of endogenous munc18c contained endogenous PKCζ, with insulin markedly increasing the amount of co-immunoprecipitated protein in each case. These results show that insulin triggers interactions in vivo between PKCζ, 80K-H and munc18c. Overexpression of 80K-H constructs mimicked the action of insulin in stimulating both glucose uptake and translocation of Myc-tagged GLUT4 in Cho cells, with the level of effect proportional to the ability of the constructs to associate with munc18c. These results identify 80K-H as a new player involved in GLUT4 vesicle transport and identify a link between a kinase involved in the insulin signalling cascade, PKCζ, and a known component of the GLUT4 vesicle trafficking pathway, munc18c. The results suggest a model whereby insulin triggers the formation of a PKCζ–80K-H–munc18c complex that enhances GLUT4 translocation to the plasma membrane. PMID:15707389

  11. Plasma Proteome Dynamics: Analysis of Lipoproteins and Acute Phase Response Proteins with 2H2O Metabolic Labeling*

    PubMed Central

    Li, Ling; Willard, Belinda; Rachdaoui, Nadia; Kirwan, John P.; Sadygov, Rovshan G.; Stanley, William C.; Previs, Stephen; McCullough, Arthur J.; Kasumov, Takhar

    2012-01-01

    Understanding the pathologies related to the regulation of protein metabolism requires methods for studying the kinetics of individual proteins. We developed a 2H2O metabolic labeling technique and software for protein kinetic studies in free living organisms. This approach for proteome dynamic studies requires the measurement of total body water enrichments by GC-MS, isotopic distribution of the tryptic peptide by LC-MS/MS, and estimation of the asymptotical number of deuterium incorporated into a peptide by software. We applied this technique to measure the synthesis rates of several plasma lipoproteins and acute phase response proteins in rats. Samples were collected at different time points, and proteins were separated by a gradient gel electrophoresis. 2H labeling of tryptic peptides was analyzed by ion trap tandem mass spectrometry (LTQ MS/MS) for measurement of the fractional synthesis rates of plasma proteins. The high sensitivity of LTQ MS in zoom scan mode in combination with 2H label amplification in proteolytic peptides allows detection of the changes in plasma protein synthesis related to animal nutritional status. Our results demonstrate that fasting has divergent effects on the rate of synthesis of plasma proteins, increasing synthesis of ApoB 100 but decreasing formation of albumin and fibrinogen. We conclude that this technique can effectively measure the synthesis of plasma proteins and can be used to study the regulation of protein homeostasis under physiological and pathological conditions. PMID:22393261

  12. Calpain activation by ROS mediates human ether-a-go-go-related gene protein degradation by intermittent hypoxia.

    PubMed

    Wang, N; Kang, H S; Ahmmed, G; Khan, S A; Makarenko, V V; Prabhakar, N R; Nanduri, J

    2016-03-01

    Human ether-a-go-go-related gene (hERG) channels conduct delayed rectifier K(+) current. However, little information is available on physiological situations affecting hERG channel protein and function. In the present study we examined the effects of intermittent hypoxia (IH), which is a hallmark manifestation of sleep apnea, on hERG channel protein and function. Experiments were performed on SH-SY5Y neuroblastoma cells, which express hERG protein. Cells were exposed to IH consisting of alternating cycles of 30 s of hypoxia (1.5% O2) and 5 min of 20% O2. IH decreased hERG protein expression in a stimulus-dependent manner. A similar reduction in hERG protein was also seen in adrenal medullary chromaffin cells from IH-exposed neonatal rats. The decreased hERG protein was associated with attenuated hERG K(+) current. IH-evoked hERG protein degradation was not due to reduced transcription or increased proteosome/lysomal degradation. Rather it was mediated by calcium-activated calpain proteases. Both COOH- and NH2-terminal sequences of the hERG protein were the targets of calpain-dependent degradation. IH increased reactive oxygen species (ROS) levels, intracellular Ca(2+) concentration ([Ca(2+)]i), calpain enzyme activity, and hERG protein degradation, and all these effects were prevented by manganese-(111)-tetrakis-(1-methyl-4-pyridyl)-porphyrin pentachloride, a membrane-permeable ROS scavenger. These results demonstrate that activation of calpains by ROS-dependent elevation of [Ca(2+)]i mediates hERG protein degradation by IH. Copyright © 2016 the American Physiological Society.

  13. Targeting pH regulating proteins for cancer therapy-Progress and limitations.

    PubMed

    Parks, Scott K; Pouysségur, Jacques

    2017-04-01

    Tumour acidity induced by metabolic alterations and incomplete vascularisation sets cancer cells apart from normal cellular physiology. This distinguishing tumour characteristic has been an area of intense study, as cellular pH (pH i ) disturbances disrupt protein function and therefore multiple cellular processes. Tumour cells effectively utilise pH i regulating machinery present in normal cells with enhancements provided by additional oncogenic or hypoxia induced protein modifications. This overall improvement of pH regulation enables maintenance of an alkaline pH i in the continued presence of external acidification (pH e ). Considerable experimentation has revealed targets that successfully disrupt tumour pH i regulation in efforts to develop novel means to weaken or kill tumour cells. However, redundancy in these pH-regulating proteins, which include Na + /H + exchangers (NHEs), carbonic anhydrases (CAs), Na + /HCO 3 - co-transporters (NBCs) and monocarboxylate transporters (MCTs) has prevented effective disruption of tumour pH i when individual protein targeting is performed. Here we synthesise recent advances in understanding both normoxic and hypoxic pH regulating mechanisms in tumour cells with an ultimate focus on the disruption of tumour growth, survival and metastasis. Interactions between tumour acidity and other cell types are also proving to be important in understanding therapeutic applications such as immune therapy. Promising therapeutic developments regarding pH manipulation along with current limitations are highlighted to provide a framework for future research directives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Dietary sources of animal and plant protein intake among Flemish preschool children and the association with socio-economic and lifestyle-related factors

    PubMed Central

    2011-01-01

    Background The aims of this study were to assess the intake of animal, plant and food group-specific protein, and to investigate their associations with socio-economic and lifestyle-related factors in Flemish preschoolers. Methods Three-day estimated dietary records were collected from 661 preschoolers aged 2.5-6.5 y (338 boys and 323 girls). Multiple linear regression analysis was used to investigate the association between animal, plant, and food group-specific protein intake and socio-economic and lifestyle factors. Results Animal proteins (mean 38 g/d) were the main source of total protein (mean 56 g/d), while mean plant protein intake amounted to 18 g/d. The group of meat, poultry, fish and eggs was the main contributor (51%) to animal protein intake, followed by milk and milk products (35%). Bread and cereals (41%) contributed most to the plant protein intake, followed by low-nutritious, energy-dense foods (21%). With higher educated fathers and mothers as reference, respectively, preschoolers with lower secondary and secondary paternal education had lower animal, dairy-, and meat-derived protein intakes, and those with lower secondary and secondary maternal education consumed less plant, and bread and cereal-derived proteins. Compared to children with high physical activity levels, preschoolers with low and moderate physical activity had lower animal and plant protein intakes. Significantly higher potatoes and grains-, and fish- derived proteins were reported for children of smoking mothers and fathers, respectively, compared to those of non-smoking mothers and fathers. Conclusions The total protein intake of Flemish preschoolers was sufficient according to the recommendations of the Belgian Superior Health Council. Parental level of education and smoking status might play a role in the sources of children's dietary proteins. PMID:21943312

  15. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Boo-Ja; Park, Chang-Jin; Kim, Sung-Kyu

    2006-05-26

    We find that salicylic acid and ethephon treatment in hot pepper increases the expression of a putative basic/leucine zipper (bZIP) transcription factor gene, CabZIP1. CabZIP1 mRNA is expressed ubiquitously in various organs. The green fluorescent protein-fused transcription factor, CabZIP1::GFP, can be specifically localized to the nucleus, an action that is consistent with the presence of a nuclear localization signal in its protein sequence. Transient overexpression of the CabZIP1 transcription factor results in an increase in PR-1 transcripts level in Nicotiana benthamiana leaves. Using chromatin immunoprecipitation, we demonstrate that CabZIP1 binds to the G-box elements in native promoter of the hotmore » pepper pathogenesis-related protein 1 (CaPR-1) gene in vivo. Taken together, our results suggest that CabZIP1 plays a role as a transcriptional regulator of the CaPR-1 gene.« less

  16. Changes in pH and NADPH regulate the DNA binding activity of neuronal PAS domain protein 2, a mammalian circadian transcription factor.

    PubMed

    Yoshii, Katsuhiro; Tajima, Fumihisa; Ishijima, Sumio; Sagami, Ikuko

    2015-01-20

    Neuronal PAS domain protein 2 (NPAS2) is a core clock transcription factor that forms a heterodimer with BMAL1 to bind the E-box in the promoter of clock genes and is regulated by various environmental stimuli such as heme, carbon monoxide, and NAD(P)H. In this study, we investigated the effects of pH and NADPH on the DNA binding activity of NPAS2. In an electrophoretic mobility shift (EMS) assay, the pH of the reaction mixture affected the DNA binding activity of the NPAS2/BMAL1 heterodimer but not that of the BMAL1/BMAL1 homodimer. A change in pH from 7.0 to 7.5 resulted in a 1.7-fold increase in activity in the absence of NADPH, and NADPH additively enhanced the activity up to 2.7-fold at pH 7.5. The experiments using truncated mutants revealed that N-terminal amino acids 1-61 of NPAS2 were sufficient to sense the change in both pH and NADPH. We further analyzed the kinetics of formation and DNA binding of the NPAS2/BMAL1 heterodimer at various pH values. In the absence of NADPH, a change in pH from 6.5 to 8.0 decreased the KD(app) value of the E-box from 125 to 22 nM, with an 8-fold increase in the maximal level of DNA binding for the NPAS2/BMAL1 heterodimer. The addition of NADPH resulted in a further decrease in KD(app) to 9 nM at pH 8.0. Furthermore, NPAS2-dependent transcriptional activity in a luciferase assay using NIH3T3 cells also increased with the pH of the culture medium. These results suggest that NPAS2 has a role as a pH and metabolite sensor in regulating circadian rhythms.

  17. pH-dependent interaction and resultant structures of silica nanoparticles and lysozyme protein.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Callow, P

    2014-02-18

    Small-angle neutron scattering (SANS) and UV-visible spectroscopy studies have been carried out to examine pH-dependent interactions and resultant structures of oppositely charged silica nanoparticles and lysozyme protein in aqueous solution. The measurements were carried out at fixed concentration (1 wt %) of three differently sized silica nanoparticles (8, 16, and 26 nm) over a wide concentration range of protein (0-10 wt %) at three different pH values (5, 7, and 9). The adsorption curve as obtained by UV-visible spectroscopy shows exponential behavior of protein adsorption on nanoparticles. The electrostatic interaction enhanced by the decrease in the pH between the nanoparticle and protein (isoelectric point ∼11.4) increases the adsorption coefficient on nanoparticles but decreases the overall amount protein adsorbed whereas the opposite behavior is observed with increasing nanoparticle size. The adsorption of protein leads to the protein-mediated aggregation of nanoparticles. These aggregates are found to be surface fractals at pH 5 and change to mass fractals with increasing pH and/or decreasing nanoparticle size. Two different concentration regimes of interaction of nanoparticles with protein have been observed: (i) unaggregated nanoparticles coexisting with aggregated nanoparticles at low protein concentrations and (ii) free protein coexisting with aggregated nanoparticles at higher protein concentrations. These concentration regimes are found to be strongly dependent on both the pH and nanoparticle size.

  18. Prion Protein M129V Polymorphism Affects Retrieval-Related Brain Activity

    ERIC Educational Resources Information Center

    Buchmann, Andreas; Mondadori, Christian R. A.; Hanggi, Jurgen; Aerni, Amanda; Vrticka, Pascal; Luechinger, Roger; Boesiger, Peter; Hock, Christoph; Nitsch, Roger M.; de Quervain, Dominique J.-F.; Papassotiropoulos, Andreas; Henke, Katharina

    2008-01-01

    The prion protein Met129Val polymorphism has recently been related to human long-term memory with carriers of either the 129[superscript MM] or the 129[superscript MV] genotype recalling 17% more words than 129[superscript VV] carriers at 24 h following learning. Here, we sampled genotype differences in retrieval-related brain activity at 30 min…

  19. DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a

    PubMed Central

    Walters, Kylie J.; Lech, Patrycja J.; Goh, Amanda M.; Wang, Qinghua; Howley, Peter M.

    2003-01-01

    The Rad23 family of proteins, including the human homologs hHR23a and hHR23b, stimulates nucleotide excision repair and has been shown to provide a novel link between proteasome-mediated protein degradation and DNA repair. In this work, we illustrate how the proteasomal subunit S5a regulates hHR23a protein structure. By using NMR spectroscopy, we have elucidated the structure and dynamic properties of the 40-kDa hHR23a protein and show it to contain four structured domains connected by flexible linker regions. In addition, we reveal that these domains interact in an intramolecular fashion, and by using residual dipolar coupling data in combination with chemical shift perturbation analysis, we present the hHR23a structure. By itself, hHR23a adopts a closed conformation defined by the interaction of an N-terminal ubiquitin-like domain with two ubiquitin-associated domains. Interestingly, binding of the proteasomal subunit S5a disrupts the hHR23a interdomain interactions and thereby causes it to adopt an opened conformation. PMID:14557549

  20. Molecular comparison of the structural proteins encoding gene clusters of two related Lactobacillus delbrueckii bacteriophages.

    PubMed Central

    Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T

    1993-01-01

    Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043

  1. The Effect of Membrane Environment on Surfactant Protein C Stability Studied by Constant-pH Molecular Dynamics.

    PubMed

    Carvalheda, Catarina A; Campos, Sara R R; Baptista, António M

    2015-10-26

    Pulmonary surfactant protein C (SP-C) is a small peptide with two covalently linked fatty acyl chains that plays a crucial role in the formation and stabilization of the pulmonary surfactant reservoirs during the compression and expansion steps of the respiratory cycle. Although its function is known to be tightly related to its highly hydrophobic character and key interactions maintained with specific lipid components, much is left to understand about its molecular mechanism of action. Also, although it adopts a mainly helical structure while associated with the membrane, factors as pH variation and deacylation have been shown to affect its stability and function. In this work, the conformational behavior of both the acylated and deacylated SP-C isoforms was studied in a DPPC bilayer under different pH conditions using constant-pH molecular dynamics simulations. Our findings show that both protein isoforms are remarkably stable over the studied pH range, even though the acylated isoform exhibits a labile helix-turn-helix motif rarely observed in the other isoform. We estimate similar tilt angles for the two isoforms over the studied pH range, with a generally higher degree of internalization of the basic N-terminal residues in the deacylated case, and observe and discuss some protonation-conformation coupling effects. Both isoforms establish contacts with the surrounding lipid molecules (preferentially with the sn-2 ester bonds) and have a local effect on the conformational behavior of the surrounding lipid molecules, the latter being more pronounced for acylated SP-C.

  2. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  3. 1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins

    NASA Astrophysics Data System (ADS)

    Schubeis, Tobias; Le Marchand, Tanguy; Andreas, Loren B.; Pintacuda, Guido

    2018-02-01

    Building on a decade of continuous advances of the community, the recent development of very fast (60 kHz and above) magic-angle spinning (MAS) probes has revolutionised the field of solid-state NMR. This new spinning regime reduces the 1H-1H dipolar couplings, so that direct detection of the larger magnetic moment available from 1H is now possible at high resolution, not only in deuterated molecules but also in fully-protonated substrates. Such capabilities allow rapid "fingerprinting" of samples with a ten-fold reduction of the required sample amounts with respect to conventional approaches, and permit extensive, robust and expeditious assignment of small-to-medium sized proteins (up to ca. 300 residues), and the determination of inter-nuclear proximities, relative orientations of secondary structural elements, protein-cofactor interactions, local and global dynamics. Fast MAS and 1H detection techniques have nowadays been shown to be applicable to membrane-bound systems. This paper reviews the strategies underlying this recent leap forward in sensitivity and resolution, describing its potential for the detailed characterization of membrane proteins.

  4. Human HMG box transcription factor HBP1: a role in hCD2 LCR function.

    PubMed Central

    Zhuma, T; Tyrrell, R; Sekkali, B; Skavdis, G; Saveliev, A; Tolaini, M; Roderick, K; Norton, T; Smerdon, S; Sedgwick, S; Festenstein, R; Kioussis, D

    1999-01-01

    The locus control region (LCR) of the human CD2 gene (hCD2) confers T cell-specific, copy-dependent and position-independent gene expression in transgenic mice. This LCR consists of a strong T cell-specific enhancer and an element without enhancer activity (designated HSS3), which is required for prevention of position effect variegation (PEV) in transgenic mice. Here, we identified the HMG box containing protein-1 (HBP1) as a factor binding to HSS3 of the hCD2 LCR. Within the LCR, HBP1 binds to a novel TTCATTCATTCA sequence that is higher in affinity than other recently reported HBP1-binding sites. Mice transgenic for a hCD2 LCR construct carrying a deletion of the HBP1-binding sequences show a propensity for PEV if the transgene integrates in a heterochromatic region of the chromosome such as the centromere or telomere. We propose that HBP1 plays an important role in chromatin opening and remodelling activities by binding to and bending the DNA, thus allowing DNA-protein and/or protein-protein interactions, which increase the probability of establishing an active locus. PMID:10562551

  5. PHEPS: web-based pH-dependent Protein Electrostatics Server

    PubMed Central

    Kantardjiev, Alexander A.; Atanasov, Boris P.

    2006-01-01

    PHEPS (pH-dependent Protein Electrostatics Server) is a web service for fast prediction and experiment planning support, as well as for correlation and analysis of experimentally obtained results, reflecting charge-dependent phenomena in globular proteins. Its implementation is based on long-term experience (PHEI package) and the need to explain measured physicochemical characteristics at the level of protein atomic structure. The approach is semi-empirical and based on a mean field scheme for description and evaluation of global and local pH-dependent electrostatic properties: protein proton binding; ionic sites proton population; free energy electrostatic term; ionic groups proton affinities (pKa,i) and their Coulomb interaction with whole charge multipole; electrostatic potential of whole molecule at fixed pH and pH-dependent local electrostatic potentials at user-defined set of points. The speed of calculation is based on fast determination of distance-dependent pair charge-charge interactions as empirical three exponential function that covers charge–charge, charge–dipole and dipole–dipole contributions. After atomic coordinates input, all standard parameters are used as defaults to facilitate non-experienced users. Special attention was given to interactive addition of non-polypeptide charges, extra ionizable groups with intrinsic pKas or fixed ions. The output information is given as plain-text, readable by ‘RasMol’, ‘Origin’ and the like. The PHEPS server is accessible at . PMID:16845042

  6. The Importance of Protein-Protein Interactions on the pH-Induced Conformational Changes of Bovine Serum Albumin: A Small-Angle X-Ray Scattering Study

    PubMed Central

    Barbosa, Leandro R.S.; Ortore, Maria Grazia; Spinozzi, Francesco; Mariani, Paolo; Bernstorff, Sigrid; Itri, Rosangela

    2010-01-01

    Abstract The combined effects of concentration and pH on the conformational states of bovine serum albumin (BSA) are investigated by small-angle x-ray scattering. Serum albumins, at physiological conditions, are found at concentrations of ∼35–45 mg/mL (42 mg/mL in the case of humans). In this work, BSA at three different concentrations (10, 25, and 50 mg/mL) and pH values (2.0–9.0) have been studied. Data were analyzed by means of the Global Fitting procedure, with the protein form factor calculated from human serum albumin (HSA) crystallographic structure and the interference function described, considering repulsive and attractive interaction potentials within a random phase approximation. Small-angle x-ray scattering data show that BSA maintains its native state from pH 4.0 up to 9.0 at all investigated concentrations. A pH-dependence of the absolute net protein charge is shown and the charge number per BSA is quantified to 10(2), 8(1), 13(2), 20(2), and 26(2) for pH values 4.0, 5.4, 7.0, 8.0, and 9.0, respectively. The attractive potential diminishes as BSA concentration increases. The coexistence of monomers and dimers is observed at 50 mg/mL and pH 5.4, near the BSA isoelectric point. Samples at pH 2.0 show a different behavior, because BSA overall shape changes as a function of concentration. At 10 mg/mL, BSA is partially unfolded and a strong repulsive protein-protein interaction occurs due to the high amount of exposed charge. At 25 and 50 mg/mL, BSA undergoes some re-folding, which likely results in a molten-globule state. This work concludes by confirming that the protein concentration plays an important role on the pH-unfolded BSA state, due to a delicate compromise between interaction forces and crowding effects. PMID:20085727

  7. Regulation of insulin-like growth factor binding proteins in young growing animals by alteration of energy status.

    PubMed

    Dauncey, M J; Rudd, B T; White, D A; Shakespear, R A

    1993-09-01

    The regulation of plasma insulin-like growth factor binding proteins (IGFBPs) by energy status has been assessed in 2-month-old pigs. Energy balance was modified by altering thermoregulatory demand and energy intake, with litter-mates being kept for several weeks at either 35 or 10 degrees C on a high (H) or low (L) level of food intake (where H = 2L); plasma samples were taken 20-24 h after the last meal. The two major forms of circulating IGFBP, as estimated by Western blot analysis, were identified putatively as IGFBP-2 and IGFBP-3 (relative molecular weights of 34 and 40-45 kDa respectively). There were significant differences in IGFBP profiles between the four treatment groups of 35H, 35L, 10H and 10L: the 40-45 kDa IGFBP (putative IGFBP-3) was elevated both in the warm and on a high food intake (P < 0.001), and there was a marked reciprocal relation between the 40-45 and 34 kDa IGFBPs. The relative concentration of the 34 kDa IGFBP (putative IGFBP-2) was greatest in the 10L and least in the 35H group. It is concluded that long-term alterations in energy balance, induced by changes in either intake or thermoregulatory demand, can significantly affect the plasma profile of IGFBPs during the first two months of life.

  8. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains.

    PubMed

    Brayer, Kathryn J; Segal, David J

    2008-01-01

    Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein-protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.

  9. Human granulocyte colony-stimulating factor (hG-CSF) expression in plastids of Lactuca sativa.

    PubMed

    Sharifi Tabar, Mehdi; Habashi, Ali Akbar; Rajabi Memari, Hamid

    2013-01-01

    Human granulocyte colony-stimulating factor (hG-CSF) can serve as valuable biopharmaceutical for research and treatment of the human blood cancer. Transplastomic plants have been emerged as a new and high potential candidate for production of recombinant biopharmaceutical proteins in comparison with transgenic plants due to extremely high level expression, biosafety and many other advantages. hG-CSF gene was cloned into pCL vector between prrn16S promoter and TpsbA terminator. The recombinant vector was coated on nanogold particles and transformed to lettuce chloroplasts through biolistic method. Callogenesis and regeneration of cotyledonary explants were obtained by Murashige and Skoog media containing 6-benzylaminopurine and 1-naphthaleneacetic acid hormones. The presence of hG-CSF gene in plastome was studied with four specific PCR primers and expression by Western immunoblotting. hG-CSF gene cloning was confirmed by digestion and sequencing. Transplastomic lettuce lines were regenerated and subjected to molecular analysis. The presence of hG-CSF in plastome was confirmed by PCR using specific primers designed from the plastid genome. Western immunoblotting of extracted protein from transplastomic plants showed a 20-kDa band, which verified the expression of recombinant protein in lettuce chloroplasts. This study is the first report that successfully express hG-CSF gene in lettuce chloroplast. The lettuce plastome can provide a cheap and safe expression platform for producing valuable biopharmaceuticals for research and treatment.

  10. Dissecting protein:protein interactions between transcription factors with an RNA aptamer.

    PubMed Central

    Tian, Y; Adya, N; Wagner, S; Giam, C Z; Green, M R; Ellington, A D

    1995-01-01

    Nucleic acid aptamers isolated from random sequence pools have generally proven useful at inhibiting the interactions of nucleic acid binding proteins with their cognate nucleic acids. In order to develop reagents that could also be used to study protein:protein interactions, we have used in vitro selection to search for RNA aptamers that could interact with the transactivating protein Tax from human T-cell leukemia virus. Tax does not normally bind to nucleic acids, but instead stimulates transcription by interacting with a variety of cellular transcription factors, including the cyclic AMP-response element binding protein (CREB), NF-kappa B, and the serum response factor (SRF). Starting from a pool of greater than 10(13) different RNAs with a core of 120 random sequence positions, RNAs were selected for their ability to be co-retained on nitrocellulose filters with Tax. After five cycles of selection and amplification, a single nucleic acid species remained. This aptamer was found to bind Tax with high affinity and specificity, and could disrupt complex formation between Tax and NF-kappa B, but not with SRF. The differential effects of our aptamer probe on protein:protein interactions suggest a model for how the transcription factor binding sites on the surface of the Tax protein are organized. This model is consistent with data from a variety of other studies. PMID:7489503

  11. Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding

    PubMed Central

    Pinto, Antônio F. M.; Moresco, James; Yates, John R.; da Silva Vaz, Itabajara; Mulenga, Albert

    2016-01-01

    Ixodes scapularis is the most medically important tick species and transmits five of the 14 reportable human tick borne disease (TBD) agents in the USA. This study describes LC-MS/MS identification of 582 tick- and 83 rabbit proteins in saliva of I. scapularis ticks that fed for 24, 48, 72, 96, and 120 h, as well as engorged but not detached (BD), and spontaneously detached (SD). The 582 tick proteins include proteases (5.7%), protease inhibitors (7.4%), unknown function proteins (22%), immunity/antimicrobial (2.6%), lipocalin (3.1%), heme/iron binding (2.6%), extracellular matrix/ cell adhesion (2.2%), oxidant metabolism/ detoxification (6%), transporter/ receptor related (3.2%), cytoskeletal (5.5%), and housekeeping-like (39.7%). Notable observations include: (i) tick saliva proteins of unknown function accounting for >33% of total protein content, (ii) 79% of proteases are metalloproteases, (iii) 13% (76/582) of proteins in this study were found in saliva of other tick species and, (iv) ticks apparently selectively inject functionally similar but unique proteins every 24 h, which we speculate is the tick's antigenic variation equivalent strategy to protect important tick feeding functions from host immune system. The host immune responses to proteins present in 24 h I. scapularis saliva will not be effective at later feeding stages. Rabbit proteins identified in our study suggest the tick's strategic use of host proteins to modulate the feeding site. Notably fibrinogen, which is central to blood clotting and wound healing, was detected in high abundance in BD and SD saliva, when the tick is preparing to terminate feeding and detach from the host. A remarkable tick adaptation is that the feeding lesion is completely healed when the tick detaches from the host. Does the tick concentrate fibrinogen at the feeding site to aide in promoting healing of the feeding lesion? Overall, these data provide broad insight into molecular mechanisms regulating different tick

  12. The PHOTOSYNTHESIS AFFECTED MUTANT68–LIKE Protein Evolved from a PSII Assembly Factor to Mediate Assembly of the Chloroplast NAD(P)H Dehydrogenase Complex in Arabidopsis[W

    PubMed Central

    Armbruster, Ute; Rühle, Thilo; Kreller, Renate; Strotbek, Christoph; Zühlke, Jessica; Tadini, Luca; Blunder, Thomas; Hertle, Alexander P.; Qi, Yafei; Rengstl, Birgit; Nickelsen, Jörg; Frank, Wolfgang; Leister, Dario

    2013-01-01

    In vascular plants, the chloroplast NAD(P)H dehydrogenase complex (NDH-C) is assembled from five distinct subcomplexes, the membrane-spanning (subM) and the luminal (subL) subcomplexes, as well as subA, subB, and subE. The assembly process itself is poorly understood. Vascular plant genomes code for two related intrinsic thylakoid proteins, PHOTOSYNTHESIS-AFFECTED MUTANT68 (PAM68), a photosystem II assembly factor, and PHOTOSYNTHESIS-AFFECTED MUTANT68-LIKE (PAM68L). As we show here, inactivation of Arabidopsis thaliana PAM68L in the pam68l-1 mutant identifies PAM68L as an NDH-C assembly factor. The mutant lacks functional NDH holocomplexes and accumulates three distinct NDH-C assembly intermediates (subB, subM, and subA+L), which are also found in mutants defective in subB assembly (ndf5) or subM expression (CHLORORESPIRATORY REDUCTION4-3 mutant). NDH-C assembly in the cyanobacterium Synechocystis sp PCC 6803 and the moss Physcomitrella patens does not require PAM68 proteins, as demonstrated by the analysis of knockout lines for the single-copy PAM68 genes in these species. We conclude that PAM68L mediates the attachment of subB- and subM-containing intermediates to a complex that contains subA and subL. The evolutionary appearance of subL and PAM68L during the transition from mosses like P. patens to flowering plants suggests that the associated increase in the complexity of the NDH-C might have been facilitated by the recruitment of evolutionarily novel assembly factors like PAM68L. PMID:24096342

  13. Inhibition of endogenous heat shock protein 70 attenuates inducible nitric oxide synthase induction via disruption of heat shock protein 70/Na(+) /H(+) exchanger 1-Ca(2+) -calcium-calmodulin-dependent protein kinase II/transforming growth factor β-activated kinase 1-nuclear factor-κB signals in BV-2 microglia.

    PubMed

    Huang, Chao; Lu, Xu; Wang, Jia; Tong, Lijuan; Jiang, Bo; Zhang, Wei

    2015-08-01

    Inducible nitric oxide synthase (iNOS) critically contributes to inflammation and host defense. The inhibition of heat shock protein 70 (Hsp70) prevents iNOS induction in lipopolysaccharide (LPS)-stimulated macrophages. However, the role and mechanism of endogenous Hsp70 in iNOS induction in microglia remains unclear. This study addresses this issue in BV-2 microglia, showing that Hsp70 inhibition or knockdown prevents LPS-induced iNOS protein expression and nitric oxide production. Real-time PCR experiments showed that LPS-induced iNOS mRNA transcription was blocked by Hsp70 inhibition. Further studies revealed that the inhibition of Hsp70 attenuated LPS-stimulated nuclear translocation and phosphorylation of nuclear factor (NF)-κB as well as the degradation of inhibitor of κB (IκB)-α and phosphorylation of IκB kinase β (IKKβ). This prevention effect of Hsp70 inhibition on IKKβ-NF-κB activation was found to be dependent on the Ca(2+) /calcium-calmodulin-dependent protein kinase II (CaMKII)/transforming growth factor β-activated kinase 1 (TAK1) signals based on the following observations: 1) chelation of intracellular Ca(2+) or inhibition of CaMKII reduced LPS-induced increases in TAK1 phosphorylation and 2) Hsp70 inhibition reduced LPS-induced increases in CaMKII/TAK1 phosphorylation, intracellular pH value, [Ca(2+) ]i , and CaMKII/TAK1 association. Mechanistic studies showed that Hsp70 inhibition disrupted the association between Hsp70 and Na(+) /H(+) exchanger 1 (NHE1), which is an important exchanger responsible for Ca(2+) influx in LPS-stimulated cells. These studies demonstrate that the inhibition of endogenous Hsp70 attenuates the induction of iNOS, which likely occurs through the disruption of NHE1/Hsp70-Ca(2+) -CaMKII/TAK1-NF-κB signals in BV-2 microglia, providing further insight into the functions of Hsp70 in the CNS. © 2015 Wiley Periodicals, Inc.

  14. Detection of specific protein-protein interactions in nanocages by engineering bipartite FlAsH binding sites.

    PubMed

    Cornell, Thomas A; Fu, Jing; Newland, Stephanie H; Orner, Brendan P

    2013-11-06

    Proteins that form cage-like structures have been of much recent cross-disciplinary interest due to their application to bioconjugate and materials chemistry, their biological functions spanning multiple essential cellular processes, and their complex structure, often defined by highly symmetric protein–protein interactions. Thus, establishing the fundamentals of their formation, through detecting and quantifying important protein–protein interactions, could be crucial to understanding essential cellular machinery, and for further development of protein-based technologies. Herein we describe a method to monitor the assembly of protein cages by detecting specific, oligomerization state dependent, protein–protein interactions. Our strategy relies on engineering protein monomers to include cysteine pairs that are presented proximally if the cage state assembles. These assembled pairs of cysteines act as binding sites for the fluorescent reagent FlAsH, which, once bound, provides a readout for successful oligomerization. As a proof of principle, we applied this technique to the iron storage protein, DNA-binding protein from starved cells from E. coli. Several linker lengths and conformations for the presentation of the cysteine pairs were screened to optimize the engineered binding sites. We confirmed that our designs were successful in both lysates and with purified proteins, and that FlAsH binding was dependent upon cage assembly. Following successful characterization of the assay, its throughput was expanded. A two-dimension matrix of pH and denaturing buffer conditions was screened to optimize nanocage stability. We intend to use this method for the high throughput screening of protein cage libraries and of conditions for the generation of inorganic nanoparticles within the cavity of these and other cage proteins.

  15. In silico concurrent multisite pH titration in proteins.

    PubMed

    Hu, Hao; Shen, Lin

    2014-07-30

    The concurrent proton binding at multiple sites in macromolecules such as proteins and nucleic acids is an important yet challenging problem in biochemistry. We develop an efficient generalized Hamiltonian approach to attack this issue. Based on the previously developed generalized-ensemble methods, an effective potential energy is constructed which combines the contributions of all (relevant) protonation states of the molecule. The effective potential preserves important phase regions of all states and, thus, allows efficient sampling of these regions in one simulation. The need for intermediate states in alchemical free energy simulations is greatly reduced. Free energy differences between different protonation states can be determined accurately and enable one to construct the grand canonical partition function. Therefore, the complicated concurrent multisite proton titration process of protein molecules can be satisfactorily simulated. Application of this method to the simulation of the pKa of Glu49, Asp50, and C-terminus of bovine pancreatic trypsin inhibitor shows reasonably good agreement with published experimental work. This method provides an unprecedented vivid picture of how different protonation states change their relative population upon pH titration. We believe that the method will be very useful in deciphering the molecular mechanism of pH-dependent biomolecular processes in terms of a detailed atomistic description. Copyright © 2014 Wiley Periodicals, Inc.

  16. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells.

    PubMed

    Schauwecker, Suzanne M; Kim, J Julie; Licht, Jonathan D; Clevenger, Charles V

    2017-02-10

    The hormone prolactin (PRL) contributes to breast cancer pathogenesis through various signaling pathways, one of the most notable being the JAK2/signal transducer and activator of transcription 5 (STAT5) pathway. PRL-induced activation of the transcription factor STAT5 results in the up-regulation of numerous genes implicated in breast cancer pathogenesis. However, the molecular mechanisms that enable STAT5 to access the promoters of these genes are not well understood. Here, we show that PRL signaling induces chromatin decompaction at promoter DNA, corresponding with STAT5 binding. The chromatin-modifying protein high mobility group nucleosomal binding domain 2 (HMGN2) specifically promotes STAT5 accessibility at promoter DNA by facilitating the dissociation of the linker histone H1 in response to PRL. Knockdown of H1 rescues the decrease in PRL-induced transcription following HMGN2 knockdown, and it does so by allowing increased STAT5 recruitment. Moreover, H1 and STAT5 are shown to function antagonistically in regulating PRL-induced transcription as well as breast cancer cell biology. While reduced STAT5 activation results in decreased PRL-induced transcription and cell proliferation, knockdown of H1 rescues both of these effects. Taken together, we elucidate a novel mechanism whereby the linker histone H1 prevents STAT5 binding at promoter DNA, and the PRL-induced dissociation of H1 mediated by HMGN2 is necessary to allow full STAT5 recruitment and promote the biological effects of PRL signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Structural insights into pharmacophore-assisted in silico identification of protein-protein interaction inhibitors for inhibition of human toll-like receptor 4 - myeloid differentiation factor-2 (hTLR4-MD-2) complex.

    PubMed

    Mishra, Vinita; Pathak, Chandramani

    2018-05-29

    Toll-like receptor 4 (TLR4) is a member of Toll-Like Receptors (TLRs) family that serves as a receptor for bacterial lipopolysaccharide (LPS). TLR4 alone cannot recognize LPS without aid of co-receptor myeloid differentiation factor-2 (MD-2). Binding of LPS with TLR4 forms a LPS-TLR4-MD-2 complex and directs downstream signaling for activation of immune response, inflammation and NF-κB activation. Activation of TLR4 signaling is associated with various pathophysiological consequences. Therefore, targeting protein-protein interaction (PPI) in TLR4-MD-2 complex formation could be an attractive therapeutic approach for targeting inflammatory disorders. The aim of present study was directed to identify small molecule PPI inhibitors (SMPPIIs) using pharmacophore mapping-based approach of computational drug discovery. Here, we had retrieved the information about the hot spot residues and their pharmacophoric features at both primary (TLR4-MD-2) and dimerization (MD-2-TLR4*) protein-protein interaction interfaces in TLR4-MD-2 homo-dimer complex using in silico methods. Promising candidates were identified after virtual screening, which may restrict TLR4-MD-2 protein-protein interaction. In silico off-target profiling over the virtually screened compounds revealed other possible molecular targets. Two of the virtually screened compounds (C11 and C15) were predicted to have an inhibitory concentration in μM range after HYDE assessment. Molecular dynamics simulation study performed for these two compounds in complex with target protein confirms the stability of the complex. After virtual high throughput screening we found selective hTLR4-MD-2 inhibitors, which may have therapeutic potential to target chronic inflammatory diseases.

  18. Relevance of the two-component sensor protein CiaH to acid and oxidative stress responses in Streptococcus pyogenes.

    PubMed

    Tatsuno, Ichiro; Isaka, Masanori; Okada, Ryo; Zhang, Yan; Hasegawa, Tadao

    2014-03-28

    The production of virulence proteins depends on environmental factors, and two-component regulatory systems are involved in sensing these factors. We previously established knockout strains in all suspected two-component regulatory sensor proteins of the emm1 clinical strain of S. pyogenes and examined their relevance to acid stimuli in a natural atmosphere. In the present study, their relevance to acid stimuli was re-examined in an atmosphere containing 5% CO2. The spy1236 (which is identical to ciaHpy) sensor knockout strain showed significant growth reduction compared with the parental strain in broth at pH 6.0, suggesting that the Spy1236 (CiaHpy) two-component sensor protein is involved in acid response of S. pyogenes. CiaH is also conserved in Streptococcus pneumoniae, and it has been reported that deletion of the gene for its cognate response regulator (ciaRpn) made the pneumococcal strains more sensitive to oxidative stress. In this report, we show that the spy1236 knockout mutant of S. pyogenes is more sensitive to oxidative stress than the parental strain. These results suggest that the two-component sensor protein CiaH is involved in stress responses in S. pyogenes.

  19. Kinetics of protein adsorption/desorption mediated by pH-responsive polymer layer

    NASA Astrophysics Data System (ADS)

    Su, Xiao-Hang; Lei, Qun-Li; Ren, Chun-Lai

    2015-11-01

    We propose a new way of regulating protein adsorption by using a pH-responsive polymer. According to the theoretical results obtained from the molecular theory and kinetic approaches, both thermodynamics and kinetics of protein adsorption are verified to be well controlled by the solution pH. The kinetics and the amount of adsorbed proteins at equilibrium are greatly increased when the solution environment changes from acid to neutral. The reason is that the increased pH promotes the dissociation of the weak polyelectrolyte, resulting in more charged monomers and more stretched chains. Thus the steric repulsion within the polymer layer is weakened, which effectively lowers the barrier felt by the protein during the process of adsorption. Interestingly, we also find that the kinetics of protein desorption is almost unchanged with the variation of pH. It is because although the barrier formed by the polymer layer changes along with the change of pH, the potential at contact with the surface varies equally. Our results may provide useful insights into controllable protein adsorption/desorption in practical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 21274062, 11474155, and 91027040).

  20. Connective Tissue Growth Factor Domain 4 Amplifies Fibrotic Kidney Disease through Activation of LDL Receptor-Related Protein 6.

    PubMed

    Johnson, Bryce G; Ren, Shuyu; Karaca, Gamze; Gomez, Ivan G; Fligny, Cécile; Smith, Benjamin; Ergun, Ayla; Locke, George; Gao, Benbo; Hayes, Sebastian; MacDonnell, Scott; Duffield, Jeremy S

    2017-06-01

    Connective tissue growth factor (CTGF), a matrix-associated protein with four distinct cytokine binding domains, has roles in vasculogenesis, wound healing responses, and fibrogenesis and is upregulated in fibroblasts and myofibroblasts in disease. Here, we investigated the role of CTGF in fibrogenic cells. In mice, tissue-specific inducible overexpression of CTGF by kidney pericytes and fibroblasts had no bearing on nephrogenesis or kidney homeostasis but exacerbated inflammation and fibrosis after ureteral obstruction. These effects required the WNT receptor LDL receptor-related protein 6 (LRP6). Additionally, pericytes isolated from these mice became hypermigratory and hyperproliferative on overexpression of CTGF. CTGF is cleaved in vivo into distinct domains. Treatment with recombinant domain 1, 1+2 (N terminus), or 4 (C terminus) independently activated myofibroblast differentiation and wound healing responses in cultured pericytes, but domain 4 showed the broadest profibrotic activity. Domain 4 exhibited low-affinity binding to LRP6 in in vitro binding assays, and inhibition of LRP6 or critical signaling cascades downstream of LRP6, including JNK and WNT/ β -catenin, inhibited the biologic activity of domain 4. Administration of blocking antibodies specifically against CTGF domain 4 or recombinant Dickkopf-related protein-1, an endogenous inhibitor of LRP6, effectively inhibited inflammation and fibrosis associated with ureteral obstruction in vivo Therefore, domain 4 of CTGF and the WNT signaling pathway are important new targets in fibrosis. Copyright © 2017 by the American Society of Nephrology.

  1. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.

    PubMed

    Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N

    2012-05-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.

  2. Interaction of melanin with proteins--the importance of an acidic intramelanosomal pH.

    PubMed

    Mani, I; Sharma, V; Tamboli, I; Raman, G

    2001-06-01

    Melanin is a highly irregular heteropolymer consisting of monomeric units derived from the enzymatic oxidation of the amino acid tyrosine. The process of melanin formation takes place in specialized acidic organelles (melanosomes) in melanocytes. The process of melanin polymerization requires an alkaline pH in vitro, and therefore, the purpose of an acidic environment in vivo remains a mystery. It is known that melanin is always bound to protein in vivo. It is also seen that polymerization in vitro at an acidic pH necessarily requires the presence of proteins. The effect of various model proteins on melanin synthesis and their interaction with melanin was studied. It was seen that many proteins could increase melanin synthesis at an acidic pH, and that different proteins resulted in the formation of different states of melanin, i.e., a precipitate or a soluble, protein-bound form. We also present evidence to show that soluble protein-bound melanin is present in vivo (in B16 cells as well as in B16 melanoma tissue). An acidic pH appeared to be necessary to ensure the formation of a uniform, very high molecular weight melano-protein complex. The interaction between melanin and proteins appears to be largely charge-dependent as evidenced by zeta potential measurements, and this interaction is also increased in an acidic pH. Thus, it appears that an acidic intramelanosomal pH is essential to ensure maximum interaction between protein and melanin, and also to ensure that all the melanin formed is protein-bound.

  3. Protein fouling in microfiltration: deposition mechanism as a function of pressure for different pH.

    PubMed

    Velasco, C; Ouammou, M; Calvo, J I; Hernández, A

    2003-10-01

    The influence of applied pressure on the fouling mechanism during bovine serum albumin (BSA) dead-end microfiltration (MF) has been investigated for a polyethersulfone acidic negatively charged membrane (ICE-450) from Pall Co. BSA solutions at pH values of 4, 5 (almost equal to the protein isoelectric point, IEP), and 6 were microfiltered through the membrane at different applied transmembrane pressures. Results have been analyzed in terms of the usual blocking filtration laws and a substantial change in the fouling mechanism was observed as the pressure was increased, this change can be related to the specific membrane-protein and protein-protein interactions.

  4. The C3H-type zinc finger protein GDS1/C3H42 is a nuclear-speckle-localized protein that is essential for normal growth and development in Arabidopsis.

    PubMed

    Kim, Dae Won; Jeon, Su Jeong; Hwang, Sung Min; Hong, Jong Chan; Bahk, Jeong Dong

    2016-09-01

    Eukaryotic C3H-type zinc finger proteins (Znfs) comprise a large family of regulatory proteins involved in many aspects of plant stress response, growth and development. However, compared to mammalian, only a few plant Znfs have been functionally characterized. Here, T-DNA inserted gds1 (growth, development and splicing 1) mutant, displayed abnormal growth throughout the lifecycle owing to the reduction of cell size and number. Inverse PCR analysis revealed that the abnormal growth was caused by the disruption of At3g47120, which encodes a C3H42 protein belonging to the C-X7-C-X5-C-X3-H class of the Znf family. GDS1 was ubiquitously transcribed, but shows high levels of expression in young seedling and unexpanded new leaves. In gds1, the transcripts of many growth- and development-related genes were down-regulated, and the auxin response was dramatically reduced. A fluorescence-based assay revealed that the GDS1 protein was localized to the nucleus, prominently in the speckle compartments. Its arginine/serine dipeptide-rich-like (RS-like) domain was essential for nuclear localization. In addition, the SR1, SRm102 and U1-70K components of the U1 spliceosome interacted with GDS1 in the nuclear speckle compartments. Taken together, these suggest that GDS1, a nuclear-speckle-associated Znf, might play a significant role in splicing during plant growth and development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Association between CFH Y402H Polymorphism and Age Related Macular Degeneration in North Indian Cohort

    PubMed Central

    Gupta, Amod; Prabhakar, Sudesh; Singh, Ramandeep; Sharma, Suresh Kumar; Chen, Wei

    2013-01-01

    The purpose of the study was to determine serum complement factor H (CFH) levels in patients of age related macular degeneration (AMD) and examine its association with CFH Y402H polymorphism. 115 AMD patients and 61 normal controls were recruited in this study. The single nucleotide polymorphism was assayed by real time PCR and serum CFH levels were measured by ELISA and standardized to total serum protein. Chi-square test was applied to polymorphism analysis while Mann Whitney U-statistic for CFH-levels. Mendelian randomization approach was used for determining causal relationship. The genotype frequency differed between the AMD patients (TT- 18.3%, TC-41.3% and CC-40.4%) and controls (TT-76.3%, TC-13.6%, and CC-10.1%) (p = 0001). The frequency of alleles was also significantly different when AMD (T-39% and C-61%) was compared to controls (T-83% and C-17%) (p = 0.0001). Level of serum CFH was significantly lower in AMD patients as compared to normal controls (p = 0.001). Our data showed that the CFH Y402H polymorphism is a risk factor for AMD in the North Indian population. Mendelian randomization approach revealed that CFH Y402H polymorphism affects AMD risk through the modification of CFH serum levels. PMID:23922956

  6. Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains.

    PubMed

    Van Bortle, Kevin; Ramos, Edward; Takenaka, Naomi; Yang, Jingping; Wahi, Jessica E; Corces, Victor G

    2012-11-01

    Several multiprotein DNA complexes capable of insulator activity have been identified in Drosophila melanogaster, yet only CTCF, a highly conserved zinc finger protein, and the transcription factor TFIIIC have been shown to function in mammals. CTCF is involved in diverse nuclear activities, and recent studies suggest that the proteins with which it associates and the DNA sequences that it targets may underlie these various roles. Here we show that the Drosophila homolog of CTCF (dCTCF) aligns in the genome with other Drosophila insulator proteins such as Suppressor of Hairy wing [SU(HW)] and Boundary Element Associated Factor of 32 kDa (BEAF-32) at the borders of H3K27me3 domains, which are also enriched for associated insulator proteins and additional cofactors. RNAi depletion of dCTCF and combinatorial knockdown of gene expression for other Drosophila insulator proteins leads to a reduction in H3K27me3 levels within repressed domains, suggesting that insulators are important for the maintenance of appropriate repressive chromatin structure in Polycomb (Pc) domains. These results shed new insights into the roles of insulators in chromatin domain organization and support recent models suggesting that insulators underlie interactions important for Pc-mediated repression. We reveal an important relationship between dCTCF and other Drosophila insulator proteins and speculate that vertebrate CTCF may also align with other nuclear proteins to accomplish similar functions.

  7. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor.

    PubMed

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-08-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone-related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.-Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. © FASEB.

  8. The polyadenosine RNA-binding protein ZC3H14 interacts with the THO complex and coordinately regulates the processing of neuronal transcripts.

    PubMed

    Morris, Kevin J; Corbett, Anita H

    2018-06-15

    The polyadenosine RNA-binding protein ZC3H14 is important in RNA processing. Although ZC3H14 is ubiquitously expressed, mutation of the ZC3H14 gene causes a non-syndromic form of intellectual disability. Here, we examine the function of ZC3H14 in the brain by identifying ZC3H14-interacting proteins using unbiased mass spectrometry. Through this analysis, we identified physical interactions between ZC3H14 and multiple RNA processing factors. Notably, proteins that comprise the THO complex were amongst the most enriched proteins. We demonstrate that ZC3H14 physically interacts with THO components and that these proteins are required for proper RNA processing, as loss of ZC3H14 or THO components leads to extended bulk poly(A) tail length. Furthermore, we identified the transcripts Atp5g1 and Psd95 as shared RNA targets of ZC3H14 and the THO complex. Our data suggest that ZC3H14 and the THO complex are important for proper processing of Atp5g1 and Psd95 RNA, as depletion of ZC3H14 or THO components leads to decreased steady-state levels of each mature transcript accompanied by accumulation of Atp5g1 and Psd95 pre-mRNA in the cytoplasm. Taken together, this work provides the first unbiased identification of nuclear ZC3H14-interacting proteins from the brain and links the functions of ZC3H14 and the THO complex in the processing of RNA.

  9. The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation.

    PubMed

    Jelinic, Petar; Stehle, Jean-Christophe; Shaw, Phillip

    2006-10-01

    Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation-DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation.

  10. The Testis-Specific Factor CTCFL Cooperates with the Protein Methyltransferase PRMT7 in H19 Imprinting Control Region Methylation

    PubMed Central

    Jelinic, Petar; Stehle, Jean-Christophe; Shaw, Phillip

    2006-01-01

    Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation—DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation. PMID:17048991

  11. A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H2O2 content.

    PubMed

    Negi, Sanjana; Tak, Himanshu; Ganapathi, T R

    2018-03-01

    MusaSNAC1 function in H 2 O 2 mediated stomatal closure and promote drought tolerance by directly binding to CGT[A/G] motif in regulatory region of multiple stress-related genes. Drought is a abiotic stress-condition, causing reduced plant growth and diminished crop yield. Guard cells of the stomata control photosynthesis and transpiration by regulating CO 2 exchange and water loss, thus affecting growth and crop yield. Roles of NAC (NAM, ATAF1/2 and CUC2) protein in regulation of stress-conditions has been well documented however, their control over stomatal aperture is largely unknown. In this study we report a banana NAC protein, MusaSNAC1 which induced stomatal closure by elevating H 2 O 2 content in guard cells during drought stress. Overexpression of MusaSNAC1 in banana resulted in higher number of stomata closure causing reduced water loss and thus elevated drought-tolerance. During drought, expression of GUS (β-glucuronidase) under P MusaSNAC1 was remarkably elevated in guard cells of stomata which correlated with its function as a transcription factor regulating stomatal aperture closing. MusaSNAC1 is a transcriptional activator belonging to SNAC subgroup and its 5'-upstream region contain multiple Dof1 elements as well as stress-associated cis-elements. Moreover, MusaSNAC1 also regulate multiple stress-related genes by binding to core site of NAC-proteins CGT[A/G] in their 5'-upstream region. Results indicated an interesting mechanism of drought tolerance through stomatal closure by H 2 O 2 generation in guard cells, regulated by a NAC-protein in banana.

  12. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria.

    PubMed

    Dorman, Charles J

    2014-09-01

    Horizontal gene transfer plays an important role in the evolution of bacterial species, conferring new genetic traits on the recipient bacterium that extend its range of phenotypes and plasmids make important contributions to this process. However, the inappropriate expression of newly acquired genes may lead to a loss of competitive fitness, resulting in the elimination of the new gene-bacterium combination. It is thought that transcriptional silencing of horizontally acquired genes offers a route out of this dilemma and that nucleoid-associated proteins, especially those related to the H-NS protein, play a particularly important role in the silencing process. The discovery that many plasmids express orthologues of nucleoid-associated proteins adds an interesting dimension to current models of regulatory integration following lateral transfer of DNA. Other horizontally acquired genetic elements, such as genomic islands, also express nucleoid-associated proteins of their own. Here the interactions of H-NS-like nucleoid-associated proteins encoded by the core genome, genomic islands and plasmids are described. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Periodontal and serum protein profiles in patients with rheumatoid arthritis treated with tumor necrosis factor inhibitor adalimumab.

    PubMed

    Kobayashi, Tetsuo; Yokoyama, Tomoko; Ito, Satoshi; Kobayashi, Daisuke; Yamagata, Akira; Okada, Moe; Oofusa, Ken; Narita, Ichiei; Murasawa, Akira; Nakazono, Kiyoshi; Yoshie, Hiromasa

    2014-11-01

    Tumor necrosis factor (TNF)-α inhibitor has been shown to affect the periodontal condition of patients with rheumatoid arthritis (RA). The aim of the present study is to assess the effect of a fully humanized anti-TNF-α monoclonal antibody, adalimumab (ADA), on the periodontal condition of patients with RA and to compare serum protein profiles before and after ADA therapy. The study participants consisted of 20 patients with RA treated with ADA. Clinical periodontal and rheumatologic parameters and serum cytokine levels were evaluated at baseline and 3 months later. Serum protein spot volume was examined with two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Proteins with significant difference in abundance before and after ADA therapy were found and identified using mass spectrometry and protein databases. The patients showed a significant decrease in gingival index (P = 0.002), bleeding on probing (P = 0.003), probing depth (P = 0.002), disease activity score including 28 joints using C-reactive protein (P <0.001), and serum levels of TNF-α (P <0.001) and interleukin-6 (P <0.001) after ADA medication, although plaque levels were comparable. Among a total of 495 protein spots obtained, nine spots were significantly decreased in abundance at reassessment, corresponding to complement factor H, phospholipase D, serum amyloid A, complement component 4, and α-1-acid glycoprotein (P <0.01). These results suggest a beneficial effect of ADA therapy on the periodontal condition of patients with RA, which might be related to differences in serum protein profiles before and after ADA therapy.

  14. Conserved and divergent features of the structure and function of La and La-related proteins (LARPs)

    PubMed Central

    Bayfield, Mark A.; Yang, Ruiqing; Maraia, Richard J.

    2010-01-01

    Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3’OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3’OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3’OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNA assembly by hLARP7/PIP7S). Analyses of other LARP family members (i.e., hLARP4, hLARP6) suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs. PMID:20138158

  15. Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography.

    PubMed

    Luo, Haibin; Lee, Nacole; Wang, Xiangyang; Li, Yuling; Schmelzer, Albert; Hunter, Alan K; Pabst, Timothy; Wang, William K

    2017-03-10

    Turbid elution pools and high column back pressure are common during elution of monoclonal antibodies (mAbs) by acidic pH in Protein A chromatography. This phenomenon has been historically attributed to acid-induced precipitation of incorrectly folded or pH-sensitive mAbs and host cell proteins (HCPs). In this work, we propose a new mechanism that may account for some observations of elution turbidity in Protein A chromatography. We report several examples of turbidity and high column back pressure occurring transiently under a short course of neutral conditions during Protein A elution. A systematic study of three mAbs displaying this behavior revealed phase separation characterized by liquid drops under certain conditions including neutral pH, low ionic strength, and high protein concentration. These liquid droplets caused solution turbidity and exhibited extremely high viscosity, resulting in high column back pressure. We found out that the droplets were formed through liquid-liquid phase separation (LLPS) as a result of protein self-association. We also found multiple factors, including pH, temperature, ionic strength, and protein concentration can affect LLPS behaviors. Careful selection of process parameters during protein A elution, including temperature, flow rate, buffer, and salt can inhibit formation of a dense liquid phase, reducing both turbidity (by 90%) and column back pressure (below 20 pounds per square inch). These findings provide both mechanistic insight and practical mitigation strategies for Protein A chromatography induced LLPS. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Toxic compound, anti-nutritional factors and functional properties of protein isolated from detoxified Jatropha curcas seed cake.

    PubMed

    Saetae, Donlaporn; Suntornsuk, Worapot

    2010-12-28

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications.

  17. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake

    PubMed Central

    Saetae, Donlaporn; Suntornsuk, Worapot

    2011-01-01

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications. PMID:21339978

  18. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases.

    PubMed

    Tsonev, Latchezar I; Hirsh, Allen G

    2008-07-25

    pISep is a major new advance in low ionic strength ion exchange chromatography. It enables the formation of externally controlled pH gradients over the very broad pH range from 2 to 12. The gradients can be generated on either cationic or anionic exchangers over arbitrary pH ranges wherein the stationary phases remain totally charged. Associated pISep software makes possible the calculation of either linear, nonlinear or combined, multi-step, multi-slope pH gradients. These highly reproducible pH gradients, while separating proteins and glycoproteins in the order of their electrophoretic pIs, provide superior chromatographic resolution compared to salt. This paper also presents a statistical mechanical model for protein binding to ion exchange stationary phases enhancing the electrostatic interaction theory for the general dependence of retention factor k, on both salt and pH simultaneously. It is shown that the retention factors computed from short time isocratic salt elution data of a model protein can be used to accurately predict its salt elution concentration in varying slope salt elution gradients formed at varying isocratic pH as well as the pH at which it will be eluted from an anionic exchange column by a pISep pH gradient in the absence of salt.

  19. Complement factor H Y402H variant and risk of age-related macular degeneration in Asians: a systematic review and meta-analysis.

    PubMed

    Kondo, Naoshi; Bessho, Hiroaki; Honda, Shigeru; Negi, Akira

    2011-02-01

    To investigate whether the Y402H variant in the complement factor H gene is associated with age-related macular degeneration (AMD) in Asian populations. Meta-analysis of previous publications. Case-control groups of subjects with AMD and controls from 13 association studies. We performed a meta-analysis of the association between Y402H and AMD in Asian populations using data available from 13 case-control studies involving 3973 subjects. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using fixed- and random-effects models. The Q-statistic test was used to assess heterogeneity, and Egger's test was used to evaluate publication bias. Sensitivity analysis, cumulative meta-analysis, and meta-regression analysis were also performed. Allele and genotype frequencies of the Y402H variant. The Y402H variant showed a significant summary OR of 1.97 (95% CI, 1.54-2.52; P<0.001; allelic contrast model) per allele. Possession of at least 1 copy of the C allele increased the disease risk by 1.97-fold (95% CI, 1.63-2.39; P<0.001; dominant model) and accounted for 8.8% of the attributable risk of AMD in Asian populations. Sensitivity analysis indicated the robustness of our findings, and evidence of publication bias was not observed in our meta-analysis. Meta-regression analysis indicated no significant effect of baseline study characteristics on the summary effect size. Cumulative meta-analysis revealed that the summary ORs were stable and the 95% CIs narrowed with the accumulation of data over time. Our analysis provides substantial evidence that the Y402H variant is significantly associated with AMD in Asian populations. Our results expand the number of confirmed AMD susceptibility loci for Asians populations, which provide a better understanding of the genetic architecture underlying disease susceptibility and may advance the potential for preclinical prediction in future genetic tests by a combined evaluation of inherited susceptibility with

  20. Estimation of the 24-h urinary protein excretion based on the estimated urinary creatinine output.

    PubMed

    Ubukata, Masamitsu; Takei, Takashi; Nitta, Kosaku

    2016-06-01

    The urinary protein/creatinine ratio [Up/Ucr (g/gCr)] has been used in the clinical management of patients with chronic kidney disease (CKD). However, a discrepancy is often noted between the Up/Ucr and 24-h urinary protein excretion [24hUp (g/day)] in patients with extremes of muscle mass. We examined devised a method for precise estimation of the 24-h urinary protein excretion (E-24hUp) based on estimation of 24-h urinary creatinine output (E-24hCr). Three parameters, spot Up/Ucr, 24hUP and E-24hUp (=Up/Ucr × E-24hCr), were determined in 116 adult patients with CKD. The correlations among the groups were analyzed. There was a significant correlation between the Up/Ucr and 24hUp (p < 0.001). We divided the patients into three groups according to the 24hUp; the low urinary protein group (<1.0 g/day), the intermediate urinary protein group (1.0-3.5 g/day), and the high urinary protein group (>3.5 g/day). There was a significant correlation between the Up/Ucr and 24hUp in the low (p = 0.04) and high urinary protein (p = 0.01) groups, whereas the correlation coefficient was lower in the intermediate urinary protein (p = 0.07) group. Thus, we found a significant correlation between 24hUp and E-24hUp in the study population overall (p < 0.001), in the low (p = 0.01), in the intermediate (p < 0.001), and in the high urinary protein group (p < 0.001). We conclude that a poor correlation exists between the Up/Ucr and 24hUp in patients with intermediate urinary protein excretion levels. The recommended parameter for monitoring proteinuria in such patients may be the E-24hUp, which is calculated using the E-24hCr.

  1. DAILY PATTERNS OF CLOCK AND COGNITION-RELATED FACTORS ARE MODIFIED IN THE HIPPOCAMPUS OF VITAMIN A-DEFICIENT RATS

    PubMed Central

    Golini, Rebeca S.; Delgado, Silvia M.; Navigatore Fonzo, Lorena S.; Ponce, Ivana T.; Lacoste, María G.; Anzulovich, Ana C.

    2012-01-01

    The circadian expression of clock and clock-controlled cognition-related genes in the hippocampus would be essential to achieve an optimal daily cognitive performance. There is some evidence that retinoid nuclear receptors (RARs and RXRs) can regulate circadian gene expression in different tissues. In this study, Holtzman male rats from control and vitamin A-deficient groups were sacrificed throughout a 24-h period and hippocampus samples were isolated every 4 or 5 h. RARα and RXRβ expression level was quantified and daily expression patterns of clock BMAL1, PER1, RORα and REVERB genes, RORα and REVERB proteins, as well as temporal expression of cognition-related RC3 and BDNF genes were determined in the hippocampus of the two groups of rats. Our results show significant daily variations of BMAL1, PER1, RORα and REVERB genes, RORα and REVERB proteins and, consequently, daily oscillating expression of RC3 and BDNF genes in the rat hippocampus. Vitamin A deficiency reduced RXRβ mRNA level as well as the amplitude of PER1, REVERB gene and REVERB protein rhythms, and phase-shifted the daily peaks of BMAL1 and RORα mRNA, RORα protein and RC3 and BDNF mRNA levels. Thus, nutritional factors, such as vitamin A and its derivatives the retinoids, might modulate daily patterns of BDNF and RC3 expression in the hippocampus and they could be essential to maintain an optimal daily performance at molecular level in this learning-and-memory-related brain area. PMID:22434687

  2. [A structural protein study of the influenza A (H1N1) virus by polyacrylamide gel electrophoresis].

    PubMed

    Pérez Guevara, M T; Savón Valdés, C; Rivas Arjona, M; Goyenechea Hernández, A

    1992-01-01

    Influenza is an acute respiratory disease typically appearing as an epidemic. Three immunological types of the influenza virus are known: A, B and C. Continually, antigen changes occur, especially in type A. Therefore, a comparative study was carried out on 4 influenza A(H1N1) virus strains in relation to protein structure (surface antigens), by using polyacrylamide gel electrophoresis by the modified Laemmli method. The objective was to compare the structural proteins of the A/Havana/1292/78 (H1N1) national strain with the proteins of 3 international pattern strains. In all the cases, 6 bands were detected by densitometry. In the 4 strains studied the most abundant protein was M. Great differences between the Cuban strain and the 3 international patterns were not seen.

  3. Turnover-Dependent Inactivation of the Nitrogenase MoFe-Protein at High pH

    PubMed Central

    2013-01-01

    Proton uptake accompanies the reduction of all known substrates by nitrogenase. As a consequence, a higher pH should limit the availability of protons as a substrate essential for turnover, thereby increasing the proportion of more highly reduced forms of the enzyme for further study. The utility of the high-pH approach would appear to be problematic in view of the observation reported by Pham and Burgess [(1993) Biochemistry 32, 13725–13731] that the MoFe-protein undergoes irreversible protein denaturation above pH 8.65. In contrast, we found by both enzyme activity and crystallographic analyses that the MoFe-protein is stable when incubated at pH 9.5. We did observe, however, that at higher pHs and under turnover conditions, the MoFe-protein is slowly inactivated. While a normal, albeit low, level of substrate reduction occurs under these conditions, the MoFe-protein undergoes a complex transformation; initially, the enzyme is reversibly inhibited for substrate reduction at pH 9.5, yet in a second, slower process, the MoFe-protein becomes irreversibly inactivated as measured by substrate reduction activity at the optimal pH of 7.8. The final inactivated MoFe-protein has an increased hydrodynamic radius compared to that of the native MoFe-protein, yet it has a full complement of iron and molybdenum. Significantly, the modified MoFe-protein retains the ability to specifically interact with its nitrogenase partner, the Fe-protein, as judged by the support of ATP hydrolysis and by formation of a tight complex with the Fe-protein in the presence of ATP and aluminum fluoride. The turnover-dependent inactivation coupled to conformational change suggests a mechanism-based transformation that may provide a new probe of nitrogenase catalysis. PMID:24392967

  4. Turnover-dependent inactivation of the nitrogenase MoFe-protein at high pH.

    PubMed

    Yang, Kun-Yun; Haynes, Chad A; Spatzal, Thomas; Rees, Douglas C; Howard, James B

    2014-01-21

    Proton uptake accompanies the reduction of all known substrates by nitrogenase. As a consequence, a higher pH should limit the availability of protons as a substrate essential for turnover, thereby increasing the proportion of more highly reduced forms of the enzyme for further study. The utility of the high-pH approach would appear to be problematic in view of the observation reported by Pham and Burgess [(1993) Biochemistry 32, 13725-13731] that the MoFe-protein undergoes irreversible protein denaturation above pH 8.65. In contrast, we found by both enzyme activity and crystallographic analyses that the MoFe-protein is stable when incubated at pH 9.5. We did observe, however, that at higher pHs and under turnover conditions, the MoFe-protein is slowly inactivated. While a normal, albeit low, level of substrate reduction occurs under these conditions, the MoFe-protein undergoes a complex transformation; initially, the enzyme is reversibly inhibited for substrate reduction at pH 9.5, yet in a second, slower process, the MoFe-protein becomes irreversibly inactivated as measured by substrate reduction activity at the optimal pH of 7.8. The final inactivated MoFe-protein has an increased hydrodynamic radius compared to that of the native MoFe-protein, yet it has a full complement of iron and molybdenum. Significantly, the modified MoFe-protein retains the ability to specifically interact with its nitrogenase partner, the Fe-protein, as judged by the support of ATP hydrolysis and by formation of a tight complex with the Fe-protein in the presence of ATP and aluminum fluoride. The turnover-dependent inactivation coupled to conformational change suggests a mechanism-based transformation that may provide a new probe of nitrogenase catalysis.

  5. On the nature of a glassy state of matter in a hydrated protein: Relation to protein function.

    PubMed

    Teeter, M M; Yamano, A; Stec, B; Mohanty, U

    2001-09-25

    Diverse biochemical and biophysical experiments indicate that all proteins, regardless of size or origin, undergo a dynamic transition near 200 K. The cause of this shift in dynamic behavior, termed a "glass transition," and its relation to protein function are important open questions. One explanation postulated for the transition is solidification of correlated motions in proteins below the transition. We verified this conjecture by showing that crambin's radius of gyration (Rg) remains constant below approximately 180 K. We show that both atom position and dynamics of protein and solvent are physically coupled, leading to a novel cooperative state. This glassy state is identified by negative slopes of the Debye-Waller (B) factor vs. temperature. It is composed of multisubstate side chains and solvent. Based on generalization of Adam-Gibbs' notion of a cooperatively rearranging region and decrease of the total entropy with temperature, we calculate the slope of the Debye-Waller factor. The results are in accord with experiment.

  6. Link between immunoexpression of hMLH1 and hMSH2 proteins and clinical-epidemiological aspects of actinic cheilitis*

    PubMed Central

    Sarmento, Dmitry José de Santana; Godoy, Gustavo Pina; Miguel, Márcia Cristina da Costa; da Silveira, Éricka Janine Dantas

    2016-01-01

    Background The studies found in the literature associate the immunoexpression of hMLH1 and hMSH2 proteins with histologic aspects, but do not correlate it with clinical and epidemiological data. Objective To evaluate the immunoexpression of hMLH1 and hMSH2 in actinic cheilitis, correlating it with clinical characteristics. Methods We analyzed 40 cases. Histological and immunohistochemical analyses were performed. The following clinical variables were evaluated: gender, age range, ethnicity, clinical aspect and occupational sunlight exposure. Statistical evaluation included the Student t-test, while the significance level was set at 5%. Results Greater immunoexpression of hMLH1 and hMSH2 was observed in females, individuals aged over 40, and mixed-race/black patients. Furthermore, the immunoexpression of these proteins was greater in actinic cheilitis with a white-colored appearance and in patients without occupational sunlight exposure. No statistical differences were observed for the variables studied. Conclusion This study uncovered variations of hMLH1 and hMSH2 protein expression upon evaluation of clinical aspects in actinic cheilitis. PMID:27579741

  7. Link between immunoexpression of hMLH1 and hMSH2 proteins and clinical-epidemiological aspects of actinic cheilitis.

    PubMed

    Sarmento, Dmitry José de Santana; Godoy, Gustavo Pina; Miguel, Márcia Cristina da Costa; Silveira, Éricka Janine Dantas da

    2016-01-01

    The studies found in the literature associate the immunoexpression of hMLH1 and hMSH2 proteins with histologic aspects, but do not correlate it with clinical and epidemiological data. To evaluate the immunoexpression of hMLH1 and hMSH2 in actinic cheilitis, correlating it with clinical characteristics. We analyzed 40 cases. Histological and immunohistochemical analyses were performed. The following clinical variables were evaluated: gender, age range, ethnicity, clinical aspect and occupational sunlight exposure. Statistical evaluation included the Student t-test, while the significance level was set at 5%. Greater immunoexpression of hMLH1 and hMSH2 was observed in females, individuals aged over 40, and mixed-race/black patients. Furthermore, the immunoexpression of these proteins was greater in actinic cheilitis with a white-colored appearance and in patients without occupational sunlight exposure. No statistical differences were observed for the variables studied. This study uncovered variations of hMLH1 and hMSH2 protein expression upon evaluation of clinical aspects in actinic cheilitis.

  8. The Molecular Dynamics Study of the Structural Conversions in the Transformer Protein RfaH

    NASA Astrophysics Data System (ADS)

    Gc, Jeevan; Gerstman, Bernard; Chapagain, Prem

    Recently, a class of multi-domain proteins such as RfaH transcription factor are labelled as the transformer proteins as they undergo major conformational transformation for performing multiple functions. In the absence of the inter-domain contacts, the C-terminal domain of RfaH transforms from its alpha-helix conformation to a beta-barrel structure. Each of these states have their own functional role: in its alpha-helx state, RfaH-CTD inhibits the transcription by masking the binding site of RNAP, but in its beta state it facilitates the translation. We used various molecular dynamics simulations to study its transformer-like behavior of full-RfaH and identified key amino acid residues that are important in modulating such behavior. Our results show that the inter domain interactions constitute the major barrier in the alpha-helix to beta-barrel conversion. Once the interfacial interactions are broken, structural conversion is easier. The structural conversion from beta-barrel to alpha-helix proceeds with the rearrangement of the hydrophobic residues followed by the inter domain contacts formation via non-native, transient salt-bridge formation, leading to the formation of the native inter domain salt-bridge and hydrophobic contacts to give the final alpha-helix structure.

  9. Protein modeling and molecular dynamics simulation of the two novel surfactant proteins SP-G and SP-H.

    PubMed

    Rausch, Felix; Schicht, Martin; Bräuer, Lars; Paulsen, Friedrich; Brandt, Wolfgang

    2014-11-01

    Surfactant proteins are well known from the human lung where they are responsible for the stability and flexibility of the pulmonary surfactant system. They are able to influence the surface tension of the gas-liquid interface specifically by directly interacting with single lipids. This work describes the generation of reliable protein structure models to support the experimental characterization of two novel putative surfactant proteins called SP-G and SP-H. The obtained protein models were complemented by predicted posttranslational modifications and placed in a lipid model system mimicking the pulmonary surface. Molecular dynamics simulations of these protein-lipid systems showed the stability of the protein models and the formation of interactions between protein surface and lipid head groups on an atomic scale. Thereby, interaction interface and strength seem to be dependent on orientation and posttranslational modification of the protein. The here presented modeling was fundamental for experimental localization studies and the simulations showed that SP-G and SP-H are theoretically able to interact with lipid systems and thus are members of the surfactant protein family.

  10. A combinatorial histidine scanning library approach to engineer highly pH-dependent protein switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murtaugh, Megan L.; Fanning, Sean W.; Sharma, Tressa M.

    2012-09-05

    There is growing interest in the development of protein switches, which are proteins whose function, such as binding a target molecule, can be modulated through environmental triggers. Efforts to engineer highly pH sensitive protein-protein interactions typically rely on the rational introduction of ionizable groups in the protein interface. Such experiments are typically time intensive and often sacrifice the protein's affinity at the permissive pH. The underlying thermodynamics of proton-linkage dictate that the presence of multiple ionizable groups, which undergo a pK{sub a} change on protein binding, are necessary to result in highly pH-dependent binding. To test this hypothesis, a novelmore » combinatorial histidine library was developed where every possible combination of histidine and wild-type residue is sampled throughout the interface of a model anti-RNase A single domain VHH antibody. Antibodies were coselected for high-affinity binding and pH-sensitivity using an in vitro, dual-function selection strategy. The resulting antibodies retained near wild-type affinity yet became highly sensitive to small decreases in pH, drastically decreasing their binding affinity, due to the incorporation of multiple histidine groups. Several trends were observed, such as histidine 'hot-spots,' which will help enhance the development of pH switch proteins as well as increase our understanding of the role of ionizable residues in protein interfaces. Overall, the combinatorial approach is rapid, general, and robust and should be capable of producing highly pH-sensitive protein affinity reagents for a number of different applications.« less

  11. Production of halophilic proteins using Haloferax volcanii H1895 in a stirred-tank bioreactor.

    PubMed

    Strillinger, Eva; Grötzinger, Stefan Wolfgang; Allers, Thorsten; Eppinger, Jörg; Weuster-Botz, Dirk

    2016-02-01

    The success of biotechnological processes is based on the availability of efficient and highly specific biocatalysts, which can satisfy industrial demands. Extreme and remote environments like the deep brine pools of the Red Sea represent highly interesting habitats for the discovery of novel halophilic and thermophilic enzymes. Haloferax volcanii constitutes a suitable expression system for halophilic enzymes obtained from such brine pools. We developed a batch process for the cultivation of H. volcanii H1895 in controlled stirred-tank bioreactors utilising knockouts of components of the flagella assembly system. The standard medium Hv-YPC was supplemented to reach a higher cell density. Without protein expression, cell dry weight reaches 10 g L(-1). Two halophilic alcohol dehydrogenases were expressed under the control of the tryptophanase promoter p.tna with 16.8 and 3.2 mg gCDW (-1), respectively, at a maximum cell dry weight of 6.5 g L(-1). Protein expression was induced by the addition of L-tryptophan. Investigation of various expression strategies leads to an optimised two-step induction protocol introducing 6 mM L-tryptophan at an OD650 of 0.4 followed by incubation for 16 h and a second induction step with 3 mM L-tryptophan followed by a final incubation time of 4 h. Compared with the uncontrolled shaker-flask cultivations used until date, dry cell mass concentrations were improved by a factor of more than 5 and cell-specific enzyme activities showed an up to 28-fold increased yield of the heterologous proteins.

  12. Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains

    PubMed Central

    Van Bortle, Kevin; Ramos, Edward; Takenaka, Naomi; Yang, Jingping; Wahi, Jessica E.; Corces, Victor G.

    2012-01-01

    Several multiprotein DNA complexes capable of insulator activity have been identified in Drosophila melanogaster, yet only CTCF, a highly conserved zinc finger protein, and the transcription factor TFIIIC have been shown to function in mammals. CTCF is involved in diverse nuclear activities, and recent studies suggest that the proteins with which it associates and the DNA sequences that it targets may underlie these various roles. Here we show that the Drosophila homolog of CTCF (dCTCF) aligns in the genome with other Drosophila insulator proteins such as Suppressor of Hairy wing [SU(HW)] and Boundary Element Associated Factor of 32 kDa (BEAF-32) at the borders of H3K27me3 domains, which are also enriched for associated insulator proteins and additional cofactors. RNAi depletion of dCTCF and combinatorial knockdown of gene expression for other Drosophila insulator proteins leads to a reduction in H3K27me3 levels within repressed domains, suggesting that insulators are important for the maintenance of appropriate repressive chromatin structure in Polycomb (Pc) domains. These results shed new insights into the roles of insulators in chromatin domain organization and support recent models suggesting that insulators underlie interactions important for Pc-mediated repression. We reveal an important relationship between dCTCF and other Drosophila insulator proteins and speculate that vertebrate CTCF may also align with other nuclear proteins to accomplish similar functions. PMID:22722341

  13. Myotubularin-related protein 7 inhibits insulin signaling in colorectal cancer

    PubMed Central

    Gutting, Tobias; Friedrich, Teresa; Gaiser, Timo; Magdeburg, Julia; Kienle, Peter; Ruh, Hermelindis; Hopf, Carsten; Behrens, Hans-Michael; Röcken, Christoph; Hanoch, Tamar; Seger, Rony; Ebert, Matthias P.A.; Burgermeister, Elke

    2016-01-01

    Phosphoinositide (PIP) phosphatases such as myotubularins (MTMs) inhibit growth factor receptor signaling. However, the function of myotubularin-related protein 7 (MTMR7) in cancer is unknown. We show that MTMR7 protein was down-regulated with increasing tumor grade (G), size (T) and stage (UICC) in patients with colorectal cancer (CRC) (n=1786). The presence of MTMR7 in the stroma correlated with poor prognosis, whereas MTMR7 expression in the tumor was not predictive for patients' survival. Insulin reduced MTMR7 protein levels in human CRC cell lines, and CRC patients with type 2 diabetes mellitus (T2DM) or loss of imprinting (LOI) of insulin-like growth factor 2 (IGF2) had an increased risk for MTMR7 loss. Mechanistically, MTMR7 lowered PIPs and inhibited insulin-mediated AKT-ERK1/2 signaling and proliferation in human CRC cell lines. MTMR7 provides a novel link between growth factor signaling and cancer, and may thus constitute a potential marker or drug target for human CRC. PMID:27409167

  14. Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus

    PubMed Central

    Leung, Yiu Tak; Shi, Lihua; Maurer, Kelly; Song, Li; Zhang, Zhe; Petri, Michelle; Sullivan, Kathleen E

    2015-01-01

    Histone acetylation modulates gene expression and has been described as increased in systemic lupus erythematosus (SLE). We investigated interferon regulatory factor 1 (IRF1) interactions that influence H4 acetylation (H4ac) in SLE. Intracellular flow cytometry for H4 acetylated lysine (K) 5, K8, K12, and K16 was performed. Histone acetylation was defined in monocytes and T cells from controls and SLE patients. RNA-Seq studies were performed on monocytes to look for an imbalance in histone acetyltransferases and histone deacetylase enzyme expression. Expression levels were validated using real-time quantitative RT-PCR. IRF1 induction of H4ac was evaluated using D54MG cells overexpressing IRF1. IRF1 protein interactions were studied using co-immunoprecipitation assays. IRF1-dependent recruitment of histone acetyltransferases to target genes was examined by ChIP assays using p300 antibody. Flow cytometry data showed significantly increased H4K5, H4K8, H4K12, and H4K16 acetylation in SLE monocytes. HDAC3 and HDAC11 gene expression were decreased in SLE monocytes. PCAF showed significantly higher gene expression in SLE than controls. IRF1-overexpressing D54MG cells were associated with significantly increased H4K5, H4K8, and H4K12 acetylation compared to vector-control D54MG cells both globally and at specific target genes. Co-immunoprecipitation studies using D54MG cells revealed IRF1 protein-protein interactions with PCAF, P300, CBP, GCN5, ATF2, and HDAC3. ChIP experiments demonstrated increased p300 recruitment to known IRF1 targets in D54MG cells overexpressing IRF1. In contrast, p300 binding to IRF1 targets decreased in D54MG cells with IRF1 knockdown. SLE appears to be associated with an imbalance in histone acetyltransferases and histone deacetylase enzymes favoring pathologic H4 acetylation. Furthermore, IRF1 directly interacts with chromatin modifying enzymes, supporting a model where recruitment to specific target genes is mediated in part by IRF1. PMID

  15. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor

    PubMed Central

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-01-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone–related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo. In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.—Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. PMID:27075243

  16. Altered Protein Expression of Streptococcus oralis Cultured at Low pH Revealed by Two-Dimensional Gel Electrophoresis

    PubMed Central

    Wilkins, Joanna C.; Homer, Karen A.; Beighton, David

    2001-01-01

    Streptococcus oralis is the predominant aciduric nonmutans streptococcus isolated from the human dentition, but the role of this organism in the initiation and progression of dental caries has yet to be established. To identify proteins that are differentially expressed by S. oralis growing under conditions of low pH, soluble cellular proteins extracted from bacteria grown in batch culture at pH 5.2 or 7.0 were analyzed by two-dimensional (2-D) gel electrophoresis. Thirty-nine proteins had altered expression at low pH; these were excised, digested with trypsin using an in-gel protocol, and further analyzed by peptide mass fingerprinting using matrix-assisted laser desorption ionization mass spectrometry. The resulting fingerprints were compared with the genomic database for Streptococcus pneumoniae, an organism that is phylogenetically closely related to S. oralis, and putative functions for the majority of these proteins were determined on the basis of functional homology. Twenty-eight proteins were up-regulated following growth at pH 5.2; these included enzymes of the glycolytic pathway (glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase), the polypeptide chains comprising ATP synthase, and proteins that are considered to play a role in the general stress response of bacteria, including the 60-kDa chaperone, Hsp33, and superoxide dismutase, and three distinct ABC transporters. These data identify, for the first time, gene products that may be important in the survival and proliferation of nonmutans aciduric S. oralis under conditions of low pH that are likely to be encountered by this organism in vivo. PMID:11472910

  17. Interaction between the bacterial nucleoid associated proteins Hha and H-NS involves a conformational change of Hha.

    PubMed

    García, Jesús; Cordeiro, Tiago N; Nieto, José M; Pons, Ignacio; Juárez, Antonio; Pons, Miquel

    2005-06-15

    The H-NS family of proteins has been shown to participate in the regulation of a large number of genes in Gram-negative bacteria in response to environmental factors. In recent years, it has become apparent that proteins of the Hha family are essential elements for H-NS-regulated gene expression. Hha has been shown to bind H-NS, although the details for this interaction are still unknown. In the present paper, we report fluorescence anisotropy and NMR studies of the interaction between Hha and H-NS64, a truncated form of H-NS containing only its N-terminal dimerization domain. We demonstrate the initial formation of a complex between one Hha and two H-NS64 monomers in 150 mM NaCl. This complex seems to act as a nucleation unit for higher-molecular-mass complexes. NMR studies suggest that Hha is in equilibrium between two different conformations, one of which is stabilized by binding to H-NS64. A similar exchange is also observed for Hha in the absence of H-NS when temperature is increased to 37 degrees C, suggesting a key role for intrinsic conformational changes of Hha in modulating its interaction with H-NS.

  18. Interaction between the bacterial nucleoid associated proteins Hha and H-NS involves a conformational change of Hha

    PubMed Central

    2005-01-01

    The H-NS family of proteins has been shown to participate in the regulation of a large number of genes in Gram-negative bacteria in response to environmental factors. In recent years, it has become apparent that proteins of the Hha family are essential elements for H-NS-regulated gene expression. Hha has been shown to bind H-NS, although the details for this interaction are still unknown. In the present paper, we report fluorescence anisotropy and NMR studies of the interaction between Hha and H-NS64, a truncated form of H-NS containing only its N-terminal dimerization domain. We demonstrate the initial formation of a complex between one Hha and two H-NS64 monomers in 150 mM NaCl. This complex seems to act as a nucleation unit for higher-molecular-mass complexes. NMR studies suggest that Hha is in equilibrium between two different conformations, one of which is stabilized by binding to H-NS64. A similar exchange is also observed for Hha in the absence of H-NS when temperature is increased to 37 °C, suggesting a key role for intrinsic conformational changes of Hha in modulating its interaction with H-NS. PMID:15720293

  19. Age-related changes in factor VII proteolysis in vivo.

    PubMed

    Ofosu, F A; Craven, S; Dewar, L; Anvari, N; Andrew, M; Blajchman, M A

    1996-08-01

    Previous studies have reported that pre-operative plasmas of patients over the age of 40 years who developed post-operative deep vein thrombosis (DVT) had approximately twice the amount of proteolysed factor VII found in plasmas of patients in whom prophylaxis with heparin or low M(r) heparin was successful. These and other studies also reported higher concentrations of thrombin-antithrombin III in pre- and post-operative plasmas of patients who developed post-operative thrombosis than in plasmas of patients in whom prophylaxis was successful. Whether the extent of factor VII proteolysis seen in the patients who developed post-operative DVT is related to the severity of their disease or age is not known. This report investigated age-related changes in the concentrations of total factor VII protein, factor VII zymogen, factor VIIa, tissue factor pathway inhibitor, thrombin-antithrombin III, and prothrombin fragment 1 + 2 in normal plasmas and the relationships between these parameters. With the exception of thrombin-antithrombin III, statistically significant increases in the concentrations of these parameters with age were found. Additionally, the differences between the concentrations of total factor VII protein and factor VII zymogen, an index factor VII proteolysis in vivo, were statistically significant only for individuals over age 40. Using linear regression analysis, a significant correlation was found to exist between the concentrations of plasma factor VIIa and prothrombin fragment 1 + 2. Since factor VIIa-tissue factor probably initiates coagulation in vivo, we hypothesize that the elevated plasma factor VIIa (reflecting a less tightly regulated tissue factor activity and therefore increased thrombin production in vivo) accounts for the high risk for post-operative thrombosis seen in individuals over the age of 40.

  20. A sensitive method for measuring protein turnover based on the measurement of 2-3H-labelled amino acids in protein.

    PubMed Central

    Humphrey, T J; Davies, D D

    1976-01-01

    A method for measuring the rate of protein degradation is described. The method measures the change in 2-3H content of protein with time by racemization of the protein hydrolysate with acetic anhydride. The 3H on C-2 of amino acids is stable in proteins but becomes labile, owing to the action of transaminases, once the amino acids are released by proteolysis. The specific measurement of 2-3H in amino acids largely overcomes problems due to compartmentation and isotope recycling and evidence to support this claim is presented. Values for the half-life of Lemna minor (duckweed) protein determined by the new method are compared with values obtained by other methods. PMID:949338

  1. FACTORS AFFECTING THE UPTAKE OF LISSAMINE GREEN BY SERUM PROTEINS

    PubMed Central

    Brackenridge, C. J.

    1960-01-01

    Eight physicochemical factors which affect the uptake of lissamine green on filter paper impregnated with serum proteins have been examined, and their relevance to the staining of electrophoretically separated protein fractions is discussed. It is shown that grade of paper, weight of protein applied, separate and combined denaturation and staining time, temperature and concentration of staining solution, concentration of denaturant, and type of protein all influence the weight of dye absorbed per unit weight of applied protein, and must be rigidly standardized if valid quantitative results are to be obtained. Five sets of conditions are obtained for optimal staining and it is found that separation of denaturant from dye yields the best procedure. It is concluded that lissamine green is an excellent dye for the staining and quantitative estimation of separated protein fractions in paper electrophoresis, and that conditions can usually be arranged to produce a linear relation between dye uptake and protein concentration in an experimentally efficient manner. PMID:13803681

  2. Factors affecting the rate of breakdown of bacterial protein in rumen fluid.

    PubMed

    Wallace, R J; McPherson, C A

    1987-09-01

    1. The cellular proteins of Butyrivibrio fibrisolvens, Lactobacillus casei, Megasphaera elsdenii, Selenomonas ruminantium and Streptococcus bovis were labelled by growth in the presence of L-[14C]leucine, and the breakdown of labelled protein was measured in incubations of these bacteria with rumen fluid to which unlabelled 5 mM-L-leucine was added. The rate of protein breakdown was estimated from the rate of release of radioactivity into acid-soluble material. 2. Protein breakdown occurred at different rates in different species. The mean rates for B. fibrisolvens, L. casei, M. elsdenii, Sel. ruminantium and Str. bovis were 28.6, 18.1, 17.7, 10.5 and 5.3%/h respectively in samples of strained rumen fluid (SRF) with different protozoal populations. Rates of 3%/h or less were found in SRF from ciliate-free sheep or in faunated SRF from which protozoa had been removed by centrifugation. Further removal of mixed rumen bacteria had little effect. Suspensions of washed protozoa degraded bacterial protein at rates which were of the same order as those found in SRF. 3. The rate of breakdown of bacterial protein in different samples of SRF tended to increase as the numbers of small entodiniomorphid protozoa increased. The numbers of larger entodiniomorphs and holotrichs had no obvious influence on this rate. 4. Autoclaved and u.v.-treated bacteria were generally no different from live bacteria in their susceptibility to breakdown in SRF from faunated sheep, indicating that endogenous protein turnover was not a significant cause of bacterial protein catabolism. 5. The rate of bacterial protein breakdown was unrelated to the proteolytic activity of SRF. 6. It was concluded that predation by small protozoa is by far the most important cause of bacterial protein turnover in the rumen, with autolysis, other lytic factors and endogenous proteolysis being of minor importance.

  3. Down-regulation of ether-a-go-go-related gene potassium channel protein through sustained stimulation of AT1 receptor by angiotensin II.

    PubMed

    Cai, Yue; Wang, Yuhong; Xu, Jia; Zuo, Xu; Xu, Yanfang

    2014-09-26

    We investigated the effects of AT1 receptor stimulation by angiotensin II (Ang II) on human ether-a-go-go-related gene (hERG) potassium channel protein in a heterogeneous expression system with the human embryonic kidney (HEK) 293 cells which stably expressed hERG channel protein and were transiently transfected with the human AT1 receptors (HEK293/hERG). Western-blot analysis showed that Ang II significantly decreased the expression of mature hERG channel protein (155-kDa band) in a time- and dose-dependent manner without affecting the level of immature hERG channel protein (135-kDa band). The relative intensity of 155-kDa band was 64.7±6.8% of control (P<0.01) after treatment of Ang II at 100nM for 24h. To investigate the effect of Ang II on the degradation of mature hERG channel protein, we blocked forward trafficking from ER to Golgi with a Golgi transit inhibitor brefeldin A (10μM). Ang II significantly enhanced the time-dependent reduction of mature hERG channel protein. In addition, the proteasomal inhibitor lactacystin (5μM) inhibited Ang II-mediated the reduction of mature hERG channel protein, but the lysosomal inhibitor bafilomycin A1 (1μM) had no effect on the protein. The protein kinase C (PKC) inhibitor bisindolylmaleimide 1 (1μM) antagonized the reduction of mature hERG channel protein induced by Ang II. The results indicate that sustained stimulation of AT1 receptors by Ang II reduces the mature hERG channel protein via accelerating channel proteasomal degradation involving the PKC pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Loss of Elongation-Like Factor 1 Spontaneously Induces Diverse, RNase H-Related Suppressor Mutations in Schizosaccharomyces pombe.

    PubMed

    Marayati, Bahjat F; Drayton, Alena L; Tucker, James F; Huckabee, Reid H; Anderson, Alicia M; Pease, James B; Zeyl, Clifford W; Zhang, Ke

    2018-05-29

    A healthy individual may carry a detrimental genetic trait that is masked by another genetic mutation. Such suppressive genetic interactions, in which a mutant allele either partially or completely restores the fitness defect of a particular mutant, tend to occur between genes that have a confined functional connection. Here we investigate a self-recovery phenotype in Schizosaccharomyces pombe , mediated by suppressive genetic interactions that can be amplified during cell culture. Cells without Elf1, an AAA+ family ATPase, have severe growth defects initially, but quickly recover growth rates near to those of wild-type strains by acquiring suppressor mutations. elf1Δ cells accumulate RNAs within the nucleus and display effects of genome instability such as sensitivity to DNA damage, increased incidence of lagging chromosomes, and mini-chromosome loss. Notably, the rate of phenotypic recovery was further enhanced in elf1Δ cells when RNase H activities were abolished and significantly reduced upon overexpression of RNase H1, suggesting that loss of Elf1-related genome instability can be resolved by RNase H activities, likely through eliminating the potentially mutagenic DNA-RNA hybrids caused by RNA nuclear accumulation. Using whole genome sequencing, we mapped a few consistent suppressors of elf1Δ including mutated Cue2, Rpl2702, and SPBPJ4664.02, suggesting previously unknown functional connections between Elf1 and these proteins. Our findings describe a mechanism by which cells bearing mutations that cause fitness defects and genome instability may accelerate the fitness recovery of their population through quickly acquiring suppressors. We propose that this mechanism may be universally applicable to all microorganisms in large-population cultures. Copyright © 2018, Genetics.

  5. Adsorption of Hydrophobin-Protein Mixtures at the Air-Water Interface: The Impact of pH and Electrolyte.

    PubMed

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Cox, Andrew R; Hedges, Nick

    2015-09-15

    The adsorption of the proteins β-casein, β-lactoglobulin, and hydrophobin, and the protein mixtures of β-casein/hydrophobin and β-lactoglobulin/hydrophobin have been studied at the air-water interface by neutron reflectivity, NR. Changing the solution pH from 7 to 2.6 has relatively little impact on the adsorption of hydrophobin or β-lactoglobulin, but results in a substantial change in the structure of the adsorbed layer of β-casein. In β-lactoglobulin/hydrophobin mixtures, the adsorption is dominated by the hydrophobin adsorption, and is independent of the hydrophobin or β-lactoglobulin concentration and solution pH. At pH 2.6, the adsorption of the β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption over the range of β-casein concentrations studied. At pH 4 and 7, the adsorption of β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption at low β-casein concentrations. At higher β-casein concentrations, β-casein is adsorbed onto the surface monolayer of hydrophobin, and some interpenetration between the two proteins occurs. These results illustrate the importance of pH on the intermolecular interactions between the two proteins at the interface. This is further confirmed by the impact of PBS, phosphate buffered saline, buffer and CaCl2 on the coadsorption and surface structure. The results provide an important insight into the adsorption properties of protein mixtures and their application in foam and emulsion stabilization.

  6. The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.

    PubMed

    Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie

    2013-05-01

    pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.

  7. Indirect DNA Readout by an H-NS Related Protein: Structure of the DNA Complex of the C-Terminal Domain of Ler

    PubMed Central

    Cordeiro, Tiago N.; Schmidt, Holger; Madrid, Cristina; Juárez, Antonio; Bernadó, Pau; Griesinger, Christian; García, Jesús; Pons, Miquel

    2011-01-01

    Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family. PMID:22114557

  8. Indirect DNA readout by an H-NS related protein: structure of the DNA complex of the C-terminal domain of Ler.

    PubMed

    Cordeiro, Tiago N; Schmidt, Holger; Madrid, Cristina; Juárez, Antonio; Bernadó, Pau; Griesinger, Christian; García, Jesús; Pons, Miquel

    2011-11-01

    Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family.

  9. Stable expression of recombinant human coagulation factor XIII in protein-free suspension culture of Chinese hamster ovary cells.

    PubMed

    Chun, B H; Bang, W G; Park, Y K; Woo, S K

    2001-11-01

    The recombinant a and bsubunits for human coagulation factor XIII were transfected into Chinese hamster ovary (CHO) cells. CHO cells were amplified and selected with methotrexate in adherent cultures containing serum, and CHO 1-62 cells were later selected in protein-free medium. To develop a recombinant factor XIII production process in a suspension culture, we have investigated the growth characteristics of CHO cells and the maintenance of factor XIII expression in the culture medium. Suspension adaptation of CHO cells was performed in protein-free medium, GC-CHO-PI, by two methods, such as serum weaning and direct switching from serum containing media to protein-free media. Although the growth of CHO cells in suspension culture was affected initially by serum depletion, cell specific productivity of factor XIII showed only minor changes by the direct switching to protein-free medium during a suspension culture. As for the long-term stability of factor XIII, CHO 1-62 cells showed a stable expression of factor XIII in protein-free condition for 1000 h. These results indicate that the CHO 1-62cells can be adapted to express recombinant human factor XIII in a stable maimer in suspension culture using a protein-free medium. Our results demonstrate that enhanced cell growth in a continuous manner is achievable for factor XIII production in a protein-free medium when a perfusion bioreactor culture system with a spin filter is employed.

  10. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles

    NASA Astrophysics Data System (ADS)

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  11. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles.

    PubMed

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  12. Homosubtypic and heterosubtypic antibodies against highly pathogenic avian influenza H5N1 recombinant proteins in H5N1 survivors and non-H5N1 subjects.

    PubMed

    Noisumdaeng, Pirom; Pooruk, Phisanu; Prasertsopon, Jarunee; Assanasen, Susan; Kitphati, Rungrueng; Auewarakul, Prasert; Puthavathana, Pilaipan

    2014-04-01

    Six recombinant vaccinia viruses containing HA, NA, NP, M or NS gene insert derived from a highly pathogenic avian influenza H5N1 virus, and the recombinant vaccinia virus harboring plasmid backbone as the virus control were constructed. The recombinant proteins were characterized for their expression and subcellular locations in TK(-) cells. Antibodies to the five recombinant proteins were detected in all 13 sequential serum samples collected from four H5N1 survivors during four years of follow-up; and those directed to rVac-H5 HA and rVac-NA proteins were found in higher titers than those directed to the internal proteins as revealed by indirect immunofluorescence assay. Although all 28 non-H5N1 subjects had no neutralizing antibodies against H5N1 virus, they did have cross-reactive antibodies to those five recombinant proteins. A significant increase in cross-reactive antibody titer to rVac-H5 HA and rVac-NA was found in paired blood samples from patients infected with the 2009 pandemic virus. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    PubMed Central

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  14. RPLP1 and RPLP2 Are Essential Flavivirus Host Factors That Promote Early Viral Protein Accumulation

    PubMed Central

    Campos, Rafael K.; Wong, Benjamin; Lu, Yi-Fan; Shi, Pei-Yong; Pompon, Julien

    2016-01-01

    ABSTRACT The Flavivirus genus contains several arthropod-borne viruses that pose global health threats, including dengue viruses (DENV), yellow fever virus (YFV), and Zika virus (ZIKV). In order to understand how these viruses replicate in human cells, we previously conducted genome-scale RNA interference screens to identify candidate host factors. In these screens, we identified ribosomal proteins RPLP1 and RPLP2 (RPLP1/2) to be among the most crucial putative host factors required for DENV and YFV infection. RPLP1/2 are phosphoproteins that bind the ribosome through interaction with another ribosomal protein, RPLP0, to form a structure termed the ribosomal stalk. RPLP1/2 were validated as essential host factors for DENV, YFV, and ZIKV infection in two human cell lines: A549 lung adenocarcinoma and HuH-7 hepatoma cells, and for productive DENV infection of Aedes aegypti mosquitoes. Depletion of RPLP1/2 caused moderate cell-line-specific effects on global protein synthesis, as determined by metabolic labeling. In A549 cells, global translation was increased, while in HuH-7 cells it was reduced, albeit both of these effects were modest. In contrast, RPLP1/2 knockdown strongly reduced early DENV protein accumulation, suggesting a requirement for RPLP1/2 in viral translation. Furthermore, knockdown of RPLP1/2 reduced levels of DENV structural proteins expressed from an exogenous transgene. We postulate that these ribosomal proteins are required for efficient translation elongation through the viral open reading frame. In summary, this work identifies RPLP1/2 as critical flaviviral host factors required for translation. IMPORTANCE Flaviviruses cause important diseases in humans. Examples of mosquito-transmitted flaviviruses include dengue, yellow fever and Zika viruses. Viruses require a plethora of cellular factors to infect cells, and the ribosome plays an essential role in all viral infections. The ribosome is a complex macromolecular machine composed of RNA and

  15. Overexpressed Proteins in Hypervirulent Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 Compared to E. coli O157:H7 EDL933 Clade 3 Strain.

    PubMed

    Amigo, Natalia; Zhang, Qi; Amadio, Ariel; Zhang, Qunjie; Silva, Wanderson M; Cui, Baiyuan; Chen, Zhongjian; Larzabal, Mariano; Bei, Jinlong; Cataldi, Angel

    2016-01-01

    Escherichia coli O157:H7 is responsible for severe diarrhea and hemolytic uremic syndrome (HUS), and predominantly affects children under 5 years. The major virulence traits are Shiga toxins, necessary to develop HUS and the Type III Secretion System (T3SS) through which bacteria translocate effector proteins directly into the host cell. By SNPs typing, E. coli O157:H7 was separated into nine different clades. Clade 8 and clade 6 strains were more frequently associated with severe disease and HUS. In this study, we aimed to identify differentially expressed proteins in two strains of E. coli O157:H7 (clade 8 and clade 6), obtained from cattle and compared them with the well characterized reference EDL933 strain (clade 3). Clade 8 and clade 6 strains show enhanced pathogenicity in a mouse model and virulence-related properties. Proteins were extracted and analyzed using the TMT-6plex labeling strategy associated with two dimensional liquid chromatography and mass spectrometry in tandem. We detected 2241 proteins in the cell extract and 1787 proteins in the culture supernatants. Attention was focused on the proteins related to virulence, overexpressed in clade 6 and 8 strains compared to EDL933 strain. The proteins relevant overexpressed in clade 8 strain were the curli protein CsgC, a transcriptional activator (PchE), phage proteins, Stx2, FlgM and FlgD, a dienelactone hydrolase, CheW and CheY, and the SPATE protease EspP. For clade 6 strain, a high overexpression of phage proteins was detected, mostly from Stx2 encoding phage, including Stx2, flagellin and the protease TagA, EDL933_p0016, dienelactone hydrolase, and Haemolysin A, amongst others with unknown function. Some of these proteins were analyzed by RT-qPCR to corroborate the proteomic data. Clade 6 and clade 8 strains showed enhanced transcription of 10 out of 12 genes compared to EDL933. These results may provide new insights in E. coli O157:H7 mechanisms of pathogenesis.

  16. [Chlamydia trachomatis proteasome protein as one of the significant pathogenicity factors of exciter].

    PubMed

    Davydov, D Iu; Zigangirova, N A

    2014-01-01

    Sex-related infections are a global problem. Such infections may lead to acute or chronic diseases. Chlamydia trachomatis is a dangerous and widespread pathogenicity factor that is not sensitive to conventional drugs and has no obvious symptoms. Protein CPAF is leading factor of pathogenesis. This protein inhibits the signaling pathways of host cell and supports long survival of the pathogen in the host cell. The goal of this work was to review general properties of the proteasome Chlamydia protein CPAF, its functions, and role in pathology. The role of protein CPAF in the anti-chlamydia immune reaction is discussed. The prospects of the development of promising anti-chlamydia vaccine, as well as new effective anti-chlamydia drugs are also discussed.

  17. Nuclear factor erythroid-2-related factor regulates LRWD1 expression and cellular adaptation to oxidative stress in human embryonal carcinoma cells.

    PubMed

    Hung, Jui-Hsiang; Wee, Shi-Kae; Omar, Hany A; Su, Chia-Hui; Chen, Hsing-Yi; Chen, Pin-Shern; Chiu, Chien-Chih; Wu, Ming-Syuan; Teng, Yen-Ni

    2018-05-01

    Leucine-rich repeats and WD repeat domain-containing protein 1 (LRWD1) is implicated in the regulation of signal transduction, transcription, RNA processing and tumor development. However, LRWD1 transcriptional regulation is not fully understood. This study aimed to investigate the relationship between LRWD1 expression and reactive oxygen species (ROS) level in human embryonal carcinoma cell line, NT2/D1 cells, which will help in understanding the transcriptional regulatory role of ROS in cells. Results showed that the exposure of NT2/D1 cells to various concentrations of hydrogen peroxide (H 2 O 2 ) and the nitric oxide (NO) donor sodium nitroprusside (SNP) caused a significant increase in the mRNA and protein expression of LRWD1. In addition, LRWD1 promoter luciferase reporter assay, and Chromatin Immunoprecipitation assay (CHIP assay) showed that nuclear factor erythroid-2-related factor (Nrf2) was involved in the regulation of LRWD1 expression in response to oxidative stress. The involvement of Nrf2 was confirmed by shRNA-mediated knockdown of Nrf2 in NT2/D1 cells, which caused a significant decrease in LRWD1 expression in response to oxidative stress. Similarly, LRWD1 knockdown resulted in the accumulation of H 2 O 2 and superoxide anion radical (O2-). Blocking ROS production by N-acetyl cysteine (NAC) protected NT2/D1 shLRWD1cells from H 2 O 2 -induced cell death. Collectively, oxidative stress increased LRWD1 expression through a Nrf2-dependent mechanism, which plays an important role in cellular adaptation to oxidative stress. These results highlight an evidence, on the molecular level, about LRWD1 transcriptional regulation under oxidative stress. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. H pylori status and angiogenesis factors in human gastric carcinoma

    PubMed Central

    Mangia, Anita; Chiriatti, Annalisa; Ranieri, Girolamo; Abbate, Ines; Coviello, Maria; Simone, Giovanni; Zito, Francesco Alfredo; Montemurro, Severino; Rucci, Antonello; Leo, Alfredo Di; Tommasi, Stefania; Berloco, Pasquale; Xu, Jian Ming; Paradiso, Angelo

    2006-01-01

    AIM: To investigate H pylori expression in gastric cancer patients in relation to primary tumor angiogenic markers, such as microvessel density (MVD), thymidine phosphorylase (TP), vascular endothelial growth factor receptor-1 (VEGF-R1), p53 and circulating VEGF levels. METHODS: Angiogenic markers were analyzed immunohistochemically in 56 primary gastric cancers. H pylori cytotoxin (vacA) and the cytotoxin-associated gene (cagA) amplification were evaluated using PCR assay. Serum H pylori IgG antibodies and serum/plasma circulating VEGF levels were detected in 39 and 38 patients by ELISA, respectively. RESULTS: A total of 69% of patients were positive for circulating IgG antibodies against H pylori. cagA-positive H pylori strains were found in 41% of gastric patients. vacA was found in 50% of patients; s1 strains were more highly expressed among vacA-positive patients. The presence of the s1 strain was significantly associated with cagA (P = 0.0001). MVD was significantly correlated with both tumor VEGF expression (r = 0.361, P = 0.009) and serum VEGF levels (r = -0.347, P = 0.041). Conversely, neither VEGF-R1 expression nor MVD was related to p53 expression. However, H pylori was not related to any angiogenic markers except for the plasma VEGF level (P = 0.026). CONCLUSION: H pylori antigen is related to higher plasma VEGF levels, but not to angiogenic characteristics. It can be hypothesized that the toxic effects of H pylori on angiogenesis occurs in early preclinical disease phase or in long-lasting aggressive infections, but only when high H pylori IgG levels are persistent. PMID:17006982

  19. [Heart fatty-acid binding protein (h-FABP): a new cardiac marker].

    PubMed

    Servonnet, A; Delacour, H; Dehan, C; Gardet, V

    2006-01-01

    Heart Fatty-Acid Binding Protein (h-FABP) is a small cytosolic protein that is abundant in the heart and found at lower concentrations in muscle or in the brain. h-FABP is released into the circulation shortly after the onset of ischemia. Several studies indicate its usefulness in cardiology: exclusion of acute myocardial infarction, detection of reperfusion, prognostic value... A rapid immuno-chromatographic assay (Cardiodetect) was recently commercialized in France with a result obtainable within 15 minutes. We review the strengths and weakness of h-FABP for detecting myocardial injury.

  20. Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor

    PubMed Central

    Wang, Hao-Ching; Ko, Tzu-Ping; Wu, Mao-Lun; Ku, Shan-Chi; Wu, Hsing-Ju; Wang, Andrew H.-J.

    2012-01-01

    DNA mimic proteins occupy the DNA binding sites of DNA-binding proteins, and prevent these sites from being accessed by DNA. We show here that the Neisseria conserved hypothetical protein DMP19 acts as a DNA mimic. The crystal structure of DMP19 shows a dsDNA-like negative charge distribution on the surface, suggesting that this protein should be added to the short list of known DNA mimic proteins. The crystal structure of another related protein, NHTF (Neisseria hypothetical transcription factor), provides evidence that it is a member of the xenobiotic-response element (XRE) family of transcriptional factors. NHTF binds to a palindromic DNA sequence containing a 5′-TGTNAN11TNACA-3′ recognition box that controls the expression of an NHTF-related operon in which the conserved nitrogen-response protein [i.e. (Protein-PII) uridylyltransferase] is encoded. The complementary surface charges between DMP19 and NHTF suggest specific charge–charge interaction. In a DNA-binding assay, we found that DMP19 can prevent NHTF from binding to its DNA-binding sites. Finally, we used an in situ gene regulation assay to provide evidence that NHTF is a repressor of its down-stream genes and that DMP19 can neutralize this effect. We therefore conclude that the interaction of DMP19 and NHTF provides a novel gene regulation mechanism in Neisseria spps. PMID:22373915

  1. Ionization correction factors for H II regions in blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Holovatyi, V. V.; Melekh, B. Ya.

    2002-08-01

    Energy distributions in the spectra of the ionizing nuclei of H II regions beyond λ <= 91.2 nm were calculated. A grid of photoionization models of 270 H II regions was constructed. The free parameters of the model grid are the hydrogen density nH in the nebular gas, filling factor, energy Lc-spectrum of ionizing nuclei, and metallicity. The chemical composition from the studies of Izotov et al. were used for model grid initialization. The integral linear spectra calculated for the photoionization models were used to determine the concentration ne, temperatures Te of electrons, and ionic concentrations n(A+i)/n(H+) by the nebular gas diagnostic method. The averaged relative ionic abundances n(A+i)/n(H+) thus calculated were used to determine new expressions for ionization correction factors which we recommend for the determination of abundances in the H II regions of blue compact dwarf galaxies.

  2. Differences between culture & non-culture confirmed invasive meningococci with a focus on factor H-binding protein distribution.

    PubMed

    Clark, Stephen A; Lekshmi, Aiswarya; Lucidarme, Jay; Hao, Li; Tsao, How; Lee-Jones, Lisa; Jansen, Kathrin U; Newbold, Lynne S; Anderson, Annaliesa S; Borrow, Ray

    2016-07-01

    To compare the distribution of capsular groups and factor H-binding protein (fHBP) variants among meningococcal isolates and non-culture clinical specimens and to assess the representativeness of group B isolates amongst group B cases as a whole. A PCR sequencing assay was used to characterise fHBP from non-culture cases confirmed from January 2011 to December 2013. These were compared to genotypic data derived from whole genome analysis of isolates received during the same period. Group W and Y strains were more common among isolates than non-culture strains. The distribution of fHBP variants among group B non-culture cases generally reflected that seen in the corresponding isolates. Nonetheless, the non-culture subset contained a greater proportion of fHBP variant 15/B44, associated with the ST-269 cluster sublineage. Differences in capsular group and fHBP distribution among culture and non-culture cases may be indicative of variation in strain viability, diagnostic practice, disease severity and/or clinical presentation. Future analyses combining clinical case information with laboratory data may help to further explore these differences. Group B isolates provide a good representation of group B disease in E&W and, therefore, can reliably be used in fHBP strain coverage predictions of recently-licensed vaccines. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Moseyko, N.; Feldman, L. J.

    2001-01-01

    This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non-invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH-sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH-sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole-root tissues of A. thaliana is reported. The utility of pH-sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.

  4. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    PubMed Central

    Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran

    2015-01-01

    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232

  5. Computational Studies of pH Sensing Design Principles in Proteins

    NASA Astrophysics Data System (ADS)

    Garrido Ruiz, Diego

    Changes in pH are important regulatory signals for biological function, under physiological and pathological conditions. Recent advances in computer simulations strategies have made the exploration of the effects of charge titrations on protein function possible. In this work, I make use of these strategies to investigate the thermodynamic coupling between conformation and protonation states that give rise to pH-dependent function. As motivation for the rest of the work, I start by presenting a collaborative investigation on a pH-sensing mutant of the EGFR tyrosine kinase common to a set of distinct cancers. From then, I reduce the complexity of the systems under study to build models where exact enumeration of states is possible to inquire about the nature of the couplings between protonation states and conformation. Finally, I discuss detailed simulations of pH-sensing proteins for which I use the expectations and insights generated with simple models to identify and interpret couplings of interest for pH-dependent behavior.

  6. Lipopolysaccharide and hypoxia significantly alters interleukin-8 and macrophage chemoattractant protein-1 production by human fibroblasts but not fibrosis related factors.

    PubMed

    Eleftheriadis, T; Liakopoulos, V; Lawson, B; Antoniadi, G; Stefanidis, I; Galaktidou, G

    2011-07-01

    Besides extracellular matrix production, fibroblasts are able to produce various cytokines. Their ubiquitous position makes fibroblasts appropriate cells for sensing various noxious stimuli and for attracting immune cells in the affected area. In the present study the effect of lipopolysaccharide (LPS) and cobalt chloride (CoCl(2)) on the above fibroblasts functions were evaluated in primary human skin fibroblasts cultures. Collagen, matrix metalloproteinase-1, tissue inhibitor of metalloproteinases-1, transforming growth factor-β1, interleukin-8 (IL-8) and macrophage chemoattractant protein-1 (MCP-1) were measured in fibroblasts culture supernatants. Fibroblasts proliferation and viability were assessed as well. Hypoxia inducible factor-1α and the phosphorylated p65 portion of NF-κB were assessed in fibroblasts protein extracts. LPS and CoCl(2) had a minor effect on fibrosis related factors in human primary fibroblasts, possibly due to the absence of interplay with other cell types in the used experimental system. On the contrary both LPS and CoCl(2) increased significantly IL-8. LPS also increased considerably MCP-1, but CoCl(2) decreased it. Thus LPS and CoCl(2) induce a sentinel, nevertheless not identical, phenotype in primary human fibroblasts. The last disparity could result in different body response to infectious or hypoxic noxious stimuli.

  7. Interaction of proteins with weak amphoteric charged membrane surfaces: effect of pH.

    PubMed

    Matsumoto, Hidetoshi; Koyama, Yoshiyuki; Tanioka, Akihiko

    2003-08-01

    Weak amphoteric charged membranes were prepared by the graft copolymerization of poly(ethylene glycol) (PEG) derivatives with pendant ionizable groups onto polyethylene (PE) porous membranes. Two types of weak amphoteric charged membranes and two types of weak single charged membranes were prepared. The pH dependence of the protein (fluorescein isothiocyanate-labeled bovine serum albumin, FITC-BSA) adsorption onto the membranes was investigated by fluorescence spectroscopy. The interfacial charge properties of the membranes and protein were also characterized at different pH values by streaming potential and electrophoretic light scattering (ELS) measurements, respectively. The adsorbed amount onto each ionic PEG chain grafted membrane showed a uniform maximum value near the isoelectric point (IEP) of the protein (pH 4.1). On both sides of the IEP (pHs 3.3 and 7.2), the adsorption experiments and zeta (zeta) potential measurements were well correlated: the contribution of electrostatic interaction was dominant for the protein adsorption behavior. In the alkaline condition (pH 10.2), the adsorption experiments contradict the zeta potential measurements. It suggested that the conformational change of protein molecule influenced the adsorption behavior. Finally, these results indicated the potential of controlling the protein-ionic PEG chain interaction on the membrane surfaces by the pH adjustment of the outer solution.

  8. pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface.

    PubMed

    Kisley, Lydia; Poongavanam, Mohan-Vivekanandan; Kourentzi, Katerina; Willson, Richard C; Landes, Christy F

    2016-02-01

    pH is a common mobile phase variable used to control protein separations due to the tunable nature of amino acid and adsorbent charge. Like other column variables such as column density and ligand loading density, pH is usually optimized empirically. Single-molecule spectroscopy extracts molecular-scale data to provide a framework for mechanistic optimization of pH. The adsorption and diffusion of a model globular protein, α-lactalbumin, was studied by single-molecule microscopy at a silica-aqueous interface analogous to aqueous normal phase and hydrophilic interaction chromatography and capillary electrophoresis interfaces at varied pH. Electrostatic repulsion resulting in free diffusion was observed at pH above the isoelectric point of the protein. In contrast, at low pH strong adsorption and surface diffusion with either no (D ∼ 0.01 μm(2) /s) or translational (D ∼ 0.3 μm(2) /s) motion was observed where the protein likely interacted with the surface through electrostatic, hydrophobic, and hydrogen bonding forces. The fraction of proteins immobilized could be increased by lowering the pH. These results show that retention of proteins at the silica interface cannot be viewed solely as an adsorption/desorption process and that the type of surface diffusion, which ultimately leads to ensemble chromatographic separations, can be controlled by tuning long-range electrostatic and short-range hydrophobic and hydrogen bonding forces with pH. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.

    PubMed

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-10-17

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.

  10. Influence of extraction pH on the foaming, emulsification, oil-binding and visco-elastic properties of marama protein.

    PubMed

    Gulzar, Muhammad; Taylor, John Rn; Minnaar, Amanda

    2017-11-01

    Marama bean protein, as extracted previously at pH 8, forms a viscous, adhesive and extensible dough. To obtain a protein isolate with optimum functional properties, protein extraction under slightly acidic conditions (pH 6) was investigated. Two-dimensional electrophoresis showed that pH 6 extracted marama protein lacked some basic 11S legumin polypeptides, present in pH 8 extracted protein. However, it additionally contained acidic high molecular weight polypeptides (∼180 kDa), which were disulfide crosslinked into larger proteins. pH 6 extracted marama proteins had similar emulsification properties to soy protein isolate and several times higher foaming capacity than pH 8 extracted protein, egg white and soy protein isolate. pH 6 extracted protein dough was more elastic than pH 8 extracted protein, approaching the elasticity of wheat gluten. Marama protein extracted at pH 6 has excellent food-type functional properties, probably because it lacks some 11S polypeptides but has additional high molecular weight proteins. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. pH-Dependent Conformational Changes in the HCV NS3 Protein Modulate Its ATPase and Helicase Activities

    PubMed Central

    Ventura, Gustavo Tavares; da Costa, Emmerson Corrêa Brasil; Capaccia, Anne Miranda; Mohana-Borges, Ronaldo

    2014-01-01

    The hepatitis C virus (HCV) infects 170 to 200 million people worldwide and is, therefore, a major health problem. The lack of efficient treatments that specifically target the viral proteins or RNA and its high chronicity rate make hepatitis C the cause of many deaths and hepatic transplants annually. The NS3 protein is considered an important target for the development of anti-HCV drugs because it is composed of two domains (a serine protease in the N-terminal portion and an RNA helicase/NTPase in the C-terminal portion), which are essential for viral replication and proliferation. We expressed and purified both the NS3 helicase domain (NS3hel) and the full-length NS3 protein (NS3FL) and characterized pH-dependent structural changes associated with the increase in their ATPase and helicase activities at acidic pH. Using intrinsic fluorescence experiments, we have observed that NS3hel was less stable at pH 6.4 than at pH 7.2. Moreover, binding curves using an extrinsic fluorescent probe (bis-ANS) and ATPase assays performed under different pH conditions demonstrated that the hydrophobic clefts of NS3 are significantly more exposed to the aqueous medium at acidic pH. Using fluorescence spectroscopy and anisotropy assays, we have also observed more protein interaction with DNA upon pH acidification, which suggests that the hydrophobic clefts exposure on NS3 might be related to a loss of stability that could lead it to adopt a more open conformation. This conformational change at acidic pH would stimulate both its ATPase and helicase activities, as well as its ability to bind DNA. Taken together, our results indicate that the NS3 protein adopts a more open conformation due to acidification from pH 7.2 to 6.4, resulting in a more active form at a pH that is found near Golgi-derived membranes. This increased activity could better allow NS3 to carry out its functions during HCV replication. PMID:25551442

  12. Factors Influencing School Closure and Dismissal Decisions: Influenza A (H1N1), Michigan 2009

    ERIC Educational Resources Information Center

    Dooyema, Carrie A.; Copeland, Daphne; Sinclair, Julie R.; Shi, Jianrong; Wilkins, Melinda; Wells, Eden; Collins, Jim

    2014-01-01

    Background: In fall 2009, many US communities experienced school closures during the influenza A H1N1 pandemic (pH1N1) and the state of Michigan reported 567 closures. We conducted an investigation in Michigan to describe pH1N1-related school policies, practices, and identify factors related to school closures. Methods: We distributed an online…

  13. Histone H4 Methyltransferase Suv420h2 Maintains Fidelity of Osteoblast Differentiation.

    PubMed

    Khani, Farzaneh; Thaler, Roman; Paradise, Christopher R; Deyle, David R; Kruijthof-de Julio, Marianne; Galindo, Mario; Gordon, Jonathan A; Stein, Gary S; Dudakovic, Amel; van Wijnen, Andre J

    2017-05-01

    Osteogenic lineage commitment and progression is controlled by multiple signaling pathways (e.g., WNT, BMP, FGF) that converge on bone-related transcription factors. Access of osteogenic transcription factors to chromatin is controlled by epigenetic regulators that generate post-translational modifications of histones ("histone code"), as well as read, edit and/or erase these modifications. Our understanding of the biological role of epigenetic regulators in osteoblast differentiation remains limited. Therefore, we performed next-generation RNA sequencing (RNA-seq) and established which chromatin-related proteins are robustly expressed in mouse bone tissues (e.g., fracture callus, calvarial bone). These studies also revealed that cells with increased osteogenic potential have higher levels of the H4K20 methyl transferase Suv420h2 compared to other methyl transferases (e.g., Suv39h1, Suv39h2, Suv420h1, Ezh1, Ezh2). We find that all six epigenetic regulators are transiently expressed at different stages of osteoblast differentiation in culture, with maximal mRNAs levels of Suv39h1 and Suv39h2 (at day 3) preceding maximal expression of Suv420h1 and Suv420h2 (at day 7) and developmental stages that reflect, respectively, early and later collagen matrix deposition. Loss of function analysis of Suv420h2 by siRNA depletion shows loss of H4K20 methylation and decreased expression of bone biomarkers (e.g., alkaline phosphatase/Alpl) and osteogenic transcription factors (e.g., Sp7/Osterix). Furthermore, Suv420h2 is required for matrix mineralization during osteoblast differentiation. We conclude that Suv420h2 controls the H4K20 methylome of osteoblasts and is critical for normal progression of osteoblastogenesis. J. Cell. Biochem. 118: 1262-1272, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Histone H4 methyltransferase Suv420h2 maintains fidelity of osteoblast differentiation

    PubMed Central

    Farzaneh, Khani; Thaler, Roman; Paradise, Christopher R.; Deyle, David R.; Julio, Marianne Kruijthof-de; Galindo, Mario; Gordon, Jonathan A.; Stein, Gary S.; Dudakovic, Amel; van Wijnen, Andre J.

    2017-01-01

    Osteogenic lineage commitment and progression is controlled by multiple signaling pathways (e.g., WNT, BMP, FGF) that converge on bone-related transcription factors. Access of osteogenic transcription factors to chromatin is controlled by epigenetic regulators that generate post-translational modifications of histones (‘histone code’), as well as read, edit and/or erase these modifications. Our understanding of the biological role of epigenetic regulators in osteoblast differentiation remains limited. Therefore, we performed next-generation RNA sequencing (RNA-seq) and established which chromatin-related proteins are robustly expressed in mouse bone tissues (e.g., fracture callus, calvarial bone). These studies also revealed that cells with increased osteogenic potential have higher levels of the H4K20 methyl transferase Suv420h2 compared to other methyl transferases (e.g., Suv39h1, Suv39h2, Suv420h1, Ezh1, Ezh2). We find that all six epigenetic regulators are transiently expressed at different stages of osteoblast differentiation in culture, with maximal mRNAs levels of Suv39h1 and Suv39h2 (at day 3) preceding maximal expression of Suv420h1 and Suv420h2 (at day 7) and developmental stages that reflect, respectively, early and later collagen matrix deposition. Loss of function analysis of Suv420h2 by siRNA depletion shows loss of H4K20 methylation and decreased expression of bone biomarkers (e.g., alkaline phosphatase/Alpl) and osteogenic transcription factors (e.g., Sp7/Osterix). Furthermore, Suv420h2 is required for matrix mineralization during osteoblast differentiation. We conclude that Suv420h2 controls the H4K20 methylome of osteoblasts and is critical for normal progression of osteoblastogenesis. PMID:27862226

  15. BLOC-2, AP-3, and AP-1 Proteins Function in Concert with Rab38 and Rab32 Proteins to Mediate Protein Trafficking to Lysosome-related Organelles*

    PubMed Central

    Bultema, Jarred J.; Ambrosio, Andrea L.; Burek, Carolyn L.; Di Pietro, Santiago M.

    2012-01-01

    Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis. PMID:22511774

  16. BLOC-2, AP-3, and AP-1 proteins function in concert with Rab38 and Rab32 proteins to mediate protein trafficking to lysosome-related organelles.

    PubMed

    Bultema, Jarred J; Ambrosio, Andrea L; Burek, Carolyn L; Di Pietro, Santiago M

    2012-06-01

    Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis.

  17. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  18. H3K9me2/3 Binding of the MBT Domain Protein LIN-61 Is Essential for Caenorhabditis elegans Vulva Development

    PubMed Central

    Koester-Eiserfunke, Nora; Fischle, Wolfgang

    2011-01-01

    MBT domain proteins are involved in developmental processes and tumorigenesis. In vitro binding and mutagenesis studies have shown that individual MBT domains within clustered MBT repeat regions bind mono- and dimethylated histone lysine residues with little to no sequence specificity but discriminate against the tri- and unmethylated states. However, the exact function of promiscuous histone methyl-lysine binding in the biology of MBT domain proteins has not been elucidated. Here, we show that the Caenorhabditis elegans four MBT domain protein LIN-61, in contrast to other MBT repeat factors, specifically interacts with histone H3 when methylated on lysine 9, displaying a strong preference for di- and trimethylated states (H3K9me2/3). Although the fourth MBT repeat is implicated in this interaction, H3K9me2/3 binding minimally requires MBT repeats two to four. Further, mutagenesis of residues conserved with other methyl-lysine binding MBT regions in the fourth MBT repeat does not abolish interaction, implicating a distinct binding mode. In vivo, H3K9me2/3 interaction of LIN-61 is required for C. elegans vulva development within the synMuvB pathway. Mutant LIN-61 proteins deficient in H3K9me2/3 binding fail to rescue lin-61 synMuvB function. Also, previously identified point mutant synMuvB alleles are deficient in H3K9me2/3 interaction although these target residues that are outside of the fourth MBT repeat. Interestingly, lin-61 genetically interacts with two other synMuvB genes, hpl-2, an HP1 homologous H3K9me2/3 binding factor, and met-2, a SETDB1 homologous H3K9 methyl transferase (H3K9MT), in determining C. elegans vulva development and fertility. Besides identifying the first sequence specific and di-/trimethylation binding MBT domain protein, our studies imply complex multi-domain regulation of ligand interaction of MBT domains. Our results also introduce a mechanistic link between LIN-61 function and biology, and they establish interplay of the H3K9me2

  19. Classical Bovine Spongiform Encephalopathy by Transmission of H-Type Prion in Homologous Prion Protein Context

    PubMed Central

    Andréoletti, Olivier; Lacroux, Caroline; Prieto, Irene; Lorenzo, Patricia; Larska, Magdalena; Baron, Thierry; Espinosa, Juan-Carlos

    2011-01-01

    Bovine spongiform encephalopathy (BSE) and BSE-related disorders have been associated with a single major prion strain. Recently, 2 atypical, presumably sporadic forms of BSE have been associated with 2 distinct prion strains that are characterized mainly by distinct Western blot profiles of abnormal protease-resistant prion protein (PrPres), named high-type (BSE-H) and low-type (BSE-L), that also differed from classical BSE. We characterized 5 atypical BSE-H isolates by analyzing their molecular and neuropathologic properties during transmission in transgenic mice expressing homologous bovine prion protein. Unexpectedly, in several inoculated animals, strain features emerged that were highly similar to those of classical BSE agent. These findings demonstrate the capability of an atypical bovine prion to acquire classical BSE–like properties during propagation in a homologous bovine prion protein context and support the view that the epidemic BSE agent could have originated from such a cattle prion. PMID:21888788

  20. The role of nuclear factor E2-Related factor 2 and uncoupling protein 2 in glutathione metabolism: Evidence from an in vivo gene knockout study.

    PubMed

    Chen, Yanyan; Xu, Yuanyuan; Zheng, Hongzhi; Fu, Jingqi; Hou, Yongyong; Wang, Huihui; Zhang, Qiang; Yamamoto, Masayuki; Pi, Jingbo

    2016-09-09

    Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-double knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Estimation of salivary flow rate, pH, buffer capacity, calcium, total protein content and total antioxidant capacity in relation to dental caries severity, age and gender.

    PubMed

    Pandey, Pallavi; Reddy, N Venugopal; Rao, V Arun Prasad; Saxena, Aditya; Chaudhary, C P

    2015-03-01

    The aim of the study was to evaluate salivary flow rate, pH, buffering capacity, calcium, total protein content and total antioxidant capacity in relation to dental caries, age and gender. The study population consisted of 120 healthy children aged 7-15 years that was further divided into two groups: 7-10 years and 11-15 years. In this 60 children with DMFS/dfs = 0 and 60 children with DMFS/dfs ≥5 were included. The subjects were divided into two groups; Group A: Children with DMFS/dfs = 0 (caries-free) Group B: Children with DMFS/dfs ≥5 (caries active). Unstimulated saliva samples were collected from all groups. Flow rates were determined, and samples analyzed for pH, buffer capacity, calcium, total protein and total antioxidant status. Salivary antioxidant activity is measured with spectrophotometer by an adaptation of 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonate) assays. The mean difference of the two groups; caries-free and caries active were proved to be statistically significant (P < 0.05) for salivary calcium, total protein and total antioxidant level for both the sexes in the age group 7-10 years and for the age 11-15 years the mean difference of the two groups were proved to be statistically significant (P < 0.05) for salivary calcium level for both the sexes. Salivary total protein and total antioxidant level were proved to be statistically significant for male children only. In general, total protein and total antioxidants in saliva were increased with caries activity. Calcium content of saliva was found to be more in caries-free group and increased with age.

  2. Unstimulated Saliva-Related Caries Risk Factors in Individuals with Cystic Fibrosis: A Cross-Sectional Analysis of Unstimulated Salivary Flow, pH, and Buffering Capacity.

    PubMed

    Alkhateeb, Alaa A; Mancl, Lloyd A; Presland, Richard B; Rothen, Marilynn L; Chi, Donald L

    2017-01-01

    Salivary flow rate, pH, and buffering capacity are associated with dental caries, but studies from the cystic fibrosis (CF) literature are inconclusive regarding these salivary factors and caries. The aim of this study was to evaluate these factors and their associations with dental caries in individuals with CF. Unstimulated whole saliva was collected from individuals aged 6-20 years at Seattle Children's Hospital CF Clinic, USA (n = 83). Salivary flow rate was measured in milliliters per minute. Salivary pH was assessed using a laboratory pH meter. Buffering capacity was assessed by titration with HCl. The outcome measure was caries prevalence, defined as the number of decayed, missing, or filled primary and permanent tooth surfaces. Spearman's rank correlation coefficient and the t test were used to test for bivariate associations. Multiple variable linear regression models were used to (1) run confounder-adjusted analyses and (2) assess for potential interactions. There was no significant association between salivary flow rate or buffering capacity and caries prevalence. There was a significant negative association between salivary pH and caries prevalence, but this association was no longer significant after adjusting for age. There was no significant interaction between salivary flow rate and buffering capacity or between antibiotic use and the 3 salivary factors. Our results indicate that unstimulated salivary factors are not associated with dental caries prevalence in individuals with CF. Future studies should investigate other potential saliva-related caries risk factors in individuals with CF such as cariogenic bacteria levels, salivary host defense peptide levels, and medication use. © 2016 S. Karger AG, Basel.

  3. Parathyroid hormone-related protein blood test

    MedlinePlus

    ... gov/ency/article/003691.htm Parathyroid hormone-related protein blood test To use the sharing features on ... page, please enable JavaScript. The parathyroid hormone-related protein (PTH-RP) test measures the level of a ...

  4. Regulation of age-related macular degeneration-like pathology by complement factor H

    PubMed Central

    Toomey, Christopher B.; Kelly, Una; Saban, Daniel R.; Bowes Rickman, Catherine

    2015-01-01

    Complement factor H (CFH) is a major susceptibility gene for age-related macular degeneration (AMD); however, its impact on AMD pathobiology is unresolved. Here, the role of CFH in the development of AMD pathology in vivo was interrogated by analyzing aged Cfh+/− and Cfh−/− mice fed a high-fat, cholesterol-enriched diet. Strikingly, decreased levels of CFH led to increased sub-retinal pigmented epithelium (sub-RPE) deposit formation, specifically basal laminar deposits, following high-fat diet. Mechanistically, our data show that deposits are due to CFH competition for lipoprotein binding sites in Bruch’s membrane. Interestingly and despite sub-RPE deposit formation occurring in both Cfh+/− and Cfh−/− mice, RPE damage accompanied by loss of vision occurred only in old Cfh+/− mice. We demonstrate that such pathology is a function of excess complement activation in Cfh+/− mice versus complement deficiency in Cfh−/− animals. Due to the CFH-dependent increase in sub-RPE deposit height, we interrogated the potential of CFH as a previously unidentified regulator of Bruch’s membrane lipoprotein binding and show, using human Bruch’s membrane explants, that CFH removes endogenous human lipoproteins in aged donors. Thus, advanced age, high-fat diet, and decreased CFH induce sub-RPE deposit formation leading to complement activation, which contributes to RPE damage and visual function impairment. This new understanding of the complicated interactions of CFH in AMD-like pathology provides an improved foundation for the development of targeted therapies for AMD. PMID:25991857

  5. Factor H-binding protein is important for meningococcal survival in human whole blood and serum and in the presence of the antimicrobial peptide LL-37.

    PubMed

    Seib, K L; Serruto, D; Oriente, F; Delany, I; Adu-Bobie, J; Veggi, D; Aricò, B; Rappuoli, R; Pizza, M

    2009-01-01

    Factor H-binding protein (fHBP; GNA1870) is one of the antigens of the recombinant vaccine against serogroup B Neisseria meningitidis, which has been developed using reverse vaccinology and is the basis of a meningococcal B vaccine entering phase III clinical trials. Binding of factor H (fH), an inhibitor of the complement alternative pathway, to fHBP enables N. meningitidis to evade killing by the innate immune system. All fHBP null mutant strains analyzed were sensitive to killing in ex vivo human whole blood and serum models of meningococcal bacteremia with respect to the isogenic wild-type strains. The fHBP mutant strains of MC58 and BZ83 (high fHBP expressors) survived in human blood and serum for less than 60 min (decrease of >2 log(10) CFU), while NZ98/254 (intermediate fHBP expressor) and 67/00 (low fHBP expressor) showed decreases of >1 log(10) CFU after 60 to 120 min of incubation. In addition, fHBP is important for survival in the presence of the antimicrobial peptide LL-37 (decrease of >3 log(10) CFU after 2 h of incubation), most likely due to electrostatic interactions between fHBP and the cationic LL-37 molecule. Hence, the expression of fHBP by N. meningitidis strains is important for survival in human blood and human serum and in the presence of LL-37, even at low levels. The functional significance of fHBP in mediating resistance to the human immune response, in addition to its widespread distribution and its ability to induce bactericidal antibodies, indicates that it is an important component of the serogroup B meningococcal vaccine.

  6. A pH-sensitive red fluorescent protein compatible with hydrophobic resin embedding

    NASA Astrophysics Data System (ADS)

    Guo, Wenyan; Gang, Yadong; Liu, Xiuli; Zhou, Hongfu; Zeng, Shaoqun

    2017-02-01

    pH sensitive fluorescent proteins enabling chemical reactivation in resin are useful tools for fluorescence microimaging. EYFP or EGFP improved from GFP in jellyfish are good for such applications. For simultaneous two-color imaging, a suitable red fluorescent protein is of urgent need. Here a pH sensitive red fluorescent protein, pHuji, is selected and verified to be compatible with hydrophobic resin embedding and thus may be promising for dual-colour chemical reactivation imaging in conjunction with EGFP or EYFP.

  7. PalC, One of Two Bro1 Domain Proteins in the Fungal pH Signalling Pathway, Localizes to Cortical Structures and Binds Vps32

    PubMed Central

    Galindo, Antonio; Hervás-Aguilar, América; Rodríguez-Galán, Olga; Vincent, Olivier; Arst, Herbert N; Tilburn, Joan; Peñalva, Miguel A

    2007-01-01

    PalC, distantly related to Saccharomyces cerevisiaeperipheral endosomal sorting complexes required for transport III (ESCRT-III) component Bro1p and one of six Aspergillus nidulanspH signalling proteins, contains a Bro1 domain. Green fluorescent protein (GFP)-tagged PalC is recruited to plasma membrane-associated punctate structures upon alkalinization, when pH signalling is active. PalC recruitment to these structures is dependent on the seven transmembrane domain (7-TMD) receptor and likely pH sensor PalH. PalC is a two-hybrid interactor of the ESCRT-III Vps20/Vps32 subcomplex and binds Vps32 directly. This binding is largely impaired by Pro439Phe, Arg442Ala and Arg442His substitutions in a conserved region mediating interaction of Bro1p with Vps32p, but these substitutions do not prevent cortical punctate localization, indicating Vps32 independence. In contrast, Arg442Δ impairs Vps32 binding and prevents PalC-GFP recruitment to cortical structures. pH signalling involves a plasma membrane complex including the 7-TMD receptor PalH and the arrestin-like PalF and an endosomal membrane complex involving the PalB protease, the transcription factor PacC and the Vps32 binding, Bro1-domain-containing protein PalA. PalC, which localizes to cortical structures and can additionally bind a component of ESCRT-III, has the features required to bridge these two entities. A likely S. cerevisiaeorthologue of PalC has been identified, providing the basis for a unifying hypothesis of gene regulation by ambient pH in ascomycetes. PMID:17696968

  8. Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo.

    PubMed

    Thisse, B; Wright, C V; Thisse, C

    2000-01-27

    Definition of cell fates along the dorso-ventral axis depends on an antagonistic relationship between ventralizing transforming growth factor-beta superfamily members, the bone morphogenetic proteins and factors secreted from the dorsal organizer, such as Noggin and Chordin. The extracellular binding of the last group to the bone morphogenetic proteins prevents them from activating their receptors, and the relative ventralizer:antagonist ratio is thought to specify different dorso-ventral cell fates. Here, by taking advantage of a non-genetic interference method using a specific competitive inhibitor, the Lefty-related gene product Antivin, we provide evidence that cell fate along the antero-posterior axis of the zebrafish embryo is controlled by the morphogenetic activity of another transforming growth factor-beta superfamily subgroup--the Activin and Nodal-related factors. Increasing antivin doses progressively deleted posterior fates within the ectoderm, eventually resulting in the removal of all fates except forebrain and eyes. In contrast, overexpression of activin or nodal-related factors converted ectoderm that was fated to be forebrain into more posterior ectodermal or mesendodermal fates. We propose that modulation of intercellular signalling by Antivin/Activin and Nodal-related factors provides a mechanism for the graded establishment of cell fates along the antero-posterior axis of the zebrafish embryo.

  9. The 87-kD A gamma-globin enhancer-binding protein is a product of the HOXB2(HOX2H) locus.

    PubMed

    Sengupta, P K; Lavelle, D E; DeSimone, J

    1994-03-01

    Developmental regulation of globin gene expression may be controlled by developmental stage-specific nuclear proteins that influence interactions between the locus control region and local regulatory sequences near individual globin genes. We previously isolated an 87-kD nuclear protein from K562 cells that bound to DNA sequences in the beta-globin locus control region, gamma-globin promoter, and A gamma-globin enhancer. The presence of this protein in fetal globin-expressing cells and its absence in adult globin-expressing cells suggested that it may be a developmental stage-specific factor. A lambda gt11 K562 cDNA clone encoding a portion of the HOXB2 (formerly HOX2H) homeobox gene was isolated on the basis of the ability of its beta-galactosidase fusion protein to bind to the same DNA sequences as the 87-kD K562 protein. Because no other relationship had been established between the 87-kD K562 protein and the HOXB2 protein other than their ability to bind ot the same DNA sequences, we have investigated whether the two proteins are related antigenically. Our data show that antisera produced against the HOXB2-beta-gal fusion protein and a synthetic HOXB2 decapeptide react specifically with an 87-kD protein from K562 nuclear extract, showing that the 87-kD K562 nuclear protein is a product of the HOXB2 locus, and is the first demonstration of cellular HOXB2 protein.

  10. A novel method to visually determine the intracellular pH of xenografted tumor in vivo by utilizing fluorescent protein as an indicator.

    PubMed

    Tanaka, Shotaro; Harada, Hiroshi; Hiraoka, Masahiro

    2015-09-04

    The alkalization of intracellular pH (pHin) advances together with enhancement of aerobic glycolysis within tumor cells (the Warburg effect), and that is responsible for the progression of tumor malignancy together with hypoxia and angiogenesis. But how they correlate each other during tumor growth is poorly understood, partly due to the lack of suitable imaging methods. In present study, we propose a novel method to visually determine the pHin of tumor xenograft model from fluorescent image ratios. We utilized tandemly-linked two fluorescent proteins as a pH indicator; yellow fluorescent protein (YFP, pH sensitive) as an indicator, and red fluorescent protein (RFP, pH insensitive) as a reference. This method can eliminate the influence of optical factors from tissue as well as of the diverse expression level of pH indicator in the grafted cells. In addition, that can be operated by filter-based fluorescent imagers that are generally used in small animal study. The efficacy of the pH indicator, RFP-YFP, was confirmed by studies using recombinant protein in vitro and HeLa cells expressing RFP-YFP in vivo. Furthermore, we prepared nude mice subcutaneously xenografted HeLa cells expressing RFP-YFP cells as tumor model. The image ratios (YFP/RFP) of the tumor at the day 5 after surgery clearly showed the heterogeneous distribution of diverse pHin cells in the tumor tissue. Concomitantly acquired angiography using near-infrared fluorescence (680 nm for emission) also indicated that the relative alkaline pHin cells located in the region far from tumor vessels in which tumor aerobic glycolysis would be facilitated by progression of hypoxia and nutrient starvation. Applying the present method for a multi-wavelength imaging concerning pO2 and/or nutrient starvation states in addition to pHin and angiogenesis would provide valuable information about complicated alteration of tumoral cell states during tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4.

    PubMed

    Pesavento, James J; Mizzen, Craig A; Kelleher, Neil L

    2006-07-01

    Here we show that fragment ion abundances from dissociation of ions created from mixtures of multiply modified histone H4 (11 kDa) or of N-terminal synthetic peptides (2 kDa) correspond to their respective intact ion abundances measured by Fourier transform mass spectrometry. Isomeric mixtures of modified forms of the same protein are resolved and quantitated with a precision of relative ratios of their fragment ions, with intact protein ions created by electrospray greatly easing many of the systematic biases that more strongly affect small peptides (e.g., differences in ionization efficiency and ion m/z values). The ion fragmentation methods validated here are directly extensible to intact human proteins to derive quantitative information on the highly related and often isomeric protein forms created by combinatorial arrays of posttranslational modifications.

  12. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin.

    PubMed

    Yang, A S; Honig, B

    1994-04-15

    A recently developed approach to calculate the pH dependence of protein stability from three-dimensional structure information is applied to the analysis of acid denaturation of sperm whale apomyoglobin. The finite difference Poisson-Boltzmann method is used to calculate pKa values and these are used to obtain titration curves for the folded protein as well as for compact intermediates. The total electrostatic free energy change involved in apomyoglobin unfolding is then evaluated. Calculations are carried out of the unfolding free energy of the native (N) and the compact intermediate (I) of apomyoglobin relative to the unfolded state (U) over a range of pH at various ionic strengths. The contributions from key ionizable groups to the unfolding process are discussed. For the acid-induced partial unfolding of apomyoglobin near pH 5, the transition from N to I is found to be driven by three histidines that are exposed when the B, C, D and E helices unfold. Similarly, the unfolding of the compact intermediate I consisting of the A, G and H helices is driven primarily by a few carboxylic acids with low pKa values in the compact state. This picture is in contrast to the view which attributes acid denaturation to electrostatic repulsion resulting from the build up of positive charge. In fact, charge-charge interactions in myoglobin are found to be attractive at all pH values where the protein unfolds. pH-dependent changes in these interactions contribute to acid denaturation but other electrostatic effects, such as hydrogen bonding and solvation, are important as well. The effect of increasing ionic strength on unfolding is attributed to the decrease of attractive charge-charge interactions which destabilize the N state relative to I, but stabilize the I state relative to U by reducing the pKa shifts of a few critical carboxylic acids. The I state is found to be more stable than U at neutral pH thus accounting for its presence as an intermediate on the protein folding

  13. Rapid Modulation of Protein Expression in the Rat Hippocampus Following Deep Brain Stimulation of the Fornix.

    PubMed

    Gondard, Elise; Chau, Hien N; Mann, Amandeep; Tierney, Travis S; Hamani, Clement; Kalia, Suneil K; Lozano, Andres M

    2015-01-01

    The forniceal area is currently being evaluated as a target for deep brain stimulation (DBS) to improve cognitive function in patients with Alzheimer's disease. The molecular changes at downstream targets within the stimulated circuit are unknown. To analyze the modulation of hippocampal protein expression following 1 h of fornix DBS in the rat. Animals underwent bilateral forniceal DBS for 1 h and sacrificed at different time-points after the initiation of the stimulation (1 h, 2.5 h, 5 h, 25 h). Bilateral hippocampi were isolated for western blot analyses. Forniceal DBS led to a dramatic elevation of cFos post-stimulation, suggesting that forniceal DBS activates the hippocampus. There was also a significant increase in candidate proteins including several trophic factors, such as brain derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) but not glial cell-derived neurotrophic factor (GDNF). There was in addition, increased expression of the synaptic markers growth associated protein 43 (GAP-43), synaptophysin and α-synuclein. No changes were observed at the studied time-points in Alzheimer's-related proteins including amyloid precursor protein (APP), tau, phosphorylated tau (ptau), or selected chaperone proteins (HSP40, HSP70 and CHIP). Forniceal DBS triggers hippocampal activity and rapidly modulate the expression of neurotrophic factors and markers of synaptic plasticity known to play key roles in memory processing. The clinical effects of DBS of the fornix may, in part, be mediated by producing changes in the expression of these proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  15. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE PAGES

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; ...

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  16. Plasma levels of hypoxia-regulated factors in patients with age-related macular degeneration.

    PubMed

    Ioanna, Zygoula; Christian, Schori; Christian, Grimm; Daniel, Barthelmes

    2018-02-01

    Various hypoxia-related proteins are differentially expressed in the retina and secreted to the vitreous and/or aqueous humor of patients affected by dry or neovascular age-related macular degeneration (nAMD). To determine whether these conditions alter concentrations of cytokines also in the systemic circulation, we measured plasma levels of six hypoxia-related proteins. Plasma was prepared from EDTA blood that was collected from patients affected by dry AMD (n = 5), nAMD (n = 11), proliferative diabetic retinopathy (PDR; n = 9), and patients with an epiretinal membrane (ERM; n = 11). ERM samples served as negative controls, PDR samples as positive controls. Protein concentrations of vascular endothelial growth factor (VEGF), erythropoietin (EPO), angiopoietin-like 4 (ANGPTL4), placental growth factor (PlGF), tumor necrosis factor alpha (TNF-α), and pigment epithelium-derived factor (PEDF) were determined by enzyme-linked immunosorbent assay (ELISA). The concentration of PlGF was significantly increased in plasma of patients affected by nAMD. Although no statistically significant differences were found for EPO, ANGPTL4, PlGF, TNF-α, and PEDF, the mean concentration of VEGF was lowest in the nAMD group. Plasma concentrations of the six factors did not correlate with gender or age of patients. nAMD may increase plasma concentrations of PlGF, making it a candidate as a biomarker for the neovascular form of AMD. Other factors, however, were not differentially regulated, suggesting that their systemic concentrations are not generally increased in hypoxia-related retinal diseases.

  17. Differential protein-coding gene and long noncoding RNA expression in smoking-related lung squamous cell carcinoma.

    PubMed

    Li, Shicheng; Sun, Xiao; Miao, Shuncheng; Liu, Jia; Jiao, Wenjie

    2017-11-01

    Cigarette smoking is one of the greatest preventable risk factors for developing cancer, and most cases of lung squamous cell carcinoma (lung SCC) are associated with smoking. The pathogenesis mechanism of tumor progress is unclear. This study aimed to identify biomarkers in smoking-related lung cancer, including protein-coding gene, long noncoding RNA, and transcription factors. We selected and obtained messenger RNA microarray datasets and clinical data from the Gene Expression Omnibus database to identify gene expression altered by cigarette smoking. Integrated bioinformatic analysis was used to clarify biological functions of the identified genes, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the construction of a protein-protein interaction network, transcription factor, and statistical analyses. Subsequent quantitative real-time PCR was utilized to verify these bioinformatic analyses. Five hundred and ninety-eight differentially expressed genes and 21 long noncoding RNA were identified in smoking-related lung SCC. GO and KEGG pathway analysis showed that identified genes were enriched in the cancer-related functions and pathways. The protein-protein interaction network revealed seven hub genes identified in lung SCC. Several transcription factors and their binding sites were predicted. The results of real-time quantitative PCR revealed that AURKA and BIRC5 were significantly upregulated and LINC00094 was downregulated in the tumor tissues of smoking patients. Further statistical analysis indicated that dysregulation of AURKA, BIRC5, and LINC00094 indicated poor prognosis in lung SCC. Protein-coding genes AURKA, BIRC5, and LINC00094 could be biomarkers or therapeutic targets for smoking-related lung SCC. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  18. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses.

    PubMed

    Clark, Amelia M; Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-09-01

    In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis. IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up

  19. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses

    PubMed Central

    Clark, Amelia M.; Nogales, Aitor; Martinez-Sobrido, Luis

    2017-01-01

    ABSTRACT In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis. IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people

  20. Lipo-Protein Emulsion Structure in the Diet Affects Protein Digestion Kinetics, Intestinal Mucosa Parameters and Microbiota Composition.

    PubMed

    Oberli, Marion; Douard, Véronique; Beaumont, Martin; Jaoui, Daphné; Devime, Fabienne; Laurent, Sandy; Chaumontet, Catherine; Mat, Damien; Le Feunteun, Steven; Michon, Camille; Davila, Anne-Marie; Fromentin, Gilles; Tomé, Daniel; Souchon, Isabelle; Leclerc, Marion; Gaudichon, Claire; Blachier, François

    2018-01-01

    Food structure is a key factor controlling digestion and nutrient absorption. We test the hypothesis that protein emulsion structure in the diet may affect digestive and absorptive processes. Rats (n = 40) are fed for 3 weeks with two diets chemically identical but based on lipid-protein liquid-fine (LFE) or gelled-coarse (GCE) emulsions that differ at the macro- and microstructure levels. After an overnight fasting, they ingest a 15 N-labeled LFE or GCE test meal and are euthanized 0, 15 min, 1 h, and 5 h later. 15 N enrichment in intestinal contents and blood are measured. Gastric emptying, protein digestion kinetics, 15 N absorption, and incorporation in blood protein and urea are faster with LFE than GCE. At 15 min time point, LFE group shows higher increase in GIP portal levels than GCE. Three weeks of dietary adaptation leads to higher expression of cationic amino acid transporters in ileum of LFE compared to GCE. LFE diet raises cecal butyrate and isovalerate proportion relative to GCE, suggesting increased protein fermentation. LFE diet increases fecal Parabacteroides relative abundance but decreases Bifidobacterium, Sutterella, Parasutterella genera, and Clostridium cluster XIV abundance. Protein emulsion structure regulates digestion kinetics and gastrointestinal physiology, and could be targeted to improve food health value. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins.

    PubMed

    Zhang, Wenjun; Heemstra, John R; Walsh, Christopher T; Imker, Heidi J

    2010-11-23

    Nonribosomal peptide synthetase (NRPS) assembly lines are major avenues for the biosynthesis of a vast array of peptidyl natural products. Several hundred bacterial NRPS gene clusters contain a small (∼70-residue) protein belonging to the MbtH family for which no function has been defined. Here we show that two strictly conserved Trp residues in MbtH-like proteins contribute to stimulation of amino acid adenylation in some NRPS modules. We also demonstrate that adenylation can be stimulated not only by cognate MbtH-like proteins but also by homologues from disparate natural product pathways.

  2. BLOOD PLASMA PROTEIN REGENERATION AS INFLUENCED BY FASTING, INFECTION, AND DIET FACTORS

    PubMed Central

    Madden, S. C.; George, W. E.; Waraich, G. S.; Whipple, H.

    1938-01-01

    When blood plasma proteins are depleted by bleeding, with return of the washed red cells (plasmapheresis) it is possible to bring dogs to a steady state of hypoproteinemia and a uniform plasma protein production on a basal low protein diet. These dogs are clinically normal with normal appetite, no anemia and normal nitrogen metabolism. These dogs become test subjects by which various factors relating to plasma protein production may be tested. The normal dog (10 to 13 kg.) has a substantial reserve store of plasma protein building material (10 to 60+ gm.) which requires 2 to 6 weeks plasmapheresis for its complete removal. After this period the dog will produce uniform amounts of plasma protein each week on a fixed basal diet. Dogs previously depleted by plasmapheresis and then permitted to return to normal during a long rest period of many weeks, may show much higher reserve stores of protein building material in subsequent periods of plasma depletion (see Table 1). Under uniform conditions of low protein diet intake when plasmapheresis is discontinued for 2 weeks the plasma protein building material is stored quantitatively in the body and can subsequently be recovered (Table 4) in the next 2 to 3 weeks of plasmapheresis. Given complete depletion of plasma protein building reserve stores the dog can produce very little (2± gm. per week) plasma protein on a protein-free diet. This may be related to the wear and tear of body protein and conservation of these split products. Abscesses produced in a depleted dog during a fast may cause some excess production of plasma protein which is probably related to products of tissue destruction conserved for protein anabolism. Gelatin alone added to the basal diet causes very little plasma protein production but when supplemented by tryptophane gives a large protein output, while tryptophane alone is inert. PMID:19870748

  3. Constitutive expression of human pancreatic lipase-related protein 1 in Pichia pastoris.

    PubMed

    Aloulou, Ahmed; Grandval, Philippe; De Caro, Josiane; De Caro, Alain; Carrière, Frédéric

    2006-06-01

    High-level constitutive expression of the human pancreatic lipase-related protein 1 (HPLRP1) was achieved using the methylotrophic yeast Pichia pastoris. The HPLRP1 cDNA, including its original leader sequence, was subcloned into the pGAPZB vector and further integrated into the genome of P. pastoris X-33 under the control of the glyceraldehyde 3-phosphate dehydrogenase (GAP) constitutive promoter. A major protein with a molecular mass of 50 kDa was found to be secreted into the culture medium and was identified using anti-HPLRP1 polyclonal antibodies as HPLRP1 recombinant protein. The level of expression reached 100-120 mg of HPLRP1 per liter of culture medium after 40 h, as attested by specific and quantitative enzyme-linked immunosorbent assay. A single cation-exchange chromatography sufficed to obtain a highly purified recombinant HPLRP1 after direct batch adsorption onto S-Sepharose of the HPLRP1 present in the culture medium, at pH 5.5. N-terminal sequencing and mass spectrometry analysis were carried out to monitor the production of the mature protein and to confirm that its signal peptide was properly processed.

  4. Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy.

    PubMed

    Zhu, Li; Zhai, Ya-Ling; Wang, Feng-Mei; Hou, Ping; Lv, Ji-Cheng; Xu, Da-Min; Shi, Su-Fang; Liu, Li-Jun; Yu, Feng; Zhao, Ming-Hui; Novak, Jan; Gharavi, Ali G; Zhang, Hong

    2015-05-01

    Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1-5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3-1 deletion (CFHR3-1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype-phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3-1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN. Copyright © 2015 by the American Society of Nephrology.

  5. The mitochondrial outer membrane protein hFis1 regulates mitochondrial morphology and fission through self-interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serasinghe, Madhavika N.; Mitochondrial Research and Innovation Group, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Yoon, Yisang

    2008-11-15

    Mitochondrial fission in mammals is mediated by at least two proteins, DLP1/Drp1 and hFis1. DLP1 mediates the scission of mitochondrial membranes through GTP hydrolysis, and hFis1 is a putative DLP1 receptor anchored at the mitochondrial outer membrane by a C-terminal single transmembrane domain. The cytosolic domain of hFis1 contains six {alpha}-helices ({alpha}1-{alpha}6) out of which {alpha}2-{alpha}5 form two tetratricopeptide repeat (TPR) folds. In this study, by using chimeric constructs, we demonstrated that the cytosolic domain contains the necessary information for hFis1 function during mitochondrial fission. By using transient expression of different mutant forms of the hFis1 protein, we found thatmore » hFis1 self-interaction plays an important role in mitochondrial fission. Our results show that deletion of the {alpha}1 helix greatly increased the formation of dimeric and oligomeric forms of hFis1, indicating that {alpha}1 helix functions as a negative regulator of the hFis1 self-interaction. Further mutational approaches revealed that a tyrosine residue in the {alpha}5 helix and the linker between {alpha}3 and {alpha}4 helices participate in hFis1 oligomerization. Mutations causing oligomerization defect greatly reduced the ability to induce not only mitochondrial fragmentation by full-length hFis1 but also the formation of swollen ball-shaped mitochondria caused by {alpha}1-deleted hFis1. Our data suggest that oligomerization of hFis1 in the mitochondrial outer membrane plays a role in mitochondrial fission, potentially through participating in fission factor recruitment.« less

  6. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells

    PubMed Central

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-01-01

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones—HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells. PMID:29156827

  7. Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cingolani, Gino, E-mail: cingolag@upstate.edu; Andrews, Dewan; Casjens, Sherwood

    2006-05-01

    The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26more » forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.« less

  8. Rab11-dependent Recycling of the Human Ether-a-go-go-related Gene (hERG) Channel*

    PubMed Central

    Chen, Jeffery; Guo, Jun; Yang, Tonghua; Li, Wentao; Lamothe, Shawn M.; Kang, Yudi; Szendrey, John A.; Zhang, Shetuan

    2015-01-01

    The human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel (IKr). A reduction in the hERG current causes long QT syndrome, which predisposes affected individuals to ventricular arrhythmias and sudden death. We reported previously that hERG channels in the plasma membrane undergo vigorous internalization under low K+ conditions. In the present study, we addressed whether hERG internalization occurs under normal K+ conditions and whether/how internalized channels are recycled back to the plasma membrane. Using patch clamp, Western blot, and confocal imaging analyses, we demonstrated that internalized hERG channels can effectively recycle back to the plasma membrane. Low K+-enhanced hERG internalization is accompanied by an increased rate of hERG recovery in the plasma membrane upon reculture following proteinase K-mediated clearance of cell-surface proteins. The increased recovery rate is not due to enhanced protein synthesis, as hERG mRNA expression was not altered by low K+ exposure, and the increased recovery was observed in the presence of the protein biosynthesis inhibitor cycloheximide. GTPase Rab11, but not Rab4, is involved in the recycling of hERG channels. Interfering with Rab11 function not only delayed hERG recovery in cells after exposure to low K+ medium but also decreased hERG expression and function in cells under normal culture conditions. We concluded that the recycling pathway plays an important role in the homeostasis of plasma membrane-bound hERG channels. PMID:26152716

  9. Risk factors for exposure to influenza a viruses, including subtype H5 viruses, in Thai free-grazing ducks.

    PubMed

    Beaudoin, A L; Kitikoon, P; Schreiner, P J; Singer, R S; Sasipreeyajan, J; Amonsin, A; Gramer, M R; Pakinsee, S; Bender, J B

    2014-08-01

    Free-grazing ducks (FGD) have been associated with highly pathogenic avian influenza (HPAI) H5N1 outbreaks and may be a viral reservoir. In July-August 2010, we assessed influenza exposure of Thai FGD and risk factors thereof. Serum from 6254 ducks was analysed with enzyme-linked immunosorbent assay (ELISA) to detect antibodies to influenza A nucleoprotein (NP), and haemagglutinin H5 protein. Eighty-five per cent (5305 ducks) were seropositive for influenza A. Of the NP-seropositive sera tested with H5 assays (n = 1423), 553 (39%) were H5 ELISA positive and 57 (4%) suspect. Twelve per cent (74 of 610) of H5 ELISA-positive/suspect ducks had H5 titres ≥ 1 : 20 by haemagglutination inhibition. Risk factors for influenza A seropositivity include older age, poultry contact, flock visitors and older purchase age. Study flocks had H5 virus exposure as recently as March 2010, but no HPAI H5N1 outbreaks have been identified in Thailand since 2008, highlighting a need for rigorous FGD surveillance. © 2012 Blackwell Verlag GmbH.

  10. A topologically related singularity suggests a maximum preferred size for protein domains.

    PubMed

    Zbilut, Joseph P; Chua, Gek Huey; Krishnan, Arun; Bossa, Cecilia; Rother, Kristian; Webber, Charles L; Giuliani, Alessandro

    2007-02-15

    A variety of protein physicochemical as well as topological properties, demonstrate a scaling behavior relative to chain length. Many of the scalings can be modeled as a power law which is qualitatively similar across the examples. In this article, we suggest a rational explanation to these observations on the basis of both protein connectivity and hydrophobic constraints of residues compactness relative to surface volume. Unexpectedly, in an examination of these relationships, a singularity was shown to exist near 255-270 residues length, and may be associated with an upper limit for domain size. Evaluation of related G-factor data points to a wide range of conformational plasticity near this point. In addition to its theoretical importance, we show by an application of CASP experimental and predicted structures, that the scaling is a practical filter for protein structure prediction. 2006 Wiley-Liss, Inc.

  11. Soluble Expression of Human Leukemia Inhibitory Factor with Protein Disulfide Isomerase in Escherichia coli and Its Simple Purification

    PubMed Central

    Chong, Seon-Ha; Kim, Kyunhoo; Choi, Dong Kyu; Thi Vu, Thu Trang; Nguyen, Minh Tan; Jeong, Boram; Ryu, Han-Bong; Kim, Injune; Jang, Yeon Jin; Robinson, Robert Charles; Choe, Han

    2013-01-01

    Human leukemia inhibitory factor (hLIF) is a multifunctional cytokine that is essential for maintaining the pluripotency of embryonic stem cells. hLIF may be also be useful in aiding fertility through its effects on increasing the implantation rate of fertilized eggs. Thus these applications in biomedical research and clinical medicine create a high demand for bioactive hLIF. However, production of active hLIF is problematic since eukaryotic cells demonstrate limited expression and prokaryotic cells produce insoluble protein. Here, we have adopted a hybrid protein disulfide isomerase design to increase the solubility of hLIF in Escherichia coli. Low temperature expression of hLIF fused to the b'a' domain of protein disulfide isomerase (PDIb'a') increased the soluble expression in comparison to controls. A simple purification protocol for bioactive hLIF was established that includes removal of the PDIb'a' domain by cleavage by TEV protease. The resulting hLIF, which contains one extra glycine residue at the N-terminus, was highly pure and demonstrated endotoxin levels below 0.05 EU/μg. The presence of an intramolecular disulfide bond was identified using mass spectroscopy. This purified hLIF effectively maintained the pluripotency of a murine embryonic stem cell line. Thus we have developed an effective method to produce a pure bioactive version of hLIF in E. coli for use in biomedical research. PMID:24358310

  12. pPKCδ activates SC35 splicing factor during H9c2 myoblastic differentiation.

    PubMed

    Zara, Susi; Falconi, Mirella; Rapino, Monica; Zago, Michela; Orsini, Giovanna; Mazzotti, Giovanni; Cataldi, Amelia; Teti, Gabriella

    2011-01-01

    Although Protein Kinase C (PKC) isoforms' role in the neonatal and adult cardiac tissue development and ageing has been widely described "in vivo", the interaction of such enzymes with specific nuclear substrates needs to be investigated. The aim of our research has been the study of the expression, localization and interaction with the splicing factor SC35 of PKC isoforms (α, δ, ε, ζ) and their potential role in modulating the transcription machinery. H9c2 cells induced to myoblast differentiation in the presence of 1% Horse Serum (HS) have represented our experimental model. The expression of PKC isoforms, their distribution and interaction with SC35 have been evaluated by western blotting, co-immunoprecipitation and double gold immunolabeling for transmission and scanning electron microscopy. Our results show PKCδ as the most expressed isoform in differentiated cells. Surprisingly, the distribution of PKCδ and SC35 does not show any significant modification between 10%FBS and 1%HS treated samples and no co-localization is observed. Moreover the interaction between the phosphorylated form of PKCδ (pPKCδ) and SC35 increases, is distributed and co-localizes within the nucleus of differentiated H9c2. These data represent reasonable evidence of pPKCδ mediated SC35 splicing factor activation, suggesting its direct effect on transcription via interaction with the transcription machinery. Furthermore, this co-localization represents a crucial event resulting in downstream changes in transcription of components which determine the morphological modifications related to cardiomyoblast differentiated phenotype.

  13. Urinary protein-to-creatinine ratio versus 24-h proteinuria in the screening for nephropathy in HIV patients.

    PubMed

    Antonello, Vicente Sperb; Poli-De-Figueiredo, Carlos Eduardo; Antonello, Ivan Carlos Ferreira; Tovo, Cristiane Valle

    2015-06-01

    To determine the correlation between protein-to-creatinine ratio and 24-h urinary protein, proteinuria was measured in 45 patients attending a public HIV clinic in Porto Alegre, Brazil, using 24-h urinary protein excretion (24hUP) and urinary protein-to-creatinine ratio. Spearman's correlation test was done to evaluate the association between spot protein-to-creatinine ratio and 24hUP. The limits of agreement between the two methods were analysed by the Bland-Altman method. For protein excretion <1 g/day, limits (95%) of agreement of protein-to-creatinine ratio and 24hUP were +0.112 and -0.097 g/day. A strong correlation (r = 0.957) was found between protein-to-creatinine ratio and 24hUP excretion. The conclusion is that the protein-to-creatinine ratio in spot urine specimens is an accurate, convenient and reliable screening method to estimate the urinary protein excretion in HIV patients to detect abnormal urinary protein loss. Further studies are required to evaluate renal disease in HIV patients with chronic renal disease and higher urinary protein excretion. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor.

    PubMed

    Pakhomov, Alexey A; Martynov, Vladimir I; Orsa, Alexander N; Bondarenko, Alena A; Chertkova, Rita V; Lukyanov, Konstantin A; Petrenko, Alexander G; Deyev, Igor E

    2017-12-02

    Fluorescent protein Dendra2 is a monomeric GFP-like protein that belongs to the group of Kaede-like photoconvertible fluorescent proteins with irreversible photoconversion from a green- to red-emitting state when exposed to violet-blue light. In an acidic environment, photoconverted Dendra2 turns green due to protonation of the phenolic group of the chromophore with pKa of about 7.5. Thus, photoconverted form of Dendra2 can be potentially used as a ratiometric pH-sensor in the physiological pH range. However, incomplete photoconversion makes ratiometric measurements irreproducible when using standard filter sets. Here, we describe the method to detect fluorescence of only photoconverted Dendra2 form, but not nonconverted green Dendra2. We show that the 350 nm excitation light induces solely the fluorescence of photoconverted protein. By measuring the red to green fluorescence ratio, we determined intracellular pH in live CHO and HEK 293 cells. Thus, Dendra2 can be used as a novel ratiometric genetically encoded pH sensor with emission maxima in the green-red spectral region, which is suitable for application in live cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Sanguiin H-6, a constituent of Rubus parvifolius L., inhibits receptor activator of nuclear factor-κB ligand-induced osteoclastogenesis and bone resorption in vitro and prevents tumor necrosis factor-α-induced osteoclast formation in vivo.

    PubMed

    Sakai, Eiko; Aoki, Yuri; Yoshimatsu, Masako; Nishishita, Kazuhisa; Iwatake, Mayumi; Fukuma, Yutaka; Okamoto, Kuniaki; Tanaka, Takashi; Tsukuba, Takayuki

    2016-07-15

    Osteoclasts are multinucleated bone-resorbing cells that differentiate in response to receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). Enhanced osteoclastogenesis contributes to bone diseases, such as osteoporosis and rheumatoid arthritis. Rubus parvifolius L. is traditionally used as an herbal medicine for rheumatism; however, its detailed chemical composition and the molecular mechanisms responsible for its biological action have not been elucidated. To investigate the mechanisms by which R. parvifolius L. extract and its major constituent sanguiin H-6, inhibit osteoclastogenesis and bone resorption. Cell proliferation, cell differentiation, and bone resorption were detected in vitro. Inhibition of signaling pathways, marker protein expression, and protein nuclear translocation were evaluated by western blot analysis. Tumor necrosis factor-α (TNF-α)-mediated osteoclastogenesis was examined in vivo. R. parvifolius L. extract inhibited the bone-resorption activity of osteoclasts. In addition, sanguiin H-6 markedly inhibited RANKL-induced osteoclast differentiation and bone resorption, reduced reactive oxygen species production, and inhibited the phosphorylation of inhibitor of NF-κB alpha (IκBα) and p38 mitogen-activated protein kinase. Sanguiin H-6 also decreased the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), cathepsin K, and c-Src. Moreover, sanguiin H-6 inhibited the nuclear translocation of NFATc1, c-Fos, and NF-κB in vitro, as well as TNF-α-mediated osteoclastogenesis in vivo. Our data revealed that R. parvifolius L. has anti-bone resorption activity and suggest that its constituent, sanguiin H-6, can potentially be used for the prevention and treatment of bone diseases associated with excessive osteoclast formation and subsequent bone destruction. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Optimization of non-denaturing protein extraction conditions for plant PPR proteins.

    PubMed

    Andrés-Colás, Nuria; Van Der Straeten, Dominique

    2017-01-01

    Pentatricopeptide repeat proteins are one of the major protein families in flowering plants, containing around 450 members. They participate in RNA editing and are related to plant growth, development and reproduction, as well as to responses to ABA and abiotic stresses. Their characteristics have been described in silico; however, relatively little is known about their biochemical properties. Different types of PPR proteins, with different tasks in RNA editing, have been suggested to interact in an editosome to complete RNA editing. Other non-PPR editing factors, such as the multiple organellar RNA editing factors and the organelle RNA recognition motif-containing protein family, for example, have also been described in plants. However, while evidence on protein interactions between non-PPR RNA editing proteins is accumulating, very few PPR protein interactions have been reported; possibly due to their high instability. In this manuscript, we aimed to optimize the conditions for non-denaturing protein extraction of PPR proteins allowing in vivo protein analyses, such as interaction assays by co-immunoprecipitation. The unusually high protein degradation rate, the aggregation properties and the high pI, as well as the ATP-dependence of some PPR proteins, are key aspects to be considered when extracting PPR proteins in a non-denatured state. During extraction of PPR proteins, the use of proteasome and phosphatase inhibitors is critical. The use of the ATP-cofactor reduces considerably the degradation of PPR proteins. A short centrifugation step to discard cell debris is essential to avoid PPR precipitation; while in some cases, addition of a reductant is needed, probably caused by the pI/pH context. This work provides an easy and rapid optimized non-denaturing total protein extraction protocol from plant tissue, suitable for polypeptides of the PPR family.

  17. Electronegativity and intrinsic disorder of preeclampsia-related proteins.

    PubMed

    Polanco, Carlos; Castañón-González, Jorge Alberto; Uversky, Vladimir N; Buhse, Thomas; Samaniego Mendoza, José Lino; Calva, Juan J

    2017-01-01

    Preeclampsia, hemorrhage, and infection are the leading causes of maternal death in underdeveloped countries. Since several proteins associated with preeclampsia are known, we conducted a computational study which evaluated the commonness and potential functionality of intrinsic disorder of these proteins and also made an attempt to characterize their origin. The origin of the preeclampsia-related proteins was assessed with a supervised technique, a Polarity Index Method (PIM), which evaluates the electronegativity of proteins based solely on their sequence. The commonness of intrinsic disorder was evaluated using several disorder predictors from the PONDR family, the charge-hydropathy plot (CH-plot) and cumulative distribution function (CDF) analyses, and using the MobiDB web-based tool, whereas potential functionality of intrinsic disorder was studied with the D2P2 resource and ANCHOR predictor of disorder-based binding sites, and the STRING tool was used to build the interactivity networks of the preeclampsia-related proteins. Peculiarities of the PIM-derived polar profile of the group of preeclampsia-related proteins were then compared with profiles of a group of lipoproteins, antimicrobial peptides, angiogenesis-related proteins, and the intrinsically disordered proteins. Our results showed a high graphical correlation between preeclampsia proteins, lipoproteins, and the angiogenesis proteins. We also showed that many preeclampsia-related proteins contain numerous functional disordered regions. Therefore, these bioinformatics results led us to assume that the preeclampsia proteins are highly associated with the lipoproteins group, and that some preeclampsia-related proteins contain significant amounts of functional disorders.

  18. Ribosome-Inactivating and Related Proteins

    PubMed Central

    Schrot, Joachim; Weng, Alexander; Melzig, Matthias F.

    2015-01-01

    Ribosome-inactivating proteins (RIPs) are toxins that act as N-glycosidases (EC 3.2.2.22). They are mainly produced by plants and classified as type 1 RIPs and type 2 RIPs. There are also RIPs and RIP related proteins that cannot be grouped into the classical type 1 and type 2 RIPs because of their different sizes, structures or functions. In addition, there is still not a uniform nomenclature or classification existing for RIPs. In this review, we give the current status of all known plant RIPs and we make a suggestion about how to unify those RIPs and RIP related proteins that cannot be classified as type 1 or type 2 RIPs. PMID:26008228

  19. Calcium hydroxide as a processing base in alkali-aided pH-shift protein recovery process.

    PubMed

    Paker, Ilgin; Jaczynski, Jacek; Matak, Kristen E

    2017-02-01

    Protein may be recovered by using pH shifts to solubilize and precipitate protein. Typically, sodium hydroxide is used as the processing base; however, this has been shown to significantly increase sodium in the final recovered protein. Protein was extracted from black bullhead catfish (Ameiurus melas) using a pH-shift method. Protein was solubilized using either sodium hydroxide (NaOH) or calcium hydroxide (Ca(OH) 2 ) and precipitated at pH 5.5 using hydrochloric acid (HCl). Protein solubility was greater when Ca(OH) 2 was used compared to NaOH during this process. Using Ca(OH) 2 as the processing base yielded the greatest lipid recovery (P < 0.05) at 77 g 100 g -1 , whereas the greatest (P < 0.05) protein recovery yield was recorded as 53 g 100 g -1 protein using NaOH. Protein solubilized with Ca(OH) 2 had more (P < 0.05) calcium in the protein fraction, whereas using NaOH increased (P < 0.05) sodium content. Results of our study showed that protein solubility was increased and the recovered protein had significantly more calcium when Ca(OH) 2 was used as the processing base. Results showed both NaOH and Ca(OH) 2 to be an effective processing base for pH-shift protein recovery processes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Association of Nuclear Factor-Erythroid 2-Related Factor 2, Thioredoxin Interacting Protein, and Heme Oxygenase-1 Gene Polymorphisms with Diabetes and Obesity in Mexican Patients.

    PubMed

    Jiménez-Osorio, Angélica Saraí; González-Reyes, Susana; García-Niño, Wylly Ramsés; Moreno-Macías, Hortensia; Rodríguez-Arellano, Martha Eunice; Vargas-Alarcón, Gilberto; Zúñiga, Joaquín; Barquera, Rodrigo; Pedraza-Chaverri, José

    2016-01-01

    The nuclear factor-erythroid 2- (NF-E2-) related factor 2 (Nrf2) is abated and its ability to reduce oxidative stress is impaired in type 2 diabetes and obesity. Thus, the aim of this study was to explore if polymorphisms in Nrf2 and target genes are associated with diabetes and obesity in Mexican mestizo subjects. The rs1800566 of quinone oxidoreductase 1 (NQO1) gene, rs7211 of thioredoxin interacting protein (TXNIP) gene, rs2071749 of heme oxygenase-1 (HMOX1) gene, and the rs6721961 and the rs2364723 from Nrf2 gene were genotyped in 627 diabetic subjects and 1020 controls. The results showed that the rs7211 polymorphism is a protective factor against obesity in nondiabetic subjects (CC + CT versus TT, OR = 0.40, P = 0.005) and in women (CC versus CT + TT, OR = 0.7, P = 0.016). TT carriers had lower high-density lipoprotein cholesterol levels and lower body mass index. The rs2071749 was positively associated with obesity (AA versus AG + GG, OR = 1.25, P = 0.026). Finally, the rs6721961 was negatively associated with diabetes in men (CC versus CA + AA, OR = 0.62, P = 0.003). AA carriers showed lower glucose concentrations. No association was found for rs1800566 and rs2364723 polymorphisms. In conclusion, the presence of Nrf2 and related genes polymorphisms are associated with diabetes and obesity in Mexican patients.

  1. Protein function prediction using neighbor relativity in protein-protein interaction network.

    PubMed

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties.

    PubMed

    Del Caño, Rafael; Mateus, Lucia; Sánchez-Obrero, Guadalupe; Sevilla, José Manuel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2017-11-01

    The identification of the factors that dictate the formation and physicochemical properties of protein-nanomaterial bioconjugates are important to understand their behavior in biological systems. The present work deals with the formation and characterization of bioconjugates made of the protein hemoglobin (Hb) and gold nanoparticles (AuNP) capped with three different molecular layers (citrate anions (c), 6-mercaptopurine (MP) and ω-mercaptoundecanoic acid (MUA)). The main focus is on the behavior of the bioconjugates in aqueous buffered solutions in a wide pH range. The stability of the bioconjugates have been studied by UV-visible spectroscopy by following the changes in the localized surface resonance plasmon band (LSRP), Dynamic light scattering (DLS) and zeta-potential pH titrations. It has been found that they are stable in neutral and alkaline solutions and, at pH lower than the protein isoelectric point, aggregation takes place. Although the surface chemical properties of the AuNPs confer different properties in respect to colloidal stability, once the bioconjugates are formed their properties are dictated by the Hb protein corona. The protein secondary structure, as analyzed by Attenuated total reflectance infrared (ATR-IR) spectroscopy, seems to be maintained under the conditions of colloidal stability but some small changes in protein conformation take place when the bioconjugates aggregate. These findings highlight the importance to keep the protein structure upon interaction with nanomaterials to drive the stability of the bioconjugates. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins.

    PubMed

    Hespen, Charles W; Bruegger, Joel J; Guo, Yirui; Marletta, Michael A

    2018-06-15

    Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.

  4. Effects of Nuclear Factor-E2-related factor 2/Heme Oxygenase 1 on splanchnic hemodynamics in experimental cirrhosis with portal hypertension.

    PubMed

    Qin, Jun; He, Yue; Duan, Ming; Luo, Meng

    2017-05-01

    We explored the effects of Nuclear Factor-E2-related factor 2 (Nrf2) and Heme Oxygenase 1 (HO-1) on splanchnic hemodynamics in portal hypertensive rats. Experimental cirrhosis with portal hypertension was induced by intraperitoneal injection of carbon tetrachloride. The expression of proteins was examined by immunoblotting. Hemodynamic studies were performed by radioactive microspheres. The vascular perfusion system was used to measure the contractile response of mesentery arterioles in rats. Nrf2 expression in the nucleus and HO-1 expression in cytoplasm was significantly enhanced in portal hypertensive rats. Portal pressure, as well as regional blood flow, increased significantly in portal hypertension and can be blocked by tin protoporphyrin IX. The expression of endogenous nitric oxide synthase and vascular endothelial growth factors increased significantly compared to normal rats, while HO-1 inhibition decreased the expression of these proteins significantly. The contractile response of mesenteric arteries decreased in portal hypertension, but can be partially recovered through tin protoporphyrin IX treatment. The expression of Nrf2/HO-1 increased in mesenteric arteries of portal hypertensive rats, which was related to oxidative stress. HO-1was involved in increased portal pressure and anomaly splanchnic hemodynamics in portal hypertensive rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7.

    PubMed

    Eichhorn, Catherine D; Yang, Yuan; Repeta, Lucas; Feigon, Juli

    2018-06-26

    The La and the La-related protein (LARP) superfamily is a diverse class of RNA binding proteins involved in RNA processing, folding, and function. Larp7 binds to the abundant long noncoding 7SK RNA and is required for 7SK ribonucleoprotein (RNP) assembly and function. The 7SK RNP sequesters a pool of the positive transcription elongation factor b (P-TEFb) in an inactive state; on release, P-TEFb phosphorylates RNA Polymerase II to stimulate transcription elongation. Despite its essential role in transcription, limited structural information is available for the 7SK RNP, particularly for protein-RNA interactions. Larp7 contains an N-terminal La module that binds UUU-3'OH and a C-terminal atypical RNA recognition motif (xRRM) required for specific binding to 7SK and P-TEFb assembly. Deletion of the xRRM is linked to gastric cancer in humans. We report the 2.2-Å X-ray crystal structure of the human La-related protein group 7 (hLarp7) xRRM bound to the 7SK stem-loop 4, revealing a unique binding interface. Contributions of observed interactions to binding affinity were investigated by mutagenesis and isothermal titration calorimetry. NMR 13 C spin relaxation data and comparison of free xRRM, RNA, and xRRM-RNA structures show that the xRRM is preordered to bind a flexible loop 4. Combining structures of the hLarp7 La module and the xRRM-7SK complex presented here, we propose a structural model for Larp7 binding to the 7SK 3' end and mechanism for 7SK RNP assembly. This work provides insight into how this domain contributes to 7SK recognition and assembly of the core 7SK RNP.

  6. Molecular dynamics investigations of BioH protein substrate specificity for biotin synthesis.

    PubMed

    Xue, Qiao; Cui, Ying-Lu; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-05-01

    BioH, an enzyme of biotin synthesis, plays an important role in fatty acid synthesis which assembles the pimelate moiety. Pimeloyl-acyl carrier protein (ACP) methyl ester, which is long known to be a biotin precursor, is the physiological substrate of BioH. Azelayl methyl ester, which has a longer chain than pimeloyl methyl ester, conjugated to ACP is also indeed accepted by BioH with very low rate of hydrolysis. To date, the substrate specificity for BioH and the molecular origin for the experimentally observed rate changes of hydrolysis by the chain elongation have remained elusive. To this end, we have investigated chain elongation effects on the structures by using the fully atomistic molecular dynamics simulations combined with binding free energy calculations. The results indicate that the substrate specificity is determined by BioH together with ACP. The added two methylenes would increase the structural flexibility by protein motions at the interface of ACP and BioH, instead of making steric clashes with the side chains of the BioH hydrophobic cavity. On the other hand, the slower hydrolysis of azelayl substrate is suggested to be associated with the loose of contacts between BioH and ACP, and with the lost electrostatic interactions of two ionic/hydrogen bonding networks at the interface of the two proteins. The present study provides important insights into the structure-function relationships of the complex of BioH with pimeloyl-ACP methyl ester, which could contribute to further understanding about the mechanism of the biotin synthetic pathway, including the catalytic role of BioH.

  7. Expression, crystallization and preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins from Thermoplasma acidophilum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sang Hee; Ha, Jun Yong; Kim, Kyoung Hoon

    2006-11-01

    An N-terminal acetyltransferase ARD1 subunit-related protein (Ta0058) and an N-terminal acetyltransferase-related protein (Ta1140) from T. acidophilum were crystallized. X-ray diffraction data were collected to 2.17 and 2.40 Å, respectively. N-terminal acetylation is one of the most common protein modifications in eukaryotes, occurring in approximately 80–90% of cytosolic mammalian proteins and about 50% of yeast proteins. ARD1 (arrest-defective protein 1), together with NAT1 (N-acetyltransferase protein 1) and possibly NAT5, is responsible for the NatA activity in Saccharomyces cerevisiae. In mammals, ARD1 is involved in cell proliferation, neuronal development and cancer. Interestingly, it has been reported that mouse ARD1 (mARD1{sup 225}) mediatesmore » ∊-acetylation of hypoxia-inducible factor 1α (HIF-1α) and thereby enhances HIF-1α ubiquitination and degradation. Here, the preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins encoded by the Ta0058 and Ta1140 genes of Thermoplasma acidophilum are reported. The Ta0058 protein is related to an N-terminal acetyltransferase complex ARD1 subunit, while Ta1140 is a putative N-terminal acetyltransferase-related protein. Ta0058 shows 26% amino-acid sequence identity to both mARD1{sup 225} and human ARD1{sup 235}.The sequence identity between Ta0058 and Ta1140 is 28%. Ta0058 and Ta1140 were overexpressed in Escherichia coli fused with an N-terminal purification tag. Ta0058 was crystallized at 297 K using a reservoir solution consisting of 0.1 M sodium acetate pH 4.6, 8%(w/v) polyethylene glycol 4000 and 35%(v/v) glycerol. X-ray diffraction data were collected to 2.17 Å. The Ta0058 crystals belong to space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 49.334, c = 70.384 Å, α = β = γ = 90°. The asymmetric unit contains a monomer, giving a calculated crystal volume per protein weight (V{sub M}) of 2.13 Å{sup 3} Da{sup −1} and a solvent

  8. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system.

    PubMed

    Meng, Guoliang; Zhao, Shuang; Xie, Liping; Han, Yi; Ji, Yong

    2018-04-01

    Hydrogen sulfide (H 2 S), independently of any specific transporters, has a number of biological effects on the cardiovascular system. However, until now, the detailed mechanism of H 2 S was not clear. Recently, a novel post-translational modification induced by H 2 S, named S-sulfhydration, has been proposed. S-sulfhydration is the chemical modification of specific cysteine residues of target proteins by H 2 S. There are several methods for detecting S-sulfhydration, such as the modified biotin switch assay, maleimide assay with fluorescent thiol modifying regents, tag-switch method and mass spectrometry. H 2 S induces S-sulfhydration on enzymes or receptors (such as p66Shc, phospholamban, protein tyrosine phosphatase 1B, mitogen-activated extracellular signal-regulated kinase 1 and ATP synthase subunit α), transcription factors (such as specific protein-1, kelch-like ECH-associating protein 1, NF-κB and interferon regulatory factor-1), and ion channels (such as voltage-activated Ca 2+ channels, transient receptor potential channels and ATP-sensitive K + channels) in the cardiovascular system. Although significant progress has been achieved in delineating the role of protein S-sulfhydration by H 2 S in the cardiovascular system, more proteins with detailed cysteine sites of S-sulfhydration as well as physiological function need to be investigated in further studies. This review mainly summarizes the role and possible mechanism of S-sulfhydration in the cardiovascular system. The S-sulfhydrated proteins may be potential novel targets for therapeutic intervention and drug design in the cardiovascular system, which may accelerate the development and application of H 2 S-related drugs in the future. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc. © 2017 The British Pharmacological Society.

  9. RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7.

    PubMed

    Kumar, Santosh; Rai, Ashutosh Kumar; Mishra, Mukti Nath; Shukla, Mansi; Singh, Pradhyumna Kumar; Tripathi, Anil Kumar

    2012-12-01

    Bacteria belonging to the Alphaproteobacteria normally harbour multiple copies of the heat shock sigma factor (known as σ(32), σ(H) or RpoH). Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours five copies of rpoH genes, one of which is an rpoH2 homologue. The genes around the rpoH2 locus in A. brasilense show synteny with that found in rhizobia. The rpoH2 of A. brasilense was able to complement the temperature-sensitive phenotype of the Escherichia coli rpoH mutant. Inactivation of rpoH2 in A. brasilense results in increased sensitivity to methylene blue and to triphenyl tetrazolium chloride (TTC). Exposure of A. brasilense to TTC and the singlet oxygen-generating agent methylene blue induced several-fold higher expression of rpoH2. Comparison of the proteome of A. brasilense with its rpoH2 deletion mutant and with an A. brasilense strain overexpressing rpoH2 revealed chaperone GroEL, elongation factors (Ef-Tu and EF-G), peptidyl prolyl isomerase, and peptide methionine sulfoxide reductase as the major proteins whose expression was controlled by RpoH2. Here, we show that the RpoH2 sigma factor-controlled photooxidative stress response in A. brasilense is similar to that in the photosynthetic bacterium Rhodobacter sphaeroides, but that RpoH2 is not involved in the detoxification of methylglyoxal in A. brasilense.

  10. Two CGTCA motifs and a GHF1/Pit1 binding site mediate cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells.

    PubMed

    Shepard, A R; Zhang, W; Eberhardt, N L

    1994-01-21

    We established the cis-acting elements which mediate cAMP responsiveness of the human growth hormone (hGH) gene in transiently transfected rat anterior pituitary tumor GC cells. Analysis of the intact hGH gene or hGH 5'-flanking DNA (5'-FR) coupled to the hGh cDNA or chloramphenicol acetyltransferase or luciferase genes, indicated that cAMP primarily stimulated hGH promoter activity. Cotransfection of a protein kinase A inhibitory protein cDNA demonstrated that the cAMP response was mediated by protein kinase A. Mutational analysis of the hGH promoter identified two core cAMP response element motifs (CGTCA) located at nucleotides -187/-183 (distal cAMP response element; dCRE) and -99/-95 (proximal cAMP response element; pCRE) and a pituitary-specific transcription factor (GHF1/Pit1) binding site at nucleotides -123/-112 (dGHF1) which were required for cAMP responsiveness. GHF1 was not a limiting factor, since overexpression of GHF1 in cotransfections increased basal but not forskolin induction levels. Gel shift analyses indicated that similar, ubiquitous, thermostable protein(s) specifically bound the pCRE and dCRE motifs. The CGTCA motif-binding factors were cAMP response element binding protein (CREB)/activating transcription factor-1 (ATF-1)-related, since the DNA-protein complex was competed by unlabeled CREB consensus oligonucleotide, specifically supershifted by antisera to CREB and ATF-1 but not ATF-2, and was bound by purified CREB with the same relative binding affinity (pCRE < dCRE < CREB) and mobility as the GC nuclear extract. UV cross-linking and Southwestern blot analyses revealed multiple DNA-protein interactions of which approximately 100- and approximately 45-kDa proteins were predominant; the approximately 45-kDa protein may represent CREB. These results indicate that CREB/ATF-1-related factors act coordinately with the cell-specific factor GHF1 to mediate cAMP-dependent regulation of hGH-1 gene transcription in anterior pituitary somatotrophs.

  11. Differences in the electrostatic surfaces of the type III secretion needle proteins PrgI, BsaL, and MxiH.

    PubMed

    Wang, Yu; Ouellette, Andrew N; Egan, Chet W; Rathinavelan, Thenmalarchelvi; Im, Wonpil; De Guzman, Roberto N

    2007-08-31

    Gram-negative bacteria use a needle-like protein assembly, the type III secretion apparatus, to inject virulence factors into target cells to initiate human disease. The needle is formed by the polymerization of approximately 120 copies of a small acidic protein that is conserved among diverse pathogens. We previously reported the structure of the BsaL needle monomer from Burkholderia pseudomallei by nuclear magnetic resonance (NMR) spectroscopy and others have determined the crystal structure of the Shigella flexneri MxiH needle. Here, we report the NMR structure of the PrgI needle protein of Salmonella typhimurium, a human pathogen associated with food poisoning. PrgI, BsaL, and MxiH form similar two helix bundles, however, the electrostatic surfaces of PrgI differ radically from those of BsaL or MxiH. In BsaL and MxiH, a large negative area is on a face formed by the helix alpha1-alpha2 interface. In PrgI, the major negatively charged surface is not on the "face" but instead is on the "side" of the two-helix bundle, and only residues from helix alpha1 contribute to this negative region. Despite being highly acidic proteins, these molecules contain large basic regions, suggesting that electrostatic contacts are important in needle assembly. Our results also suggest that needle-packing interactions may be different among these bacteria and provide the structural basis for why PrgI and MxiH, despite 63% sequence identity, are not interchangeable in S. typhimurium and S. flexneri.

  12. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus.

    PubMed

    Brass, Abraham L; Huang, I-Chueh; Benita, Yair; John, Sinu P; Krishnan, Manoj N; Feeley, Eric M; Ryan, Bethany J; Weyer, Jessica L; van der Weyden, Louise; Fikrig, Erol; Adams, David J; Xavier, Ramnik J; Farzan, Michael; Elledge, Stephen J

    2009-12-24

    Influenza viruses exploit host cell machinery to replicate, resulting in epidemics of respiratory illness. In turn, the host expresses antiviral restriction factors to defend against infection. To find host cell modifiers of influenza A H1N1 viral infection, we used a functional genomic screen and identified over 120 influenza A virus-dependency factors with roles in endosomal acidification, vesicular trafficking, mitochondrial metabolism, and RNA splicing. We discovered that the interferon-inducible transmembrane proteins IFITM1, 2, and 3 restrict an early step in influenza A viral replication. The IFITM proteins confer basal resistance to influenza A virus but are also inducible by interferons type I and II and are critical for interferon's virustatic actions. Further characterization revealed that the IFITM proteins inhibit the early replication of flaviviruses, including dengue virus and West Nile virus. Collectively this work identifies a family of antiviral restriction factors that mediate cellular innate immunity to at least three major human pathogens. Copyright 2009 Elsevier Inc. All rights reserved.

  13. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives.

    PubMed

    Williams, R M; Rimsky, S; Buc, H

    1996-08-01

    Twelve different dominant negative mutants of the Escherichia coli nucleoid-associated protein, H-NS, have been selected and characterized in vivo. The mutants are all severely defective in promoter repression activity in a strain lacking H-NS, and they all disrupt the repression normally exerted by H-NS at two of its target promoters. From the locations of the alterations in these mutants, which result in both large truncations and amino acid substitutions, we propose that H-NAS contains at least two distinct domains. The in vitro protein-protein cross-linking data presented in this report indicate that the proposed N-terminal domain of H-NS has a role in H-NS multimerization. StpA is a protein with known structural and functional homologies to H-NS. We have analyzed the extent of these homologies by constructing and studying StpA mutants predicted to be dominant negative. Our data indicate that the substitutions and deletions found in dominant negative H-NS have similar effects in the context of StpA. We conclude that the domain organizations and functions in StpA and H-NS are closely related. Furthermore, dominant negative H-NS can disrupt the activity of native StpA, and reciprocally, dominant negative StpA can disrupt the activity of native H-NS. We demonstrate that the N-terminal domain of H-NS can be chemically cross-linked to both full-length H-NS and StpA. We account for these observations by proposing that H-NS and StpA have the ability to form hybrid species.

  14. Exploring the unbinding of Leishmania (L.) amazonensis CPB derived-epitopes from H2 MHC class I proteins.

    PubMed

    Brandt, Artur M L; Batista, Paulo Ricardo; Souza-Silva, Franklin; Alves, Carlos Roberto; Caffarena, Ernesto Raul

    2016-04-01

    New strategies to control Leishmania disease demand an extensive knowledge about several aspects of infection including the understanding of its molecular events. In murine models, cysteine proteinase B from Leishmania amazonensis promotes regulation of immune response, and fragments from its C-terminus extension (cyspep) can play a decisive role in the host-parasite interaction. The interaction between cyspep-derived peptides and major histocompatibility complex (MHC) proteins is a crucial factor in Leishmania infections. Seven cyspep-derived peptides, previously identified as capable of interacting with H-2 (murine) MHC class I proteins, were studied in this work. We established a protocol to simulate the unbinding of these peptides from the cleft of H-2 receptors. From the simulations, we estimated the corresponding free energy of dissociation (ΔGd ) and described the molecular events that occur during the exit of peptides from the cleft. To test the reliability of this method, we first applied it to a calibration set of four crystallographic MHC/peptide complexes. Next, we explored the unbinding of the seven complexes mentioned above. Results were consistent with ΔGd values obtained from surface plasmon resonance (SPR) experiments. We also identified some of the primary interactions between peptides and H-2 receptors, and we detected three regions of influence for the interaction. This pattern was systematically observed for the peptides and helped determine a minimum distance for the real interaction between peptides and H-2 proteins occurring at ∼ 25 Å. © 2016 Wiley Periodicals, Inc.

  15. Emulsion properties of pork myofibrillar protein in combination with microbial transglutaminase and calcium alginate under various pH conditions.

    PubMed

    Hong, Geun Pyo; Min, Sang-Gi; Chin, Koo Bok

    2012-01-01

    In this study, the effects of microbial transglutaminase (MTG) and calcium alginate (CA) systems in combination with soybean oil on the emulsion properties of porcine myofibrillar protein (MP) were evaluated under various pH conditions. MTG was shown to improve emulsifying capacity and creaming stability, which increased with increasing pH values up to 6.5. The CA did not influence emulsifying capacity, but it improved the creaming stability of the MP-stabilized emulsions. Both MTG and CA enhanced the rheological properties, but their effects on the physical characteristics of the protein evidenced an opposite trend in relation to pH, i.e., the MTG system improved both the emulsion and gelling properties with increasing pH, whereas the CA system was effective when the pH was lowered. By combining the two MP gelling systems, a stable and pH-insensible emulsion could be produced. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Molecular characterization of the Salmonella typhi StpA protein that is related to both Yersinia YopE cytotoxin and YopH tyrosine phosphatase.

    PubMed

    Arricau, N; Hermant, D; Waxin, H; Popoff, M Y

    1997-01-01

    Analysis of the nucleotide sequence of a 4-kb DNA fragment located between the sip and iag loci on Salmonella typhi chromosome revealed three open reading frames, termed sipF, ctpA and stpA. The 82-amino-acid (aa) sipF product showed extensive similarity to the lacP protein from S. typhimurium. The StpA protein (535 aa) exhibited significant similarity to both Yersinia enterocolitica YopE cytotoxin and YopH tyrosine phosphatase. The CtpA polypeptide (130 aa) might be the molecular chaperone of the StpA protein.

  17. Expression of Lipid Metabolism-Related Proteins in Metastatic Breast Cancer.

    PubMed

    Jung, Yoon Yang; Kim, Hye Min; Koo, Ja Seung

    2015-01-01

    The tumor biology of metastatic breast cancers differ according to the metastatic sites, and the features of cancer metabolism may also be different. The aim of this study is to investigate the expression of lipid metabolism-related proteins in metastatic breast cancer according to metastatic site and discuss the clinical significance thereof. Immunohistochemical staining for lipid metabolism-related proteins [fatty acid synthase (FASN), hormone-sensitive lipase (HSL), carnitine palmitoyltransferase IA (CPT-1A), acyl-CoA oxidase 1 (ACOX1), fatty acid binding protein 4 (FABP4,) and perilipin 1 (PLIN1)] was performed using a tissue microarray of 149 cases of metastatic breast cancer (bone metastasis = 39, brain metastasis = 37, liver metastasis = 21, and lung metastasis = 52). The expression levels of ACOX1 (p = 0.009) and FASN (p = 0.007) varied significantly according to metastatic site, with the highest expression in brain metastasis and the lowest expression in liver metastasis. ACOX1 positivity (p = 0.005) and FASN positivity (p = 0.003) correlated with HER-2 positivity. The expression of FASN was significantly higher in HER-2 type breast cancer, and lower in luminal A and TNBC type breast cancer (p<0.001). Among lipid metabolism-related proteins, PLIN1 positivity was found to be an independent poor prognostic factor on multivariate analysis (Hazard ratio: 4.979, 95% CI: 1.054-22.59, p = 0.043). Different expression levels of lipid metabolism-related proteins were observed according to metastatic site. The expression of ACOX1 and FASN was highest in brain metastasis. These results suggest that the metastatic site should be considered when using lipid metabolism inhibitors for targeted therapy.

  18. Social factors related to the clinical severity of influenza cases in Spain during the A (H1N1) 2009 virus pandemic

    PubMed Central

    2013-01-01

    Background During the 2009 influenza pandemic, a change in the type of patients most often affected by influenza was observed. The objective of this study was to assess the role of individual and social determinants in hospitalizations due to influenza A (H1N1) 2009 infection. Methods We studied hospitalized patients (cases) and outpatients (controls) with confirmed influenza A (H1N1) 2009 infection. A standardized questionnaire was used to collect data. Variables that might be related to the hospitalization of influenza cases were compared by estimation of the odds ratio (OR) and 95% confidence intervals (CI) and the variables entered into binomial logistic regression models. Results Hospitalization due to pandemic A (H1N1) 2009 influenza virus infections was associated with non-Caucasian ethnicity (OR: 2.18, 95% CI 1.17 − 4.08), overcrowding (OR: 2.84, 95% CI 1.20 − 6.72), comorbidity and the lack of previous preventive information (OR: 2.69, 95% CI: 1.50 − 4.83). Secondary or higher education was associated with a lower risk of hospitalization (OR 0.56, 95% CI: 0.36 − 0.87) Conclusions In addition to individual factors such as comorbidity, other factors such as educational level, ethnicity or overcrowding were associated with hospitalization due to A (H1N1) 2009 influenza virus infections. PMID:23391376

  19. Measurement of protein synthesis: in vitro comparison of (68)Ga-DOTA-puromycin, [ (3)H]tyrosine, and 2-fluoro-[ (3)H]tyrosine.

    PubMed

    Eigner, Sebastian; Beckford Vera, Denis R; Fellner, Marco; Loktionova, Natalia S; Piel, Markus; Melichar, Frantisek; Rösch, Frank; Roß, Tobias L; Lebeda, Ondrej; Henke, Katerina Eigner

    2013-01-01

    Puromycin has played an important role in our understanding of the eukaryotic ribosome and protein synthesis. It has been known for more than 40 years that this antibiotic is a universal protein synthesis inhibitor that acts as a structural analog of an aminoacyl-transfer RNA (aa-tRNA) in eukaryotic ribosomes. Due to the role of enzymes and their synthesis in situations of need (DNA damage, e.g., after chemo- or radiation therapy), determination of protein synthesis is important for control of antitumor therapy, to enhance long-term survival of tumor patients, and to minimize side-effects of therapy. Multiple attempts to reach this goal have been made through the last decades, mostly using radiolabeled amino acids, with limited or unsatisfactory success. The aim of this study is to estimate the possibility of determining protein synthesis ratios by using (68)Ga-DOTA-puromycin ((68)Ga-DOTA-Pur), [(3)H]tyrosine, and 2-fluoro-[(3)H]tyrosine and to estimate the possibility of different pathways due to the fluorination of tyrosine. DOTA-puromycin was synthesized using a puromycin-tethered controlled-pore glass (CPG) support by the usual protocol for automated DNA and RNA synthesis following our design. (68)Ga was obtained from a (68)Ge/(68)Ga generator as described previously by Zhernosekov et al. (J Nucl Med 48:1741-1748, 2007). The purified eluate was used for labeling of DOTA-puromycin at 95°C for 20 min. [(3)H]Tyrosine and 2-fluoro-[(3)H]tyrosine of the highest purity available were purchased from Moravek (Bera, USA) or Amersham Biosciences (Hammersmith, UK). In vitro uptake and protein incorporation as well as in vitro inhibition experiments using cycloheximide to inhibit protein synthesis were carried out for all three substances in DU145 prostate carcinoma cells (ATCC, USA). (68)Ga-DOTA-Pur was additionally used for μPET imaging of Walker carcinomas and AT1 tumors in rats. Dynamic scans were performed for 45 min after IV application (tail vein) of 20-25 MBq (68

  20. Heterochromatin protein 1 gamma and IκB kinase alpha interdependence during tumour necrosis factor gene transcription elongation in activated macrophages.

    PubMed

    Thorne, James L; Ouboussad, Lylia; Lefevre, Pascal F

    2012-09-01

    IκB kinase α (IKKα) is part of the cytoplasmic IKK complex regulating nuclear factor-κB (NF-κB) release and translocation into the nucleus in response to pro-inflammatory signals. IKKα can also be recruited directly to the promoter of NF-κB-dependent genes by NF-κB where it phosphorylates histone H3 at serine 10, triggering recruitment of the bromodomain-containing protein 4 and the positive transcription elongation factor b. Herein, we report that IKKα travels with the elongating form of ribonucleic acid polymerase II together with heterochromatin protein 1 gamma (HP1γ) at NF-κB-dependent genes in activated macrophages. IKKα binds to and phosphorylates HP1γ, which in turn controls IKKα binding to chromatin and phosphorylation of the histone variant H3.3 at serine 31 within transcribing regions. Downstream of transcription end sites, IKKα accumulates with its inhibitor the CUE-domain containing protein 2, suggesting a link between IKKα inactivation and transcription termination.

  1. Human Neuronal Calcium Sensor-1 Protein Avoids Histidine Residues To Decrease pH Sensitivity.

    PubMed

    Gong, Yehong; Zhu, Yuzhen; Zou, Yu; Ma, Buyong; Nussinov, Ruth; Zhang, Qingwen

    2017-01-26

    pH is highly regulated in mammalian central nervous systems. Neuronal calcium sensor-1 (NCS-1) can interact with numerous target proteins. Compared to that in the NCS-1 protein of Caenorhabditis elegans, evolution has avoided the placement of histidine residues at positions 102 and 83 in the NCS-1 protein of humans and Xenopus laevis, possibly to decrease the conformational sensitivity to pH gradients in synaptic processes. We used all-atom molecular dynamics simulations to investigate the effects of amino acid substitutions between species on human NCS-1 by substituting Arg102 and Ser83 for histidine at neutral (R102H and S83H) and acidic pHs (R102H p and S83H p ). Our cumulative 5 μs simulations revealed that the R102H mutation slightly increases the structural flexibility of loop L2 and the R102H p mutation decreases protein stability. Community network analysis illustrates that the R102H and S83H mutations weaken the interdomain and strengthen the intradomain communications. Secondary structure contents in the S83H and S83H p mutants are similar to those in the wild type, whereas the global structural stabilities and salt-bridge probabilities decrease. This study highlights the conformational dynamics effects of the R102H and S83H mutations on the local structural flexibility and global stability of NCS-1, whereas protonated histidine decreases the stability of NCS-1. Thus, histidines at positions 102 and 83 may not be compatible with the function of NCS-1 whether in the neutral or protonated state.

  2. Environmental pH-controlled loading and release of protein on mesoporous hydroxyapatite nanoparticles for bone tissue engineering.

    PubMed

    Zhang, Ning; Gao, Tianlin; Wang, Yu; Wang, Zongliang; Zhang, Peibiao; Liu, Jianguo

    2015-01-01

    To explore the controlled delivery of protein drugs in micro-environment established by osteoblasts or osteoclasts, the loading/release properties of bovine serum albumin (BSA) depending on pH environment were assessed. The adsorption amounts over mesoporous hydroxyapatite (MHA) or hydroxyapatite (HA) decreased as the pH increased, negatively correlating with zeta-potential values. The adsorption behavior over MHA fits well with the Freundlich and Langmuir models at different pHs. The results suggest that the adsorbed amount of protein on MHA or HA depended on the pH of protein solution. MHA adsorbed BSA at basic pH (MHApH 8.4) exhibited a different release kinetics compared with those in acid and neutral environments (MHApH 4.7 and MHApH 7.4), indicating that the release of protein could be regulated by environmental pH at which MHAs adsorb protein. MHApH 8.4 showed a sustained release for 6h before a gradual release when immersing in acidic environment, which is 2h longer than that in neutral environment. This suggests that MHApH 8.4 showed a more sustained release in acidic environment, which can be established by osteoclasts. The variation of adsorption strength between protein and MHA may be responsible for these behaviors. Our findings may be very useful for the development of MHA applications on both bone repair and protein delivery. Copyright © 2014. Published by Elsevier B.V.

  3. Evaluation of pH-sensitive poly(β-amino ester)-graft-poly(ethylene glycol) and its usefulness as a pH-sensor and protein carrier.

    PubMed

    Kim, Min Sang; Gao, Guang Hui; Kang, Seong Woo; Lee, Doo Sung

    2011-07-07

    In this study, some possible biomedical applications of a pH-sensitive and amphiphilic copolymer as a pH sensor and protein delivery system are reported. PAE-g-PEG was used as a pH-sensitive polymer that can exhibit a sharp pH-dependent transition. Various fluorescent dyes including pyrene and RITC can be used to label the pH-sensitive polymer PAE-g-PEG, which was evaluated for protein encapsulation. pH-sensing was possible by observing excimer formation of the labeled pyrene via pH-dependent expansion of the polymeric chain. Also, it was confirmed that FITC-BSA could be entrapped in RITC-labeled pH-sensitive micelles of PAE-g-PEG by FRET. As a result, PAE-g-PEG can be a pH sensor and carrier for protein delivery. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of chitosan on the heat stability of whey protein solution as a function of pH.

    PubMed

    Zhao, Zhengtao; Xiao, Qian

    2017-03-01

    Chitosan was reported to interact with proteins through electrostatic interactions. Their interaction was influenced by pH, which was not fully characterized. Further research on the interactions between protein and chitosan at different pH and their influence on the thermal denaturation of proteins is necessary. In this research, the effect of chitosan on the heat stability of whey protein solution at pH 4.0-6.0 was studied. At pH 4.0, a small amount chitosan was able to prevent the heat-induced denaturation and aggregation of whey protein molecules. At higher pH values (5.5 and 6.0), whey proteins complexed with chitosan through electrostatic attraction. The formation of chitosan-whey protein complexes at pH 5.5 improved the heat stability of dispersions and no precipitation could be detected up to 20 days. The dispersion with a medium amount of chitosan (chitosan:whey protein 1:5) produced the most stable particles, which had an average radius of 135 ± 14 nm and a zeta potential value of 36 ± 1 mV. In contrast, at pH 6.0 only the dispersion with a high amount of chitosan (chitosan:whey protein 1:2) showed good shelf stability up to 20 days. It was possible to produce heat-stable whey protein beverages by regulating the interaction between chitosan and whey protein molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Complement factor H protects mice from ischemic acute kidney injury but is not critical for controlling complement activation by glomerular IgM.

    PubMed

    Goetz, Lindsey; Laskowski, Jennifer; Renner, Brandon; Pickering, Matthew C; Kulik, Liudmila; Klawitter, Jelena; Stites, Erik; Christians, Uwe; van der Vlag, Johan; Ravichandran, Kameswaran; Holers, V Michael; Thurman, Joshua M

    2018-05-01

    Natural IgM binds to glomerular epitopes in several progressive kidney diseases. Previous work has shown that IgM also binds within the glomerulus after ischemia/reperfusion (I/R) but does not fully activate the complement system. Factor H is a circulating complement regulatory protein, and congenital or acquired deficiency of factor H is a strong risk factor for several types of kidney disease. We hypothesized that factor H controls complement activation by IgM in the kidney after I/R, and that heterozygous factor H deficiency would permit IgM-mediated complement activation and injury at this location. We found that mice with targeted heterozygous deletion of the gene for factor H developed more severe kidney injury after I/R than wild-type controls, as expected, but that complement activation within the glomeruli remained well controlled. Furthermore, mice that are unable to generate soluble IgM were not protected from renal I/R, even in the setting of heterozygous factor H deficiency. These results demonstrate that factor H is important for limiting injury in the kidney after I/R, but it is not critical for controlling complement activation by immunoglobulin within the glomerulus in this setting. IgM binds to glomerular epitopes after I/R, but it is not a significant source of injury. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Multifunctional nanoparticle-protein conjugates with controllable bioactivity and pH responsiveness

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Xue, Lulu; Yuan, Yuqi; Pan, Jingjing; Zhang, Chenjie; Wang, Hongwei; Brash, John L.; Yuan, Lin; Chen, Hong

    2016-02-01

    The modulation of protein activity is of significance for disease therapy, molecular diagnostics, and tissue engineering. Nanoparticles offer a new platform for the preparation of protein conjugates with improved protein properties. In the present work, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(methacrylic acid) (PMAA) were attached together to gold nanoparticles (AuNPs), forming AuNP-PPase-PMAA conjugates having controllable multi-biofunctionalities and responsiveness to pH. By treating with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and regulating the pH, the bioactivity of the conjugate becomes ``on/off''-switchable. In addition, by taking advantage of the ability of AuNPs to undergo reversible aggregation/dispersion, the conjugates can be recycled and reused multiple times; and due to the shielding effect of the PMAA, the conjugated enzyme has high resistance to protease digestion. This approach has considerable potential in areas such as controlled delivery and release of drugs, biosensing, and biocatalysis.The modulation of protein activity is of significance for disease therapy, molecular diagnostics, and tissue engineering. Nanoparticles offer a new platform for the preparation of protein conjugates with improved protein properties. In the present work, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(methacrylic acid) (PMAA) were attached together to gold nanoparticles (AuNPs), forming AuNP-PPase-PMAA conjugates having controllable multi-biofunctionalities and responsiveness to pH. By treating with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and regulating the pH, the bioactivity of the conjugate becomes ``on/off''-switchable. In addition, by taking advantage of the ability of AuNPs to undergo reversible aggregation/dispersion, the conjugates can be recycled and reused multiple times; and due to the shielding effect of the PMAA, the conjugated enzyme has high resistance to protease digestion

  7. Pediatric renal cell carcinomas with Xp11.2 rearrangements are immunoreactive for hMLH1 and hMSH2 proteins.

    PubMed

    Rakheja, Dinesh; Kapur, Payal; Tomlinson, Gail E; Margraf, Linda R

    2005-01-01

    Alveolar soft part sarcoma and pediatric renal cell carcinoma share a similar chromosomal abnormality, t(X;17)(p11.2;q25). Recently, it has been suggested that the inactivation of DNA mismatch repair genes hMLH1 and hMSH2 may play an additional role in the pathogenesis of alveolar soft part sarcoma. Immunohistochemical expression of the proteins hMLH1 and hMSH2 is indicative of the activation status of the corresponding genes. We performed immunohistochemistry for hMLH1 and hMSH2 in 4 cases of pediatric renal cell carcinomas with Xp11.2 rearrangements. All cases showed nuclear immunoreactivity for both proteins, although the staining was patchy. Our study demonstrates that inactivation of the DNA mismatch repair genes hMLH1 and hMSH2 does not appear to play a role in the tumorigenesis of pediatric renal cell carcinomas with Xp11.2 rearrangements.

  8. Disease-linked mutations in factor H reveal pivotal role of cofactor activity in self-surface-selective regulation of complement activation.

    PubMed

    Kerr, Heather; Wong, Edwin; Makou, Elisavet; Yang, Yi; Marchbank, Kevin; Kavanagh, David; Richards, Anna; Herbert, Andrew P; Barlow, Paul N

    2017-08-11

    Spontaneous activation enables the complement system to respond very rapidly to diverse threats. This activation is efficiently suppressed by complement factor H (CFH) on self-surfaces but not on foreign surfaces. The surface selectivity of CFH, a soluble protein containing 20 complement-control protein modules (CCPs 1-20), may be compromised by disease-linked mutations. However, which of the several functions of CFH drives this self-surface selectivity remains unknown. To address this, we expressed human CFH mutants in Pichia pastoris We found that recombinant I62-CFH (protective against age-related macular degeneration) and V62-CFH functioned equivalently, matching or outperforming plasma-derived CFH, whereas R53H-CFH, linked to atypical hemolytic uremic syndrome (aHUS), was defective in C3bBb decay-accelerating activity (DAA) and factor I cofactor activity (CA). The aHUS-linked CCP 19 mutant D1119G-CFH had virtually no CA on (self-like) sheep erythrocytes ( E S ) but retained DAA. The aHUS-linked CCP 20 mutant S1191L/V1197A-CFH (LA-CFH) had dramatically reduced CA on E S but was less compromised in DAA. D1119G-CFH and LA-CFH both performed poorly at preventing complement-mediated hemolysis of E S PspCN, a CFH-binding Streptococcus pneumoniae protein domain, binds CFH tightly and increases accessibility of CCPs 19 and 20. PspCN did not improve the DAA of any CFH variant on E S Conversely, PspCN boosted the CA, on E S , of I62-CFH, R53H-CFH, and LA-CFH and also enhanced hemolysis protection by I62-CFH and LA-CFH. We conclude that CCPs 19 and 20 are critical for efficient CA on self-surfaces but less important for DAA. Exposing CCPs 19 and 20 with PspCN and thus enhancing CA on self-surfaces may reverse deficiencies of some CFH variants. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Molecular gas in low-metallicity starburst galaxies:. Scaling relations and the CO-to-H2 conversion factor

    NASA Astrophysics Data System (ADS)

    Amorín, R.; Muñoz-Tuñón, C.; Aguerri, J. A. L.; Planesas, P.

    2016-04-01

    Context. Tracing the molecular gas-phase in low-mass star-forming galaxies becomes extremely challenging due to significant UV photo-dissociation of CO molecules in their low-dust, low-metallicity ISM environments. Aims: We aim to study the molecular content and the star-formation efficiency of a representative sample of 21 blue compact dwarf galaxies (BCDs), previously characterized on the basis of their spectrophotometric properties. Methods: We present CO (1-0) and (2-1) observations conducted at the IRAM-30m telescope. These data are further supplemented with additional CO measurements and multiwavelength ancillary data from the literature. We explore correlations between the derived CO luminosities and several galaxy-averaged properties. Results: We detect CO emission in seven out of ten BCDs observed. For two galaxies these are the first CO detections reported so far. We find the molecular content traced by CO to be correlated with the stellar and Hi masses, star formation rate (SFR) tracers, the projected size of the starburst, and its gas-phase metallicity. BCDs appear to be systematically offset from the Schmidt-Kennicutt (SK) law, showing lower average gas surface densities for a given ΣSFR, and therefore showing extremely low (≲0.1 Gyr) H2 and H2 +Hi depletion timescales. The departure from the SK law is smaller when considering H2 +Hi rather than H2 only, and is larger for BCDs with lower metallicity and higher specific SFR. Thus, the molecular fraction (ΣH2/ ΣHI) and CO depletion timescale (ΣH2/ ΣSFR) of BCDs is found to be strongly correlated with metallicity. Using this, and assuming that the empirical correlation found between the specific SFR and galaxy-averaged H2 depletion timescale of more metal-rich galaxies extends to lower masses, we derive a metallicity-dependent CO-to-H2 conversion factor αCO,Z ∝ (Z/Z⊙)- y, with y = 1.5(±0.3)in qualitative agreement with previous determinations, dust-based measurements, and recent model

  10. Primary study on the lesions and specific proteins in BEAS-2B cells induced with the 2009 A (H1N1) influenza virus.

    PubMed

    Fang, Shisong; Zhang, Kaining; Wang, Ting; Wang, Xin; Lu, Xing; Peng, Bo; Wu, Weihua; Zhang, Ran; Chen, Shiju; Zhang, Renli; Xue, Hong; Yu, Muhua; Cheng, Jinquan

    2014-12-01

    In order to investigate the lesions and proteins with differential expression in cells infected with the 2009 A (H1N1) virus and to determine the specific proteins involved in cell damage, the present study has been performed. BEAS-2B cells were infected with the 2009 A (H1N1) influenza virus or the seasonal H1N1 influenza virus for 12, 24, 48, and 72 h, and cell cycle and apoptosis were analyzed with flow cytometry. Total cellular proteins were extracted and underwent two-dimensional gel electrophoresis. The differentially expressed proteins underwent mass spectrometry for identification. The results showed that after 12 h, cells infected with the virus strain sourced from severe cases had the highest apoptosis rate (P < 0.05). After 48 h, cells infected with the virus strain sourced from fatal cases and severe cases had the highest apoptosis rate (P < 0.05), and after 72 h, cells infected with virus strains from fatal cases and ordinary cases had the highest apoptosis rate (P < 0.05). All the four influenza virus strains induced cell cycle arrest mainly at the G0/G1 phase. Eighteen differentially expressed proteins were identified, including galectin-1, cofilin-1, protein DJ-1, proteasome subunit α type-5, macrophage migration inhibitory factor, translationally controlled tumor protein, profilin 1, and interferon α-2. Galectin-1 was specifically observed in BEAS-2B infected with 2009 A (H1N1) influenza viruses, and cofilin-1 was specifically observed in BEAS-2B cells in the late stage of 2009 A (H1N1) influenza virus infection. In conclusion, differential effects of the 2009 A (H1N1) influenza virus and seasonal H1N1 influenza virus were identified on the cell cycle and apoptosis, and galectin-1 may play a role in cell apoptosis induced by 2009 A (H1N1) influenza virus.

  11. Hox proteins activate the IGFBP-1 promoter and suppress the function of hPR in human endometrial cells.

    PubMed

    Gao, Jiaguo; Mazella, James; Tseng, Linda

    2002-11-01

    Previous studies have shown that progestin activates the transcription of IGFBP-1 (insulin-like growth factor binding protein-1). Four regions in the IGFBP-1 promotor have been identified to enhance the transcription. Two of the regions, located at -73 to -65 bp and -319 to -311 bp formed identical DNA-protein complexes with the nuclear extracts of endometrial stromal/decidual cells. To identify the binding protein(s) in endometrial cells that interact with these two regions, we have used the TGTCAATTA repeats (-319 to -11 bp of the IGFBP-1 promoter) to screen the human decidual cDNA library by yeast one-hybrid system. We found that Hox A10, HoxA11, HoxB2, HoxB4, and HoxD11 interacted with the TGTCAATTA repeats in yeast cells. Among these hox genes, the full-length coding region of HoxA10, HoxA11, and HoxB4 were used for functional analysis in three types of endometrial cells, undifferentiated endometrial stromal cells, decidual cells (differentiated stromal cells) and endometrial adenocarcinoma cell line (HEC1-B). All these endometrial cells produce IGFBP-1. Transient transfection assay showed that HoxA10 expression vector increased the promoter activity (the IGFBP-1 proximal promoter containing TGC/TCAATTA and two functional PRE sites) in endometrial stromal cells and in HEC-1B cells, but not in decidual cells. HoxB4 enhanced the promoter activity only in decidual cells, while HoxA11 had no apparent effect in all three types of cells. To evaluate whether Hox proteins would interact with progesterone receptor (hPR), cells were transfected with the promoter construct, Hox and hPR expression vectors. hPR alone activated the IGFBP-1 promoter activity, but expression of Hox gene suppressed the activation. Hox proteins also suppressed the hPR enhanced promoter activities of MMTV (containing consensus-PRE sites) and glycodelin (GdA, containing Sp1 site which mediates the hPR function). These data showed that Hox genes selectively activate the transcription of the IGFBP

  12. Binding of (/sup 3/H)forskolin to platelet membranes and solubilized proteins from bovine brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C.A.; Seamon, K.B.

    1986-05-01

    (/sup 3/H)Forskolin ((/sup 3/H)FSK) bound to platelet membranes with a Kd of 20 nM and a Bmax of 125 fmol/mg protein. The Bmax was increased to 400 fmol/mg protein in the presence of GppNHp (or NaF) and MgCl/sub 2/ with no change in Kd. PGE/sub 1/ decreased the EC50 of GppNHp to increase the Bmax for (/sup 3/H)FSK binding from 600 nM to 35 nM. In contrast, PGE/sub 1/ had no effect on the EC50 of NaF to increase (/sup 3/H)FSK binding. (/sup 3/H)FSK binding increased slowly over 60 min when forskolin and GppNHp were added to membranes simultaneously atmore » 20/sup 0/C. Preincubation of membranes with GppNHp at 20/sup 5/C also caused a linear increase in adenylate cyclase specific activity over 60 minutes. (/sup 3/H)FSK bound to solubilized protein from bovine brain membrane with a Kd of 22 nM. GppNHp increased the number of binding sites in solubilized proteins only if membranes were not preincubated with GppNHp prior to solubilization. In conclusion the number of binding sites for (/sup 3/H)FSK is increased by agents that activate adenylate cyclase through the Ns protein. These sites appear to be associated with an activated complex of the Ns protein and adenylate cyclase.« less

  13. Risk factors for age-related maculopathy.

    PubMed

    Connell, Paul P; Keane, Pearse A; O'Neill, Evelyn C; Altaie, Rasha W; Loane, Edward; Neelam, Kumari; Nolan, John M; Beatty, Stephen

    2009-01-01

    Age-related maculopathy (ARM) is the leading cause of blindness in the elderly. Although beneficial therapeutic strategies have recently begun to emerge, much remains unclear regarding the etiopathogenesis of this disorder. Epidemiologic studies have enhanced our understanding of ARM, but the data, often conflicting, has led to difficulties with drawing firm conclusions with respect to risk for this condition. As a consequence, we saw a need to assimilate the published findings with respect to risk factors for ARM, through a review of the literature appraising results from published cross-sectional studies, prospective cohort studies, case series, and case control studies investigating risk for this condition. Our review shows that, to date, and across a spectrum of epidemiologic study designs, only age, cigarette smoking, and family history of ARM have been consistently demonstrated to represent risk for this condition. In addition, genetic studies have recently implicated many genes in the pathogenesis of age-related maculopathy, including Complement Factor H, PLEKHA 1, and LOC387715/HTRA1, demonstrating that environmental and genetic factors are important for the development of ARM suggesting that gene-environment interaction plays an important role in the pathogenesis of this condition.

  14. Environmental and Genetic Factors Regulating Localization of the Plant Plasma Membrane H+-ATPase.

    PubMed

    Haruta, Miyoshi; Tan, Li Xuan; Bushey, Daniel B; Swanson, Sarah J; Sussman, Michael R

    2018-01-01

    A P-type H + -ATPase is the primary transporter that converts ATP to electrochemical energy at the plasma membrane of higher plants. Its product, the proton-motive force, is composed of an electrical potential and a pH gradient. Many studies have demonstrated that this proton-motive force not only drives the secondary transporters required for nutrient uptake, but also plays a direct role in regulating cell expansion. Here, we have generated a transgenic Arabidopsis ( Arabidopsis thaliana ) plant expressing H + -ATPase isoform 2 (AHA2) that is translationally fused with a fluorescent protein and examined its cellular localization by live-cell microscopy. Using a 3D imaging approach with seedlings grown for various times under a variety of light intensities, we demonstrate that AHA2 localization at the plasma membrane of root cells requires light. In dim light conditions, AHA2 is found in intracellular compartments, in addition to the plasma membrane. This localization profile was age-dependent and specific to cell types found in the transition zone located between the meristem and elongation zones. The accumulation of AHA2 in intracellular compartments is consistent with reduced H + secretion near the transition zone and the suppression of root growth. By examining AHA2 localization in a knockout mutant of a receptor protein kinase, FERONIA, we found that the intracellular accumulation of AHA2 in the transition zone is dependent on a functional FERONIA-dependent inhibitory response in root elongation. Overall, this study provides a molecular underpinning for understanding the genetic, environmental, and developmental factors influencing root growth via localization of the plasma membrane H + -ATPase. © 2018 American Society of Plant Biologists. All Rights Reserved.

  15. Refeeding with a high-protein diet after a 48 h fast causes acute hepatocellular injury in mice.

    PubMed

    Oarada, Motoko; Tsuzuki, Tsuyoshi; Nikawa, Takeshi; Kohno, Shohei; Hirasaka, Katsuya; Gonoi, Tohru

    2012-05-01

    Elucidating the effects of refeeding a high-protein diet after fasting on disease development is of interest in relation to excessive protein ingestion and irregular eating habits in developed countries. The objective of the present study was to address the hepatic effects of refeeding a high-protein diet after fasting. Mice were fasted for 48 h and then refed with a test diet containing 3, 15, 35, 40, 45 or 50 % casein. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and liver immediate-early gene expression levels were sequentially measured for the first 24 h after initiation of refeeding. Refeeding with a 50 % casein diet after 48 h of fasting led to a rapid (within 2-3 h) and abnormal elevation in serum ALT (P = 0·006) and AST (P = 0·001) activities and a marked increase in liver Finkel-Biskis-Jinkins (FBJ) osteosarcoma oncogene (P = 0·007) and nuclear receptor subfamily 4, group A, member 1 (P = 0·002) mRNA levels. In contrast, refeeding of the 3, 15 or 35 % casein diets produced no substantial increases in serum ALT and AST activities in mice. Refeeding of 40, 45 or 50 % casein increased serum ALT and AST activities in proportion to this dietary casein content. In mice refed the 3, 15 or 35, but not 50 %, casein diets, liver heat shock protein 72 transcript levels greatly increased. We conclude from these data that the consumption of a high-protein diet after fasting causes acute hepatocellular injury in healthy animals, and propose that careful attention should be paid to the use of such diets.

  16. Electrostatic Architecture of the Infectious Salmon Anemia Virus (ISAV) Core Fusion Protein Illustrates a Carboxyl-Carboxylate pH Sensor.

    PubMed

    Cook, Jonathan D; Soto-Montoya, Hazel; Korpela, Markus K; Lee, Jeffrey E

    2015-07-24

    Segment 5, ORF 1 of the infectious salmon anemia virus (ISAV) genome, encodes for the ISAV F protein, which is responsible for viral-host endosomal membrane fusion during a productive ISAV infection. The entry machinery of ISAV is composed of a complex of the ISAV F and ISAV hemagglutinin esterase (HE) proteins in an unknown stoichiometry prior to receptor engagement by ISAV HE. Following binding of the receptor to ISAV HE, dissociation of the ISAV F protein from HE, and subsequent endocytosis, the ISAV F protein resolves into a fusion-competent oligomeric state. Here, we present a 2.1 Å crystal structure of the fusion core of the ISAV F protein determined at low pH. This structure has allowed us to unambiguously demonstrate that the ISAV entry machinery exhibits typical class I viral fusion protein architecture. Furthermore, we have determined stabilizing factors that accommodate the pH-dependent mode of ISAV transmission, and our structure has allowed the identification of a central coil that is conserved across numerous and varied post-fusion viral glycoprotein structures. We then discuss a mechanistic model of ISAV fusion that parallels the paramyxoviral class I fusion strategy wherein attachment and fusion are relegated to separate proteins in a similar fashion to ISAV fusion. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. FYVE-dependent endosomal targeting of an arrestin-related protein in amoeba.

    PubMed

    Guetta, Dorian; Langou, Karine; Grunwald, Didier; Klein, Gérard; Aubry, Laurence

    2010-12-13

    Visual and β-arrestins are scaffolding proteins involved in the regulation of receptor-dependent intracellular signaling and their trafficking. The arrestin superfamilly includes several arrestin domain-containing proteins and the structurally related protein Vps26. In Dictyostelium discoideum, the arrestin-domain containing proteins form a family of six members, namely AdcA to -F. In contrast to canonical arrestins, Dictyostelium Adc proteins show a more complex architecture, as they possess, in addition to the arrestin core, other domains, such as C2, FYVE, LIM, MIT and SAM, which potentially mediate selective interactions with either lipids or proteins. A detailed analysis of AdcA has been performed. AdcA extends on both sides of the arrestin core, in particular by a FYVE domain which mediates selective interactions with PI(3)P, as disclosed by intrinsic fluorescence measurements and lipid overlay assays. Localization studies showed an enrichment of tagged- and endogenous AdcA on the rim of early macropinosomes and phagosomes. This vesicular distribution relies on a functional FYVE domain. Our data also show that the arrestin core binds the ADP-ribosylation factor ArfA, the unique amoebal Arf member, in its GDP-bound conformation. This work describes one of the 6 arrestin domain-containing proteins of Dictyostelium, a novel and atypical member of the arrestin clan. It provides the basis for a better understanding of arrestin-related protein involvement in trafficking processes and for further studies on the expanding roles of arrestins in eukaryotes.

  18. Predicting disease-related proteins based on clique backbone in protein-protein interaction network.

    PubMed

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.

  19. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    NASA Technical Reports Server (NTRS)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  20. Pathogenesis-Related Proteins of Tomato 1

    PubMed Central

    Vera, Pablo; Conejero, Vicente

    1988-01-01

    An endoproteinase induced by citrus exocortis viroid has been purified from tomato (Lycopersicon esculentum Mill, cv “Rutgers”) leaves. The proteinase corresponds to one of the major pathogenesis-related proteins of tomato plants and was designated proteinase P-69 as it has a molecular weight of 69,000 to 70,000. The proteinase was purified in four steps: (NH4)2SO4 fractionation, chromatography on Bio-Gel P-60, DEAE-Sepharose chromatography, and casein-Sepharose affinity chromatography. The proteinase had a pH optimum of 8.5 to 9.0 when assayed with either fluorescein thiocarbamoyl derivative (FTC)-casein or FTC-ribulose 1,5-bisphosphate carboxylase/oxygenase as substrates. The proteinase activity was inhibited by pCMB and strongly activated by calcium and magnesium ions as well as by DTT. When analyzed by electrofocusing, the activity showed a pI around 9.0. Images Fig. 4 Fig. 8 PMID:16666127

  1. Role of Nuclear Factor Erythroid 2-Related Factor 2 in Diabetic Nephropathy

    PubMed Central

    Min, Xu; Xu, Xiaohong

    2017-01-01

    Diabetic nephropathy (DN) is manifested as increased urinary protein level, decreased glomerular filtration rate, and final renal dysfunction. DN is the leading cause of end-stage renal disease worldwide and causes a huge societal healthcare burden. Since satisfied treatments are still limited, exploring new strategies for the treatment of this disease is urgently needed. Oxidative stress takes part in the initiation and development of DN. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a key role in the cellular response to oxidative stress. Thus, activation of Nrf2 seems to be a new choice for the treatment of DN. In current review, we discussed and summarized the therapeutic effects of Nrf2 activation on DN from both basic and clinical studies. PMID:28512642

  2. Somatomedin-1 binding protein-3: insulin-like growth factor-1 binding protein-3, insulin-like growth factor-1 carrier protein.

    PubMed

    2003-01-01

    Somatomedin-1 binding protein-3 [insulin-like growth factor-1 binding protein-3, SomatoKine] is a recombinant complex of insulin-like growth factor-1 (rhIGF-1) and binding protein-3 (IGFBP-3), which is the major circulating somatomedin (insulin-like growth factor) binding protein; binding protein-3 regulates the delivery of somatomedin-1 to target tissues. Somatomedin-1 binding protein-3 has potential as replacement therapy for somatomedin-1 which may become depleted in indications such as major surgery, organ damage/failure and traumatic injury, resulting in catabolism. It also has potential for the treatment of osteoporosis; diseases associated with protein wasting including chronic renal failure, cachexia and severe trauma; and to attenuate cardiac dysfunction in a variety of disease states, including after severe burn trauma. Combined therapy with somatomedin-1 and somatomedin-1 binding protein-3 would prolong the duration of action of somatomedin-1 and would reduce or eliminate some of the undesirable effects associated with somatomedin-1 monotherapy. Somatomedin-1 is usually linked to binding protein-3 in the normal state of the body, and particular proteases clip them apart in response to stresses and release somatomedin-1 as needed. Therefore, somatomedin-1 binding protein-3 is a self-dosing system and SomatoKine would augment the natural supply of these linked compounds. Somatomedin-1 binding protein-3 was developed by Celtrix using its proprietary recombinant protein production technology. Subsequently, Celtrix was acquired by Insmed Pharmaceuticals on June 1 2000. Insmed and Avecia, UK, have signed an agreement for the manufacturing of SomatoKine and its components, IGF-1 and binding protein-3. CGMP clinical production of SomatoKine and its components will be done in Avecia's Advanced Biologics Centre, Billingham, UK, which manufactures recombinant-based medicines and vaccines with a capacity of up to 1000 litres. In 2003, manufacturing of SomatoKine is

  3. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses.

    PubMed

    Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj

    2014-09-01

    C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.

  4. A heart that beats for 500 years: age-related changes in cardiac proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in Arctica islandica, the longest-living noncolonial animal.

    PubMed

    Sosnowska, Danuta; Richardson, Chris; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan; Ridgway, Iain

    2014-12-01

    Study of negligibly senescent animals may provide clues that lead to better understanding of the cardiac aging process. To elucidate mechanisms of successful cardiac aging, we investigated age-related changes in proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in the heart of the ocean quahog Arctica islandica, the longest-lived noncolonial animal (maximum life span potential: 508 years). We found that in the heart of A. islandica the level of oxidatively damaged proteins did not change significantly up to 120 years of age. No significant aging-induced changes were observed in caspase-like and trypsin-like proteasome activity. Chymotrypsin-like proteasome activity showed a significant early-life decline, then it remained stable for up to 182 years. No significant relationship was observed between the extent of protein ubiquitination and age. In the heart of A. islandica, an early-life decline in expression of HSP90 and five mitochondrial electron transport chain complexes was observed. We found significant age-related increases in the expression of three cytokine-like mediators (interleukin-6, interleukin-1β, and tumor necrosis factor-α) in the heart of A. islandica. Collectively, in extremely long-lived molluscs, maintenance of protein homeostasis likely contributes to the preservation of cardiac function. Our data also support the concept that low-grade chronic inflammation in the cardiovascular system is a universal feature of the aging process, which is also manifest in invertebrates. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Further biochemical characterization of human pancreatic lipase-related protein 2 expressed in yeast cells.

    PubMed

    Eydoux, Cécilia; De Caro, Josiane; Ferrato, Francine; Boullanger, Paul; Lafont, Dominique; Laugier, René; Carrière, Frédéric; De Caro, Alain

    2007-07-01

    Recombinant human pancreatic lipase-related protein 2 (rHPLRP2) was produced in the protease A-deficient yeast Pichia pastoris. A major protein with a molecular mass of 50 kDa was purified from the culture medium using SP-Sepharose and Mono Q chromatography. The protein was found to be highly sensitive to the proteolytic cleavage of a peptide bond in the lid domain. The proteolytic cleavage process occurring in the lid affected both the lipase and phospholipase activities of rHPLRP2. The substrate specificity of the nonproteolyzed rHPLRP2 was investigated using pH-stat and monomolecular film techniques and various substrates (glycerides, phospholipids, and galactolipids). All of the enzyme activities were maximum at alkaline pH values and decreased in the pH 5-7 range corresponding to the physiological conditions occurring in the duodenum. rHPLRP2 was found to act preferentially on substrates forming small aggregates in solution (monoglycerides, egg phosphatidylcholine, and galactolipids) rather than on emulsified substrates such as triolein and diolein. The activity of rHPLRP2 on monogalactosyldiglyceride and digalactosyldiglyceride monomolecular films was determined and compared with that of guinea pig pancreatic lipase-related protein 2, which shows a large deletion in the lid domain. The presence of a full-length lid domain in rHPLRP2 makes it possible for enzyme activity to occur at higher surface pressures. The finding that the inhibition of nonproteolyzed rHPLRP2 by tetrahydrolipstatin and diethyl-p-nitrophenyl phosphate does not involve any bile salt requirements suggests that the rHPLRP2 lid adopts an open conformation in aqueous media.

  6. Relating the effects of protein type and content in increased-protein cheese pies to consumers' perception of satiating capacity.

    PubMed

    Marcano, J; Varela, P; Fiszman, S

    2015-02-01

    Since proteins have been shown to have the highest satiation-inducing effects of all the macronutrients, increasing the protein level is one of the main strategies for designing foods with enhanced satiating capacity. However, few studies analyze the effect that protein addition has on the texture and flavor characteristics of the target food item to relate it to the expected satiating capacity it elicits. The present work studied cheese pies with three levels of soy and whey proteins. Since the protein level altered the rheological behavior of the batters before baking and the texture of the baked pies, the feasibility of adding several protein levels for obtaining a range of final products was investigated. A check-all-that-apply questionnaire containing 32 sensory and non-sensory characteristics of the samples was given to consumers (n = 131) who also scored the perceived samples' satiating capacity. The results showed that the type and content of protein contributed distinctive sensory characteristics to the samples that could be related to their satiating capacity perception. Harder and drier samples (high protein levels) were perceived as more satiating with less perceptible sweet and milky cheese pie characteristic flavors. Soy contributed an off-flavour. These results will contribute to a better understanding of the interrelation of all these factors, aiding the development of highly palatable solid foods with enhanced satiating capacities.

  7. SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.

    PubMed

    Anafi, M; Kiefer, F; Gish, G D; Mbamalu, G; Iscove, N N; Pawson, T

    1997-10-31

    Ste20-related protein kinases have been implicated as regulating a range of cellular responses, including stress-activated protein kinase pathways and the control of cytoskeletal architecture. An important issue involves the identities of the upstream signals and regulators that might control the biological functions of mammalian Ste20-related protein kinases. HPK1 is a protein-serine/threonine kinase that possesses a Ste20-like kinase domain, and in transfected cells activates a protein kinase pathway leading to the stress-activated protein kinase SAPK/JNK. Here we have investigated candidate upstream regulators that might interact with HPK1. HPK1 possesses an N-terminal catalytic domain and an extended C-terminal tail with four proline-rich motifs. The SH3 domains of Grb2 bound in vitro to specific proline-rich motifs in the HPK1 tail and functioned synergistically to direct the stable binding of Grb2 to HPK1 in transfected Cos1 cells. Epidermal growth factor (EGF) stimulation did not affect the binding of Grb2 to HPK1 but induced recruitment of the Grb2.HPK1 complex to the autophosphorylated EGF receptor and to the Shc docking protein. Several activated receptor and cytoplasmic tyrosine kinases, including the EGF receptor, stimulated the tyrosine phosphorylation of the HPK1 serine/threonine kinase. These results suggest that HPK1, a mammalian Ste20-related protein-serine/threonine kinase, can potentially associate with protein-tyrosine kinases through interactions mediated by SH2/SH3 adaptors such as Grb2. Such interaction may provide a possible mechanism for cross-talk between distinct biochemical pathways following the activation of tyrosine kinases.

  8. Combined protein- and nucleic acid-level effects of rs1143679 (R77H), a lupus-predisposing variant within ITGAM.

    PubMed

    Maiti, Amit K; Kim-Howard, Xana; Motghare, Prasenjeet; Pradhan, Vandana; Chua, Kek Heng; Sun, Celi; Arango-Guerrero, María Teresa; Ghosh, Kanjaksha; Niewold, Timothy B; Harley, John B; Anaya, Juan-Manual; Looger, Loren L; Nath, Swapan K

    2014-08-01

    Integrin alpha M (ITGAM; CD11b) is a component of the macrophage-1 antigen complex, which mediates leukocyte adhesion, migration and phagocytosis as part of the immune system. We previously identified a missense polymorphism, rs1143679 (R77H), strongly associated with systemic lupus erythematosus (SLE). However, the molecular mechanisms of this variant are incompletely understood. A meta-analysis of published and novel data on 28 439 individuals with European, African, Hispanic and Asian ancestries reinforces genetic association between rs1143679 and SLE [Pmeta = 3.60 × 10(-90), odds ratio (OR) = 1.76]. Since rs1143679 is in the most active region of chromatin regulation and transcription factor binding in ITGAM, we quantitated ITGAM RNA and surface protein levels in monocytes from patients with each rs1143679 genotype. We observed that transcript levels significantly decreased for the risk allele ('A') relative to the non-risk allele ('G'), in a dose-dependent fashion: ('AA' < 'AG' < 'GG'). CD11b protein levels in patients' monocytes were directly correlated with RNA levels. Strikingly, heterozygous individuals express much lower (average 10- to 15-fold reduction) amounts of the 'A' transcript than 'G' transcript. We found that the non-risk sequence surrounding rs1143679 exhibits transcriptional enhancer activity in vivo and binds to Ku70/80, NFKB1 and EBF1 in vitro, functions that are significantly reduced with the risk allele. Mutant CD11b protein shows significantly reduced binding to fibrinogen and vitronectin, relative to non-risk, both in purified protein and in cellular models. This two-pronged contribution (nucleic acid- and protein-level) of the rs1143679 risk allele to decreasing ITGAM activity provides insight into the molecular mechanisms of its potent association with SLE. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Prognostic role of human equilibrative transporter 1 (hENT1) in patients with resected gastric cancer.

    PubMed

    Santini, Daniele; Vincenzi, Bruno; Fratto, Maria Elisabetta; Perrone, Giuseppe; Lai, Raymond; Catalano, Vincenzo; Cass, Carol; Ruffini, Pier Adelchi; Spoto, Chiara; Muretto, Pietro; Rizzo, Sergio; Muda, Andrea Onetti; Mackey, John R; Russo, Antonio; Tonini, Giuseppe; Graziano, Francesco

    2010-05-01

    Nucleoside transporter proteins are specialized proteins that mediate the transport of nucleosides and nucleoside analog drugs across the plasma membrane. The human equilibrative nucleoside transporter 1 (hENT1) is a member of these proteins and mediates cellular entry of gemcitabine, cytarabine, and fludarabine. The hENT1 expression has been demonstrated to be related with prognosis and activity of gemcitabine-based therapy in breast, ampullary, lung, and pancreatic cancer. We investigated the immunohistochemical expression of hENT in tumor samples from 111 patients with resected gastric adenocarcinoma, correlating these data with clinical parameters and disease outcomes. None of the patients received chemotherapy or radiation therapy before or after surgery as a part of an adjuvant or neoadjuvant program. On univariate survival analysis, the hENT1 expression was associated with overall survival (OS) and disease free survival (DFS). Specifically, those patients with overexpression of hENT1 showed a shorter OS (P = 0.021) and a shorter DFS (P = 0.033). Considering only the node positive patients, higher hENT levels were associated with significantly shorter median DFS (21.7 months; 95% CI 11.1-32.4) compared with patients with low expression of hENT1. The hENT1 expression was defined, in the lymph-node positive patients, as an independent prognostic factor (P = 0.019). Furthermore, considering only patients with diffuse or mixed tumors and lymph-node positive, the expression of hENT1 was strongly related with DFS and OS. Immunohistochemistry for the hENT1 protein carries prognostic information in patients with resected gastric cancer and holds promise as a predictive factor in chemotherapy decisions.

  10. High pH solubilization and chromatography-based renaturation and purification of recombinant human granulocyte colony-stimulating factor from inclusion bodies.

    PubMed

    Li, Ming; Fan, Hua; Liu, Jiahua; Wang, Minhong; Wang, Lili; Wang, Chaozhan

    2012-03-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is a very efficient therapeutic protein drug which has been widely used in human clinics to treat cancer patients suffering from chemotherapy-induced neutropenia. In this study, rhG-CSF was solubilized from inclusion bodies by using a high-pH solution containing low concentration of urea. It was found that solubilization of the rhG-CSF inclusion bodies greatly depended on the buffer pH employed; alkalic pH significantly favored the solubilization. In addition, when small amount of urea was added to the solution at high pH, the solubilization was further enhanced. After solubilization, the rhG-CSF was renatured with simultaneous purification by using weak anion exchange, strong anion exchange, and hydrophobic interaction chromatography, separately. The results indicated that the rhG-CSF solubilized by the high-pH solution containing low concentration of urea had much higher mass recovery than the one solubilized by 8 M urea when using anyone of the three refolding methods employed in this work. In the case of weak anion exchange chromatography, the high pH solubilized rhG-CSF could get a mass recovery of 73%. The strategy of combining solubilization of inclusion bodies at high pH with refolding of protein using liquid chromatography may become a routine method for protein production from inclusion bodies.

  11. Aldosterone stimulates vacuolar H+-ATPase activity in renal acid-secretory intercalated cells mainly via a protein kinase C-dependent pathway

    PubMed Central

    Winter, Christian; Kampik, Nicole B.; Vedovelli, Luca; Rothenberger, Florina; Păunescu, Teodor G.; Stehberger, Paul A.; Brown, Dennis; John, Hubert

    2011-01-01

    Urinary acidification in the collecting duct is mediated by the activity of H+-ATPases and is stimulated by various factors including angiotensin II and aldosterone. Classically, aldosterone effects are mediated via the mineralocorticoid receptor. Recently, we demonstrated a nongenomic stimulatory effect of aldosterone on H+-ATPase activity in acid-secretory intercalated cells of isolated mouse outer medullary collecting ducts (OMCD). Here we investigated the intracellular signaling cascade mediating this stimulatory effect. Aldosterone stimulated H+-ATPase activity in isolated mouse and human OMCDs. This effect was blocked by suramin, a general G protein inhibitor, and GP-2A, a specific Gαq inhibitor, whereas pertussis toxin was without effect. Inhibition of phospholipase C with U-73122, chelation of intracellular Ca2+ with BAPTA, and blockade of protein kinase C prevented the stimulation of H+-ATPases. Stimulation of PKC by DOG mimicked the effect of aldosterone on H+-ATPase activity. Similarly, aldosterone and DOG induced a rapid translocation of H+-ATPases to the luminal side of OMCD cells in vivo. In addition, PD098059, an inhibitor of ERK1/2 activation, blocked the aldosterone and DOG effects. Inhibition of PKA with H89 or KT2750 prevented and incubation with 8-bromoadenosine-cAMP mildly increased H+-ATPase activity. Thus, the nongenomic modulation of H+-ATPase activity in OMCD-intercalated cells by aldosterone involves several intracellular pathways and may be mediated by a Gαq protein-coupled receptor and PKC. PKA and cAMP appear to have a modulatory effect. The rapid nongenomic action of aldosterone may participate in the regulation of H+-ATPase activity and contribute to final urinary acidification. PMID:21832245

  12. Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo.

    PubMed

    Mendes, L F; Katagiri, H; Tam, W L; Chai, Y C; Geris, L; Roberts, S J; Luyten, F P

    2018-02-21

    Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models. hPDCs were aggregated and cultured in the presence of a novel growth factor (GF) cocktail comprising of transforming growth factor (TGF)-β1, bone morphogenetic protein (BMP)2, growth differentiation factor (GDF)5, BMP6, and fibroblast growth factor (FGF)2. Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to study in vitro differentiation. Aggregates were then implanted ectopically in nude mice and orthotopically in critical-size osteochondral defects in nude rats and evaluated by microcomputed tomography (µCT) and immunohistochemistry. Gene expression analysis after 28 days of in vitro culture revealed the expression of early and late chondrogenic markers and a significant upregulation of NOGGIN as compared to human articular chondrocytes (hACs). Histological examination revealed a bilayered structure comprising of chondrocytes at different stages of maturity. Ectopically, TIs generated both bone and mineralized cartilage at 8 weeks after implantation. Osteochondral defects treated with TIs displayed glycosaminoglycan (GAG) production, type-II collagen, and lubricin expression. Immunostaining for human nuclei protein suggested that hPDCs contributed to both subchondral bone and articular cartilage repair. Our data indicate that in vitro derived osteochondral-like tissues can be generated from hPDCs, which are capable of producing bone and cartilage ectopically and behave orthotopically as osteochondral units.

  13. Cell Surface Expression of Human Ether-a-go-go-related Gene (hERG) Channels Is Regulated by Caveolin-3 Protein via the Ubiquitin Ligase Nedd4-2*

    PubMed Central

    Guo, Jun; Wang, Tingzhong; Li, Xian; Shallow, Heidi; Yang, Tonghua; Li, Wentao; Xu, Jianmin; Fridman, Michael D.; Yang, Xiaolong; Zhang, Shetuan

    2012-01-01

    The human ether-a-go-go-related gene (hERG) encodes the rapidly activating delayed rectifier potassium channel (IKr) which plays an important role in cardiac repolarization. A reduction or increase in hERG current can cause long or short QT syndrome, respectively, leading to fatal cardiac arrhythmias. The channel density in the plasma membrane is a key determinant of the whole cell current amplitude. To gain insight into the molecular mechanisms for the regulation of hERG density at the plasma membrane, we used whole cell voltage clamp, Western blotting, and immunocytochemical methods to investigate the effects of an integral membrane protein, caveolin-3 (Cav3) on hERG expression levels. Our data demonstrate that Cav3, hERG, and ubiquitin-ligase Nedd4-2 interact with each other and form a complex. Expression of Cav3 thus enhances the hERG-Nedd4-2 interaction, leading to an increased ubiquitination and degradation of mature, plasma-membrane localized hERG channels. Disrupting Nedd4-2 interaction with hERG by mutations eliminates the effects of Cav3 on hERG channels. Knockdown of endogenous Cav3 or Nedd4-2 in cultured neonatal rat ventricular myocytes using siRNA led to an increase in native IKr. Our data demonstrate that hERG expression in the plasma membrane is regulated by Cav3 via Nedd4-2. These findings extend our understanding of the regulation of hERG channels and cardiac electrophysiology. PMID:22879586

  14. Overexpression of the RD RNA binding protein in hepatitis C virus-related hepatocellular carcinoma.

    PubMed

    Iida, Michihisa; Iizuka, Norio; Tsunedomi, Ryouichi; Tsutsui, Masahiro; Yoshida, Shin; Maeda, Yoshinari; Tokuhisa, Yoshihiro; Sakamoto, Kazuhiko; Yoshimura, Kiyoshi; Tamesa, Takao; Oka, Masaaki

    2012-08-01

    Hepatocellular carcinoma (HCC) often exhibits a poor prognosis due to metastatic spread caused by portal vein invasion (PVI). In the present study, we attempted to identify a novel therapeutic target related to PVI of HCC. Based on pooled genomic data, we identified RD RNA binding protein (RDBP), a member of the negative elongation factor (NELF) transcription elongation regulatory complex, to be preferentially overexpressed in HCC with PVI. We used quantitative reverse transcription polymerase chain reaction (RT-PCR) and immuno-histochemical analyses to investigate the relationship between RDBP mRNA and protein with metastatic potential in sample sets of hepatitis C virus (HCV)-related HCC and corresponding non-HCC liver tissues. We also used the small interfering RNA technique to examine the role of RDBP in invasion and proliferation of HCC cells in vitro. Our data showed that both mRNA and protein levels of RDBP were significantly higher in HCC compared to non-HCC liver tissue, and that these levels were also significantly higher in HCC with PVI compared to HCC without PVI. Multivariate analysis revealed that RDBP protein levels were an independent risk factor for early intrahepatic recurrence of HCC within 2 years of surgery. Knockdown of RDBP protein significantly inhibited the proliferation and invasion of cells in vitro. These data demonstrate that RDBP is related to the metastatic potential of HCC, suggesting a possible candidate for prevention of HCC cell metastasis.

  15. pH shift protein recovery with organic acids on texture and color of cooked gels.

    PubMed

    Paker, Ilgin; Beamer, Sarah; Jaczynski, Jacek; Matak, Kristen E

    2015-01-01

    Isoelectric solubilization and precipitation (ISP) processing uses pH shifts to separate protein from fish frames, which may increase commercial interest for silver carp. Texture and color properties of gels made from silver carp protein recovered at different pH strategies and organic acid types were compared. ISP was applied to headed gutted silver carp using 10 mol L(-1) sodium hydroxide (NaOH) and either glacial acetic acid (AA) or a (1:1) formic and lactic acid combination (F&L). Protein gels were made with recovered protein and standard functional additives. Texture profile analysis and the Kramer shear test showed that protein gels made from protein solubilized at basic pH values were firmer, harder, more cohesive, gummier and chewier (P < 0.05) than proteins solubilized under acidic conditions. Acidic solubilization led to whiter (P < 0.05) gels, and using F&L during ISP yielded whiter gels under all treatments (P < 0.05). Gels made from ISP-recovered silver carp protein using organic acids show potential for use as a functional ingredient in restructured foods. © 2014 Society of Chemical Industry.

  16. A multi-target protein of hTERTR-FAM96A presents significant anticancer potent in the treatment of hepatocellular carcinoma.

    PubMed

    Zhang, Meng-Yu; Wang, Jie-Ping

    2017-04-01

    The abilities to escape apoptosis induced by anticancer drugs are an essential factor of carcinogenesis and a hallmark of resistance to cancer therapy. In this study, we identified hTERTR-FAM96A (human telomerase reverse transcriptase-family with sequence similarity 96 member A) as a new efficient agent for apoptosome-activating and anti-tumor protein and investigated the potential tumor suppressor function in hepatocellular carcinoma. The hTERTR-FAM96A fusion protein was constructed by genetic engineering and its anticancer function of hTERTR-FAM96A was explored in vitro and in vivo by investigating the possible preclinical outcomes. Effects of hTERTR-FAM96A on improvement of apoptotic sensitivity and inhibition of migration and invasion were examined in cancer cells and tumors. Our results showed that the therapeutic effects of hTERTR-FAM96A were highly effective for inhibiting tumor growth and inducing apoptosis of hepatocellular carcinoma cells in H22-bearing nude mice. The hTERTR-FAM96A fusion protein could specifically bind with Apaf-1 and hTERT, which further induced apoptosis of hepatocellular carcinoma cells and improved apoptosis sensitivity. Our results indicated that hTERTR-FAM96A treatment enhanced cytotoxic effects by upregulation of cytotoxic T lymphocyte responses, interferon-γ release, and T lymphocyte infiltration. In addition, hTERTR-FAM96A led to tumor-specific immunologic cytotoxicity through increasing apoptotic body on hepatocellular tumors. Furthermore, hTERTR-FAM96A dramatically inhibited tumor growth, reduced death rate, and prolonged mice survival in hepatocellular carcinoma mice derived from three independent hepatocellular carcinoma mice cohorts compared to control groups. In summary, our data suggest that hTERTR-FAM96A may serve as an efficient anti-tumor agent for the treatment of hepatocellular carcinoma.

  17. Impact of product-related factors on immunogenicity of biotherapeutics.

    PubMed

    Singh, Satish Kumar

    2011-02-01

    All protein therapeutics have the potential to be immunogenic. Several factors, including patient characteristics, disease state, and the therapy itself, influence the generation of an immune response. Product-related factors such as the molecule design, the expression system, post-translational modifications, impurities, contaminants, formulation and excipients, container, closure, as well as degradation products are all implicated. However, a critical examination of the available data shows that clear unequivocal evidence for the impact of these latter factors on clinical immunogenicity is lacking. No report could be found that clearly deconvolutes the clinical impact of the product attributes on patient susceptibility. Aggregation carries the greatest concern as a risk factor for immunogenicity, but the impact of aggregates is likely to depend on their structure as well as on the functionality (e.g., immunostimulatory or immunomodulatory) of the therapeutic. Preclinical studies are not yet capable of assessing the clinically relevant immunogenicity potential of these product-related factors. Simply addressing these risk factors as part of product development will not eliminate immunogenicity. Minimization of immunogenicity has to begin at the molecule design stage by reducing or eliminating antigenic epitopes and building in favorable physical and chemical properties. Copyright © 2010 Wiley-Liss, Inc.

  18. Thymidylate synthase (TS) protein expression as a prognostic factor in advanced colorectal cancer: a comparison with TS mRNA expression.

    PubMed

    Nakagawa, Tateo; Shimada, Mitsuo; Kurita, Nobuhiro; Iwata, Takashi; Nishioka, Masanori; Yoshikawa, Kozo; Higashijima, Jun; Utsunomiya, Tohru

    2012-06-01

    The role of intratumoral thymidylate synthase (TS) mRNA or protein expression is still controversial and little has been reported regarding relation of them in colorectal cancer. Forty-six patients with advanced colorectal cancer who underwent surgical resection were included. TS mRNA expression was determined by the Danenberg tumor profile method based on laser-captured micro-dissection of the tumor cells. TS protein expression was evaluated using immunohistochemical staining. TS mRNA expression tended to relate TS protein expression. Statistical significance was not found in overall survival between the TS mRNA high group and low group regardless of performing adjuvant chemotherapy. The overall survival in the TS protein negative group was significantly higher than that in positive group in all and the patients without adjuvant chemotherapy. Multivariate analysis showed TS protein expression was as an independent prognostic factor. TS protein expression tends to be related TS mRNA expression and is an independent prognostic factor in advanced colorectal cancer.

  19. Podocyte cytoskeleton is connected to the integral membrane protein podocalyxin through Na+/H+-exchanger regulatory factor 2 and ezrin.

    PubMed

    Takeda, Tetsuro

    2003-12-01

    During development, glomerular visceral epithelial cells, or podocytes, undergo extensive morphologic changes necessary for the creation of the glomerular filter. These changes include formation of interdigitating foot processes, replacement of tight junctions with slit diaphragms, and the concomitant opening of filtration slits. It was postulated previously and confirmed recently that podocalyxin, a sialomucin, plays a major role in keeping the urinary space open by virtue of the physicochemical properties of its highly negatively charged ectodomain. By a cell aggregation assay, the expression level of podocalyxin correlated closely with the anti-adhesion effect. Treatment of the cells with sialidase reversed the inhibitory effect of podocalyxin, indicating that sialic acid residue is required for inhibition of cell adhesion. In addition to its ectodomain, the highly conserved cytoplasmic tail of podocalyxin may contribute to the unique organization of podocytes. By immunocytochemistry, it was shown that two cytosolic adaptor proteins, Na(+)/H(+)-exchanger regulatory factor 2 (NHERF2) and ezrin, colocalize with podocalyxin along the apical plasma membrane of podocytes, where they form a co-immunoprecipitable complex. Moreover, the podocalyxin/NHERF2 /ezrin complex interacts with the actin cytoskeleton, and this interaction is disrupted in pathologic conditions associated with changes in the foot processes, indicating its importance in maintaining the unique organization of this epithelium. Further studies will be needed to identify the signaling molecules responsible for the regulation of this complex in podocyte damage.

  20. Plant cell pH-static circuit mediated by fusicoccin-binding proteins.

    PubMed

    Drabkin, A V; Trofimova, M S; Smolenskaya, I N; Klychnikov, O I; Chelysheva, V V; Babakov, A V

    1997-03-24

    On sugar beet protoplasts that carry two types of fusicoccin-binding sites, a pH downshift in a physiological range (7.0-6.6) markedly enhanced the efficiency of fusicoccin (FC) binding, mainly owing to increased avidity of low-affinity FC-binding sites. This may allow the FC-binding proteins to act as pH-sensitive modulators of cell activity, for instance, via plasma membrane H+-ATPase or potassium channels.

  1. How large B-factors can be in protein crystal structures.

    PubMed

    Carugo, Oliviero

    2018-02-23

    Protein crystal structures are potentially over-interpreted since they are routinely refined without any restraint on the upper limit of atomic B-factors. Consequently, some of their atoms, undetected in the electron density maps, are allowed to reach extremely large B-factors, even above 100 square Angstroms, and their final positions are purely speculative and not based on any experimental evidence. A strategy to define B-factors upper limits is described here, based on the analysis of protein crystal structures deposited in the Protein Data Bank prior 2008, when the tendency to allow B-factor to arbitrary inflate was limited. This B-factor upper limit (B_max) is determined by extrapolating the relationship between crystal structure average B-factor and percentage of crystal volume occupied by solvent (pcVol) to pcVol =100%, when, ab absurdo, the crystal contains only liquid solvent, the structure of which is, by definition, undetectable in electron density maps. It is thus possible to highlight structures with average B-factors larger than B_max, which should be considered with caution by the users of the information deposited in the Protein Data Bank, in order to avoid scientifically deleterious over-interpretations.

  2. Mapping transcription factor interactome networks using HaloTag protein arrays.

    PubMed

    Yazaki, Junshi; Galli, Mary; Kim, Alice Y; Nito, Kazumasa; Aleman, Fernando; Chang, Katherine N; Carvunis, Anne-Ruxandra; Quan, Rosa; Nguyen, Hien; Song, Liang; Alvarez, José M; Huang, Shao-Shan Carol; Chen, Huaming; Ramachandran, Niroshan; Altmann, Stefan; Gutiérrez, Rodrigo A; Hill, David E; Schroeder, Julian I; Chory, Joanne; LaBaer, Joshua; Vidal, Marc; Braun, Pascal; Ecker, Joseph R

    2016-07-19

    Protein microarrays enable investigation of diverse biochemical properties for thousands of proteins in a single experiment, an unparalleled capacity. Using a high-density system called HaloTag nucleic acid programmable protein array (HaloTag-NAPPA), we created high-density protein arrays comprising 12,000 Arabidopsis ORFs. We used these arrays to query protein-protein interactions for a set of 38 transcription factors and transcriptional regulators (TFs) that function in diverse plant hormone regulatory pathways. The resulting transcription factor interactome network, TF-NAPPA, contains thousands of novel interactions. Validation in a benchmarked in vitro pull-down assay revealed that a random subset of TF-NAPPA validated at the same rate of 64% as a positive reference set of literature-curated interactions. Moreover, using a bimolecular fluorescence complementation (BiFC) assay, we confirmed in planta several interactions of biological interest and determined the interaction localizations for seven pairs. The application of HaloTag-NAPPA technology to plant hormone signaling pathways allowed the identification of many novel transcription factor-protein interactions and led to the development of a proteome-wide plant hormone TF interactome network.

  3. Knockout of the CCCH zinc finger protein TcZC3H31 blocks Trypanosoma cruzi differentiation into the infective metacyclic form.

    PubMed

    Alcantara, Monica Visnieski; Kessler, Rafael Luis; Gonçalves, Rosana Elisa Gonçalves; Marliére, Newmar Pinto; Guarneri, Alessandra Aparecida; Picchi, Gisele Fernanda Assine; Fragoso, Stenio Perdigão

    2018-04-01

    In the protozoan parasite Trypanosoma cruzi - the causative agent of Chagas disease - gene expression control is mainly post-transcriptional, where RNA-binding proteins (RBPs) play a central role, by controlling mRNA stability, distribution and translation. A large variety of RBPs are encoded in the T. cruzi genome, including the CCCH-type zinc finger (CCCH ZnF) protein family, which is characterized by the presence of the C-X 7/8 -C-X 5 -C-X 3 -H (CCCH) motif. In the related parasite T. brucei, CCCH ZnF proteins have been shown to control key differentiation steps in the parasite's life cycle. However, little is known about the CCCH ZnF proteins in T. cruzi. We have worked on the generation of T. cruzi mutants for CCCH ZnF proteins in an effort to shed light on the functions of these proteins in this parasite. Here, we characterize the expression and function of the CCCH ZnF protein TcZC3H31 of T. cruzi. TcZC3H31 is almost exclusively expressed in epimastigotes and metacyclic trypomastigotes, the parasite forms found in the invertebrate host. Importantly, we show that the epimastigote form of the T. cruzi knockout for the TcZC3H31 gene (TcZC3H31 KO) is incapable, both in vitro and in vivo (in infected triatomine insects), to differentiate into the metacyclic trypomastigote form, which is responsible for infection transmission from vectors to humans. The epimastigote forms recovered from the excreta of insects infected with TcZC3H31 KO parasites do not have the typical epimastigote morphology, suggesting that parasites are arrested in a mid-differentiation step. Also, epimastigotes overexpressing TcZC3H31 differentiate into metacyclics more efficiently than wild-type epimastigotes, in vitro. These data suggest that TcZC3H31 is an essential positive regulator of T. cruzi differentiation into the human-infective metacyclic form. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis.

    PubMed

    Liu, Chune; Yang, Zhihong; Wu, Jianguo; Zhang, Li; Lee, Sangmin; Shin, Dong-Ju; Tran, Melanie; Wang, Li

    2018-05-01

    H19 is an imprinted long noncoding RNA abundantly expressed in embryonic liver and repressed after birth. We show that H19 serves as a lipid sensor by synergizing with the RNA-binding polypyrimidine tract-binding protein 1 (PTBP1) to modulate hepatic metabolic homeostasis. H19 RNA interacts with PTBP1 to facilitate its association with sterol regulatory element-binding protein 1c mRNA and protein, leading to increased stability and nuclear transcriptional activity. H19 and PTBP1 are up-regulated by fatty acids in hepatocytes and in diet-induced fatty liver, which further augments lipid accumulation. Ectopic expression of H19 induces steatosis and pushes the liver into a "pseudo-fed" state in response to fasting by promoting sterol regulatory element-binding protein 1c protein cleavage and nuclear translocation. Deletion of H19 or knockdown of PTBP1 abolishes high-fat and high-sucrose diet-induced steatosis. Our study unveils an H19/PTBP1/sterol regulatory element-binding protein 1 feedforward amplifying signaling pathway to exacerbate the development of fatty liver. (Hepatology 2018;67:1768-1783). © 2017 by the American Association for the Study of Liver Diseases.

  5. Genome-wide analysis of gene expression and protein secretion of Babesia canis during virulent infection identifies potential pathogenicity factors.

    PubMed

    Eichenberger, Ramon M; Ramakrishnan, Chandra; Russo, Giancarlo; Deplazes, Peter; Hehl, Adrian B

    2017-06-13

    Infections of dogs with virulent strains of Babesia canis are characterized by rapid onset and high mortality, comparable to complicated human malaria. As in other apicomplexan parasites, most Babesia virulence factors responsible for survival and pathogenicity are secreted to the host cell surface and beyond where they remodel and biochemically modify the infected cell interacting with host proteins in a very specific manner. Here, we investigated factors secreted by B. canis during acute infections in dogs and report on in silico predictions and experimental analysis of the parasite's exportome. As a backdrop, we generated a fully annotated B. canis genome sequence of a virulent Hungarian field isolate (strain BcH-CHIPZ) underpinned by extensive genome-wide RNA-seq analysis. We find evidence for conserved factors in apicomplexan hemoparasites involved in immune-evasion (e.g. VESA-protein family), proteins secreted across the iRBC membrane into the host bloodstream (e.g. SA- and Bc28 protein families), potential moonlighting proteins (e.g. profilin and histones), and uncharacterized antigens present during acute crisis in dogs. The combined data provides a first predicted and partially validated set of potential virulence factors exported during fatal infections, which can be exploited for urgently needed innovative intervention strategies aimed at facilitating diagnosis and management of canine babesiosis.

  6. Tuning direct current streaming dielectrophoresis of proteins

    PubMed Central

    Nakano, Asuka; Camacho-Alanis, Fernanda; Chao, Tzu-Chiao; Ros, Alexandra

    2012-01-01

    Dielectrophoresis (DEP) of biomolecules has large potential to serve as a novel selectivity parameter for bioanalytical methods such as (pre)concentration, fractionation, and separation. However, in contrast to well-characterized biological cells and (nano)particles, the mechanism of protein DEP is poorly understood, limiting bioanalytical applications for proteins. Here, we demonstrate a detailed investigation of factors influencing DEP of diagnostically relevant immunoglobulin G (IgG) molecules using insulator-based DEP (iDEP) under DC conditions. We found that the pH range in which concentration of IgG due to streaming iDEP occurs without aggregate formation matches the pH range suitable for immunoreactions. Numerical simulations of the electrokinetic factors pertaining to DEP streaming in this range further suggested that the protein charge and electroosmotic flow significantly influence iDEP streaming. These predictions are in accordance with the experimentally observed pH-dependent iDEP streaming profiles as well as the determined IgG molecular properties. Moreover, we observed a transition in the streaming behavior caused by a change from positive to negative DEP induced through micelle formation for the first time experimentally, which is in excellent qualitative agreement with numerical simulations. Our study thus relates molecular immunoglobulin properties to observed iDEP, which will be useful for the future development of protein (pre)concentration or separation methods based on DEP. PMID:23908679

  7. [Construction and expression of fusion protein TRX-hJagged1 in E.coli BL21].

    PubMed

    Li, Guo-Hui; Fan, Yu-Zhen; Huang, Si-Yong; Liu, Qiang; Yin, Dan-Dan; Liu, Li; Chen, Ren-An; Hao, Miao-Wang; Liang, Ying-Min

    2014-06-01

    This study was purposed to construct prokaryotic expression vector and to investigate the expression of Notch ligand Jagged1 in E.coli. An expression vector pET-hJagged1 was constructed, which can be inserted in Jagged1 with different lengths, but the DSL domain of human Jagged1 should be contained. Then the recombinant plasmids were transformed into the competent cell of E.coli BL21, and the expression of the fusion protein was induced by IPTG. Fusion protein was purified from the supernatant of cell lysates via the Nickel affinity chromatography. The results showed that prokaryotic expression vectors pET-hJagged1 (Bgl II), pET-hJagged1 (Hind I) and pET-hJagged1 (Stu I) were successfully constructed, but only pET-hJagged1 (Stu I) could express the soluble TRX-hJagged1. The purified TRX-Jagged1 protein could be obtained via the Nickel affinity chromatography, and then confirmed by Western Blot. It is concluded that prokaryotic expression vector pET-hJagged1 is successfully constructed, but only pET-hJagged1 (Stu I) can express the soluble TRX-hJagged1 and the TRX-Jagged1 fusion protein is obtained through the prokaryotic expression system, which laid a solid foundation for further to explore the effects of Jagged1 in hematopoietic and lymphoid system.

  8. High Dietary Protein Intake and Protein-Related Acid Load on Bone Health.

    PubMed

    Cao, Jay J

    2017-12-01

    Consumption of high-protein diets is increasingly popular due to the benefits of protein on preserving lean mass and controlling appetite and satiety. The paper is to review recent clinical research assessing dietary protein on calcium metabolism and bone health. Epidemiological studies show that long-term, high-protein intake is positively associated with bone mineral density and reduced risk of bone fracture incidence. Short-term interventional studies demonstrate that a high-protein diet does not negatively affect calcium homeostasis. Existing evidence supports that the negative effects of the acid load of protein on urinary calcium excretion are offset by the beneficial skeletal effects of high-protein intake. Future research should focus on the role and the degree of contribution of other dietary and physiological factors, such as intake of fruits and vegetables, in reducing the acid load and further enhancing the anabolic effects of protein on the musculoskeletal system.

  9. [Protein kinase A inhibitor H-89 blocks polyploidization of SP600125-induced CMK cells by regulating phosphorylation of ribosomal protein S6 kinase 1].

    PubMed

    Zhao, Song; Yang, Jingang; Li, Changling; Xing, Sining; Yu, Ying; Liu, Shuo; Pu, Feifei; Ma, Dongchu

    2016-10-01

    Objective To investigate the regulatory effect of post-translation modification of ribosomal protein S6 kinase 1 (S6K1) on the polyploidization of megakaryocytes. Methods SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and H-89, a cAMP-dependent protein kinase (PKA) inhibitor, were used to treat CMK cells separately or in combination. With propidium iodide (PI) to dye DNA in the treated cells, the relative DNA content was detected by flow cytometry, and then the DNA polyploidy was analyzed. The change of expression and phosphorylation of ribosomal protein S6 kinase 1 (S6K1), an important mammalian target of rapamycin (mTOR) downstream target molecule, was analyzed by Western blotting. Molecular docking study and kinase activity assay were performed to analyze the combination of H-89 with S6K1 and the effect of H-89 on the activity of S6K1 kinase. Results SP600125 induced CMK cell polyploidization in a time-dependent and dose-dependent manner. At the same time, it increased the phosphorylation of S6K1 at Thr421/Ser424 and decreased the phosphorylation of S6K1 at Thr389. H-89 not only blocked polyploidization, but also decreased the phosphorylation of S6K1 at Thr421/Ser424 and increased the phosphorylation of S6K1 at Thr389. Molecular docking and kinase activity assay showed that H-89 occupied the ATP binding sites of S6K1 and inhibited its activity. Noticeably, both H-89 and SP600125 inhibited the activity of PKA. Moreover, the two drugs further inhibited the activity of PKA when used together. Therefore, these data indicated that H-89 blocked the SP600125-induced polyploidization of CMK cells mainly by changing S6K1 phosphorylation state, rather than its inhibitory effect on PKA. Conclusion H-89 can block the polyploidization of SP600125-induced CMK cells by regulating S6K1 phosphorylation state.

  10. Towards label-free and site-specific probing of the local pH in proteins: pH-dependent deep UV Raman spectra of histidine and tyrosine

    NASA Astrophysics Data System (ADS)

    Bröermann, Andreas; Steinhoff, Heinz-Jürgen; Schlücker, Sebastian

    2014-09-01

    The site-specific pH is an experimental probe for assessing models of structural folding and function of a protein as well as protein-protein and protein-ligand interactions. It can be determined by various techniques such as NMR, FT-IR, fluorescence and EPR spectroscopy. The latter require the use of external labels, i.e., employ pH-dependent dyes and spin labels, respectively. In this contribution, we outline an approach to a label-free and site-specific method for determining the local pH using deep ultraviolet resonance Raman (UVRR) spectroscopic fingerprints of the aromatic amino acids histidine and tyrosine in combination with a robust algorithm that determines the pH value using three UVRR reference spectra and without prior knowledge of the pKa.

  11. Chemical heterogeneity as a result of hydroxylamine cleavage of a fusion protein of human insulin-like growth factor I.

    PubMed Central

    Canova-Davis, E; Eng, M; Mukku, V; Reifsnyder, D H; Olson, C V; Ling, V T

    1992-01-01

    Recombinant DNA techniques were used to biosynthesize human insulin-like growth factor I (hIGF-I) as a fusion protein wherein the fusion polypeptide is an IgG-binding moiety derived from staphylococcal protein A. This fusion protein is produced in Escherichia coli and secreted into the fermentation broth. In order to release mature recombinant-derived hIGF-I (rhIGF-I), the fusion protein is treated with hydroxylamine, which cleaves a susceptible Asn-Gly bond that has been engineered into the fusion protein gene. Reversed-phase h.p.l.c. was used to estimate the purity of the rhIGF-I preparations, especially for the quantification of the methionine sulphoxide-containing variant. It was determined that hydroxylamine cleavage of the fusion protein produced, as a side reaction, hydroxamates of the asparagine and glutamine residues in rhIGF-I. Although isoelectric focusing was effective in detecting, and reversed-phase h.p.l.c. for producing enriched fractions of the hydroxamate variants, ion-exchange chromatography was a more definitive procedure, as it allowed quantification and facile removal of these variants. The identity of the variants as hydroxamates was established by Staphylococcus aureus V8 proteinase digestion, followed by m.s., as the modification was transparent to amino acid and N-terminal sequence analyses. The biological activity of rhIGF-I was established by its ability to incorporate [3H]thymidine into the DNA of BALB/c373 cells and by a radioreceptor assay utilizing human placental membranes. Both assays demonstrate that the native, recombinant and methionine sulphoxide and hydroxamate IGF-I variants are essentially equipotent. Images Fig. 2. PMID:1637301

  12. NS1 Protein Amino Acid Changes D189N and V194I Affect Interferon Responses, Thermosensitivity, and Virulence of Circulating H3N2 Human Influenza A Viruses

    PubMed Central

    Nogales, Aitor; Martinez-Sobrido, Luis

    2016-01-01

    ABSTRACT Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses. IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus

  13. NS1 Protein Amino Acid Changes D189N and V194I Affect Interferon Responses, Thermosensitivity, and Virulence of Circulating H3N2 Human Influenza A Viruses.

    PubMed

    Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-03-01

    Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses. IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus

  14. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.

    PubMed

    Sarwar Gilani, G; Wu Xiao, Chao; Cockell, Kevin A

    2012-08-01

    Dietary antinutritional factors have been reported to adversely affect the digestibility of protein, bioavailability of amino acids and protein quality of foods. Published data on these negative effects of major dietary antinutritional factors are summarized in this manuscript. Digestibility and the quality of mixed diets in developing countries are considerably lower than of those in developed regions. For example, the digestibility of protein in traditional diets from developing countries such as India, Guatemala and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94 %). Poor digestibility of protein in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, is due to the presence of less digestible protein fractions, high levels of insoluble fibre, and/or high concentrations of antinutritional factors present endogenously or formed during processing. Examples of naturally occurring antinutritional factors include glucosinolates in mustard and canola protein products, trypsin inhibitors and haemagglutinins in legumes, tannins in legumes and cereals, gossypol in cottonseed protein products, and uricogenic nucleobases in yeast protein products. Heat/alkaline treatments of protein products may yield Maillard reaction compounds, oxidized forms of sulphur amino acids, D-amino acids and lysinoalanine (LAL, an unnatural nephrotoxic amino acid derivative). Among common food and feed protein products, soyabeans are the most concentrated source of trypsin inhibitors. The presence of high levels of dietary trypsin inhibitors from soyabeans, kidney beans or other grain legumes have been reported to cause substantial reductions in protein and amino acid digestibility (up to 50 %) and protein quality (up to 100 %) in rats and/or pigs. Similarly, the presence of high levels of tannins in sorghum and other cereals, fababean and other grain legumes can cause

  15. Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure.

    PubMed

    Meitinger, T; Meindl, A; Bork, P; Rost, B; Sander, C; Haasemann, M; Murken, J

    1993-12-01

    The X-lined gene for Norrie disease, which is characterized by blindness, deafness and mental retardation has been cloned recently. This gene has been thought to code for a putative extracellular factor; its predicted amino acid sequence is homologous to the C-terminal domain of diverse extracellular proteins. Sequence pattern searches and three-dimensional modelling now suggest that the Norrie disease protein (NDP) has a tertiary structure similar to that of transforming growth factor beta (TGF beta). Our model identifies NDP as a member of an emerging family of growth factors containing a cystine knot motif, with direct implications for the physiological role of NDP. The model also sheds light on sequence related domains such as the C-terminal domain of mucins and of von Willebrand factor.

  16. Validity and relative validity of a novel digital approach for 24-h dietary recall in athletes.

    PubMed

    Baker, Lindsay B; Heaton, Lisa E; Stein, Kimberly W; Nuccio, Ryan P; Jeukendrup, Asker E

    2014-04-30

    We developed a digital dietary analysis tool for athletes (DATA) using a modified 24-h recall method and an integrated, customized nutrient database. The purpose of this study was to assess DATA's validity and relative validity by measuring its agreement with registered dietitians' (RDs) direct observations (OBSERVATION) and 24-h dietary recall interviews using the USDA 5-step multiple-pass method (INTERVIEW), respectively. Fifty-six athletes (14-20 y) completed DATA and INTERVIEW in randomized counter-balanced order. OBSERVATION (n = 26) consisted of RDs recording participants' food/drink intake in a 24-h period and were completed the day prior to DATA and INTERVIEW. Agreement among methods was estimated using a repeated measures t-test and Bland-Altman analysis. The paired differences (with 95% confidence intervals) between DATA and OBSERVATION were not significant for carbohydrate (10.1%, -1.2-22.7%) and protein (14.1%, -3.2-34.5%) but was significant for energy (14.4%, 1.2-29.3%). There were no differences between DATA and INTERVIEW for energy (-1.1%, -9.1-7.7%), carbohydrate (0.2%, -7.1-8.0%) or protein (-2.7%, -11.3-6.7%). Bland-Altman analysis indicated significant positive correlations between absolute values of the differences and the means for OBSERVATION vs. DATA (r = 0.40 and r = 0.47 for energy and carbohydrate, respectively) and INTERVIEW vs. DATA (r = 0.52, r = 0.29, and r = 0.61 for energy, carbohydrate, and protein, respectively). There were also wide 95% limits of agreement (LOA) for most method comparisons. The mean bias ratio (with 95% LOA) for OBSERVATION vs. DATA was 0.874 (0.551-1.385) for energy, 0.906 (0.522-1.575) for carbohydrate, and 0.895(0.395-2.031) for protein. The mean bias ratio (with 95% LOA) for INTERVIEW vs. DATA was 1.016 (0.538-1.919) for energy, 0.995 (0.563-1.757) for carbohydrate, and 1.031 (0.514-2.068) for protein. DATA has good relative validity for group-level comparisons in athletes. However, there are large variations

  17. The Ferredoxin-Like Proteins HydN and YsaA Enhance Redox Dye-Linked Activity of the Formate Dehydrogenase H Component of the Formate Hydrogenlyase Complex.

    PubMed

    Pinske, Constanze

    2018-01-01

    Formate dehydrogenase H (FDH-H) and [NiFe]-hydrogenase 3 (Hyd-3) form the catalytic components of the hydrogen-producing formate hydrogenlyase (FHL) complex, which disproportionates formate to H 2 and CO 2 during mixed acid fermentation in enterobacteria. FHL comprises minimally seven proteins and little is understood about how this complex is assembled. Early studies identified a ferredoxin-like protein, HydN, as being involved in FDH-H assembly into the FHL complex. In order to understand how FDH-H and its small subunit HycB, which is also a ferredoxin-like protein, attach to the FHL complex, the possible roles of HydN and its paralogue, YsaA, in FHL complex stability and assembly were investigated. Deletion of the hycB gene reduced redox dye-mediated FDH-H activity to approximately 10%, abolished FHL-dependent H 2 -production, and reduced Hyd-3 activity. These data are consistent with HycB being an essential electron transfer component of the FHL complex. The FDH-H activity of the hydN and the ysaA deletion strains was reduced to 59 and 57% of the parental, while the double deletion reduced activity of FDH-H to 28% and the triple deletion with hycB to 1%. Remarkably, and in contrast to the hycB deletion, the absence of HydN and YsaA was without significant effect on FHL-dependent H 2 -production or total Hyd-3 activity; FDH-H protein levels were also unaltered. This is the first description of a phenotype for the E. coli ysaA deletion strain and identifies it as a novel factor required for optimal redox dye-linked FDH-H activity. A ysaA deletion strain could be complemented for FDH-H activity by hydN and ysaA , but the hydN deletion strain could not be complemented. Introduction of these plasmids did not affect H 2 production. Bacterial two-hybrid interactions showed that YsaA, HydN, and HycB interact with each other and with the FDH-H protein. Further novel anaerobic cross-interactions of 10 ferredoxin-like proteins in E. coli were also discovered and described

  18. pH and Protein Sensing with Functionalized Semiconducting Oxide Nanobelt FETs

    NASA Astrophysics Data System (ADS)

    Cheng, Yi; Yun, C. S.; Strouse, G. F.; Xiong, P.; Yang, R. S.; Wang, Z. L.

    2008-03-01

    We report solution pH sensing and selective protein detection with high-performance channel-limited field-effect transistors (FETs) based on single semiconducting oxide (ZnO and SnO2) nanobelts^1. The devices were integrated with PDMS microfluidic channels for analyte delivery and the source/drain contacts were passivated for in-solution sensing. pH sensing experiments were performed on FETs with functionalized and unmodified nanobelts. Functionalization of the nanobelts by APTES was found to greatly improve the pH sensitivity. The change in nanobelt conductance as functions of pH values at different gate voltages and ionic strengths showed high sensitivity and consistency. For the protein detection, we achieved highly selective biotinylation of the nanobelt channel with through APTES linkage. The specific binding of fluorescently-tagged streptavidin to the biotinylated nanobelt was verified by fluorescence microscopy; non-specific binding to the substrate was largely eliminated using PEG-silane passivation. The electrical responses of the biotinylated FETs to the streptavidin binding in PBS buffers of different pH values were systematically measured. The results will be presented and discussed. ^1Y. Cheng et al., Appl. Phys. Lett. 89, 093114 (2006). *Supported by NSF NIRT Grant ECS-0210332.

  19. Hydrophobic environment is a key factor for the stability of thermophilic proteins.

    PubMed

    Gromiha, M Michael; Pathak, Manish C; Saraboji, Kadhirvel; Ortlund, Eric A; Gaucher, Eric A

    2013-04-01

    The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter-residue interactions, ion-pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic-mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three-dimensional structures of elongation factor-Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the

  20. GrpL, a Grb2-related Adaptor Protein, Interacts with SLP-76 to Regulate Nuclear Factor of Activated T Cell Activation

    PubMed Central

    Law, Che-Leung; Ewings, Maria K.; Chaudhary, Preet M.; Solow, Sasha A.; Yun, Theodore J.; Marshall, Aaron J.; Hood, Leroy; Clark, Edward A.

    1999-01-01

    Propagation of signals from the T cell antigen receptor (TCR) involves a number of adaptor molecules. SH2 domain–containing protein 76 (SLP-76) interacts with the guanine nucleotide exchange factor Vav to activate the nuclear factor of activated cells (NF-AT), and its expression is required for normal T cell development. We report the cloning and characterization of a novel Grb2-like adaptor molecule designated as Grb2-related protein of the lymphoid system (GrpL). Expression of GrpL is restricted to hematopoietic tissues, and it is distinguished from Grb2 by having a proline-rich region. GrpL can be coimmunoprecipitated with SLP-76 but not with Sos1 or Sos2 from Jurkat cell lysates. In contrast, Grb2 can be coimmunoprecipitated with Sos1 and Sos2 but not with SLP-76. Moreover, tyrosine-phosphorylated LAT/pp36/38 in detergent lysates prepared from anti-CD3 stimulated T cells associated with Grb2 but not GrpL. These data reveal the presence of distinct complexes involving GrpL and Grb2 in T cells. A functional role of the GrpL–SLP-76 complex is suggested by the ability of GrpL to act alone or in concert with SLP-76 to augment NF-AT activation in Jurkat T cells. PMID:10209041

  1. Regulation of plasma agouti-related protein and its relationship with hunger in lean and obese men.

    PubMed

    Hazell, Tom J; Sawula, Laura; Edgett, Brittany A; Walsh, Jeremy J; Gurd, Brendon J

    2016-12-01

    Agouti-related protein (AgRP) is an orexigenic (appetite stimulating) neuropeptide suggested to exert tonic control over long-term energy balance. While some have speculated AgRP is not involved in the episodic (i.e. meal to meal energy intake) control, acute decreases in plasma agouti-related protein (AgRP) following a meal have been observed in humans in a role consistent with episodic control for AgRP. Whether changes in plasma AgRP are associated with episodic, and/or tonic changes in appetite has yet to be directly examined. The present study examined the relationship between agouti-related protein (AgRP), leptin and the regulation of appetite following a 48-h fast and an acute meal challenge. Blood samples were obtained from young lean and obese men before and after a 48 h fast (lean n = 10; obese n = 7). Fasting resulted in an increase in AgRP and a decrease in leptin with these changes being greater in lean than obese. In addition, blood samples were obtained from lean men before and 1, 2, 3 and 4 h after a meal (n = 8). Following a meal, AgRP was reduced from 2 to 4 h, a change that was dissociated from both leptin and subjective measures of hunger and satiety. These results demonstrate that AgRP is not associated with changes in hunger or satiety, and can change without corresponding changes in leptin. This suggests that AgRP may not be involved in the episodic control of appetite and the release of AgRP may involve signals other than leptin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    PubMed Central

    Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems. PMID:25856081

  3. Global versus Local Regulatory Roles for Lrp-Related Proteins: Haemophilus influenzae as a Case Study

    PubMed Central

    Friedberg, Devorah; Midkiff, Michael; Calvo, Joseph M.

    2001-01-01

    Lrp (leucine-responsive regulatory protein) plays a global regulatory role in Escherichia coli, affecting expression of dozens of operons. Numerous lrp-related genes have been identified in different bacteria and archaea, including asnC, an E. coli gene that was the first reported member of this family. Pairwise comparisons of amino acid sequences of the corresponding proteins shows an average sequence identity of only 29% for the vast majority of comparisons. By contrast, Lrp-related proteins from enteric bacteria show more than 97% amino acid identity. Is the global regulatory role associated with E. coli Lrp limited to enteric bacteria? To probe this question we investigated LrfB, an Lrp-related protein from Haemophilus influenzae that shares 75% sequence identity with E. coli Lrp (highest sequence identity among 42 sequences compared). A strain of H. influenzae having an lrfB null allele grew at the wild-type growth rate but with a filamentous morphology. A comparison of two-dimensional (2D) electrophoretic patterns of proteins from parent and mutant strains showed only two differences (comparable studies with lrp+ and lrp E. coli strains by others showed 20 differences). The abundance of LrfB in H. influenzae, estimated by Western blotting experiments, was about 130 dimers per cell (compared to 3,000 dimers per E. coli cell). LrfB expressed in E. coli replaced Lrp as a repressor of the lrp gene but acted only to a limited extent as an activator of the ilvIH operon. Thus, although LrfB resembles Lrp sufficiently to perform some of its functions, its low abundance is consonant with a more local role in regulating but a few genes, a view consistent with the results of the 2D electrophoretic analysis. We speculate that an Lrp having a global regulatory role evolved to help enteric bacteria adapt to their ecological niches and that it is unlikely that Lrp-related proteins in other organisms have a broad regulatory function. PMID:11395465

  4. Electrophoresis and spectrometric analyses of adaptation-related proteins in thermally stressed Chromobacterium violaceum.

    PubMed

    Cordeiro, I B; Castro, D P; Nogueira, P P O; Angelo, P C S; Nogueira, P A; Gonçalves, J F C; Pereira, A M R F; Garcia, J S; Souza, G H M F; Arruda, M A Z; Eberlin, M N; Astolfi-Filho, S; Andrade, E V; López-Lozano, J L

    2013-10-29

    Chromobacterium violaceum is a Gram-negative proteobacteria found in water and soil; it is widely distributed in tropical and subtropical regions, such as the Amazon rainforest. We examined protein expression changes that occur in C. violaceum at different growth temperatures using electrophoresis and mass spectrometry. The total number of spots detected was 1985; the number ranged from 99 to 380 in each assay. The proteins that were identified spectrometrically were categorized as chaperones, proteins expressed exclusively under heat stress, enzymes involved in the respiratory and fermentation cycles, ribosomal proteins, and proteins related to transport and secretion. Controlling inverted repeat of chaperone expression and inverted repeat DNA binding sequences, as well as regions recognized by sigma factor 32, elements involved in the genetic regulation of the bacterial stress response, were identified in the promoter regions of several of the genes coding proteins, involved in the C. violaceum stress response. We found that 30 °C is the optimal growth temperature for C. violaceum, whereas 25, 35, and 40 °C are stressful temperatures that trigger the expression of chaperones, superoxide dismutase, a probable small heat shock protein, a probable phasing, ferrichrome-iron receptor protein, elongation factor P, and an ornithine carbamoyltransferase catabolite. This information improves our comprehension of the mechanisms involved in stress adaptation by C. violaceum.

  5. The role of nuclear factor E2-Related factor 2 and uncoupling protein 2 in glutathione metabolism: Evidence from an in vivo gene knockout study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanyan; The Hamner Institutes for Health Sciences, Research Triangle Park, NC; Xu, Yuanyuan, E-mail: yyxu@cmu.edu.cn

    Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-doublemore » knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. - Highlights: • Nrf2/Ucp2 deficiency leads to alteration of glutathione homeostasis. • Nrf2 regulates expression of genes in glutathione generation and utilization. • Ucp2 affects glutathione metabolism by regulating hepatic efflux of glutathione. • Nrf2 deficiency may not aggravate oxidative stress in Ucp2-deficient mice.« less

  6. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning.

    PubMed

    Condro, Michael C; White, Stephanie A

    2014-01-01

    Variants of the contactin associated protein-like 2 (Cntnap2) gene are risk factors for language-related disorders including autism spectrum disorder, specific language impairment, and stuttering. Songbirds are useful models for study of human speech disorders due to their shared capacity for vocal learning, which relies on similar cortico-basal ganglia circuitry and genetic factors. Here we investigate Cntnap2 protein expression in the brain of the zebra finch, a songbird species in which males, but not females, learn their courtship songs. We hypothesize that Cntnap2 has overlapping functions in vocal learning species, and expect to find protein expression in song-related areas of the zebra finch brain. We further expect that the distribution of this membrane-bound protein may not completely mirror its mRNA distribution due to the distinct subcellular localization of the two molecular species. We find that Cntnap2 protein is enriched in several song control regions relative to surrounding tissues, particularly within the adult male, but not female, robust nucleus of the arcopallium (RA), a cortical song control region analogous to human layer 5 primary motor cortex. The onset of this sexually dimorphic expression coincides with the onset of sensorimotor learning in developing males. Enrichment in male RA appears due to expression in projection neurons within the nucleus, as well as to additional expression in nerve terminals of cortical projections to RA from the lateral magnocellular nucleus of the nidopallium. Cntnap2 protein expression in zebra finch brain supports the hypothesis that this molecule affects neural connectivity critical for vocal learning across taxonomic classes. Copyright © 2013 Wiley Periodicals, Inc.

  7. Cy5 maleimide labelling for sensitive detection of free thiols in native protein extracts: identification of seed proteins targeted by barley thioredoxin h isoforms.

    PubMed Central

    Maeda, Kenji; Finnie, Christine; Svensson, Birte

    2004-01-01

    Barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 differ in temporal and spatial distribution and in kinetic properties. Target proteins of HvTrxh1 and HvTrxh2 were identified in mature seeds and in seeds after 72 h of germination. Improvement of the established method for identification of thioredoxin-targeted proteins based on two-dimensional electrophoresis and fluorescence labelling of thiol groups was achieved by application of a highly sensitive Cy5 maleimide dye and large-format two-dimensional gels, resulting in a 10-fold increase in the observed number of labelled protein spots. The technique also provided information about accessible thiol groups in the proteins identified in the barley seed proteome. In total, 16 different putative target proteins were identified from 26 spots using tryptic in-gel digestion, matrix-assisted laser-desorption ionization-time-of-flight MS and database search. HvTrxh1 and HvTrxh2 were shown to have similar target specificity. Barley alpha-amylase/subtilisin inhibitor, previously demonstrated to be reduced by both HvTrxh1 and HvTrxh2, was among the identified target proteins, confirming the suitability of the method. Several alpha-amylase/trypsin inhibitors, some of which are already known as target proteins of thioredoxin h, and cyclophilin known as a target protein of m-type thioredoxin were also identified. Lipid transfer protein, embryospecific protein, three chitinase isoenzymes, a single-domain glyoxalase-like protein and superoxide dismutase were novel identifications of putative target proteins, suggesting new physiological roles of thioredoxin h in barley seeds. PMID:14636158

  8. Correlating levels of type III secretion and secreted proteins with fecal shedding of Escherichia coli O157:H7 in cattle

    USDA-ARS?s Scientific Manuscript database

    The locus of enterocyte effacement (LEE) encodes a type III secretion system (T3SS) for secreting factors that enable Escherichia coli O157:H7 to produce attaching and effacing lesions (A/E) on epithelial cells. The importance of LEE-encoded proteins in intestinal colonization of cattle is well-stud...

  9. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor.

    PubMed

    Tantama, Mathew; Hung, Yin Pun; Yellen, Gary

    2011-07-06

    Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at 440 and 585 nm that can be used for ratiometric imaging. The intensity ratio responds with an apparent pK(a) of 6.6 and a >10-fold dynamic range. Furthermore, pHRed has a pH-responsive fluorescence lifetime that changes by ~0.4 ns over physiological pH values and can be monitored with single-wavelength two-photon excitation. After characterizing the sensor, we tested pHRed's ability to monitor intracellular pH by imaging energy-dependent changes in cytosolic and mitochondrial pH.

  10. Nanodiamond enhances immune responses in mice against recombinant HA/H7N9 protein.

    PubMed

    Pham, Ngoc Bich; Ho, Thuong Thi; Nguyen, Giang Thu; Le, Thuy Thi; Le, Ngoc Thu; Chang, Huan-Cheng; Pham, Minh Dinh; Conrad, Udo; Chu, Ha Hoang

    2017-10-05

    The continuing spread of the newly emerged H7N9 virus among poultry in China, as well as the possibility of human-to-human transmission, has attracted numerous efforts to develop an effective vaccine against H7N9. The use of nanoparticles in vaccinology is inspired by the fact that most pathogens have a dimension within the nano-size range and therefore can be processed efficiently by the immune system, which leads to a potent immune response. Herein, we report a facile approach to increase antigen size to achieve not only fast but also effective responses against the recombinant HA/H7N9 protein via a simple conjugation of the protein onto the surface of nanodiamond particles. In this study, trimeric Haemagglutinin (H7) that is transiently expressed in N. benthamiana was purified using affinity chromatography, and its trimeric state was revealed successfully by the cross-linking reaction. The trimeric H7 solution was subsequently mixed with a nanodiamond suspension in different ratios. The successful conjugation of the trimeric H7 onto the surface of nanodiamond particles was demonstrated by the changes in size and Zeta-potential of the particles before and after protein coating, Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and Western-blot analysis. Next, biofunction of the protein-nanodiamond conjugates was screened using a haemagglutination assay. A mixture containing 5 µg of trimeric H7 and 60 µg of nanodiamond corresponds to a ratio of 1:12 (w/w) of agglutinated chicken red blood cells at HA titer of 1024, which is 512-fold higher than the HA titer of free trimeric H7. After the 2nd and 3rd immunization in mice, ELISA and Western blot analyses demonstrated that the physical mixture of trimeric H7 protein and nanodiamond (1:12, w/w) elicited statistically significant stronger H7-specific-IgG response demonstrated by higher amounts of H7N9-specific IgG (over 15.4-fold with P < 0.05 after the second immunization). These results

  11. Temperature and pH influence adsorption of cellobiohydrolase onto lignin by changing the protein properties.

    PubMed

    Lu, Xianqin; Wang, Can; Li, Xuezhi; Zhao, Jian

    2017-12-01

    Non-productive adsorption of cellulase onto lignin restricted the movement of cellulase and also hindered the cellulase recycling in bioconversion of lignocellulose. In this study, effect of temperature and pH on adsorption and desorption of cellobiohydrolase (CBH) on lignin and its possible mechanism were discussed. It found that pH value and temperature influenced the adsorption and desorption behaviors of CBH on lignin. Different thermodynamic models suggested that the action between lignin and CBH was physical action. More CBH was adsorbed onto lignin, but lower initial adsorption velocity was detected at 50°C comparing with 4°C. Elevating pH value could improve desorption of cellulase from lignin. The changes of hydrophobicity and electric potential on protein surface may partially explain the impact of environmental conditions on the adsorption and desorption behaviors of CBH on lignin, and comparing to electrical interaction, the hydrophobicity may be the dominating factor influencing the behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Antennal Transcriptome Analysis and Comparison of Chemosensory Gene Families in Two Closely Related Noctuidae Moths, Helicoverpa armigera and H. assulta

    PubMed Central

    Zhang, Jin; Wang, Bing; Dong, Shuanglin; Cao, Depan; Dong, Junfeng; Walker, William B.; Liu, Yang; Wang, Guirong

    2015-01-01

    To better understand the olfactory mechanisms in the two lepidopteran pest model species, the Helicoverpa armigera and H. assulta, we conducted transcriptome analysis of the adult antennae using Illumina sequencing technology and compared the chemosensory genes between these two related species. Combined with the chemosensory genes we had identified previously in H. armigera by 454 sequencing, we identified 133 putative chemosensory unigenes in H. armigera including 60 odorant receptors (ORs), 19 ionotropic receptors (IRs), 34 odorant binding proteins (OBPs), 18 chemosensory proteins (CSPs), and 2 sensory neuron membrane proteins (SNMPs). Consistent with these results, 131 putative chemosensory genes including 64 ORs, 19 IRs, 29 OBPs, 17 CSPs, and 2 SNMPs were identified through male and female antennal transcriptome analysis in H. assulta. Reverse Transcription-PCR (RT-PCR) was conducted in H. assulta to examine the accuracy of the assembly and annotation of the transcriptome and the expression profile of these unigenes in different tissues. Most of the ORs, IRs and OBPs were enriched in adult antennae, while almost all the CSPs were expressed in antennae as well as legs. We compared the differences of the chemosensory genes between these two species in detail. Our work will surely provide valuable information for further functional studies of pheromones and host volatile recognition genes in these two related species. PMID:25659090

  13. Quantification of the Influence of Protein-Protein Interactions on Adsorbed Protein Structure and Bioactivity

    PubMed Central

    Wei, Yang; Thyparambil, Aby A.; Latour, Robert A.

    2013-01-01

    While protein-surface interactions have been widely studied, relatively little is understood at this time regarding how protein-surface interaction effects are influenced by protein-protein interactions and how these effects combine with the internal stability of a protein to influence its adsorbed-state structure and bioactivity. The objectives of this study were to develop a method to study these combined effects under widely varying protein-protein interaction conditions using hen egg-white lysozyme (HEWL) adsorbed on silica glass, poly(methyl methacrylate), and polyethylene as our model systems. In order to vary protein-protein interaction effects over a wide range, HEWL was first adsorbed to each surface type under widely varying protein solution concentrations for 2 h to saturate the surface, followed by immersion in pure buffer solution for 15 h to equilibrate the adsorbed protein layers in the absence of additionally adsorbing protein. Periodic measurements were made at selected time points of the areal density of the adsorbed protein layer as an indicator of the level of protein-protein interaction effects within the layer, and these values were then correlated with measurements of the adsorbed protein’s secondary structure and bioactivity. The results from these studies indicate that protein-protein interaction effects help stabilize the structure of HEWL adsorbed on silica glass, have little influence on the structural behavior of HEWL on HDPE, and actually serve to destabilize HEWL’s structure on PMMA. The bioactivity of HEWL on silica glass and HDPE was found to decrease in direct proportion to the degree of adsorption-induce protein unfolding. A direct correlation between bioactivity and the conformational state of adsorbed HEWL was less apparent on PMMA, thus suggesting that other factors influenced HEWL’s bioactivity on this surface, such as the accessibility of HEWL’s bioactive site being blocked by neighboring proteins or the surface

  14. Transforming growth factor-β-induced gene product-h3 inhibits odontoblastic differentiation of dental pulp cells.

    PubMed

    Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi

    2017-06-01

    The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria.

    PubMed Central

    Diffley, J F; Stillman, B

    1991-01-01

    ABF2 (ARS-binding factor 2), a small, basic DNA-binding protein that binds specifically to the autonomously replicating sequence ARS1, is located primarily in the mitochondria of the yeast Saccharomyces cerevisiae. The abundance of ABF2 and the phenotype of abf2- null mutants argue that this protein plays a key role in the structure, maintenance, and expression of the yeast mitochondrial genome. The predicted amino acid sequence of ABF2 is closely related to the high-mobility group proteins HMG1 and HMG2 from vertebrate cell nuclei and to several other DNA-binding proteins. Additionally, ABF2 and the other HMG-related proteins are related to a globular domain from the heat shock protein hsp70 family. ABF2 interacts with DNA both nonspecifically and in a specific manner within regulatory regions, suggesting a mechanism whereby it may aid in compacting the mitochondrial genome without interfering with expression. Images PMID:1881919

  16. A novel hemagglutinin protein produced in bacteria protects chickens against H5N1 highly pathogenic avian influenza viruses by inducing H5 subtype-specific neutralizing antibodies

    PubMed Central

    Sączyńska, Violetta; Romanik, Agnieszka; Florys, Katarzyna; Cecuda-Adamczewska, Violetta; Kęsik-Brodacka, Małgorzata; Śmietanka, Krzysztof; Olszewska, Monika; Domańska-Blicharz, Katarzyna; Minta, Zenon; Szewczyk, Bogusław; Płucienniczak, Grażyna; Płucienniczak, Andrzej

    2017-01-01

    The highly pathogenic (HP) H5N1 avian influenza viruses (AIVs) cause a mortality rate of up to 100% in infected chickens and pose a permanent pandemic threat. Attempts to obtain effective vaccines against H5N1 HPAIVs have focused on hemagglutinin (HA), an immunodominant viral antigen capable of eliciting neutralizing antibodies. The vast majority of vaccine projects have been performed using eukaryotic expression systems. In contrast, we used a bacterial expression system to produce vaccine HA protein (bacterial HA) according to our own design. The HA protein with the sequence of the H5N1 HPAIV strain was efficiently expressed in Escherichia coli, recovered in the form of inclusion bodies and refolded by dilution between two chromatographic purification steps. Antigenicity studies showed that the resulting antigen, referred to as rH5-E. coli, preserves conformational epitopes targeted by antibodies specific for H5-subtype HAs, inhibiting hemagglutination and/or neutralizing influenza viruses in vitro. The proper conformation of this protein and its ability to form functional oligomers were confirmed by a hemagglutination test. Consistent with the biochemical characteristics, prime-boost immunizations with adjuvanted rH5-E. coli protected 100% and 70% of specific pathogen-free, layer-type chickens against challenge with homologous and heterologous H5N1 HPAIVs, respectively. The observed protection was related to the positivity in the FluAC H5 test (IDVet) but not to hemagglutination-inhibiting antibody titers. Due to full protection, the effective contact transmission of the homologous challenge virus did not occur. Survivors from both challenges did not or only transiently shed the viruses, as established by viral RNA detection in oropharyngeal and cloacal swabs. Our results demonstrate that vaccination with rH5-E. coli could confer control of H5N1 HPAIV infection and transmission rates in chicken flocks, accompanied by reduced virus shedding. Moreover, the role of

  17. Relating protein conformational changes to packing efficiency and disorder

    PubMed Central

    Bhardwaj, Nitin; Gerstein, Mark

    2009-01-01

    Changes in protein conformation play key roles in facilitating various biochemical processes, ranging from signaling and phosphorylation to transport and catalysis. While various factors that drive these motions such as environmental changes and binding of small molecules are well understood, specific causative effects on the structural features of the protein due to these conformational changes have not been studied on a large scale. Here, we study protein conformational changes in relation to two key structural metrics: packing efficiency and disorder. Packing has been shown to be crucial for protein stability and function by many protein design and engineering studies. We study changes in packing efficiency during conformational changes, thus extending the analysis from a static context to a dynamic perspective and report some interesting observations. First, we study various proteins that adopt alternate conformations and find that tendencies to show motion and change in packing efficiency are correlated: residues that change their packing efficiency show larger motions. Second, our results suggest that residues that show higher changes in packing during motion are located on the changing interfaces which are formed during these conformational changes. These changing interfaces are slightly different from shear or static interfaces that have been analyzed in previous studies. Third, analysis of packing efficiency changes in the context of secondary structure shows that, as expected, residues buried in helices show the least change in packing efficiency, whereas those embedded in bends are most likely to change packing. Finally, by relating protein disorder to motions, we show that marginally disordered residues which are ordered enough to be crystallized but have sequence patterns indicative of disorder show higher dislocation and a higher change in packing than ordered ones and are located mostly on the changing interfaces. Overall, our results demonstrate

  18. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    PubMed

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Incorporation of [h]leucine and [h]valine into protein of freshwater bacteria: field applications.

    PubMed

    Jørgensen, N O

    1992-11-01

    Incorporation of leucine and valine into proteins of freshwater bacteria as a measure of bacterial production was tested in two eutrophic Danish lakes and was related to bacterial production measured by thymidine incorporation. In a depth profile (0 to 8 m) in Frederiksborg Castle Lake, incorporation of 100 nM leucine and valine gave similar rates of protein production. In terms of carbon, this production was about 50% lower than incorporation of 10 nM thymidine. In another depth profile in the same lake, incorporations of 10 nM valine and 100 nM leucine were identical, but differed from incorporations of 10 nM leucine and 100 nM valine. Bacterial carbon production calculated from incorporations of 10 nM thymidine and 10 nM leucine was similar, whereas 10 nM valine and 100 nM leucine and valine indicated an up to 2.4-fold-higher rate of carbon production. In a diel study in Lake Bagsvaerd, incorporation of 100 nM leucine and valine indicated a similar protein production, but the calculated carbon production was about 1.9-fold higher than the production based on uptake of 10 nM thymidine. Different diel changes in incorporation of the two amino acids and in incorporation of thymidine were observed. In both lakes, concentrations of naturally occurring leucine and valine were <5 nM in most samples. This means that the specific activity of a H isotope added at a concentration of 100 nM usually was diluted a maximum of 5%. Net assimilation of natural free amino acids in the lakes sustained 8 to 69% of the net bacterial carbon requirement, estimated from incorporation of leucine, valine, or thymidine. The present results indicate that incorporation of leucine and valine permits realistic measurements of bacterial production in freshwater environments.

  20. Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression.

    PubMed

    Erlejman, Alejandra G; Lagadari, Mariana; Toneatto, Judith; Piwien-Pilipuk, Graciela; Galigniana, Mario D

    2014-02-01

    The term molecular chaperone was first used to describe the ability of nucleoplasmin to prevent the aggregation of histones with DNA during the assembly of nucleosomes. Subsequently, the name was extended to proteins that mediate the post-translational assembly of oligomeric complexes protecting them from denaturation and/or aggregation. Hsp90 is a 90-kDa molecular chaperone that represents the major soluble protein of the cell. In contrast to most conventional chaperones, Hsp90 functions as a refined sensor of protein function and its principal role in the cell is to facilitate biological activity to properly folded client proteins that already have a preserved tertiary structure. Consequently, Hsp90 is related to basic cell functions such as cytoplasmic transport of soluble proteins, translocation of client proteins to organelles, and regulation of the biological activity of key signaling factors such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors. A growing amount of evidence links the protective action of this molecular chaperone to mechanisms related to posttranslational modifications of soluble nuclear factors as well as histones. In this article, we discuss some aspects of the regulatory action of Hsp90 on transcriptional regulation and how this effect could have impacted genetic assimilation mechanism in some organisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The neutralizing antibody response to the vaccinia virus A28 protein is specifically enhanced by its association with the H2 protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinoda, Kaori; Wyatt, Linda S.; Moss, Bernard, E-mail: bmoss@niaid.nih.go

    2010-09-15

    The vaccinia virus (VACV) entry-fusion complex (EFC) is composed of at least nine membrane proteins. Immunization of mice with individual EFC genes induced corresponding protein-binding antibody but failed to protect against VACV intranasal challenge and only DNA encoding A28 elicited low neutralizing antibody. Because the A28 and H2 proteins interact, we determined the effect of immunizing with both genes simultaneously. This procedure greatly enhanced the amount of antibody that bound intact virions, neutralized infectivity, and provided partial protection against respiratory challenge. Neither injection of A28 and H2 plasmids at different sites or mixing A28 and H2 sera enhanced neutralizing antibody.more » The neutralizing antibody could be completely removed by binding to the A28 protein alone and the epitope was located in the C-terminal segment. These data suggest that the interaction of H2 with A28 stabilizes the immunogenic form of A28, mimicking an exposed region of the entry-fusion complex on infectious virions.« less

  2. Omeprazole induces NAD(P)H quinone oxidoreductase 1 via aryl hydrocarbon receptor-independent mechanisms: Role of the transcription factor nuclear factor erythroid 2–related factor 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shaojie; Patel, Ananddeep; Moorthy, Bhagavatula

    2015-11-13

    Activation of the aryl hydrocarbon receptor (AhR) transcriptionally induces phase I (cytochrome P450 (CYP) 1A1) and phase II (NAD(P)H quinone oxidoreductase 1 (NQO1) detoxifying enzymes. The effects of the classical and nonclassical AhR ligands on phase I and II enzymes are well studied in human hepatocytes. Additionally, we observed that the proton pump inhibitor, omeprazole (OM), transcriptionally induces CYP1A1 in the human adenocarcinoma cell line, H441 cells via AhR. Whether OM activates AhR and induces the phase II enzyme, NAD(P)H quinone oxidoreductase 1 (NQO1), in fetal primary human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis thatmore » OM will induce NQO1 in HPMEC via the AhR. The concentrations of OM used in our experiments did not result in cytotoxicity. OM activated AhR as evident by increased CYP1A1 mRNA expression. However, contrary to our hypothesis, OM increased NQO1 mRNA and protein via an AhR-independent mechanism as AhR knockdown failed to abrogate OM-mediated increase in NQO1 expression. Interestingly, OM activated Nrf2 as evident by increased phosphoNrf2 (S40) expression in OM-treated compared to vehicle-treated cells. Furthermore, Nrf2 knockdown abrogated OM-mediated increase in NQO1 expression. In conclusion, we provide evidence that OM induces NQO1 via AhR-independent, but Nrf2-dependent mechanisms. - Highlights: • We investigated whether omeprazole induces NQO1 in human fetal lung cells. • Omeprazole induces the phase II enzyme, NQO1, in human fetal lung cells. • AhR deficiency fails to abrogate omeprazole-mediated induction of NQO1. • Omeprazole increases phosphoNrf2 (S40) protein expression in human fetal lung cells. • Nrf2 knockdown abrogates the induction of NQO1 by omeprazole in human lung cells.« less

  3. Implementing a rational and consistent nomenclature for serine/arginine-rich protein splicing factors (SR proteins) in plants.

    PubMed

    Barta, Andrea; Kalyna, Maria; Reddy, Anireddy S N

    2010-09-01

    Growing interest in alternative splicing in plants and the extensive sequencing of new plant genomes necessitate more precise definition and classification of genes coding for splicing factors. SR proteins are a family of RNA binding proteins, which function as essential factors for constitutive and alternative splicing. We propose a unified nomenclature for plant SR proteins, taking into account the newly revised nomenclature of the mammalian SR proteins and a number of plant-specific properties of the plant proteins. We identify six subfamilies of SR proteins in Arabidopsis thaliana and rice (Oryza sativa), three of which are plant specific. The proposed subdivision of plant SR proteins into different subfamilies will allow grouping of paralogous proteins and simple assignment of newly discovered SR orthologs from other plant species and will promote functional comparisons in diverse plant species.

  4. Effects of Low pH on Photosynthesis, Related Physiological Parameters, and Nutrient Profiles of Citrus

    PubMed Central

    Long, An; Zhang, Jiang; Yang, Lin-Tong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song

    2017-01-01

    Seedlings of “Xuegan” (Citrus sinensis) and “Sour pummelo” (Citrus grandis) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H2O2 production and electrolyte leakage in roots and leaves. This was done (a) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and (b) to understand the mechanisms by which low pH may cause a decrease in leaf CO2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H+-toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H+-toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP) transients and

  5. Effects of Low pH on Photosynthesis, Related Physiological Parameters, and Nutrient Profiles of Citrus.

    PubMed

    Long, An; Zhang, Jiang; Yang, Lin-Tong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song

    2017-01-01

    Seedlings of "Xuegan" ( Citrus sinensis ) and "Sour pummelo" ( Citrus grandis ) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H 2 O 2 production and electrolyte leakage in roots and leaves. This was done ( a ) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and ( b ) to understand the mechanisms by which low pH may cause a decrease in leaf CO 2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H + -toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H + -toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO 2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO 2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO 2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP

  6. Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer's disease by iTRAQ.

    PubMed

    Rudrabhatla, Parvathi; Grant, Philip; Jaffe, Howard; Strong, Michael J; Pant, Harish C

    2010-11-01

    Aberrant hyperphosphorylation of neuronal cytoskeletal proteins is one of the major pathological hallmarks of neurodegenerative disorders such as Alzheimer disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Human NF-M/H display a large number of multiple KSP repeats in the carboxy-terminal tail domain, which are phosphorylation sites of proline-directed serine/threonine (pSer/Thr-Pro, KS/T-P) kinases. The phosphorylation sites of NF-M/H have not been characterized in AD brain. Here, we use quantitative phosphoproteomic methodology, isobaric tag for relative and absolute quantitation (iTRAQ), for the characterization of NF-M/H phosphorylation sites in AD brain. We identified 13 hyperphosphorylated sites of NF-M; 9 Lys-Ser-Pro (KSP) sites; 2 variant motifs, Glu-Ser-Pro (ESP) Ser-736 and Leu-Ser-Pro (LSP) Ser-837; and 2 non-S/T-P motifs, Ser-783 and Ser-788. All the Ser/Thr residues are phosphorylated at significantly greater abundance in AD brain compared with control brain. Ten hyperphosphorylated KSP sites have been identified on the C-terminal tail domain of NF-H, with greater abundance of phosphorylation in AD brain compared with control brain. Our data provide the direct evidence that NF-M/H are hyperphosphorylated in AD compared with control brain and suggest the role of both proline-directed and non-proline-directed protein kinases in AD. This study represents the first comprehensive iTRAQ analyses and quantification of phosphorylation sites of human NF-M and NF-H from AD brain and suggests that aberrant hyperphosphorylation of neuronal intermediate filament proteins is involved in AD.

  7. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium

    PubMed Central

    Henchion, Maeve; Hayes, Maria; Mullen, Anne Maria; Fenelon, Mark; Tiwari, Brijesh

    2017-01-01

    A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure

  8. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium.

    PubMed

    Henchion, Maeve; Hayes, Maria; Mullen, Anne Maria; Fenelon, Mark; Tiwari, Brijesh

    2017-07-20

    A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world's resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this "perfect storm" will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure food

  9. Protein migration from transplanted nuclei in Amoeba proteus. I. The relation to the cell cycle and RNA migration, as studied by autoradiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, K.I.; Bell, L.G.

    1982-11-01

    Autoradiography has been used to examine the migration of proteins from a radioactivity labelled amoeba nucleus following transplantation into an unlabelled homophasic amoeba. Nuclei were transferred at three times in the cell cycle coinciding with DNA synthesis (4 h post-division); a peak of RNA synthesis (25 h); and a relative lull in synthetic activity (43 h). Six amino acids were added individually to the culture medium to label the nuclear proteins. Migration of the proteins from the donor nucleui and least with proteins labelled with the basic amino acids. All amino acids exhibited the greatest extent of migration following themore » 25-h transfers, i.e., coinciding with a peak of RNA synthesis at 26-27.5 h. Actinomycin D (actD) inhibition of RNA synthesis reduced, but did not eliminate the extent of protein migration from the transplanted nucleus, thus indicating the existence of two classes of migratory proteins. Firstly, proteins, associated with RNA transport, which migrated mainly into the host cytoplasm. The second class migrated into the host nucleus from the transplanted nucleus, irrespective of RNA synthesis. The shuttling character of the latter class of proteins is consistent with a role of regulation of nuclear activity.« less

  10. Weighting factors for computing the relation between tree volume and d.b.h. in the Pacific Northwest.

    Treesearch

    Donald R. Gedney; Floyd A. Johnson

    1959-01-01

    Timber cruising is frequently made easier through use of local volume tables based on d.b.h. alone. These tables are made by establishing the relation between volume and d.b.h. from measurements (including height) made on sample trees in the stand. The sample-tree measurements are converted to volumes through use of standard volume tables, and a volume-diameter curve...

  11. The Polyadenosine RNA-binding Protein, Zinc Finger Cys3His Protein 14 (ZC3H14), Regulates the Pre-mRNA Processing of a Key ATP Synthase Subunit mRNA*

    PubMed Central

    Wigington, Callie P.; Morris, Kevin J.; Newman, Laura E.; Corbett, Anita H.

    2016-01-01

    Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected ∼17% of expressed transcripts, whereas ZC3H14 affected only ∼1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function. PMID:27563065

  12. Domain fusion analysis by applying relational algebra to protein sequence and domain databases.

    PubMed

    Truong, Kevin; Ikura, Mitsuhiko

    2003-05-06

    Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at http://calcium.uhnres.utoronto.ca/pi. As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time.

  13. Domain fusion analysis by applying relational algebra to protein sequence and domain databases

    PubMed Central

    Truong, Kevin; Ikura, Mitsuhiko

    2003-01-01

    Background Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. Results This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at . Conclusion As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time. PMID:12734020

  14. The Nature of the Dietary Protein Impacts the Tissue-to-Diet 15N Discrimination Factors in Laboratory Rats

    PubMed Central

    Poupin, Nathalie; Bos, Cécile; Mariotti, François; Huneau, Jean-François; Tomé, Daniel; Fouillet, Hélène

    2011-01-01

    Due to the existence of isotope effects on some metabolic pathways of amino acid and protein metabolism, animal tissues are 15N-enriched relative to their dietary nitrogen sources and this 15N enrichment varies among different tissues and metabolic pools. The magnitude of the tissue-to-diet discrimination (Δ15N) has also been shown to depend on dietary factors. Since dietary protein sources affect amino acid and protein metabolism, we hypothesized that they would impact this discrimination factor, with selective effects at the tissue level. To test this hypothesis, we investigated in rats the influence of a milk or soy protein-based diet on Δ15N in various nitrogen fractions (urea, protein and non-protein fractions) of blood and tissues, focusing on visceral tissues. Regardless of the diet, the different protein fractions of blood and tissues were generally 15N-enriched relative to their non-protein fraction and to the diet (Δ15N>0), with large variations in the Δ15N between tissue proteins. Δ15N values were markedly lower in tissue proteins of rats fed milk proteins compared to those fed soy proteins, in all sampled tissues except in the intestine, and the amplitude of Δ15N differences between diets differed between tissues. Both between-tissue and between-diet Δ15N differences are probably related to modulations of the relative orientation of dietary and endogenous amino acids in the different metabolic pathways. More specifically, the smaller Δ15N values observed in tissue proteins with milk than soy dietary protein may be due to a slightly more direct channeling of dietary amino acids for tissue protein renewal and to a lower recycling of amino acids through fractionating pathways. In conclusion, the present data indicate that natural Δ15N of tissue are sensitive markers of the specific subtle regional modifications of the protein and amino acid metabolism induced by the protein dietary source. PMID:22132207

  15. [24-h intraesophageal pH determination in children allergic to cow's milk protein at a tertiary care hospital].

    PubMed

    Ramírez-Mayans, J A; Toro-Monjaraz, E M; Romero-Trujillo, J; Cervantes-Bustamante, R; Zárate-Mondragón, F; Montijo-Barrios, E; Cadena-León, J; Cazares-Méndez, M

    2014-01-01

    Cow's milk protein allergy (CMPA) is being seen more frequently on a daily basis in pediatric consultations. It shares symptoms with gastroesophageal reflux (GER), which can complicate the differential diagnosis. To attempt to corroborate the presence of acid GER in children with CMPA, as well as to find a characteristic profile through the 24-hour pH monitoring study in children with GER and CMPA METHODS: The intraesophageal pH monitoring studies performed on 47 children with CMPA were reviewed. The measurements in all the studies were carried out within a 24-hour period using Digitrapper® equipment with a multi-use GeroFlex® catheter, after calibration with pH 7 and pH 1 buffer solutions. Of the 47 children, 23 were boys (32.4%) and 24 were girls (33.8%) and the mean age was 5±3.7 years. Fourteen of the 47 children (29%) presented with GER, according to the result of the 24-hour intraesophageal measurement. Only 2 of the 47 patients studied fit the phasic profile. The findings show the existing relation between the two pathologies. Nevertheless, it is important to determine the presence of non-acid or weak acid reflux, because their existence can increase this association. Copyright © 2013 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  16. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries.

    PubMed

    Billings, Paul C; Pacifici, Maurizio

    2015-01-01

    Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics.

  17. E6 and E7 from Human Papillomavirus Type 16 Cooperate To Target the PDZ Protein Na/H Exchange Regulatory Factor 1 ▿

    PubMed Central

    Accardi, Rosita; Rubino, Rosa; Scalise, Mariafrancesca; Gheit, Tarik; Shahzad, Naveed; Thomas, Miranda; Banks, Lawrence; Indiveri, Cesare; Sylla, Bakary S.; Cardone, Rosa A.; Reshkin, Stephan J.; Tommasino, Massimo

    2011-01-01

    Previous studies have shown that the PDZ-binding motif of the E6 oncoprotein from the mucosal high-risk (HR) human papillomavirus (HPV) types plays a key role in HPV-mediated cellular transformation in in vitro and in vivo experimental models. HR HPV E6 oncoproteins have the ability to efficiently degrade members of the PDZ motif-containing membrane-associated guanylate kinase (MAGUK) family; however, it is possible that other PDZ proteins are also targeted by E6. Here, we describe a novel interaction of HPV type 16 (HPV16) E6 with a PDZ protein, Na+/H+ exchange regulatory factor 1 (NHERF-1), which is involved in a number of cellular processes, including signaling and transformation. HPV16 E6 associates with and promotes the degradation of NHERF-1, and this property is dependent on the C-terminal PDZ-binding motif of E6. Interestingly, HPV16 E7, via the activation of the cyclin-dependent kinase complexes, promoted the accumulation of a phosphorylated form of NHERF-1, which is preferentially targeted by E6. Thus, both oncoproteins appear to cooperate in targeting NHERF-1. Notably, HPV18 E6 is not able to induce NHERF-1 degradation, indicating that this property is not shared with E6 from all HR HPV types. Downregulation of NHERF-1 protein levels was also observed in HPV16-positive cervical cancer-derived cell lines, such as SiHa and CaSki, as well as HPV16-positive cervical intraepithelial neoplasia (CIN). Finally, our data show that HPV16-mediated NHERF-1 degradation correlates with the activation of the phosphatidylinositol-3′-OH kinase (PI3K)/AKT signaling pathway, which is known to play a key role in carcinogenesis. PMID:21680517

  18. Lowering relative humidity level increases epidermal protein deimination and drives human filaggrin breakdown.

    PubMed

    Cau, Laura; Pendaries, Valérie; Lhuillier, Emeline; Thompson, Paul R; Serre, Guy; Takahara, Hidenari; Méchin, Marie-Claire; Simon, Michel

    2017-05-01

    Deimination (also known as citrullination), the conversion of arginine in a protein to citrulline, is catalyzed by a family of enzymes called peptidylarginine deiminases (PADs). Three PADs are expressed in the epidermis, one of their targets being filaggrin. Filaggrin plays a central role in atopic dermatitis and is a key protein for the epidermal barrier. It aggregates keratins and is cross-linked to cornified envelopes. Following its deimination, it is totally degraded to release free amino acids, contributing to the natural moisturizing factor (NMF). The mechanisms controlling this multistep catabolism in human are unknown. To test whether external humidity plays a role, and investigate the molecular mechanisms involved. Specimens of reconstructed human epidermis (RHEs) produced in humid or dry conditions (>95% or 30-50% relative humidity) were compared. RHEs produced in the dry condition presented structural changes, including a thicker stratum corneum and a larger amount of keratohyalin granules. The transepidermal water loss and the stratum corneum pH were decreased whereas the quantity of NMF was greater. This highly suggested that filaggrin proteolysis was up-regulated. The expression/activity of the proteases involved in filaggrin breakdown did not increase while PAD1 expression and the deimination rate of proteins, including filaggrin, were drastically enhanced. Partial inhibition of PADs with Cl-amidine reversed the effect of dryness on filaggrin breakdown. These results demonstrate the importance of external humidity in the control of human filaggrin metabolism, and suggest that deimination plays a major role in this regulation. Copyright © 2017 Japanese Society for Investigative Dermatology. All rights reserved.

  19. DITOP: drug-induced toxicity related protein database.

    PubMed

    Zhang, Jing-Xian; Huang, Wei-Juan; Zeng, Jing-Hua; Huang, Wen-Hui; Wang, Yi; Zhao, Rui; Han, Bu-Cong; Liu, Qing-Feng; Chen, Yu-Zong; Ji, Zhi-Liang

    2007-07-01

    Drug-induced toxicity related proteins (DITRPs) are proteins that mediate adverse drug reactions (ADRs) or toxicities through their binding to drugs or reactive metabolites. Collection of these proteins facilitates better understanding of the molecular mechanisms of drug-induced toxicity and the rational drug discovery. Drug-induced toxicity related protein database (DITOP) is such a database that is intending to provide comprehensive information of DITRPs. Currently, DITOP contains 1501 records, covering 618 distinct literature-reported DITRPs, 529 drugs/ligands and 418 distinct toxicity terms. These proteins were confirmed experimentally to interact with drugs or their reactive metabolites, thus directly or indirectly cause adverse effects or toxicities. Five major types of drug-induced toxicities or ADRs are included in DITOP, which are the idiosyncratic adverse drug reactions, the dose-dependent toxicities, the drug-drug interactions, the immune-mediated adverse drug effects (IMADEs) and the toxicities caused by genetic susceptibility. Molecular mechanisms underlying the toxicity and cross-links to related resources are also provided while available. Moreover, a series of user-friendly interfaces were designed for flexible retrieval of DITRPs-related information. The DITOP can be accessed freely at http://bioinf.xmu.edu.cn/databases/ADR/index.html. Supplementary data are available at Bioinformatics online.

  20. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast

    PubMed Central

    Yamada, Shintaro; Ohta, Kunihiro; Yamada, Takatomi

    2013-01-01

    Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is elevated, and H3K4me3 is not significantly enriched. Mutating H3K9 to non-acetylatable alanine mildly reduced levels of the DSB-inducing protein Rec12 (the fission yeast homologue of Spo11) and DSB at hotspots, indicating that H3K9ac may be involved in DSB formation by enhancing the interaction between Rec12 and hotspots. In addition, we found that the lack of the H3K4 methyltransferase Set1 generally increased Rec12 binding to chromatin but partially reduced DSB formation at some loci, suggesting that Set1 is also involved in DSB formation. These results suggest that meiotic DSB formation is redundantly regulated by multiple chromatin-related factors including H3K9ac and Set1 in fission yeast. PMID:23382177

  1. The Role of Monoubiquitination in Endocytic Degradation of Human Ether-a-go-go-related Gene (hERG) Channels under Low K+ Conditions*

    PubMed Central

    Sun, Tao; Guo, Jun; Shallow, Heidi; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Hanson, Christian; Wu, James G.; Li, Xian; Massaeli, Hamid; Zhang, Shetuan

    2011-01-01

    A reduction in extracellular K+ concentration ([K+]o) causes cardiac arrhythmias and triggers internalization of the cardiac rapidly activating delayed rectifier potassium channel (IKr) encoded by the human ether-a-go-go-related gene (hERG). We investigated the role of ubiquitin (Ub) in endocytic degradation of hERG channels stably expressed in HEK cells. Under low K+ conditions, UbKO, a lysine-less mutant Ub that only supports monoubiquitination, preferentially interacted and selectively enhanced degradation of the mature hERG channels. Overexpression of Vps24 protein, also known as charged multivesicular body protein 3, significantly accelerated degradation of mature hERG channels, whereas knockdown of Vps24 impeded this process. Moreover, the lysosomal inhibitor bafilomycin A1 inhibited degradation of the internalized mature hERG channels. Thus, monoubiquitination directs mature hERG channels to degrade through the multivesicular body/lysosome pathway. Interestingly, the protease inhibitor lactacystin inhibited the low K+-induced hERG endocytosis and concomitantly led to an accumulation of monoubiquitinated mature hERG channels, suggesting that deubiquitination is also required for the endocytic degradation. Consistently, overexpression of the endosomal deubiquitinating enzyme signal transducing adaptor molecule-binding protein significantly accelerated whereas knockdown of endogenous signal transducing adaptor molecule-binding protein impeded degradation of the mature hERG channels under low K+ conditions. Thus, monoubiquitin dynamically mediates endocytic degradation of mature hERG channels under low K+ conditions. PMID:21177251

  2. Penetration of analogues of H2O and CO2 in proteins studied by room temperature phosphorescence of tryptophan.

    PubMed

    Wright, W W; Owen, C S; Vanderkooi, J M

    1992-07-21

    The influence of the protein matrix on the reactivity of external molecules with a species buried within the protein interior is considered in two general ways: (1) there may be structural fluctuations that allow for the diffusive penetration of the small molecules and/or (2) the external molecule may react over a distance. As a means to study the protein matrix, a reactive species within the protein can be formed by exciting tryptophan to the triplet state, and then the reaction of the triplet-state molecule with an external molecule can be monitored by a decrease in phosphorescence. In this work, the quenching ability (i.e., reactivity) was examined for H2S, CS2, and NO2- acting on tryptophan phosphorescence in parvalbumin, azurin, horse liver alcohol dehydrogenase, and alkaline phosphatase. A comparison of charged versus uncharged quenchers (H2S vs SH- and CS2 vs NO2-) reveals that the uncharged molecules are much more effective than charged species in quenching the phosphorescence of fully buried tryptophan, whereas the quenching for exposed tryptophan is relatively independent of the charge of the quencher. This is consistent with the view that uncharged triatomic molecules can penetrate the protein matrix to some extent. The energies of activation of the quenching reaction are low for the charged quenchers and higher for the uncharged CS2. A model is presented in which the quenchability of a buried tryptophan is inversely related to the distance from the surface when diffusion through the protein is the rate-limiting step.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Monitoring protein hydrolysis by pepsin using pH-stat: In vitro gastric digestions in static and dynamic pH conditions.

    PubMed

    Mat, Damien J L; Cattenoz, Thomas; Souchon, Isabelle; Michon, Camille; Le Feunteun, Steven

    2018-01-15

    This study intends to demonstrate that acid titration at low pH is very well adapted to the monitoring of pepsin activity. After a description of the underlying principles, this approach was used during in vitro gastric digestions of a model of complex food containing 15wt% of whey proteins, according to both static (2h at pH = 3, Infogest protocol) and dynamic pH conditions (from pH 6.3 down to 2 in 1h). Pepsin activity was quantitatively assessed in all experiments through the calculation of degrees of hydrolysis (DH). Final values of 3.7 and 3.0% were obtained in static and dynamic pH conditions, respectively, and validated using an independent method. Results also show that about 92% of the peptides were detected at pH = 3, and 100% for pH≤2.5. Overall, the proposed approach proved to be very worthy to study protein hydrolysis during in vitro gastric digestions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Exposure to tributyltin induces endoplasmic reticulum stress and the unfolded protein response in zebrafish.

    PubMed

    Komoike, Yuta; Matsuoka, Masato

    2013-10-15

    Tributyltin (TBT) is a major marine contaminant and causes endocrine disruption, hepatotoxicity, immunotoxicity, and neurotoxicity. However, the molecular mechanisms underlying the toxicity of TBT have not been fully elucidated. We examined whether exposure to TBT induces the endoplasmic reticulum (ER) stress response in zebrafish, a model organism. Zebrafish-derived BRF41 fibroblast cells were exposed to 0.5 or 1 μM TBT for 0.5-16 h and subsequently lysed and immunoblotted to detect ER stress-related proteins. Zebrafish embryos, grown until 32 h post fertilization (hpf), were exposed to 1 μM TBT for 16 h and used in whole mount in situ hybridization and immunohistochemistry to visualize the expression of ER chaperones and an ER stress-related apoptosis factor. Exposure of the BRF41 cells to TBT caused phosphorylation of the zebrafish homolog of protein kinase RNA-activated-like ER kinase (PERK), eukaryotic translation initiation factor 2 alpha (eIF2α), and inositol-requiring enzyme 1 (IRE1), characteristic splicing of X-box binding protein 1 (XBP1) mRNA, and enhanced expression of activating transcription factor 4 (ATF4) protein. In TBT-exposed zebrafish embryos, ectopic expression of the gene encoding zebrafish homolog of the 78 kDa glucose-regulating protein (GRP78) and gene encoding CCAAT/enhancer-binding protein homologous protein (CHOP) was detected in the precursors of the neuromast, which is a sensory organ for detecting water flow and vibration. Our in vitro and in vivo studies revealed that exposure of zebrafish to TBT induces the ER stress response via activation of both the PERK-eIF2α and IRE1-XBP1 pathways of the unfolded protein response (UPR) in an organ-specific manner. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold

    PubMed Central

    Mazzer, Alice R.; Perraud, Xavier; Halley, Jennifer; O’Hara, John; Bracewell, Daniel G.

    2015-01-01

    Protein A chromatography is a near-ubiquitous method of mAb capture in bioprocesses. The use of low pH buffer for elution from protein A is known to contribute to product aggregation. Yet, a more limited set of evidence suggests that low pH may not be the sole cause of aggregation in protein A chromatography, rather, other facets of the process may contribute significantly. This paper presents a well-defined method for investigating this problem. An IgG4 was incubated in elution buffer after protein A chromatography (typical of the viral inactivation hold) and the quantity of monomer in neutralised samples was determined by size exclusion chromatography; elution buffers of different pH values predetermined to induce aggregation of the IgG4 were used. Rate constants for monomer decay over time were determined by fitting exponential decay functions to the data. Similar experiments were implemented in the absence of a chromatography step, i.e. IgG4 aggregation at low pH. Rate constants for aggregation after protein A chromatography were considerably higher than those from low pH exposure alone; a distinct shift in aggregation rates was apparent across the pH range tested. PMID:26346187

  6. Substitution of D701N in the PB2 protein could enhance the viral replication and pathogenicity of Eurasian avian-like H1N1 swine influenza viruses.

    PubMed

    Liu, Suli; Zhu, Wenfei; Feng, Zhaomin; Gao, Rongbao; Guo, Junfeng; Li, Xiyan; Liu, Jia; Wang, Dayan; Shu, Yuelong

    2018-05-02

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses (SIVs) have become predominant in pig populations in China and have recently been reported to have the most potential to raise the next pandemic in humans. The mutation D701N in the PB2 protein, which accounts for 31% of H1N1 SIVs, has previously been shown to contribute to the adaptation of the highly pathogenic H5N1 or H7N7 avian influenza viruses in mammals. However, little is known of the effects of this substitution on the EA H1N1 viruses. Herein, we investigated the contributions of 701N in the PB2 protein to an EA H1N1 SIV (A/Hunan/42443/2015(H1N1), HuN EA-H1N1), which had 701D in the PB2 protein. Our results found that viral polymerase activity, viral replication, and pathogenicity in mice were indeed enhanced due to the introduction of 701N into the PB2 protein, and the increased viral growth was partly mediated by the host factor importin-α7. Thus, substantial attention should be paid to the D701N mutation in pig populations.

  7. Time- and dose-related interactions between glucocorticoid and cyclic adenosine 3',5'-monophosphate on CCAAT/enhancer-binding protein-dependent insulin-like growth factor I expression by osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Ji, C.; Chen, Y.; Kim, K.; Centrella, M.

    2000-01-01

    Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.

  8. Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation.

    PubMed

    Pandey, R B; Farmer, B L

    2014-11-07

    Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ∼ 3) at low temperature to a ramified fibrous network (D ∼ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ∼ 1.6) of fibrous Glu- and Thr-chain configurations.

  9. Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.; Farmer, B. L.

    2014-11-01

    Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ˜ 3) at low temperature to a ramified fibrous network (D ˜ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ˜ 1.6) of fibrous Glu- and Thr-chain configurations.

  10. Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle.

    PubMed

    Morimoto, Nobuyuki; Hirano, Sayaka; Takahashi, Haruko; Loethen, Scott; Thompson, David H; Akiyoshi, Kazunari

    2013-01-14

    A self-assembled nanogel, derived from an acid-labile cholesteryl-modified pullulan (acL-CHP), was prepared by grafting vinyl ether-cholesterol substituents onto a 100 kD pullulan main chain polymer backbone. Stable nanogels are formed by acL-CHP self-assemblies at neutral pH. The hydrodynamic radius of the nanogels, observed to be 26.5 ± 5.1 nm at pH 7.0, increased by ~135% upon acidification of the solution to pH 4.0. SEC analysis of the acL-CHP nanogel at pH 4.0 showed that the grafts were nearly 80% degraded after 24 h, whereas little or no degradation was observed over the same time period for a pH stable analog (acS-CHP) at pH 4.0 or the acL-CHP at pH 7.0. Complexation of BSA with the acL-CHP nanogel was observed at pH 7.0 with subsequent release of the protein upon acidification. These findings suggest that stimuli-responsive, self-assembled nanogels can release protein cargo in a manner that is controlled by the degradation rate of the cholesterol-pullulan grafting moiety.

  11. Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes.

    PubMed

    Jiang, Jiang; Chen, Jie; Xiong, Youling L

    2009-08-26

    Structural unfolding of soy protein isolate (SPI) as induced by holding (0, 0.5, 1, 2, and 4 h) in acidic (pH 1.5-3.5) and alkaline (pH 10.0-12.0) pH solutions, followed by refolding (1 h) at pH 7.0, was analyzed. Changes in emulsifying properties of treated SPI were then examined. The pH-shifting treatments resulted in a substantial increase in protein surface hydrophobicity, intrinsic tryptophan fluorescence intensity, and disulfide-mediated aggregation, along with the exposure of tyrosine. After the pH-shifting processes, soy protein adopted a molten globule-like conformation that largely maintained the original secondary structure and overall compactness but lost some tertiary structure. These structural modifications, consequently, led to markedly improved emulsifying activity of SPI as well as the emulsion stability.

  12. Cancer cell-associated cytoplasmic B7–H4 is induced by hypoxia through hypoxia-inducible factor-1α and promotes cancer cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, You-Kyoung; Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735; Park, Sae-Gwang

    2015-04-03

    Aberrant B7–H4 expression in cancer tissues serves as a novel prognostic biomarker for poor survival in patients with cancer. However, the factor(s) that induce cancer cell-associated B7–H4 remain to be fully elucidated. We herein demonstrate that hypoxia upregulates B7–H4 transcription in primary CD138{sup +} multiple myeloma cells and cancer cell lines. In support of this finding, analysis of the Multiple Myeloma Genomics Portal (MMGP) data set revealed a positive correlation between the mRNA expression levels of B7–H4 and the endogenous hypoxia marker carbonic anhydrogenase 9. Hypoxia-induced B7–H4 expression was detected in the cytoplasm, but not in cancer cell membranes. Chromatinmore » immunoprecipitation analysis demonstrated binding of hypoxia-inducible factor-1α (HIF-1α) to proximal hypoxia-response element (HRE) sites within the B7–H4 promoter. Knockdown of HIF-1α and pharmacological inhibition of HIF-1α diminished B7–H4 expression. Furthermore, knockdown of cytoplasmic B7–H4 in MCF-7 decreased the S-phase cell population under hypoxia. Finally, MMGP analysis revealed a positive correlation between the transcript levels of B7–H4 and proliferation-related genes including MKI67, CCNA1, and Myc in several patients with multiple myeloma. Our results provide insight into the mechanisms underlying B7–H4 upregulation and its role in cancer cell proliferation in a hypoxic tumor microenvironment. - Highlights: • Hypoxia upregulates B7–H4 transcription and protein expression. • Hypoxia-induced B7–H4 is detected in the cytoplasm, but not on membrane. • ChIP assay reveals a binding of HIF-1α to B7–H4 promoter at HRE site. • Knockdown and pharmacological inhibition of HIF-1α reduce B7–H4 expression. • B7–H4 knockdown decrease the number of cells in S-phase of cell cycle.« less

  13. The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice.

    PubMed

    Rha, Jennifer; Jones, Stephanie K; Fidler, Jonathan; Banerjee, Ayan; Leung, Sara W; Morris, Kevin J; Wong, Jennifer C; Inglis, George Andrew S; Shapiro, Lindsey; Deng, Qiudong; Cutler, Alicia A; Hanif, Adam M; Pardue, Machelle T; Schaffer, Ashleigh; Seyfried, Nicholas T; Moberg, Kenneth H; Bassell, Gary J; Escayg, Andrew; García, Paul S; Corbett, Anita H

    2017-10-01

    A number of mutations in genes that encode ubiquitously expressed RNA-binding proteins cause tissue specific disease. Many of these diseases are neurological in nature revealing critical roles for this class of proteins in the brain. We recently identified mutations in a gene that encodes a ubiquitously expressed polyadenosine RNA-binding protein, ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), that cause a nonsyndromic, autosomal recessive form of intellectual disability. This finding reveals the molecular basis for disease and provides evidence that ZC3H14 is essential for proper brain function. To investigate the role of ZC3H14 in the mammalian brain, we generated a mouse in which the first common exon of the ZC3H14 gene, exon 13 is removed (Zc3h14Δex13/Δex13) leading to a truncated ZC3H14 protein. We report here that, as in the patients, Zc3h14 is not essential in mice. Utilizing these Zc3h14Δex13/Δex13mice, we provide the first in vivo functional characterization of ZC3H14 as a regulator of RNA poly(A) tail length. The Zc3h14Δex13/Δex13 mice show enlarged lateral ventricles in the brain as well as impaired working memory. Proteomic analysis comparing the hippocampi of Zc3h14+/+ and Zc3h14Δex13/Δex13 mice reveals dysregulation of several pathways that are important for proper brain function and thus sheds light onto which pathways are most affected by the loss of ZC3H14. Among the proteins increased in the hippocampi of Zc3h14Δex13/Δex13 mice compared to control are key synaptic proteins including CaMK2a. This newly generated mouse serves as a tool to study the function of ZC3H14 in vivo. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Proximate body composition and energy content of plaice ( Pleuronectes platessa) in relation to the condition factor

    NASA Astrophysics Data System (ADS)

    Costopoulos, C. G.; Fonds, M.

    Length, wet weight, dry weight, and the content of lipid, ash and protein of young plaice were determined. The energy content of the fish was estimated by multiplying lipid and protein content by the commonly used calorific equivalents. The data were sorted from low to high condition factor of the fish and grouped according to condition factor (K = 100·W·L -3) into 8 condition groups. Mean values of percentage body composition and energy content were calculated for each condition group. Equations giving the best fit between condition factor and the parameters of body composition and energy content are presented. From the decrease in condition factor in fasting fish the relative losses of lipid and protein energy are calculated. The accuracy of equations for the calculation of energy content of plaice from condition factor is discussed.

  15. A protein-dye hybrid system as a narrow range tunable intracellular pH sensor.

    PubMed

    Anees, Palapuravan; Sudheesh, Karivachery V; Jayamurthy, Purushothaman; Chandrika, Arunkumar R; Omkumar, Ramakrishnapillai V; Ajayaghosh, Ayyappanpillai

    2016-11-18

    Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.

  16. Calculating pH-dependent free energy of proteins by using Monte Carlo protonation probabilities of ionizable residues.

    PubMed

    Huang, Qiang; Herrmann, Andreas

    2012-03-01

    Protein folding, stability, and function are usually influenced by pH. And free energy plays a fundamental role in analysis of such pH-dependent properties. Electrostatics-based theoretical framework using dielectric solvent continuum model and solving Poisson-Boltzmann equation numerically has been shown to be very successful in understanding the pH-dependent properties. However, in this approach the exact computation of pH-dependent free energy becomes impractical for proteins possessing more than several tens of ionizable sites (e.g. > 30), because exact evaluation of the partition function requires a summation over a vast number of possible protonation microstates. Here we present a method which computes the free energy using the average energy and the protonation probabilities of ionizable sites obtained by the well-established Monte Carlo sampling procedure. The key feature is to calculate the entropy by using the protonation probabilities. We used this method to examine a well-studied protein (lysozyme) and produced results which agree very well with the exact calculations. Applications to the optimum pH of maximal stability of proteins and protein-DNA interactions have also resulted in good agreement with experimental data. These examples recommend our method for application to the elucidation of the pH-dependent properties of proteins.

  17. Contemporary Avian Influenza A Virus Subtype H1, H6, H7, H10, and H15 Hemagglutinin Genes Encode a Mammalian Virulence Factor Similar to the 1918 Pandemic Virus H1 Hemagglutinin

    PubMed Central

    Qi, Li; Pujanauski, Lindsey M.; Davis, A. Sally; Schwartzman, Louis M.; Chertow, Daniel S.; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L.; Slemons, Richard D.; Walters, Kathie-Anne; Kash, John C.

    2014-01-01

    ABSTRACT Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. PMID:25406382

  18. Assessment of Factors Related to Auto-PEEP.

    PubMed

    Natalini, Giuseppe; Tuzzo, Daniele; Rosano, Antonio; Testa, Marco; Grazioli, Michele; Pennestrì, Vincenzo; Amodeo, Guido; Marsilia, Paolo F; Tinnirello, Andrea; Berruto, Francesco; Fiorillo, Marialinda; Filippini, Matteo; Peratoner, Alberto; Minelli, Cosetta; Bernardini, Achille

    2016-02-01

    Previous physiological studies have identified factors that are involved in auto-PEEP generation. In our study, we examined how much auto-PEEP is generated from factors that are involved in its development. One hundred eighty-six subjects undergoing controlled mechanical ventilation with persistent expiratory flow at the beginning of each inspiration were enrolled in the study. Volume-controlled continuous mandatory ventilation with PEEP of 0 cm H2O was applied while maintaining the ventilator setting as chosen by the attending physician. End-expiratory and end-inspiratory airway occlusion maneuvers were performed to calculate respiratory mechanics, and tidal flow limitation was assessed by a maneuver of manual compression of the abdomen. The variable with the strongest effect on auto-PEEP was flow limitation, which was associated with an increase of 2.4 cm H2O in auto-PEEP values. Moreover, auto-PEEP values were directly related to resistance of the respiratory system and body mass index and inversely related to expiratory time/time constant. Variables that were associated with the breathing pattern (tidal volume, frequency minute ventilation, and expiratory time) did not show any relationship with auto-PEEP values. The risk of auto-PEEP ≥5 cm H2O was increased by flow limitation (adjusted odds ratio 17; 95% CI: 6-56.2), expiratory time/time constant ratio <1.85 (12.6; 4.7-39.6), respiratory system resistance >15 cm H2O/L s (3; 1.3-6.9), age >65 y (2.8; 1.2-6.5), and body mass index >26 kg/m(2) (2.6; 1.1-6.1). Flow limitation, expiratory time/time constant, resistance of the respiratory system, and obesity are the most important variables that affect auto-PEEP values. Frequency expiratory time, tidal volume, and minute ventilation were not independently associated with auto-PEEP. Therapeutic strategies aimed at reducing auto-PEEP and its adverse effects should be primarily oriented to the variables that mainly affect auto-PEEP values. Copyright © 2016 by

  19. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    PubMed Central

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  20. The ESCRT-III Subunit hVps24 Is Required for Degradation but Not Silencing of the Epidermal Growth Factor Receptor

    PubMed Central

    Bache, Kristi G.; Stuffers, Susanne; Malerød, Lene; Slagsvold, Thomas; Raiborg, Camilla; Lechardeur, Delphine; Wälchli, Sébastien; Lukacs, Gergely L.; Brech, Andreas; Stenmark, Harald

    2006-01-01

    The endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are thought to mediate the biogenesis of multivesicular endosomes (MVEs) and endosomal sorting of ubiquitinated membrane proteins. Here, we have compared the importance of the ESCRT-I subunit tumor susceptibility gene 101 (Tsg101) and the ESCRT-III subunit hVps24/CHMP3 for endosomal functions and receptor signaling. Like Tsg101, endogenous hVps24 localized mainly to late endosomes. Depletion of hVps24 by siRNA showed that this ESCRT subunit, like Tsg101, is important for degradation of the epidermal growth factor (EGF) receptor (EGFR) and for transport of the receptor from early endosomes to lysosomes. Surprisingly, however, whereas depletion of Tsg101 caused sustained EGF activation of the mitogen-activated protein kinase pathway, depletion of hVps24 had no such effect. Moreover, depletion of Tsg101 but not of hVps24 caused a major fraction of internalized EGF to accumulate in nonacidified endosomes. Electron microscopy of hVps24-depleted cells showed an accumulation of EGFRs in MVEs that were significantly smaller than those in control cells, probably because of an impaired fusion with lyso-bisphosphatidic acid-positive late endosomes/lysosomes. Together, our results reveal functional differences between ESCRT-I and ESCRT-III in degradative protein trafficking and indicate that degradation of the EGFR is not required for termination of its signaling. PMID:16554368